.-ﬂ
=

The IT University

of Copenhagen

Spreadsheet technology
Version 0.12 of 2012-01-31

Peter Sestoft

IT University Technical Report Series TR-2011-142
ISSN 1600-6100 December 2011

Copyright © 2011

Peter Sestoft

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is

included in any copy.

ISSN 1600-6100

ISBN 978-87-74949-237-0

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaardsvej 7

DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web W, it u. dk

Preface

Pre-release disclaimer This is a rough draft of a book manuscript, meant to ac-
company a pre-release 0.11.12.0 of the Corecalc/Funcalc software. Both the manuscript
and the software have some known deficiencies that will be fixed in future releases.

Yet we make a pre-release now to document recent implementation work and
the many insights gained since the 2006 technical report [106]. In particular, the
Funcalc user manual in appendix A should provide a true picture of the current
implementation.

But in general, expect inconsistencies and errors in this version of the manuscript.
You are more than welcome to point them out by mailing me at sestoft@itu.dk.

Actual preface Spreadsheet programs are used daily by millions of people for
tasks ranging from neatly organizing a list of addresses to complex economical sim-
ulations or analysis of biological data sets. Spreadsheet programs are easy to learn
and convenient to use because they have a clear visual data model (tabular) and a
simple efficient computation model (functional and side effect free).

Spreadsheet programs are usually not held in high regard by professional soft-
ware developers [19]. However, their implementation involves a large number of
non-trivial design considerations and time-space tradeoffs. Moreover, the basic
spreadsheet model can be extended, improved or otherwise experimented with in
many ways, both to test new technology and to provide new functionality in a con-
text that could make a difference to a large number of users.

Yet there does not seem to be a coherently designed, reasonably efficient open
source spreadsheet implementation that is a suitable platform for experiments. Ex-
isting open source spreadsheet implementations such as Gnumeric and OpenOffice
are rather complex, written in unmanaged languages such as C and C++, and the
documentation of their internals is sparse. Commercial spreadsheet implementa-
tions such as Microsoft Excel neither expose their internals through their source
code nor through adequate documentation of data representations and functions.

Goals of this book The purpose of this book is to enable others to make experi-
ments with innovative spreadsheet functionality and with new ways to implement
it. Therefore we have attempted to collect in one place a considerable body of knowl-
edge about spreadsheet implementation.

To our knowledge neither the challenges of efficient spreadsheet implementation
nor possible solutions to them are systematically presented in the existing scientific
literature. There are many patents on spreadsheet implementation, but they offer
a very fragmented picture, since patents traditionally do not describe the prior art
on which they build.

This report is a first attempt to provide a more coherent picture by gleaning
information from experience with existing spreadsheet implementations and with
our own implementation Corecalc, from the scientific literature, and from patents
and patent applications. For commercial software, this necessarily involves some
guesswork, but we have not resorted to any form of reverse engineering.

Contents The books comprises the following parts:

e A summary of the spreadsheet computation model and the most important
challenges for efficient recalculation, in chapter 1, including a survey of schol-
arly works, spreadsheet implementations and patents.

e A description of Corecalc, a core implementation of essential spreadsheet func-
tionality for making practical experiments, in chapter 2. A discussion of alter-
natives to some of the design decisions made in Corecalc, in chapter 3. A thor-
ough investigation a way to represent the support graph, a device for achieving
minimal recalculation, in chapter 4.

e A description of Funcalc, an extension of the interpretive Corecalc implemen-
tation with compiled sheet-defined functions. This permits users to define
their own functions without extraneous programming languages such as VBA,
Java or Python, and without any loss of efficiency compared to built-in func-
tions. Chapter 6 introduces and motivates the idea, and chapters 8 and chap-
ter 9 describe the implementation and possible design variations and exten-
sions.

e A list of possible extensions and future projects, in chapter 11.
e A user manual for the Funcalc implementation, in appendix A.

e A list of US patents and patent applications related to spreadsheet implemen-
tation, in appendix C.

The implementations of Corecalc and Funcalc are available in source form under a
liberal license, and are written in C#, using only managed code. They work with the
Microsoft .NET implementation on Windows and with the Mono implementation on
Linux.

Goals of the Corecalc implementation The purpose of the Corecalc implemen-
tation described in chapter 2 of this report is to provide a source code platform
for experiments with spreadsheet implementation. The Corecalc implementation is

written in C# and provides all essential spreadsheet functionality. The implemen-
tation is small and simple enough to allow experiments with design decisions and
extensions, yet complete and efficient enough to benchmark against real spread-
sheet programs such as Microsoft Excel, Gnumeric and OpenOffice Calc.

Goals of the Funcalc implementation The purpose of the Funcalc implementa-
tion described in chapters 6 through chapters 9 is to demonstrate that sheet-defined
functions can be both convenient and fast, and hence empower spreadsheet end-
users. The Funcalc implementation is an extension of Corecalc.

Availability and license The complete implementation, including documenta-
tion, will be available in binary and source form from the IT University of Copen-
hagen:

http://www.itu.dk/people/sestoft/corecalc/

The Corecalc implementation is copyrighted by the authors and distributed under
an MIT-style license:

Copyright (© 2006-2012 Peter Sestoft and others

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This means that you can use and modify the Corecalc and Funcalc software for
any purpose, including commerce, without a license fee, but the copyright notice
must remain in place, and you cannot blame us for any consequences of using or
abusing the software. In particular, we accept no responsibility if the commercial
exploitation of an idea presented in this report is construed to violate one or more
patents.

Also, all trademarks belong to their owners.

Acknowledgements This text began to take shape, and much new work on Fun-
calc was done, during a visit to Greg Morrisett’s group at Harvard University in
March-July 2009, in a splendid corner office across from the Museum of Natural
History. The chapters describing Corecalc are based on a previous technical report
[106] but have been revised to reflect the development of Funcalc.

The original impetus to look at spreadsheet technology came from Simon Peyton
Jones and Margaret Burnett during a visit to Microsoft Research, Cambridge UK,
in 2001, and from their 2003 paper with Alan Blackwell [92].

Thomas S. Iversen investigated the use of runtime code generation for speeding
up spreadsheet calculations in his 2006 MSc thesis project [60], jointly supervised
with Torben Mogensen (DIKU, University of Copenhagen). Parts of this work are
summarized in [106, chapter 5]. Thomas also restructured the core code base and
added functionality to read XMLSS files exported from Microsoft Excel.

Daniel S. Cortes and Morten W. Hansen investigated how to design and imple-
ment sheet-defined functions, thus allowing spreadsheet users to define their own
functions using well-known spreadsheet concepts. This work was done in their 2006
MSc thesis project [26].

Quan Vi Tran and Phong Ha investigated an alternative implementation of func-
tion sheets, using the infrastructure provided by Microsoft Excel. This work was
done in their 2006 MSc thesis project [51].

Morten Poulsen and Poul Serek implemented and experimented with the version
of the support graph construction in sections 5.1 through 5.4 [94]. Subsequently,
they built the first compiler implementation of sheet-defined functions, based on my
early versions of the design laid out in chapters 6 to 8.

Several groups of students have investigated distributed collaborative spread-
sheets based on the Corecalc platform, in particular Vincens Riber Mink and Daniel
Schiermer [78]. Nader Salas furthermore considered full traceability [103].

Other IT University students, including Jacob Atzen, Claus Skoubglling Jgrgensen

and Jens Lind, investigated other parts of the spreadsheet design space.

Source code naming conventions

Name Meaning Type Page
act void delegate Action(T)

ae adjusted expression Adjusted (Expr) 56
arr array value ArrayValue 41
c column index variable int

ca cell address, absolute CellAddr 44
ccar cell or cell area reference CellRef, CellArea 95
cell cell Cell 35
col column number, zero-based int

cols column count int

deltaCol column increment int

deltaRow row increment int

e expression in formula Expr 36
es expression array Expr[]

fca full cell address, absolute FullCellAddr

fv function value, closure FunctionValue 177
Ir lower right corner of area RARef 42
r row index variable int

raref relative/absolute reference RARef 42
row row number, zero-based int

rows row count int

sheet sheet Sheet 34
ul upper left corner of area RARef 42
v value Value 39
VS value array Valuel]

workbook workbook Workbook 33

Contents

1 What is a spreadsheet
1.1 History o o e
1.2 BasicconceptS
1.3 Cellreferenceformats
1.4 Formulas, functions and arrays
1.5 Other spreadsheetfeatures
1.6 Dependency, support,andcycles
1.7 Recalculation
1.8 Spreadsheets are dynamically typed
1.9 Error values must be propagated
1.10 Spreadsheets are functional programs
1.11 Relatedwork
1.12 Online resources and implementations
1.13 Spreadsheet implementation patents

I Corecalc and interpretation

2 Corecalc implementation
2.1 Definitions. e
2.2 Syntaxand parsing e
2.3 Workbooksandsheets
2.4 Sheets e
2.5 Cells, formulas and array formulas
2.6 Expressions e
27 Runtimevalues
2.8 Representation of cell references
2.9 Sheet-absolute and sheet-relative references
2.10 Celladdresses. oo v v i i e e
2.11 Simple recalculation
2.12 Cyclicreferences
2.13 Built-infunctions
2.14 Copyingformulas.

11
11
11
12
14
16
16
17
19
19
20
20
23
24

8 Contents Contents 9

2.15 Moving formulas 52 8 Functions and calls 167
2.16 Insertingnewrowsorcolumns 53 8.1 Calling built-ins from sheet-defined functions 167
2.17 Deletingrowsorcolumnsu..... 57 8.2 Calling a sheet-defined function 169
2.18 Prettyprinting formulas 59 8.3 Recursivecallsandtailcalls 172
8.4 Higher-order sheet-defined functions 177
3 Alternative designs 61 8.5 Speculation: Type analysis for functioncalls 178
3.1 Representation of references 61 8.6 Dynamicsheetindexing 179
3.2 Evaluation of array arguments 62 8.7 Calling external library functions 181
3.3 Minimal recalculation 62 8.8 Speculation: Functions with state 191
4 The support graph 69 9 Evaluation conditions 199
4.1 Compact representatjon of the support graph 69 9.1 Why evaluation conditions? 199
4.2 Supportingblocks of cells 70 9.2 The basic compilation process 200
4.3 Minimal recalculation using a support graph 78 9.3 The improved compilationmodel 0L 201
9.4 Evaluation conditions, 203
5 Non-contiguous support 87 9.5 Representing evaluation conditions 205
5.1 Arithmetic progressionsand FAPsets 87 9.6 Generating evaluation conditions 207
5.2 Support graph edge familiesand FAPsets 89 9.7 Reﬁning evaluation conditions 211
5.3 Creating and maintaining support graph edges _____________ 90 9.8 Example evaluation conditions 215
5.4 Reconstructing the support graph 93 . .
5.5 Other applications of a support graph 102 10 Partial evaluation . i 217
5.6 Related work o . . 103 10.1 Background on partial evaluation 219
5.7 Limitations and challenges oo oo e, 103 10.2 Partial evaluation of a sheet-defined function 219
10.3 Specializationexamples, 227
10.4 Perspectives and futureworko o Lo 232
II Funcalc and compilation 107 11 Extensions and projects 233
6 Sheet-defined functions 109 111 Pargllellzatlon G 233
6.1 Introduction. 109 11.2 Moving ""Pd copying .cells ot 285
6.2 Exambples of sheet-defined functions 111 11.3 Interpretive evaluation mechanism 235
P . .
6.3 What's wrong with VBA functions? 123 114 Graphlcaliuse? interface L 236
11.5 Otherprojectideas 236
6.4 Problemstatement 124 proj
6.5 Design basis: spreadsheet principles 128 A Funcalc user manual 239
7 Compiling sheet-defined functions 131 i ; gupcglc featu.res 240
. . . uilt-in functions L 245
7.1 Bas¥c approach to code geper?tlon """"""""""" 131 A.3 Inspecting generated bytecode 257
7.2 Taking value representation into account 132
7.3 The .Net bytecode corresponding to the C#code 135 B Source file organization 259
7.4 Generating .Net bytecode with a C# program 138
7.5 Translation scheme (with value wrapping) 141 C Patents and applications 263
7.6 Avoiding intra-formula value wrapping 145
7.7 Avoiding inter-formula wrapping 149 Bibliography 282
7.8 Compilation of comparisons and conditions 152
7.9 Avoiding duplicate generation ofcode 159 Index 291

7.10 Reduce the use oflocal variables 164

10 Contents

§0.0

Chapter 1

What is a spreadsheet

1.1 History

The first spreadsheet program was VisiCalc, developed by Dan Bricklin and Bob
Frankston in 1979 for the Apple II computer [13, 125]. A version for MS-DOS on
the IBM PC was released in 1981; the size of the executable was a modest 27 KB.

Many different spreadsheet programs followed, including SuperCalc, Lotus 1-2-
3, PlanPerfect, QuattroPro, and many more. By now the dominating spreadsheet
program is Microsoft Excel [76], whose executable weighs in at 9838 KB. Several
open source spreadsheet programs exist, including Gnumeric [47] and OpenOffice
Calc [88]. See also Wikipedia’s entry on spreadsheets [124].

1.2 Basic concepts

All spreadsheet programs have the same visual model: a two-dimensional grid of
cells. Columns are labelled with letters A, B, ..., Z, AA, ..., rows are labelled with
numbers 1, 2, ..., cells are addressed by row and column: A1, A2, ..., B1,B2, ...,
and rectangular cell areas by their corner coordinates, such as B2:C4. A cell can
contain a number, a text, or a formula. A formula can involve constants, arithmetic
operators such as (*), functions such as SUM(...) , and most importantly, references
to other cells such as C2 or to cell areas such as D2:D4 . Also, spreadsheet programs
perform automatic recalculation: whenever the contents of a cell has been edited,
all cells that directly or transitively dependent on that cell are recalculated.

Figure 1.1 shows an example spreadsheet, concerning three kinds of tools. For
each tool we know the unit count (column B) and the unit weight (column C). We
compute the total weight for each kind of tool (column D), the total number of tools
(cell B5), the total weight of all tools (cell D5) and the average unit weight (cell C7).
Moreover, in cells E2:E4 we compute the percentage the count for each kind of tool
makes up of the total number of tools. Figure 1.2 shows the formulas used in these
computations.

11

12 Cell reference formats 81.3

A [B | C [D [E [F [
Count YWeight Total weight |Count %
Crowbars =) 7 35 2273
Screwdrivers 11 2 22 a0
Harnmers 5 3 13 272
Sum 22 75

Average | 3.47]

D00 [(O[O

Figure 1.1: Spreadsheet window showing computed results.

Modern spreadsheet programs have one further essential feature in common. A
reference in a formula can be relative such as C2, or absolute such as B5, or a
mixture such as B$5 which is row-absolute but column-relative.

This distinction matters when the reference occurs in a formula that is copied
from one cell to another. In that case, an absolute reference remains unchanged,
whereas a relative reference gets adjusted by the distance (number of columns
and rows) from the original cell to the cell receiving the copy. A row-absolute and
column-relative reference will keep referring to the same row, but will have its col-
umn adjusted. The adjustment of relative references works also when copying a
formula from one cell to an entire cell area: each copy of the formula gets adjusted
according to its goal cell. Interestingly, the original VisiCalc did not distinguish
between relative and absolute references in formulas; instead one had to indicate
which references to adjust (relative) and which not (absolute) when copying a for-
mula.

Figure 1.2 shows the formulas behind the sheet from figure 1.1. The formulas in
D3:D4 are copies of that in D2, with the row numbers automatically adjusted from 2
to 3 and 4. The formula in D5 is a copy of that in B5, with the column automatically
adjusted from B to D in the cell area reference. Finally, the formulas in E3:E4 are
copies of the formula =B2/B5 * 100 in E2; note how the relative row number in B2
gets adjusted whereas the absolute row number in B5 does not.

So far, we have viewed a spreadsheet as a rectangular grid of cells. An equally
valid view is that a spreadsheet is a graph whose nodes are cells, and whose edges
(arrows) are the dependencies between cells; see figure 1.3. The two views corre-
spond roughly to what is called the physical and logical views by Isakowitz [59].

1.3 Cell reference formats

Usually, cell references and cell area references are entered and displayed in the
A1l format shown above, consisting of a column and a row indication. References
are relative by default, and an absolute column or row is indicated by the dollar ($)
prefix. The A1 cell reference format originates in VisiCalc [13].

§1.3 Cell reference formats 13
A | B] D | E | F
1 Count Wieight Total weight Count %
2 |Crowhars = 7 =B2*C2 =B2%BE$5100
3 |Screwdrivers 11 2 =B3"C3 =B3/4B%5*100
4 |Hammers 5 3 =B4*C4 =BA/SBFST100
5 |Sum =5UMIB2:B4) =SUMD2:D4)
&
7 Awerage =D5/B5)
-]

Figure 1.2: The formulas behind the spreadsheet in figure 1.1.

@@7
®
%
® ®

&)
r
Q)
® @
=

®

Figure 1.3: A graph-oriented view of the spreadsheet in figures 1.1 and 1.2.

14 Formulas, functions and arrays §1.4

Microsoft’s Multiplan spreadsheet program (1982) used a different format, called
the R1C1 format, in which the row number is shown followed by the column num-
ber (so the opposite of the Al format). References are numeric for both rows and
columns, and absolute by default, with relative references indicated by an offset in
square brackets. When the offset is zero it is left out, so RC means “this cell”. The
R1C1 format was used also in Piersol’s 1986 spreadsheet implementation [93] and
is still available in Excel today.

The R1C1 format is interesting because it is essentially the internal format of our
implementation Corecalc. The R1C1 is used in Excel’s XML export format XMLSS,
and Excel and Gnumeric (but apparently not OpenOffice) can optionally display
formulas in R1C1 format.

The main virtue of R1C1 format is that it is invariant under the adjustment of
relative cell references implied by copying of a formula. Figure 1.4 compares the
two reference formats.

Al format RI1C1 format Meaning
Al R[-1]C[-1] Relative; previous row, previous column

A2 RC[-1] Relative; this row, previous column
B1 R[-1]C Relative; previous row, this column
B2 RC Relative; this cell

C3 R[+1]C[+1] Relative; next row, next column

$AS1 R1C1 Absolute; row 1, column 1 (A)
$AS2 R2C1 Absolute; row 2, column 1 (A)
$B3$1 R1C2 Absolute; row 1, column 2 (B)
B2 R2C2 Absolute; row 2, column 2 (B)
C3 R3C3 Absolute; row 3, column 3 (C)
$A1 R[-1]C1 Relative row (previous); absolute column 1 (A)

Figure 1.4: References from cell B2 shown in Al format and in R1C1 format.

1.4 Formulas, functions and arrays

As already shown, a formula in a cell is an expression that may contain references
to other cells, standard arithmetic operators such as (+), and calls to functions such
as SUM Most spreadsheet programs implement standard mathematical functions
such as EXP, LOGand SIN, statistical functions such as MEDIAN and probability
distributions, functions to generate pseudo-random number such as RAND functions
to manipulate times and dates such as NOWAnd TODAY financial functions such as
“present value”, a conditional function IF , array functions (see below), and much
more.

Some functions take arguments that may be a cell area reference, or range, such
as D2:D4, which denotes the three cells D2, D3 and D4. In general an area refer-
ence consists of two cell references, here D2 and D4, giving two corners of a rect-

§1.4 Formulas, functions and arrays 15

angular area of a sheet. The cell references giving the two corners may be any
combination of relative, absolute, or mixed relative/absolute. For instance, one may
enter the formula =SUM(A$1:A1) in cell B1 and copy it to cell B2 where it becomes
=SUM(A$1:A2) , to cell B3 where it becomes =SUM(A$1:A3) , and so on, as shown
in figure 1.5. The effect is that column B computes the partial sums of the numbers
in column A. Moreover, since the corner references were column relative, copying
column B’s formulas to column C would make column C compute the partial sums
of column B.

A B
1 05 =SUM(AS$1:AL)
2 =ATx 1.00001 =SUM(A$1:A2)
3 =A2 1.00001 =SUM(A$1:A3)
12288 | =A12287+1.00001 | =SUM(A$1.A12288)

Figure 1.5: Adjustment of cell area references when copying a formula.

Some built-in functions, called array functions, return an entire array (or matrix)
of values rather than a number or a text string. Such functions include TRANSPOSE
which transposes a cell area, and MMULT which computes matrix multiplication.
The array result must then be expanded over a rectangular cell area of the same
shape, so that each cell in the area receives one component (one atomic value).
In Excel, Gnumeric and OpenOffice this is achieved by entering the formula as a
so-called array formula. First one marks the display area, that is, the cell area
that should receive the values, then one enters the formula, and finally one types
Ctrl+Shift+Enter instead of just Enter to complete the formula entry. This holds
for Excel on Windows; for MacOS versions of Excel, use Cmd+Enter. The result-
ing formula is shown in curly braces, like {=TRANSPOSE(A1:B3)} , in every cell of
the display area, although each cell contains only one component of the result. See
figure 1.6 for an example.

| fw X = |{=THAN5POSE(A‘I:EI:3)}

A, [B [C [D

1 1 2

2 3 4

E] 5 B

4

5 1 3 5

& 2 4§

7

Figure 1.6: The array formula {=TRANSPOSE(A1:B3)} in result area A5:C6.

16 Dependency, support, and cycles 81.6

Finally, modern spreadsheet programs allow the user to define multiple related
sheets, bundled in a so-called workbook. A cell reference can optionally refer to a cell
on another sheets in the same workbook using the notation Sheet2!A$1 in Excel
and Gnumeric, and Sheet2.A$1 in OpenOffice. Similarly, cell area references can
be qualified with the sheet, as in Sheet2!A$1:A1 . Naturally, the two corners of a
cell area must lie within the same sheet.

The Corecalc spreadsheet implementation described in chapter 2 of this report
supports all the functionality described above, including built-in functions and array
formulas.

1.5 Other spreadsheet features

Most modern spreadsheet programs furthermore provide business graphics (bar
charts, pie charts, scatterplots), pivot tables, database access, spell checkers, and
a large number of other useful and impressive features. Microsoft Excel’97 even
contained a flight simulator, which was activated as follows: Open a new workbook;
press F5; enter X97:1.97 and press Enter; press Tab; press Ctrl+Shift; click the
Chart Wizard button. Such features shall not concern us here.

1.6 Dependency, support, and cycles

Clearly, a central concept is the dependence of one cell on the value of another. When
cell D2 contains the formula =B2* C2 as in figure 1.2, then we say that D2 directly
depends on cells B2 and C2, and cells B2 and C2 directly support cell D2. Some
spreadsheet programs, notably Excel and OpenOffice, can display the dependencies
using a feature called formula audit, as shown in figure 1.7. The arrows from cells
B5 and D5 to cell C7 show that both of those cells directly support C7, or equiva-
lently, that C7 directly depends on those two cells. In turn D5 depends on D2:D4,
and so on. In fact, the formula audit in figure 1.7 simply combines the graphical
view in figure 1.3 with the usual spreadsheet grid view.

A | B HEEEGEEN o | B
1 Count WWeight Total weight Count %
2 |Crowbars S1—8 ta 35— 2273
3 |Screwdrivers +HH—e 2 ,—-ﬁ_.— a0
4 |Hammers — o ok e
5 |Sum 75
3
7 Awerage 3.41
G

Figure 1.7: The dependencies in the sheet from figures 1.1 and 1.2.

81.7 Recalculation 17

A cell may directly depend on any number of other cells. For instance, cell B5 in
figures 1.2 and 1.7 directly depends B2, B3 and B4. Similarly, a cell may directly
support any number of other cells: cell B5 directly supports E2, E3 and E4.

More precisely, B5 both statically and dynamically depends on B2, B3 and B4. By
static dependence we mean that the formula text in B5 refers to the cells in B2:B5,
and by dynamic dependence, we mean that calculating the value of B5 requires
calculating the values of those three cells.

A static dependence may or may not cause a dynamic dependence; it is an ap-
proximation of dynamic dependence. For instance, a cell containing the formula
=IF(G1<>0; G2; G3) statically depends G1, G2 and G3, but in any given recal-
culation dynamically depends only on G1 and G2 or G1 and G3, according as G1 is
non-zero or zero. This is because IF is a non-strict function; see section 1.7.4.

A cell transitively depends on another cell (possibly itself) if there is a non-empty
chain of direct dependencies from the former to the latter. For instance, cell D5
indirectly depends on the nine cells in B2:D4. The notion of transitive support is
defined similarly. For instance, cell B4 transitively supports B5, D4, D5, C7 and E2,
E3, E4 — the latter three because they depend on B5.

If a cell statically transitively depends on itself, then there is a static cycle in the
workbook; and if a cell dynamically transitively depends on itself, then there is a
dynamic cycle. Sections 1.7.6 and 5.5 have more to say about cycles.

1.7 Recalculation

When the contents of a cell is changed by editing it, all cells supported by that cell,
whether in the same sheet or another sheet in the workbook, must be recalculated.
This happens relatively frequently, although hardly more than once every 2 seconds
when a human edits the sheet. Recalculations may happen far more frequently
when the cell is edited by a numerical zero-finding routine such as GOAL.SEEKor a
numerical optimization routine such as SOLVER

1.7.1 Recalculation order

Recalculation should be completed in dependency order: If cell B2 depends on cell
A1, then the evaluation of Al should be completed before the evaluation of B2 is
completed. However, recalculation can be initiated in bottom-up order or top-down
order.

In bottom-up order, recalculation starts with cells that do not depend on any
other cells, and always proceeds with cells that depend only on cells already com-
puted.

In top-down order, recalculation may start with any cell. When the value of
an as yet uncomputed cell is needed, then that cell is computed, and when that
computation is completed, the computation of the original cell is resumed. The sub-
computation may recursively lead to further subcomputations, but will terminate

18 Recalculation 81.7

unless there is a dynamic cyclic dependency. The current Corecalc implementation
uses top-down recalculation; see chapter 2.

1.7.2 Requirements on recalculation

The design of the recalculation mechanism is central to the efficiency and reliability
of a spreadsheet implementation, and the design space turns out to be large. First
let us consider the requirements on a recalculation after one cell has been edited,
which is the most frequent scenario:

e Recalculation should be correct. After a recalculation the contents of all cells
should be consistent with each other (in the absence of dynamic cycles).

e Recalculation should be efficient in time and space. The time required for a
recalculation should be at most linear in the total size of formulas in the sheet,
and ideally it should be linear in the size of formulas in those cells supported
by the cells that have changed, which is potentially a much smaller number.
Also, supporting data structures should require space that is at most linear in
the total size of formulas in the workbook. See section 1.7.3.

e Recalculation should accurately detect dynamic cycles; see section 1.7.6.

e Recalculation should avoid evaluating unused arguments of non-strict func-
tions such as IF(el; e2; e3) and should evaluate volatile functions such as
NOW() and RAND(); see sections 1.7.4 and 1.7.5.

1.7.3 Efficient recalculation

One way to ensure that recalculation takes time at most linear in the total size of
formulas, is to make sure that each formula and each array formula is evaluated at
most once in every recalculation. This is rather easy to ensure: visit every active
cell and evaluate its formula if not already evaluated, recursively evaluating any
supporting cells. This is the approach taken in Corecalc, which evaluates every for-
mula exactly once in each recalculation, using extra space (for the recursion stack)
that is at most linear in the total size of formulas.

It is possible but surprisingly complicated to do better than this, as discussed in
section 3.3 and chapter 4.

1.7.4 Non-strict functions

Most built-in functions in spreadsheet programs are strict: They require all their
arguments to be evaluated before they are called. But the function IF(el; e2;
e3) is non-strict, as it evaluates at most one of €2 and e3. For instance, the function
call IF(A2<>0; 1/A2; 1) evaluates its second operand 1/A2 only if A2 is non-
zZero.

§1.9 Spreadsheets are dynamically typed 19

It is straightforward to implement non-strict functions: simply postpone argu-
ment evaluation until it is clear that the argument is needed. However, the exis-
tence of non-strict functions means that a static cyclic dependency may turn out to
be harmless, and it complicates the use of topological sorting to determine a safe
recalculation order. See section 3.3.3.

1.7.5 Volatile functions

Furthermore, some functions are volatile: Although they take no arguments, dif-
ferent calls typically produce different values. Typical volatile functions are NOW()
which returns the current time, and RAND() which returns a random number. Both
are easy to implement, but complicate the use of explicit dependency information of
to control recalculation order. See sections 3.3.1 and 3.3.2.

1.7.6 Dependency cycles

The existence of non-strict functions has implications for the presence or absence
of cycles. Assume that cell Al contains the formula IF(A2<>0; Al; 1) . Then it
would seem that there is a cyclic dependence of Al on Al, but that is the case only if
A2 is non-zero — only those arguments of an IF -function that actually get evaluated
can introduce a cycle.

This is how Excel and OpenOffice work. They report a cyclic dependency involv-
ing the argument of a non-strict functions only if the argument actually needs to be
evaluated. Strangely, Gnumeric does not appear to detect and report cycles at all,
whether involving non-strict functions or not.

1.8 Spreadsheets are dynamically typed

Spreadsheet programs distinguish between several types of data, such as num-
bers, text strings, logical values (Booleans) and arrays. However, this distinction
is made dynamically, in the style of Scheme [63], rather than statically, in the style
of Haskell [52] or Standard ML [77].

For instance, the formula =TRANSPOSE(IF(A1>0; B1:C2; 17)) is perfectly
OK so long as A1>0 is true, so that the argument to TRANSPOSEs an array-shaped
cell area, but evaluates to a array of error values #ARGTYPEf A1>0 is false.

Similarly, it is fine for cell D1 to contain the formula =IF(A1>0; 42; D1) S0
long as A1>0 is true, but if A1>0 is false, then there is a cyclic dependency in the
sheet evaluation.

1.9 Error values must be propagated

Because spreadsheet formulas, like languages such as Lisp, Javascript and Ruby,
are dynamically typed, the evaluation of an expression may fail due to giving the

20 Related work 81.11

wrong number of arguments to a function, or due to the wrong type of argument,
and for many other reasons.

Two point are worth noting. First, such failures of evaluation should be tolerated
because they are likely to arise during editing of a spreadsheet model. Therefore a
failure should not crash the spreadsheet program by throwing an exception, say.
Second, there may be hundreds of such failed evaluations in a single recalculation
(during major edits to a spreadsheet model, for instance) and such failures should
not open hundreds of warning dialogs or similar.

Therefore, spreadsheet programs simply let a failed evaluation produce a distin-
guished kind of value, an error value. Further computations must propagate such
an error value, so that it can be easily traced back to its original cause. For exam-
ple, applying the mathematical logarithm function to a string as in LOG("zwei")
should produce an ArgType error value, and further computation must propagate
this error, so 10+LOG("zwei") must produce ArgType error as well, and so must

comparisons and conditionals such as 10+LOG("zwei")<Al and IF(10+LOG("zwei")<Al,

22, 33) . Applying the logarithm to a negative number as in LOG(-3) must pro-
duce NumError error value, and so must any more complex expression that depends
on this function call.

1.10 Spreadsheets are functional programs

The recalculation mechanism of a spreadsheet program is in a sense dual to that
of lazy functional languages such as Haskell [52]. In a lazy functional language,
an intermediate expression is evaluated only when there is a demand for it, and its
value is then cached so that subsequent demands will use that value.

In a spreadsheet, a formula in a cell is (re)calculated only when some cell on
which it depends has been recalculated, and its value is then cached so that all cells
dependent on it will use that value.

So calculation in a lazy functional language is driven by demand for output,
or backwards, whereas (re)calculation in a spreadsheet is driven by availability of
input, or forwards.

The absence of assignment, destructive update and proper recursive definitions
implies that there are no data structure cycles in spreadsheets. All cyclic dependen-
cies are computational and are detected by the recalculation mechanism.

Spreadsheet programs have been proposed that are lazy also in the above sense
of evaluation being driven by demand for output; see Nuifiez’s [85], and Du and
Wadge [34], who call this eductive evaluation.

1.11 Related work

Despite some non-trivial implementation design issues, the technical literature on
spreadsheet implementation is relatively sparse, as opposed to the trade literature

§1.11 Related work 21

consisting of spreadsheet manuals, handbooks and guidelines. There is also a con-
siderable scholarly literature on ergonomic and cognitive aspects of spreadsheet use
[59], on risks and mistakes in spreadsheet use [40, 90] and on techniques to avoid
them [97].

However, our interest here is spreadsheet implementation, and variations and
extensions on the spreadsheet concept. Literature in that area includes Piersol’s
1986 paper [93] on implementing a spreadsheet in Smalltalk. On the topic of re-
calculation, the paper hints that at first, an idea similar to update event listeners
(section 3.3.1) was attempted, but was given up in favor of another mechanism that
more resembles that implemented by Corecalc, described in section 2.11.

De Hoon’s 1995 MSc thesis [28] and related papers [29] describe a rather com-
prehensive spreadsheet implementation in the lazy functional language Clean. The
resulting spreadsheet is somewhat non-standard, as it uses the Clean language for
cell formulas, allows the user to define further functions in that language, and sup-
ports symbolic computation on formulas. Other papers on extended spreadsheet
paradigms in functional languages include Davie and Hammond’s Functional Hy-
persheets [27] and Lisper and Malmstréom’s Haxcel interface to Haskell [69].

Nuriez’s remarkable 2000 MSc thesis [85] presents ViSSh (Visualization Spread-
sheet), an extended spreadsheet system. The system is based on three ideas. First,
as in Piersol’s system, there is a rich variety of types of cell contents, such as graph-
ical components; second, the functional language Scheme is used for writing formu-
las, and there is no distinction between values and functions; and third, the system
uses lazy evaluation so recalculation is performed only when it has an impact on
observable output. Among other things, these generalizations enable a spreadsheet
formula to “call” another sheet as a function. The implementation seems to main-
tain both an explicit dependency graph and an explicit support graph. This can
be very space-consuming in the presence of copies of formulas with cell area argu-
ments, as discussed in section 3.3.2.

Wang and Ambler developed an experimental spreadsheet program called For-
mulate [122]. Region arguments are used instead of the usual relative/absolute cell
references, and functions are applied based on the shape of their region arguments.
The Formulate implementation does not appear to be publicly available.

Burnett et al. developed Forms/3 [17], which contains several generalizations of
the spreadsheet paradigm. New abstraction mechanisms are added, and the eval-
uation mechanism is extended to react not only to user edits, but also to external
events such as time passing, or new data arriving asynchronously on a stream.
Forms/3 is implemented in Liquid Common Lisp and is a available (for non-commercial
use) in binary form for the Sun Solaris and HP-UX operating systems, but does not
appear to be available in source form.

A MITRE technical report [44] by Francoeur presents a recalculation engine,
called ExcelComp, in Java for Excel spreadsheets. The engine has an interpreted
mode and a compiled mode. The approach requires that the spreadsheet does not
contain any static cyclic dependencies, and it is not clear that it handles volatile
functions. There is no discussion of the size of the dependency graph or of techniques
for representing it compactly. The ExcelComp implementation is not available to the

22 Related work 81.11

public [45].

Yoder and Cohn have written a whole series of papers on spreadsheets, data-flow
computation, and parallel execution. Topics include the relation between spread-
sheet computation, demand-driven (eductive, lazy) and data-driven (eager) evalu-
ation, parallel evaluation, and generalized indexing notations [128]; the design of
a spreadsheet language Mini-SP with array values and recursion (not unlike Core-
calc) and a case study solving several non-trivial computation problems [129]; and a
Generalized Spreadsheet Model in which cell formulas can be Scheme expressions,
including functions, and an explicit “dependency graph” (actually a support graph
as defined in section 3.3.2) is used to perform minimal recalculation and to schedule
parallel execution [127, 130].

Clack and Braine present a spreadsheet paradigm modified to include features
from functional programming, such as higher-order functions, as well as features
from object-oriented programming, such as virtual methods and dynamic dispatch
[22].

None of the investigated implementations appear to use the sharing-preserving
formula representation of Corecalc.

In addition to Yoden and Cohn’s papers mentioned above, there are a few other
papers on parallelization of spreadsheet computations. For instance, in his thesis
[121], Wack investigates how the dependency graph can be used to schedule parallel
computation.

Field-programmable custom hardware for spreadsheet evaluation has been pro-
posed by Lew and Halverson [66]. Custom circuitry realizing a particular spread-
sheet’s formula is generated at runtime by configuring an FPGA (field-programmable
gate array) chip attached to a desktop computer. This can be thought of as an ex-
treme form of runtime code generation. As an added benefit it ought to be possible
to perform computations in parallel; spreadsheets lends themselves well to paral-
lelization because of a fairly static dependency structure.

A paper [112] by Stadelmann describes a spreadsheet paradigm that uses equa-
tional constraints (as in constraint logic programming) instead of unidirectional for-
mulas. Some patents and patent applications (numbers 168 and 220) propose a sim-
ilar idea. This seriously changes the recalculation machinery needed; Stadelmann
used Wolfram’s Mathematica [126] tool to compute solutions.

A spreadsheet paradigm that computes with intervals, or even interval con-
straints, is proposed by Hyvonen and de Pascale in a couple of papers [30, 55, 56].

The interval computation approach was used in the PhD thesis [8] of Ayalew
as a tool for testing spreadsheets: Users can create a “shadow” sheet with interval
formulas that specify the expected values of the real sheet’s formulas.

Burnett and her group have developed several methods for spreadsheet testing,
in particular the Wysiwyt or “What You See Is What You Test” approach [18, 98,
99, 100, 41], within the EUSES consortium [109]. This work is the subject also of
patents 144 and 145, listed in appendix C.

Several researchers have recently proposed various forms of type systems for
spreadsheets, usually to support units of measurements so that one can prevent
accidental addition of dollars and yen, or of inches and kilograms. Some notable

§1.13 Online resources and implementations 23

contributions: Erwig and Burnett [38]; Ahmad and others [6]; Antoniu and others
[7]; Coblenz [23]; and Abraham and Erwig [2, 4].

1.12 Online resources and implementations

The company Decision Models sells advice on how to improve recalculation times for
Excel spreadsheets, and in that connection provides useful technical information on
Excel’s implementation on their website [32]; see section 3.3.5.

There are quite a few open source spreadsheet implementations in addition to
the modern comprehensive implementations Gnumeric [47] and OpenOffice Calc
[88], already mentioned. A Unix classic is sc, originally written by James Gosling
and now maintained by Chuck Martin [72], and the several descendants of sc such
as xspread , slsc and ss. The user interface of sc is text-based, reminiscent of
VisiCale, SuperCalc and other DOS era spreadsheet programs.

A comprehensive and free spreadsheet program is Abykus [108] by Brad Smith.
This program is not open source, and presents a number of generalizations and
deviations relative to the mainstream (Excel, OpenOffice and Gnumeric).

One managed code open source spreadsheet program is Vincent Granet’s XXL
[49], written in STk, a version of Tk based on the Scheme programming language.
Another one, currently less developed, is Einar Pehrson’s CleanSheets [91], which
is written in Java. More spreadsheet programs — historical, commercial or open
source — are listed on Chris Browne’s spreadsheet website [14], with historical
notes connecting them. Another source of useful information is the list of frequently
asked questions [105] from the Usenet newsgroup comp.apps.spreadsheets , al-
though the last update was in June 2002. The newsgroup itself [117] seems to be
devoted mainly to spreadsheet application and does not appear to receive much traf-
fic.

A number of commercial closed source managed code implementations of Excel-
compatible spreadsheet recalculation engines, graphical components and report gen-
erators exist. Two such implementations are Formula One for Java [95] and Spread-
sheetGear for NET [111]; the lead developer for both is (or was) Joe Erickson. Two
other implementations are KDCalc [58] from Knowledge Dynamics Inc. and Spread-
sheetConverter by Framtidsforum AB [43]. Such implementations are typically
used to implement spreadsheet logic on servers without the need to reimplement
formulas and so on in Java, C# or other programming languages.

Spreadsheet implementation is frequently used to illustrate the use of a pro-
gramming language or software engineering techniques; for instance, that was the
original goal of the above-mentioned XXL spreadsheet program. A very early exam-
ple is the MicroCalc example distributed in source form with Borland Turbo Pascal
1.0 (November 1983), still available at Borland’s “Antique Software” site [12]. A
more recent example is the spreadsheet chapter in John English’s Ada95 book [37,
chapter 18]; however, this is clearly not designed with efficiency in mind.

24 Spreadsheet implementation patents §1.13

1.13 Spreadsheet implementation patents

The dearth of technical and scientific literature on spreadsheet implementation is
made up for by the great number of patents and patent applications. Searches
for such documents can be performed at the European Patent Office’s Espacenet
[87] and the US Patents and Trademarks Office [116]. A search for US patents or
patent applications in which the word “spreadsheet” appears in the title or abstract
currently gives 581 results. Appendix C lists several hundred of these that appear
to be concerned with the implementation rather than the use of spreadsheets.
Some patents of interest are:

e Harris and Bastian at WordPerfect Corporation have a patent, number 223
in appendix C, on a method for “optimal recalculation”, further discussed in
section 3.3.7.

e Roger Schlafly has two patents, numbers 194 and 213 in appendix C, that
describe runtime compilation of spreadsheet formulas to x86 code. A distin-
guishing feature is clever use of the math coprocessor and the then relative
recent IEEE 754 binary floating-point number representation, and especially
NaN values, to achieve very fast formula evaluation.

e Bruce Cordel and others at Microsoft have submitted a patent application,
number 24 in appendix C, on multiprocessor recalculation of spreadsheet for-
mulas. It includes a description of the uniprocessor recalculation model that
agrees with that given by La Penna [64], summarized in section 3.3.5.

In fact, in one of the first software patent controversies, several major spreadsheet
implementors were sued in 1989 for infringing on US Patent No. 4,398,249, filed by
Rene K. Pardo and Remy Landau in 1970 and granted in 1983 [62]. The patent in
question appears to contain no useful contents at all. The United States Court of
Appeals for the Federal Circuit in 1996 upheld the District Court’s ruling that the
patent is unenforceable [115].

A surprising number of patents and patent applications claim to have invented
compilation of spreadsheet models to more traditional kinds of code, similar to the
compiled-mode version of Francoeur’s implementation [44] mentioned above:

e Schlafly’s patents (numbers 194 and 213 in appendix C) describe compilation
of individual formulas to x86 machine code.

e Khosrowshahi and Woloshin’s patent (number 141) describes compilation of a
spreadsheet model with designated input cells and output cells to code in a
procedural programming language.

e Rank and Pampuch’s patent application (number 132) describes the idea, but
few technical details, of cross-compilation of spreadsheet formulas for space-
conserving execution on a PDA. This involves, for instance, leaving out unused
library functions.

§1.13 Spreadsheet implementation patents 25

e Rubin and Smialek’s patent application (number 101) describes a particular
spreadsheet recalculation engine, as well as compilation of individual formulas
to source code in Java and other languages. Does not seem to handle non-
strict functions specially. Probably the system described is the commercial tool
KDCalc [58] that allows Excel workbooks to be compiled to web applications
and more.

e Waldau’s patent application (number 82) describes cross-compilation to an-
other platform, such as a mobile phone or web service. This is a technically
substantial patent with references to relevant prior art, such as Schlafly’s
patents. It describes compilation to dynamically typed and statically typed
languages (JavaScript and Java), and how to present the generated code as
a WML service, say. Probably the technology described by this application is
that used in the SpreadsheetConverter product [43].

e Tanenbaum’s patent applications (number 16 and 46) describe compilation of
a spreadsheet model with designated input cells and output cells to C source
code.

26 Spreadsheet implementation patents §1.13

Part 1

Corecalc and interpretation

27

Chapter 2

Corecalc implementation

This chapter describes the Corecalc spreadsheet core implementation, focusing on
concepts and details that may be useful to somebody who wants to modify it.

2.1 Definitions

Here we define the main Corecalc concepts in the style of Landin and Burge. A
UML-style summary is given in figure 2.1.

o A workbook of class Workbook (section 2.3) consists of a collection of sheets.

e A sheet of class Sheet (section 2.4) is a rectangular array, each of whose ele-
ments may contain null or a cell.

e A non-null cell of abstract class Cell (section 2.5) may be

a constant floating-point number of class NumberCell

or a constant text string of class QuoteCell or of TextCell
or an empty cell of class BlankCell

or a formula of class Formula

or a array formula of class ArrayFormula

A cell could also specify the formatting of contents, data validation criteria,
background colour, and other attributes, but currently does not.

e A formula of class Formula (section 2.5) consists of

a non-null expression of class Expr to produce the cell’s value
and a cached value of class Value

and a workbook reference of class Workbook

29

30 Definitions §2.1

- and a state field of type CellState.
e An array formula of class ArrayFormula (section 2.5) consists of

— anon-null cached array formula of class CachedArrayFormula
- and a cell address of struct type CellAddr

e A cached array formula of class CachedArrayFormula (section 2.5) consists of

- a formula of class Formula
- and the address, as a pair (c,r), at which that formula was entered

- and the corners (ulCa, 1rCa) of the rectangle of cells sharing the formula

e An expression of abstract class Expr (section 2.6) may be

a floating-point constant of class NumberConst
- or a constant text string of class TextConst
- or a static error of class Error

- or a cell reference of class CellRef (an optional sheet and a relative/absolute
reference)

- or an area reference of class CellArea (an optional sheet and two rela-
tive/absolute references)

- or an application (call) of an operator or function, of class FunCall.

e A value of abstract class Value (section 2.7) is produced by evaluation of an
expression. A value may be

a floating-point number of class NumberValue
- or a text string of class TextValue

- or an error value of class ErrorValue

- or an array value of class ArrayValue

- or an external object reference encapsulated as an ObjectValue (used when
implementing external functions; see section 8.7.2)

- or a function value of class FunctionValue (used to implement higher-
order sheet-defined functions; see section 2.7.4).

e An atomic value is a NumberValue or a TextValue.

e An array value of abstract class ArrayValue is either an explicit array of class
ArrayExplicit (which is a window onto a rectangular array of values of class
Value, some of which may be null); or an array view of class ArrayView (which
is a window onto a sheet).

§2.2 Syntax and parsing 31

e A raref or relative/absolute reference of class RARef (section 2.8) is a four-
tuple (colAbs , col , rowAbs , row) used to represent cell references A1, A1,
$A1, A$1, and area references AL:$B2 and so on in formulas. If the colAbs
field is true, then the column reference col is absolute ($), otherwise relative
(non-$); and similarly for rows.

e A cell address of struct type CellAddr (section 2.10) is the absolute, zero-based
location (col,row) of a cell in a sheet.

e A function of class Function (section 2.13) represents a built-in function such
as SIN or a built-in operator such as (+).

2.2 Syntax and parsing

2.2.1 Corecalc cell contents syntax

The syntax of Corecalc cell contents is very similar to that of Excel, Gnumeric and

OpenOffice:

Expr = Raref ::=
Expr == Expr Column Row
| Expr <> Expr | $ Column Row
| Expr < Expr | Column $ Row
| Expr <= Expr | $ Column $ Row
| Expr > Expr | R Offset C Offset
| Expr >= Expr
| Expr & Expr Offset ::=
| Expr + Expr <empty>
| Expr - Expr | Uint
| Expr = Expr | [Int]
| Expr / Expr
| Expr = Expr Call =
| Raref Name (Exprs)
| Raref : Raref
| Sheetref Exprs ::=
| Number Expr
| " String " | Expr ; Exprs
| (Expr)
| Call CellContents ::=
Number
Sheetref = | * String
Name ! Raref | " String "
| Name ! Raref : Raref = Expr

Above, Number is a floating-point constant; String

is a sequence of characters;

Nameis a legal function or sheet name; Column is a column name A, B, ...; Rowis a
row number 1, 2, ...; Uint is a non-negative integer; and Int is an integer.

32 Syntax and parsing §2.2

Workbook

|

’ ConsrCeII‘ ’ Formula

’ BlankCell ‘ ’ NumberCeII‘ ’ TextCeII‘

CachedArrayFormula

Expr .
Const FunCall ‘ ’ CellRef H CellArea ‘
3 1 2
NumberConst‘ ’ TextConst Error ‘ ’ Function ‘ RARef

Value =

’NumberVaIue‘ ’ TextValue ‘ ’ ErrorVaIue‘ ’ArrayVaIue‘ ’ObjectVaIue‘ ’FunctionVaIu%

’ ArrayView ‘ ’ArrayEpricit‘

Figure 2.1: The classes supporting interpretive evaluation in Corecalc and Funcalc.
A triangular arrow denotes inheritance, with the arrow pointing at the base class,
as seen in the three class hierarchies deriving from abstract classes Cell, Expr and
Value. An arrow originating in an open rhombus denotes aggregation: the instance
at the rhombus end has zero or more references to instances at the other end, though
possibly shared with other instances. An arrow originating in a solid rhombus de-
notes composition: the instance at the rhombus end has zero or more references to
instances at the other end, accessible only from the instance at the rhombus end.

§2.4 Workbooks and sheets 33

There is no special syntax for array formulas. As in Excel and OpenOffice, such
formulas are written as ordinary formulas, and then completed by entering the spe-
cial incantation Ctrl+Shift+Enter.

2.2.2 Formula parsing

The above grammar has been rewritten to produce a scanner and parser specifica-
tion for the CoCo/R generator of recursive descent parsers [82]. Mostly the rewrite
has been necessary to give operators the correct associativity and precedence, while
avoiding left recursive grammar productions. All operators are left associative, even
the exponentiation operator ("), just as in Excel and OpenOffice. The resulting
parser builds and returns the abstract syntax tree as a Cell object. This is pretty
straightforward, but the following things must be considered:

e When parsing a formula we must know the workbook that contains it, and the
cell address at which it was entered. Otherwise relative cell references and
area references, and sheet-absolute ditto, cannot be resolved to the abstract
syntax that we use.

e The CoCo/R scanner apparently does not support the definition of overlapping
token classes, such as column ([a-zA-Z]+) and identifier ([a-zA-Z][a-zA-Z0-9]

This complicates the notation for calls to functions, such as LOG1Q whose
name looks like a cell reference. This is not a problem in Excel 2003, Gnu-
meric and OpenOffice 2, in which the last column name is IV, corresponding
to column number 256.

2.3 Workbooks and sheets

A workbook of class Workbook contains zero or more sheets, organized as a list of
non-null Sheet references, where no two references refer to the same Sheet object.
Notable methods on class Workbook include:

e void AddSheet (Sheet sheet) adds sheet at the end of the workbook.
e Sheet thi s[String name] returns the named sheet.

e void Recalculate() initiates a recalculation of all changed and volatile
cells, and all cells transitively dependent on these, in all sheets of the work-
book; see section 4.3.1.

e void RecalculateFull() initiates a full recalculation, of all active cells in
all sheets of the workbook; see section 4.3.1.

e void RecalculateFullRebuild()
and then initiates a full recalculation.

rebuilds the support graph (section 4.2.8)

*).

34 Sheets §2.4

2.4 Sheets

A Sheet contains a rectangular array of cells (type Cell[,]) each element of which
may be null, representing an inactive cell, or non-null, representing an active cell.
No two cell references from the same sheet or from different sheets can refer to the
same Cell object.

Notable methods on class Sheet include:

e Cell InsertcCell (String text, CellAddr ca)
it at position ca in the sheet, and returns the cell.

e void InsertArrayFormul a(Cell cell, int col, int row, CellAddr
ulCa, CellAddr IrCa) creates as CachedArrayFormula from cell , which
must be a Formula, and stores ArrayFormula objects in the cells in the area
with corners ulCa and IrCa , all sharing the same CachedArrayFormula.

e void I nsertRowCol s(int R, int N, bool doRows) inserts Nnew rows
(or columns) before row (or column) R >= 0 in this sheet, and adjusts all re-
ferring formulas in this sheet and other sheets by calling InsertRowCols on
active cells. Performs row insertion if doRows is true; otherwise performs col-
umn insertion. See section 2.16.

e void MbveCell (int fromCol, int fromRow, int col, int row) moves

the cell contents in cell (fromCol ,fromRow) to cell (col , row).

e void PasteCell (Cell cell, CellAddr ca, int cols, int rows) pastes

or copies cell , which must be a formula or constant, to the cell area that has
upper left-hand corner (ca.col , ca.row), and cols columns and rows rows.
If cell is a formula, all the resulting Formula objects will be distinct but will
share the same underlying Expr object.

e void PasteCel | (Cell cell, CellAddr ca) pastes or copies cell , which
must be a formula or constant, to the cell address ca. If cell is a formula,
then the new cell has its own Formula object, but shares cell ’s underlying
Expr object.

e void Recal cul ateFul | () initiates a full recalculation, of all active cells in
the sheet.

e void Reset() calls Reset() on every active cell in the sheet.

e void ShowAl | (Shower show) calls show(col, row, val)
tive cell in the sheet, passing its column, row and value.

for every ac-

e String Show(int col, int row)
contents at position (col ,row).

returns a string representing the Cell

e String Showval ue(int col, int row) returns a string representing the
value (if any) in the cell at position (col ,row).

parsestext to acell, stores

82.5 Cells, formulas and array formulas 35

e Cell thisJint col, int row]
in the sheet.

gets or sets the cell at position (col ,row)

e Cell this[CellAddr ca] gets or sets the cell at position in the sheet.

2.5 Cells, formulas and array formulas

A cell in a sheet may contain an object of abstract type Cell, which has concrete
subclasses NumberCell, TextCell, Formula and ArrayFormula; see figure 2.1.
Abstract class Cell has the following significant methods:

e Value Eval (Sheet sheet, int col, int row) evaluates the cell’s con-
tents, and all cells that it depends on, and marks the cell up to date, unless
already up to date; then returns the cell’s value.

e void | nsert RowCol s(Dictionary<Expr,Adjusted<Expr>> adjusted,
Sheet modSheet, bool thisSheet, int R, int N, int r, bool doRo
adjusts the formula in this cell, originally in row (or column) r , after insertion
of Nnew rows (or columns) before row (or column) R >= 0. Performs row inser-
tion if doRows is true; otherwise performs column insertion. See section 2.16.

e Cell MoveCont ent s(int deltaCol, int deltaRow) returns a new cell
object, resulting from moving the given cell by (deltaCol , deltaRow).

e static Cell Par se(String text, Workbook workbook, int col, int
row) parses text to a cell within the given workbook and assuming the cell’s
position is (col , row).

e void ResetCel |l State() resets the cell’s state flag, if any, to Dirty; see
section 2.11.

e String Show(int col, int row, Format fo) shows the cell’s contents

(nothing, constant, formula, array formula).

e String ShowVal ue(Sheet sheet, int col, int row)
displaying the cell’s value, if necessary computing it first.

returns a string

A floating-point constant is represented by a NumberCell object, and a text constant
is represented a TextCell object.

An ordinary number-valued or text-valued formula is represented by a Formula
object and is basically an expression together with machinery for caching its value,
once computed. Thus a formula contains a non-null expression of class Expr, a
cached value of class Value, a cell state field to control recalculation (see section 2.11),
and a reference to the containing workbook. The latter serves to resolve absolute
sheet references within the expression.

Whereas a given Formula object shall not be reachable from multiple distinct
Celll,] elements, an Expr object may well be reachable from many distinct Formula

ws)

36 Expressions 82.6 82.6 Expressions 37

objects. In fact, it is a design objective of Corecalc to achieve such sharing of Expr (section 2.7); its Eval method returns that value:
objects; see section 2.8.
An array formula computes an array value, that is, a rectangular array of val- class NumberConst : Const {

private readonly NumberValue value;
public NumberConst(double d) {
value = new NumberValue(d);

ues. This result must be expanded over a rectangular cell area of the same shape as
the array value, so that each cell in the area receives one component (one ordinary
value) from the array value, just as in Excel and OpenOffice. An ArrayFormula is a
cell entry that represents one cell’s component of the array. Hence an ArrayFormula
object in a sheet cell contains two things: a non-null reference to a CachedArrayFor-
mula object shared among all cells in the cell area, and that sheet cell’s (col, row)

public override Value Eval(Sheet sheet, int col, int row) {
return value;

location within the cell area. The shared CachedArrayFormula contains a Formula, public override String Show(int col, int row, int ctxpre, Fo rmat fo) {
whose expression must evaluate to an ArrayValue, as well as an indication of the return value.ToString();
cell area’s location within the sheet. }

The evaluation of one cell in the array formula’s cell area will evaluate the under- }
lying shared Formula once and cache its value (which must be of type ArrayValue)
for use by all cells in the cell area. 2.6.2 Text constant expressions

. A TextConst represents a text constant such as "foo" in a formula and is very

2.6 Expressmns similar to a NumberConst, except in the way the constant is displayed:
The abstract class Expr has concrete subclasses NumberConst, TextConst, CellRef, class TextConst : Const {
CellArea, FunCall; see figure 2.1. Expressions are used to recursively construct public readonly Textvalue value;
composite expressions, and ultimately, formulas, but whereas a formula caches its public. TextConst(String s) {

value, an expression itself does not. value = TextValue.Makelnterned(s);

Class Expr has the following abstract methods: public override Value Eval(Sheet sheet, int col, int row) {

e Value Eval (Sheet sheet, int col, int row) returns the result of eval- return value;
uating this expression at cell address sheet[col, row] , where sheet must))))))
be non-null. public override String Show(int col, int row, int ctxpre, Fo rmats fo) {
return "\"* + value + "\"";
e Expr Move(int deltaCol, int deltaRow) returns a new Expr in which }

relative cell references have been updated as if the containing cell were moved, }

not copied, by (deltaCol , deltaRow); see section 2.15.
Since a given text constant may appear many times in a workbook, an effort is

e Adjusted<Expr> I nsert RowCol s(Sheet modSheet, bool thisSheet, made to store the underlying TextValue only once, by “interning”, as shown in the
int R, int N, int r, bool doRows) returns an expression, originally TextConst constructor.
in row (or column) r , adjusting its references after insertion of Nnew rows (or
columns) before row (or column) R >= .0. Performs row insertion if doRows is 2.6.3 Cell reference expressions
true; otherwise performs column insertion. See section 2.16.
A CellRef represents a cell reference such as $B7; it consists of a raref (section 2.8)
and, if the cell reference is sheet-absolute, a sheet reference. A cell reference is eval-
uated relative to a given sheet, column and row. Its evaluation involves computing
the referred-to cell address ca and evaluating the formula in that cell.

e String Show(int col, int row, int ctxpre, Format fo) returns a
string resulting from prettyprinting the expression in a fixity context ctxpre
and with formatting options fo ; see section 2.18.

2.6.1 Number constant expressions class CellRef : Expr {
private readonly RARef raref;
A NumberConst represents a floating-point constant such as 3.14 in a formula. private readonly Sheet sheet; // non-null if sheet-absolut e

A NumberConst object encapsulates the number, represented as a NumberValue public override Value Eval(Sheet sheet, int col, int row) {

38 Expressions 82.6

CellAddr ca = raref.Addr(col, row);
Cell cell = (this.sheet ?? sheet)[cal;
return cell == null ? null : cell.Eval(sheet, ca.col, ca.row);

public override String Show(int col, int row, int ctxpre, Fo rmat fo) {
String s = raref.Show(col, row, fo);
return sheet==null ? s : sheet.Name + "I" + s;

}

2.6.4 Cell area reference expressions

A CellArea represents a cell area reference such as $B7:B52 in a formula. It con-
sists of two rarefs (section 2.8) giving the area’s corner cells and, if the cell area
reference is sheet-absolute, a sheet reference. A cell area is evaluated, by Eval , rel-
ative to a given sheet, column and row, by finding the cell addresses of the upper left
corner ulCa and lower right corner IrCa of the referred-to cell area, and creating
an ArrayView (section 2.7) of the cell area. Then every non-blank cell in the view is
evaluated by calling the indexer view[c,r] to prevent the creation of cyclic views,
and the view is returned:

class CellArea : Expr {
private readonly RARef ul, Ir; // upper left, lower right
private readonly Sheet sheet; /I non-null if sheet-absolut e
public override Value Eval(Sheet sheet, int col, int row) {
CellAddr ulCa = ul.Addr(col, row), IrCa = Ir.Addr(col, row) ;
ArrayView view = ArrayView.Make(ulCa, IrCa, this.sheet ?? sheet);
for (int ¢ = 0; ¢ < view.Cols; c++)
for (int r = 0; r < view.Rows; r++) {
Value ignore = viewlc, r];

}
return view;
public override String Show(int col, int row, int ctxpre, Fo rmat fo) {
String s = ul.Show(col, row, fo) + ™" + Ir.Show(col, row, fo) ;
return sheet==null ? s : sheet.Name + "I" + s;

}

2.6.5 Function call and operator expressions

A FunCall represents a function call such as SIN(B7) , or an infix operator appli-
cation such as A1+B6, in a formula. It consists of a Function object representing
the function to call, and a non-null array of argument expressions. A function call
is evaluated relative to a given sheet, column and row by invoking the function’s
applier (section 2.13) on the argument expressions and sheet, column and row.

§2.7 Runtime values 39

The argument expressions are passed unevaluated to cater for non-strict functions
such as IF . The Show function displays the function call in prefix or infix notation
as appropriate; see section 2.18. Section 2.13 describes the function call machinery
in more detail.

class FunCall : Expr {
private readonly Function function; // Non-null
private readonly Expr[] es; /I Non-null, elements non-null
public override Value Eval(Sheet sheet, int col, int row) {
return function.applier(sheet, es, col, row);

public override String Show(int col, int row, int ctxpre, Fo rmat fo) {
StringBuilder sb = new StringBuilder();
int pre = function.fixity;
if (pre == 0) { // Not operator
. show as F(argl; ...; argN) ...
} else { /I Operator. Assume es.Length is 1 or 2
. show as argl+arg2 or similar ...

return sh.ToString();

2.7 Runtime values

The abstract class Value has subclasses NumberValue, TextValue, ErrorValue, Ar-
rayValue, ObjectValue, and FunctionValue as shown in figure 2.1.

A NumberValue represents a floating-point number or a logical value; see sec-
tion 2.7.1. A TextValue represents a text string, and has a public readonly field
value containing that string. An ErrorValue represents the result of an illegal op-
eration (there are no exceptions in spreadsheets), and has a public readonly field
msg of type String holding a description of the error; see also section 2.7.2. An Ar-
rayValue represents the value of a cell area expression or the result of an array
formula, as described in section 2.7.3 below.

A Value has a method Apply that applies a delegate act to components of the
value, useful for implementing SUMand other aggregate functions:

public abstract class Value {
public virtual void Apply(Acttion<Value> act) {
act(this);
}
}

Here the NET Action<T> delegate type represents a void function that takes an
argument of type T. The only non-trivial override of Apply is on array values; see
section 2.7.3.

40 Runtime values §2.7

2.7.1 Number values and error values

A NumberValue represents a double-precision floating point number or a logical
value (0.0 meaning false, all other numbers meaning true) and has a public readonly
field value containing that number. When converting values to doubles and vice
versa we shall exploit that the floating-point number representation and arithmetic
calculations adhere to the IEEE 754-2008 standard for floating-point arithmetic
[57].

In particular, we shall rely on three features of the IEEE standard, intended
exactly for such use. First, a double may be a NaN, a special value that means “not
a number”, for representing errors in computations. Second, there are 2°! different
NaN values, distinguished by their 51 so-called payload bits, and this can be used to
distinguish different errors. Third, arithmetic operations are required to preserve
NaN operands, so we get error propagation for free. For instance, if d is a NaN, then
Math.Sqrt(6.1 *d+7.5) must be a NaN with the same payload. If both d1 and d2
are NaNs, then d1+d2 must be a NaN with the same payload as one of d1 and d2;
which one is unspecified. This will be especially useful for efficient implementation
of sheet-defined functions; see chapter 6; example 6.1 illustrates the code simplicity
and speed that can be achieved.

When converting a value to a double, we convert a NumberValue to a (non-NalN)
double; convert an ErrorValue to the appropriate NaN; and convert everything else
to the ArgType error value, using method Value.ToDoubleOrNan

public static double Value.ToDoubleOrNan(Value v) {
if (v is NumberValue)
return (v as NumberValue).value;
else if (v is ErrorValue)
return (v as ErrorValue).ErrorNan;
else
return ErrorValue.argTypeError.ErrorNan;

}

Conversely, when converting a double to a value, we convert a NaN to the corre-
sponding ErrorValue; and convert a proper double to a NumberValue, where Num-
berValues corresponding to 0 and 1 have been preallocated:

public static Value NumberValue.Make(double d) {
if (double.IsNaN(d))
return ErrorValue.FromNan(d);
else if (d == 0)
return ZERO;
else if (d == 1)
return ONE;
else
return new NumberValue(d);

}

This ensures that the double contained in a NumberValue is never a NaN.

§2.7 Runtime values 41

2.7.2 Error values

To represent error values as NaN payload bits, we allocate and cache all ErrorValue
objects in a static global array. Then we can represent an error value by its index
into that array, or by the NaN whose 51-bit payload is the signed encoding of that
index. Some of the preallocated errors are shown in figure 2.2. It is important that
the #ERR: NumError is at index 0, because the .NET Math functions produce NaN
values with error code zero. Custom error values can be created using the built-
in function ERR("MyError") , but to prevent a spreadsheet from overflowing the
global error table, the argument to the ERRfunction must be a text constant.

Index Error value Example cause

0 #ERR: NumError SQRT(-1)

1 #ERR: ArgCount SQRT()

2 #ERR: ArgType SQRT("four")

3 #ERR: Name SQTR(4)

4 #REF! Reference to row that was deleted
5 #VALUE! Selector in CHOOSkut of range

6 #NA NA()

Figure 2.2: Some preallocated values in the global error value table.

Class ErrorValue provides methods for converting a NaN to an ErrorValue and
vice versa. Method MakeNan(i) returns the NaN whose payload bits are the bits
from two-complement integer i . If d is a NaN, then method FromNan(d) returns
the error value represented by its NaN payload bits. If v is an ErrorValue, then
property Errorvalue.ErrorNaN returns the NaN representing v.

2.7.3 Array values

An ArrayValue represents a rectangular structure of values, and is either an explicit
array of class ArrayExplicit, or an array view of class ArrayView, or an array double
matrix of class ArrayDouble. An array element value may itself be an array, so
array values may be nested. There is no way to construct cyclic array structures.
An array may have null elements that do not hold values, corresponding to a blank
cell in a sheet. An array of size 1x1 is distinct from an atomic value.

An explicit array consists of a two-dimensional array Valuel,] of values, together
with a pair (ulCa , IrCa) of cell addresses that defines a window on that underlying
two-dimensional array. An explicit array is typically the result of functions such as
TRANSPOSkBr TABULATE(section A.2.2) that must create a new array value. The
window onto the underlying array allows for efficient implementation of the SLICE
function (section A.2.2) which simply creates a (smaller) window onto the underlying
two-dimensional Valuel,] array, without copying it. The underlying array, and the
window, may have zero columns or zero rows or both. This is in contrast to a cell
area reference such as B2:Al , which always denotes a non-empty cell area.

42 Representation of cell references §2.8

An array view consists of a sheet together with a pair (ulCa , IrCa) of cell ad-
dresses that defines a window on that underlying sheet. An array view is typically
the result of a cell area expression such as A1:D50 or Data!A1:D50 that creates
a view onto an existing sheet, or of applying the SLICE function to another array
view. Array views allow for efficient evaluation of function applications such as
SUM(A1:D50) without allocation of a large intermediate data structure. The win-
dow may have zero columns or zero rows or both.

An array matrix consists of a two-dimensional array (type double[,]) of floating-
point numbers. This is intended for representation of the arguments and results of
(external) linear algebra operations. When the result of a linear algebra function is
passed to another such function, it is wasteful to wrap the floating-point numbers in
NumberValue objects. Also, numeric libraries typically assume the indexing order
[row,column] so we use that order for the inner double[,] array too, although it is
the opposite of the external interface of array views.

Regardless of representation, an ArrayValue has an indexer this[col,row]
that (evaluates and) accesses the array value’s element at (col ,row), relative to the
window determined by ulCa . It also has an Apply method override that recursively
applies the delegate act to each non-null element:

public abstract Value this[int col, int row] { get; }

public override void Apply(Action<Value> act) {
for (int ¢ = 0; ¢ < Cols; c++) {
for (int r = 0; r < Rows; r++) {

Value v = this[c, r];

if (v != null) // Only non-blank cells contribute
if (v is ArrayValue)

(v as ArrayValue).Apply(act);

else
act(v);

2.7.4 Function values

A function value, or closure, is a partially applied sheet-defined function and is rep-
resented by class FunctionValue. It consists of the index of a sheet-defined function
and an array holding zero or more values of arguments of that function. For more
information, see section 8.4.1.

2.8 Representation of cell references

Cell references should be represented so that they, and the expressions in which
they appear, can be copied without change. Namely, it is common for a formula to be

§2.8 Representation of cell references 43

entered in one cell and then copied to many (even thousands) of other cells. Sharing
the same expression object between all those cells would give considerable space
savings. In particular, when using runtime code generation (RTCG) on expressions
to speed up spreadsheet calculations, there should be as few expression instances
as possible.

Hence in Corecalc cell references and cell area references, we store absolute ($)
references as absolute zero-based cell addresses, and relative (non-$) references as
positive, zero or negative offsets relative to the address of the cell containing the for-
mula. Concretely, Corecalc uses a class RARef, short for relative/absolute reference,
to represent references in formulas:

public sealed class RARef {
public readonly bool colAbs, rowAbs; // True=absolute, Fal se=relative
public readonly int colRef, rowRef;

public CellAddr Addr(int col, int row) {
return new CellAddr(this, col, row);

public String Show(int col, int row, Format fo) {
if (fo.RcFormat)

return "R" + RelAbsFormat(rowAbs, rowRef)

+ "C" + RelAbsFormat(colAbs, colRef);

else {
CellAddr ca = new CellAddr(this, col, row);
return (colAbs ? "$" : ™) + CellAddr.ColumnName(ca.col)
+ (rowAbs ? "$" : ") + (ca.row+1);
}
}

}

A raref is somewhat similar to the R1C1 reference format (section 1.3) but since we
put the column number first (as in the Al format) and use zero-based numbering,
our format could be called the CORO format. Figure 2.3 shows the four basic forms
of a CORO format reference. As a consequence of this representation, an expression
must be interpreted relative to the address of the containing cell when evaluating
or displaying the expression. This adds a little extra runtime cost.

CORO format Meaning

CceRr Absolute reference to cell (¢, r) where 0 < ¢, r
CeR[r] Absolute column ¢, relative row offset r
Clc]Rr Relative column offset ¢, absolute row r
Clc]R[r] Relative column offset ¢, relative row offset r

Figure 2.3: The four basic forms of CORO references.

We shall use the term virtual copy to denote a reference from a formula cell to a
shared expression instance in this representation.

44 Cell addresses §2.10

When an expression is moved (not copied) from one cell to another, its relative
references must be updated and hence the abstract syntax tree must be duplicated;
see section 2.15. But moving a formula does not increase the number of formulas,
whereas copying may enormously increase the number of formulas, so it is more
important to preserve the the formula representation when copying the formula
than when moving it.

Also, when rows or columns are inserted or deleted, both relative and absolute
references may have to be adjusted in a way that preserves as much sharing of
virtual copies as possible; see section 2.16.

2.9 Sheet-absolute and sheet-relative references

A cell reference Sheetl!B7 or an area reference Sheetl!B7:D9 may refer to an-
other sheet than the one containing the enclosing formula. This is implemented
by adding a sheet field to CellRef and CellArea. If the field is non-null, then the
reference is sheet-absolute and refers to a cell in that sheet. If the field is null,
then the reference is sheet-relative and refers to a cell in the current sheet (the one
containing the enclosing formula), that is, the sheet argument passed to the Eval
method.

The sheet reference (or the absence of it) is preserved when copying or moving
the CellRef or AreaRef from one sheet to another. Sheet-absolute references remain
sheet-absolute, and sheet-relative references become references to the new sheet to
which the enclosing formula gets copied.

The adjustment of column and row references is the same regardless of whether
the reference is sheet-absolute or sheet-relative. Namely, a column-relative or row-
relative but sheet-absolute reference presumably refers to a sheet that has a sim-
ilar structure to the present one. Note that OpenOffice makes another distinc-
tion between sheet-relative and sheet-absolute references: A reference of the form
Sheetl7.A1 is adjusted to Sheetl8.A1 if the formula is copied from Sheetl to
Sheet2. Excel does not support such sheet adjustment.

2.10 Cell addresses

A CellAddr represents an absolute cell address in a sheet as a pair of a zero-based
column number and a zero-based row number. This is in contrast to a RARef (sec-
tion 2.8) which represents cell references and cell area references in formulas. Given
the column and row number of a RARef occurrence, the CellAddr constructor com-
putes the absolute cell address that the RARef refers to:

public struct CellAddr {
public readonly int col, row;
public CellAddr(RARef cr, int col, int row) {
this.col = cr.colAbs ? cr.colRef : cr.colRef + col;
this.row = cr.rowAbs ? cr.rowRef : cr.rowRef + row;

§2.11 Simple recalculation 45

public override String ToString() {
return ColumnName(col) + (row+1);

}

2.11 Simple recalculation

The value of a cell may depend on the values of other cells. Whenever any cell
changes, the value of all dependent cells must be recalculated, exactly once, in some
order that respects the dependencies (unless a cyclic dependency makes this impos-
sible).

In the simplest reasonable scheme, a full recalculation of a workbook may be
performed by recalculating all its sheets in some order, recalculating each sheet
by reevaluating all its formula cells in some order, respecting dependencies. This
approach will often reevaluate cells that depend only on cells whose values have
not changed, to no avail. Section 4.3 describes a more sophisticated mechanisms
for minimal recalculation actually used in Funcalc. That mechanism reevaluates
only those formula cells that depend on changed cells, but requires an explicit rep-
resentation of the dependencies between cells, the support graph (chapter 4). As
a warm-up, we therefore describe a simpler mechanism that requires no explicit
representation of these cell dependencies.

Regardless of the recalculation mechanism, a formula cell caches its value to
make the runtime complexity linear in the number of non-blank cells. An array
formula caches the value of the underlying array-valued expression, which is shared
between all the cells that must receive some part of that array value.

To support recalculation and caching, each formula has a state field of enumer-
ation type CellState. The possible states are Dirty (the cell’s value cache is invalid),
Computing (the cell value is currently being computed), and Uptodate (the cell’s
value cache is valid). There is also a state Enqueued, used only later in section 4.3.

At the beginning of a full recalculation the state of every cell is set to Dirty. Each
formula cell is then evaluated as follows:

1. If state is Uptodate, then return the cached value.

2. Else, if state is Computing, then the cell depends on itself; stop and report a
cyclic dependency involving this cell.

3. Else, set state to Computing and evaluate the cell’s expression. This will
cause referred-to cells to be recomputed and may ultimately reveal a cyclic
dependency.

4. If the evaluation succeeds, set state to Uptodate, cache the result value, and
return it.

46 Simple recalculation §2.12

The implementation of the Eval method in class Formula closely follows this recipe,
evaluating the formula’s expression e if the formula cell is dirty, and setting the
formula cell’s value cache v afterwards:

public override Value Eval(Sheet sheet, int col, int row) {
switch (state) {

case CellState.Uptodate:
break;

case CellState.Computing:
FullCellAddr culprit = new FullCellAddr(sheet, col, row);
String msg = String.Format("### CYCLE in cell {0} formula {1 1,

culprit, Show(col, row, ...));

throw new CyclicException(msg, culprit);

case CellState.Dirty:
state = CellState.Computing;
v = e.Eval(sheet, col, row);
state = CellState.Uptodate;
break;

}

return v,

}

Hence all formulas are eventually recomputed, and when necessary they are recom-
puted in the order imposed by dependencies, by simple recursive calls. This may
cause deep recursion if there are long dependency chains and an unfortunate order
of visits is chosen. (This could be fixed as follows: If the recalculation depth ex-
ceeds some threshold, an approximate topological sort in dependency order might
be performed and cells may be recomputed in that order. But that would lose the
simplicity of the above scheme).

One may represent the cell states using two boolean flags visited and uptodate
so that Dirty is !visited and luptodate ; Computingisvisited and !uptodate ;
and Uptodate is uptodate . Then one can use a trick—let the meaning of true and
false alternate—to avoid the costly resetting of each cell’s state at the beginning of
a full recalculation [106, section 2.11]. However, with minimal recalculation as de-
scribed in section 4.3 this is neither quite as important for performance, nor as easy
to implement, so we shall not use that trick here.

Another possibility is to replace the cell state by (hash-based) sets of cells during
recalculation, one set of the Visited cells and one set of the Uptodate ones; a cell is
Dirty if it is in neither of these. Then one can reset all cells to Dirty very easily:
simply discard the current Visited and Uptodate sets and replace them by empty
sets. It is doubtful whether this is fast in practice, however, because it may require
two set lookups (rather than a test of a enum type variable) to determine the state
of a cell, and it creates much work for the garbage collector.

’

§2.13 Cyclic references 47

2.12 Cyeclic references

The value of a cell may depend on the value of other cells, and may directly or in-
directly depend on itself. The purpose of the Computing state of a formula cell is
to allow the recalculation mechanism to discover such dependencies, stop recalcula-
tion, and report the discovery of a cycle.

2.13 Built-in functions

Corecalc built-in functions include mathematical functions (SIN), cell area functions
(SUM, array-valued functions (TRANSPOSE the conditional function (IF), which is
non-strict, and volatile functions (RAND. Built-in operators include the usual arith-
metic operators, such as +, - ,* and / .

Built-in functions and built-in operators are represented internally by objects of
class Function:

public class Function {
public readonly String name;
public Applier Applier { get; private set; }
public readonly int fixity;
public bool IsPlaceHolder { get; private set; }
private bool isVolatile;
private static readonly IDictionary<String, Function> ta ble;

}

The Function class uses a hash dictionary table to map a function name such as
"SIN" or an operator name such as "+" to a Function object.

The most important component of a Function object is a delegate applier of
type Applier. This delegate takes as argument a sheet reference, an array of argu-
ment expressions, and column and row numbers:

public delegate Value Applier(Sheet sheet, Expr[] es, int c ol, int row);
Evaluation of a function call or operator application simply passes the argument
expressions to the function’s Applier delegate as shown in section 2.6.5. A family of
auxiliary methods called MakeFunction can be used to create the Applier delegate
for a strict function from a delegate representing the function; another family called
MakeNumberFunction creates Appliers from delegates of return type double . We
use the standard .NET generic delegate types to represent non-void functions:

public delegate R Func<R>();

public delegate R Func<A1,R>(Al x1);

public delegate R Func<A1,A2,R>(Al x1, A2 x2);
. and so on ...

48 Built-in functions §2.13

2.13.1 Strict one-argument functions

Most functions are strict, that is, their arguments are fully evaluated before the
function is called. The applier for a strict function evaluates the argument ex-
pressions as if at cell sheet[col,row] and applies the function to the resulting
argument values, each of type Value.

An applier for a strict unary function from double to double , such as SIN() ,
can be manufactured like this:

private static Applier MakeNumberFunction(Func<double, double> dlg) {
return
delegate(Sheet sheet, Expr[] es, int col, int row) {

if (es.Length == 1) {
Value vO = es[0].Eval(sheet, col, row);
return NumberValue.Make(dlg(Value.ToDoubleOrNan(v0)));

} else
return ErrorValue.argCountError;

}

As can be seen, the Applier checks that exactly one argument is supplied, evaluates
it, attempts to extract a double (possibly a NaN representing an error value) from
the result, applies the given delegate dlg to the double , creates a NumberValue
from the result, and returns it.

This way new functions can easily be defined:

new Function("SIN", MakeNumberFunction(Math.Sin));
new Function("SQRT", MakeNumberFunction(Math.Sqrt));
new Function("TAN", MakeNumberFunction(Math.Tan));

2.13.2 Other strict functions

There are similar overloads of the MakeNumberFunction method for defining strict
double -valued and bool -valued functions:

private static Applier MakeNumberFunction(Func<double> dig) {
private static Applier MakeNumberFunction(Func<double, double> dig) {
private static Applier MakePredicate(Func<double, doubl e, bool> dig) {

The Func<double> overload is used to define argumentless functions such as RAND()
and NOW(); see section 2.13.3. The Func<double,double,double> overload is
used to define arithmetic operators; for instance:

new Function("™, 8, MakeNumberFunction(ExcelPow));

new Function(" *", 7, MakeNumberFunction((x, y) => x *Y);
new Function("/", 7, MakeNumberFunction((x, y) => x / y));

new Function("+", 6, MakeNumberFunction((x, y) => x + vy));

§2.13 Built-in functions 49

The integer arguments (6, 7, 8) indicate the operator’s fixity; see section 2.18. The
MakePredicate method is used to define comparison operators; for instance:

new Function(">", 5, MakePredicate((x, y) => x > y));
new Function("=", 4, MakePredicate((X, y) => x == Yy));

Further overloads of the MakeNumberFunction are used to define variable-argument
but double -valued functions such as SUMand AVERAGEN section 2.13.4. Fur-
ther overloads of the MakeFunction methods are used to define one-argument but
array-valued functions such as TRANSPOSIKn section 2.13.5, and other more general
functions such as MAP(see section A.2.2); for instance:

private static Applier MakeNumberFunction(Func<Value[] , double> dig) { ... }
private static Applier MakeFunction(Func<Value, Value> d lg) { ... }
private static Applier MakeFunction(Func<Value[], Value >dlg) { ...}

2.13.3 Volatile functions

A volatile function is implemented just like any other function. For instance, the
RAND() function can be implemented like this, where method ExcelRand simply
calls rnd.NextDouble on a static field rnd of type System.Random:

new Function("RAND", MakeNumberFunction(ExcelRand), is Volatile: true);

where the ExcelRand method uses a .NET Math.Random object random to get a
pseudo-random number between 0 and 1:

public static double ExcelRand() { return random.NextDoub le(); }

The NOW() function, which as in Excel returns the number of days since the base
date 30 December 1899, can be defined as follows:

new Function("NOW", MakeNumberFunction(ExcelNow), isVo latile: true);

The ExcelNow method reads the current time (in 100 nanosecond ticks) from the
.NET DataTime class and converts it to a number of fractional days:

public static double ExcelNow() {
return NumberValue.DoubleFromDateTimeTicks(DateTime. Now.Ticks);

}

The conversion is done by method DoubleFromDateTimeTicks in class Number-
Value, using appropriate definitions of the constants basedate and daysPerTick

private static readonly long basedate = new DateTime(1899, 12, 30).Ticks;
private static readonly double daysPerTick = 100E-9 / 60 / 60 | 24;
public static double DoubleFromDateTimeTicks(long ticks) {

return (ticks - basedate) * daysPerTick;

}

The most notable aspect of volatile functions is that they cause complications in the
design of the recalculation mechanism; see sections 3.3 and 4.3.

50 Built-in functions §2.13

2.13.4 Functions with multiple arguments

Functions such as SUM AVERAGEMIN and MAXtake multiple arguments, some of
which may be simple numbers, cell references, cell areas, or array values, as in
SUM(A1:B4, 8) or SUM(MMULT(A1:B2, C1:D2)) . These are evaluated by apply-
ing a suitable action to all arguments, and recursively to the elements of array
values, using the Apply method on class Value; see section 2.7:

public static double Sum(Value[] vs) {
double S = 0.0;
foreach (Value outerV in vs)
outerV.Apply(delegate(Value v)
{

S += NumberValue.ToDoubleOrNan(v);
Pk

return S;

}

The propagation of NaNs from argument to result in +=, as described in section 2.7.1,
ensures that if any argument to SUMis an error value then the result will be that
error value; and if any argument is not a NumberValue, then the result will be an
ArgType error value.

In actual fact, to avoid loss of significant digits when adding many numbers of
different magnitude, we use William Kahan’s summation formula, so the implemen-
tation of SUMooks a little more mysterious:

public static double Sum(Value[] vs) {
double S = 0.0, C = 0.0;
foreach (Value outerV in vs)
outerV.Apply(delegate(Value v)

double Y = NumberValue.ToDoubleOrNan(v) - C, T = S + Y;
C=(T-9)-Y;
S =T,

P}

return S;

}

The rounding error introduced by the Kahan summation formula is dramatically
smaller than that of the naive summation algorithm [48, Theorem 8]. The cost of
three additional floating-point subtractions per addition is negligible compared to
the costs of unwrapping number values and so on. We use the Kahan summation
formulation also in the implementation of AVERAGE

The above implementation of SUMis quite efficient even when applied to a large

cell area on a sheet, as in SUM(A1:A10000) , because the cell area expression A1:A10000

evaluates to an array view of the sheet, not to a large explicit array value that must
be allocated. Measurements made by Thomas Iversen [60] [106, section 5.2.2] show
that avoiding the array allocation brings a four-fold speedup, so that the above im-
plementation is only 3.4 times slower than Excel.

§2.13 Built-in functions 51

2.13.5 Functions with array-valued results

Some built-in functions produce an array value as result. This is the case in particu-
lar for functions used in array formulas: matrix transposition (TRANSPOSE matrix
multiplication (MMULT, linear regression (LINEST), and so on. The result of such a
function is an explicit array value (section 2.7.3), which contains a two-dimensional
array Valuel,] of values.

For instance, function TRANSPOSEakes as argument one expression that eval-
uates to an ArrayValue argument with size (cols’,rows’). The result is a new Ar-
rayExplicit value whose underlying value array sheet has size (cols,rows) with
cols = rows’ and cols’ = rows. Element [i, j] of the result array contains the value of
element [j,] the given argument array:

public static Value Transpose(Value v0) {
if (vO is ErrorValue) return vO;
ArrayValue vOarr = vO as ArrayValue;
if (vOoarr != null) {
int cols = vOarr.Rows, rows = vOarr.Cols;
Value[,] result = new Value[cols, rows];
for (int ¢ = 0; ¢ < cols; c++)
for (int r = 0; r < rows; r++)
result[c, r] = vOarrr, cJ;
return new ArrayExplicit(result);
} else
return ErrorValue.argTypeError;

2.13.6 Non-strict functions

For a non-strict function, the Applier delegate is not created by a MakeFunction
method but written outright. For instance, the three-argument function IF is de-
fined like this:

new Function("IF",
delegate(Sheet sheet, Expr[] es, int col, int row) {
if (es.Length == 3) {
Value vO = es[0].Eval(sheet, col, row);
NumberValue n0 = vO as NumberValue;
if (N0 != null && !'Double.IsInfinity(n0.value)
&& 'Double.IsNaN(n0.value))
if (n0.value = 0)
return es[1].Eval(sheet, col, row);
else
return es[2].Eval(sheet, col, row);
else if (vO is ErrorValue)
return vO;
else
return ErrorValue.argTypeErrorValue;

52 Moving formulas §2.15

} else
return ErrorValue.argCountErrorValue;

»

There must be three argument expressions in es. The first one must be non-null
and is evaluated to obtain a NumberValue. If the double contained in that value
is non-zero, the second argument is evaluated by calling its Eval method; else the
third argument is evaluated by calling its Eval method.

2.14 Copying formulas

The copying of formulas from one cell to one or more other cells is implemented using
the Windows clipboard, which uses “Object Linking and Embedding”, or OLE. For
this reason, the application must run in a so-called “single-threaded apartment”,
which means that the application’s Main method must have the STAThread at-
tribute.

The clipboard can hold multiple formats at the same time, so to ease exchange
with other applications, we copy to the clipboard a text representation of the cell
contents, as well as the Corecalc internal description of the cell. The internal rep-
resentation of the cell is simply its: the name of the sheet from which it is copied
and the cell address at which it occurs. This can lead to surprises if that particular
sheet cell is edited before one pastes from the clipboard.

A seemingly more robust alternative would be to transfer the actual cell object
via the clipboard by serialization (thus requiring all cell, formula and expression
classes to have the Serializable attribute). However, that would lose sharing of
expression abstract syntax, and in general causes mysterious problems, presumably
because built-in functions use delegate objects which are not correctly deserialized.

2.15 Moving formulas

Thanks to the internal representation of references, the cell references and cell area
references in a formula need not be updated when the formula is copied from one
cell one or more other cells. However, when a formula is moved from one cell and to
another cell, for instance by “cutting” and then “pasting” it, then references must be
updated in two ways, as shown by the example in figure 2.4:

e References from the moved formula to other cells appear unchanged in the Al
format, but in the internal representation relative references must actually be
changed, as they are stored as offsets. In the figure 2.4 example, the internal
representation of cell reference Al changes from R[-1]C to R[-2]C[-1]

e Cell references to the cell containing the formula before the move must be
updated so they refer to the cell containing the formula after the move. In
the example, the external as well as internal representation of the formulas in

§2.16 Inserting new rows or columns 53

cells B1 and C1 change as a consequence of the move. Even references from
other sheets in the workbook must be updated in this way. On the other hand,
references to cell areas that include the formula are not updated when the
formula is moved. Thus if C1 had contained a cell area reference A2:B2, then
C1 would be unaffected by the move of the formula in A2 to B3.

The second point above in particular is somewhat surprising, but is the semantics
implemented by Excel, Gnumeric and OpenOffice.

A B C A B C
1 11 =A2 =3A2 1 11 =B3 =B3
2 | =A1+$A%1 2
3 3 =A1+A1

Figure 2.4: Formulas before (left) and after (right) moving from A2 to B3.

The moving of formulas is only partially implemented in Corecalc, by method
Move on abstract class Expr and its concrete subclasses, and method MoveContents
on abstract class Cell and its concrete subclasses. Currently we do not implement:

e The adjustment of all references that pointed to the old cell so that henceforth
they point to the new cell. Also references from other sheets and from within
the moved formula must be adjusted. This adjustment should preserve the
sharing of the referring formulas.

e When a block of cells, all of which share the same underlying formula (due to
virtual copying) is moved, one should maintain the sharing in the moved cells.
This is not done currently; maybe the visited field can be used to implement
this?

2.16 Inserting new rows or columns

It should be possible to insert additional rows into a given sheet. This must not
only move, and hence change the numbering of, some rows within the given sheet,
but should also update references from cells in that sheet and in other sheets to the
moved rows. (Insertion of columns is entirely similar to insertion of rows and will
therefore not be discussed explicitly here). In general, one must update references
from the affected sheet as well as from other sheets.

Consider what happens when a new row 3 is inserted in the example sheet shown
on the left in figure 2.5.

A row-absolute reference must be updated if it refers to a row that follows the
inserted rows. In the example, this affects all the A3 references in the sheet
(before insertion).

A row-relative reference must be updated if the reference straddles the insertion:
that is, if the referring cell precedes the insert and the referred-to cell follows the

54 Inserting new rows or columns §2.16

insert, or vice versa. In both cases the reference must be increased (numerically) by
the number of inserted rows. In the example, this affects reference $A3 in cell B1,
references $A3 and $A4 in B2, references $A1 and $A2 in B3, and reference $A2 in
cell B4 (before the insertion).

A B A B

11 | =3A$2+$A$3+$A1+$A2+$A3 1] 11 | =3A$2+$A$4+SA1+SA2+3A4

21 | =3A32+A3+3A2+$A3+$A4 2 | 21 | =3A$2+$A$4+$A2+$A4+$A5
31 | =$AS2+$A$3+SAL+$A2+3SA3
41 | =A2+3A$3+$A2+$A3+$A4 4 | 31 | =3A$2+$A$4+SA1+$A2+$A4

| o DO| =

5| 41 | =3A$2+$AS4+$A2+$A4+$A5

Figure 2.5: Formulas before (left) and after (right) inserting new row 3.

The insertion of a row is illegal if it would split an array formula block; this is
enforced in OpenOffice, for instance. Therefore we first check that no array formula
straddles the insert; if one does, then the insert is rejected. To make this check,
we let a cached array formula include the corner coordinates of the area of partic-
ipating cells. The check is made by scanning all cells preceding the insert (if any),
and checking that no array formula block in that row extends to cells following the
insert.

One should avoid copying all formulas that are to be updated. That would lose
the sharing of expressions carefully achieved by the representation of relative and
absolute references; see section 2.8. On the other hand, a shared expression cannot
simply be adjusted destructively, because a it might then be adjusted once for each
cell that shares it.

Virtual formula copies near the insert may have relative references that straddle
the insert and therefore require adjustment, whereas virtual copies of the same
formula farther away from the insert do not have relative references that straddle
the insert. Hence even virtual formula copies on the same side of the insert may
need to be adjusted in different ways. The possible versions are further multiplied
if a formula contains relative references with different offsets.

Figure 2.6 shows the internal representation of the formulas shown in the fig-
ure 2.5 example above. On the left hand side it can be seen that before the insertion,
cells B1 and B2 contain virtual copies of the same formula, and cells B3 and B4 con-
tain virtual copies of another formula. On the right hand side it can be seen that
after the insert, no two formulas are the same internally.

Observation 1: All virtual copies of an expression on the same row must
be adjusted in the same way.

Using this observation, it is clear that sharing of copies of an expression on the
same row can be obtained as follows: When processing each row, maintain a dictio-
nary that maps old expressions to new (adjusted) expressions; if an old expression
is found in the dictionary, use a virtual copy of the new expression (simply set the

§2.16 Inserting new rows or columns 55
n| A B n| A B
0 | 11 | R1I+R2+R[0]+R[+1]+R[+2] 0 | 11 | R1+R3+R[0]+R[+1]+R[+3]
1 | 21 [R1+R2+R[0]+R[+1]+R[+2] 1 | 21 | R1+R3+R[0]+R[+2]+R[+3]
2 | 31 | R1+R2+R[-2]+R[-1]+R[0]
3 | 41 | R1+R2+R[-2]+R[-1]+R[0] 3 | 31 | R1+R3+R[-3]+R[-2]+R[0]
4 | 41 | R1+R3+R[-3]+R[-1]+R[0]

Figure 2.6: Internal representation before and after inserting new row R = 2 (zero-
based). References are in COR0 format, but the CO prefix has been omitted.

Expr reference in the Formula instance; formula instances are shared only in the
case of array formulas); else compute the new expression, add the entry (old,new) to
the dictionary, and use a virtual copy of new.

Observation 2: One can compute the range of rows for which the adjust-
ment is valid, as shown by the case analysis below.

Assume that N > 0 rows are to be inserted just before row R > 0. For relative refer-
ences, let § denote the offset before adjustment and ¢’ the offset after adjustment.

Aa An absolute reference to row n < R needs no adjustment. This (non-)adjustment
is valid regardless of the row r in which the containing expression appears.

Ab An absolute reference to row n > R must be adjusted to n+N. This adjustment
is valid regardless of the row r in which the containing expression appears.

Raa A relative reference to row n < R needs no adjustment if the containing ex-
pression appears in row r < R. The reference has &' = § = n — r before and
after the insertion.

Rab A relative reference to row n < R must be adjusted (changed from 6 = n — r to
0’ =n —r — N) if the containing expression appears in row r > R.

Rba A relative reference to row n > R must be adjusted (changed from § = n — r to
0’ =n —r+ N) if the containing expression appears in row r < R.

Rbb A relative reference to row n > R needs no adjustment if the containing ex-
pression appears in row r > R. The reference has &' = § = n — r before and
after the insertion.

In the example on the left of figures 2.5 and 2.6, case Aa applies to all the A2 ref-
erences; case Ab applies to all the A3 references; case Raa applies to the $A1 and
$A2 references in cells B1 and B2; case Rab applies to the $A1 and $A2 references
in cells B3 and B4; case Rba applies to the $A3 and $A4 references in cells B3 and
B4; and case Rbb applies to the $A3 and $A4 references in cells B1 and B2.

The cases Raa, Rab, Rba and Rbb for relative references can be translated into
the following constraints on the offset § = n — r and the containing row r:

56 Inserting new rows or columns §2.17

Raa Ifr < Rand § +r < R then no adjustment is needed. The resulting expression
is valid for rows r for which r < min(R, R — ¢), that is, r € [0, min(R, R — §)].

Rab If r > R and § + r < R then adjust to ¢’ = § — N. The resulting expression is
valid for rows r for which R <r < R — 4, thatis, r € [R, R — J|.

Rba If r < R and § + 7 > R then adjust to &' = § + N. The resulting expression is
valid for rows r for which R — 6 <r < R, thatis,r € [R — 4, R|.

Rbb Ifr > R and § +r > R then no adjustment is needed. The resulting expression
is valid for rows r for which r» > max(R, R — ¢), that is, r € [maxz(R,R — §), M|
where M is the number of rows in the sheet.

The variables R, N and r used above agree with the Corecalc implementation of
row insertion in method InsertRowCols in class Expr. For relative references we
additionally have j=rowRef and n=r+rowRef .

The adjustment of an entire expression is valid for the intersection of the rows
for which the adjustments of each of its relative references is valid.

Note that an adjustment for a reference is valid for an entire sheet (Aa and Ab)
or for a lower (Raa) or upper (Rbb) half-sheet, or for a band preceding (Rba) or a
band following (Rab) the insertion. In all cases this range is a half-open interval,
representable by its lower bound (inclusive) and upper bound (exclusive). The in-
tersection of intervals is itself an interval (possibly empty, though not here), easily
computed as [max(lower), min(upper)| .

Building further on Observation 1, we could maintain for each original expres-
sion a collection [(r1,€1),..., (*m, en)] of ranges r1,..., 7, and the adjusted versions
e1,...,en of the expression valid for each of those ranges.

But in fact, if we process the rows in increasing order, we only need to record, for
each adjusted expression in the dictionary, the least row U not in its validity range.
Once we reach a row r for which » > U, we recompute an adjusted expression and
save that and the corresponding new U to the dictionary.

This scheme will preserve sharing of virtual copies completely within each row.
However, sharing may be lost across rows, because the same adjusted version of an
expression may be valid at non-contiguous row ranges of the sheet (for instance, if a
row is inserted in a range of cells, each of which depends on a cell on the immediately
preceding row). The reason for this small deficiency is that our case analysis above
involves the row r in which the formula appears.

This could be partially alleviated by reusing the old expression whenever the
adjusted one is structurally identical. A more general solution would be to use a
form of hash-consing to (re)introduce sharing of expressions that turn out to be
identical after adjustment.

The insertion of new rows and new columns according to the above scheme is im-
plemented by methods called InsertRowCols on class Sheet, on abstract class Cell
and its subclasses, on abstract class Expr and its subclasses, and on class RARef.
A generic class Adjusted<T> is used to store adjusted copies of Expr and RARef
objects to preserve sharing as described above.

§2.17 Deleting rows or columns 57

2.17 Deleting rows or columns

Deletion of rows or columns is similar to insertion. Again we consider only dele-
tion of rows, since deletion of columns in completely analogous. More precisely, we
consider deleting N > 0 rows beginning with row R > 0, that is, deleting the rows
numbered R, R+ N —1. As in the insertion case, references from cells in rows follow-
ing row R + N on the affected sheet must be adjusted, as must references to those
rows from any cell in the workbook. Moreover, references to the deleted rows cannot
be adjusted in a meaningful way and must be replaced with a static error indication.
Figures 2.7 and 2.8 show an example in the ordinary A1l reference format and in the
internal CORO format.

A B A B

1| 11 | =A2+3A$4+SAL+$A2+$A4 11 | =3A$2+A3+SAL+$A2+$A3

2 | 21 | =A2+$AB4+$A2+$A3+SA5 21 | =$A$2+$A$3+$A2+#REF+$A4

41 | =A2+5A$3+$A1+$A2+$A3

O DO =

4 | 41 | =3AB2+3AB4+SAL+3A2+$A4 51 | =3A$2+$AS3+$A2+#REF+$A4

5] 51 | =A2+3A$4+$A2+$A3+$A5

Figure 2.7: Formulas before (left) and after (right) deleting row 3.

n| A B A B

0 | 11 | R1+R3+R[0]+R[+1]+R[+3] 11 | R1+R2+R[0]+R[+1]+R[+2]

1 | 21 | R1+R3+R[0]+R[+1]+R[+3] 21 | R1+R2+R[0]+#REF+R[+2]

41 | R1+R2+R[-2]+R[-1]+R[0]

WO S

3 | 41 | R1+R3+R[-3]+R[-2]+R[0] 51 | R1+R2+R[-2]+#REF+R[0]

4 | 51 | R1+R3+R[-3]+R[-2]+R][0]

Figure 2.8: Internal representation before and after deleting row R = 2 (zero-based).
References are in CORO format, but the CO prefix has been omitted.

The cases are analogous to those of insertion in section 2.16, with two additional
cases (Ac and Rc) to handle references to cells that get deleted.

Aa An absolute reference to row n < R needs no adjustment. This (non-)adjustment
is valid regardless of the row r in which the containing expression appears.

Ab An absolute reference to row n > R + N must be adjusted to n — N. This
adjustment is valid regardless of the row r in which the containing expression
appears.

Ac An absolute reference to row R < n < R + N must be replaced by a #REF
error indication. This adjustment is valid regardless of the row r in which the
containing expression appears.

58 Deleting rows or columns §2.18

Raa A relative reference to row n < R needs no adjustment if the containing ex-
pression appears in row r < R. The reference has ' = § = n — r before and
after the deletion.

Rab A relative reference to row n < R must be adjusted (changed from § = n — r to
0’ = n —r + N) if the containing expression appears in row r > R+ N.

Rba A relative reference to row n > R+ N must be adjusted (changed from § = n—r
to 8 = n —r — N) if the containing expression appears in row r < R.

Rbb A relative reference to row n > R + N needs no adjustment if the containing
expression appears in row r > R + N. The reference has §' = 6 = n — r before
and after the deletion.

Rca A relative reference to row R < n < R+ N from row r < R must be replaced
by an error indication #REF!.

Rcb A relative reference to row R < n < R+ N from row r > R+ N must be replaced
by an error indication #REF!.

In the example on the left of figures 2.7 and 2.8, case Aa applies to all the A2
references; case Ab applies to all the A3 references; case Ac does not apply any-
where; case Raa applies to the $A1 and $A2 references in cells B1 and B2; case Rab
applies to the $A1 and $A2 references in cells B4 and B5; case Rba applies to the
$A4 and $A5 references in cells B1 and B2; case Rbb applies to the $A4 and $A5
references in cells B4 and B5; case Rca applies to the $A3 reference in cell B2; and
case Rcb applies to the $A3 reference in cell B5.

The cases Raa, Rab, Rba, Rbb, Rca and Rcb for relative references can be trans-
lated into the following constraints on the offset § = n — r and the referring row
r:

Raa Ifr < R and § + r < R then no adjustment is needed. The resulting expression
is valid for rows r for which » < min(R, R —), that is, » € [0, min(R, R — 0)[.

Rab If r > R+ N and § + r < R then adjust to 6’ = § + N. The resulting expression
is valid for rows r for which R+ N <r < R—§, thatis,r € [R+ N, R — 4.

Rba If r < Rand 0 +r > R+ N then adjust to ¢’ = § — N. The resulting expression
is valid for rows r for which R+ N —§ <r < R, thatis,r € [R+ N — §, R|.

Rbb If r > R+ N and § + 7 > R+ N then no adjustment is needed. The resulting
expression is valid for rows r for which » > max(R,R + N — §), that is, » €
[max(R, R+ N — 6), M| where M is the number of rows in the sheet.

Reca If r < Rand R < § +r < R + N then the reference is invalid and must
be replaced by #REF!. The resulting expression is valid for rows r for which
R—0<r<min(R,R+ N —9), thatis,r € [R— 6, min(R, R+ N — J)[.

Reb If r > R+ N and R < 6 + 7 < R+ N then the reference is invalid and must
be replaced by #REF!. The resulting expression is valid for rows r for which
max(R+ N,R—0) <r < R+ N —§, thatis, r € [max(R+ N,R—9),R+ N —J|.

§2.18 Prettyprinting formulas 59

2.18 Prettyprinting formulas

To show operators properly in infix form and without excess parentheses, we add
to every Function an integer denoting its fixity and precedence. A fixity of 0 means
not an infix operator, positive means infix left associative, and higher value means
higher precedence (stronger binding). We could take negative to mean right asso-
ciative and indicate precedence by the absolute value, but that does not seem to
be needed. Even the exponentiation operator (") is left associative in Excel and
OpenOffice. In Gnumeric, it is right associative as is conventional in programming
languages.

Then we add a parameter ctxpre to the Show method of the Expr class to in-
dicate the context’s precedence. When the function to be printed is an infix with
precedence less than ctxpre , we must enclose it in parentheses; otherwise there is
no need for parentheses. Applications of functions that are not infix are printed as
F(el; ...; en) . Function arguments and top-level expressions have a ctxpre
of zero. To prettyprint (1-2)-3 without parentheses and 1-(2-3) with parenthe-
ses, the prettyprinter distinguishes left-hand operands from right-hand operands
by increasing the ctxpre of right-hand operands by one.

Another parameter to the Show method, of type Format, controls other aspects
of the display of formulas, such as whether references are shown in Al or R1C1
format.

60 Prettyprinting formulas

§2.18

Chapter 3

Alternative designs

The previous chapter presented details of the Corecalc implementation. This chap-
ter will review some aspects of the Corecalc design, especially the recalculation
mechanism, and explain why some seemingly plausible alternatives are difficult
to implement, or unlikely to work well.

3.1 Representation of references

As described in sections 2.15 through 2.17, cumbersome adjustments of referring
formulas must be performed when moving a formula from one cell to another, and
when inserting or deleting rows or columns in an existing sheet.

3.1.1 Direct object references

These adjustments would be automatic if a cell reference such as A1 was represented
as a direct object reference from the abstract syntax of one formula to the abstract
syntax of other formulas. However, such a representation would preclude sharing
of virtual formula copies.

Alternatively, the adjustment of referring formulas described in section 2.15
would be considerably simplified if the implementation maintained explicit knowl-
edge of which cells directly depend on the moved cell, for instance using a support
graph as described in section 3.3.2. With the current implementation, a scan of the
entire workbook is needed to find those cells, but cell move operations are infre-
quent, and the extra time required to scan the workbook is small compared to the
time it takes a user to perform these operations, usually done manually.

3.1.2 Reference representation in Excel

The fact that the XML export format of Excel 2003 uses the R1C1 format (sec-
tion 1.3) makes it reasonable to assume that a variant of R1C1 is the internal refer-

61

62 Minimal recalculation 83.3

ence format of Excel. However, patents 182 and 204 by Kaethler et al. indicate that
formula copies are (or were) not shared by default in Excel, which seems to remove
the main motivation for using R1C1. Also, the highly efficient formula implementa-
tion described in Schlafly’s patents 194 and 213 is not directly applicable to sharable
formulas, unlike Thomas Iversen’s implementation of runtime code generation [60].

3.2 Evaluation of array arguments

The current Corecalc implementation of aggregate functions such as SUMand AVERAGE

first evaluates all their arguments, and then applies a delegate to aggregate the
results. This may imply wasteful allocation of large intermediate data structures,
which can make Corecalc slower than Gnumeric and OpenOffice, as shown by Thomas
Iversen’s experiments [106, section 5.2.2].

An obvious alternative is to iterate over the unevaluated cell area arguments,
passing a delegate that evaluates the cells and aggregates the results in one pass,
thus avoiding the allocation of data structures that simply hold intermediate results
for a very short time.

3.3 Minimal recalculation

In the Corecalc implementation as described so far, each recalculation evaluates
every formula exactly once, and follows each reference from each formula once, for a
recalculation time that is linear in the sum of the sizes of all formulas. This provides
efficiency comparable to that of several other spreadsheet implementations when all
cells need to be recalculated [106, chapter 5]. Still, it would be desirable to improve
this so that each recalculation only considers cells that depend on some changed
cell, as is possibly the case in Excel.
Several “obvious” solutions are frequently proposed in discussions:

e Update event listeners on cells; see section 3.3.1.
e Explicit representation of the support graph; see section 3.3.2 and chapter 4.
e Topological sorting of cells in dependency order; see section 3.3.3.

e Speculatively reuse evaluation order; see section 3.3.4.

In the sections below we will discuss the merits of each of these proposed mecha-
nisms for minimal recalculation. To simplify discussion of space and time require-
ments, assume that only one cell has been edited before a recalculation, and let N4
be the number of non-null cells in the workbook, let F'4 be the total size of formulas
in the workbook, let N be the number of cells that depend on the changed (edited)
cell in a given recalculation, and let correspondingly Fp be the total size of formulas
in those cells.

83.3 Minimal recalculation 63

3.3.1 Update event listeners

One idea that seems initially plausible is to use event listeners. For instance, if
the formula in cell B2 depends on cells A1 and A2, then B2 could listen to value
change events on cells A1 and A2. Whenever the value of a cell changes, a value
change event is raised and can be handled by the listening cells. This makes each
dependent cell an observer of all its supporting cells.

However, it is difficult to make this design work in practice:

e First of all, the number of event listeners may be O(N3), quadratic in the
number of active cells. For instance, in the sheet shown in figure 5.2, the SUM
formula in cell Bn must have event listeners on n cells in column A. With N
such rows, the number of event listeners is O(N?). This poses two problems:
the space required to record the event handlers associated with cells (even if
the handler objects themselves can be shared), and the large number of event
handler calls. The space problem is by far the most severe one.

e Second, one needs a separate mechanism to determine the proper recalcula-
tion order anyway. The value change event listener cannot just initiate the
recalculation of the listening cell, because the handler may be called at a time
when some (other) supporting cells are not yet up to date. Hence an event
handler may just record that the cell needs to be recalculated, and perhaps
also that a particular supporting cell now is up to date.

e Third, a cell that contains a formula with a volatile function call must be recal-
culated even if the value of no supporting cell has changed. That is, one needs
to keep a separate list of such cells and recalculate them whenever anything
changes, or one could introduce artificial “events” on which such cells depend.

e Fourth, a dynamic cyclic dependency will cause an infinite chain of events,
unless a separate cycle detection scheme is implemented.

e Fifth, event listeners would have to be attached based on static dependencies.
For instance, if cell B2 contains the formula IF(RAND()>0.5; Al; A2) , then
B2 should attach event handlers to both A1 and A2. However, a value change
event on A1l may be irrelevant to B2, namely when the pseudo-random number
generator RAND() returns a number less than or equal to 0.5. In general, the
existence of non-strict functions means that some event handlers will be called
to no avail.

e Finally, the lists of event handlers need to be maintained when the contents
of cells are edited. This is fairly straightforward because the formula in a cell
contains the necessary information about it directly supporting cells. So when
a cell reference is added to or deleted from a formula, it is easy to find the
cell(s) that must have event listeners added or removed.

64 Minimal recalculation 83.3

3.3.2 Explicit support graph

A more general alternative to using event listeners is to build an explicit static sup-
port graph, whose nodes are sheet cells and where there is an edge from cell Al
to cell B2, say, if Al statically supports B2, or equivalently, B2 statically depends
on Al. The arrows drawn by the formula audit feature of modern spreadsheet pro-
grams essentially draw the support graph, as shown in figure 1.7.

An explicit support graph suffers from some of the same problems as the use of
event listeners. In fact, systematic attachment of event listeners as described above
would create precisely a support graph, where the edge from A1 to B2 is represented
by Al holding a reference to an event handler supplied by B2.

Some of the problems with using an explicit support graph are:

o First, as for event listeners, the support graph may have O(N?%) edges when
there are N, active cells, witness the example in figure 5.2. Thus the space
required to explicitly represent the support graph’s edges would be excessive.
But note that the dependency graph, represented by the formulas in the active
cells, requires only space O(F4). The reason for this is chiefly the compact
representation of sums and other formulas that take cell area arguments.

An interesting question is whether the support graph, like the dependency
graph, can be represented compactly?

e The support graph can be used to determine the proper recalculation order.
When a cell has been edited, one can determine all the cells reachable from it,
that is, all the cells transitively statically supported by that cell. Then one can
linearize the subgraph consisting of those cells by topological sorting in time
O(Fp). The resulting linear order is suitable for a single pass recalculation.

e As for event listeners, one needs to keep a list of the cells containing formulas
with volatile function calls, and recalculate those cells, and all cells reachable
from them, at every recalculation.

e A static cyclic dependency manifests itself as a cycle in the support graph, but
a static dependency may be harmless. When there is no cycle in the support
graph, there can be no dynamic cyclic dependency. When there is a cycle in
the support graph, which should be rare, a separate mechanism can be used to
determine whether this is also a harmful dynamic cyclic dependency. However,
a static cycle would complicate the topological sorting proposed above.

e As for event listeners, the support graph would have to be based on static
dependencies, with the same consequence: Some cells may be recomputed al-
though they do not actually (dynamically) depend on cells that have changed.

e The static support graph must be maintained when the contents of cells are
edited. As for event listeners, this is