
Modeling Test Cases for Voting
Using the Alloy Model Finder to Derive Test Cases for PR-
STV Elections

Dermot Cochran
Joseph R. Kiniry

IT University Technical Report Series TR-2011-143

ISSN 1600–6100 September 2011

Copyright c© 2011, Dermot Cochran
Joseph R. Kiniry

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-239-4

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Modeling Test Cases for Voting
Using the Alloy Model Finder to Derive Test Cases for PR-STV Elections

Dermot Cochran
Joseph R. Kiniry

Abstract
The ballot counting process for Proportional Representation by Single Transferable Vote
(PR-STV) elections can be modelled formally using the Alloy model checker so as to cover
all possible branches through the ballot counting algorithm.

We use the Alloy model finder to describe the elections in terms of scenarios, consisting
of equivalence classes of possible outcomes for each candidate in the election, where each
outcome represents one branch through the algorithm.

We show how test data is generated from a first order logic representation of the count-
ing algorithm using the Alloy model finder. This process guarantees that we find the mini-
mal number of ballots needed to test each scenario.

1 Introduction
The electoral process consists of various different stages, from voter registration, through
vote casting and tallying, to the final declaration of results.

Some, but perhaps not all, aspects of the election process are apparently suitable for
automation. For example, voter registration records can be stored in computer databases,
and ballot counting can be done by machine. In Denmark, the final result of the election is
calculated by a computer in the Danish Ministry of the Interior.

However, many attempts to introduce electronic counting of ballots have failed, or at
least received much criticism, due to software and hardware errors, including potential
counting errors, many of which are avoided through the appropriate use of formal methods
and careful testing.

One of the potential advantages from automation is the accuracy of vote counting, so
it is important to be able to prove that software can actually count ballots more accurately
than the manual labour-intensive process of counting paper ballots by hand, especially for
complex voting schemes, otherwise there would simply be no question of using electronic
voting.

The security aspects of elections are an important but distinct concern, and are beyond
the scope of this paper.

In this paper we will focus mainly on the Irish voting scheme, as a case study.

1.1 Voting Scheme
The Republic of Ireland uses Proportional Representation by Single Transferable Vote (PR-
STV) for its national, local and European elections.1 PR-STV is a multi-seat ranked choice
voting system, in which each voter ranks the candidates from first to last preference.

1Ireland uses Instant Runoff Voting (IRV) for its presidential elections and for by-elections to fill casual va-
cancies in Dáil Éireann

1

Manual recounts are often called for closely contested seats, as the results often vary
slightly, indicating small errors in the manual process of counting votes. Paper-based vot-
ing with counting by hand is popular in Ireland, and recent attempts at automation were
frustrated by subtle logic errors in the ballot counting software [2]. The potential for logic
errors exist, in part, due to the complexities and idiosyncrasies with regard to tie breaking,
especially involving the rounding up or down of vote transfers.

There has been some desire in Ireland to simplify matters. Referenda to introduce
plurality (first past the post) voting were rejected twice by the Irish electorate, once in 1959
and again in 1968 [14]. Since then, there have been no further legislative proposals to
change the voting scheme used in Ireland.

The following are selected quotes from the Irish Commission on Electronic Voting
(CEV) report on the previous electronic voting system used in Ireland (emphasis added) [4]:

• Design weaknesses, including an error in the implementation of the count
rules that could compromise the accuracy of an election, have been iden-
tified and these have reduced the Commission’s confidence in this soft-
ware.

• The achievement of the full potential of the chosen system in terms of
secrecy and accuracy depends upon a number of software and hardware
modifications, both major and minor, and more significantly, is depen-
dent on the reliability of its software being adequately proven.

• Taking account of the ease and relative cost of making some of these
modifications, the potential advantages of the chosen system, once mod-
ified in accordance with the Commission’s recommendations, can make
it a viable alternative to the existing paper system in terms of secrecy and
accuracy.

Thus, Ireland wishes to keep its current complicated voting scheme, is critical of the
existing attempts to implement that scheme in e-voting, but keeps the door slightly ajar for
the introduction of e-voting in the future.

1.1.1 Proportional Representation by Single Transferable Vote (PR-STV)

PR-STV achieves proportional representation in multi-winner elections, and reduces to IRV
for single-winner elections.

The flowchart in Figure 1 outlines the algorithm used for counting preferences ballots
by PR-STV. A quota of preferences is chosen so that at most N − 1 candidates can reach
the quota, where N is the number of seats to be filled. The threshold is always less than the
quota. The surplus for a candidate is the number of votes in excess of the quota.

1.2 Vótáil
Vótáil is an open source Java implementation of Irish Proportional Representation by Single
Transferable Vote (PR-STV) [9]. Its functional requirements, derived from Irish electoral
law, are formally specified using the Business Object Notation (BON) and refined to a Java
Modeling Language (JML) specification. Extended Static Checking (ESC) is used to help
verify and validate the correctness of the software.

1.3 Related Work
Meagher wrote a Z and B specification for election to the board of Waterford Institute of
Technology, which uses a variant of the Irish PR-STV system [13].

Kjölbro used a similar methodology for specification and implementation of the Danish
Voting System [10].

2

Start Calculate quota
and threshold

Sort ballots into piles for
each remaining candidate

More remaining
candidates than
unfilled seats?

Elect all
remaining
candidates

Does highest
candidate have a

quota?

Eliminate lowest
candidate and
transfer votes

Finished

Elect highest
candidate and

transfer surplus votes

NO

YES

YES NO

Figure 1: Proportional Representation by Single Transferable Vote

We are also aware of some unpublished or unfinished work relating to previous attempts
at formalization of PR-STV, including some Prolog work by Naish and an implementation
of the Scottish STV system in CLEAN by researchers at the Radboud University Nijmegen.
The only peer-reviewed published related work of interest is a protocol for the tallying of
encrypted STV ballots [15] and verifying properties of voting protocols, not software (e.g.,
several papers by Delaune et al [3]).

There is, of course, a large amount of work in the field of model checking and test
generation, but not directly related to voting as a case study and therefore not referenced in
this paper.

1.4 Outline of Paper
The next section of the paper describes voting schemes in more detail. The third section
describes the system under test using a mathematical theory of ballots and ballot boxes.
The fourth section describes the possible configurations of election results under each vot-
ing scheme. The fifth outlines the process of deriving test data needed for each election
configuration. The final section contains our conclusions and plans for future work.

2 Formalisation
We must represent the input data space in a precise mathematical way to formally reason
about its properties with respect to the algorithm.

2.1 Mathematical Models
In this case study, the core concepts of elections must be defined: ballots, ballot boxes,
candidates, and election results.

Definition 1 (Candidate) Candidates are individual persons standing for election. They
are identified by (distinct) names. The set of all candidates is denoted C. The Alloy encod-
ing includes the following: 2

2The full definition can be found in the Appendices

3

 s i g Cand ida t e {
 v o t e s : s e t B a l l o t , −− F i r s t p r e f e r e n c e b a l l o t s
 t r a n s f e r s : s e t B a l l o t , −− T r a n s f e r s r e c e i v e d
 s u r p l u s : s e t B a l l o t , −− B a l l o t s t o be t r a n s f e r r e d
 was ted : s e t B a l l o t , −− B a l l o t s non−t r a n s f e r a b e
 outcome : Even t −− E l e c t i o n outcome }

Definition 2 (Ballot) An ordinal or preference Ballot b is a strict total order on a set of
candidates C. The length of a ballot, |b|, is the number of preferences expressed. The
minimum number of preferences is one, except in systems like that used in Australia where
all preferences must be used. The Alloy encoding is as follows:

 s i g B a l l o t {
 a s s i g n e e s : s e t Candidate , −− B e n i f i c i a r i e s o f t h i s b a l l o t
 p r e f e r e n c e s : seq Cand ida t e −− Ranking o f c a n d i d a t e s
 } {
 a s s i g n e e s i n p r e f e r e n c e s . e l ems
 n o t p r e f e r e n c e s . hasDups
 p r e f e r e n c e s . f i r s t i n a s s i g n e e s
 E l e c t i o n . method = P l u r a l i t y i m p l i e s # p r e f e r e n c e s <= 1
 0 <= # p r e f e r e n c e s

 / / F i r s t p r e f e r e n c e
 a l l c : Cand ida t e | p r e f e r e n c e s . f i r s t = c i f f t h i s i n c . v o t e s
 / / Second and s u b s e q u e n t p r e f e r e n c e s
 a l l d i s j donor , r e c e i v e r : Cand ida t e |
 (donor + r e c e i v e r i n a s s i g n e e s and
 t h i s i n r e c e i v e r . t r a n s f e r s and t h i s i n donor . s u r p l u s) i m p l i e s
 (p r e f e r e n c e s . i d x O f [donor] < p r e f e r e n c e s . i d x O f [r e c e i v e r] and
 r e c e i v e r i n p r e f e r e n c e s . r e s t . e l ems)
 / / L a s t c a n d i d a t e t o r e c e i v e t h e t r a n s f e r
 a l l d i s j c , d : Cand ida t e | t h i s i n c . t r a n s f e r s i m p l i e s
 c i n a s s i g n e e s and
 (d n o t i n a s s i g n e e s or
 p r e f e r e n c e s . i d x O f [d] < p r e f e r e n c e s . i d x O f [c])
 / / T r a n s f e r s t o n e x t c o n t i n u i n g c a n d i d a t e
 a l l d i s j s k i p p e d , r e c e i v i n g : Cand ida t e |
 p r e f e r e n c e s . i d x O f [s k i p p e d] < p r e f e r e n c e s . i d x O f [r e c e i v i n g] and
 r e c e i v i n g i n a s s i g n e e s and (n o t s k i p p e d i n a s s i g n e e s) i m p l i e s
 (s k i p p e d i n S c e n a r i o . e l i m i n a t e d or
 s k i p p e d . outcome = S u r p l u s W i n n e r or
 s k i p p e d . outcome = AboveQuotaWinner or
 s k i p p e d . outcome = W i n n e r N o n T r a n s f e r a b l e or
 s k i p p e d . outcome = Quo taWinnerNonTrans f e rab l e or
 s k i p p e d . outcome = Winner or
 s k i p p e d . outcome = QuotaWinner)
 }

Definition 3 (Ballot Box) An unordered ballot box is a bag (multiset) of ballots; an or-
dered ballot box is a vector of ballots, [b1b2 . . .]. Both are ballot boxes, denoted B. As
a bag can be modeled by a vector where order does not matter, we only use the latter
formalization in the following. 3

The Alloy encoding is as follows:
3An ordered ballot box is used to model voting schemes in which surplus ballots are chosen according to the

order in which they have been shuffled and mixed

4

 one s i g B a l l o t B o x {
 s p o i l t B a l l o t s : s e t B a l l o t , −− empty b a l l o t s
 n o n T r a n s f e r a b l e s : s e t B a l l o t , −− p r e f e r e n c e s are e x h a u s t e d
 s i z e : I n t −− number o f u n s p o l i t b a l l o t s
 }
 {
 no b : B a l l o t | b i n s p o i l t B a l l o t s and b i n n o n T r a n s f e r a b l e s
 s i z e = # B a l l o t − # s p o i l t B a l l o t s
 a l l b : B a l l o t | b i n s p o i l t B a l l o t s i f f #b . p r e f e r e n c e s = 0

 a l l b : B a l l o t | some c : Cand ida t e | b i n n o n T r a n s f e r a b l e s
 i m p l i e s b i n c . was ted
 }

In the Alloy encoding the Ballot Box contains those Ballots not assigned to one of the
Candidate piles.

Definition 4 (Outcome) An Outcome represents the path through the algorithm for the
pile of ballots initially assigned to that candidate. For example, if the ballots form a surplus
or if some of the ballots are non-transferable due to exhaustion of preferences.

 enum Even t { Surp lusWinner ,
 WinnerNonTrans f e rab l e ,
 Winner ,
 AboveQuotaWinner ,
 QuotaWinnerNonTrans fe rab le ,
 QuotaWinner ,
 CompromiseWinner ,
 TiedWinner ,
 TiedLoser ,

 Loser ,
 Ear l yLose r ,
 E a r l y L o s e r N o n T r a n s f e r a b l e ,
 T i e d S o r e L o s e r ,
 SoreLoser ,
 E a r l y S o r e L o s e r ,
 E a r l y S o r e L o s e r N o n T r a n s f e r a b l e }

Definition 5 (Scenario) A Scenario consists of the overall election results including the
Outcome for each Candidate.

 one s i g S c e n a r i o {
 l o s e r s : s e t Candidate ,
 w i n n e r s : s e t Candidate ,
 e l i m i n a t e d : s e t Candidate ,
 t h r e s h o l d : I n t , −− Minimum number o f v o t e s f o r f u n d i n g
 quo ta : I n t , −− Maximum number o f v o t e s needed f o r e l e c t i o n
 f u l l Q u o t a : I n t −− Quota f o r a f u l l e l e c t i o n
 } {
 e l i m i n a t e d i n l o s e r s

 . . .
 }

Definition 6 (Constituency) A Constituency consists of a number of seats that represent
a local area or region.

5

 one s i g E l e c t i o n {
 s e a t s : I n t , −− number o f s e a t s t o be f i l l e d i n t h i s e l e c t i o n
 c o n s t i t u e n c y S e a t s : I n t , −− f u l l number o f s e a t s i n t h i s c o n s t i t u e n c y
 method : Method −− t y p e o f e l e c t i o n ; PR−STV or p l u r a l i t y
 } {
 0 < s e a t s and s e a t s <= c o n s t i t u e n c y S e a t s
 s e a t s < # Cand ida t e
 method = P l u r a l i t y or method = STV
 }

2.2 Number of Distinct Ballots

The number of distinct permutations of non-empty preferences is
C∑
l=1

(C)l, where C = |C|

and partial ballots are allowed, so that the number of preferences used range in length from
one to the number of candidates. For a ballot of length l, (C)l is the number of distinct
preferences that can be expressed. 4

2.2.1 Examples and Encoding Ballots

This distinct ballot count is best understood, particularly for those unexcited by combina-
torics, by examining cases for small C and enumerating all possible ballots.

Two Candidates There are four different ways to vote for two candidates (named Alice
and Bob): two ballots of length 1, and two ballots of length 2, that is (2)1 + (2)2:

Ballot Alice Bob Encoding of Ballot
1 1st - A −
2 - 1st B −
3 1st 2nd A B

4 2nd 1st B A

A − has a different meaning than A B . If we had an election with two ballots

B − and A B , then Bob would be the winner.

Note the symmetry of these four ballots. There are effectively only two different ballots if
the candidates cannot be differentiated.

3 Election Outcomes
A naive approach to validating/testing electoral systems (if they are tested at all) is to ran-
domly generate hundreds of thousands (or, indeed, even millions) of ballot boxes and then
to compare the results of executing two or more different implementations of the same
voting scheme. If different results are found, then the ballots are counted manually to
determine which result is correct [2].

This methodology is inadequate because even if one generates billions of ballots in non-
trivial election schemes, the fraction of the state space explored is vanishingly small. To
make this fact clear, we will analyze the number of distinct ballot boxes in various schemes.
5

4
C∑
l=0

C!/(l − C)! = C!
C∑
l=0

1/l! < e ∗ C! In fact,
∑

1/l! converges quite quickly to e and so the number

of distinct ballots is floor(e ∗ C!). You can subtract 1 to get the number of nonempty, distinct ballots.
5further examples can be seen in Appendix 1

6

3.1 Last Two Continuing Candidates
When there are just two continuing candidates and one remaining seat, the algorithm re-
duces to single winner plurality (first-past-the-post).

In this case there are six possible election results (candidate outcome events) for each
candidate:

Event Description
W The candidate is the poll-topper with the most votes.
W The candidate is joint highest and only wins by tie-breaker.
L The candidate loses, but receives enough votes to reach the

threshold.
L The candidate is joint highest and only loses by tie-breaker.
S The candidate loses and does not reach the threshold.
S The candidate is joint highest and loses by tie-breaker, but does

not reach the threshold.

In our vector representation, an event ε in entry i of the election scenario indicates that
candidate i obtained outcome ε.

3.1.1 Scenarios

In plurality, there is only one winner, who wins either in event W or W.

Two Candidates If there is one loser, the 3 possible outcomes are:
Sub-Scenario 1st Event 2nd Event

1 W L
2 W S
3 W L

3.2 Filling of Last Seat
When there is one remaining seat, but at least three continuing candidates, then the algo-
rithm reduces to Instant Runoff Voting (IRV):

3.2.1 Events

For each continuing candidate the following event outcomes are possible:
Event Description
H The candidate is the poll-topper with a majority of the first pref-

erences and is elected.
Q The candidate is elected during an intermediate round by receiv-

ing transfers.
W The candidate receives enough transfers to have a majority of the

votes and is elected in the last round.
W The candidate is elected by tie-breaker in last round.
L The candidate is defeated as the lowest candidate in any round

but reached the threshold.
L The candidate is defeated by tie-breaker in any round, but

reached the threshold.
S The candidate is excluded as the lowest candidate in any round

and did not reach the threshold.

7

Event Description Alloy Encoding
N The candidate is elected in the first round

with a surplus containing at least one non-
transferable vote

WinnerNonTransferable

T The candidate is elected in the first round
with at least one surplus vote

SurplusWinner

H The candidate is elected in the first round
without surplus votes

Winner

X The candidate is elected after receiving
vote transfers and then has a surplus with
at least one non-transferable vote

QuotaWinnerNonTransferable

A The candidate is elected during an interme-
diate round by receiving transfers and has
a surplus to distribute

AboveQuotaWinner

Q The candidate is elected during an inter-
mediate round by receiving transfers, but
without a surplus

QuotaWinner

W The candidate is elected as the highest con-
tinuing candidate on last round.

CompromiseWinner

W The candidate is elected by tie-breaker on
the last round.

TiedWinner

Figure 2: Winning Outcomes for PR-STV

3.2.2 Sub-Scenarios

Two Candidates If we consider two candidates, the winner and the highest loser (runner-
up) than the following combinations of events are possible:

1st Event 2nd Event Description
W L The winner gets a majority and the loser

reaches the threshold.
W S The winner gets a majority and loser does

not reach the threshold.
W L The winner is elected by tie-breaker and

the loser reaches the threshold.

3.3 PR-STV
Figure 2 shows the eight winning outcomes and Figure 3 shows the eight losing outcomes.

4 Properties of the Model
The model contains 6 type signatures, 53 appended definitions, 2 enumerated types and 37
lemmas e.g.

Lemma 1 The events Wand W are mutually exclusive.

Lemma 2 Every Tied Winner has the same number of votes as every Tied Loser.

 a s s e r t e q u a l i t y o f T i e d W i n n e r s A n d L o s e r s {
 a l l d i s j w , l : Cand ida t e | w i n S c e n a r i o . w i n n e r s and l i n S c e n a r i o . l o s e r s and
 w . v o t e s + w . t r a n s f e r s = l . v o t e s + l . t r a n s f e r s i m p l i e s
 w . outcome = TiedWinner and
 (l . outcome = T i e d L o s e r or l . outcome = T i e d S o r e L o s e r) }

8

Event Description Alloy Encoding
L The candidate is defeated as the lower con-

tinuing candidate on the last round.
Loser

L The candidate is defeated by tie-breaker on
last round.

TiedLoser

E The candidate is excluded as the lowest
candidate in an earlier round but reached
the threshold, all ballots are transferable

EarlyLoser

D The candidate is excluded in an earlier
round and is below the threshold, all bal-
lots are transferable

EarlySoreLoser

S The candidate is defeated in the last round
and is below the threshold.

SoreLoser

S The candidate is excluded by tie-breaker
and is below the threshold

TiedSoreLoser

F The candidate is excluded as the lowest
candidate in an earlier round but reached
the threshold, with at least one non-
transferable ballot

EarlyLoserNonTransferable

U The candidate is excluded in an earlier
round and is below the threshold with at
least one non-transferable ballot

EarlySoreLoserNonTransferable

Figure 3: Losing Outcomes for PR-STV

5 Procedure for Automated Test Generation
We used the SAT4J solver with Alloy running concurrently in a thread pool. We suspect
that a native solver would be faster, but might not be thread safe. 6

Ballot counting system tests can be identified and generated in a complete and formal
way, complementing existing hand-written unit tests. To accomplish this task, one needs to
be able to generate the ballots in each distinct kind of ballot box identified using the results
of the earlier sections of this paper. Effectively, the question is one of, “Given the election
outcome R, what is a legal set of ballots B that guarantees R holds?”

5.1 Generation of Ballot Boxes
We outline a simple example to show how it is possible to derive test data from the equiva-
lence class of ballot boxes..

Recall that each election outcome O is described by a single election scenario, S, as
described by a vector of candidate outcome events. We must derive from an outcome O a
vector of ballots B that guarantee, when counted using the ballot counting algorithm of the
election, exactly O, assuming that ties are broken in a deterministic way. We write B `S O

to mean counting B results in outcome O under scenario S. Such a combination of ballots,
outcome, and scenario is called an election outcome configuration.

In general, there are a large number of vectors of ballots that guarantee an election
outcome. For practical reasons in validation, we wish to find the smallest vector that guar-
antees the outcome; i.e., given O and S, find B such that ∀b.b `S O.|B| ≤ |b|.

For a given outcome O, the conditions that a vector of ballots B must meet to fulfill
scenario S is described using a first-order logical formula whose validity indicates B `S O

6See http://alloy.mit.edu/community/node/1080 for an explanation of why JNI solvers might
not be thread safe.

9

http://alloy.mit.edu/community/node/1080

holds. We denote this description Φ. Thus, B `S O ⇔ Φ(B), or alternatively, Φ(B)B `S
O.

Encoding in Alloy Modeling Language Formally this is achieved using bounded checks
in the Alloy Analyser [8].

Informally, to find the minimal sized B, we iteratively describe election configurations
B `S O with monotonically increasing numbers of ballots, starting with a ballot box of
size one. These descriptions consist of a set of definitions that describe the outcome and
a single theorem that states that O is not possible. If the number of ballots is too small
to produce the desired outcome, then the formulation of B `S O will be inconsistent, and
Alloy will return a satisfiable solution.’

Alternatively, if the ballot box size is just large enough, Alloy will insist that the pred-
icate is invalid and provide a counterexample proof context, whose values indicate the
necessary values of all of the ballots in B.

Example: Instant Runoff Voting Consider 3 candidate IRV. Two possible outcome
classes are QLE and CLE–no candidate has a majority so one is eliminated and then in
the next round, one candidate has a majority. These are two distinct cases: firstly a ballot
box of 3 ballots for A 2 ballots for B 1 ballot for C

and secondly a ballot box of 2 ballots for A 2 ballots for B 1 ballot with (1st=C 2nd=A).
In both cases, no one has a majority, C is eliminated, and then A wins with a 3 to 2

majority. In both cases the threshold would be one vote. In both cases C is an Early Loser
(E) and B is a Loser (L).

5.1.1 An Election Configuration Example

Consider a plurality election with two candidates (|C| = 2). As discussed in Section 3.1.1,
there are three scenarios associated with this election configuration: [WL], [WS], and
[WL].

In the following, let be T be a tiebreaker function that chooses a winner from a set of
candidates.

As earlier, let B denote a ballot box and b a ballot. Let b[n] be the nth preference of
ballot b. Finally, as earlier, let τ be the threshold of votes for a given electoral system.

5.1.2 Formalization

Each candidate outcome is described by an definition that expresses the relationship be-
tween the number of votes that candidate receives and the outcome. Since most first-order
theorem provers do not provide native support for the generalized summation quantifier,
we use a generic encoding described by Leino and Monahan [11].

The Scenario Predicate Now, we wish to try to prove a predicate that stipulates that, for
a given scenario, an expected outcome is not possible for a given number of ballots.

We ask the solver to check the validity of the following predicate (by simply stating the
predicate in Alloy that captures the meaning of scenario [WL]:

|B| = 1⇒ ¬(W ∧ L)

If the prover responds with “valid,” then we know that we need more than one ballot, and
we make a new attempt:

|B| = 2⇒ ¬(W ∧ L)

Consequently, if that attempt also fails, we attempt to prove the theorem with three ballots:

|B| = 3⇒ ¬(W ∧ L)

10

at which time the prover returns an “invalid” response with a counterexample. The coun-
terexample for this particular theorem will be of the form

b[1][1] = A ∧ b[2][1] = A ∧ b[3][1] = B

thereby providing a minimal ballot box that guarantees election outcome [WL]. Note that
to check minimality we can attempt to prove the theorem (W∧L)⇒ 3 ≤ |B|, though such
a theorem is quite difficult for automated solvers to prove give the implicit quantification
over ballot boxes and is, in general, can only be proven with an interactive theorem prover.

5.2 Open Source Implementation
The source code is open source, under the terms of the MIT open source license, and is
available via our Trac server.7. The source code is managed using a subversion server
hosted on our website8

6 Results and Conclusions
We have used our methodology to test Vótáil, achieving full line coverage with only seven
candidates in a three seat election, and discovered two errors in its implementation, namely
a null pointer exception and possible non-termination of a loop. These were not caught
during the original verification of Vótáil, due to under-specification i.e., a missing loop
invariant.

Acknowledgments

We generated our test data on a server farm hosted by University College Dublin, Ireland.
The authors would also like to thank Josu Martinez and Daniel M. Zimmerman for their

comments.

References
[1] S. Bowler and B. Grofman. Elections in Australia, Ireland, and Malta under the

Single Transferable Vote: Reflections on an embedded institution. Univ of Michigan
Pr, 2000.

[2] L. Coyle, P. Cunnigham, and D. Doyle. Secrecy, accuracy and testing of the chosen
electronic voting system: Reliability and accuracy of data inputs and outputs, Decem-
ber 2004.

[3] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying properties of elec-
tronic voting protocols. In Proceedings of IAVoSS Workshop On Trustworthy Elec-
tions (WOTE), 2006.

[4] Department of Environment and Local Government, Commission on Electronic Vot-
ing. Final Report of Commission on Electronic Voting, July 2006.

[5] D.M. Farrell and I. McAllister. The Australian electoral system: origins, variations,
and consequences. New South Wales University Press, Ltd., 2006.

[6] M. Gallagher. Comparing proportional representation electoral systems: Quo-
tas, thresholds, paradoxes and majorities. British Journal of Political Science,
22(04):469–496, 1992.

7https://trac.ucd.ie
8https://trac.ucd.ie/repos/software/evoting

11

https://trac.ucd.ie
https://trac.ucd.ie/repos/software/evoting

[7] J. Gilmour. Detailed description of the STV count in accordance with the rules in
the Scottish local government elections order 2007. Representation, 43(3):217–229,
2007.

[8] D. Jackson. Software Abstractions: logic, language and analysis. The MIT Press,
2006.

[9] J.R. Kiniry, D. Cochran, and P.E. Tierney. Verification-centric realization of electronic
vote counting. In Proceedings of the USENIX/Accurate Electronic Voting Technology
on USENIX/Accurate Electronic Voting Technology Workshop, pages 6–6. USENIX
Association Berkeley, CA, USA, 2007.

[10] Olavur Kjölbro. Verifying the Danish Voting System. Master’s thesis, IT University
of Copenhagen, May 2011.

[11] K. Rustan M. Leino and Rosemary Monahan. Reasoning about comprehensions with
first-order SMT solvers. In Proceedings of the 24th Annual ACM Symposium on
Applied Computing (SAC’09), 2009.

[12] M. McGaley and J.P. Gibson. Electronic voting: A safety critical system. Final Year
Project Report, NUI Maynooth Department of Computer Science, 2003.

[13] Mairead Meagher. Towards the development of an electronic count system using
formal methods, 2001. MPhil thesis, University of Southampton.

[14] R. Sinnott. Irish voters decide: Voting behaviour in elections and referendums since
1918. Manchester Univ Pr, 1995.

[15] Vanessa Teague, Kim Ramchen, and Lee Naish. Coercion-resistant tallying for STV
voting. In Proceedings of the USENIX/Accurate Electronic Voting Technology Work-
shop, 2008.

12

A Appendix: Voting Schemes
A voting scheme is an algorithm for counting ballots. A preference voting scheme requires
the voter to rank two or more candidates (C) in order of preference from first to last. A
plurality voting scheme requires the voter to pick one candidate, and thus is equivalent to
the preference scheme when the ranking list has unitary size.

The election result (W,L) consists of (1) the identification of the winner or winners of
the election and (2) the identification of those candidates who achieved a certain threshold
(denoted τ) of votes, e.g., 5 percent, needed either to qualify for public funding in future
elections or to recoup a deposit paid.9 Note that winners and losers are disjoint.

We denote a ballot box B as a set of ballots b. Mathematically, a voting scheme E is a
function that takes a ballot box (a set of ballots) as its input, and produces an election result
as its output. More formally, E : B→ (W,L) where W ⊆ C, L ⊂ C, and W ∩ L = ∅.

A.0.1 Single Winner Plurality Voting

Plurality voting is one of the simplest possible voting schemes. The candidate with the
most votes is the winner. When there is only one remaining seat and just two continuing
candidates, then PR-STV reduces to single-winner Plurality.

A.0.2 Instant Runoff Voting (IRV)

IRV allows the voter to rank one or more candidates in order of relative preference, from
first to last.

IRV usually has a single winner, but the candidate with the most votes must also have a
majority of all votes, otherwise the candidate with least votes is excluded and each ballot for
that candidate is transferred to the next candidate in order of preference. This evaluation-
and-transfer continues until one of the candidates achieves an overall majority.

When there is just one remaining seat, or a special election to fill a vacancy in one seat,
then PR-STV reduces to IRV.

Order of Elimination The candidate with the least number of votes credited to him or
her in the curent round is selected for elimination. If there is an equality of votes, then
previous rounds are considered. If two or more candidates have equal lowest votes in all
rounds, then random selection is used.

Variants of PR-STV To highlight the complexities of election schemes, consider the
following variants of PR-STV. As schemes vary, so must testing/validation strategies. For
example, Australia, Ireland, Malta, Scotland, and Massachusetts use different variants of
PR-STV for their elections [1].

• Australia - Australia uses IRV to elect its House of Representatives and an open list
system for its Senate, where voters can choose either to vote for individual candidates
using PR-STV or to vote “above-the-line” for a party. If voters choose to use PR-
STV then all available preferences must be used [5].

• Ireland - Ireland uses PR-STV for local, national and European elections. Transfers
are rounded to the nearest whole ballot, so the order in which ballots are transferred
makes a difference to the result [12]. Not all preferences need to be used, so voters
may choose to use only one preference, as in Plurality voting, if desired.

9This threshold facet of our election model is not universal, but is a critical component in many electoral
systems.

13

• Malta - Malta uses PR-STV for local, national and European elections. For national
elections Malta also adds additional members so that the party with the most first
preference votes is guaranteed a majority of seats.

• Scotland, UK - Scotland uses PR-STV for local elections. Rather than randomly
select which ballots to include in the surplus, fractions of each ballot are transferred,
that gives a more accurate result but takes much longer to count if counted by hand
[7].

• Massachusetts, USA - Cambridge in Massachusetts uses PR-STV for city elections.
Candidates with less than fifty votes are eliminated in the first round and surplus
ballots are chosen randomly.

The fact that a single complex voting scheme like PR-STV has this many variants in
use highlights the challenges in reasoning about and validating a given software implemen-
tation. This fact makes our work that much more valuable, as each algorithm only need
be analyzed once to derive a complete validation that may be used again and again over
arbitrary implementations of a ballot counting algorithm.

A.0.3 Irish PR-STV

To give context, we now discuss the mechanics of Irish PR-STV in more detail.

Preference Ballots The voter writes the number “1” beside his or her favorite candidate.
There can only be one first preference.

The voter then considers which candidate would be his or her next preference if his or
her favorite candidate is either excluded from the election or is elected with a surplus of
votes.

The second preference is marked with “2” or some equivalent notation. The can be
only one second preference; there cannot be a joint second preference. Likewise for third
and subsequent preferences. Not all preferences need to be used.

Multi-seat constituencies Each constituency is represented by either three, four or five
seats.

The Droop Quota The quota is calculated so that not all winners can reach the quota.
The droop quota is 1 + V

1+S , where V is the total number of valid votes cast and S is the
number of vacancies (or seats) to be filled [6]. The quota is chosen so that any candidate
reaching the quota is automatically elected, and so that the number of candidates that might
reach the quota less than the number of seats.

For example, in a five-seat constituency a candidate needs just over one-sixth of the
total vote to be assured of election.

Surplus The surplus for each candidate, is the number of ballots in excess of the quota (if
any). The surplus ballots are then available for redistribution to other continuing candidates.

The selection of which ballots belong to the surplus is a complex issue, depending on
the round of counting. In the first round of counting, any surplus is divided into sub-piles for
each second preference, so that the distribution of the ballots in the surplus is proportional
to the second-preferences. In later rounds the surplus is taken from the last parcel of ballots
received from other candidates. This surplus is then sorted into sub-piles according to the
next available preference.

For example, if the quota is 9,000 votes and candidate A receives 10,000 first prefer-
ence votes. The surplus is 1,000 votes. Suppose 5,000 ballots had candidate B as next
preference, 3,000 had candidate C and 2,000 had candidate D. Then the surplus consists of

14

500 ballots taken from the 5000 for candidate B, 300 from the 3000 for candidate C and
200 from the 2000 for candidate D. Ideally each subset would also be sorted according to
third and subsequent preference, but this does not happen under the current procedure for
counting by hand, nor was it mandated in the previous guidelines for electronic voting in
Ireland.

Exclusion of weakest candidates When there are more candidates than available seats,
and all surplus votes have been distributed, the continuing candidate with least votes is
excluded. If two or more candidates have equal lowest votes (at all stages of the count)
then one is chosen randomly for exclusion.

All ballots from the pile of the excluded candidate are then transferred to the next
preference for a continuing candidate, or to the pile of non-transferable votes.

This continues until another candidate is elected with a surplus or until the number of
continuing candidates equals the number of remaining seats.

Filling of Last Seat and Bye-elections When there is only one seat remaining to be
filled, i.e., the number of candidates having so far reached the quota is one less than the
number of seats, or in a bye-election for a single vacancy, then the algorithm becomes the
same as Instant Runoff Voting; no more surplus distributions are possible, and candidates
with least votes are excluded until only two remain.

Last Two Continuing Candidates When there are two continuing candidates and one
remaining seat, then the algorithm becomes the same as single-seat first-past-the-post plu-
rality; the candidate with more votes than the other is deemed elected to the remaining seat,
without needing to reach the quota. If there is a tie then one candidate is chosen randomly.

Axiomatization As a ballot is a vector, a Ballot Box is encoded as a matrix, where each
column represents a single ballot. In such a representation, the top row of the matrix
identifies the first preference candidate for each ballot. Each following row contains either
a dash (‘-’), meaning no preference, or the identifier of the next preference candidate. 10

We first need definitions that stipulate the well-formedness of ballots.

∀b ∈ B . b[1] ∈ |C|

(
∑
B

b[1] = A) + (
∑
B

b[1] = B) = |B|

Definition wfb describes the well-formedness of ballots, while definition wfB describes the
well-formedness of the ballot box. If an electoral system permits empty preferences then
this latter definition is modified to accommodate such.

Formalizing Scenarios Next, we need to formalize the scenarios of this particular two
candidate plurality election as follows, where the label of each formula indicates the se-
mantics of event of the same name e.g., formula W describes the meaning of event W.

As we commonly quantify over all ballots in B, we write the quantifications over B
rather than the more wordy b ∈ B. Finally, we encode the set of ballots as the first index
in the map b i.e., the second ballot’s third preference is b[2][3]. Note that these summations
are generalized quantifiers:

∑
(b[1] = A) means “count the number of ballots whose first

preference is candidate A.”

10Such a representation in our implementation lends itself to nice datatype properties for composition, space
usage, novel counting algorithm representations, etc.

15

∑
B

(b[1] = A) >
∑
B

(b[1] = B) (W)

∑
B

(b[1] = A) =
∑
B

(b[1] = B) ∧ (T = A) (W)

τ ≤
∑
B

(b[1] = B) (L)

∑
B

(b[1] = B) < τ (S)

Note that the rightmost clause of formula W states that the coin-flip function picked
candidate one as the winner.

B Appendix: Detailed Examples
This appendix contains some more detailed examples for estimation the number of possible
outcomes and number of distinct permutations of ballot papers

B.0.4 Number of Distinct Outcomes

sumC
l=0C!/(l − C)! = C!sumC

l=01/l! < e ∗ C!
If B is the number of distinct non-empty ballots that can be cast, and V = |B| is the

number of votes cast, then the number of possible combinations of ballots is BV if the

order of ballots is important, and
BV

V !
if not.

A typical electoral configuration in Ireland is a five seat constituency with a typical
voting population of 100,000 and 24 candidates. Consequently, the number of possible

ballot boxes is (

24∑
l=1

(24)l)
100,000, an astronomical number of tests that would be impossible

to run.
To avoid this explosion, we partition the set of all possible ballot boxes into equivalence

classes with respect to the counting algorithm chosen. We consider the equivalence class
of election results for all three counting schemes.

Each election outcome is described by an election scenario that is a vector of candidate
outcome events. Both of these terms are defined in the following.

The key idea is that election scenarios represent an equivalence class of election out-
comes, thereby letting us collapse the testing state space due to symmetries in candidates.
We will return to this point in detail below in the early examples.

Three Candidates There are 15 legal ways to vote for three candidates called Alice, Bob,
and Charlie:

16

Ballot Alice Bob Charlie Encoding
1 1st - - A − −
2 - 1st - B − −
3 - - 1st C − −
4 1st 2nd - A B −
5 1st - 2nd A C −
6 2nd 1st - B A −
7 - 1st 2nd B C −
8 2nd - 1st C A −
9 - 2nd 1st C B −
10 1st 2nd 3rd A B C

11 1st 3rd 2nd A C B

12 2nd 1st 3rd B A C

13 3rd 1st 2nd B C A

14 2nd 3rd 1st C A B

15 3rd 2nd 1st C B A

There are 3 ballots of length 1, 6 ballots of length 2 and 6 ballots of length 3, that totals
(3)1 + (3)2 + (3)3 = 15. Again, note the symmetry of these ballots, as there are only three
different kinds of ballots in these fifteen ballots.

More than Three Candidates Each additional candidate number n means one extra bal-
lot of length 1, plus another C ballots in which the extra candidate is the last preference,
plus every other way in which the candidate could be inserted into the existing set of ballots,
in one of n positions along that ballot.

For example, when there are four candidates, the number of single preference ballots
increases to 4, the number of length 2 ballots is 4× (4− 1), the number of length 3 ballots
is 4× (4− 1)× (4− 2) and the number of full length ballots is 4!, for a total of 64 ballots,
of which there are only three equivalence classes.

C Appendix: Alloy Model

 enum Event {Surp lusWinner ,
 WinnerNonTrans fe r ab l e ,
 Winner ,
 AboveQuotaWinner ,
 QuotaWinne rNonTrans fe rab le ,
 QuotaWinner ,
 CompromiseWinner ,
 TiedWinner ,
 TiedLoser ,

 Loser ,
 E a r l y L o s e r ,
 E a r l y L o s e r N o n T r a n s f e r a b l e ,
 TiedSoreLose r ,
 SoreLoser ,
 E a r l y S o r e L o s e r ,
 E a r l y S o r e L o s e r N o n T r a n s f e r a b l e }

 enum Method { P l u r a l i t y , STV}

17

 −− An i n d i v i d u a l p e r s o n s t a n d i n g f o r e l e c t i o n
 s i g C a n d i d a t e {
 v o t e s : s e t B a l l o t ,
 −− F i r s t p r e f e r e n c e b a l l o t s r e c e i v e d
 t r a n s f e r s : s e t B a l l o t ,
 −− Second and s u b s e q u e n t p r e f e r e n c e s r e c e i v e d
 s u r p l u s : s e t B a l l o t ,
 −− B a l l o t s t r a n f e r r e d t o a n o t h e r c a n d i d a t e
 was ted : s e t B a l l o t ,
 −− B a l l o t s non− t r a n s f e r a b l e
 outcome : Event
 } {
 0 < # was ted i f f (
 outcome = W i n n e r N o n T r a n s f e r a b l e o r
 outcome = Quo taWi nne rNon Tran s f e r ab l e o r
 outcome = E a r l y L o s e r N o n T r a n s f e r a b l e o r
 outcome = E a r l y S o r e L o s e r N o n T r a n s f e r a b l e)

 no b : B a l l o t | b i n v o t e s & t r a n s f e r s

 a l l b : B a l l o t | b i n v o t e s + t r a n s f e r s i m p l i e s
 t h i s i n b . a s s i g n e e s

 s u r p l u s i n v o t e s + t r a n s f e r s and
 E l e c t i o n . method = P l u r a l i t y
 i m p l i e s # s u r p l u s = 0
 and # t r a n s f e r s = 0

 0 < # t r a n s f e r s i m p l i e s
 E l e c t i o n . method = STV

 −− L o s e r s e x c l u d e d b u t above t h r e s h o l d
 (outcome = E a r l y L o s e r o r
 outcome = E a r l y L o s e r N o n T r a n s f e r a b l e) i f f
 (t h i s i n S c e n a r i o . e l i m i n a t e d and
 n o t (# v o t e s + # t r a n s f e r s < S c e n a r i o . t h r e s h o l d))

 outcome = T i e d L o s e r i m p l i e s
 S c e n a r i o . t h r e s h o l d <= # v o t e s + # t r a n s f e r s
 outcome = Lose r i m p l i e s
 S c e n a r i o . t h r e s h o l d <= # v o t e s + # t r a n s f e r s
 outcome = E a r l y L o s e r i m p l i e s
 S c e n a r i o . t h r e s h o l d <= # v o t e s + # t r a n s f e r s
 outcome = E a r l y L o s e r N o n T r a n s f e r a b l e i m p l i e s
 S c e n a r i o . t h r e s h o l d <= # v o t e s + # t r a n s f e r s

 E l e c t i o n . method = P l u r a l i t y i m p l i e s
 (outcome = Lose r o r
 outcome = S o r e L o s e r o r
 outcome = Winner o r
 outcome = TiedWinner o r
 outcome = T i e d L o s e r o r
 outcome = T i e d S o r e L o s e r)

18

 / / PR−STV Winner has a t l e a s t a q u o t a o f f i r s t p r e f e r e n c e v o t e s
 (E l e c t i o n . method = STV and outcome = Winner) i m p l i e s
 S c e n a r i o . q u o t a = # v o t e s
 (outcome = Surp lu sWinne r o r outcome = W i n n e r N o n T r a n s f e r a b l e)
 i m p l i e s S c e n a r i o . q u o t a < # v o t e s

 / / Quota Winner has a l e a s t a q u o t a o f v o t e s a f t e r t r a n s f e r s
 outcome = QuotaWinner i m p l i e s
 S c e n a r i o . q u o t a = # v o t e s + # t r a n s f e r s
 (outcome = AboveQuotaWinner o r
 outcome = Quo taWi nne r Non Tran s f e r ab l e)
 i m p l i e s S c e n a r i o . q u o t a < # v o t e s + # t r a n s f e r s

 / / Quota Winner does n o t have a q u o t a o f f i r s t p r e f e r e n c e v o t e s
 (outcome = QuotaWinner o r
 outcome = AboveQuotaWinner o r
 outcome = Quo taWi nne rNon Tran s f e r ab l e) i m p l i e s
 n o t S c e n a r i o . q u o t a <= # v o t e s

 / / Compromise w i n n e r s do n o t have a q u o t a o f v o t e s
 outcome = CompromiseWinner i m p l i e s
 n o t (S c e n a r i o . q u o t a <= # v o t e s + # t r a n s f e r s)

 / / STV Tied Winners have l e s s t h a n a q u o t a o f v o t e s
 (E l e c t i o n . method = STV and outcome = TiedWinner) i m p l i e s
 n o t (S c e n a r i o . q u o t a <= # v o t e s + # t r a n s f e r s)

 / / Sore L o s e r s have l e s s v o t e s t h a n t h e t h r e s h o l d
 (outcome = S o r e L o s e r o r
 outcome = E a r l y S o r e L o s e r N o n T r a n s f e r a b l e o r
 outcome = E a r l y S o r e L o s e r o r outcome =
 E a r l y S o r e L o s e r N o n T r a n s f e r a b l e)
 i m p l i e s # v o t e s + # t r a n s f e r s < S c e n a r i o . t h r e s h o l d

 / / T ied Sore L o s e r s have l e s s v o t e s t h a n t h e t h r e s h o l d
 outcome = T i e d S o r e L o s e r i m p l i e s
 # v o t e s + # t r a n s f e r s < S c e n a r i o . t h r e s h o l d

 / / S i z e o f s u r p l u s f o r each STV Winner and Quota Winner
 (outcome = Surp lu sWinne r o r outcome = W i n n e r N o n T r a n s f e r a b l e)
 i m p l i e s ((# s u r p l u s = # v o t e s − S c e n a r i o . q u o t a) and # t r a n s f e r s = 0)
 (outcome = AboveQuotaWinner o r outcome = Qu o taW inne rNo nTra ns f e r ab l e)
 i m p l i e s (# s u r p l u s = # v o t e s + # t r a n s f e r s − S c e n a r i o . q u o t a)
 (outcome = Winner and E l e c t i o n . method = STV) i m p l i e s
 (S c e n a r i o . q u o t a + # s u r p l u s = # v o t e s) and # t r a n s f e r s = 0
 (outcome = QuotaWinner o r outcome = AboveQuotaWinner o r
 outcome = Quo taWi nne r Non Tran s f e r ab l e) i m p l i e s s u r p l u s i n t r a n s f e r s
 (outcome = QuotaWinner o r outcome = AboveQuotaWinner o r
 outcome = Quo taWi nne r Non Tran s f e r ab l e) i m p l i e s
 S c e n a r i o . q u o t a + # s u r p l u s = # v o t e s + # t r a n s f e r s

 / / E x i s t a n c e o f s u r p l u s b a l l o t s
 0 < # s u r p l u s i m p l i e s (outcome = Surp lu sWinne r o r

19

 outcome = AboveQuotaWinner o r
 outcome = W i n n e r N o n T r a n s f e r a b l e o r
 outcome = Quo taWi nne rNon Tran s f e r ab l e)
 }

 −− An a c c u r a t e r e c o r d s o f t h e i n t e n t i o n s o f t h e v o t e r
 s i g B a l l o t {
 a s s i g n e e s : s e t Cand ida t e , −− b e n f i c i a r i e s o f t h i s b a l l o t
 p r e f e r e n c e s : seq C a n d i d a t e −− Ranking of c a n d i d a t e s
 } {
 a s s i g n e e s i n p r e f e r e n c e s . e lems
 n o t p r e f e r e n c e s . hasDups
 p r e f e r e n c e s . f i r s t i n a s s i g n e e s
 E l e c t i o n . method = P l u r a l i t y i m p l i e s # p r e f e r e n c e s <= 1
 0 <= # p r e f e r e n c e s
 / / F i r s t p r e f e r e n c e
 a l l c : C a n d i d a t e | p r e f e r e n c e s . f i r s t = c i f f t h i s i n c . v o t e s
 / / Second and s u b s e q u e n t p r e f e r e n c e s
 a l l d i s j donor , r e c e i v e r : C a n d i d a t e |
 (donor + r e c e i v e r i n a s s i g n e e s and
 t h i s i n r e c e i v e r . t r a n s f e r s and t h i s i n donor . s u r p l u s) i m p l i e s
 (p r e f e r e n c e s . idxOf [donor] < p r e f e r e n c e s . idxOf [r e c e i v e r] and
 r e c e i v e r i n p r e f e r e n c e s . r e s t . e lems)
 / / A l l b a l l o t t r a n s f e r s a r e a s s o c i a t e d wi th t h e l a s t c a n d i d a t e
 a l l d i s j c , d : C a n d i d a t e | t h i s i n c . t r a n s f e r s i m p l i e s
 c i n a s s i g n e e s and
 (d n o t i n a s s i g n e e s o r
 p r e f e r e n c e s . idxOf [d] < p r e f e r e n c e s . idxOf [c])
 / / T r a n s f e r s t o n e x t c o n t i n u i n g c a n d i d a t e
 a l l d i s j sk ipped , r e c e i v i n g : C a n d i d a t e |
 p r e f e r e n c e s . idxOf [s k i p p e d] < p r e f e r e n c e s . idxOf [r e c e i v i n g] and
 r e c e i v i n g i n a s s i g n e e s and (n o t s k i p p e d i n a s s i g n e e s) i m p l i e s
 (s k i p p e d i n S c e n a r i o . e l i m i n a t e d o r
 s k i p p e d . outcome = Surp lu sWinne r o r
 s k i p p e d . outcome = AboveQuotaWinner o r
 s k i p p e d . outcome = W i n n e r N o n T r a n s f e r a b l e o r
 s k i p p e d . outcome = Q uo ta Winn e rNo nTr ans f e r ab l e o r
 s k i p p e d . outcome = Winner o r
 s k i p p e d . outcome = QuotaWinner)
 }

 −− An e l e c t i o n r e s u l t
 one s i g S c e n a r i o {
 l o s e r s : s e t Cand ida t e ,
 w i n n e r s : s e t Cand ida t e ,
 e l i m i n a t e d : s e t Cand ida t e , −− E a r l y and Sore L o s e r s unde r STV r u l e s
 t h r e s h o l d : I n t , −− Minimum number o f v o t e s f o r a Lose r o r E a r l y Lose r
 q u o t a : I n t , −− Minimum number o f v o t e s f o r a STV Winner o r Quota Winner
 f u l l Q u o t a : I n t −− Quota i f a l l c o n s t i t u e n c y s e a t s were v a c a n t
 } {
 a l l c : C a n d i d a t e | c i n w i n n e r s + l o s e r s
 # w i n n e r s = E l e c t i o n . s e a t s
 no c : C a n d i d a t e | c i n l o s e r s & w i n n e r s
 0 < # l o s e r s

20

 a l l w: C a n d i d a t e | a l l l : C a n d i d a t e | l i n l o s e r s and
 w i n w i n n e r s i m p l i e s
 (# l . v o t e s + # l . t r a n s f e r s <= #w. v o t e s + #w. t r a n s f e r s)
 E l e c t i o n . method = STV i m p l i e s t h r e s h o l d = 1 + f u l l Q u o t a . d i v [4]
 e l i m i n a t e d i n l o s e r s
 / / A l l PR−STV l o s e r s have l e s s v o t e s t h a n t h e q u o t a
 a l l c : C a n d i d a t e | (c i n l o s e r s and E l e c t i o n . method = STV) i m p l i e s
 # c . v o t e s + # c . t r a n s f e r s < q u o t a
 / / Winners have more v o t e s t h a n a l l non− t i e d l o s e r s
 a l l d i s j c , d : C a n d i d a t e | c i n w i n n e r s and
 (d . outcome = S o r e L o s e r o r d . outcome = E a r l y L o s e r o r
 d . outcome = Lose r o r
 d . outcome = E a r l y S o r e L o s e r) i m p l i e s
 (# d . v o t e s + #d . t r a n s f e r s) < (# c . v o t e s + # c . t r a n s f e r s)
 / / L o s e r s have l e s s v o t e s t h a n a l l non− t i e d w i n n e r s
 a l l d i s j c , d : C a n d i d a t e |
 (c . outcome = CompromiseWinner o r
 c . outcome = QuotaWinner o r c . outcome = Winner
 or c . outcome = Surp lu sWinne r o r
 c . outcome = AboveQuotaWinner o r
 c . outcome = W i n n e r N o n T r a n s f e r a b l e o r
 c . outcome = Q uo ta Winn e rN onTr ans f e r a b l e) and
 d i n l o s e r s i m p l i e s
 #d . v o t e s + #d . t r a n s f e r s < # c . v o t e s + # c . t r a n s f e r s

 / / Lowest c a n d i d a t e i s e l i m i n a t e d f i r s t
 a l l d i s j c , d : C a n d i d a t e | c i n e l i m i n a t e d and
 d n o t i n e l i m i n a t e d i m p l i e s
 # c . v o t e s + # c . t r a n s f e r s <= #d . v o t e s + #d . t r a n s f e r s

 / / A non−s o r e p l u r a l i t y l o s e r must have r e c e i v e d
 / / a t l e a s t f i v e p e r c e n t o f t h e t o t a l v o t e
 E l e c t i o n . method = P l u r a l i t y i m p l i e s
 t h r e s h o l d = 1 + B a l l o t B o x . s i z e . d i v [2 0]

 / / Winning outcomes
 a l l c : C a n d i d a t e | c i n w i n n e r s i f f
 (c . outcome = Winner o r c . outcome = QuotaWinner o r
 c . outcome = CompromiseWinner o r
 c . outcome = TiedWinner o r c . outcome = Surp lu sWinne r o r
 c . outcome = AboveQuotaWinner o r
 c . outcome = W i n n e r N o n T r a n s f e r a b l e o r
 c . outcome = Q uo ta Winn e rN onTr ans f e r ab l e)

 / / Los ing outcomes
 a l l c : C a n d i d a t e | c i n l o s e r s i f f
 (c . outcome = Lose r o r c . outcome = E a r l y L o s e r o r
 c . outcome = S o r e L o s e r o r
 c . outcome = T i e d L o s e r o r
 c . outcome = E a r l y S o r e L o s e r o r
 c . outcome = T i e d S o r e L o s e r o r
 c . outcome = E a r l y S o r e L o s e r N o n T r a n s f e r a b l e o r
 c . outcome = E a r l y L o s e r N o n T r a n s f e r a b l e)

21

 / / STV e l e c t i o n q u o t a s
 E l e c t i o n . method = STV i m p l i e s
 q u o t a = 1 + B a l l o t B o x . s i z e . d i v [E l e c t i o n . s e a t s +1] and
 f u l l Q u o t a = 1 + B a l l o t B o x . s i z e . d i v [E l e c t i o n . c o n s t i t u e n c y S e a t s + 1]
 E l e c t i o n . method = P l u r a l i t y i m p l i e s q u o t a = 1 and f u l l Q u o t a = 1

 / / A l l t i e s i n v o l v e e q u a l i t y between a t l e a s t one winner and a t l e a s t one l o s e r
 a l l w: C a n d i d a t e | some l : C a n d i d a t e | w. outcome = TiedWinner and
 (l . outcome = T i e d L o s e r o r l . outcome = T i e d S o r e L o s e r) i m p l i e s
 (# l . v o t e s + # l . t r a n s f e r s = #w. v o t e s + #w. t r a n s f e r s)
 a l l s : C a n d i d a t e | some w: C a n d i d a t e | w. outcome = TiedWinner and
 (s . outcome = S o r e L o s e r o r s . outcome = T i e d L o s e r) i m p l i e s
 (# s . v o t e s = #w. v o t e s) o r
 (# s . v o t e s + # s . t r a n s f e r s = #w. v o t e s + #w. t r a n s f e r s)

 / / When t h e r e i s a t i e d s o r e l o s e r t h e n t h e r e a r e no non−s o r e l o s e r s
 no d i s j a , b : C a n d i d a t e | a . outcome = T i e d S o r e L o s e r and
 (b . outcome = T i e d L o s e r o r
 b . outcome= Lose r o r b . outcome= E a r l y L o s e r o r
 b . outcome = E a r l y L o s e r N o n T r a n s f e r a b l e)
 / / For each Tied Winner t h e r e i s a Tied Lose r
 a l l w: C a n d i d a t e | some l : C a n d i d a t e | w. outcome = TiedWinner i m p l i e s
 (l . outcome = T i e d L o s e r o r l . outcome = T i e d S o r e L o s e r)
 / / T ied Winners and Tied L o s e r s have an e q u a l number o f v o t e s
 a l l d i s j l ,w: C a n d i d a t e |
 ((l . outcome = T i e d L o s e r o r l . outcome = T i e d S o r e L o s e r) and
 w. outcome = TiedWinner) i m p l i e s
 #w. v o t e s + #w. t r a n s f e r s = # l . v o t e s + # l . t r a n s f e r s
 / / Compromise winner must have more v o t e s t h a n any t i e d w i n n e r s
 a l l d i s j c , t : C a n d i d a t e | (c . outcome = CompromiseWinner and
 t . outcome = TiedWinner) i m p l i e s
 # t . v o t e s + # t . t r a n s f e r s < # c . v o t e s + # c . t r a n s f e r s
 / / Winners have more v o t e s t h a n non− t i e d l o s e r s
 a l l w, l : C a n d i d a t e | w. outcome = Winner and
 (l . outcome = Lose r o r l . outcome = E a r l y L o s e r o r l . outcome = S o r e L o s e r o r
 l . outcome = E a r l y L o s e r N o n T r a n s f e r a b l e o r l . outcome = E a r l y S o r e L o s e r o r
 l . outcome = E a r l y S o r e L o s e r N o n T r a n s f e r a b l e)
 i m p l i e s
 ((# l . v o t e s < #w. v o t e s) o r (# l . v o t e s + # l . t r a n s f e r s < #w. v o t e s + #w. t r a n s f e r s))
 / / For each Tied Lose r t h e r e i s a t l e a s t one Tied Winner
 a l l c : C a n d i d a t e | some w: C a n d i d a t e |
 (c . outcome = T i e d L o s e r o r c . outcome = T i e d S o r e L o s e r)
 i m p l i e s w. outcome = TiedWinner
 }

 −− The B a l l o t Box
 one s i g B a l l o t B o x {
 s p o i l t B a l l o t s : s e t B a l l o t , −− empty b a l l o t s e x c l u d e d from c o u n t
 n o n T r a n s f e r a b l e s : s e t B a l l o t , −− b a l l o t s f o r which p r e f e r e n c e s a r e e x h a u s t e d
 s i z e : I n t −− number o f u n s p o l i t b a l l o t s
 }
 {
 no b : B a l l o t | b i n s p o i l t B a l l o t s and b i n n o n T r a n s f e r a b l e s
 s i z e = # B a l l o t − # s p o i l t B a l l o t s

22

 a l l b : B a l l o t | b i n s p o i l t B a l l o t s i f f #b . p r e f e r e n c e s = 0
 / / A l l non− t r a n s f e r a b l e b a l l o t s be lo ng t o an non− t r a n s f e r a b l e s u r p l u s
 a l l b : B a l l o t | some c : C a n d i d a t e | b i n n o n T r a n s f e r a b l e s i m p l i e s
 b i n c . was ted
 }

 −− An E l e c t o r a l C o n s t i t u e n c y
 one s i g E l e c t i o n {
 s e a t s : I n t , −− number o f s e a t s t o be f i l l e d i n t h i s e l e c t i o n
 c o n s t i t u e n c y S e a t s : I n t , −− f u l l number o f s e a t s i n t h i s c o n s t i t u e n c y
 method : Method −− t y p e o f e l e c t i o n ; PR−STV or p l u r a l i t y
 }
 {
 0 < s e a t s and s e a t s <= c o n s t i t u e n c y S e a t s
 s e a t s < # C a n d i d a t e
 }

 −− B a s i c Lemmas
 a s s e r t h o n e s t C o u n t {
 a l l c : C a n d i d a t e | a l l b : B a l l o t | b i n c . v o t e s + c . t r a n s f e r s
 i m p l i e s c i n b . a s s i g n e e s
 }
 check h o n e s t C o u n t f o r 15 b u t 6 i n t

 a s s e r t a t L e a s t O n e L o s e r {
 0 < # S c e n a r i o . l o s e r s
 }
 check a t L e a s t O n e L o s e r f o r 15 b u t 6 i n t

 a s s e r t a tLeas tOneWinne r {
 0 < # S c e n a r i o . w i n n e r s
 }
 check a tLeas tOneWinner f o r 14 b u t 6 i n t

 a s s e r t p l u r a l i t y {
 a l l c : C a n d i d a t e | a l l b : B a l l o t | b i n c . v o t e s and
 E l e c t i o n . method = P l u r a l i t y i m p l i e s c i n b . p r e f e r e n c e s . f i r s t
 }
 check p l u r a l i t y f o r 18 b u t 6 i n t

 a s s e r t p l u r a l i t y N o T r a n s f e r s {
 a l l c : C a n d i d a t e | E l e c t i o n . method = P l u r a l i t y i m p l i e s 0 = # c . t r a n s f e r s
 }
 check p l u r a l i t y N o T r a n s f e r s f o r 13 b u t 7 i n t

 a s s e r t w e l l F o r m e d T i e B r e a k e r {
 some w, l : C a n d i d a t e | (w i n S c e n a r i o . w i n n e r s and
 l i n S c e n a r i o . l o s e r s and
 #w. v o t e s = # l . v o t e s and #w. t r a n s f e r s = # l . t r a n s f e r s) i m p l i e s
 w. outcome = TiedWinner and
 (l . outcome = T i e d L o s e r o r l . outcome = T i e d S o r e L o s e r)
 }
 check w e l l F o r m e d T i e B r e a k e r f o r 18 b u t 6 i n t

23

 a s s e r t v a l i d S u r p l u s {
 a l l c : C a n d i d a t e | 0 < # c . s u r p l u s i m p l i e s
 (c . outcome = W i n n e r N o n T r a n s f e r a b l e o r
 c . outcome = Q uo ta Winn e rN onTr ans f e r ab l e o r c . outcome = Surp lu sWinne r o r
 c . outcome = AboveQuotaWinner o r
 c i n S c e n a r i o . e l i m i n a t e d)
 }
 check v a l i d S u r p l u s f o r 16 b u t 6 i n t

 −− Advanced Lemmas
 −− Equal l o s e r s a r e t i e d o r e x c l u d e d e a r l y b e f o r e l a s t round
 a s s e r t e q u a l i t y o f T i e d W i n n e r s A n d L o s e r s {
 a l l d i s j w, l : C a n d i d a t e | w i n S c e n a r i o . w i n n e r s and
 l i n S c e n a r i o . l o s e r s and
 #w. v o t e s + #w. t r a n s f e r s = # l . v o t e s + # l . t r a n s f e r s i m p l i e s
 w. outcome = TiedWinner and
 (l . outcome = T i e d L o s e r o r
 l . outcome = T i e d S o r e L o s e r o r
 l . outcome = E a r l y L o s e r N o n T r a n s f e r a b l e o r
 l . outcome = E a r l y S o r e L o s e r N o n T r a n s f e r a b l e o r
 l . outcome = E a r l y L o s e r)
 }
 check e q u a l i t y o f T i e d W i n n e r s A n d L o s e r s f o r 16 b u t 7 i n t

 −− No l o s t v o t e s d u r i n g c o u n t i n g
 a s s e r t a c c o u n t i n g {
 a l l b : B a l l o t | some c : C a n d i d a t e | 0 < #b . p r e f e r e n c e s i m p l i e s
 b i n c . v o t e s and c i n b . a s s i g n e e s
 }
 check a c c o u n t i n g f o r 16 b u t 6 i n t

 −− Cannot have t i e b r e a k e r wi th bo th t i e d s o r e l o s e r and non−s o r e l o s e r
 a s s e r t t i e d W i n n e r L o s e r T i e d S o r e L o s e r {
 no d i s j c , w, l : C a n d i d a t e | c . outcome = T i e d S o r e L o s e r and
 w. outcome = TiedWinner and
 (l . outcome = Lose r o r l . outcome = T i e d L o s e r)
 }
 check t i e d W i n n e r L o s e r T i e d S o r e L o s e r f o r 6 i n t

 −− Compromise winner must have a t l e a s t one v o t e
 a s s e r t va l idCompromise {
 a l l c : C a n d i d a t e | c . outcome = CompromiseWinner i m p l i e s
 0 < # c . v o t e s + # c . t r a n s f e r s
 }
 check va l idCompromise f o r 6 i n t

 −− Quota winner needs t r a n s f e r s
 a s s e r t q u o t a W i n n e r N e e d s T r a n s f e r s {
 a l l c : C a n d i d a t e | c . outcome = QuotaWinner
 i m p l i e s 0 < # c . t r a n s f e r s
 }
 check q u o t a W i n n e r N e e d s T r a n s f e r s f o r 7 i n t

 −− Sore l o s e r s below t h r e s h o l d

24

 a s s e r t s o r e L o s e r B e l o w T h r e s h o l d {
 a l l c : C a n d i d a t e | c . outcome = S o r e L o s e r i m p l i e s n o t
 (S c e n a r i o . t h r e s h o l d <= # c . v o t e s + # c . t r a n s f e r s)
 }
 check s o r e L o s e r B e l o w T h r e s h o l d f o r 10 b u t 6 i n t

 −− P o s s i b l e outcomes when unde r t h e t h r e s h o l d
 a s s e r t unde rThresho ldOutcomes {
 a l l c : C a n d i d a t e |
 (# c . v o t e s + # c . t r a n s f e r s < S c e n a r i o . t h r e s h o l d) i m p l i e s
 (c . outcome = S o r e L o s e r o r c . outcome = T i e d S o r e L o s e r o r
 c . outcome = TiedWinner o r
 c . outcome = E a r l y S o r e L o s e r N o n T r a n s f e r a b l e o r
 c . outcome = E a r l y S o r e L o s e r o r
 c . outcome = CompromiseWinner o r
 (E l e c t i o n . method = P l u r a l i t y and c . outcome = Winner))
 }
 check unde rThresho ldOutcomes f o r 10 b u t 6 i n t

 −− Tied Winners have e q u a l i t y o f v o t e s and t r a n s f e r s
 a s s e r t t i e d W i n n e r E q u a l i t y {
 a l l a , b : C a n d i d a t e | (a . outcome = TiedWinner and
 b . outcome = TiedWinner) i m p l i e s
 # a . v o t e s + # a . t r a n s f e r s = #b . v o t e s + #b . t r a n s f e r s
 }
 check t i e d W i n n e r E q u a l i t y f o r 10 b u t 6 i n t

 −− Non−n e g a t i v e t h r e s h o l d and q u o t a
 a s s e r t nonNega t iveThresho ldAndQuota {
 0 <= S c e n a r i o . t h r e s h o l d and 0 <= S c e n a r i o . q u o t a
 }
 check nonNega t iveThresho ldAndQuota f o r 6 b u t 6 i n t

 −− STV t h r e s h o l d below q u o t a
 a s s e r t t h r e s h o l d B e l o w Q u o t a {
 E l e c t i o n . method = STV and 0 < # B a l l o t i m p l i e s
 S c e n a r i o . t h r e s h o l d <= S c e n a r i o . q u o t a
 }
 check t h r e s h o l d B e l o w Q u o t a f o r 13 b u t 7 i n t

 −− P l u r a l i t y s o r e l o s e r
 a s s e r t p l u r a l i t y S o r e L o s e r {
 a l l c : C a n d i d a t e | (c . outcome = S o r e L o s e r and
 E l e c t i o n . method = P l u r a l i t y) i m p l i e s
 # c . v o t e s < S c e n a r i o . t h r e s h o l d
 }
 check p l u r a l i t y S o r e L o s e r f o r 13 b u t 7 i n t

 −− P l u r a l i t y winner f o r a s i n g l e s e a t c o n s t i t u e n c y
 a s s e r t p l u r a l i t y W i n n e r {
 a l l d i s j a , b : C a n d i d a t e | (E l e c t i o n . method = P l u r a l i t y and
 E l e c t i o n . s e a t s = 1 and
 a . outcome = Winner) i m p l i e s #b . v o t e s <= # a . v o t e s
 }

25

 check p l u r a l i t y W i n n e r f o r 2 b u t 7 i n t

 −− Length o f PR−STV b a l l o t does n o t exceed number o f c a n d i d a t e s
 a s s e r t l e n g t h O f B a l l o t {
 a l l b : B a l l o t | E l e c t i o n . method = STV i m p l i e s
 #b . p r e f e r e n c e s <= # C a n d i d a t e
 }
 check l e n g t h O f B a l l o t f o r 7 i n t

 −− Quota f o r a f u l l e l e c t i o n i s l e s s t h a n f o r a by−e l e c t i o n
 a s s e r t f u l l Q u o t a {
 S c e n a r i o . f u l l Q u o t a <= S c e n a r i o . q u o t a
 }
 check f u l l Q u o t a f o r 7 i n t

 −− A l l t r a n s f e r s have a s o u r c e e i t h e r from a winner wi th s u r p l u s o r
 −− by e a r l y e l i m i n a t i o n o f a l o s e r
 a s s e r t t r a n s f e r s H a v e S o u r c e {
 a l l b : B a l l o t | some d i s j donor , r e c e i v e r : C a n d i d a t e |
 b i n r e c e i v e r . t r a n s f e r s
 i m p l i e s b i n donor . v o t e s and
 (donor i n S c e n a r i o . w i n n e r s o r
 donor i n S c e n a r i o . e l i m i n a t e d)
 }
 check t r a n s f e r s H a v e S o u r c e f o r 7 i n t

 −− No m i s s i n g c a n d i d a t e s
 a s s e r t n o M i s s i n g C a n d i d a t e s {
 # C a n d i d a t e = # S c e n a r i o . w i n n e r s + # S c e n a r i o . l o s e r s
 }
 check n o M i s s i n g C a n d i d a t e s f o r 7 i n t

 −− S p o i l t v o t e s a r e n o t a l l o c a t e d t o any c a n d i d a t e
 a s s e r t h a n d l e S p o i l t B a l l o t s {
 no c : C a n d i d a t e | some b : B a l l o t | b i n c . v o t e s and
 b i n B a l l o t B o x . s p o i l t B a l l o t s
 }
 check h a n d l e S p o i l t B a l l o t s f o r 7 i n t

26

	Introduction
	Voting Scheme
	Proportional Representation by Single Transferable Vote (PR-STV)

	Vótáil
	Related Work
	Outline of Paper

	Formalisation
	Mathematical Models
	Number of Distinct Ballots
	Examples and Encoding Ballots

	Election Outcomes
	Last Two Continuing Candidates
	Scenarios

	Filling of Last Seat
	Events
	Sub-Scenarios

	PR-STV

	Properties of the Model
	Procedure for Automated Test Generation
	Generation of Ballot Boxes
	An Election Configuration Example
	Formalization

	Open Source Implementation

	Results and Conclusions
	Appendix: Voting Schemes
	Single Winner Plurality Voting
	Instant Runoff Voting (IRV)
	Irish PR-STV

	Appendix: Detailed Examples
	Number of Distinct Outcomes

	Appendix: Alloy Model

