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Abstract. In our experience, different business systems for the same intent 

show considerable commonality with well-defined differences. Thus precise 

adoption of variability modeling and resolution techniques of Software Product 

Line Engineering (SPLE) can be visualized as a possible solution for delivering 

such business systems. In our pursuit of adopting standard SPLE concepts 

within our delivery platform, we are investigating variability modeling 

techniques such that a purpose-specific business application can be derived by 

resolving variability in a product line in a consistent and comprehensive 

manner. Therefore, in this paper, we present a generic metamodel for specifying 

variability along with a model-2-model (M2M) transformation technique for 

deriving purpose-specific business solutions from a product line. The approach 

is furthermore elucidated with an illustrative example that validates the 

concepts that are described in the paper.  

Keywords: Variability Metamodel, Business Application Configuration, Model 

Transformation. 

1 Introduction 

Software Product Line Engineering (SPLE) has been in practice for more than two 

decades and is adopted with varying degree of success by industry practitioners and 

research organizations in conceptualizing and developing various products and 

systems. However, adopting SPLE concepts in business application domains, such as 

those pertaining to banking and insurance domains, are typically limited to product 

conceptualization space (or problem space), i.e. product offerings are described using 

feature models [2, 6, and 8]. However, the development artifacts, i.e. artifacts that 

belong to solution space, are not organized as expected by the SPLE community. In 

practice, the variability modeling (VM) of solution space is mostly achieved by 

extending the base metamodel (or language), which is used for describing underlying 

base models. Therefore the use of variability modeling and approaches pertaining to 

variability resolutions are specific to a particular domain, e.g., embedded, legacy, 

mobile, business application. Since the basic principles of variability modeling is 

common across any domain-specific base model (or language), it is imperative to 

abstract out the key elements that identify a generic variability model and a uniform 

approach for resolution (or materialization). In congruence with Common Variability 
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Language (CVL) standardization initiative [12], we also envisage the need of coming 

up with such a generic approach for describing variability and resolve them 

appropriately to derive a purpose-specific solution to address business requirements. 

Therefore this paper tries to determine the key concepts of variability modeling and 

resolution mechanism and apply them to an industrial case study application for 

validation. 

The rest of the paper is organized as follows. Section 2 of the paper identifies the 

key challenges with respect to variability modeling. Section 3 explains our approach 

and describes in detail the underlying metamodel. Finally, section 4 introduces our 

illustrative example (case study) and validates the concepts described in the previous 

sections. 

2 Key Challenges 

There are several challenges that should be addressed towards designing a 

variability modeling language and uniform resolution mechanism for business 

applications. The key concern of designing variability modeling language is to 

provide an ability to describe the variability of solution space and problem space 

independently, and establish relationship between these two kinds of models in an 

intuitive manner. Similarly the key concern of resolution mechanism is to resolve the 

variability of solution space model without any ambiguity by resolving the variability 

of problem space model. In congruence with CVL standardization effort, a joint 

response to CVL RfP [12], the challenges can be described as follows: 

C1 – Designing a modeling language for describing the solution space variability, 

which we term as variability realization metamodel (VRM). The design of the VRM 

should be such that the domain-specific base metamodel (or language), henceforth 

base metamodel (BM), such as UML and BPMN  should not be extended by any 

means e.g. additional stereotype or constructs to describe solution space variability. 

The current practice is to extend the base metamodel to capture variability, but this 

makes the variability model and thus approach specific to a base model.  

C2 - There must be a way to specify the variability of problem space, which we 

term as variability specification. The use of feature model techniques defined in [2, 6, 

and 8] have became the de-facto standard for defining variability specification in the 

problem space. The key challenge in this space is to establish the relationship between 

variability specification and variability realization, and ensuring the conformance of 

the constraints defined in two different spaces. 

C3 - Finally, a key challenge is to define the resolution semantics that is required to 

resolve a set of unresolved base model elements to a set of resolved target model 

elements. The resolution semantics help in the product configuration process and can 

be specified using model transformation or model composition techniques. 
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3 Approach  

In view of the above challenges, Fig 1 presents our high-level approach towards 

variability modeling. The approach is based on three key concepts – the variability 

realization metamodel (VRM), the variability specification metamodel (VSM) and the 

resolution semantic metamodel (RSM), all of which conform to MOF metamodel 

[13]. Solution space variability can be described by two concepts - Variation Point 

(VP) and Variant (V). Essentially the VP describes the location where things can 

differ and variant describes the things that differs.  VPs and Vs are captured in the 

VRM whereas abstract variability concepts like features and configurations are 

captured within the VSM. In our approach we provide a placeholder to describe the 

semantic interpretation of a variation point, i.e. how a variation point can be 

interpreted for a given variant. Essentially, this semantic behavior is captured by 

M2M transformations that act on the reference model elements of variation points and 

variants to produce resolved target model.  Though the semantics of our variability 

modeling language is expressed in terms of operational Query View Transformations 

(QVT) [14], but any model-to-model transformation can be used with our approach. 

In addition, constraints on VRM and VSM are described by a declarative constraint 

specification language like OCL [15].  

The left-hand-side (LHS) of Fig 1 shows the (unresolved) base metamodel that 

conforms to MOF. The base (meta-) model elements are referenced by elements in the 

VRM. Similarly, there is a binding from the VRM to VSM that maps solution space 

artifacts to abstract variability concepts. The steps are briefly described below: 

A) The solution space specification begins with highlighting or annotating the 

base model. This results in instantiating the VRM with appropriate references 

(i.e., <<refers>>), to the base model. This separates out the base model and 

Figure 1: Overview of Variability Modeling and Configuration Approach 
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variability realization model. An illustrative example is shown in Figures 3 

and 4. 

B) The problem space specification begins with the variability specification 

model (similar to feature tree specification).  Steps A and B may be carried out 

in parallel, and once completed, appropriate bindings (i.e., <<binds>>) are 

provided from the solution space (realization) to the problem space 

(specification). In addition, a set of valid configurations can be specified on 

variability specification model. Please refer to Fig 5 for a specific example. 

C) Once steps A and B are realized (along with bindings, configurations, and 

reference), the configuration or materialization process can begin. In this step, 

the semantic specification (QVT rules) is defined using the product line 

specification model1 and a valid configuration (shown as parameter in Fig 1) 

as input. The semantic transformation rules (QVT rules) generate the target 

resolved model as output.  

Figures 3-6 in the case study section portray the complete process steps as 

described above. 

3.1 Variability Metamodel 

The approach described in the previous sub-section is illustrated by the following 

metamodel as shown in Fig 2.  Some of the key elements in the variability metamodel 

(VM) are described below: 

                                                           
1 dotted line in Figure 1 showing VRM, BM, VSM along with corresponding bindings 

and references 
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0..*

Figure 2: Variability Metamodel
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Variation Point: A Variation Point (VP) is a placeholder in the VRM where variants 

can be plugged in. A VP is derived from the variability class reference (VClassRef), 

which is an instance of the MOF class. Also, VPs refers to base model elements via a 

reference handler. It is assumed that any base model element is an instance of the 

MOF class. A VP must have a variation point type (VPType) that captures the 

behavior of the variation point. In other words, VPType determines how the variation 

point will be handled by resolution semantics. The metamodel does not make explicit 

definition of VPType, instead the semantics is specified using QVT transformation 

rules. In accordance with OMG's ongoing CVL initiative [4], the variation point 

(type) in our metamodel is similar to opaque variation points.  

Variants: Variants can be considered as individual parts that can be plugged into a 

variation point (with type safety). Variants are the second key component of VRM. 

Similar to VPs, variants are also derived from VClassRef and conform to MOF class. 

Constraint expressions on variation points and variants can be defined using OCL. 

Similar to VP, variants also refer to base model elements via a reference handler. 

vXfm: Variability transformation or vXfm signifies transformation applied on a 

variability class reference (i.e., variations points and variants). They capture the 

resolution semantics of VM and are expressed in QVT. The QVT rules are used to 

resolve a target model from unresolved product line input specification.  

Feature: A primary constituent of the VSM is a feature or vSpec tree. The top of the 

tree is denoted by a Root that facilitates in the composition of the tree. A feature tree 

can be composed of external references, i.e., external feature tree or external 

configurations (i.e., pre-configured). A feature is an abstract representation and is 

realized via bindings to concrete concepts like variation points and variants. 

Configuration and Resolution: A variability configuration is a set of all valid 

resolutions from a variability specification tree (i.e., feature tree) whereas variability 

resolution is the process of resolving a single feature (VP) to a distinct choice 

(variant) from a set of possible choices (variants). A configuration can be either 

partial (unresolved resolutions) or complete when all resolutions are resolved. 

Configurable Unit: A configurable unit is a reusable entity that can be composed of 

other configurable units. A CU can be either preconfigured when it contains valid 

configurations (i.e. a CU without any feature tree) or a CU can be partially 

configured/ unconfigured when it contains a set of valid configurations and a feature 

tree. A CU also guides in the composition of vXfms (resolution semantics). This is 

shown in Fig 2 by the xfmComposition association. 

In the following section we validate the concepts described so far with an 

illustrative example as part of case study. 

4 Illustrative Example (Case Study) 

In this section, we will evaluate our approach by applying it to a set of banking 

applications that has both commonality and context-specific variability. The goal is to 

model the banking applications in the form of UML class diagrams and thereby 

consider all its variability requirements. Finally, we will configure the UML class 

diagrams (our base model) and derive a purpose-specific UML class model. Due to 
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space constraint, we consider only two classes from the core banking application 

namely the Customer class and the Address class. 

In view of the above scenario, let us consider that a bank has many customers and 

each customer has two addresses – a permanent address and a local address. In 

addition, a customer have other standard details like customer name, uid (universal 

identification no.), dob (date of birth) and an operation called 

getCustomerCreditHistory. Typically, the customer identification number and the 

address i.e. permanent and local address differ with operational context. For example, 

a customer located in US is identified by a 10 digit numeric SSN (social security 

number) and an address field described by a ZIP code, whereas a customer in India is 

identified by a PAN number (string) and an address  represented by a PIN code. 

Similarly, a Non-Resident Indian (NRI, an Indian citizen living abroad) is identified 

by his/her passport number (String) and an address field expressed by a Postcode. Just 

as the properties of a customer model can vary, behavioral operations like 

getCustomerCreditHostory on a customer can also differ according to the following 

contexts - US based banks uses Credit Bureau Report to determine credit history, 

whereas Indian Banks uses CIBIL agency and other Credit Reference Agency Reports 

to determine credit history for their customers. Thus a product development 

organization needs to consider the following variability requirements for developing 

banking related products:  

1. For US Customer: unique identification number is SSN based, local and 

permanent addresses is ZIP code based and getCustomerCreditHostory is 

based on Credit Bureau Report. 

2. For Indian Customer: PAN based unique identification number, PIN code 

based local and permanent address and getCustomerCreditHostory is based 

on CIBIL. 

3. For NRI Customer: Passport based unique identification number, PIN code 

based permanent addresses, Postcode based local address and 

getCustomerCreditHostory is based on Credit Reference Agency Report. 

Customer

- uid :  String

- pan_Number : String

- ssn_Number : String

- passport_Number : String

- name : String

- dob : String

- local Address : Address

- permanent Address : Address
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+  getUSCreditHistory: String

+  getIndianCreditHistory: String

+  getIntlCreditHistory: String

Address

- addressLine: String

- city: String

- state: String

- postalCode: String

- pinCode : Integer

- zipCode  : Integer

- postCode : String
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Figure 3: Defining Variability Realization Model

a. Base Model b. Base Model with CU, VP and V
c. Base Model and Realization 

Model with Constraints 

3

d. Assign/ Define semantics of VPs

Semantic Specification

VP Uid: 

Semantic Definition

VPType: 

PropertyClassReplacement

Mapping 
CVL::VariationPoint:pVariatio
nPointToProperty(in 
confName: String ) : 
TargetDomain::Class
when { 
self.ifVariationHasReference
Object()}
{

//QVT code for replacing 
variation Point by selected 
Variants for confName
}

1+ lAddr +pAddr
1 1+ lAddr +pAddr 1 1+ lAddr +pAddr

8



 

In our experience, the standard practice of a typical product development organization 

is to create copies for each of these requirements. Such a brute force approach 

increases the complexity in versioning, change management and configuration 

management. Instead, a better approach is to explore the possibility of using 

variability modeling, as described in section 3, to model banking products. 

As stated earlier, each of the Customer and Address class model from the banking 

product line is depicted in Fig 3.a. The class model, which we term as base model, 

captures the common requirements along with all variability requirements as instance 

of UML metamodel. For example, the common properties of a Customer class are 

name and dob, while the variable properties are uid (VP), pan number, ssn and 

passport number. Similarly, the only variable operation in the Customer class is 

getCustomerCreditHostory (VP) that maps to several variants like 

getUSCreditHistory, getIndianCreditHistory and getIntlCreditHistory. Moreover, two 

properties of the Customer class (permanent and local address) refers to the Address 

class, which has its own variability requirements as shown in Fig 3.a. The base model 

is a collection of all common and context-specific variable requirements without any 

distinction.  

The process of realizing variability from a given base model (unresolved) is 

illustrated in Figures 3-6. The process steps follow the guideline as described in 

section 3.1. It begins with an unresolved base model (Fig 3.a). This is followed by 

highlighting or marking the variation points, variants and the relationship between 

variation points and variants. The above scenario is depicted in Fig 3.b. The figure 

shows the variation points of Customer class (i.e., uid, localAddress, 

permanentAddress and getCreditHistory) and Address class (i.e., postalCode). The 

relationship between variation points (highlighted with red color) and variants 

(highlighted with blue color) is shown by special multi-tail arrows where the head 

point to VP and the tail point to variants. In addition, one can define constraints 

between variation points and variations. For example, ssn_Number must be selected if 

getUSCreditHistory is selected, while passport_Number must be selected if 

getIntlCreditHistory is selected. This is depicted in Fig 3.c. Semantic interpretation of 

each variation points should be specified to complete the variability realization model. 

Figure 4: Underlying model of Variability Realization Model

Base Model  

(Instance of BM Metamodel - UML)

Customer

- uid :  String

- pan _Number: String
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+  getCustomerCreditHistory: String

+  getUSCreditHistory: String

+  getIndianCreditHistory: String

+  getIntlCreditHistory: String
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- addressLine: String

- city: String

- state: String

- postalCode: String

- pinCode : Integer

- zipCode  : Integer

- postCode : String
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As an example, Fig 3.d. shows a QVT specification that replaces a property of a class 

to another property of the same or different class for a given configuration.  

Fig 4 shows the variability realization model along with its appropriate references 

to the base model. As stated earlier, VRM is independent of the base (meta-) model 

and refers to the base model elements via reference handlers (dotted red and blue 

lines). C1 and C2 are the two constraints defined in the realization model.  In 

addition, Fig 4 also shows the semantics model that defines how the VPs would be 

handled by corresponding variation point types (VPTypes) and QVT rules.  The 

model depicted in Fig 4 describes the model of solution space of the variability 

requirements for the banking product. 

The process of defining variability specification, (problem space, see Fig 5) starts 

with identifying configurable units or CUs. In our example the two CUs are the 

Customer CU and the Address CU (Fig 5.a). Note that Customer CU contains 

Address CU via the external reference as shown in Fig 5.a. Fig 5.b describes the 

complete variability specification for the Customer feature along with various 

constraints. Configuration criteria for specifying a US Customer, an Indian Customer 

or a NRI Customer are depicted in Fig 5.c. Once the variability specification model is 

defined, bindings from the abstract specification model to concrete realization model 

must be accomplished. The binding process is illustrated in Fig 6 that shows how VPs 

and variants from the realization model are bound to various choices or features in the 

feature tree. Once all the above steps are completed, the configuration process can 

derive a purpose specific base model by applying appropriate M2M transformations 
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on the input product line specification.      

5 Related Work 

There are several approaches that address different aspects of managing variability 

in software product lines. These aspects can be divided into three broad categories – 

a) approach for defining solution space variability, b) approach of defining problem 

space variability along with the mechanism to establish relationships with solution 

space models, and c) approach for defining the resolution semantics and resolutions.  

In the first category (solution space), a proposal for modeling variability in 

software families with UML using the standardized extension-mechanisms of UML 

(using stereotype) is presented in [3]. A variation point model that allows user or 

application engineer to extend components at pre-specified variation points is 

proposed in [9].  A conceptual model for capturing variability in a software product 

line is presented in [1]. On the similar line, the extension of base metamodel using 

UML stereotype is presented in [10] to model variability. In the solution space, we 

have proposed a MOF compliant VRM that establishes an association with any MOF 

compliant base model (e.g., UML class model) instead of extending base metamodel. 

This provides a clear separation of concern and helps to define variability of any 

MOF compliant models.   

In the second category (problem space), existing approaches for specifying 

variability are essentially based on one of the following approaches [2, 6, 8] or a 

combination of them. A concise representation of variability specification for 

different kinds of models is presented in [5].  In addition to variability specification, 

this paper tried to provide semantics of features by mapping them to base models 

using a template based approach. Our approach for defining variability specification 

is essentially based on approach presented in [6], however we unify the key concepts 

of variability specification metamodel with variability realization metamodel to 

establish bindings between them. 

 The third category (resolution semantics) uses model transformation techniques 

for configuring product line [7]. Essentially, there are two broad categories of 

resolution technique – model transformation based on pre-defined M2M 

transformation rules or model composition based on AOP-like technique. 

Composition approaches such as [11. 16 and 17] are AOP based. In our view, a 

limitation of AOP-like composition is that they are useful for handling crosscutting 

concerns, whereas other concerns may not be composed cleanly. Instead, our 

approach uses the concept of transformation based semantic composition. This 

enables customized semantics for each variation point to be composed by any M2M 

transformation language like QVT.  

6 Conclusion 

To specify and configure variability in business application product lines, we 

argued, the need for: i) a realization layer to specify concrete variability concepts, ii) a 

specification layer to indicate abstract variability concepts iii) appropriate bindings 

and reference from the realization layer to the base model and abstract concepts iv) a 
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mechanism to resolve variability using M2M transformation techniques (resolution 

semantics). We presented our solution that aims to address all the three challenges 

and shared early experience of using it in practice. Moreover, we have tried to align 

our approach with the ongoing OMG initiative in defining a common variability 

language [12] and plan to apply the standard throughout our delivery platform in 

future.  
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Abstract. Service Oriented Architecture (SOA) has emerged as a paradigm for 

distributed computing that promotes flexible deployment and reuse. However, 

SOA systems currently lack a systematic approach for managing variability in 

service requirements. Our paper addresses this problem by applying software 

product line (SPL) concepts to model SOA systems as service families. We 
introduce an approach to model SOA variability with a multiple-view SOA 

variability model and a corresponding meta-model. The approach integrates 

SPL concepts of feature modeling and commonality/variability with different 

service views using UML and SoaML. This paper describes a multiple-view 

meta-model that maps features to variable service models as well as model 

consistency checking rules. We describe how to derive family member 

applications and also present a validation of the approach. 

Keywords: Meta-Modeling, Software Product Lines, SOA, Feature Modeling 

1   Introduction 
Service Oriented Architecture (SOA) has emerged as an architectural style for 

distributed computing that promotes flexible deployment and reuse [1]. However, 

SOA systems currently lack a systematic approach for managing variability and are 

typically platform-dependent. Since services in SOA could be used by different 

clients with varying functionality, we believe that SOA variability modeling can 

benefit from software product lines (SPL) variability modeling techniques. 

This paper describes a meta-modeling approach that integrates SPL concepts of 

feature modeling and commonality/variability to model SOA variability. The main 

goal of SPL is the reuse-driven development of SPL member applications by using 

reusable assets from all phases of the development life cycle. This goal is similar to 

the goal of SOA where flexible application development is a common theme.  

Our approach integrates feature meta-modeling [2], [3] with service views using 

UML and SoaML the newly released SOA standardized modeling language. Such an 

approach facilitates variability modeling of service family architectures in a 

systematic and platform independent way.  

At the heart of the approach is a meta-model that describes requirements and 

architectural views of service oriented systems. In addition, the meta-model describes 

variability in the service views and adds a feature view that addresses the variability 

in the SOA system. The meta-model also describes relationships among the services 

views and among the feature and services views. Our approach builds on previous 

research as follows: feature modeling of software product lines engineering [2], meta-
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modeling of SPL phases [4], software adaptation patterns for SOA systems [5], an 

early version of our meta-model [6], and SoaML. 

The rest of the paper is structured as follows. Section 2 briefly present our multiple 

view variability model, section 3 details the description of our multiple view 

variability meta-model, section 4 describes feature to service relationships and 

constraints, section 5 presents validation of the approach, section 6 presents related 

work, and section 7 concludes the paper. 

 

2   Multiple View Service Variability Model 
Erl [1] describes service-oriented systems as having multiple perspectives where these 

perspectives depend on each other. In essence, each perspective describes a distinct 

view of the whole SOA system. In this paper, the different SOA perspectives are 

formalized into multiple Requirements and Architectural views. In this section, we 

briefly describe our multiple-view service model which is formalized by our meta-

model. Each view of the multiple view model is depicted by a UML diagram that is 

extended by using stereotypes. In particular, each modeling meta-class is depicted 

using two stereotypes, one to represent an SOA concept and the other to represent a 

commonality/variability concept. A service modeling example is introduced in this 

section (Fig. 1, 2, and 3) and used throughout the paper to explain our approach.  

The Service Contract Variability View is a Requirements view that describes 

service contracts, which are prescribed by collaborating organizations in order to 

govern and regulate their interactions. Service contracts (Fig. 1a) are modeled by 

SoaML’s ServiceContract element. This view also contains SoaML’s Participant 

elements that model providers or consumers of services. An example of the Service 

Contract View is given in Fig. 1a which models an E-Commerce SPL. We categorize 

Service Contracts and Participants as kernel, optional, or alternative. Kernel elements 

Fig. 1 E-Commerce Requirements Service Variability Views 
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are required by all members of an SPL, whereas optional elements are required by 

only some members. Alternative elements are required by different SPL members. 

The Business Process Variability View is a Requirements view that models the 

workflow of business processes. We use UML Activity diagrams to model this view 

with variability stereotypes (Fig. 1b).  

Services expose their capabilities through interfaces only. The Service Interface 

Variability View is an architectural view that models service interfaces by using 

UML’s Interface class in addition to applying a <<service>> stereotype (Fig. 2a). 

Service interfaces are categorized as kernel, optional, and variant. 

The Service Coordination Variability View is an architectural view that models the 

sequencing of service invocations. Services should be self-contained and loosely 

coupled in order to have a high degree of reuse; dependencies between services 

should therefore be kept to a minimum [5]. Hence, coordinators are used in situations 

where access to multiple services needs to be coordinated and/or sequenced. The 

Service Coordination View consists of Coordinators which are modeled as classes 

with a <<Service Coordinator>> stereotype (Fig. 2b). Service Coordinators are 

categorized as kernel, optional, and variant.  

With the above service modeling views, it is possible to define the variability in each 

view and how it relates to other views. However, it is difficult to get a complete 

picture of the variability in the service architecture because it is dispersed among the 

multiple views. The Feature View is a unifying view that focuses on service family 

variability and relates this to the other service views. Feature modeling is rooted in the 

seminal work of Kang et al. [3]. Feature models are used to manage similarities and 

differences among family members in a SPL. Features are analyzed and categorized 

as common, optional, or alternative. Related features can be grouped into feature 

groups, which constrain how features are used by a SPL member. Fig. 3 depicts the 

feature model for the E-Commerce product line.  

 

3   Multiple View Service Variability Meta-Modeling 
The multiple-view variability modeling approach is based on a meta-model that 

precisely describes all views and views relationships. Each view in the multiple-view 

model (Fig. 1, 2) is described by a corresponding meta-view in the meta-model (Fig. 

4). There are two Requirements meta-views, Contract and Business Process, and two 

Architecture meta-views, Service Interface and Service Coordination. To get a full  

 
Fig. 2   E-Commerce Architectural Service Variability Views 
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understanding of the variability in service architectures, it is necessary to have one 

view that focuses entirely on variability and defines dependencies in this variability, 

which is the purpose of the feature meta-modeling view described in Section 3.5. Our 

meta-modeling approach builds on previous work in SPL multiple-view modeling and 

meta-modeling [4]. 

 

3.1   Service Contract Meta-View  

We use SoaML’s ServiceContract meta-class to specify the agreement between 

providers and consumers, by using the <<ServiceContract>> stereotype. To model 

SOA variability, we categorize a ServiceContract as kernel, optional, or alternative.  

Each service contract (Fig. 4) prescribes roles for the organizations participating in 

it. This view also models contract participants, which are entities that abide by service 

contracts. We use SoaML’s Participant meta-class which specifies providers or 

consumers of services. This meta-class extends the UML Class meta-class by using 

the <<Participant>> stereotype. 

  

3.2   Business Process Meta-View  

Neither SoaML nor UML explicitly model business process workflow. Since a 

business process is composed of a sequence of activities, we use UML Activity meta-

classes, as part of an activity diagram for each business process. 

 

3.3   Service Interface Meta-View  

We model service interfaces by UML’s Interface meta-classes accompanied with a 

<<service>> stereotype to distinguish them from component interfaces. Interface 

meta-classes specify provided and required service interfaces. A service interface is 

categorized as kernel, optional, or variant.  

It should be noted that SoaML has a ServiceInterface meta-class that describes service 

interfaces in addition to service interactions and protocols. However, the UML 

interface meta-class is suitable for our current research. 

 

3.4   Service Coordination Meta-View  

The service coordination view consists of coordinators which are modeled as classes 

with a <<Service Coordinator>> stereotype. Service coordinators, depicted on UML 

communication diagrams, interact with clients and services. The sequencing of 

 
Fig. 3.   E-Commerce Feature View 
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service invocations is encapsulated within the Coordinator . Service Coordination is 

categorized by type of coordination (independent, distributed, or hierarchical) and 

degree of concurrency (sequential or concurrent) [5].  

 

3.5   Feature Meta-View 

Since UML has no native support for feature modeling, we use a UML based feature 

meta-model based on our previous work [2], [4]. Fig. 3 depicts a feature meta-model. 

Features are specialized into kernel, optional, alternative, and default depending on 

the characteristic of the requirements as described in section 2. 

Kernel features are requirements common to all members of the SPL. Optional 

features are required by only some members of a SPL. An alternative feature is an 

alternative of a kernel or optional feature to meet a specific requirement of some 

members. A default feature is the default choice among the features in a feature 

group. Feature groups refer to constraints on the selection of a group of features (e.g., 

preventing selection of mutually exclusive features). Feature dependencies represent 

relationships between features. 

 

 

4   Service Variability Meta-Model Relationships 
In this section, we describe the relationships of the service variability meta-model 

(Fig. 4) that ties all the aforementioned views together. The meta-model consists of 5 

meta-views (4+1 feature view) that correspond to each view in the multiple-view 

model (section 2). The Feature View (Fig. 3) unifies the service views as explained in 

 
Fig. 4.   Service Variability Meta-Model 
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Section 2.5. The meta-model describes both intra-view and inter-view relationships, 

as follows: 

The Intra-View Relationships describe associations and dependencies inside each 

view. A ServiceContract meta-class, in the Service Contract view, is associated with 

two or more Participant meta-classes (Fig. 1a), because a ServiceContract meta-

class defines the rules for participating entities in the SOA system. The 

ServiceCoordinator meta-class in the Service Coordination view is associated with a 

Message meta-class as it sends/receives messages to/from services.  

The Inter-View Relationships describe associations and dependencies between 

different service views. A ServiceContract meta-class is associated with one or more 

ServiceInterface meta-classes (Fig. 4b, d). Participant meta-classes provide or 

require service Interface meta-classes (Fig. 4b, d), because participating entities only 

interact through interfaces to minimize coupling among services. Participant meta-

classes (Fig. 4b) may define their own internal business processes (Fig. 4c). Activity 

meta-classes (Fig. 4c) can be either local or service meta-classes. Local activities are 

executed within the Participant execution environment. Service activities require 

ServiceInterfaces. ServiceCoordinator meta-classes (Fig. 4e), in the Service 

Coordination View coordinate service invocations based on the workflow of Activity 

meta-classes in the Business Process view (Fig 4c). Message meta-classes in the 

Service Coordination View (Fig. 4e) trigger operation invocations on the service 

Interfaces in the Service Interface View (Fig. 4d).  

Meta-classes in one view of the service model affect meta-classes in other views. 

For example, in Fig. 1b, when the Calculate Tax Activity is added to the Order 

Fulfillment Business Process View, a Sales Tax ServiceContract is introduced into 

the E-Commerce SPL in the Service Contract View (Fig. 1a). Consequently, a Tax 

Agency Participant is also added which provides a SalesTax service Interface in the 

Service Interface View (Fig. 2a). 

Feature to Service Meta-Views Relationships describe relationships between the 

Feature View and Service views. In addition, we provide consistency checking rules, 

written in OCL, that add explicit constraints on relationships between the meta-

classes of the multiple-view service variability meta-model (Fig. 4). 

  

4.1   Feature to Service Contract Meta-View Relationship  

A Feature (Fig. 4a) is associated with one or more ServiceContract meta-classes in 

the Service Contract View (Fig. 4b). The variability stereotype on a ServiceContract 

dictates the type of feature it may map to. For instance, an optional feature (e.g., 

Credit Rating) can only map to optional service contracts (e.g., Credit Checking 

service contract).  

 

A Kernel ServiceContract can only support a kernel Feature 
context Feature inv: reuseStereotype = ‘kernel’ implies 

servicecontract->size() >= 1 and servicecontract.reuseStereotype = 

‘kernel’ 

 

A Feature is associated with one or more Participants. For example, if the 

Electronic Goods optional feature (Fig. 3) is selected, the Seller will sell electronic 

items in addition to books and the ElectronicSupplier Participant will participate in 

the InventoryOrdering ServiceContract (Fig. 1a). Consequently, the 
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ElectronicsOrdering ServiceInterface will be introduced into the InventoryOrdering 

ServiceContract (Fig. 1a). Hence, the selection of one feature meta-class in the 

feature meta-view is mapped to two service meta-classes (contract and interface) in 

the contract and interface meta-views. 

4.2   Feature to Business Process Meta-View Relationship 
A Feature is associated with one or more Activities in the Participant’s business 

process (Fig. 4c). For example, when the Discount optional feature is selected (Fig. 

3), which means that the system changes to provide the ‘Discount’ capability, the 

‘Calculate Discount’ Activity is added to the Order Fulfillment business process (Fig. 

1b). Thus, the Discount <<optional feature>> is mapped to <<optional>> ‘Calculate 

Discount’ Activity in the business process view. 

 

An optional Activity can only support an optional Feature 
context Feature inv: reuseStereoType = ‘optional’ implies  

activity->size() >=1 and activity.reuseStereoType = ‘optional’ 

 

4.3   Feature to Service Interface Meta-View Relationship 

A Feature is associated with one or more service Interfaces. For example, if the Credit 

Rating optional feature is selected (Fig. 3), the Seller Participant has to provide a new 

service Interface that can interact with a credit rating agency. Thus, the Credit Rating 

<<optional feature>> is mapped to <<optional>> Credit Rating service Interface in 

the Service Interface View (Fig. 2a). 

 

A variant ServiceInterface can only support an alternative Feature 
context Feature inv: reuseStereoType = ‘alternative’ implies 

serviceinterface->size() >= 1 and serviceinterface.reuseStereoType = 

‘variant’ 

 

4.4 Features to Service Coordination Meta-View Relationship 

A Feature is associated with one or more ServiceCoordinator meta-classes in the 

Service Coordination View. For example, since the Order Fulfillment feature (Fig. 3) 

is supported by the Order Fulfillment Activities in the business process view (Fig. 

1b), the same feature is supported by the Order Fulfillment ServiceCoordinator in the 

Service Coordination view (Fig. 2b). It should be noted that each business process is 

associated with a unique ServiceCoordinator. 

A Feature is associated with one or more Message meta-classes. For example, the 

‘Preferred Customer’ optional feature (Fig. 3) is supported in part, by the ‘Lookup 

Customer’ Message in Fig. 2b. 

4.5   Service Variability Meta-Model Consistency Checking Rules 

In this sub-section, we provide representative consistency checking rules to precisely 

describe the relationships among the variable service meta-model meta-classes in Fig. 

4. We are inspired by our previous work [4] where we used OCL to describe 

consistency checking rules to describe the relationships among the various meta-

modeling views of the SPL phases.    

The following are typical meta-modeling consistency checking rules, which are 

expressed in both English and OCL. 
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1. A kernel ServiceContract must have at least 2 kernel Participants 
context servicecontract inv: reuseStereotype =’kernel’ implies 

(select participant.reuseStereotype = ‘kernel’)->size() >= 2 

2. A kernel ServiceContract must be supported by at least one kernel 

ServiceInterface 
context servicecontract inv: reuseStereotype =’kernel’ implies 

serviceinterface->exists(si | si.reuseStereotype = ‘kernel’) 

3. A Participant must provide or require at least one ServiceInterface 
context participant inv: reuseStereotype =’kernel’ implies 

serviceinterface->exists(si | si.reuseStereotype = ‘kernel’) 

4. If kernel Activity is a Service Activity, it must call a kernel ServiceInterface. 
context activity inv: self.oclIsKindOf(Service) implies 

activity.serviceinterface.reuseStereotype = ‘kernel’ 

 

 

5   Validation of the Approach 
To validate our approach, we created a proof-of-concept prototype for service 

oriented SPL. The prototype allows users to specify feature models, build service 

models, relate features to service views, and create SPL member applications. The 

purpose of the validation is to evaluate our approach with regard to:  

1. The multiple views of the service oriented product line are consistent with 

each other.  

2. The multiple-view service variability model is compliant with the underlying 

multiple-view service variability meta-model 

3. Derived service oriented member applications are consistent with the service 

oriented SPL requirements and architectural models. 

The prototype is based on the open-source Eclipse Modeling Framework (EMF). 

The prototype relies on Eclipse’s plug-in mechanisms to provide integrated 

functionality for users. The prototype consists of the following components:  

• EMF core modeling facilities. 

• Apache ODE – ODE is an open source BPEL engine. The generated 

BPEL code is compiled and deployed to ODE. The BPEL code invokes 

services based on WSDL files. 

• Apache CXF – CXF is an open-source web-services framework which 

supports standard APIs such as JAX-WS and JAX-RS as well as WS 

standards including SOAP, and WSDL. 

• Eclipse Swordfish – Swordfish is an open-source extensible Enterprise 

Service Bus (ESB). 

 By building the E-Commerce SPL feature and multiple view service models 

correctly, i.e. without errors emitted from the underlying OCL rules, we validated that 

multiple views of the service oriented product line are consistent with each other. In 

addition, we validated that the multiple-view E-Commerce SPL model is compliant 

with the underlying multiple view variability meta-model, because EMF ensures the 

compliance of models by applying the underlying meta-model syntax rules. 

We perform manual derivation of the E-Commerce SPL member applications, as 

described in [7] because automation of this capability is still in progress. 
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6   Related Work 
There have been several approaches for modeling variability in SOA. This section 

discusses related work and examines them in light of our work. 

Chang and Kim in [8] add variability analysis techniques to an existing service 

oriented analysis and design method (SOAD). Decision tables are used in [8] to 

record variability types in each phase of the SOAD process.  

Topaloglu and Capilla [9] present architectural pattern approaches to model 

variation points in Web Services. Gomaa and Saleh [10] present an SPL engineering 

approach based on Web Services. 

 Capilla and Topaloglu [11] advocate an SPL engineering approach that has a 

specific phase for service composition in the SPL architecture. They introduce several 

variation points that can be used to customize the SPL during service selection. 

However, the authors do not tie service selection to the features required in the SPL. 

 In [12], the authors used the concept of features to solve variability problems for 

SOA. However, the authors’ approach assumes the availability of service 

implementation code, which is not the norm in most SOA scenarios. 

 Park et al. [13] suggest a feature-based reusable domain service development 

approach to create reusable domain services. However, the approach in [13] above 

does not consider the relationships between features and services. 

It should be noted that our research addresses design-time variability and not 

runtime SOA variability issues. Our previous work on dynamic adaptation has 

addressed some issues of runtime adaptation in SOA [5]. 

 

7   Conclusions 
In this paper, we described a multiple-view meta-modeling approach that addresses 

service oriented variability concerns in a unified and platform independent manner. In 

particular, we described the integration of SPL concepts of feature meta-modeling and 

commonality/variability analysis with service views using UML and SoaML. We 

validated our approach by developing a proof-of-concept prototype, which we used to 

build a multiple view E-Commerce service oriented product line. 

We believe that our approach has several benefits: 

• Treatment of SOA variability concerns in a unified, systematic, multiple-view 
variability meta-model. 

• A Multiple view meta-model for service oriented product lines. 

• OCL Consistency checking rules that can be used with any UML/EMF 
environment. 

• Facilitates variability modeling of service families in a platform independent 
way. For example, our approach does not restrict the representation of service 
interfaces to WSDL or restrict business workflows execution to BPEL. 

• Applied feature modeling techniques to manage variability in SOA. 

• Extended SoaML with variability modeling notation. 

• Different service variants are explicitly modeled in the approach, thus 
maximizing reusability. 

• A proof-of-concept prototype to validate our approach. 
In our ongoing research, we are building on our existing research to introduce a 

service variability mediation layer to further decouple service providers and 

consumers. In addition, we intend to provide a feature-based discovery and 
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composition of service-oriented SPL. Finally, we are adding MDA concepts to our 

framework in order to automate the derivation of service member applications. 
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Abstract. Software Product Line Engineering (SPLE) is an emerging paradigm
taking momentum that proposes to address flexibility and shorter time-to-market
by maximizing software reuse. The key characteristic of SPLE is the effective
modelling and management of variability, for which a number of Variability Mod-
eling (VM) techniques have been developed during the last two decades. There-
fore, understanding their commonalities and differences is important for selecting
the most suitable technique. In this paper, we propose a metamodel-based classi-
fication of VM techniques gathered through a survey of relevant literature.

Keywords: Variability Modeling Approaches, Model-Driven Engineering, Sur-
vey

1 Introduction

Constant market evolution triggered an exponential growth in the complexity and vari-
ability of modern software solutions. It is frequently the case that software develop-
ment is actually a redevelopment process, with many products being partially built be-
fore. Software Product Lines (SPL), or software families, are rapidly emerging as an
important and viable software development paradigm designed to handle such issues
[34]. Use of SPL approaches has allowed renowned companies like Hewlett-Packard,
Nokia or Motorola to achieve considerable quantitative and qualitative gains in terms
of productivity, time to market and customer satisfaction [1]. Their increasing success
relies on the capacity to offer software suppliers/vendors ways to exploit the existing
commonalities in their software products. SPL engineering focuses on capturing the
commonality and variability between several software products [12]. This new con-
cept started to draw the attention of the software community when software began to be
massively integrated into hardware product families, with cellular phones [28] probably
being the most well known example. More generally, automotive systems, aerospace or
telecommunications are some of the areas targeted by SPL research.
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Variability is seen as the key feature that distinguishes SPL engineering from other
software development approaches [9]. In common language use, the term variability
refers to ”the ability or the tendency to change”. It is a central concern in SPL develop-
ment [19] and covers the entire development life cycle, from requirements elicitation to
product testing. When talking about SPL variability, two concepts immediately stand
out [23]: commonalities (assumptions true for each family member) and variabilities
(assumptions about how individual family members differ). Variability management is
thus growingly seen as being complex process that requires increased attention.

A traditional way used by scientists to master the increasing complexity and vari-
ability of real-world phenomena is to resort to modelling. In software engineering, mod-
els allow to express both problems and solutions at a higher abstraction level than code
[24]. Model Driven Engineering (MDE) treats models as first-class elements for ap-
plication development. The goal of MDE is to reduce design complexity and make
software engineering more efficient by shifting the focus from implementation to mod-
elling. Models are created based on concepts defined in a meta-model, which defines
the concepts, relationships and (static) semantics of a domain. The relation between a
model and its meta-model is defined as a conformity relation.

In recent years, several variability modelling techniques have been developed, aim-
ing to explicitly and effectively represent SPL variability. The existing differences be-
tween them render each method unique, suitable for a particular domain and in a spe-
cific context. Hence the question of which approach is the most suitable with respect
to a particular context? is of great interest to SPL engineers. There is a stringent need
to extract, synthesize and analyse in a critical manner the research literature on SPL
variability modelling. A review of all contributions related to this topic, outlining the
individual characteristics of each method and possibilities of improvement, can facili-
tate and guide SPL engineers in the selection of a particular technique suitable for their
specific development context. Furthermore, such a comparative analysis can provide
practitioners with a qualified portfolio of available techniques and therefore play an im-
portant role in the transfer of knowledge from research to industry. In this context, this
paper addresses the following research questions:

– RQ1. How can variability be modelled in SPLs?
– RQ2. How can existing techniques be classified?

In this paper, we argue that VM techniques can be classified according to how vari-
ability is handled at the meta-model and model levels. These two levels refer to both
the product line artifacts and the product line variability. After having surveyed the rel-
evant literature, we provide a classification framework that applies this two-level anal-
ysis to sort the VM techniques discussed, and highlight the fundamental differences
between them in the way they capture variability. This classification provides a better
understanding of these approaches and helps the engineers find the appropriate VM
technique.

The remainder of this paper is structured as follows: Section 2 details how the survey
of existing VM approaches was carried out. Section 3 presents our classification of VM
approaches and briefly discusses them. Section 4 outlines some relevant related work
while Section 5 concludes the paper.
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2 Survey Protocol

With variability modelling being a major concern in SPL engineering, a plethora of
methods have been developed by research and industry. So, in order to answer our first
research question, a valid selection of relevant work on SPL variability modelling must
first be performed. In this section we briefly explain the selection process followed to
identify relevant contributions in the field.

The search process was performed in three steps. First, a thorough on-line research
of relevant papers was performed using the Google search engine, using search strings
based on the main concepts of the topic investigated. The search area was enlarged
by using synonyms or other terms directly related to the topic of SPL variability as
search strings. Similar searches were repeated on the main digital sources of research
literature: ACM Digital Library, Lecture Notes in Computer Science, SpringerLink,
SCOPUS (Elsevier), Web of Knowledge (ISI), IEEE Xplore, IEEE Computer Society
Digital Library and ScienceDirect. In a second step, we performed a manual search in
specific conference proceedings known to be classical venues of publication for SPL
research: Software Product Line Conference (SPLC) and Product Family Engineer-
ing (PFE) conferences, Variability Modelling of Software-Intensive Systems (VaMoS)
workshop. Finally, we also analysed other research projects addressing SPL engineer-
ing and variability to see which papers they considered relevant. The result of the search
process produced a list of 236 papers.

Separately, we analysed the research literature for other surveys addressing the
topic of SPL variability. Twelve papers were found: [10, 40, 32, 7, 16, 15, 20, 3, 26, 43,
33, 44]. For each of them, we extracted the list of referenced papers and regrouped them
in a unique list, containing all papers cited in at least 2 surveys. Each paper on this list
was assigned a value representing the number of surveys it appeared in. Based on this
criteria, the list was ordered, resulting in a total of 55 papers. This selection criterion is
relevant as it regroups the knowledge and expertise of other authors from SPLE.

The final list of papers to be analysed was obtained by comparing the previous
two results. We identified 38 papers common to both lists. To obtain the final result,
containing 20 papers, we also took into account the specific classification criteria we
propose and discuss later on in this paper, and mapped them on the list of 38 papers.

3 Classification of Variability Modeling Methods

As variability is extensively used in SPL engineering, variability-related concepts can
be gathered in a separate, dedicated language. In MDE, the structure of a domain is
explicitly captured in a meta-model. Working at the level of models and meta-models
makes it possible to analyse and classify SPL variability modelling methods at a high
level of abstraction and objectiveness, and to extract general observations valid for an
entire class of variability modelling approaches. We identify and analyse the central
concepts used by a wide variety of VM techniques and show how they relate to each
other. The analysis is performed at two levels: meta-model and model.

SPLs are usually characterized by two distinct concepts: a set of core assets or
reusable components used for the development of new products (assets model); a means
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to represent the commonality and variability between SPL members (variability model).
Our classification is based on these two concepts. A thorough analysis of the research
literature revealed two major directions in SPL variability modelling:

– Methods that use a single (unique) model to represent the SPL assets and the
SPL variability:
A. Annotate a base model by means of extensions: [11, 18, 35, 45]
B. Combine a general, reusable variability meta-model with different domain meta-

models: [31]
– Methods that distinguish and keep separate the assets model from the variabil-

ity model:
A. Connect Feature Diagrams to model fragments: [36, 13, 27, 2]
B. Orthogonal Variability Modelling: [38, 30]
C. ConIPF Variability Modeling Framework (COVAMOF): [42, 41]
D. Decision model-based approaches: [14, 29, 17, 39, 4]
E. Relate a common variability language with different base languages: [22]

In this classification, the terms assets meta-model (AMM) and assets model (AM)
cover a broad spectrum, depending on the point of view of the different authors. They
are further refined for each particular class of methods. Table 1 summarizes the pro-
posed classification and the newly introduced concepts. It briefly describes what hap-
pens at meta-model and model level for the identified classes of variability modelling
techniques. The papers cited here are analysed in more detail in the following.

3.1 Single model to describe the product line assets and the product line
variability

This category contains techniques that extend a language or a general purpose meta-
model with specific concepts that allow designers to describe variability. Their core
characteristic is the mix of variability and PL assets concepts into a unique model.
Concepts regarding variability and those describing the assets model are combined into
a new language, that may either have a new, mixed syntax, or one based on that of
the base model extended by the syntax of the variability language. This applies at both
meta-model and model level. We further distinguish:

A. Annotate a base model by means of extensions [11, 45, 18, 35]: standard lan-
guages are not created to explicitly represent all types of variability. Therefore, SPL
models are frequently expressed by extending or annotating such standard languages
(models). The annotated models are unions of all specific models in a model family
and contain all necessary variability concepts. Regarding our classification, we distin-
guish at meta-model level an assets meta-model enhanced with variability concepts
(AMM+V).In this case, the term ”assets meta-model” (AMM) refers to a base or a do-
main meta-model (meta-model of standard language used, eg. UML). Then, at model
level, product line models (PLM) can be derived. They conform to the AMM+V de-
fined at meta-model level. Typical examples from this category are methods that extend
UML with profiles and stereotypes: [11, 18, 35, 45].

B. Combine a general, reusable variability meta-model with different domain meta-
models [31, 37]: this approach addresses in particular the meta-model level, where a

26



5

Technique Name Meta-model level Model level
1. Unique model (combined) for 
product line assets and PL variability
Annotating the base model by means of 
extensions

AMM+V PLM
(conform to AMM+V)

Combine a general, reusable variability meta-
model with base meta-models

AMM VMM
PLM

(confirm to AMM+V)          \          /
  AMM+V

2. Separate (distinct) assets model 
and variability model
Connect Feature Diagrams to model fragments AMM VMM AM VM (FDM)
Orthogonal Variability Modelling (OVM) AMM VMM AM VM (OVM)
ConIPF Variability Modelling Framework 
(COVAMOF)

AMM VMM
(CVV)

AM VM (CVV)

Decision model based approaches AMM VMM
(DMM)

AM VM(DM)

Combine a common variability language with 
different base modelling languages

AMM VMM
(CVL)

AM VM (CVL)

Notation used:
  
    AMM – assets meta-model                                     AM – assets model
    VMM – variability meta-model                             VM – variability model
    AMM+V – assets meta model with variability     PLM – product line model
    CVL – common variability language                     FDM – feature diagram model
    DMM – decision meta-model                                  DM -  decision model
    CVV – ConIPF variability view

Fig. 1. Classification of variability modelling techniques - meta-model and model level
two-step process is applied. Initially, two separate meta-models are created: an assets
meta-model and a general, reusable variability meta-model. In a second step, they are
combined, resulting in a unique assets meta-model extended with variability concepts.
In this case, the term AMM denotes a domain meta-model (meta-model of domains
specific language used for modelling). As for the previous category, at model level,
PL models can be derived. A representative approach from this category comes from
Morin et al. [31]. They propose a reusable variability meta-model describing variability
concepts and their relations independently from any domain meta-model. Using Aspect-
Oriented Modelling (AOM) techniques, variability can be woven into a given base meta-
model, allowing its integration in a semi-automatic way into a wide range of meta-
models.

3.2 Separate the assets model from the variability model

Techniques in this category have separate representations for the variability and the as-
sets model. Elements from the variability model relate to assets model elements either
by referencing or by other techniques. The key characteristic of such methods is the
clear separation of concerns, which applies at both meta-model and model level. Some
advantages of such approaches are: each asset model may have more than one variabil-
ity model; designers can focus on modelling the SPL core assets and address the SPL
variability separately; possibility for a standardized variability model. We further iden-
tify five sub-categories of methods pertaining to this category. The essential difference
between all these sub-categories is the different type of variability model (meta-model)
each one uses.
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A. Connect Feature Diagrams to model fragments [36, 13, 27, 2]: Feature Diagrams
(FD) [25] are the most popular VM technique in the SPL community. They organise
features hierarchically in a tree-like structure where variability is defined via operators
(or, xor, and) applied on child features. They also allow to model additional relations
(mutual exclusion or dependence) via cross-tree constraints and have been subject to
formalisation [5] and automated analyses [8]. Yet, how we associate model fragments
to features is an emerging research direction. Different model fragment types can be
associated to features. In this context, the feature diagram defines the PL variability,
with each feature having an associated implementation. Concerning our classification,
we notice a clear distinction between assets and variability related concepts at meta-
model level. This situation extends to model level: separate assets and variability models
exist. For this category, the assets model consists of a set of software artefact/asset
fragments. The particular variability model used is a Feature Diagram.

B. Orthogonal Variability Modelling [38, 30]: as for all approaches in this category,
the assets model and the variability model are distinct. The differentiating factor is
the type of variability model used: an orthogonal variability model (OVM). There is
also a difference regarding the assets model, which in this case is a compact software
development artefact and no longer a set of model fragments. The variability model
relates to different parts of the assets model using artefact dependencies. Pohl et al. [38]
proposed the OVM concept, defined as: a model that defines the variability of a SPL
separately and then relates it to other development artefacts like use case, component
and test models. OVM provides a view on variability across all development artefacts.
A slightly different OVM proposal comes from Metzger et al. [30].

C. ConIPF Variability Modeling Framework (COVAMOF) [42, 41]: this category
contains the COVAMOF method proposed by Sinnema et al. Concerning our classifica-
tion, we identify, at the meta-model level, separate variability and assets meta-models.
This reflects also at model level, where a separate variability model, called COVAMOF
Variability View (CVV), and an assets model can be distinguished. Sinnema et al. iden-
tify four requirements they considered essential for a variability modelling technique:
uniform and first class representation of variation points at all abstraction levels; hierar-
chical organization of variability representation; first-class representation of dependen-
cies; explicit modelling of interactions between dependencies. An analysis of existing
variability approaches performed by Sinnema et al. revealed that none supported all
four criteria. As a result they propose COVAMOF, an approach designed to uniformly
model variability in all abstraction layers of a SPL.

D. Decision model based approaches: this class of approaches differs by using deci-
sion models as variability model. Decision-oriented approaches were designed to guide
the product derivation process based on decision models. For Bayer et al. it is a model
that ”captures variability in a product line in terms of open decisions and possible reso-
lutions” [6]. A decision model is basically a table where each row represents a decision
and each column a property of a decision. The most well-known approach in this cate-
gory is DOPLER [14]. It was designed to support the modelling of both problem space
variability (stakeholder needs) using decision models, and solution space variability (ar-
chitecture and components of technical solution) using asset models and also to assure
traceability between them.
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E. Relate a common variability language with different base languages [22]: meth-
ods belonging to this category propose a generic variability language which can relate to
different base models, extending them with variability. Regarding our classification, at
meta-model level there is a separate generic variability meta-model and an assets meta-
model (AMM). The AMM is actually the meta-model of the base language on which
the common variability language is applied. At model level, elements of the variabil-
ity model relate to assets model elements by referencing and using substitutions. A
representative approach in this category is the Common Variability Language (CVL)
proposed by Haugen et al. [22].

4 Related Work

We identified several other surveys and studies that address to some extent the subject
of product line variability modelling. In this section, the most relevant proposals are
briefly analysed and compared to our work.

In [10] Chen et al. present the findings of their systematic literature review of papers
on variability management in SPL engineering. The focus of the paper seems to be
more to reveal the chronological background of various approaches and the history of
variability management research rather than to classify the actual methods. Out paper
differs significantly from the one of Chen et al. in this aspect, as our goal is not to detail
the individual steps of a systematic review, but to focus on the actual classification
of methods. In the conclusion of their paper, Chen et al. state that one of the aspects
that needs immediate attention from SPL researchers and practitioners is to provide a
classification of the different variability modelling approaches. This point summarizes
precisely the contribution and focus of our work.

In [32] Mujtaba et al. use a systematic method to develop a SPL variability map
and classify relevant literature accordingly. The main contributions of their work are:
identification of emphasized and neglected SPL research areas, classification of contri-
butions made by different approaches, providing an example of how to adapt systematic
mapping studies to software engineering. They focus mostly on presenting the research
methodology used. In contrast, our contribution is of a more practical nature: intro-
duce general concepts regarding SPL variability and classify how exactly each of them
captures variability.

In the technical report [44] Trigaux et al. present and compare different notations
for modelling SPL variability: feature modelling, use cases, class diagrams. The crite-
ria used for comparison are: representation of common and variable parts, distinction
between types of variability, representation of dependencies between variable parts,
support for model evolution, understandability and graphical representation. In our pa-
per we cover a much broader spectrum of approaches and also classify them according
to a model driven framework.

Another technical report that discusses SPL variability is [3]. Asikainen identifies
the concepts suitable for modelling configurable SPLs, what is their semantics and what
kind of language or modelling method can support these concepts. The core part of
their discussion on previous existing literature consists of an analysis and comparison
of methods for modelling variability. The evaluated methods fall in three categories:
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feature-based, architecture-based and other methods. Compared to their work, we pro-
vide a clear classification of the methods studied from a model-driven perspective and
point out the particular ways in which they express variability.

In [21] Haugen et al. introduce a reference model used for comparing system family
modelling approaches. The proposed reference model is based on the distinction be-
tween the generic sphere (feature models, product line models) and the specific sphere
(feature selection, product model). The authors identify three major approaches for
modelling system families: using standard languages, annotating a general language,
using dedicated domain-specific languages. Although some of the methods presented
overlap in some way with methods we present in our paper, we use a different set of
criteria for classifying variability modelling approaches.

In [43] Svahnberg et al. discuss the factors that need to be considered when select-
ing an appropriate technique for implementing variability. This paper focuses on how
to implement variability in architecture and implementation artefacts, like the software
architecture design and the components and classes of a software system. Their main
contribution is to provide a taxonomy of techniques that can be used to implement
variability. Svahnbeg et al. focus on discussing the actual implementation of variabil-
ity, mostly at code level, while we discuss variability modelling at the higher level of
abstraction of languages and models.

5 Conclusion

Initiated more than two decades ago and developed by an active research community,
variability modelling became the key concern in SPL engineering and important re-
search topic in software engineering in general. Therefore, a lot of efforts of the SPL
community were in this direction. As a result, the number of variability modelling
approaches proposed by research or industry quickly increased. Such techniques are
needed in ever growing number of applications, from complex manufacturing activi-
ties to online configurators needed for e-commerce websites. Thus, it is of the utmost
importance to review VM techniques and to understand their fundamental character-
istics in order to choose the most appropriate one for a particular application context.
The classification provided in this paper is a first step in this direction, outlining major
trends in variability modelling and declining them at the metamodel and model levels.
Future work includes the evaluation of the surveyed approaches against a set of criteria
enabling a fine-grained comparison and giving practical insights to engineers who need
to ground their decisions. We also plan to apply the surveyed approaches on different
examples, which would a allow for a more pertinent comparison and also point out the
relative advantages and disadvantages of each individual approach.
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Abstract. We present an approach for evolving separate variability models 
when the associated base model is altered. The Common Variability Language 
(CVL) is a generic language for modeling variability in base models. The base 
models are oblivious to the associated variability models, causing additional 
challenges to this association when the base models are maintained. Assuming 
that a base model has been changed, we suggest using CVL to record this 
change. Further analysis of this CVL model reveal the impact of the change, 
which if possible, can result in automatic evolution of the variability model 
corresponding to the changed base model. We illustrate and discuss the 
approach using an example from the train domain. 
 
Keywords: Variability modeling, variability model evolution, coupled 
evolution, Common Variability Language. 

1 Introduction 

Model-Driven Development (MDD) has in the recent years increased in popularity, 
since it allows the developer to solve problems at a higher level of abstraction. 
Techniques, such as software product line modeling, are increasingly adopted by the 
industry to produce software more efficiently. Thus, the development of methods for 
creating software product line models is important. One such method is to use 
separate variability models to describe how a base model, representing a software 
system, can be changed to form other (product) models, representing variations of the 
original software system. 

The Common Variability Language (CVL) is a generic language for modeling 
variability in base models [5, 6, 8]. CVL consists of a variability model, specifying 
the possible variations on the base model, and a resolution model, resolving the 
variability in the variability model to form new product models. Thus, CVL models 
the variants of a base model without adding annotations or variability concepts to the 
base model (and base language).  

The importance of a standardized and generic variability language has been 
recognized, and a standardization process has been initiated to create such a language 
[6]. However, keeping the variability concepts separate from the base model adds 
certain challenges which should be addressed. One of these challenges, which will be 
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the focus of this paper, is the maintenance of a variability model when the associated 
base model is altered. Assume that a product line consists of a base model and several 
variability models associated to this base model. If the base model is maintained, how 
can we ensure that the variability models are still valid? Updating the variability 
models according to the changed base model can be a manual and tedious task.  

In this paper we suggest an approach for automating the maintenance of variability 
models when their associated base model is changed. We apply CVL to record the 
changes in the base model, and perform analysis of these CVL models to reveal the 
impact of the change on the variability models. Based on the results of the analysis, 
we give feedback on all changes that invalidate the variability model, and if possible, 
we update the variability model to correspond correctly to the changed base model. 

More specifically, the contribution of this paper is an approach for evolving 
separate variability models when an associated base model is changed. The approach 
originates and uses concepts from CVL, and can be a useful contribution to the CVL 
standardization process. We perform preliminary evaluation and exemplify the 
approach using a prototype implementation based on CVL in Eclipse and an example 
from the train domain. 

The outline for the rest of the paper is as follows: In Section 2 we give some 
background information about CVL and the example domain used throughout the 
paper. Section 3 further elaborates and exemplifies the challenge raised when the base 
model is changed. Section 4 explains the approach of using CVL to evolve CVL 
models and illustrates the approach using an example from the train domain. In 
Section 5 we discuss the prototype implementation, and the advantages and 
challenges with the approach. Section 6 gives some related work, before Section 7 
gives some concluding remarks and future work. 

2 Background 

2.1 Common Variability Language 

CVL is a generic language for modeling variability in any models in any MOF-based1 
modeling language. In other words, CVL can be applied to both models in Domain-
Specific Languages (DSL) and models in more general languages like UML. One key 
feature of CVL is that it is separate from the base model and applies one-way 
associations to the base model. Since CVL is separate, no annotations or variability 
concepts is added into the base model or base language. 

The core part of CVL consists of substitutions, which replace model elements and 
model element attributes to produce new variants of the base model. In addition to the 
substitutions, CVL also includes concepts for abstractions, such as using features as 
part of the concrete syntax, as known from feature models. A prototype 
implementation of CVL, as an Eclipse plug-in, has been developed and a case study 
has been conducted for evaluation (see [14]). 

                                                         
1 http://www.omg.org/mof/ 

34



Towards Evolution of Generic Variability Models      3 

In this paper we focus on the most significant substitution in CVL, namely the 
fragment substitution. A fragment substitution replaces a placement fragment in the 
base model, which is a set of model elements, with a replacement fragment, which is 
another set of model elements. Since the model elements in the replacement fragment 
are copied, the only change performed in the base model is to the placement fragment. 
This substitution is illustrated in Fig. 1. Both the placement fragment and replacement 
fragment are represented by boundary elements, recording all references to and from 
the model elements inside the fragments. A fragment substitution binds these 
boundary elements (ToBinding and FromBinding) such that executing the substitution 
will replace the references according to the binding (i.e. the reference from A to B will 
be redirected to F). Note that these references must follow the type rules from the 
metamodel, so that the substitution is type safe. 
 

  

 
Fig. 1. Fragment substitution replaces a placement fragment with a replacement fragment 

2.2 Train Control Language 

The Train Control Language (TCL) is a DSL for modeling signaling systems on train 
stations [3, 13]. The intention of TCL is to automate the development of interlocking 
source code which ensures safe train movement on a train station. TCL has been 
developed in cooperation with ABB, Norway2. 

TCL is defined by a metamodel and has been developed as an Eclipse plug-in with 
an editor, model analyzer and code generator. The concrete syntax of TCL is 
illustrated in Fig. 2, with the most significant concepts annotated: TrainRoute, 
TrackCircuit, LineSegment, Switch, Endpoint and Signal. A TrainRoute is a path 
between two signals that must be allocated before a train can move into or out of the 
station. A TrainRoute is divided into TrackCircuits, which are segments where a train 
can be located. A TrackCircuit is further divided into LineSegments and Switches, 
which are connected by Endpoints. 

We will use a TCL model as a base model to illustrate how we can evolve the CVL 
model when the base model changes. 

                                                         
2 http://www.abb.no 
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Signal

LineSegment

Endpoint
Switch

TrackCircuit

TrainRoute  
Fig. 2. TCL concrete syntax (with annotations) 

3 Problem Description 

Since CVL models are kept separate from the base model, changes can be conducted 
to the base model that may invalidate the CVL models associated with this base 
model. This is extra challenging since CVL models, to be truly separate, only contains 
one-way references to the base model. The CVL model can be invalidated either 
syntactically, e.g. null-pointer references, or semantically, resulting in meaningless 
product models. In this paper we focus on the syntactic changes in the base model and 
the evolution of the CVL model according to these kinds of changes. 

The most significant substitution of CVL is the fragment substitution, allowing a 
set of model elements to be replaced by another set of model elements. In other 
words, the fragment substitution is flexible, and can express any kind of structural 
changes, where base model elements are added, deleted or modified. If the placement 
or replacement fragments refers base model elements that are changed in this way, 
these fragments are invalidated. We limit the analysis presented in this paper to 
placement fragments, since replacement fragments easily can be repositioned into 
library models, which are kept separate from the base model (see [14]). 

Fig. 3 illustrates the challenge of evolving CVL models and shows an overview of 
the approach (see Section 4). Step 1 involves executing a CVL model to transform a 
base model to a product model, i.e. inserting a side track into a two-track station 
model. However, assume that the base model is modified, ending up with an evolved 
base model, i.e. a three-track station model (top right). The original CVL model does 
not apply to the evolved base model. Our approach is concerned with evolving the 
original CVL model according to the evolved base model (step 3). Step 4 involves 
executing the evolved CVL model to obtain an evolved product model. We explain 
step 2 and give further details about step 3 in Section 4. 

4 Using CVL to Evolve CVL Models 

4.1 The Approach 

We suggest using CVL and fragment substitution to record the evolution of the base 
model (see Fig. 3, step 2). This CVL model, the evolution CVL model, can then be 
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compared to the original CVL model, and the comparison can be analyzed to obtain 
inconsistencies. We let the user decide whether to obtain this CVL model manually or 
automatically by comparing the base model and the evolved base model [15]. 
 

placement
replacement

Original CVL model

placement

replacement

Evolution CVL model

1

2

43

Base model

Product model

Evolved base model

Evolved
product model

placement
replacement

Evolved CVL model

 
Fig. 3. Overview of the approach 

Recall that a fragment in CVL is defined by boundary elements, which record the 
references to and from the base model elements in the fragment. Furthermore, note 
that the base model elements in a placement fragment are replaced by the model 
elements in a replacement fragment. Thus, two placement fragments cannot overlap, 
meaning that two changes cannot be performed to the same base model element.  

Fig. 4 gives an overview of possible inconsistencies between the two CVL models. 
A border inconsistency indicates that two model elements that are replaced in two 
different substitutions are directly connected. Since the substitutions are independent, 
the association between them cannot be set in either of the substitutions. An element 
inconsistency indicates that a base model element is being replaced by two different 
substitutions. The base model element cannot be replaced twice. Note that the purpose 
of the figure is for illustrating the kinds of inconsistencies and not all possible 
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situations where inconsistencies can occur. For instance, there will still be 
inconsistencies if the associations are inverted. 
 

BA

P1 P2

Border
Inconsistency

No
Inconsistency

Element
Inconsistency

BA

P1 P2

C

BA

P1 P2

C

P1: Placement fragment in evolution CVL model
P2: Placement fragment in original CVL model  

Fig. 4. Types of inconsistencies between two CVL models 

We have developed an algorithm to deal with the inconsistencies between CVL 
models. Intuitively, when an inconsistency is found, the algorithm makes an attempt 
to solve the inconsistency by using the model elements in the replacement fragment. 
For instance, for the border inconsistency in Fig. 4 the base model element A is 
replaced by the evolution CVL model while base model element B is replaced by the 
original CVL model. In this case, the algorithm transforms the original CVL model 
such that it refers the replacement of A (from the evolution CVL model) instead of A 
as the context of the fragment P2. For the element inconsistency in Fig. 4 the base 
model element B is being replaced by both CVL models. Thus, the algorithm 
transforms the original CVL model such that the replacement of base model element 
A (from the evolution CVL model) is referred instead of A as the context of fragment 
P2. In addition, the replacement of B (from the evolution CVL model) is recorded as a 
contained element instead of B. Note that in some cases, with too little context 
information, the algorithm may not be able to find a unique base model element from 
the replacement fragment (evolution CVL model). The user is then prompted to make 
a decision for which one to use.  

As a summary, our approach involves creating a CVL evolution model to record 
the evolution of the base model (Fig. 3, step 2). By comparing and analyzing the 
differences between this CVL model and the original CVL model, we reveal and 
solve inconsistencies between them, and transform the original CVL model to an 
evolved CVL model (Fig. 3, step 3), which applies to the evolved base model. 

4.2 Evolving CVL Models 

To illustrate the approach, we briefly walk through an example where we apply CVL 
to a TCL model, evolve this TCL model and finally evolve the original CVL model 
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according to the evolved TCL model. The example is illustrated in Fig. 3, where the 
base model is a two-track station, which is evolved to a three-track station, and the 
original CVL model adds a side track to the base model. 

We first develop (either manually or automatically) the evolution CVL model, 
which applies to the base model. This CVL model is then compared to the original 
CVL model to reveal any inconsistencies between them. The algorithm discovers an 
element inconsistency, since both CVL models contain a placement fragment that 
spans over a common TCL endpoint. The inconsistency is illustrated in Fig. 5 
(middle), where the placement fragment P1 (original CVL model) replaces the 
endpoint with a side track, and the placement fragment P2 (evolution CVL model) 
replaces the endpoint, together with a line segment and another endpoint, with a 
double-track. The replacement fragments are illustrated on the left and right side of 
the figure, where R1 is bound to P1 and R2 is bound to P2. 
 

P1 P2 R2R1

 
Fig. 5. Element inconsistency between two CVL placement fragments on a TCL model 

To solve the inconsistency, the algorithm fetches the model element from the 
replacement fragment (in the evolution CVL model) that is bound to the common 
endpoint in Fig. 5. Note that in this replacement fragment there are several TCL 
endpoints that can potentially match the common endpoint. E.g. the side track can be 
placed on top of the third track. However, the context of the placements include 
among others a reference to signal N, which is unique and located at the second track 
in the evolved base model. This is illustrated in Fig. 5 with circles around the 
endpoints (in R1 and R2) which have references (context) to signal N. Thus, the 
matching is unique and the inconsistency can be solved automatically by the 
algorithm. The solution to the inconsistency is stored in a mapping table for use when 
transforming the original CVL model. For this example, a mapping is created between 
the endpoint in P1 and the endpoint in the circle in R2. 

When the strategy for how to solve the inconsistency is known, the algorithm 
transforms the original CVL model to the evolved CVL model (Fig. 3, step 3). This is 
a one-to-one mapping where the references to the two-track station model are 
replaced with references to the three-track station model. For any inconsistency, the 
mapping table is used to obtain how to associate the evolved CVL model to the 
evolved base model. For this example, the placement in the evolved CVL model 
contains the model element in the circle in R2, with the appropriate context, instead of 
the endpoint in P1. 

When the evolved CVL model is created, it can be executed to obtain the evolved 
product model, which yields a three track station with a side track on the second track 
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(see Fig. 3, step 4). Note that the procedure of evolving the CVL model and executing 
it is automatic, and do not require any user interaction, unless the inconsistencies 
cannot be solved automatically. 

5 Discussion 

To evaluate the feasibility of the approach, we have extended the CVL editor with 
functionality to perform the algorithm described in this paper. The user can choose 
two CVL models as input, one evolution CVL model and one original CVL model. 
The algorithm is then executed to find inconsistencies and to transform the original 
CVL model to obtain the evolved CVL model. Our preliminary evaluation shows that 
the approach is feasible and works well for the example described in this paper. 

Even though our approach is specific for CVL and fragment substitution, CVL and 
fragment substitution are generic and can describe variability in any model in any 
DSL. The approach takes advantage of the nature of CVL, which specifies 
specifically where and how the variability is applied to the base model, to perform the 
analysis. Thus, the approach fits well with the intentions of the upcoming CVL 
standard. 

Since the approach is performed automatically, it has its strength when more than 
one substitution and/or more than one original CVL model is associated with the base 
model. Then manual work of evolving the CVL models or the product models without 
tool support can be huge. Furthermore, since base models most often is updated based 
on bug-fixes or other small changes, the amount of inconsistencies, and their impact, 
remains small. Thus, our approach can in particular be useful in these situations. 

Even though a stronger association between the CVL model and the base model 
can avoid some of the issues discussed in this paper, e.g. by using two-way 
references, having a clear separation has its advantages. For instance, having several 
variability models associated with a single base model is possible, for describing 
different kinds of product lines. Furthermore, CVL can model variability in a base 
model without the need to change the base language to add variability concepts or 
associations. This results in the possibility of applying CVL and creating product lines 
more rapidly. 

Only using simpler kinds of substitutions, limiting the type of replacement to 
attributes or single base mode elements, would simplify the possible inconsistencies 
when performing the evolution of the CVL model. However, we believe that the 
fragment substitution plays an important role in making CVL flexible and generic for 
expressing all kinds of variability. On the other hand, note that this approach can 
easily be modified to support these kinds of substitutions instead or in addition to the 
fragment substitution. 

6 Related Work 

Much research effort has been put forward in the area of model coupled-evolution in 
the recent years. Existing work mainly fall into two categories: (1) when the 
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metamodel evolves, how to update the existing instance models in order to conform to 
the evolved metamodel [7, 9, 10]; (2) when a model changes, how to update its 
existing related models in order to eliminate all the possible inconsistencies caused by 
the model changes. The latter is similar to the coupled-evolution we deal with in this 
paper. 

Approaches for bidirectional model transformation have been proposed to keep 
two models consistent by updating one model in accordance with the other [12]. 
Chivers and Paige [1] propose a reversible template language that supports round-trip 
transformations between UML models and predicate logic, such that new information 
encoded in logic can be seamlessly integrated with information encoded in the model. 
Mu et al. [11] present an algebraic approach to bidirectional updating, where a formal 
model of the bidirectional transformations is proposed. The developer writes the 
transformations as a functional program, such that the synchronization behavior is 
automatically derived by algebraic reasoning. The approach is able to deal with 
duplication and structural changes. 

Finkelstein et al. [4] propose an approach for inconsistency handling in multi-
perspective specifications by combining their ViewPoints framework for perspective 
development with a logic-based approach for inconsistency handling. 

Deng et al. [2] present techniques for addressing domain evolution challenges in 
software product lines. They show how to minimize the inconsistencies caused by the 
evolution of MDD-based product line architectures for large-scale distributed real-
time and embedded systems by adopting a layered architecture and model-to-model 
transformation tool support. 

7 Conclusion and Future Work 

This paper has presented an approach for evolving a CVL model when the associated 
base model is changed. We applied CVL to record the change (evolution step) in the 
base model and presented an algorithm for transforming the original CVL model 
accordingly. We presented the kinds of inconsistencies that can occur in this process, 
and gave suggestions for how to solve them. The approach was illustrated on a 
concrete example using a CVL model applied on a two-track station model from the 
Train Control Language. Furthermore, we indicated how the approach has been 
implemented and discussed advantages and challenges with the approach. 

We see further evaluation of the approach using additional examples and other 
domains as important future work. Furthermore, the current approach only considers 
the syntax of the base models when performing the evolution step. In other words, the 
evolved product models are syntactically correct, but can be semantically invalid 
according to the base language semantics. Hence, extensions of the approach to take 
the semantics of the base language into account will be investigated. Another 
extension to the approach to also consider language evolution is significant and 
should be investigated. We can then be able to handle not only changes to base 
models, but also changes to the metamodels. 
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Abstract. Modeling variability in software architectures is a fundamen-
tal part of software product line development. ∆-MontiArc allows de-
scribing architectural variability in a modular way by a designated core
architecture and a set of architectural delta models modifying the core
architecture to realize other architecture variants. Delta models have to
satisfy a set of applicability conditions for the definedness of the architec-
tural variants. The applicability conditions can in principle be checked by
generating all possible architecture variants, which requires considering
the same intermediate architectures repeatedly. In order to reuse previ-
ously computed architecture variants, we propose a family-based analysis
of the applicability conditions using the concept of inverse deltas.

Keywords: Software Architectures; Delta-oriented Architectural Variability
Modeling; Family-based Product Line Analysis

1 Introduction

Modeling variability of the software architecture is an integral part in software
product line development. ∆-MontiArc [11] is a modular, transformational vari-
ability modeling approach for software architectures. In ∆-MontiArc, a family of
software architectures is described by a designated core architecture model and
a set of delta models containing modifications to the core architecture. A delta
model can add and remove components, ports and connections and modify the
internal structure of components. By applying the modifications contained in a
delta model, an existing architecture model is transformed into another archi-
tectural variant. A particular variant in the architecture family is specified by a
product configuration comprising the deltas that have to be applied to the core
architecture. In order to resolve conflicts between delta models modifying the
same architectural elements, an application order constraint can be attached to
each delta model determining which other delta models have to be or should not
be applied before this delta model.

Application order constraints are also used to ensure that each delta model
is applicable to the core or intermediate architecture during product generation.
Applicability means that all elements removed or modified by the delta exist
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and that all elements added by the delta do not yet exist. If these applicabil-
ity conditions hold, the architecture resulting from delta application is defined,
otherwise the result is undefined, following [17]. In order to check that the appli-
cation order constraints guarantee the applicability of the delta models during
product generation, a naive product-based approach is to generate and check the
architectures for all possible product configurations and all possible intermediate
architectures. This naive approach is very inefficient because for examining all
possible product architectures, the same intermediate products might have to
be re-generated several times.

In this paper, we propose inverse deltas in order to enable an efficient family-
based analysis of the applicability conditions in architectural delta models. A
family-based analysis checks all products that can be derived by traversing the
whole artifacts base of the product line only once, without generating all pos-
sible products explicitly. An inverse delta reverts the operations carried out by
the original delta such that applying the delta and its inverse to an architecture
retrieves the original architecture. The family-based analysis constructs the fam-
ily application order tree (FAOT) which contains all possible delta application
orders that comply to the application order constraints attached to the delta
models. Using inverse deltas, it is possible to traverse the FAOT without gener-
ating the same intermediate architectures several times. Instead, the tree is only
traversed once in a depth-first manner. In this traversal, already computed in-
termediate architectures are reused by reconstructing them with the application
of inverse deltas. If the analysis of the FAOT passes the applicability conditions
checks, it is guaranteed that for all possible product configurations, which are
subsets of the set of deltas models, satisfy the applicability conditions and lead
to a defined resulting architecture.

This paper is structured as follows: Section 2 briefly introduces ∆-MontiArc.
Product Generation is described in Section 3. The family-based analysis using
inverse deltas is proposed in Section 4 and discussed in 5. Section 6 describes
related approaches. Section 7 concludes with an outlook to future work.

2 ∆-MontiArc

∆-MontiArc [11] is a modular and transformational approach for describing ar-
chitectural variability and is based on the textual architecture description lan-
guage (ADL) MontiArc [10]. MontiArc focuses on the domain of distributed
information-flow architectures. An example for a MontiArc architecture is given
in Listing 1.1 which represents an Anti Lock Braking System (ABS). It contains
inputs for four wheelsensors which measure the current speed of the four wheels
of a car, a signal for the braking command, and four outputs to control the brake
actuators. The component abs calculates the individual braking pressures for
all wheels. If a wheel is close to a blocking state indicated by the correspond-
ing wheel sensor, it reduces the braking pressure for this wheel to maintain the
stability of the vehicle.
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1 component BrakingSystem {
2 autoconnect port;
3 port
4 in WheelSensor wheelspeed1,
5 in WheelSensor wheelspeed2,
6 in WheelSensor wheelspeed3,
7 in WheelSensor wheelspeed4,
8 in BrakeCommand brake,
9 out BrakePressure wheelpressure1,

10 out BrakePressure wheelpressure2,
11 out BrakePressure wheelpressure3,
12 out BrakePressure wheelpressure4;
13 component ABS abs;
14 }

Listing 1.1. MontiArc Model for an Anti-Lock Bracking System.

1 delta ElectronicStabilityControl after TractionControl {
2 modify component BrakingSystem {
3 add port in AccelerationSensor lateralaccel;
4 remove component tc;
5 add component ESC esc;
6 connect lateralaccel -> esc.accel;
7 }
8 }

Listing 1.2. Delta for Electronic Stability Control.

In ∆-MontiArc, MontiArc is extended with the concept of delta modeling [4,
16, 15] to represent architectural variability. Based on a core architecture spec-
ified in MontiArc, architectural deltas are specified that add, remove or mod-
ify architecture elements using the operations add, remove and modify for
ports, components and corresponding parameters. For connectors, the opera-
tions connect and disconnect are available. Further possible operations are
listed in [9], but not required for the comprehension of this paper.

An example for a delta model specified with ∆-MontiArc is given in List-
ing 1.2. The depicted ElectronicStabilityControl delta can only be ap-
plied if the TractionControl delta, which adds an input for accelleration
pedal position, is executed before. This information is provided by an applica-
tion order constraint in an after clause which specifies deltas which must or
must not be executed before the current delta (l. 1). The BrakingSystem is
modified (l. 2) by adding a new input for the lateral acceleration (l. 3) and re-
placing the traction control subcomponent tc with subcomponent esc (l. 4).
Finally, the new input is connected to the new component (l. 5).

A product configuration for a concrete product is a set of deltas which must be
applied to the core model. Listing 1.3 gives an example of a product configuration
for a motorbike (l. 2) which is equipped with traction control (TC, l. 3) and an
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1 deltaconfig StreetMotorbike {
2 TwoWheel,
3 TractionControl,
4 TwoWheelTC,
5 ElectronicStabilityControl,
6 TwoWheelESC
7 }

Listing 1.3. Product configuration of a Street Bike with TC and ESC.

electronic stability control (ESC, l. 5). To adapt TC and ESC to a motorbike,
additional deltas (ll. 4, 6) are needed.

3 Product Generation

Product generation in ∆-MontiArc is the process of generating a concrete prod-
uct architecture by applying selected deltas to a given core architecture. The
product generator of ∆-MontiArc processes three different kinds of input mod-
els. As shown in [9], at first a product configuration is needed that determines
a selection of deltas to be applied for a concrete product architecture. Second,
a MontiArc architecture model for the core architecture is required and, third,
∆-MontiArc delta models determine variants of the core architecture.

Product Generation Process. Product generation is performed in four steps. At
first, MontiArc models for the core architecture are loaded, and their correspond-
ing abstract syntax tree is stored. In the second step, a product configuration
is parsed, and the delta models contained in the configuration are loaded. The
generation order of the selected delta models is computed based on the given
application order constraints. When a linear generation order is determined,
delta models are applied to the core architecture in the third step of product
generation. All modification operations of the deltas are applied stepwise to the
core architecture. To assure the definedness of the generated product architec-
ture, the applicability of the modification operations needs to be ensured. The
following applicability conditions [9] are necessary for the delta operations add,
remove, or modify:

– A component c can only be modified, if c exists.
– An architectural element ae must not be added to component c, if c already

contains ae.
– An architectural element ae must not be removed from component c, if c

does not contain ae.
– A port p must not be removed from component c, if c contains a connector

with p as its source or target.
– A subcomponent sc must not be removed from component c, if c contains a

connector that has a port of sc as its source or target.
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The application order constraints capture dependencies between deltas to en-
sure the validity of the applicability conditions. If the current delta modification
operation satisfies the given applicability conditions, it is applied to the core
model. After all delta modifications are applied, MontiArc context conditions
are checked for the generated architecture that ensure its internal consistency
(see [10] for a complete list of MontiArc context conditions). In contrast, the
intermediate architectures are not required to be valid MontiArc architectures.

Checking of Applicability Conditions. The checking of the applicability condi-
tions is closely connected to the product generation process as the applicability of
one delta operation depends on the intermediate product architecture resulting
from the application of all former delta operations. When generating a concrete
product architecture, the respective product configuration defines which deltas
are applied, and a possible generation order can be derived and checked. How-
ever, when it should be established that all possible product configurations sat-
isfy the applicability conditions, all possible (intermediate) architectures have
to be considered. In a naive product-based analysis, all product architectures
are generated and analyzed separately. Thus, the same intermediate product
architectures which occur in several products during product generation are re-
peatedly regenerated.

4 Family-based Analysis of Applicability Conditions

In a family-based analysis, the core architecture model and the delta models of
a product line are analyzed only once, without generating all possible product
architectures by applying the respective delta models to the core architecture
explicitly. Instead of repeatedly generating intermediate products, intermediate
products are reused which is more efficient than a naive product-based analysis.

Family Application Order Tree. In order to check the applicability constraints
by a family-based analysis, a family application order tree (FAOT) is created.
The FAOT for the example introduced in Section 2 is shown in Figure 1. In
a FAOT, the nodes represent the deltas of the product line. Each path in the
FAOT starting from the root is a generation order that is valid according to the
application order constraints attached to the deltas. The root node corresponds
to the core architecture indicating that no delta has yet been applied and com-
bines the forest of possible generation orders into a tree. Leaves of the FAOT
correspond to maximal possible generation orders, where the addition of another
delta will violate the application order constraints of the deltas on the path to
the leaf. To each node in the FAOT, an architecture is associated that is gener-
ated by applying the deltas leading to this node including the node itself to the
core architecture. This architecture is either a product architecture that is valid
according to the MontiArc context conditions or an intermediate architecture.

The applicability conditions of the deltas can be checked by traversing all
paths in the FAOT and establishing the applicability conditions for each modifi-
cation operation encountered. In this way, all possible product architectures are
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Fig. 1. FAOT for the example product line

analyzed that can be generated by a (sub-)path in the FAOT. Due to a large
number of deltas and a sparse set of application order constraints, the FAOT
can be fairly complex. Therefore, the efficient computation of the intermediate
products that are necessary to traverse the FAOT is essential. Two approaches
can be distinguished:

1. The intermediate architectures for certain tree nodes are stored such that
they can be reused for calculating further intermediate products which, how-
ever, requires a hugh amount of memory for large architecture models.

2. Inverse deltas can be applied to a generated architecture to undo the appli-
cation of a delta in order to backtrack in the FAOT without storing inter-
mediate architectures.

Inverse Deltas. For each delta model D consisting of a set of delta operations,
there is an inverse delta model D−1 such that for any product architecture P , it
holds that apply(apply(P,D), D−1) = P where application of the modification
operations in a delta is defined by apply : Arch ×Delta → Arch for Arch the
set of MontiArc architectures and D the set of delta models in ∆-MontiArc. An
inverse delta D−1 is derived from a delta D by inverting each delta modification
operation in D and also inverting the ordering of the modification operations.
For each add statement, the inverse operation is a remove statement and, vice
versa. The operations connect and disconnect statements are inverses for
each other. The enclosing component modification operations remain unchanged.
An example for an inverse delta is shown in Listing 1.4.

FAOT Analysis Using Inverse Deltas. Using inverse deltas, the FAOT can be
traversed in a depth-first manner without storing any intermediate architectures
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1 delta A { | delta A_Inverse {
2 modify component Base { | modify component Base {
3 add port Integer p; | disconnect p -> sub.input;
4 connect p -> sub.input; | remove port p;
5 } | }
6 } | }

Listing 1.4. Inverting the delta on the left side results in the delta on the right side.

at the FAOT nodes. For the FAOT depicted in Figure 1, the following depth-
first traversal is computed: SW → SW−1 → TC → ESC → TW → TW TC →
TW ESC → TW ESC−1 → TW TC−1 → TW ESC...

The applicability conditions are checked by processing the deltas during the
traversal one by one. After processing one delta, its inverse is computed, if nec-
essary, and stored for later application. Since an inverse delta depends on the
intermediate architecture to which the original delta is applied, it is not possible
to compute all required inverse deltas up front.

5 Discussion

Comparing the family-based analysis using inverse deltas to an analysis in which
all intermediates architectures at decision-nodes in the FAOT are stored (inter-
mediate approach), the inverse delta approach requires less memory. In large
product lines where the FAOTs contain many decision nodes, memory space
might become a severe problem, as every intermediate architecture that has to
be stored comprises the ASTs of the modified core architecture. Compared to the
naive product-based approach, the inverse delta approach uses the same amount
of memory, as in both approaches no intermediate products are stored.

Regarding runtime complexity, the worst case is if there are n deltas without
application order constraints. Then, every possible permutation of deltas is con-
tained in the FAOT. The amount of edges in a FAOT is AE(n) =

∑n−1
i=0

n!
i! =

n! ∗∑n−1
i=0

1
i! . The intermediate approach computes every delta once, such that

AE(n) steps are needed to check every possible product. The inverse delta ap-
proach visits every edge twice, once applying a delta, and once applying its
inverse. The most right path of the FAOT is visited only once. Thus, in the
inverse delta approach 2 ∗ AE(n) − n = n! ∗ (2 ∗∑n−1

i=0
1
i! − 1

(n−1)! ) steps are

necessary where
∑∞

i=0
1
i! = e is a constant factor, and for n → ∞, the term

1
(n−1)! converges to zero. Hence, both factors, as well as the constant factor of

2, may be neglected for an estimation of complexity such that the inverse delta
approach as well as the intermediate approach belong to complexity class O(n!)
The naive product-based analysis approach generates n! products by applying n
deltas for each product. In total, n ∗ n! delta applications are performed leading
to a complexity of O(n∗n!). This yields that the family-based analyses are about
n times faster in the worst-case than the product-based analysis. Nevertheless,
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Fig. 2. FAOTs with late and early decision-nodes

a complexity of O(n!) is still very high, but this is accounted to the inherent
complexity of family-based analyses.

The shape of the FAOT influences the number of inverse deltas that are
required to get from one leaf to the next. Figure 2 shows two examples. Tree
(a) contains many decision-nodes close to the leafs. So deriving C1 based on
C0 is done in two steps by applying the inverse delta C0−1 and afterwards delta
C1. In contrast, tree (b) contains only one decision-node (the root). To get from
the product on the very left to the next product whose path starts with C1, m
inverse deltas have to be applied. As the root node is the only decision-node, no
intermediate architectures have to be stored such that the inverse delta approach
is about 2 ∗m steps slower without saving any memory. Accordingly, we suggest
a hybrid approach that considers the shape of the FAOT and stores intermediate
architectures at selected decision-nodes. This way, some backtracking steps with
inverse deltas can be omitted such that a balance between memory consumption
and runtime effort can be achieved. For example, consider the worst-case FAOT
and assume that we store intermediate architectures at the last decision-nodes
before the leaves. On level n−2 of the FAOT, each node has two children which
each has one child that are leaves, since there are only 2 more deltas left which
have to be applied. Storing these intermediate architectures saves 4 inverse delta
applications for each of the nodes on level n− 2, except for the most right node
where only 2 steps will be saved. On level n − 2, we have n!

2 nodes such that a

reduction of 4 ∗ n!
2 − 2 = 2n!− 2 inverse delta applications can be achieved with

only minor increase in memory consumption.

6 Related Approaches

Architectural variability modeling approaches can be classified into annota-
tive, compositional and transformational modeling approaches. Annotative ap-
proaches, e.g., [6], consider one model representing all products and define which
parts of the model are removed to derive a product model. Compositional ap-
proaches, e.g., [1], associate model fragments with product features that are
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composed for a particular feature configuration. Transformational approaches,
such as CVL [12], represent variability of a base model by rules describing how
a base model is transformed in order to obtain a particular product model. ∆-
MontiArc can be classified as a transformational approach.

Product line analyses can be classified in three main categories [18]: first,
product-based analyses consider each product variant separately. Second, feature-
based analyses consider the building blocks of the different product variants in
isolation to derive results about all variants, but in general rely on heavy restric-
tions on the admissible product line variability. Third, family-based analyses
check the complete code base of the product line in a single analysis to obtain a
result about all possible variants.

Family-based product line analyses are currently used for type checking [2,
7] and model checking [5, 8, 14] of product lines. The approach presented in [2]
also constructs all possible application orders of feature modules (which are
comparable to delta models in our approach) and checks that in any possible
combinations of feature modules all required references are provided. The type
checking approach proposed in [7] uses a constraint-based type system where a
large formula is constructed from the product line’s feature model and the feature
module constraints that is true if all product variants are type safe. In [17], the
type safety of all product variants is checked based on the analysis of a product
abstraction that is generated from constraints derived for delta modules. Thus,
it can be classified as an mixture between product- and feature-based analyses.

Storing only the differences between products, as we do with inverse deltas,
is also applied in versioning systems. For instance, the Revision Control System
(RCS) [19] only keeps the most recent version and a sequence of inverse modi-
fications in order to retrieve prior versions which is more efficient than working
with complete version snapshots. The formalization of DARCS patch theory [13]
has a concept of inverses although on a fairly abstract level. In recent work, Ba-
tory et al. [3] apply the idea of differencing for updating a program obtained by
feature-oriented composition. However, in that approach it is unclear whether
the differences can be expressed by means of feature modules, while in the ap-
proach presented in this paper, inverse deltas can be expressed by the same
linguistic means as ordinary deltas.

7 Conclusion

The family-based analysis to validate ∆-MontiArc product lines is an extension
of our previous work [11, 9]. In this paper, we have introduced the concept of
inverse deltas that allows traversing the FAOT without storing intermediate ar-
chitectures. For future work, we are planning to evaluate the proposed approach
at large case examples. Furthermore, we will extend the inverse delta approach
to deal with the convenience operations presented [9], such as the replacement
of components, where there is no obvious inverse.
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Abstract. This paper proposes a metric suite for assessing the complexity of 
software product lines. The Common Variability Language (CVL), a generic 
variability modeling language, has been proposed as an approach for software 
product line development. A CVL model specifies both the variability of the 
product line and its variability implementation details for product realization. 
Our metric suite evaluates the complexity of CVL-based product lines in two 
dimensions: (1) the complexity of variability specifications, based on how 
many products can be derived from it. We believe that a CVL model with more 
products has more variability accounted for, therefore in need of greater effort 
to develop and maintain; (2) the complexity of variability implementations, 
based on how much effort is required to develop them. The application of the 
metric suite is illustrated with product line case studies. 
 
Keywords: Common Variability Language, software metrics, Software Product 
Line 

1 Introduction 

Software metrics has been widely used by developers and managers to assess the 
quality of software products and processes. Software Product Line (SPL) has been 
increasingly adopted in industry to produce a set of software-intensive systems 
sharing a common, managed set of features [2]. The increased adoption of SPL in 
practice has also increased the demand for metrics measuring SPL artifacts and 
processes. 

Several SPL metrics have been proposed mainly on: (1) evaluating the underlying 
architecture of the SPL in terms of tailorability, architectural requirement 
conformance and etc [6]; (2) assessing the complexity of the variability specification 
of the product line, such as counting variation points, calculating the cyclomatic 
complexity of variation points [5, 7]; (3) evaluating the complexity of a SPL based on 
the costs, schedule, asset development, quality, productivity and etc [13]. Despite of 
the existing work, we see the lack of studies on metrics assessing the complexity of 
SPLs based on both variability specification and implementation.  

In our earlier work [11], we proposed the Common Variability Language (CVL) 
[3, 4] being standardized at Object Management Group (OMG), as an approach for 
software product line development. CVL is a generic language for modeling 
variability that can be applied to any model which is defined in any Meta Object 
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Facility [9] (MOF)-based language. With the CVL approach, the SPL developer first 
chooses a base model in the domain. The developer then specifies in a CVL model, 
not only the variability of the product line relative to the base model, but also the 
corresponding variability implementations in terms of executable CVL operations in 
order to derive final product models.  

We see that such CVL characteristics on dealing with both variability specification 
and implementation can be exploited to develop an improved complexity metric for 
SPL. In this paper we propose a metric suite that valuates the complexity of CVL-
based product lines in two dimensions: (1) the complexity of variability 
specifications, based on how many products can be derived form it, which depends on 
how variability is specified. We believe that this is an indicator for the complexity, 
since there are more variants to develop and manage; (2) the complexity of variability 
implementations, in terms of how much effort are required to develop and maintain 
them. 

We believe that our metric suite which covers both aspects will provide an 
improved evaluation of the SPL complexity. Such metrics can be of great help for 
SPL developers and managers when they make design or planning decisions. It is 
also, to the best of our knowledge, one of the very few metrics that are dedicated for 
model-driven software product line development which apply to models instead of 
source code. In addition, the metric suite bases itself on the CVL approach, which can 
be regarded as a contribution to the CVL standardization effort as well. We perform 
preliminary evaluation of the metric suit by applying it to two product line cases that 
are taken from industry. 

The remainder of the paper is organized as follows: Section 2 gives an introduction 
of adopted technologies. Section 3 gives a detailed description of the metric suite. 
Section 4 gives an application of the metrics to product lines. Section 5 discusses 
some of the issues and challenges regarding the metrics. Related work is summarized 
in Section 6. Section 7 concludes the paper and proposes the future work. 

2 Background 

2.1 Common Variability Language 

CVL is a generic language to specify variability in any model that is defined in any 
Meta Object Facility (MOF)-based language. A CVL model comprises three types of 
model [4]: (1) the base model, created in the base language; (2) the variability model, 
which specifies the variability relative to the base model; (3) the resolution model, 
which resolves the variability in the variability model. The final product models are 
generated by executing the full CVL description. 

To develop an SPL using CVL, the SPL developer starts with choosing a model 
defined in the base language as the base model for the product line. Then the 
developer creates a CVL model with the variability of the product line relative to the 
base model defined. More specifically the variability can be specified in two layers 
[3]: 

54



Complexity Metrics for Software Product Lines      3 

Feature specification layer specifies the high level variability of the product line 
relative to the base model, which is analogous to feature modeling. The CVL 
construct CompositeVariability is used to model features. The CVL construct Iterator 
alone is sufficient to express mandatory/optional, OR/XOR and multiplicity among 
features.  

Product realization layer defines the implementations of the variability in the 
feature specification layer in terms of low-level CVL operations, which will be 
executed to derive product models from the base model: (1) Value Substitution, to 
change the value of an attribute of a model element; (2) Reference Substitution, to 
redirect a reference from one model element to another; (3) Fragment substitution, to 
substitute a given set of model elements (placement fragment) with another arbitrary 
set of model elements (replacement fragment) defined within the same base language. 
Any arbitrary model fragment can be defined using the CVL concept boundary 
element. The boundary elements record all references to and from the model 
fragment. As illustrated in Fig. 1 [12], ToP, FrP1 and FrP2 define the placement 
fragment, whereas ToR, FrR1 and FrR2 define the replacement fragment. During the 
fragment substitution, the boundary elements representing the replacement fragment 
are bound to the boundary elements representing the placement fragment accordingly. 
As shown in Fig. 1, ToR is bound to ToP, FrR1 is bound to FrP1 and FrR2 is bound 
to FrP2.  
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Fig. 1. Fragment substitution in CVL 

2.2 Train Control Language 

Train Control Language (TCL) [10] is a Domain Specific Language (DSL) developed 
by SINTEF in cooperation with ABB, Norway1. With the TCL language and tools, 
the train control experts can specify railway station models according to the structural 
drawings sent by the railway authorities. Interlocking source code can be generated 

                                                           
1 http://www.abb.no 
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from TCL models. Such code is deployed Programmable Logic Circuits (PLC) to 
control station-related machinery. Fig. 2 illustrates the concrete syntax of TCL with 
annotations. A train route is a route between two main signals in the same direction. 
A track circuit is the shortest segment where the presence of a train can be detected. 
A track circuit consists of line segments and switches connected by endpoints.  
 

 

Signal

LineSegment

Endpoint
Switch

TrackCircuit

TrainRoute  
Fig. 2. Annotated basic TCL concrete syntax 

3 CVL Complexity Metrics 

The metric suite aims at assessing the complexity of a CVL-based product line in two 
dimensions: the variability specification complexity and the variability 
implementation complexity. The CVL model is the prime subject of the metrics, so 
that all the measurements are taken from properties of the CVL model.  

3.1 Variability Specification Complexity 

Metric 1 VSC (Variability Specification Complexity) 
Assumption The number of all possible products is an indicator for the 

complexity of the variability specification. 
The high level variability (features) of the product line is defined in the feature 

specification layer of a CVL model. Products are configured by choosing different 
legal combinations of the features. Therefore the number of possible products 
depends on how much variability is specified in this layer. For example, it probably 
indicates: (1) more features are defined, which adds to the complexity of the 
variability specification; (2) more choices over features are allowed, by having more 
iterators representing choices and imposing more complex hierarchies to the features. 

  
Definition Consider a CVL model with variability defined. Let NOP be the actual 

number of all possible products allowed by the model. Then: 
 

NOPVSC =  
The range of this indicator is [0,∞ ]. CVL model with VSC equals 0 does not have 

a valid variability specification so that no product can be derived from the model. 
Higher VSC value indicates more possible products, thus reflects a more complex 
variability specification, which in turn is need of more effort in development and 
maintenance.  
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3.2 Variability Implementation Complexity 

Metric 2 WVS (Weighted Value Substitutions) 
Assumption The overall complexity of developing the value substitutions 

contributes to the complexity of the variability implementations. 
The value substitution is to change the value of an attribute of a model element. It 

is a fairly straightforward operation.  The developer just needs to point to the target 
attribute of the target model element in order to indicate the placement value, and then 
provide a replacement value while configuring a product afterwards. Hence, when the 
internal complexity of one single value substitution can be regarded minimal, the 
number of them plays more significant role contributing to the complexity of the 
entire variability implementations.  

However, it is possible that in certain domains, the development effort for each 
value substitution can vary because of domain specific reasons. For example, the 
developer may put more effort to decide on a particular Placement Value because of 
the complexity of the domain and the base model. Therefore, we believe that not only 
the number of the value substitutions alone, but the overall complexity of developing 
the value substitutions contributes to the complexity of the variability 
implementations. 

 
Definition Consider a CVL model with value substitutions vs1,..., vsn defined in the 

product realization (variability implementation) layer. Let cv1,..., cvn be the 
complexity of developing them. Then:  

∑
=

=
n

i
icvWVS

1

 

If all the value substitution complexities are considered to be unity, then WVS = n, 
the number of the value substitutions. 
 
Metric 3 WRS (Weighted Reference Substitutions) 

Assumption The overall complexity of developing the reference substitutions 
contributes to the complexity of the variability implementations. 

The reference substitution is to redirect a reference from one model element to 
another one. The developer needs to point to the reference for change and the target 
object to which it is referred afterwards. Similar to the case of value substitutions, the 
number of reference substitutions contributes to the complexity of the entire 
variability implementations. In addition, the complexity of developing each one may 
differ in certain cases, which is also taken into account in our metric design.  

 
Definition Consider a CVL model with reference substitutions rs1,..., rsn defined. 

Let cr1,..., crn be the complexity of developing them. Then: 

∑
=

=
n

i
icrWRS

1

 

If all the reference substitution complexities are considered to be unity, then WRS 
= n, the number of the reference substitutions. 
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Metric 4 WFS (Weighted Fragment Substitutions) 
Assumption 1 The overall complexity of developing the fragment substitutions 

contributes to the complexity of the variability implementations. 
Fragment substitution is regarded as the most essential and sophisticated CVL 

operation. The overall complexity of all fragment substitutions in a CVL model 
definitely contributes to the complexity of its variability implementations. 

Assumption 2 The number of the bindings is an indicator for the complexity of 
developing a fragment substitution. 

As illustrated in Fig. 1, fragment substitution is to replace an arbitrary model 
fragment (placement fragment) with another arbitrary model fragment (replacement 
fragment) that is defined in the same base language.  The boundary elements to/from 
placement representing the placement fragment need to be correctly bound to those 
to/from replacement representing the replacement fragment. The CVL tooling 
provides certain intelligence to reduce the manual effort needed to deal with those 
bindings. It suggests default binding choices based on the base language definition 
and the type of the element to which the boundary element is pointed. Nevertheless,   
normally most of the development effort for fragment substitution is put on fixing the 
bindings, such as inspecting default bindings and performing changes if necessary.  
Hence we believe that in general the more bindings are involved in a fragment 
substitution, the greater development effort is needed. 

Definition Consider a CVL model with fragment substitutions fs1,..., fsn defined. 
Let nob1,..., nobn be the number of bindings involved in each substitution. Then: 

∑
=

=
n

i
inobWFS

1

 

4 Assessing the Complexity of Station Product Lines 

To evaluate the feasibility of our work, we have extended the CVL tool with the 
functionality for calculating the metrics. The metric suite was applied to a regional 
station product case study of our earlier work [12]. The regional station product line is 
developed using the CVL approach and the base mode is defined by the TCL 
language. The base model of the product line is a basic two track station as shown in 
the top left pane of Fig. 4 and the CVL model is shown in Fig. 3. 

As shown in Fig. 3 [12], a regional station can be designed for either urban or rural 
areas. A rural station is allowed to have one additional track and/or one parking track 
compared to the base model station. An urban station can only have two tracks as in 
the base model but can also choose to have one parking track if needed. 
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Optional XOR

Fragment 
Substitution

Feature

 
Fig. 3. The CVL model of the regional station product line in the CVL graphical editor with 

annotations 

Our tool takes the CVL model as input and returns with the following calculation 
of the metric suite:  
− Metric 1: Number of all the products (NOP) = 4, Variability Specification 

Complexity (VSC) = 4. 
− Metric 2: Number of value substitutions n = 0, Weighted Value Substitutions 

(WVS) = 0. 
− Metric 3: Number of reference substitutions n = 0, Weighted Reference 

Substitutions (WRS) = 0. 
− Metric 4: Number of fragment substitutions n = 3, Weighted Fragment 

Substitutions (WFS) = Number of bindings for Insert new track + Number of 
bindings for Insert parking track (1) + Number of bindings for Insert parking track 
(2) = 27 + 12 + 12 = 51. 
Take the fragment substitution Insert new track for example: as shown in Fig. 4, 

the placement fragment is annotated by the dashed rectangle in the top left pane while 
the replacement fragment is annotated in the bottom left pane. The right pane shows 
the bindings in the fragment binding editor, which has been counted to 27 in the 
calculation. 

In addition, we apply the metric suite to another station product line [11] also 
developed with TCL and CVL. All its product models are real stations in Norway. 
Both product lines were developed by us with ABB, Norway.  

The development of the latter product line was more complicated and time-
consuming even though we gained experience from developing the previous one – the 
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regional station product line. This is probably because this product line has more 
variability defined and leads to more products. This product line is regarded as a more 
complex one by developers and domain experts.  

The result of metrics are: VSC = 52; WVS = 23 (all the value substitution 
complexities are considered to be unity); WRS = 0; WFS= 69, suggesting a higher 
complexity in every dimension than the regional station product line, which confirms 
to the perception of the developers. 

 

Placement
Fragment

Relacement
Fragment

 
Fig. 4. For the fragment substitution Insert new track: placement/replacement fragment 
annotated in the base and library model, bindings in the CVL fragment binding editor 

5 Discussion 

Our metric suite is based on the CVL approach. Unlike other metrics which have 
dependencies on different variability implementation techniques, our metrics benefit 
from generic CVL substitutions for handling variability implementations with 
different base languages. 

Our metrics evaluates the complexity of product lines based on both the variability 
specifications and the variability implementations. This provides the SPL developers 
or managers a more complete overview of the product line complexity to assist their 
decision making.  

Some open issues are identified for the metric development [7], such as exploring 
the range for the complexity values, which can be further used to categorize product 
lines into different complexity levels. It is also important to study any possible 
limitations of our metrics due to its additive nature. Extensive case studies and 
empirical data collection need to be done to address these issues. 

6 Related Work 

Several SPL metrics have been proposed, which are partly summarized as follows: 
Van der Hoek et al. [6] present a set of metrics to evaluate the SPL architecture. 

The metrics are based on the concept of service utilization and consider the context in 
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which individual architectural elements are placed. This work has different focus on 
the subject of the metrics from ours. Our metrics focus on the variability specification 
and implementation while their prime subject is the structure of the SPL architecture. 

Her et al. [5] propose a framework for evaluating reusability of core asset in 
product line engineering. Metrics are proposed to evaluate the functional/non-
functional commonality, variability richness, applicability, tailorability and other 
properties of the core asset in product lines, which again have different prime subjects 
from our metrics. 

Our Metric 1 Variability Specification Complexity (VSC) was first inspired by the 
work of Lopez-Herrejon et al. [7]. They adapt McCabe’s metric [8] which is 
originally used for calculating cyclomatic complexity and apply it to assess the 
cyclomatic complexity of variation points in the product lines. In a CVL model, the 
complexity of variability specifications does not solely depend on its structural 
complexity, but also on the CVL constraints across the features. Therefore we 
considered it not sufficient to apply the cyclomatic complexity metric to CVL models. 
We further got inspired by the metric suite for object oriented design from Chidamber 
et al. [1], which is to quality the complexity of an object oriented design based on 
much of counting class members and weighted aggregation. We adapted part of its 
basic ideas which are applicable in our case during the development of our metric 
suite. 

To the best of our knowledge, we are not aware of any existing metrics providing 
evaluation of the SPL complexity based on both variability specification and 
implementation, as well as being generic benefiting from the CVL approach.  

7 Conclusion and Future Work 

In this paper, we proposed a metric suite for evaluating the complexity of product 
lines. Our metrics apply to the CVL-based product line development. It benefits from 
the generic nature of the CVL approach thus can work with any product line with a 
MOF-based base language. Our metric suite comprises four metrics, assessing the 
complexity of an SPL based on the complexities of variability specification and 
implementations. A CVL tool extension has been made to calculate the metrics and 
applied to two product line case studies. 

Ideas for future work include: (1) deciding the complexity value range and 
complexity categorization based on empirical data collection; (2) exploring the 
possible limitations of the metrics due to its additive nature from extensive real case 
studies. 
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