
Spreadsheet technology

Version 0.12 of 2012-01-31

Peter Sestoft

IT University Technical Report Series TR-2011-142

ISSN 1600–6100 December 2011

Copyright c© 2011 Peter Sestoft

IT University of Copenhagen

All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

ISSN 1600–6100

ISBN 978-87-74949-237-0

Copies may be obtained by contacting:

IT University of Copenhagen

Rued Langgaardsvej 7

DK-2300 Copenhagen S

Denmark

Telephone: +45 72 18 50 00

Telefax: +45 72 18 50 01

Web www.itu.dk

Preface

Pre-release disclaimer This is a rough draft of a book manuscript, meant to ac-
company a pre-release 0.11.12.0 of the Corecalc/Funcalc software. Both the manuscript
and the software have some known deficiencies that will be fixed in future releases.

Yet we make a pre-release now to document recent implementation work and
the many insights gained since the 2006 technical report [106]. In particular, the
Funcalc user manual in appendix A should provide a true picture of the current
implementation.

But in general, expect inconsistencies and errors in this version of the manuscript.
You are more than welcome to point them out by mailing me at sestoft@itu.dk.

Actual preface Spreadsheet programs are used daily by millions of people for
tasks ranging from neatly organizing a list of addresses to complex economical sim-
ulations or analysis of biological data sets. Spreadsheet programs are easy to learn
and convenient to use because they have a clear visual data model (tabular) and a
simple efficient computation model (functional and side effect free).

Spreadsheet programs are usually not held in high regard by professional soft-
ware developers [19]. However, their implementation involves a large number of
non-trivial design considerations and time-space tradeoffs. Moreover, the basic
spreadsheet model can be extended, improved or otherwise experimented with in
many ways, both to test new technology and to provide new functionality in a con-
text that could make a difference to a large number of users.

Yet there does not seem to be a coherently designed, reasonably efficient open
source spreadsheet implementation that is a suitable platform for experiments. Ex-
isting open source spreadsheet implementations such as Gnumeric and OpenOffice
are rather complex, written in unmanaged languages such as C and C++, and the
documentation of their internals is sparse. Commercial spreadsheet implementa-
tions such as Microsoft Excel neither expose their internals through their source
code nor through adequate documentation of data representations and functions.

Goals of this book The purpose of this book is to enable others to make experi-
ments with innovative spreadsheet functionality and with new ways to implement
it. Therefore we have attempted to collect in one place a considerable body of knowl-
edge about spreadsheet implementation.

1

2

To our knowledge neither the challenges of efficient spreadsheet implementation
nor possible solutions to them are systematically presented in the existing scientific
literature. There are many patents on spreadsheet implementation, but they offer
a very fragmented picture, since patents traditionally do not describe the prior art
on which they build.

This report is a first attempt to provide a more coherent picture by gleaning
information from experience with existing spreadsheet implementations and with
our own implementation Corecalc, from the scientific literature, and from patents
and patent applications. For commercial software, this necessarily involves some
guesswork, but we have not resorted to any form of reverse engineering.

Contents The books comprises the following parts:

• A summary of the spreadsheet computation model and the most important
challenges for efficient recalculation, in chapter 1, including a survey of schol-
arly works, spreadsheet implementations and patents.

• A description of Corecalc, a core implementation of essential spreadsheet func-
tionality for making practical experiments, in chapter 2. A discussion of alter-
natives to some of the design decisions made in Corecalc, in chapter 3. A thor-
ough investigation a way to represent the support graph, a device for achieving
minimal recalculation, in chapter 4.

• A description of Funcalc, an extension of the interpretive Corecalc implemen-
tation with compiled sheet-defined functions. This permits users to define
their own functions without extraneous programming languages such as VBA,
Java or Python, and without any loss of efficiency compared to built-in func-
tions. Chapter 6 introduces and motivates the idea, and chapters 8 and chap-
ter 9 describe the implementation and possible design variations and exten-
sions.

• A list of possible extensions and future projects, in chapter 11.

• A user manual for the Funcalc implementation, in appendix A.

• A list of US patents and patent applications related to spreadsheet implemen-
tation, in appendix C.

The implementations of Corecalc and Funcalc are available in source form under a
liberal license, and are written in C#, using only managed code. They work with the
Microsoft .NET implementation on Windows and with the Mono implementation on
Linux.

Goals of the Corecalc implementation The purpose of the Corecalc implemen-
tation described in chapter 2 of this report is to provide a source code platform
for experiments with spreadsheet implementation. The Corecalc implementation is

3

written in C# and provides all essential spreadsheet functionality. The implemen-
tation is small and simple enough to allow experiments with design decisions and
extensions, yet complete and efficient enough to benchmark against real spread-
sheet programs such as Microsoft Excel, Gnumeric and OpenOffice Calc.

Goals of the Funcalc implementation The purpose of the Funcalc implementa-
tion described in chapters 6 through chapters 9 is to demonstrate that sheet-defined
functions can be both convenient and fast, and hence empower spreadsheet end-
users. The Funcalc implementation is an extension of Corecalc.

Availability and license The complete implementation, including documenta-
tion, will be available in binary and source form from the IT University of Copen-
hagen:

http://www.itu.dk/people/sestoft/corecalc/

The Corecalc implementation is copyrighted by the authors and distributed under
an MIT-style license:

Copyright c© 2006-2012 Peter Sestoft and others

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE

FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This means that you can use and modify the Corecalc and Funcalc software for
any purpose, including commerce, without a license fee, but the copyright notice
must remain in place, and you cannot blame us for any consequences of using or
abusing the software. In particular, we accept no responsibility if the commercial
exploitation of an idea presented in this report is construed to violate one or more
patents.

Also, all trademarks belong to their owners.

4

Acknowledgements This text began to take shape, and much new work on Fun-
calc was done, during a visit to Greg Morrisett’s group at Harvard University in
March-July 2009, in a splendid corner office across from the Museum of Natural
History. The chapters describing Corecalc are based on a previous technical report
[106] but have been revised to reflect the development of Funcalc.

The original impetus to look at spreadsheet technology came from Simon Peyton
Jones and Margaret Burnett during a visit to Microsoft Research, Cambridge UK,
in 2001, and from their 2003 paper with Alan Blackwell [92].

Thomas S. Iversen investigated the use of runtime code generation for speeding
up spreadsheet calculations in his 2006 MSc thesis project [60], jointly supervised
with Torben Mogensen (DIKU, University of Copenhagen). Parts of this work are
summarized in [106, chapter 5]. Thomas also restructured the core code base and
added functionality to read XMLSS files exported from Microsoft Excel.

Daniel S. Cortes and Morten W. Hansen investigated how to design and imple-
ment sheet-defined functions, thus allowing spreadsheet users to define their own
functions using well-known spreadsheet concepts. This work was done in their 2006
MSc thesis project [26].

Quan Vi Tran and Phong Ha investigated an alternative implementation of func-
tion sheets, using the infrastructure provided by Microsoft Excel. This work was
done in their 2006 MSc thesis project [51].

Morten Poulsen and Poul Serek implemented and experimented with the version
of the support graph construction in sections 5.1 through 5.4 [94]. Subsequently,
they built the first compiler implementation of sheet-defined functions, based on my
early versions of the design laid out in chapters 6 to 8.

Several groups of students have investigated distributed collaborative spread-
sheets based on the Corecalc platform, in particular Vincens Riber Mink and Daniel
Schiermer [78]. Nader Salas furthermore considered full traceability [103].

Other IT University students, including Jacob Atzen, Claus Skoubølling Jørgensen
and Jens Lind, investigated other parts of the spreadsheet design space.

5

Source code naming conventions

Name Meaning Type Page

act void delegate Action〈T〉
ae adjusted expression Adjusted〈Expr〉 56
arr array value ArrayValue 41
c column index variable int
ca cell address, absolute CellAddr 44
ccar cell or cell area reference CellRef, CellArea 95
cell cell Cell 35
col column number, zero-based int
cols column count int
deltaCol column increment int
deltaRow row increment int
e expression in formula Expr 36
es expression array Expr[]
fca full cell address, absolute FullCellAddr
fv function value, closure FunctionValue 177
lr lower right corner of area RARef 42
r row index variable int
raref relative/absolute reference RARef 42
row row number, zero-based int
rows row count int
sheet sheet Sheet 34
ul upper left corner of area RARef 42
v value Value 39
vs value array Value[]
workbook workbook Workbook 33

6

Contents

1 What is a spreadsheet 11

1.1 History . 11
1.2 Basic concepts . 11
1.3 Cell reference formats . 12
1.4 Formulas, functions and arrays . 14
1.5 Other spreadsheet features . 16
1.6 Dependency, support, and cycles . 16
1.7 Recalculation . 17
1.8 Spreadsheets are dynamically typed . 19
1.9 Error values must be propagated . 19
1.10 Spreadsheets are functional programs 20
1.11 Related work . 20
1.12 Online resources and implementations 23
1.13 Spreadsheet implementation patents 24

I Corecalc and interpretation 27

2 Corecalc implementation 29

2.1 Definitions . 29
2.2 Syntax and parsing . 31
2.3 Workbooks and sheets . 33
2.4 Sheets . 34
2.5 Cells, formulas and array formulas . 35
2.6 Expressions . 36
2.7 Runtime values . 39
2.8 Representation of cell references . 42
2.9 Sheet-absolute and sheet-relative references 44
2.10 Cell addresses . 44
2.11 Simple recalculation . 45
2.12 Cyclic references . 47
2.13 Built-in functions . 47
2.14 Copying formulas . 52

7

8 Contents

2.15 Moving formulas . 52
2.16 Inserting new rows or columns . 53
2.17 Deleting rows or columns . 57
2.18 Prettyprinting formulas . 59

3 Alternative designs 61

3.1 Representation of references . 61
3.2 Evaluation of array arguments . 62
3.3 Minimal recalculation . 62

4 The support graph 69

4.1 Compact representation of the support graph 69
4.2 Supporting blocks of cells . 70
4.3 Minimal recalculation using a support graph 78

5 Non-contiguous support 87

5.1 Arithmetic progressions and FAP sets 87
5.2 Support graph edge families and FAP sets 89
5.3 Creating and maintaining support graph edges 90
5.4 Reconstructing the support graph . 93
5.5 Other applications of a support graph 102
5.6 Related work . 103
5.7 Limitations and challenges . 103

II Funcalc and compilation 107

6 Sheet-defined functions 109

6.1 Introduction . 109
6.2 Examples of sheet-defined functions . 111
6.3 What’s wrong with VBA functions? . 123
6.4 Problem statement . 124
6.5 Design basis: spreadsheet principles 128

7 Compiling sheet-defined functions 131

7.1 Basic approach to code generation . 131
7.2 Taking value representation into account 132
7.3 The .Net bytecode corresponding to the C# code 135
7.4 Generating .Net bytecode with a C# program 138
7.5 Translation scheme (with value wrapping) 141
7.6 Avoiding intra-formula value wrapping 145
7.7 Avoiding inter-formula wrapping . 149
7.8 Compilation of comparisons and conditions 152
7.9 Avoiding duplicate generation of code 159
7.10 Reduce the use of local variables . 164

Contents 9

8 Functions and calls 167

8.1 Calling built-ins from sheet-defined functions 167
8.2 Calling a sheet-defined function . 169
8.3 Recursive calls and tail calls . 172
8.4 Higher-order sheet-defined functions 177
8.5 Speculation: Type analysis for function calls 178
8.6 Dynamic sheet indexing . 179
8.7 Calling external library functions . 181
8.8 Speculation: Functions with state . 191

9 Evaluation conditions 199

9.1 Why evaluation conditions? . 199
9.2 The basic compilation process . 200
9.3 The improved compilation model . 201
9.4 Evaluation conditions . 203
9.5 Representing evaluation conditions . 205
9.6 Generating evaluation conditions . 207
9.7 Refining evaluation conditions . 211
9.8 Example evaluation conditions . 215

10 Partial evaluation 217

10.1 Background on partial evaluation . 219
10.2 Partial evaluation of a sheet-defined function 219
10.3 Specialization examples . 227
10.4 Perspectives and future work . 232

11 Extensions and projects 233

11.1 Parallelization . 233
11.2 Moving and copying cells . 235
11.3 Interpretive evaluation mechanism . 235
11.4 Graphical user interface . 236
11.5 Other project ideas . 236

A Funcalc user manual 239

A.1 Funcalc features . 240
A.2 Built-in functions . 245
A.3 Inspecting generated bytecode . 257

B Source file organization 259

C Patents and applications 263

Bibliography 282

Index 291

10 Contents §0.0

Chapter 1

What is a spreadsheet

1.1 History

The first spreadsheet program was VisiCalc, developed by Dan Bricklin and Bob
Frankston in 1979 for the Apple II computer [13, 125]. A version for MS-DOS on
the IBM PC was released in 1981; the size of the executable was a modest 27 KB.

Many different spreadsheet programs followed, including SuperCalc, Lotus 1-2-
3, PlanPerfect, QuattroPro, and many more. By now the dominating spreadsheet
program is Microsoft Excel [76], whose executable weighs in at 9838 KB. Several
open source spreadsheet programs exist, including Gnumeric [47] and OpenOffice
Calc [88]. See also Wikipedia’s entry on spreadsheets [124].

1.2 Basic concepts

All spreadsheet programs have the same visual model: a two-dimensional grid of
cells. Columns are labelled with letters A, B, . . . , Z, AA, . . . , rows are labelled with
numbers 1, 2, . . . , cells are addressed by row and column: A1, A2, . . . , B1, B2, . . . ,
and rectangular cell areas by their corner coordinates, such as B2:C4. A cell can
contain a number, a text, or a formula. A formula can involve constants, arithmetic
operators such as (*), functions such as SUM(...) , and most importantly, references
to other cells such as C2 or to cell areas such as D2:D4 . Also, spreadsheet programs
perform automatic recalculation: whenever the contents of a cell has been edited,
all cells that directly or transitively dependent on that cell are recalculated.

Figure 1.1 shows an example spreadsheet, concerning three kinds of tools. For
each tool we know the unit count (column B) and the unit weight (column C). We
compute the total weight for each kind of tool (column D), the total number of tools
(cell B5), the total weight of all tools (cell D5) and the average unit weight (cell C7).
Moreover, in cells E2:E4 we compute the percentage the count for each kind of tool
makes up of the total number of tools. Figure 1.2 shows the formulas used in these
computations.

11

12 Cell reference formats §1.3

Figure 1.1: Spreadsheet window showing computed results.

Modern spreadsheet programs have one further essential feature in common. A
reference in a formula can be relative such as C2, or absolute such as B5, or a
mixture such as B$5 which is row-absolute but column-relative.

This distinction matters when the reference occurs in a formula that is copied
from one cell to another. In that case, an absolute reference remains unchanged,
whereas a relative reference gets adjusted by the distance (number of columns
and rows) from the original cell to the cell receiving the copy. A row-absolute and
column-relative reference will keep referring to the same row, but will have its col-
umn adjusted. The adjustment of relative references works also when copying a
formula from one cell to an entire cell area: each copy of the formula gets adjusted
according to its goal cell. Interestingly, the original VisiCalc did not distinguish
between relative and absolute references in formulas; instead one had to indicate
which references to adjust (relative) and which not (absolute) when copying a for-
mula.

Figure 1.2 shows the formulas behind the sheet from figure 1.1. The formulas in
D3:D4 are copies of that in D2, with the row numbers automatically adjusted from 2
to 3 and 4. The formula in D5 is a copy of that in B5, with the column automatically
adjusted from B to D in the cell area reference. Finally, the formulas in E3:E4 are
copies of the formula =B2/B5 * 100 in E2; note how the relative row number in B2
gets adjusted whereas the absolute row number in B5 does not.

So far, we have viewed a spreadsheet as a rectangular grid of cells. An equally
valid view is that a spreadsheet is a graph whose nodes are cells, and whose edges
(arrows) are the dependencies between cells; see figure 1.3. The two views corre-
spond roughly to what is called the physical and logical views by Isakowitz [59].

1.3 Cell reference formats

Usually, cell references and cell area references are entered and displayed in the
A1 format shown above, consisting of a column and a row indication. References
are relative by default, and an absolute column or row is indicated by the dollar ($)
prefix. The A1 cell reference format originates in VisiCalc [13].

§1.3 Cell reference formats 13

Figure 1.2: The formulas behind the spreadsheet in figure 1.1.

C2

C3

C4 B4

D4

D3

B2

E4

E3

D2

B3

E2

D5

C7

B5

Figure 1.3: A graph-oriented view of the spreadsheet in figures 1.1 and 1.2.

14 Formulas, functions and arrays §1.4

Microsoft’s Multiplan spreadsheet program (1982) used a different format, called
the R1C1 format, in which the row number is shown followed by the column num-
ber (so the opposite of the A1 format). References are numeric for both rows and
columns, and absolute by default, with relative references indicated by an offset in
square brackets. When the offset is zero it is left out, so RC means “this cell”. The
R1C1 format was used also in Piersol’s 1986 spreadsheet implementation [93] and
is still available in Excel today.

The R1C1 format is interesting because it is essentially the internal format of our
implementation Corecalc. The R1C1 is used in Excel’s XML export format XMLSS,
and Excel and Gnumeric (but apparently not OpenOffice) can optionally display
formulas in R1C1 format.

The main virtue of R1C1 format is that it is invariant under the adjustment of
relative cell references implied by copying of a formula. Figure 1.4 compares the
two reference formats.

A1 format R1C1 format Meaning
A1 R[-1]C[-1] Relative; previous row, previous column
A2 RC[-1] Relative; this row, previous column
B1 R[-1]C Relative; previous row, this column
B2 RC Relative; this cell
C3 R[+1]C[+1] Relative; next row, next column
A1 R1C1 Absolute; row 1, column 1 (A)
A2 R2C1 Absolute; row 2, column 1 (A)
B1 R1C2 Absolute; row 1, column 2 (B)
B2 R2C2 Absolute; row 2, column 2 (B)
C3 R3C3 Absolute; row 3, column 3 (C)
$A1 R[-1]C1 Relative row (previous); absolute column 1 (A)

Figure 1.4: References from cell B2 shown in A1 format and in R1C1 format.

1.4 Formulas, functions and arrays

As already shown, a formula in a cell is an expression that may contain references
to other cells, standard arithmetic operators such as (+), and calls to functions such
as SUM. Most spreadsheet programs implement standard mathematical functions
such as EXP, LOGand SIN , statistical functions such as MEDIANand probability
distributions, functions to generate pseudo-random number such as RAND, functions
to manipulate times and dates such as NOWand TODAY, financial functions such as
“present value”, a conditional function IF , array functions (see below), and much
more.

Some functions take arguments that may be a cell area reference, or range, such
as D2:D4, which denotes the three cells D2, D3 and D4. In general an area refer-
ence consists of two cell references, here D2 and D4, giving two corners of a rect-

§1.4 Formulas, functions and arrays 15

angular area of a sheet. The cell references giving the two corners may be any
combination of relative, absolute, or mixed relative/absolute. For instance, one may
enter the formula =SUM(A$1:A1) in cell B1 and copy it to cell B2 where it becomes
=SUM(A$1:A2) , to cell B3 where it becomes =SUM(A$1:A3) , and so on, as shown
in figure 1.5. The effect is that column B computes the partial sums of the numbers
in column A. Moreover, since the corner references were column relative, copying
column B’s formulas to column C would make column C compute the partial sums
of column B.

A B

1 0.5 =SUM(A$1:A1)
2 =A1* 1.00001 =SUM(A$1:A2)
3 =A2* 1.00001 =SUM(A$1:A3)

.
12288 =A12287 * 1.00001 =SUM(A$1:A12288)

Figure 1.5: Adjustment of cell area references when copying a formula.

Some built-in functions, called array functions, return an entire array (or matrix)
of values rather than a number or a text string. Such functions include TRANSPOSE,
which transposes a cell area, and MMULT, which computes matrix multiplication.
The array result must then be expanded over a rectangular cell area of the same
shape, so that each cell in the area receives one component (one atomic value).
In Excel, Gnumeric and OpenOffice this is achieved by entering the formula as a
so-called array formula. First one marks the display area, that is, the cell area
that should receive the values, then one enters the formula, and finally one types
Ctrl+Shift+Enter instead of just Enter to complete the formula entry. This holds
for Excel on Windows; for MacOS versions of Excel, use Cmd+Enter. The result-
ing formula is shown in curly braces, like {=TRANSPOSE(A1:B3)} , in every cell of
the display area, although each cell contains only one component of the result. See
figure 1.6 for an example.

Figure 1.6: The array formula {=TRANSPOSE(A1:B3)} in result area A5:C6.

16 Dependency, support, and cycles §1.6

Finally, modern spreadsheet programs allow the user to define multiple related
sheets, bundled in a so-called workbook. A cell reference can optionally refer to a cell
on another sheets in the same workbook using the notation Sheet2!A$1 in Excel
and Gnumeric, and Sheet2.A$1 in OpenOffice. Similarly, cell area references can
be qualified with the sheet, as in Sheet2!A$1:A1 . Naturally, the two corners of a
cell area must lie within the same sheet.

The Corecalc spreadsheet implementation described in chapter 2 of this report
supports all the functionality described above, including built-in functions and array
formulas.

1.5 Other spreadsheet features

Most modern spreadsheet programs furthermore provide business graphics (bar
charts, pie charts, scatterplots), pivot tables, database access, spell checkers, and
a large number of other useful and impressive features. Microsoft Excel’97 even
contained a flight simulator, which was activated as follows: Open a new workbook;
press F5; enter X97:L97 and press Enter; press Tab; press Ctrl+Shift; click the
Chart Wizard button. Such features shall not concern us here.

1.6 Dependency, support, and cycles

Clearly, a central concept is the dependence of one cell on the value of another. When
cell D2 contains the formula =B2* C2 as in figure 1.2, then we say that D2 directly

depends on cells B2 and C2, and cells B2 and C2 directly support cell D2. Some
spreadsheet programs, notably Excel and OpenOffice, can display the dependencies
using a feature called formula audit, as shown in figure 1.7. The arrows from cells
B5 and D5 to cell C7 show that both of those cells directly support C7, or equiva-
lently, that C7 directly depends on those two cells. In turn D5 depends on D2:D4,
and so on. In fact, the formula audit in figure 1.7 simply combines the graphical
view in figure 1.3 with the usual spreadsheet grid view.

Figure 1.7: The dependencies in the sheet from figures 1.1 and 1.2.

§1.7 Recalculation 17

A cell may directly depend on any number of other cells. For instance, cell B5 in
figures 1.2 and 1.7 directly depends B2, B3 and B4. Similarly, a cell may directly
support any number of other cells: cell B5 directly supports E2, E3 and E4.

More precisely, B5 both statically and dynamically depends on B2, B3 and B4. By
static dependence we mean that the formula text in B5 refers to the cells in B2:B5,
and by dynamic dependence, we mean that calculating the value of B5 requires
calculating the values of those three cells.

A static dependence may or may not cause a dynamic dependence; it is an ap-
proximation of dynamic dependence. For instance, a cell containing the formula
=IF(G1<>0; G2; G3) statically depends G1, G2 and G3, but in any given recal-
culation dynamically depends only on G1 and G2 or G1 and G3, according as G1 is
non-zero or zero. This is because IF is a non-strict function; see section 1.7.4.

A cell transitively depends on another cell (possibly itself) if there is a non-empty
chain of direct dependencies from the former to the latter. For instance, cell D5
indirectly depends on the nine cells in B2:D4. The notion of transitive support is
defined similarly. For instance, cell B4 transitively supports B5, D4, D5, C7 and E2,
E3, E4 — the latter three because they depend on B5.

If a cell statically transitively depends on itself, then there is a static cycle in the
workbook; and if a cell dynamically transitively depends on itself, then there is a
dynamic cycle. Sections 1.7.6 and 5.5 have more to say about cycles.

1.7 Recalculation

When the contents of a cell is changed by editing it, all cells supported by that cell,
whether in the same sheet or another sheet in the workbook, must be recalculated.
This happens relatively frequently, although hardly more than once every 2 seconds
when a human edits the sheet. Recalculations may happen far more frequently
when the cell is edited by a numerical zero-finding routine such as GOAL.SEEKor a
numerical optimization routine such as SOLVER.

1.7.1 Recalculation order

Recalculation should be completed in dependency order: If cell B2 depends on cell
A1, then the evaluation of A1 should be completed before the evaluation of B2 is
completed. However, recalculation can be initiated in bottom-up order or top-down
order.

In bottom-up order, recalculation starts with cells that do not depend on any
other cells, and always proceeds with cells that depend only on cells already com-
puted.

In top-down order, recalculation may start with any cell. When the value of
an as yet uncomputed cell is needed, then that cell is computed, and when that
computation is completed, the computation of the original cell is resumed. The sub-
computation may recursively lead to further subcomputations, but will terminate

18 Recalculation §1.7

unless there is a dynamic cyclic dependency. The current Corecalc implementation
uses top-down recalculation; see chapter 2.

1.7.2 Requirements on recalculation

The design of the recalculation mechanism is central to the efficiency and reliability
of a spreadsheet implementation, and the design space turns out to be large. First
let us consider the requirements on a recalculation after one cell has been edited,
which is the most frequent scenario:

• Recalculation should be correct. After a recalculation the contents of all cells
should be consistent with each other (in the absence of dynamic cycles).

• Recalculation should be efficient in time and space. The time required for a
recalculation should be at most linear in the total size of formulas in the sheet,
and ideally it should be linear in the size of formulas in those cells supported
by the cells that have changed, which is potentially a much smaller number.
Also, supporting data structures should require space that is at most linear in
the total size of formulas in the workbook. See section 1.7.3.

• Recalculation should accurately detect dynamic cycles; see section 1.7.6.

• Recalculation should avoid evaluating unused arguments of non-strict func-
tions such as IF(e1; e2; e3) and should evaluate volatile functions such as
NOW() and RAND() ; see sections 1.7.4 and 1.7.5.

1.7.3 Efficient recalculation

One way to ensure that recalculation takes time at most linear in the total size of
formulas, is to make sure that each formula and each array formula is evaluated at
most once in every recalculation. This is rather easy to ensure: visit every active
cell and evaluate its formula if not already evaluated, recursively evaluating any
supporting cells. This is the approach taken in Corecalc, which evaluates every for-
mula exactly once in each recalculation, using extra space (for the recursion stack)
that is at most linear in the total size of formulas.

It is possible but surprisingly complicated to do better than this, as discussed in
section 3.3 and chapter 4.

1.7.4 Non-strict functions

Most built-in functions in spreadsheet programs are strict: They require all their
arguments to be evaluated before they are called. But the function IF(e1; e2;
e3) is non-strict, as it evaluates at most one of e2 and e3 . For instance, the function
call IF(A2<>0; 1/A2; 1) evaluates its second operand 1/A2 only if A2 is non-
zero.

§1.9 Spreadsheets are dynamically typed 19

It is straightforward to implement non-strict functions: simply postpone argu-
ment evaluation until it is clear that the argument is needed. However, the exis-
tence of non-strict functions means that a static cyclic dependency may turn out to
be harmless, and it complicates the use of topological sorting to determine a safe
recalculation order. See section 3.3.3.

1.7.5 Volatile functions

Furthermore, some functions are volatile: Although they take no arguments, dif-
ferent calls typically produce different values. Typical volatile functions are NOW()
which returns the current time, and RAND() which returns a random number. Both
are easy to implement, but complicate the use of explicit dependency information of
to control recalculation order. See sections 3.3.1 and 3.3.2.

1.7.6 Dependency cycles

The existence of non-strict functions has implications for the presence or absence
of cycles. Assume that cell A1 contains the formula IF(A2<>0; A1; 1) . Then it
would seem that there is a cyclic dependence of A1 on A1, but that is the case only if
A2 is non-zero — only those arguments of an IF -function that actually get evaluated
can introduce a cycle.

This is how Excel and OpenOffice work. They report a cyclic dependency involv-
ing the argument of a non-strict functions only if the argument actually needs to be
evaluated. Strangely, Gnumeric does not appear to detect and report cycles at all,
whether involving non-strict functions or not.

1.8 Spreadsheets are dynamically typed

Spreadsheet programs distinguish between several types of data, such as num-
bers, text strings, logical values (Booleans) and arrays. However, this distinction
is made dynamically, in the style of Scheme [63], rather than statically, in the style
of Haskell [52] or Standard ML [77].

For instance, the formula =TRANSPOSE(IF(A1>0; B1:C2; 17)) is perfectly
OK so long as A1>0 is true, so that the argument to TRANSPOSEis an array-shaped
cell area, but evaluates to a array of error values #ARGTYPEif A1>0 is false.

Similarly, it is fine for cell D1 to contain the formula =IF(A1>0; 42; D1) so
long as A1>0 is true, but if A1>0 is false, then there is a cyclic dependency in the
sheet evaluation.

1.9 Error values must be propagated

Because spreadsheet formulas, like languages such as Lisp, Javascript and Ruby,
are dynamically typed, the evaluation of an expression may fail due to giving the

20 Related work §1.11

wrong number of arguments to a function, or due to the wrong type of argument,
and for many other reasons.

Two point are worth noting. First, such failures of evaluation should be tolerated
because they are likely to arise during editing of a spreadsheet model. Therefore a
failure should not crash the spreadsheet program by throwing an exception, say.
Second, there may be hundreds of such failed evaluations in a single recalculation
(during major edits to a spreadsheet model, for instance) and such failures should
not open hundreds of warning dialogs or similar.

Therefore, spreadsheet programs simply let a failed evaluation produce a distin-
guished kind of value, an error value. Further computations must propagate such
an error value, so that it can be easily traced back to its original cause. For exam-
ple, applying the mathematical logarithm function to a string as in LOG("zwei")
should produce an ArgType error value, and further computation must propagate
this error, so 10+LOG("zwei") must produce ArgType error as well, and so must
comparisons and conditionals such as 10+LOG("zwei")<A1 and IF(10+LOG("zwei")<A1,
22, 33) . Applying the logarithm to a negative number as in LOG(-3) must pro-
duce NumError error value, and so must any more complex expression that depends
on this function call.

1.10 Spreadsheets are functional programs

The recalculation mechanism of a spreadsheet program is in a sense dual to that
of lazy functional languages such as Haskell [52]. In a lazy functional language,
an intermediate expression is evaluated only when there is a demand for it, and its
value is then cached so that subsequent demands will use that value.

In a spreadsheet, a formula in a cell is (re)calculated only when some cell on
which it depends has been recalculated, and its value is then cached so that all cells
dependent on it will use that value.

So calculation in a lazy functional language is driven by demand for output,
or backwards, whereas (re)calculation in a spreadsheet is driven by availability of

input, or forwards.

The absence of assignment, destructive update and proper recursive definitions
implies that there are no data structure cycles in spreadsheets. All cyclic dependen-
cies are computational and are detected by the recalculation mechanism.

Spreadsheet programs have been proposed that are lazy also in the above sense
of evaluation being driven by demand for output; see Nuñez’s [85], and Du and
Wadge [34], who call this eductive evaluation.

1.11 Related work

Despite some non-trivial implementation design issues, the technical literature on
spreadsheet implementation is relatively sparse, as opposed to the trade literature

§1.11 Related work 21

consisting of spreadsheet manuals, handbooks and guidelines. There is also a con-
siderable scholarly literature on ergonomic and cognitive aspects of spreadsheet use
[59], on risks and mistakes in spreadsheet use [40, 90] and on techniques to avoid
them [97].

However, our interest here is spreadsheet implementation, and variations and
extensions on the spreadsheet concept. Literature in that area includes Piersol’s
1986 paper [93] on implementing a spreadsheet in Smalltalk. On the topic of re-
calculation, the paper hints that at first, an idea similar to update event listeners
(section 3.3.1) was attempted, but was given up in favor of another mechanism that
more resembles that implemented by Corecalc, described in section 2.11.

De Hoon’s 1995 MSc thesis [28] and related papers [29] describe a rather com-
prehensive spreadsheet implementation in the lazy functional language Clean. The
resulting spreadsheet is somewhat non-standard, as it uses the Clean language for
cell formulas, allows the user to define further functions in that language, and sup-
ports symbolic computation on formulas. Other papers on extended spreadsheet
paradigms in functional languages include Davie and Hammond’s Functional Hy-
persheets [27] and Lisper and Malmström’s Haxcel interface to Haskell [69].

Nuñez’s remarkable 2000 MSc thesis [85] presents ViSSh (Visualization Spread-
sheet), an extended spreadsheet system. The system is based on three ideas. First,
as in Piersol’s system, there is a rich variety of types of cell contents, such as graph-
ical components; second, the functional language Scheme is used for writing formu-
las, and there is no distinction between values and functions; and third, the system
uses lazy evaluation so recalculation is performed only when it has an impact on
observable output. Among other things, these generalizations enable a spreadsheet
formula to “call” another sheet as a function. The implementation seems to main-
tain both an explicit dependency graph and an explicit support graph. This can
be very space-consuming in the presence of copies of formulas with cell area argu-
ments, as discussed in section 3.3.2.

Wang and Ambler developed an experimental spreadsheet program called For-
mulate [122]. Region arguments are used instead of the usual relative/absolute cell
references, and functions are applied based on the shape of their region arguments.
The Formulate implementation does not appear to be publicly available.

Burnett et al. developed Forms/3 [17], which contains several generalizations of
the spreadsheet paradigm. New abstraction mechanisms are added, and the eval-
uation mechanism is extended to react not only to user edits, but also to external
events such as time passing, or new data arriving asynchronously on a stream.
Forms/3 is implemented in Liquid Common Lisp and is a available (for non-commercial
use) in binary form for the Sun Solaris and HP-UX operating systems, but does not
appear to be available in source form.

A MITRE technical report [44] by Francoeur presents a recalculation engine,
called ExcelComp, in Java for Excel spreadsheets. The engine has an interpreted
mode and a compiled mode. The approach requires that the spreadsheet does not
contain any static cyclic dependencies, and it is not clear that it handles volatile
functions. There is no discussion of the size of the dependency graph or of techniques
for representing it compactly. The ExcelComp implementation is not available to the

22 Related work §1.11

public [45].
Yoder and Cohn have written a whole series of papers on spreadsheets, data-flow

computation, and parallel execution. Topics include the relation between spread-
sheet computation, demand-driven (eductive, lazy) and data-driven (eager) evalu-
ation, parallel evaluation, and generalized indexing notations [128]; the design of
a spreadsheet language Mini-SP with array values and recursion (not unlike Core-
calc) and a case study solving several non-trivial computation problems [129]; and a
Generalized Spreadsheet Model in which cell formulas can be Scheme expressions,
including functions, and an explicit “dependency graph” (actually a support graph
as defined in section 3.3.2) is used to perform minimal recalculation and to schedule
parallel execution [127, 130].

Clack and Braine present a spreadsheet paradigm modified to include features
from functional programming, such as higher-order functions, as well as features
from object-oriented programming, such as virtual methods and dynamic dispatch
[22].

None of the investigated implementations appear to use the sharing-preserving
formula representation of Corecalc.

In addition to Yoden and Cohn’s papers mentioned above, there are a few other
papers on parallelization of spreadsheet computations. For instance, in his thesis
[121], Wack investigates how the dependency graph can be used to schedule parallel
computation.

Field-programmable custom hardware for spreadsheet evaluation has been pro-
posed by Lew and Halverson [66]. Custom circuitry realizing a particular spread-
sheet’s formula is generated at runtime by configuring an FPGA (field-programmable
gate array) chip attached to a desktop computer. This can be thought of as an ex-
treme form of runtime code generation. As an added benefit it ought to be possible
to perform computations in parallel; spreadsheets lends themselves well to paral-
lelization because of a fairly static dependency structure.

A paper [112] by Stadelmann describes a spreadsheet paradigm that uses equa-
tional constraints (as in constraint logic programming) instead of unidirectional for-
mulas. Some patents and patent applications (numbers 168 and 220) propose a sim-
ilar idea. This seriously changes the recalculation machinery needed; Stadelmann
used Wolfram’s Mathematica [126] tool to compute solutions.

A spreadsheet paradigm that computes with intervals, or even interval con-
straints, is proposed by Hyvönen and de Pascale in a couple of papers [30, 55, 56].

The interval computation approach was used in the PhD thesis [8] of Ayalew
as a tool for testing spreadsheets: Users can create a “shadow” sheet with interval
formulas that specify the expected values of the real sheet’s formulas.

Burnett and her group have developed several methods for spreadsheet testing,
in particular the Wysiwyt or “What You See Is What You Test” approach [18, 98,
99, 100, 41], within the EUSES consortium [109]. This work is the subject also of
patents 144 and 145, listed in appendix C.

Several researchers have recently proposed various forms of type systems for
spreadsheets, usually to support units of measurements so that one can prevent
accidental addition of dollars and yen, or of inches and kilograms. Some notable

§1.13 Online resources and implementations 23

contributions: Erwig and Burnett [38]; Ahmad and others [6]; Antoniu and others
[7]; Coblenz [23]; and Abraham and Erwig [2, 4].

1.12 Online resources and implementations

The company Decision Models sells advice on how to improve recalculation times for
Excel spreadsheets, and in that connection provides useful technical information on
Excel’s implementation on their website [32]; see section 3.3.5.

There are quite a few open source spreadsheet implementations in addition to
the modern comprehensive implementations Gnumeric [47] and OpenOffice Calc
[88], already mentioned. A Unix classic is sc , originally written by James Gosling
and now maintained by Chuck Martin [72], and the several descendants of sc such
as xspread , slsc and ss . The user interface of sc is text-based, reminiscent of
VisiCalc, SuperCalc and other DOS era spreadsheet programs.

A comprehensive and free spreadsheet program is Abykus [108] by Brad Smith.
This program is not open source, and presents a number of generalizations and
deviations relative to the mainstream (Excel, OpenOffice and Gnumeric).

One managed code open source spreadsheet program is Vincent Granet’s XXL
[49], written in STk, a version of Tk based on the Scheme programming language.
Another one, currently less developed, is Einar Pehrson’s CleanSheets [91], which
is written in Java. More spreadsheet programs — historical, commercial or open
source — are listed on Chris Browne’s spreadsheet website [14], with historical
notes connecting them. Another source of useful information is the list of frequently
asked questions [105] from the Usenet newsgroup comp.apps.spreadsheets , al-
though the last update was in June 2002. The newsgroup itself [117] seems to be
devoted mainly to spreadsheet application and does not appear to receive much traf-
fic.

A number of commercial closed source managed code implementations of Excel-
compatible spreadsheet recalculation engines, graphical components and report gen-
erators exist. Two such implementations are Formula One for Java [95] and Spread-
sheetGear for .NET [111]; the lead developer for both is (or was) Joe Erickson. Two
other implementations are KDCalc [58] from Knowledge Dynamics Inc. and Spread-
sheetConverter by Framtidsforum AB [43]. Such implementations are typically
used to implement spreadsheet logic on servers without the need to reimplement
formulas and so on in Java, C# or other programming languages.

Spreadsheet implementation is frequently used to illustrate the use of a pro-
gramming language or software engineering techniques; for instance, that was the
original goal of the above-mentioned XXL spreadsheet program. A very early exam-
ple is the MicroCalc example distributed in source form with Borland Turbo Pascal
1.0 (November 1983), still available at Borland’s “Antique Software” site [12]. A
more recent example is the spreadsheet chapter in John English’s Ada95 book [37,
chapter 18]; however, this is clearly not designed with efficiency in mind.

24 Spreadsheet implementation patents §1.13

1.13 Spreadsheet implementation patents

The dearth of technical and scientific literature on spreadsheet implementation is
made up for by the great number of patents and patent applications. Searches
for such documents can be performed at the European Patent Office’s Espacenet
[87] and the US Patents and Trademarks Office [116]. A search for US patents or
patent applications in which the word “spreadsheet” appears in the title or abstract
currently gives 581 results. Appendix C lists several hundred of these that appear
to be concerned with the implementation rather than the use of spreadsheets.

Some patents of interest are:

• Harris and Bastian at WordPerfect Corporation have a patent, number 223
in appendix C, on a method for “optimal recalculation”, further discussed in
section 3.3.7.

• Roger Schlafly has two patents, numbers 194 and 213 in appendix C, that
describe runtime compilation of spreadsheet formulas to x86 code. A distin-
guishing feature is clever use of the math coprocessor and the then relative
recent IEEE 754 binary floating-point number representation, and especially
NaN values, to achieve very fast formula evaluation.

• Bruce Cordel and others at Microsoft have submitted a patent application,
number 24 in appendix C, on multiprocessor recalculation of spreadsheet for-
mulas. It includes a description of the uniprocessor recalculation model that
agrees with that given by La Penna [64], summarized in section 3.3.5.

In fact, in one of the first software patent controversies, several major spreadsheet
implementors were sued in 1989 for infringing on US Patent No. 4,398,249, filed by
Rene K. Pardo and Remy Landau in 1970 and granted in 1983 [62]. The patent in
question appears to contain no useful contents at all. The United States Court of
Appeals for the Federal Circuit in 1996 upheld the District Court’s ruling that the
patent is unenforceable [115].

A surprising number of patents and patent applications claim to have invented
compilation of spreadsheet models to more traditional kinds of code, similar to the
compiled-mode version of Francoeur’s implementation [44] mentioned above:

• Schlafly’s patents (numbers 194 and 213 in appendix C) describe compilation
of individual formulas to x86 machine code.

• Khosrowshahi and Woloshin’s patent (number 141) describes compilation of a
spreadsheet model with designated input cells and output cells to code in a
procedural programming language.

• Rank and Pampuch’s patent application (number 132) describes the idea, but
few technical details, of cross-compilation of spreadsheet formulas for space-
conserving execution on a PDA. This involves, for instance, leaving out unused
library functions.

§1.13 Spreadsheet implementation patents 25

• Rubin and Smialek’s patent application (number 101) describes a particular
spreadsheet recalculation engine, as well as compilation of individual formulas
to source code in Java and other languages. Does not seem to handle non-
strict functions specially. Probably the system described is the commercial tool
KDCalc [58] that allows Excel workbooks to be compiled to web applications
and more.

• Waldau’s patent application (number 82) describes cross-compilation to an-
other platform, such as a mobile phone or web service. This is a technically
substantial patent with references to relevant prior art, such as Schlafly’s
patents. It describes compilation to dynamically typed and statically typed
languages (JavaScript and Java), and how to present the generated code as
a WML service, say. Probably the technology described by this application is
that used in the SpreadsheetConverter product [43].

• Tanenbaum’s patent applications (number 16 and 46) describe compilation of
a spreadsheet model with designated input cells and output cells to C source
code.

26 Spreadsheet implementation patents §1.13

Part I

Corecalc and interpretation

27

Chapter 2

Corecalc implementation

This chapter describes the Corecalc spreadsheet core implementation, focusing on
concepts and details that may be useful to somebody who wants to modify it.

2.1 Definitions

Here we define the main Corecalc concepts in the style of Landin and Burge. A
UML-style summary is given in figure 2.1.

• A workbook of class Workbook (section 2.3) consists of a collection of sheets.

• A sheet of class Sheet (section 2.4) is a rectangular array, each of whose ele-
ments may contain null or a cell.

• A non-null cell of abstract class Cell (section 2.5) may be

– a constant floating-point number of class NumberCell

– or a constant text string of class QuoteCell or of TextCell

– or an empty cell of class BlankCell

– or a formula of class Formula

– or a array formula of class ArrayFormula

A cell could also specify the formatting of contents, data validation criteria,
background colour, and other attributes, but currently does not.

• A formula of class Formula (section 2.5) consists of

– a non-null expression of class Expr to produce the cell’s value

– and a cached value of class Value

– and a workbook reference of class Workbook

29

30 Definitions §2.1

– and a state field of type CellState.

• An array formula of class ArrayFormula (section 2.5) consists of

– a non-null cached array formula of class CachedArrayFormula

– and a cell address of struct type CellAddr

• A cached array formula of class CachedArrayFormula (section 2.5) consists of

– a formula of class Formula

– and the address, as a pair (c, r), at which that formula was entered

– and the corners (ulCa, lrCa) of the rectangle of cells sharing the formula

• An expression of abstract class Expr (section 2.6) may be

– a floating-point constant of class NumberConst

– or a constant text string of class TextConst

– or a static error of class Error

– or a cell reference of class CellRef (an optional sheet and a relative/absolute
reference)

– or an area reference of class CellArea (an optional sheet and two rela-
tive/absolute references)

– or an application (call) of an operator or function, of class FunCall.

• A value of abstract class Value (section 2.7) is produced by evaluation of an
expression. A value may be

– a floating-point number of class NumberValue

– or a text string of class TextValue

– or an error value of class ErrorValue

– or an array value of class ArrayValue

– or an external object reference encapsulated as an ObjectValue (used when
implementing external functions; see section 8.7.2)

– or a function value of class FunctionValue (used to implement higher-
order sheet-defined functions; see section 2.7.4).

• An atomic value is a NumberValue or a TextValue.

• An array value of abstract class ArrayValue is either an explicit array of class
ArrayExplicit (which is a window onto a rectangular array of values of class
Value, some of which may be null); or an array view of class ArrayView (which
is a window onto a sheet).

§2.2 Syntax and parsing 31

• A raref or relative/absolute reference of class RARef (section 2.8) is a four-
tuple (colAbs , col , rowAbs , row) used to represent cell references A1, A1,
$A1, A$1, and area references A1:$B2 and so on in formulas. If the colAbs
field is true, then the column reference col is absolute ($), otherwise relative
(non-$); and similarly for rows.

• A cell address of struct type CellAddr (section 2.10) is the absolute, zero-based
location (col, row) of a cell in a sheet.

• A function of class Function (section 2.13) represents a built-in function such
as SIN or a built-in operator such as (+).

2.2 Syntax and parsing

2.2.1 Corecalc cell contents syntax

The syntax of Corecalc cell contents is very similar to that of Excel, Gnumeric and
OpenOffice:

Expr ::= Raref ::=
Expr == Expr Column Row

| Expr <> Expr | $ Column Row
| Expr < Expr | Column $ Row
| Expr <= Expr | $ Column $ Row
| Expr > Expr | R Offset C Offset
| Expr >= Expr
| Expr & Expr Offset ::=
| Expr + Expr <empty>
| Expr - Expr | Uint
| Expr * Expr | [Int]
| Expr / Expr
| Expr ˆ Expr Call ::=
| Raref Name (Exprs)
| Raref : Raref
| Sheetref Exprs ::=
| Number Expr
| " String " | Expr ; Exprs
| (Expr)
| Call CellContents ::=

Number
Sheetref ::= | ’ String

Name ! Raref | " String "
| Name ! Raref : Raref | = Expr

Above, Number is a floating-point constant; String is a sequence of characters;
Nameis a legal function or sheet name; Column is a column name A, B, . . . ; Rowis a
row number 1, 2, . . . ; Uint is a non-negative integer; and Int is an integer.

32 Syntax and parsing §2.2

Figure 2.1: The classes supporting interpretive evaluation in Corecalc and Funcalc.
A triangular arrow denotes inheritance, with the arrow pointing at the base class,
as seen in the three class hierarchies deriving from abstract classes Cell, Expr and
Value. An arrow originating in an open rhombus denotes aggregation: the instance
at the rhombus end has zero or more references to instances at the other end, though
possibly shared with other instances. An arrow originating in a solid rhombus de-
notes composition: the instance at the rhombus end has zero or more references to
instances at the other end, accessible only from the instance at the rhombus end.

§2.4 Workbooks and sheets 33

There is no special syntax for array formulas. As in Excel and OpenOffice, such
formulas are written as ordinary formulas, and then completed by entering the spe-
cial incantation Ctrl+Shift+Enter.

2.2.2 Formula parsing

The above grammar has been rewritten to produce a scanner and parser specifica-
tion for the CoCo/R generator of recursive descent parsers [82]. Mostly the rewrite
has been necessary to give operators the correct associativity and precedence, while
avoiding left recursive grammar productions. All operators are left associative, even
the exponentiation operator (ˆ), just as in Excel and OpenOffice. The resulting
parser builds and returns the abstract syntax tree as a Cell object. This is pretty
straightforward, but the following things must be considered:

• When parsing a formula we must know the workbook that contains it, and the
cell address at which it was entered. Otherwise relative cell references and
area references, and sheet-absolute ditto, cannot be resolved to the abstract
syntax that we use.

• The CoCo/R scanner apparently does not support the definition of overlapping
token classes, such as column ([a-zA-Z]+) and identifier ([a-zA-Z][a-zA-Z0-9] *).

This complicates the notation for calls to functions, such as LOG10, whose
name looks like a cell reference. This is not a problem in Excel 2003, Gnu-
meric and OpenOffice 2, in which the last column name is IV , corresponding
to column number 256.

2.3 Workbooks and sheets

A workbook of class Workbook contains zero or more sheets, organized as a list of
non-null Sheet references, where no two references refer to the same Sheet object.

Notable methods on class Workbook include:

• void AddSheet(Sheet sheet) adds sheet at the end of the workbook.

• Sheet this[String name] returns the named sheet.

• void Recalculate() initiates a recalculation of all changed and volatile
cells, and all cells transitively dependent on these, in all sheets of the work-
book; see section 4.3.1.

• void RecalculateFull() initiates a full recalculation, of all active cells in
all sheets of the workbook; see section 4.3.1.

• void RecalculateFullRebuild() rebuilds the support graph (section 4.2.8)
and then initiates a full recalculation.

34 Sheets §2.4

2.4 Sheets

A Sheet contains a rectangular array of cells (type Cell[,]) each element of which
may be null, representing an inactive cell, or non-null, representing an active cell.
No two cell references from the same sheet or from different sheets can refer to the
same Cell object.

Notable methods on class Sheet include:

• Cell InsertCell(String text, CellAddr ca) parses text to a cell, stores
it at position ca in the sheet, and returns the cell.

• void InsertArrayFormula(Cell cell, int col, int row, CellAddr
ulCa, CellAddr lrCa) creates as CachedArrayFormula from cell , which
must be a Formula, and stores ArrayFormula objects in the cells in the area
with corners ulCa and lrCa , all sharing the same CachedArrayFormula.

• void InsertRowCols(int R, int N, bool doRows) inserts Nnew rows
(or columns) before row (or column) R >= 0 in this sheet, and adjusts all re-
ferring formulas in this sheet and other sheets by calling InsertRowCols on
active cells. Performs row insertion if doRows is true; otherwise performs col-
umn insertion. See section 2.16.

• void MoveCell(int fromCol, int fromRow, int col, int row) moves
the cell contents in cell (fromCol ,fromRow) to cell (col , row).

• void PasteCell(Cell cell, CellAddr ca, int cols, int rows) pastes
or copies cell , which must be a formula or constant, to the cell area that has
upper left-hand corner (ca.col , ca.row), and cols columns and rows rows.
If cell is a formula, all the resulting Formula objects will be distinct but will
share the same underlying Expr object.

• void PasteCell(Cell cell, CellAddr ca) pastes or copies cell , which
must be a formula or constant, to the cell address ca . If cell is a formula,
then the new cell has its own Formula object, but shares cell ’s underlying
Expr object.

• void RecalculateFull() initiates a full recalculation, of all active cells in
the sheet.

• void Reset() calls Reset() on every active cell in the sheet.

• void ShowAll(Shower show) calls show(col, row, val) for every ac-
tive cell in the sheet, passing its column, row and value.

• String Show(int col, int row) returns a string representing the Cell
contents at position (col ,row).

• String ShowValue(int col, int row) returns a string representing the
value (if any) in the cell at position (col ,row).

§2.5 Cells, formulas and array formulas 35

• Cell this[int col, int row] gets or sets the cell at position (col ,row)
in the sheet.

• Cell this[CellAddr ca] gets or sets the cell at position in the sheet.

2.5 Cells, formulas and array formulas

A cell in a sheet may contain an object of abstract type Cell, which has concrete
subclasses NumberCell, TextCell, Formula and ArrayFormula; see figure 2.1.

Abstract class Cell has the following significant methods:

• Value Eval(Sheet sheet, int col, int row) evaluates the cell’s con-
tents, and all cells that it depends on, and marks the cell up to date, unless
already up to date; then returns the cell’s value.

• void InsertRowCols(Dictionary<Expr,Adjusted<Expr>> adjusted,
Sheet modSheet, bool thisSheet, int R, int N, int r, bool doRo ws)
adjusts the formula in this cell, originally in row (or column) r , after insertion
of Nnew rows (or columns) before row (or column) R >= 0. Performs row inser-
tion if doRows is true; otherwise performs column insertion. See section 2.16.

• Cell MoveContents(int deltaCol, int deltaRow) returns a new cell
object, resulting from moving the given cell by (deltaCol , deltaRow).

• static Cell Parse(String text, Workbook workbook, int col, int
row) parses text to a cell within the given workbook and assuming the cell’s
position is (col , row).

• void ResetCellState() resets the cell’s state flag, if any, to Dirty; see
section 2.11.

• String Show(int col, int row, Format fo) shows the cell’s contents
(nothing, constant, formula, array formula).

• String ShowValue(Sheet sheet, int col, int row) returns a string
displaying the cell’s value, if necessary computing it first.

A floating-point constant is represented by a NumberCell object, and a text constant
is represented a TextCell object.

An ordinary number-valued or text-valued formula is represented by a Formula
object and is basically an expression together with machinery for caching its value,
once computed. Thus a formula contains a non-null expression of class Expr, a
cached value of class Value, a cell state field to control recalculation (see section 2.11),
and a reference to the containing workbook. The latter serves to resolve absolute
sheet references within the expression.

Whereas a given Formula object shall not be reachable from multiple distinct
Cell[,] elements, an Expr object may well be reachable from many distinct Formula

36 Expressions §2.6

objects. In fact, it is a design objective of Corecalc to achieve such sharing of Expr
objects; see section 2.8.

An array formula computes an array value, that is, a rectangular array of val-
ues. This result must be expanded over a rectangular cell area of the same shape as
the array value, so that each cell in the area receives one component (one ordinary
value) from the array value, just as in Excel and OpenOffice. An ArrayFormula is a
cell entry that represents one cell’s component of the array. Hence an ArrayFormula
object in a sheet cell contains two things: a non-null reference to a CachedArrayFor-
mula object shared among all cells in the cell area, and that sheet cell’s (col, row)
location within the cell area. The shared CachedArrayFormula contains a Formula,
whose expression must evaluate to an ArrayValue, as well as an indication of the
cell area’s location within the sheet.

The evaluation of one cell in the array formula’s cell area will evaluate the under-
lying shared Formula once and cache its value (which must be of type ArrayValue)
for use by all cells in the cell area.

2.6 Expressions

The abstract class Expr has concrete subclasses NumberConst, TextConst, CellRef,
CellArea, FunCall; see figure 2.1. Expressions are used to recursively construct
composite expressions, and ultimately, formulas, but whereas a formula caches its
value, an expression itself does not.

Class Expr has the following abstract methods:

• Value Eval(Sheet sheet, int col, int row) returns the result of eval-
uating this expression at cell address sheet[col, row] , where sheet must
be non-null.

• Expr Move(int deltaCol, int deltaRow) returns a new Expr in which
relative cell references have been updated as if the containing cell were moved,
not copied, by (deltaCol , deltaRow); see section 2.15.

• Adjusted<Expr> InsertRowCols(Sheet modSheet, bool thisSheet,
int R, int N, int r, bool doRows) returns an expression, originally
in row (or column) r , adjusting its references after insertion of N new rows (or
columns) before row (or column) R >= 0. Performs row insertion if doRows is
true; otherwise performs column insertion. See section 2.16.

• String Show(int col, int row, int ctxpre, Format fo) returns a
string resulting from prettyprinting the expression in a fixity context ctxpre
and with formatting options fo ; see section 2.18.

2.6.1 Number constant expressions

A NumberConst represents a floating-point constant such as 3.14 in a formula.
A NumberConst object encapsulates the number, represented as a NumberValue

§2.6 Expressions 37

(section 2.7); its Eval method returns that value:

class NumberConst : Const {
private readonly NumberValue value;
public NumberConst(double d) {

value = new NumberValue(d);
}
public override Value Eval(Sheet sheet, int col, int row) {

return value;
}
public override String Show(int col, int row, int ctxpre, Fo rmat fo) {

return value.ToString();
}

}

2.6.2 Text constant expressions

A TextConst represents a text constant such as "foo" in a formula and is very
similar to a NumberConst, except in the way the constant is displayed:

class TextConst : Const {
public readonly TextValue value;
public TextConst(String s) {

value = TextValue.MakeInterned(s);
}
public override Value Eval(Sheet sheet, int col, int row) {

return value;
}
public override String Show(int col, int row, int ctxpre, Fo rmats fo) {

return "\"" + value + "\"";
}

}

Since a given text constant may appear many times in a workbook, an effort is
made to store the underlying TextValue only once, by “interning”, as shown in the
TextConst constructor.

2.6.3 Cell reference expressions

A CellRef represents a cell reference such as $B7; it consists of a raref (section 2.8)
and, if the cell reference is sheet-absolute, a sheet reference. A cell reference is eval-
uated relative to a given sheet, column and row. Its evaluation involves computing
the referred-to cell address ca and evaluating the formula in that cell.

class CellRef : Expr {
private readonly RARef raref;
private readonly Sheet sheet; // non-null if sheet-absolut e
public override Value Eval(Sheet sheet, int col, int row) {

38 Expressions §2.6

CellAddr ca = raref.Addr(col, row);
Cell cell = (this.sheet ?? sheet)[ca];
return cell == null ? null : cell.Eval(sheet, ca.col, ca.row);

}
public override String Show(int col, int row, int ctxpre, Fo rmat fo) {

String s = raref.Show(col, row, fo);
return sheet==null ? s : sheet.Name + "!" + s;

}
}

2.6.4 Cell area reference expressions

A CellArea represents a cell area reference such as $B7:B52 in a formula. It con-
sists of two rarefs (section 2.8) giving the area’s corner cells and, if the cell area
reference is sheet-absolute, a sheet reference. A cell area is evaluated, by Eval , rel-
ative to a given sheet, column and row, by finding the cell addresses of the upper left
corner ulCa and lower right corner lrCa of the referred-to cell area, and creating
an ArrayView (section 2.7) of the cell area. Then every non-blank cell in the view is
evaluated by calling the indexer view[c,r] to prevent the creation of cyclic views,
and the view is returned:

class CellArea : Expr {
private readonly RARef ul, lr; // upper left, lower right
private readonly Sheet sheet; // non-null if sheet-absolut e
public override Value Eval(Sheet sheet, int col, int row) {

CellAddr ulCa = ul.Addr(col, row), lrCa = lr.Addr(col, row) ;
ArrayView view = ArrayView.Make(ulCa, lrCa, this.sheet ?? sheet);
for (int c = 0; c < view.Cols; c++)

for (int r = 0; r < view.Rows; r++) {
Value ignore = view[c, r];

}
return view;

}
public override String Show(int col, int row, int ctxpre, Fo rmat fo) {

String s = ul.Show(col, row, fo) + ":" + lr.Show(col, row, fo) ;
return sheet==null ? s : sheet.Name + "!" + s;

}
...

}

2.6.5 Function call and operator expressions

A FunCall represents a function call such as SIN(B7) , or an infix operator appli-
cation such as A1+B6, in a formula. It consists of a Function object representing
the function to call, and a non-null array of argument expressions. A function call
is evaluated relative to a given sheet, column and row by invoking the function’s
applier (section 2.13) on the argument expressions and sheet, column and row.

§2.7 Runtime values 39

The argument expressions are passed unevaluated to cater for non-strict functions
such as IF . The Show function displays the function call in prefix or infix notation
as appropriate; see section 2.18. Section 2.13 describes the function call machinery
in more detail.

class FunCall : Expr {
private readonly Function function; // Non-null
private readonly Expr[] es; // Non-null, elements non-null
public override Value Eval(Sheet sheet, int col, int row) {

return function.applier(sheet, es, col, row);
}
public override String Show(int col, int row, int ctxpre, Fo rmat fo) {

StringBuilder sb = new StringBuilder();
int pre = function.fixity;
if (pre == 0) { // Not operator

... show as F(arg1; ...; argN) ...
} else { // Operator. Assume es.Length is 1 or 2

... show as arg1+arg2 or similar ...
}
return sb.ToString();

}
...

}

2.7 Runtime values

The abstract class Value has subclasses NumberValue, TextValue, ErrorValue, Ar-
rayValue, ObjectValue, and FunctionValue as shown in figure 2.1.

A NumberValue represents a floating-point number or a logical value; see sec-
tion 2.7.1. A TextValue represents a text string, and has a public readonly field
value containing that string. An ErrorValue represents the result of an illegal op-
eration (there are no exceptions in spreadsheets), and has a public readonly field
msg of type String holding a description of the error; see also section 2.7.2. An Ar-
rayValue represents the value of a cell area expression or the result of an array
formula, as described in section 2.7.3 below.

A Value has a method Apply that applies a delegate act to components of the
value, useful for implementing SUMand other aggregate functions:

public abstract class Value {
public virtual void Apply(Acttion<Value> act) {

act(this);
}

}

Here the .NET Action<T> delegate type represents a void function that takes an
argument of type T. The only non-trivial override of Apply is on array values; see
section 2.7.3.

40 Runtime values §2.7

2.7.1 Number values and error values

A NumberValue represents a double-precision floating point number or a logical
value (0.0 meaning false, all other numbers meaning true) and has a public readonly
field value containing that number. When converting values to doubles and vice
versa we shall exploit that the floating-point number representation and arithmetic
calculations adhere to the IEEE 754-2008 standard for floating-point arithmetic
[57].

In particular, we shall rely on three features of the IEEE standard, intended
exactly for such use. First, a double may be a NaN, a special value that means “not
a number”, for representing errors in computations. Second, there are 251 different
NaN values, distinguished by their 51 so-called payload bits, and this can be used to
distinguish different errors. Third, arithmetic operations are required to preserve
NaN operands, so we get error propagation for free. For instance, if d is a NaN, then
Math.Sqrt(6.1 * d+7.5) must be a NaN with the same payload. If both d1 and d2
are NaNs, then d1+d2 must be a NaN with the same payload as one of d1 and d2 ;
which one is unspecified. This will be especially useful for efficient implementation
of sheet-defined functions; see chapter 6; example 6.1 illustrates the code simplicity
and speed that can be achieved.

When converting a value to a double, we convert a NumberValue to a (non-NaN)
double; convert an ErrorValue to the appropriate NaN; and convert everything else
to the ArgType error value, using method Value.ToDoubleOrNan :

public static double Value.ToDoubleOrNan(Value v) {
if (v is NumberValue)

return (v as NumberValue).value;
else if (v is ErrorValue)

return (v as ErrorValue).ErrorNan;
else

return ErrorValue.argTypeError.ErrorNan;
}

Conversely, when converting a double to a value, we convert a NaN to the corre-
sponding ErrorValue; and convert a proper double to a NumberValue, where Num-
berValues corresponding to 0 and 1 have been preallocated:

public static Value NumberValue.Make(double d) {
if (double.IsNaN(d))

return ErrorValue.FromNan(d);
else if (d == 0)

return ZERO;
else if (d == 1)

return ONE;
else

return new NumberValue(d);
}

This ensures that the double contained in a NumberValue is never a NaN.

§2.7 Runtime values 41

2.7.2 Error values

To represent error values as NaN payload bits, we allocate and cache all ErrorValue
objects in a static global array. Then we can represent an error value by its index
into that array, or by the NaN whose 51-bit payload is the signed encoding of that
index. Some of the preallocated errors are shown in figure 2.2. It is important that
the #ERR: NumError is at index 0, because the .NET Math functions produce NaN
values with error code zero. Custom error values can be created using the built-
in function ERR("MyError") , but to prevent a spreadsheet from overflowing the
global error table, the argument to the ERRfunction must be a text constant.

Index Error value Example cause
0 #ERR: NumError SQRT(-1)
1 #ERR: ArgCount SQRT()
2 #ERR: ArgType SQRT("four")
3 #ERR: Name SQTR(4)
4 #REF! Reference to row that was deleted
5 #VALUE! Selector in CHOOSEout of range
6 #NA NA()

Figure 2.2: Some preallocated values in the global error value table.

Class ErrorValue provides methods for converting a NaN to an ErrorValue and
vice versa. Method MakeNan(i) returns the NaN whose payload bits are the bits
from two-complement integer i . If d is a NaN, then method FromNan(d) returns
the error value represented by its NaN payload bits. If v is an ErrorValue, then
property Errorvalue.ErrorNaN returns the NaN representing v .

2.7.3 Array values

An ArrayValue represents a rectangular structure of values, and is either an explicit

array of class ArrayExplicit, or an array view of class ArrayView, or an array double

matrix of class ArrayDouble. An array element value may itself be an array, so
array values may be nested. There is no way to construct cyclic array structures.
An array may have null elements that do not hold values, corresponding to a blank
cell in a sheet. An array of size 1x1 is distinct from an atomic value.

An explicit array consists of a two-dimensional array Value[,] of values, together
with a pair (ulCa , lrCa) of cell addresses that defines a window on that underlying
two-dimensional array. An explicit array is typically the result of functions such as
TRANSPOSEor TABULATE(section A.2.2) that must create a new array value. The
window onto the underlying array allows for efficient implementation of the SLICE
function (section A.2.2) which simply creates a (smaller) window onto the underlying
two-dimensional Value[,] array, without copying it. The underlying array, and the
window, may have zero columns or zero rows or both. This is in contrast to a cell
area reference such as B2:A1 , which always denotes a non-empty cell area.

42 Representation of cell references §2.8

An array view consists of a sheet together with a pair (ulCa , lrCa) of cell ad-
dresses that defines a window on that underlying sheet. An array view is typically
the result of a cell area expression such as A1:D50 or Data!A1:D50 that creates
a view onto an existing sheet, or of applying the SLICE function to another array
view. Array views allow for efficient evaluation of function applications such as
SUM(A1:D50) without allocation of a large intermediate data structure. The win-
dow may have zero columns or zero rows or both.

An array matrix consists of a two-dimensional array (type double[,]) of floating-
point numbers. This is intended for representation of the arguments and results of
(external) linear algebra operations. When the result of a linear algebra function is
passed to another such function, it is wasteful to wrap the floating-point numbers in
NumberValue objects. Also, numeric libraries typically assume the indexing order
[row,column] so we use that order for the inner double[,] array too, although it is
the opposite of the external interface of array views.

Regardless of representation, an ArrayValue has an indexer this[col,row]
that (evaluates and) accesses the array value’s element at (col ,row), relative to the
window determined by ulCa . It also has an Apply method override that recursively
applies the delegate act to each non-null element:

public abstract Value this[int col, int row] { get; }

public override void Apply(Action<Value> act) {
for (int c = 0; c < Cols; c++) {

for (int r = 0; r < Rows; r++) {
Value v = this[c, r];
if (v != null) // Only non-blank cells contribute

if (v is ArrayValue)
(v as ArrayValue).Apply(act);

else
act(v);

}
}

}

2.7.4 Function values

A function value, or closure, is a partially applied sheet-defined function and is rep-
resented by class FunctionValue. It consists of the index of a sheet-defined function
and an array holding zero or more values of arguments of that function. For more
information, see section 8.4.1.

2.8 Representation of cell references

Cell references should be represented so that they, and the expressions in which
they appear, can be copied without change. Namely, it is common for a formula to be

§2.8 Representation of cell references 43

entered in one cell and then copied to many (even thousands) of other cells. Sharing
the same expression object between all those cells would give considerable space
savings. In particular, when using runtime code generation (RTCG) on expressions
to speed up spreadsheet calculations, there should be as few expression instances
as possible.

Hence in Corecalc cell references and cell area references, we store absolute ($)
references as absolute zero-based cell addresses, and relative (non-$) references as
positive, zero or negative offsets relative to the address of the cell containing the for-
mula. Concretely, Corecalc uses a class RARef, short for relative/absolute reference,
to represent references in formulas:

public sealed class RARef {
public readonly bool colAbs, rowAbs; // True=absolute, Fal se=relative
public readonly int colRef, rowRef;
...
public CellAddr Addr(int col, int row) {

return new CellAddr(this, col, row);
}
public String Show(int col, int row, Format fo) {

if (fo.RcFormat)
return "R" + RelAbsFormat(rowAbs, rowRef)

+ "C" + RelAbsFormat(colAbs, colRef);
else {

CellAddr ca = new CellAddr(this, col, row);
return (colAbs ? "$" : "") + CellAddr.ColumnName(ca.col)

+ (rowAbs ? "$" : "") + (ca.row+1);
}

}
}

A raref is somewhat similar to the R1C1 reference format (section 1.3) but since we
put the column number first (as in the A1 format) and use zero-based numbering,
our format could be called the C0R0 format. Figure 2.3 shows the four basic forms
of a C0R0 format reference. As a consequence of this representation, an expression
must be interpreted relative to the address of the containing cell when evaluating
or displaying the expression. This adds a little extra runtime cost.

C0R0 format Meaning
CcRr Absolute reference to cell (c, r) where 0 ≤ c, r
CcR[r] Absolute column c, relative row offset r
C[c]Rr Relative column offset c, absolute row r
C[c]R[r] Relative column offset c, relative row offset r

Figure 2.3: The four basic forms of C0R0 references.

We shall use the term virtual copy to denote a reference from a formula cell to a
shared expression instance in this representation.

44 Cell addresses §2.10

When an expression is moved (not copied) from one cell to another, its relative
references must be updated and hence the abstract syntax tree must be duplicated;
see section 2.15. But moving a formula does not increase the number of formulas,
whereas copying may enormously increase the number of formulas, so it is more
important to preserve the the formula representation when copying the formula
than when moving it.

Also, when rows or columns are inserted or deleted, both relative and absolute
references may have to be adjusted in a way that preserves as much sharing of
virtual copies as possible; see section 2.16.

2.9 Sheet-absolute and sheet-relative references

A cell reference Sheet1!B7 or an area reference Sheet1!B7:D9 may refer to an-
other sheet than the one containing the enclosing formula. This is implemented
by adding a sheet field to CellRef and CellArea. If the field is non-null, then the
reference is sheet-absolute and refers to a cell in that sheet. If the field is null,
then the reference is sheet-relative and refers to a cell in the current sheet (the one
containing the enclosing formula), that is, the sheet argument passed to the Eval
method.

The sheet reference (or the absence of it) is preserved when copying or moving
the CellRef or AreaRef from one sheet to another. Sheet-absolute references remain
sheet-absolute, and sheet-relative references become references to the new sheet to
which the enclosing formula gets copied.

The adjustment of column and row references is the same regardless of whether
the reference is sheet-absolute or sheet-relative. Namely, a column-relative or row-
relative but sheet-absolute reference presumably refers to a sheet that has a sim-
ilar structure to the present one. Note that OpenOffice makes another distinc-
tion between sheet-relative and sheet-absolute references: A reference of the form
Sheet17.A1 is adjusted to Sheet18.A1 if the formula is copied from Sheet1 to
Sheet2. Excel does not support such sheet adjustment.

2.10 Cell addresses

A CellAddr represents an absolute cell address in a sheet as a pair of a zero-based
column number and a zero-based row number. This is in contrast to a RARef (sec-
tion 2.8) which represents cell references and cell area references in formulas. Given
the column and row number of a RARef occurrence, the CellAddr constructor com-
putes the absolute cell address that the RARef refers to:

public struct CellAddr {
public readonly int col, row;
public CellAddr(RARef cr, int col, int row) {

this.col = cr.colAbs ? cr.colRef : cr.colRef + col;
this.row = cr.rowAbs ? cr.rowRef : cr.rowRef + row;

§2.11 Simple recalculation 45

}
public override String ToString() {

return ColumnName(col) + (row+1);
}
...

}

2.11 Simple recalculation

The value of a cell may depend on the values of other cells. Whenever any cell
changes, the value of all dependent cells must be recalculated, exactly once, in some
order that respects the dependencies (unless a cyclic dependency makes this impos-
sible).

In the simplest reasonable scheme, a full recalculation of a workbook may be
performed by recalculating all its sheets in some order, recalculating each sheet
by reevaluating all its formula cells in some order, respecting dependencies. This
approach will often reevaluate cells that depend only on cells whose values have
not changed, to no avail. Section 4.3 describes a more sophisticated mechanisms
for minimal recalculation actually used in Funcalc. That mechanism reevaluates
only those formula cells that depend on changed cells, but requires an explicit rep-
resentation of the dependencies between cells, the support graph (chapter 4). As
a warm-up, we therefore describe a simpler mechanism that requires no explicit
representation of these cell dependencies.

Regardless of the recalculation mechanism, a formula cell caches its value to
make the runtime complexity linear in the number of non-blank cells. An array
formula caches the value of the underlying array-valued expression, which is shared
between all the cells that must receive some part of that array value.

To support recalculation and caching, each formula has a state field of enumer-
ation type CellState. The possible states are Dirty (the cell’s value cache is invalid),
Computing (the cell value is currently being computed), and Uptodate (the cell’s
value cache is valid). There is also a state Enqueued, used only later in section 4.3.

At the beginning of a full recalculation the state of every cell is set to Dirty. Each
formula cell is then evaluated as follows:

1. If state is Uptodate, then return the cached value.

2. Else, if state is Computing, then the cell depends on itself; stop and report a
cyclic dependency involving this cell.

3. Else, set state to Computing and evaluate the cell’s expression. This will
cause referred-to cells to be recomputed and may ultimately reveal a cyclic
dependency.

4. If the evaluation succeeds, set state to Uptodate, cache the result value, and
return it.

46 Simple recalculation §2.12

The implementation of the Eval method in class Formula closely follows this recipe,
evaluating the formula’s expression e if the formula cell is dirty, and setting the
formula cell’s value cache v afterwards:

public override Value Eval(Sheet sheet, int col, int row) {
switch (state) {

case CellState.Uptodate:
break;

case CellState.Computing:
FullCellAddr culprit = new FullCellAddr(sheet, col, row);
String msg = String.Format("### CYCLE in cell {0} formula {1 }",

culprit, Show(col, row, ...));
throw new CyclicException(msg, culprit);

case CellState.Dirty:
state = CellState.Computing;
v = e.Eval(sheet, col, row);
state = CellState.Uptodate;
break;

}
return v;

}

Hence all formulas are eventually recomputed, and when necessary they are recom-
puted in the order imposed by dependencies, by simple recursive calls. This may
cause deep recursion if there are long dependency chains and an unfortunate order
of visits is chosen. (This could be fixed as follows: If the recalculation depth ex-
ceeds some threshold, an approximate topological sort in dependency order might
be performed and cells may be recomputed in that order. But that would lose the
simplicity of the above scheme).

One may represent the cell states using two boolean flags visited and uptodate ,
so that Dirty is !visited and !uptodate ; Computing is visited and !uptodate ;
and Uptodate is uptodate . Then one can use a trick—let the meaning of true and
false alternate—to avoid the costly resetting of each cell’s state at the beginning of
a full recalculation [106, section 2.11]. However, with minimal recalculation as de-
scribed in section 4.3 this is neither quite as important for performance, nor as easy
to implement, so we shall not use that trick here.

Another possibility is to replace the cell state by (hash-based) sets of cells during
recalculation, one set of the Visited cells and one set of the Uptodate ones; a cell is
Dirty if it is in neither of these. Then one can reset all cells to Dirty very easily:
simply discard the current Visited and Uptodate sets and replace them by empty
sets. It is doubtful whether this is fast in practice, however, because it may require
two set lookups (rather than a test of a enum type variable) to determine the state
of a cell, and it creates much work for the garbage collector.

§2.13 Cyclic references 47

2.12 Cyclic references

The value of a cell may depend on the value of other cells, and may directly or in-
directly depend on itself. The purpose of the Computing state of a formula cell is
to allow the recalculation mechanism to discover such dependencies, stop recalcula-
tion, and report the discovery of a cycle.

2.13 Built-in functions

Corecalc built-in functions include mathematical functions (SIN), cell area functions
(SUM), array-valued functions (TRANSPOSE), the conditional function (IF), which is
non-strict, and volatile functions (RAND). Built-in operators include the usual arith-
metic operators, such as +, - , * and / .

Built-in functions and built-in operators are represented internally by objects of
class Function:

public class Function {
public readonly String name;
public Applier Applier { get; private set; }
public readonly int fixity;
public bool IsPlaceHolder { get; private set; }
private bool isVolatile;
private static readonly IDictionary<String, Function> ta ble;
...

}

The Function class uses a hash dictionary table to map a function name such as
"SIN" or an operator name such as "+" to a Function object.

The most important component of a Function object is a delegate applier of
type Applier. This delegate takes as argument a sheet reference, an array of argu-
ment expressions, and column and row numbers:

public delegate Value Applier(Sheet sheet, Expr[] es, int c ol, int row);

Evaluation of a function call or operator application simply passes the argument
expressions to the function’s Applier delegate as shown in section 2.6.5. A family of
auxiliary methods called MakeFunction can be used to create the Applier delegate
for a strict function from a delegate representing the function; another family called
MakeNumberFunction creates Appliers from delegates of return type double . We
use the standard .NET generic delegate types to represent non-void functions:

public delegate R Func<R>();
public delegate R Func<A1,R>(A1 x1);
public delegate R Func<A1,A2,R>(A1 x1, A2 x2);
... and so on ...

48 Built-in functions §2.13

2.13.1 Strict one-argument functions

Most functions are strict, that is, their arguments are fully evaluated before the
function is called. The applier for a strict function evaluates the argument ex-
pressions as if at cell sheet[col,row] and applies the function to the resulting
argument values, each of type Value.

An applier for a strict unary function from double to double , such as SIN() ,
can be manufactured like this:

private static Applier MakeNumberFunction(Func<double, double> dlg) {
return

delegate(Sheet sheet, Expr[] es, int col, int row) {
if (es.Length == 1) {

Value v0 = es[0].Eval(sheet, col, row);
return NumberValue.Make(dlg(Value.ToDoubleOrNan(v0)));

} else
return ErrorValue.argCountError;

};
}

As can be seen, the Applier checks that exactly one argument is supplied, evaluates
it, attempts to extract a double (possibly a NaN representing an error value) from
the result, applies the given delegate dlg to the double , creates a NumberValue
from the result, and returns it.

This way new functions can easily be defined:

new Function("SIN", MakeNumberFunction(Math.Sin));
new Function("SQRT", MakeNumberFunction(Math.Sqrt));
new Function("TAN", MakeNumberFunction(Math.Tan));

2.13.2 Other strict functions

There are similar overloads of the MakeNumberFunction method for defining strict
double -valued and bool -valued functions:

private static Applier MakeNumberFunction(Func<double> dlg) {
private static Applier MakeNumberFunction(Func<double, double> dlg) {
private static Applier MakePredicate(Func<double, doubl e, bool> dlg) {

The Func<double> overload is used to define argumentless functions such as RAND()
and NOW(); see section 2.13.3. The Func<double,double,double> overload is
used to define arithmetic operators; for instance:

new Function("ˆ", 8, MakeNumberFunction(ExcelPow));
new Function(" * ", 7, MakeNumberFunction((x, y) => x * y));
new Function("/", 7, MakeNumberFunction((x, y) => x / y));
new Function("+", 6, MakeNumberFunction((x, y) => x + y));

§2.13 Built-in functions 49

The integer arguments (6, 7, 8) indicate the operator’s fixity; see section 2.18. The
MakePredicate method is used to define comparison operators; for instance:

new Function(">", 5, MakePredicate((x, y) => x > y));
new Function("=", 4, MakePredicate((x, y) => x == y));

Further overloads of the MakeNumberFunction are used to define variable-argument
but double -valued functions such as SUMand AVERAGEin section 2.13.4. Fur-
ther overloads of the MakeFunction methods are used to define one-argument but
array-valued functions such as TRANSPOSEin section 2.13.5, and other more general
functions such as MAP(see section A.2.2); for instance:

private static Applier MakeNumberFunction(Func<Value[] , double> dlg) { ... }
private static Applier MakeFunction(Func<Value, Value> d lg) { ... }
private static Applier MakeFunction(Func<Value[], Value > dlg) { ... }

2.13.3 Volatile functions

A volatile function is implemented just like any other function. For instance, the
RAND() function can be implemented like this, where method ExcelRand simply
calls rnd.NextDouble on a static field rnd of type System.Random:

new Function("RAND", MakeNumberFunction(ExcelRand), is Volatile: true);

where the ExcelRand method uses a .NET Math.Random object random to get a
pseudo-random number between 0 and 1:

public static double ExcelRand() { return random.NextDoub le(); }

The NOW() function, which as in Excel returns the number of days since the base
date 30 December 1899, can be defined as follows:

new Function("NOW", MakeNumberFunction(ExcelNow), isVo latile: true);

The ExcelNow method reads the current time (in 100 nanosecond ticks) from the
.NET DataTime class and converts it to a number of fractional days:

public static double ExcelNow() {
return NumberValue.DoubleFromDateTimeTicks(DateTime. Now.Ticks);

}

The conversion is done by method DoubleFromDateTimeTicks in class Number-
Value, using appropriate definitions of the constants basedate and daysPerTick :

private static readonly long basedate = new DateTime(1899, 12, 30).Ticks;
private static readonly double daysPerTick = 100E-9 / 60 / 60 / 24;

public static double DoubleFromDateTimeTicks(long ticks) {
return (ticks - basedate) * daysPerTick;

}

The most notable aspect of volatile functions is that they cause complications in the
design of the recalculation mechanism; see sections 3.3 and 4.3.

50 Built-in functions §2.13

2.13.4 Functions with multiple arguments

Functions such as SUM, AVERAGE, MIN and MAXtake multiple arguments, some of
which may be simple numbers, cell references, cell areas, or array values, as in
SUM(A1:B4, 8) or SUM(MMULT(A1:B2, C1:D2)) . These are evaluated by apply-
ing a suitable action to all arguments, and recursively to the elements of array
values, using the Apply method on class Value; see section 2.7:

public static double Sum(Value[] vs) {
double S = 0.0;
foreach (Value outerV in vs)

outerV.Apply(delegate(Value v)
{

S += NumberValue.ToDoubleOrNan(v);
});

return S;
}

The propagation of NaNs from argument to result in +=, as described in section 2.7.1,
ensures that if any argument to SUMis an error value then the result will be that
error value; and if any argument is not a NumberValue, then the result will be an
ArgType error value.

In actual fact, to avoid loss of significant digits when adding many numbers of
different magnitude, we use William Kahan’s summation formula, so the implemen-
tation of SUMlooks a little more mysterious:

public static double Sum(Value[] vs) {
double S = 0.0, C = 0.0;
foreach (Value outerV in vs)

outerV.Apply(delegate(Value v)
{

double Y = NumberValue.ToDoubleOrNan(v) - C, T = S + Y;
C = (T - S) - Y;
S = T;

});
return S;

}

The rounding error introduced by the Kahan summation formula is dramatically
smaller than that of the naive summation algorithm [48, Theorem 8]. The cost of
three additional floating-point subtractions per addition is negligible compared to
the costs of unwrapping number values and so on. We use the Kahan summation
formulation also in the implementation of AVERAGE.

The above implementation of SUMis quite efficient even when applied to a large
cell area on a sheet, as in SUM(A1:A10000) , because the cell area expression A1:A10000
evaluates to an array view of the sheet, not to a large explicit array value that must
be allocated. Measurements made by Thomas Iversen [60] [106, section 5.2.2] show
that avoiding the array allocation brings a four-fold speedup, so that the above im-
plementation is only 3.4 times slower than Excel.

§2.13 Built-in functions 51

2.13.5 Functions with array-valued results

Some built-in functions produce an array value as result. This is the case in particu-
lar for functions used in array formulas: matrix transposition (TRANSPOSE), matrix
multiplication (MMULT), linear regression (LINEST), and so on. The result of such a
function is an explicit array value (section 2.7.3), which contains a two-dimensional
array Value[,] of values.

For instance, function TRANSPOSEtakes as argument one expression that eval-
uates to an ArrayValue argument with size (cols′, rows′). The result is a new Ar-
rayExplicit value whose underlying value array sheet has size (cols, rows) with
cols = rows′ and cols′ = rows. Element [i, j] of the result array contains the value of
element [j, i] the given argument array:

public static Value Transpose(Value v0) {
if (v0 is ErrorValue) return v0;
ArrayValue v0arr = v0 as ArrayValue;
if (v0arr != null) {

int cols = v0arr.Rows, rows = v0arr.Cols;
Value[,] result = new Value[cols, rows];
for (int c = 0; c < cols; c++)

for (int r = 0; r < rows; r++)
result[c, r] = v0arr[r, c];

return new ArrayExplicit(result);
} else

return ErrorValue.argTypeError;
}

2.13.6 Non-strict functions

For a non-strict function, the Applier delegate is not created by a MakeFunction
method but written outright. For instance, the three-argument function IF is de-
fined like this:

new Function("IF",
delegate(Sheet sheet, Expr[] es, int col, int row) {

if (es.Length == 3) {
Value v0 = es[0].Eval(sheet, col, row);
NumberValue n0 = v0 as NumberValue;
if (n0 != null && !Double.IsInfinity(n0.value)

&& !Double.IsNaN(n0.value))
if (n0.value != 0)

return es[1].Eval(sheet, col, row);
else

return es[2].Eval(sheet, col, row);
else if (v0 is ErrorValue)

return v0;
else

return ErrorValue.argTypeErrorValue;

52 Moving formulas §2.15

} else
return ErrorValue.argCountErrorValue;

});

There must be three argument expressions in es . The first one must be non-null
and is evaluated to obtain a NumberValue. If the double contained in that value
is non-zero, the second argument is evaluated by calling its Eval method; else the
third argument is evaluated by calling its Eval method.

2.14 Copying formulas

The copying of formulas from one cell to one or more other cells is implemented using
the Windows clipboard, which uses “Object Linking and Embedding”, or OLE. For
this reason, the application must run in a so-called “single-threaded apartment”,
which means that the application’s Main method must have the STAThread at-
tribute.

The clipboard can hold multiple formats at the same time, so to ease exchange
with other applications, we copy to the clipboard a text representation of the cell
contents, as well as the Corecalc internal description of the cell. The internal rep-
resentation of the cell is simply its: the name of the sheet from which it is copied
and the cell address at which it occurs. This can lead to surprises if that particular
sheet cell is edited before one pastes from the clipboard.

A seemingly more robust alternative would be to transfer the actual cell object
via the clipboard by serialization (thus requiring all cell, formula and expression
classes to have the Serializable attribute). However, that would lose sharing of
expression abstract syntax, and in general causes mysterious problems, presumably
because built-in functions use delegate objects which are not correctly deserialized.

2.15 Moving formulas

Thanks to the internal representation of references, the cell references and cell area
references in a formula need not be updated when the formula is copied from one
cell one or more other cells. However, when a formula is moved from one cell and to
another cell, for instance by “cutting” and then “pasting” it, then references must be
updated in two ways, as shown by the example in figure 2.4:

• References from the moved formula to other cells appear unchanged in the A1
format, but in the internal representation relative references must actually be
changed, as they are stored as offsets. In the figure 2.4 example, the internal
representation of cell reference A1 changes from R[-1]C to R[-2]C[-1] .

• Cell references to the cell containing the formula before the move must be
updated so they refer to the cell containing the formula after the move. In
the example, the external as well as internal representation of the formulas in

§2.16 Inserting new rows or columns 53

cells B1 and C1 change as a consequence of the move. Even references from
other sheets in the workbook must be updated in this way. On the other hand,
references to cell areas that include the formula are not updated when the
formula is moved. Thus if C1 had contained a cell area reference A2:B2, then
C1 would be unaffected by the move of the formula in A2 to B3.

The second point above in particular is somewhat surprising, but is the semantics
implemented by Excel, Gnumeric and OpenOffice.

A B C

1 11 =A2 =A2
2 =A1+A1
3

A B C

1 11 =B3 =B3
2
3 =A1+A1

Figure 2.4: Formulas before (left) and after (right) moving from A2 to B3.

The moving of formulas is only partially implemented in Corecalc, by method
Move on abstract class Expr and its concrete subclasses, and method MoveContents
on abstract class Cell and its concrete subclasses. Currently we do not implement:

• The adjustment of all references that pointed to the old cell so that henceforth
they point to the new cell. Also references from other sheets and from within
the moved formula must be adjusted. This adjustment should preserve the
sharing of the referring formulas.

• When a block of cells, all of which share the same underlying formula (due to
virtual copying) is moved, one should maintain the sharing in the moved cells.
This is not done currently; maybe the visited field can be used to implement
this?

2.16 Inserting new rows or columns

It should be possible to insert additional rows into a given sheet. This must not
only move, and hence change the numbering of, some rows within the given sheet,
but should also update references from cells in that sheet and in other sheets to the
moved rows. (Insertion of columns is entirely similar to insertion of rows and will
therefore not be discussed explicitly here). In general, one must update references
from the affected sheet as well as from other sheets.

Consider what happens when a new row 3 is inserted in the example sheet shown
on the left in figure 2.5.

A row-absolute reference must be updated if it refers to a row that follows the
inserted rows. In the example, this affects all the A3 references in the sheet
(before insertion).

A row-relative reference must be updated if the reference straddles the insertion:
that is, if the referring cell precedes the insert and the referred-to cell follows the

54 Inserting new rows or columns §2.16

insert, or vice versa. In both cases the reference must be increased (numerically) by
the number of inserted rows. In the example, this affects reference $A3 in cell B1,
references $A3 and $A4 in B2, references $A1 and $A2 in B3, and reference $A2 in
cell B4 (before the insertion).

A B

1 11 =A2+A3+$A1+$A2+$A3
2 21 =A2+A3+$A2+$A3+$A4
3 31 =A2+A3+$A1+$A2+$A3
4 41 =A2+A3+$A2+$A3+$A4

A B

1 11 =A2+A4+$A1+$A2+$A4
2 21 =A2+A4+$A2+$A4+$A5
3
4 31 =A2+A4+$A1+$A2+$A4
5 41 =A2+A4+$A2+$A4+$A5

Figure 2.5: Formulas before (left) and after (right) inserting new row 3.

The insertion of a row is illegal if it would split an array formula block; this is
enforced in OpenOffice, for instance. Therefore we first check that no array formula
straddles the insert; if one does, then the insert is rejected. To make this check,
we let a cached array formula include the corner coordinates of the area of partic-
ipating cells. The check is made by scanning all cells preceding the insert (if any),
and checking that no array formula block in that row extends to cells following the
insert.

One should avoid copying all formulas that are to be updated. That would lose
the sharing of expressions carefully achieved by the representation of relative and
absolute references; see section 2.8. On the other hand, a shared expression cannot
simply be adjusted destructively, because a it might then be adjusted once for each
cell that shares it.

Virtual formula copies near the insert may have relative references that straddle
the insert and therefore require adjustment, whereas virtual copies of the same
formula farther away from the insert do not have relative references that straddle
the insert. Hence even virtual formula copies on the same side of the insert may
need to be adjusted in different ways. The possible versions are further multiplied
if a formula contains relative references with different offsets.

Figure 2.6 shows the internal representation of the formulas shown in the fig-
ure 2.5 example above. On the left hand side it can be seen that before the insertion,
cells B1 and B2 contain virtual copies of the same formula, and cells B3 and B4 con-
tain virtual copies of another formula. On the right hand side it can be seen that
after the insert, no two formulas are the same internally.

Observation 1: All virtual copies of an expression on the same row must
be adjusted in the same way.

Using this observation, it is clear that sharing of copies of an expression on the
same row can be obtained as follows: When processing each row, maintain a dictio-
nary that maps old expressions to new (adjusted) expressions; if an old expression
is found in the dictionary, use a virtual copy of the new expression (simply set the

§2.16 Inserting new rows or columns 55

n A B

0 11 R1+R2+R[0]+R[+1]+R[+2]
1 21 R1+R2+R[0]+R[+1]+R[+2]
2 31 R1+R2+R[-2]+R[-1]+R[0]
3 41 R1+R2+R[-2]+R[-1]+R[0]

n A B

0 11 R1+R3+R[0]+R[+1]+R[+3]
1 21 R1+R3+R[0]+R[+2]+R[+3]
2
3 31 R1+R3+R[-3]+R[-2]+R[0]
4 41 R1+R3+R[-3]+R[-1]+R[0]

Figure 2.6: Internal representation before and after inserting new row R = 2 (zero-
based). References are in C0R0 format, but the C0 prefix has been omitted.

Expr reference in the Formula instance; formula instances are shared only in the
case of array formulas); else compute the new expression, add the entry (old,new) to
the dictionary, and use a virtual copy of new.

Observation 2: One can compute the range of rows for which the adjust-
ment is valid, as shown by the case analysis below.

Assume that N ≥ 0 rows are to be inserted just before row R ≥ 0. For relative refer-
ences, let δ denote the offset before adjustment and δ′ the offset after adjustment.

Aa An absolute reference to row n < R needs no adjustment. This (non-)adjustment
is valid regardless of the row r in which the containing expression appears.

Ab An absolute reference to row n ≥ R must be adjusted to n+N . This adjustment
is valid regardless of the row r in which the containing expression appears.

Raa A relative reference to row n < R needs no adjustment if the containing ex-
pression appears in row r < R. The reference has δ′ = δ = n − r before and
after the insertion.

Rab A relative reference to row n < R must be adjusted (changed from δ = n− r to
δ′ = n− r −N) if the containing expression appears in row r ≥ R.

Rba A relative reference to row n ≥ R must be adjusted (changed from δ = n− r to
δ′ = n− r +N) if the containing expression appears in row r < R.

Rbb A relative reference to row n ≥ R needs no adjustment if the containing ex-
pression appears in row r ≥ R. The reference has δ′ = δ = n − r before and
after the insertion.

In the example on the left of figures 2.5 and 2.6, case Aa applies to all the A2 ref-
erences; case Ab applies to all the A3 references; case Raa applies to the $A1 and
$A2 references in cells B1 and B2; case Rab applies to the $A1 and $A2 references
in cells B3 and B4; case Rba applies to the $A3 and $A4 references in cells B3 and
B4; and case Rbb applies to the $A3 and $A4 references in cells B1 and B2.

The cases Raa, Rab, Rba and Rbb for relative references can be translated into
the following constraints on the offset δ = n− r and the containing row r:

56 Inserting new rows or columns §2.17

Raa If r < R and δ+ r < R then no adjustment is needed. The resulting expression
is valid for rows r for which r < min(R,R− δ), that is, r ∈ [0,min(R,R− δ)[.

Rab If r ≥ R and δ + r < R then adjust to δ′ = δ − N . The resulting expression is
valid for rows r for which R ≤ r < R − δ, that is, r ∈ [R,R− δ[.

Rba If r < R and δ + r ≥ R then adjust to δ′ = δ + N . The resulting expression is
valid for rows r for which R− δ ≤ r < R, that is, r ∈ [R− δ, R[.

Rbb If r ≥ R and δ+ r ≥ R then no adjustment is needed. The resulting expression
is valid for rows r for which r ≥ max(R,R − δ), that is, r ∈ [max(R,R − δ),M [
where M is the number of rows in the sheet.

The variables R, N and r used above agree with the Corecalc implementation of
row insertion in method InsertRowCols in class Expr. For relative references we
additionally have δ=rowRef and n=r+rowRef .

The adjustment of an entire expression is valid for the intersection of the rows
for which the adjustments of each of its relative references is valid.

Note that an adjustment for a reference is valid for an entire sheet (Aa and Ab)
or for a lower (Raa) or upper (Rbb) half-sheet, or for a band preceding (Rba) or a
band following (Rab) the insertion. In all cases this range is a half-open interval,
representable by its lower bound (inclusive) and upper bound (exclusive). The in-
tersection of intervals is itself an interval (possibly empty, though not here), easily
computed as [max(lower),min(upper)[.

Building further on Observation 1, we could maintain for each original expres-
sion a collection [(r1, e1), . . . , (rm, em)] of ranges r1, . . . , rm and the adjusted versions
e1, . . . , em of the expression valid for each of those ranges.

But in fact, if we process the rows in increasing order, we only need to record, for
each adjusted expression in the dictionary, the least row U not in its validity range.
Once we reach a row r for which r ≥ U , we recompute an adjusted expression and
save that and the corresponding new U to the dictionary.

This scheme will preserve sharing of virtual copies completely within each row.
However, sharing may be lost across rows, because the same adjusted version of an
expression may be valid at non-contiguous row ranges of the sheet (for instance, if a
row is inserted in a range of cells, each of which depends on a cell on the immediately
preceding row). The reason for this small deficiency is that our case analysis above
involves the row r in which the formula appears.

This could be partially alleviated by reusing the old expression whenever the
adjusted one is structurally identical. A more general solution would be to use a
form of hash-consing to (re)introduce sharing of expressions that turn out to be
identical after adjustment.

The insertion of new rows and new columns according to the above scheme is im-
plemented by methods called InsertRowCols on class Sheet, on abstract class Cell
and its subclasses, on abstract class Expr and its subclasses, and on class RARef.
A generic class Adjusted<T> is used to store adjusted copies of Expr and RARef
objects to preserve sharing as described above.

§2.17 Deleting rows or columns 57

2.17 Deleting rows or columns

Deletion of rows or columns is similar to insertion. Again we consider only dele-
tion of rows, since deletion of columns in completely analogous. More precisely, we
consider deleting N ≥ 0 rows beginning with row R ≥ 0, that is, deleting the rows
numbered R,R+N−1. As in the insertion case, references from cells in rows follow-
ing row R + N on the affected sheet must be adjusted, as must references to those
rows from any cell in the workbook. Moreover, references to the deleted rows cannot
be adjusted in a meaningful way and must be replaced with a static error indication.
Figures 2.7 and 2.8 show an example in the ordinary A1 reference format and in the
internal C0R0 format.

A B

1 11 =A2+A4+$A1+$A2+$A4
2 21 =A2+A4+$A2+$A3+$A5
3 31
4 41 =A2+A4+$A1+$A2+$A4
5 51 =A2+A4+$A2+$A3+$A5

A B

1 11 =A2+A3+$A1+$A2+$A3
2 21 =A2+A3+$A2+#REF+$A4
3 41 =A2+A3+$A1+$A2+$A3
4 51 =A2+A3+$A2+#REF+$A4

Figure 2.7: Formulas before (left) and after (right) deleting row 3.

n A B

0 11 R1+R3+R[0]+R[+1]+R[+3]
1 21 R1+R3+R[0]+R[+1]+R[+3]
2 31
3 41 R1+R3+R[-3]+R[-2]+R[0]
4 51 R1+R3+R[-3]+R[-2]+R[0]

n A B

0 11 R1+R2+R[0]+R[+1]+R[+2]
1 21 R1+R2+R[0]+#REF+R[+2]
2 41 R1+R2+R[-2]+R[-1]+R[0]
3 51 R1+R2+R[-2]+#REF+R[0]

Figure 2.8: Internal representation before and after deleting row R = 2 (zero-based).
References are in C0R0 format, but the C0 prefix has been omitted.

The cases are analogous to those of insertion in section 2.16, with two additional
cases (Ac and Rc) to handle references to cells that get deleted.

Aa An absolute reference to row n < R needs no adjustment. This (non-)adjustment
is valid regardless of the row r in which the containing expression appears.

Ab An absolute reference to row n ≥ R + N must be adjusted to n − N . This
adjustment is valid regardless of the row r in which the containing expression
appears.

Ac An absolute reference to row R ≤ n < R + N must be replaced by a #REF
error indication. This adjustment is valid regardless of the row r in which the
containing expression appears.

58 Deleting rows or columns §2.18

Raa A relative reference to row n < R needs no adjustment if the containing ex-
pression appears in row r < R. The reference has δ′ = δ = n − r before and
after the deletion.

Rab A relative reference to row n < R must be adjusted (changed from δ = n− r to
δ′ = n− r +N) if the containing expression appears in row r ≥ R+N .

Rba A relative reference to row n ≥ R+N must be adjusted (changed from δ = n−r
to δ′ = n− r −N) if the containing expression appears in row r < R.

Rbb A relative reference to row n ≥ R + N needs no adjustment if the containing
expression appears in row r ≥ R +N . The reference has δ′ = δ = n− r before
and after the deletion.

Rca A relative reference to row R ≤ n < R + N from row r < R must be replaced
by an error indication #REF! .

Rcb A relative reference to row R ≤ n < R+N from row r ≥ R+N must be replaced
by an error indication #REF! .

In the example on the left of figures 2.7 and 2.8, case Aa applies to all the A2
references; case Ab applies to all the A3 references; case Ac does not apply any-
where; case Raa applies to the $A1 and $A2 references in cells B1 and B2; case Rab
applies to the $A1 and $A2 references in cells B4 and B5; case Rba applies to the
$A4 and $A5 references in cells B1 and B2; case Rbb applies to the $A4 and $A5
references in cells B4 and B5; case Rca applies to the $A3 reference in cell B2; and
case Rcb applies to the $A3 reference in cell B5.

The cases Raa, Rab, Rba, Rbb, Rca and Rcb for relative references can be trans-
lated into the following constraints on the offset δ = n − r and the referring row
r:

Raa If r < R and δ+ r < R then no adjustment is needed. The resulting expression
is valid for rows r for which r < min(R,R− δ), that is, r ∈ [0,min(R,R− δ)[.

Rab If r ≥ R+N and δ+ r < R then adjust to δ′ = δ +N . The resulting expression
is valid for rows r for which R+N ≤ r < R− δ, that is, r ∈ [R+N,R− δ[.

Rba If r < R and δ+ r ≥ R+N then adjust to δ′ = δ −N . The resulting expression
is valid for rows r for which R+N − δ ≤ r < R, that is, r ∈ [R+N − δ, R[.

Rbb If r ≥ R + N and δ + r ≥ R + N then no adjustment is needed. The resulting
expression is valid for rows r for which r ≥ max(R,R + N − δ), that is, r ∈
[max(R,R+N − δ),M [where M is the number of rows in the sheet.

Rca If r < R and R ≤ δ + r < R + N then the reference is invalid and must
be replaced by #REF! . The resulting expression is valid for rows r for which
R− δ ≤ r < min(R,R+N − δ), that is, r ∈ [R− δ,min(R,R+N − δ)[.

Rcb If r ≥ R + N and R ≤ δ + r < R + N then the reference is invalid and must
be replaced by #REF! . The resulting expression is valid for rows r for which
max(R+N,R− δ) ≤ r < R+N − δ, that is, r ∈ [max(R+N,R− δ), R+N − δ[.

§2.18 Prettyprinting formulas 59

2.18 Prettyprinting formulas

To show operators properly in infix form and without excess parentheses, we add
to every Function an integer denoting its fixity and precedence. A fixity of 0 means
not an infix operator, positive means infix left associative, and higher value means
higher precedence (stronger binding). We could take negative to mean right asso-
ciative and indicate precedence by the absolute value, but that does not seem to
be needed. Even the exponentiation operator (ˆ) is left associative in Excel and
OpenOffice. In Gnumeric, it is right associative as is conventional in programming
languages.

Then we add a parameter ctxpre to the Show method of the Expr class to in-
dicate the context’s precedence. When the function to be printed is an infix with
precedence less than ctxpre , we must enclose it in parentheses; otherwise there is
no need for parentheses. Applications of functions that are not infix are printed as
F(e1; ...; en) . Function arguments and top-level expressions have a ctxpre
of zero. To prettyprint (1-2)-3 without parentheses and 1-(2-3) with parenthe-
ses, the prettyprinter distinguishes left-hand operands from right-hand operands
by increasing the ctxpre of right-hand operands by one.

Another parameter to the Show method, of type Format, controls other aspects
of the display of formulas, such as whether references are shown in A1 or R1C1
format.

60 Prettyprinting formulas §2.18

Chapter 3

Alternative designs

The previous chapter presented details of the Corecalc implementation. This chap-
ter will review some aspects of the Corecalc design, especially the recalculation
mechanism, and explain why some seemingly plausible alternatives are difficult
to implement, or unlikely to work well.

3.1 Representation of references

As described in sections 2.15 through 2.17, cumbersome adjustments of referring
formulas must be performed when moving a formula from one cell to another, and
when inserting or deleting rows or columns in an existing sheet.

3.1.1 Direct object references

These adjustments would be automatic if a cell reference such as A1 was represented
as a direct object reference from the abstract syntax of one formula to the abstract
syntax of other formulas. However, such a representation would preclude sharing
of virtual formula copies.

Alternatively, the adjustment of referring formulas described in section 2.15
would be considerably simplified if the implementation maintained explicit knowl-
edge of which cells directly depend on the moved cell, for instance using a support
graph as described in section 3.3.2. With the current implementation, a scan of the
entire workbook is needed to find those cells, but cell move operations are infre-
quent, and the extra time required to scan the workbook is small compared to the
time it takes a user to perform these operations, usually done manually.

3.1.2 Reference representation in Excel

The fact that the XML export format of Excel 2003 uses the R1C1 format (sec-
tion 1.3) makes it reasonable to assume that a variant of R1C1 is the internal refer-

61

62 Minimal recalculation §3.3

ence format of Excel. However, patents 182 and 204 by Kaethler et al. indicate that
formula copies are (or were) not shared by default in Excel, which seems to remove
the main motivation for using R1C1. Also, the highly efficient formula implementa-
tion described in Schlafly’s patents 194 and 213 is not directly applicable to sharable
formulas, unlike Thomas Iversen’s implementation of runtime code generation [60].

3.2 Evaluation of array arguments

The current Corecalc implementation of aggregate functions such as SUMand AVERAGE
first evaluates all their arguments, and then applies a delegate to aggregate the
results. This may imply wasteful allocation of large intermediate data structures,
which can make Corecalc slower than Gnumeric and OpenOffice, as shown by Thomas
Iversen’s experiments [106, section 5.2.2].

An obvious alternative is to iterate over the unevaluated cell area arguments,
passing a delegate that evaluates the cells and aggregates the results in one pass,
thus avoiding the allocation of data structures that simply hold intermediate results
for a very short time.

3.3 Minimal recalculation

In the Corecalc implementation as described so far, each recalculation evaluates
every formula exactly once, and follows each reference from each formula once, for a
recalculation time that is linear in the sum of the sizes of all formulas. This provides
efficiency comparable to that of several other spreadsheet implementations when all
cells need to be recalculated [106, chapter 5]. Still, it would be desirable to improve
this so that each recalculation only considers cells that depend on some changed
cell, as is possibly the case in Excel.

Several “obvious” solutions are frequently proposed in discussions:

• Update event listeners on cells; see section 3.3.1.

• Explicit representation of the support graph; see section 3.3.2 and chapter 4.

• Topological sorting of cells in dependency order; see section 3.3.3.

• Speculatively reuse evaluation order; see section 3.3.4.

In the sections below we will discuss the merits of each of these proposed mecha-
nisms for minimal recalculation. To simplify discussion of space and time require-
ments, assume that only one cell has been edited before a recalculation, and let NA

be the number of non-null cells in the workbook, let FA be the total size of formulas
in the workbook, let ND be the number of cells that depend on the changed (edited)
cell in a given recalculation, and let correspondingly FD be the total size of formulas
in those cells.

§3.3 Minimal recalculation 63

3.3.1 Update event listeners

One idea that seems initially plausible is to use event listeners. For instance, if
the formula in cell B2 depends on cells A1 and A2, then B2 could listen to value
change events on cells A1 and A2. Whenever the value of a cell changes, a value
change event is raised and can be handled by the listening cells. This makes each
dependent cell an observer of all its supporting cells.

However, it is difficult to make this design work in practice:

• First of all, the number of event listeners may be O(N2
A), quadratic in the

number of active cells. For instance, in the sheet shown in figure 5.2, the SUM
formula in cell Bn must have event listeners on n cells in column A. With N
such rows, the number of event listeners is O(N2). This poses two problems:
the space required to record the event handlers associated with cells (even if
the handler objects themselves can be shared), and the large number of event
handler calls. The space problem is by far the most severe one.

• Second, one needs a separate mechanism to determine the proper recalcula-
tion order anyway. The value change event listener cannot just initiate the
recalculation of the listening cell, because the handler may be called at a time
when some (other) supporting cells are not yet up to date. Hence an event
handler may just record that the cell needs to be recalculated, and perhaps
also that a particular supporting cell now is up to date.

• Third, a cell that contains a formula with a volatile function call must be recal-
culated even if the value of no supporting cell has changed. That is, one needs
to keep a separate list of such cells and recalculate them whenever anything
changes, or one could introduce artificial “events” on which such cells depend.

• Fourth, a dynamic cyclic dependency will cause an infinite chain of events,
unless a separate cycle detection scheme is implemented.

• Fifth, event listeners would have to be attached based on static dependencies.
For instance, if cell B2 contains the formula IF(RAND()>0.5; A1; A2) , then
B2 should attach event handlers to both A1 and A2. However, a value change
event on A1 may be irrelevant to B2, namely when the pseudo-random number
generator RAND() returns a number less than or equal to 0.5. In general, the
existence of non-strict functions means that some event handlers will be called
to no avail.

• Finally, the lists of event handlers need to be maintained when the contents
of cells are edited. This is fairly straightforward because the formula in a cell
contains the necessary information about it directly supporting cells. So when
a cell reference is added to or deleted from a formula, it is easy to find the
cell(s) that must have event listeners added or removed.

64 Minimal recalculation §3.3

3.3.2 Explicit support graph

A more general alternative to using event listeners is to build an explicit static sup-

port graph, whose nodes are sheet cells and where there is an edge from cell A1
to cell B2, say, if A1 statically supports B2, or equivalently, B2 statically depends
on A1. The arrows drawn by the formula audit feature of modern spreadsheet pro-
grams essentially draw the support graph, as shown in figure 1.7.

An explicit support graph suffers from some of the same problems as the use of
event listeners. In fact, systematic attachment of event listeners as described above
would create precisely a support graph, where the edge from A1 to B2 is represented
by A1 holding a reference to an event handler supplied by B2.

Some of the problems with using an explicit support graph are:

• First, as for event listeners, the support graph may have O(N2
A) edges when

there are NA active cells, witness the example in figure 5.2. Thus the space
required to explicitly represent the support graph’s edges would be excessive.
But note that the dependency graph, represented by the formulas in the active
cells, requires only space O(FA). The reason for this is chiefly the compact
representation of sums and other formulas that take cell area arguments.

An interesting question is whether the support graph, like the dependency
graph, can be represented compactly?

• The support graph can be used to determine the proper recalculation order.
When a cell has been edited, one can determine all the cells reachable from it,
that is, all the cells transitively statically supported by that cell. Then one can
linearize the subgraph consisting of those cells by topological sorting in time
O(FD). The resulting linear order is suitable for a single pass recalculation.

• As for event listeners, one needs to keep a list of the cells containing formulas
with volatile function calls, and recalculate those cells, and all cells reachable
from them, at every recalculation.

• A static cyclic dependency manifests itself as a cycle in the support graph, but
a static dependency may be harmless. When there is no cycle in the support
graph, there can be no dynamic cyclic dependency. When there is a cycle in
the support graph, which should be rare, a separate mechanism can be used to
determine whether this is also a harmful dynamic cyclic dependency. However,
a static cycle would complicate the topological sorting proposed above.

• As for event listeners, the support graph would have to be based on static
dependencies, with the same consequence: Some cells may be recomputed al-
though they do not actually (dynamically) depend on cells that have changed.

• The static support graph must be maintained when the contents of cells are
edited. As for event listeners, this is fairly straightforward.

In conclusion, an explicit static support graph seems more promising than event
listeners, but is feasible only if a compact yet easily maintainable representation
can be found. One such representation is discussed in chapter 4.

§3.3 Minimal recalculation 65

3.3.3 Topological sorting of cell dependencies

A topological sorting is a linearization and approximation of the support graph.
The advantage of keeping only the topological sorting is that it requires only space
O(NA) rather than space O(N2

A) for the more precise support graph. The chief addi-
tional disadvantage is that the topological sort can be very imprecise and hence is a
poor basis for achieving minimal recalculation. Linearizations of the dependencies
in the figure 3.1 example have the form A1, A2, A3, . . . , B1, B2, B3, . . . , C1, C2, C3,
. . . , D1, D2, D3, . . . , E1, E2, E3, . . . , F1, F2, F3, . . . , with some permutation of the
blocks.

A B C D E F

1 11 12 13 14 15 16
2 =A1+1 =B1+1 =C1+1 =D1+1 =E1+1 =F1+1
3 =A2+1 =B2+1 =C2+1 =D2+1 =E2+1 =F2+1

. .

Figure 3.1: Bad control of recalculation using topological sort.

This means that if A1 changes, then not only the cells supported by A1 will be
recalculated, but also all the other cells following A1 in the topological sorting, most
of them needlessly.

Building the topological sorting in the first place is not straightforward. Most
simple algorithms for building the topological sorting assume a proper ordering
(acyclic, that is, not just a preorder), but as shown in section 1.7.6, a spreadsheet
can contain a static dependency cycle that is perfectly harmless, thanks to non-strict
functions.

Rebuilding the topological sorting anew at each change to the spreadsheet is not
attractive, as this requires time O(FA), in which time one can recalculate all cells,
whether changed or not, anyway. Hence it is desirable to try to incrementally adapt
the topological sorting as the cells of the spreadsheet are edited. There do exist on-
line algorithms for maintaining topological sorts, but they are not fast. Also, simple
edits to spreadsheet cells can radically change the topological sorting as shown in
figure 3.2, which indicates that efficient maintenance of the topological sorting is
not straightforward.

3.3.4 Speculative reuse of evaluation order

As an alternative to maintaining a correct topological sorting, or linearization, of
the cell dependencies, one could simply record the actual order in which cells are
recalculated, and attempt to reuse that order at the next recalculation. Maybe this
is what Excel does, see section 3.3.5.

The idea should be that dependency structure changes very little, usually not at
all, from recalculation to recalculation. Hence the most recent bottom-up recalcula-
tion order is likely to work next time also.

66 Minimal recalculation §3.3

A B C D

1 11 12 =SUM(B1:B9999) 14
2 =B1+A$1 =D1+C$1
3 =B2+A$1 =D2+C$1
4 =B3+A$1 =D3+C$1

.

Topological order before edit: A1, B1, B2, . . . , C1, D1, D2, . . .

A B C D

1 =SUM(D1:D9999) 12 13 14
2 =B1+A$1 =D1+C$1
3 =B2+A$1 =D2+C$1
4 =B3+A$1 =D3+C$1

.

Topological order after edit: C1, D1, D2, . . . , A1, B1, B2, . . .

Figure 3.2: Radical change in topological order after editing A1 and C2.

This should avoid rediscovering dependency order most of the time. However,
the correct amount and order of recalculation may change from recalculation to re-
calculation even if not cells are edited between recalculations. Again, non-strict
and volatile functions are the culprits: if the sheet contains a formula such as
IF(RAND()>0.5; A1; A2) , then the previous recalculation order will be wrong
half the time.

3.3.5 Recalculation in Microsoft Excel

A paper by La Penna at the Microsoft Developer Network (MSDN) website [64]
describes recalculation in Excel 2002. The paper presents an example but glosses
over the handling of volatile and non-strict functions.

Recalculation is presented as a three-stage process: (1) identify the cells whose
values need to be recalculated, (2) find the correct order in which to recalculate those
cells, and (3) recalculate them.

The description of step (1) implies that from a given cell one can efficiently find
the cells and the cell areas that depend on that cell, but the paper does not say how
this is implemented. Presumably this is done using the “dependency tree” described
later in this section.

The paper’s advice on efficiency of user-defined functions indicate that step (2) is
embedded in step (3) as follows. To recalculate a cell, start evaluating its formula.
If this evaluation encounters a reference to a cell that must be recalculated, then
abandon the current evaluation and start evaluating the other cell’s formula. When
that is finished, start over from scratch evaluating the original cell’s formula. At
least, that is what the advice implies for user-defined functions: “One way to opti-

§3.3 Minimal recalculation 67

mize user-defined functions is to prevent repeated calls to the user-defined function

by entering them [the calls?] last in order in an on-sheet formula”.
Interestingly, this requires a linked list (acting as a stack) to remember the yet-

to-be-computed cells. This is somewhat similar to the Corecalc design, which uses
the method call stack but avoids discarding any work already done.

Another interesting bit of information is that the final recalculation order is
saved and reused for the next recalculation, so that it avoids discarding partially
computed results. It is not discussed how this scheme works for a formula such as
IF(RAND()>0.5; A1; A2) that changes the dynamic dependencies in an unpre-
dictable way. Nevertheless, such a scheme probably works well in practice.

The paper hints that usually Excel only recalculates a cell if it (transitively)
depends on cells that have changed, but no explicit guarantees are given. That
paper says that one can request a standard recalculation (recalculate only cells that
transitively depend on changed ones or volatile ones) by pressing F9, and force a
“full recalculation” (recalculate all cells, also those not depending on changed cells)
by pressing Ctrl+Alt+F9, but the latter key combination does not seem to work in
Excel 2003.

Other sources indicate that the methods Calculate and CalculateFull from
Excel interop class ApplicationClass provide other ways to perform ordinary and full
recalculation [31, 84]. In addition, the method CalculateFullRebuild rebuilds
the so-called “dependency tree” and then performs a full recalculation; see below.
These methods and the dependency tree are not mentioned in the La Penna paper.
Experiments made by Thomas Iversen [106, section 5.2.2] show that rebuilding the
dependency tree can increase recalculation time very considerably; by a factor of 80
in bad cases.

The patents by Schlafly (numbers 194 and 213 in appendix C) give a hint how re-
calculation order may be implemented in classic spreadsheet implementations. Our
conjecture is: Each formula (really, cell) record has a pointer to the next formula, so
that all cells together make up a linked list. The implementation attempts to keep
this list ordered so that a cell always precedes any cells that depend on it. If during
evaluation, a formula is found to depend on a cell that has not yet been evaluated,
then the offending cell is moved from its current position in the linked list to just
before the dependent formula, and evaluation starts over at the offending cell’s new
position in the list.

Third-party information from the company Decision Models [32] indicates that
Excel 2003 does maintain a “dependency tree”, probably corresponding to the sup-
port graph discussed in section 3.3.2 and chapter 4. (Note that the “tree” may in
general be a graph, and may even contain cycles). The dependency tree is used to
limit recalculation to those cells that depend on changed cells. However, according
to the same source, in Excel 2003 there are some limitations on the representation
of the dependency tree: The number of different areas in a sheet that may have de-

pendencies is limited to 65 536, and the number of cells that may depend on a single

area is limited to 8192. In Excel 2007 and later those limits have been removed, but
in versions of Excel prior to that, full recalculations will be performed rather than
minimal recalculations when those limits are exceeded [31].

68 Minimal recalculation §3.3

3.3.6 Recalculation in Gnumeric

The Gnumeric spreadsheet program [47] is open source, but we have not studied its
recalculation mechanism in detail. An interesting technical note [74] by Meeks and
Goldberg, distributed with the source code, discusses “the new dependency code”.
The purpose of that code is to find a minimal set of cells that must be recalculated
when given cells have changed. Apparently two hash tables are used for individual
cell dependencies, but some other form of search is needed to determine whether
the value of a cell A42 is used in a cell area reference such as A1:A10000 .

3.3.7 Related work

Harris and Bastian has a patent, number 223 in appendix C, on a method for “op-
timal recalculation”. The patent assumes that there is an explicit representation of
the support graph (which the patent calls the dependency set for a cell), and then
describes how to recalculate only those formulas that need to be recalculated, and
in an order that respects dependencies. Basically, this combines a filtering (consider
only non-uptodate cells) with transitive closure (cells that depend on non-uptodate
cells are themselves non-uptodate) and topological sorting (to recalculate in depen-
dency order), so algorithmically, this is not novel. Nothing is said about volatile and
non-strict functions, and the handling of cyclic dependencies is unclear. Nothing is
said about how to represent the dependency set.

Chapter 4

The support graph

The support graph shows which cells directly statically depend on a given cell. A
support graph facilitates minimal recalculation as well as ordering of formula re-
calculation. As discussed in section 3.3.2, the number of edges in the support graph
may be very large relative to the number of cells in a workbook. This chapter in-
vestigates two compact representations of the support graph, as well as efficient
algorithms for building, maintaining and using it.

The ideas presented in the following sections have been implemented in Corecalc
since 2011. To achieve minimal recalculation it requires a smooth extension of the
simple recalculation mechanism described section 2.11, which results in a mixture
of bottom-up and top-down recalculation order (section 1.7.1). The support graph
also provides a number of further benefits; see section 5.5.

4.1 Compact representation of the support graph

As shown in section 3.3.2, there may be a large number of edges in the static support
graph. There are two reasons for this: A cell area argument in a formula may refer
to a large number of cells, and copying of such a formula may multiply that by
a large factor. First, a cell that contains the formula SUM(A1:A10000) will
belong to the support of 10 000 cells. Second, that formula may be copied to 5 000
other cells, thus making each of the 10 000 cells support 5 000 cells, for a total of
10 000 · 5 000 = 50 000 000 support graph edges between only 10 000 + 5 000 = 15 000
cells. Clearly a naive explicit representation of the support graph would require far
too much memory even for modest-size spreadsheets.

Here we shall investigate how to compactly represent support graph edges from a
cell to families of other cells that all hold virtual copies of the same expression. That
is, we shall attack the second source of the support graph edge problem, and reduce
the 50 000 000 support graph edges needed above to 10 000 compactly represented
families of support graph edges.

69

70 Supporting blocks of cells §4.2

4.2 Supporting blocks of cells

We shall represent the support graph not as a separate entity but by letting each
cell cell of the workbook maintain its support set, which is a set of cell addresses
that includes all cells that refer to cell. How should we then represent each cell’s
support set?

If one copies the formula =A1 to the rectangular block of cells B2:D6, then
the cell at A1 will support the cell area B2:D6, a rectangular block. Since formulas
are frequently copied to rectangular cell areas in just this manner, for now we shall
represent a support set as a list of such rectangular cell areas. This is the approach
currently implemented in Funcalc; sections 5.1 through 5.3 describe a more general
approach, not implemented in Corecalc or Funcalc.

4.2.1 Copying of formulas and update of support set

All references from a formula are from its single cell references (such as $A1) and
from its cell area references (such as A1:C$2). Moreover, a single cell reference can
be considered a degenerate cell area reference $A1:$A1 , so to study the effect on
references—and hence on support sets—of copying a formula, it suffices to study
cell area references, which we do in the next section.

4.2.2 The effect of a cell area reference on support sets

Consider a cell area reference such as A1:C$2 , or more generally CcaRra:C cbRrb,
copied to a target cell area Cc1Rr1:C c2Rr2 with upper left corner Cc1Rr1 and lower
right corner Cc2Rr2. Note that the target area is always given in absolute cell coordi-
nates. For the cell area reference there seems to be a daunting 16 cases to consider,
because there are four combinations of relative/absolute column/row references for
each of the two corners, here A1 and C$2. However, the row and column dimensions
are independent of each other, and analogous to each other, so it suffices to analyse
just the four cases arising for one of those dimensions.

So let us focus on the row dimension Rra:R rb of a cell area reference, and con-
sider each of the four combinations of the row end-points ra and rb being relative or
absolute. For the target cell area we can ignore the column dimension as well, and
consider only the row dimension Rr1:R r2. We can assume r1 ≤ r2.

Our task is to determine what cells the various copies of the cell area reference
can refer to. This tells us the effect of the formula copying on the support sets of
(other) cells in the workbook.

• Case abs-abs: Single-column absolute/absolute cell area reference Rra:R rb copied
to target rows Rr1:R r2. Each cell row Rr in Rra:R rb, that is, with ra ≤ r ≤ rb,
supports the entire area Rr1:R r2, that is, the cell row supports the row interval
[r1, r2].

• Case abs-rel: Single-column absolute/relative cell area reference Rra:R[rb]
copied to target rows Rr1:R r2. Subcase 1: For a cell row r such that ra < r ≤

§4.2 Supporting blocks of cells 71

r2+rb, the support set is [max(r1, r−rb), r2]. Subcase 2: For r = ra, the support
set is the interval [r1, r2]; informally, the absolute endpoint Rra of the cell area
reference must be referred from every virtual copy of the cell area reference in
target cells [r1, r2]. Subcase 3: A cell r such that r1 + rb ≤ r < ra supports the
interval [r1,min(r2, r − rb)].

These results can be derived as follows. A cell row r supports cell row s in
the target area provided s indeed is in the target area (r1 ≤ s ≤ r2) and r is
between the bounds of the area reference (ra ≤ r ≤ s+rb or s+rb ≤ r ≤ ra). By
breaking into cases on r and splitting and rewriting the inequalities to isolate
s, we get:

– Case 1: When ra < r then the second disjunct is false, so r supports s
provided r − rb ≤ s and r1 ≤ s and s ≤ r2, that is, when s belongs to the
interval [max(r1, r − rb), r2]. This interval is non-empty when r − rb ≤ r2,
that is, r ≤ r2+rb. Hence each r with ra < r < r2+rb supports the interval
[max(r1, r − rb), r2].

– Case 2: When r = ra then r supports s provided r ≤ s + rb ∨ s + rb ≤ r,
which is always true, so the only constraint is that s is in the interval
[r1, r2]. Hence row ra supports the row interval [r1, r2].

– Case 3: When r < ra then the first disjunct cannot be true, so r supports
s provided s ≤ r − rb and r1 ≤ s and s ≤ r2, that is, when s belongs to the
interval [r1,min(r2, r − rb)]. This interval is non-empty when r1 ≤ r − rb,
that is r1+rb ≤ r. Hence each r with r1+rb ≤ r < ra supports the interval
[r1,min(r2, r − rb)].

• Case rel-abs: Single-column relative/absolute cell area reference R[ra]:R rb
copied to target rows Rr1 : Rr2. Subcase 1: A cell row r such that r1 + ra ≤
r < rb supports the interval [r1,min(r2, r − ra)]. Subcase 2: The cell row r = rb
supports the row interval [r1, r2]. Subcase 3: A cell r such that rb < r ≤ r2 + ra
supports the interval [max(r1, r − ra), r2].

This can be proven with reasoning very similar to that above. In fact the
abs-rel and rel-abs cases are identical because the order of endpoints in a cell
area reference does not matter. There is no difference between the cell area
references Rra:R[rb] and R[rb]:R ra, at least in Excel and Corecalc.

• Case rel-rel: Single-column relative/relative cell area reference R[ra]:R[rb]
copied to target rows Rr1:R r2. We can assume without loss of generality that
ra ≤ rb. Each cell r in the interval [r1 + ra, r2 + rb] supports the interval
[max(r1, r − rb),min(r2, r − ra)].

This result can be derived as follows. A cell row r supports cell row s in the
target area provided s indeed is in the target area (r1 ≤ s ≤ r2) and r is
between the bounds of the area reference (s + ra ≤ r ≤ s + rb). Isolating s in
the latter inequality we get s ≤ r−ra∧r−rb ≤ s, and together with the former
inequality, we see that s must belong to the interval [max(r1, r− rb),min(r2, r−

72 Supporting blocks of cells §4.2

ra)]. This interval is non-empty when r1 ≤ r − ra ∧ r − rb ≤ r2, that is, when
r1 + ra ≤ r ≤ r2 + rb. Hence each r with r1 + ra ≤ r ≤ r2 + rb supports the
interval [max(r1, r − rb),min(r2, r − ra)].

The above analysis of the four absolute/relative cases is implemented by the C#
method RefAndSupp , using a little functional programming:

void RefAndSupp(bool ulAbs, bool lrAbs, int ra, int rb, int r 1, int r2,
out Interval referred, out Func<int,Interval> supported)

{
if (ulAbs) {

if (lrAbs) { // case abs-abs
referred = new Interval(ra, rb);
supported = r => new Interval(r1, r2);

} else { // case abs-rel
referred = new Interval(r1 + rb, r2 + rb);
supported = r => ra < r ? new Interval(Math.Max(r1, r - rb), r2)

: ra > r ? new Interval(r1, Math.Min(r2, r - rb))
: new Interval(r1, r2);

}
} else {

if (lrAbs) { // case rel-abs
referred = new Interval(r1 + ra, r2 + ra);
supported = r => rb > r ? new Interval(r1, Math.Min(r2, r - ra))

: rb < r ? new Interval(Math.Max(r1, r - ra), r2)
: new Interval(r1, r2);

} else { // case rel-rel
referred = new Interval(r1 + ra, r2 + rb);
supported = r => new Interval(Math.Max(r1, r - rb),

Math.Min(r2, r - ra));
}

}
}

This method takes as argument an (row) reference interval [ra, rb] and indications
whether the reference endpoints ra and rb are relative or absolute, and an abso-
lute copy target (row) range [r1, r2]. It returns two results via the out parameters.
First, referred is a (row) interval indicating which cells (rows) may be referred
from the copies of the reference ra : rb. Second, supported is a function such that
supported(r) is the interval of rows supported by cell (row) r , when r is within
the referred interval.

Until now we have discussed only the row dimension, but the column dimension
can be handled in exactly the same way, and independently of the row dimension.
This leads to the following succinct code for updating the support sets when cell
area reference CcaRra:C cbRr b is copied to target cell area Cc1Rr1:C c2Rr2:

void AddToSupport(Sheet supported, int col, int row,
int cols, int rows)

§4.2 Supporting blocks of cells 73

{
Sheet referredSheet = this.sheet ?? supported;
Interval referredRows, referredCols;
Func<int, Interval> supportedRows, supportedCols;
int ra = ul.rowRef, rb = lr.rowRef, r1 = row, r2 = row + rows - 1;
RefAndSupp(ul.rowAbs, lr.rowAbs, ra, rb, r1, r2,

out referredRows, out supportedRows);
int ca = ul.colRef, cb = lr.colRef, c1 = col, c2 = col + cols - 1;
RefAndSupp(ul.colAbs, lr.colAbs, ca, cb, c1, c2,

out referredCols, out supportedCols);
referredCols.ForEach(c => {

Interval suppCols = supportedCols(c);
referredRows.ForEach(r =>

referredSheet.AddSupport(c, r, supported,
suppCols, supportedRows(r)));

});
}

This code analyses the row and column dimensions of the cell area reference inde-
pendently, using two calls to the RefAndSupp method shown earlier. This produces
intervals referredRows and referredCols describing the referred cell area, that
is, those cells that may support some copy of the cell area reference. Moreover, it
produces functions supportedRows(r) and supportedCols(c) that given a row
r (or column c) return the interval of rows (or columns) that the referred cell sup-
ports. Finally, the cell rectangle spanned by these row and column intervals is added
to the support set of the referred cell (c,r) on the referred sheet by iterating over
all items (c,r) in the product of the intervals.

4.2.3 The effect of a single cell reference on support sets

From the analysis of copying of cell area references (albeit only in the row dimen-
sion) let us consider the special case of a single cell reference, using that a single
cell reference such as A$3 is equivalent to an area reference A$3:A$3 whose two
corner references are identical. Focusing again on the row dimension only, we have
just two cases:

• Case abs: Single-column absolute single cell reference Rra, or equivalently
Rra:R ra. From the abs-abs case in section 4.2.2 we see that each r with ra ≤
r ≤ ra, that is, just row r = ra, has support interval [r1, r2].

• Case rel: Single-column relative single cell reference R[ra] , or equivalently
R[ra]:R[ra] . From the rel-rel case in section 4.2.2 we see that each r with
r1 + ra ≤ r ≤ r2 + ra has support interval [max(r1, r − ra),min(r2, r − ra)]. But
for such r it holds that r1 ≤ r − ra and r − ra ≤ r2, so the support interval is
[r − ra, r − ra], that is, a single cell.

The column dimension is analogous and independent of the row dimension. The
machinery for finding the effect, on support sets, of copying a single cell reference

74 Supporting blocks of cells §4.2

can be implemented as slightly specialized versions of methods RefAndSupp and
AddToSupport from section 4.2.2.

4.2.4 The effect of a formula on support sets

In sections 4.2.2 and 4.2.3 above we analysed what cells the copies of a cell (area)
reference actually refer to, and used that to determine the support set of each such
referred cell. But in general one does not just copy a cell (area) reference, but a
formula, which may contain any number cell (area) references. To find the effect of
the formula copies on the support sets of referred cells, one may simply traverse the
formula abstract syntax trees, processing each cell (area) reference encountered.

This works, but it is common for a formula to contain multiple occurrence of the
same cell (area) reference, as in MAX(A1:A10)-MIN(A1:A50) , which computes the
running spread between minimal and maximal values. To avoid recording the com-
puted support set twice, the traversal of the formula abstract syntax carries along
a set of the cell references already processed, and a set of the cell area references
already processed. Then the support sets are computed only on the first encounter
of each such reference.

4.2.5 Representating the support sets

Conceptually, the support set for a cell is a union of rectangular cell areas (whose
formulas refer to that cell). The support set is represented as an array list of Sup-
portRange objects, where abstract class SupportRange has subclasses SupportCell
(representing a single supported cell) and SupportArea (representing a rectangular
cell area). This distinction is made primarily to conserve memory, since a Support-
Cell object requires just three fields (sheet, column, row) whereas a SupportArea
object requires five fields (sheet, and start and end point for column interval as well
as row interval).

In the current implementation, no effort is made to avoid overlapping support
ranges in array list, although overlaps cause needless administrative work during
recalculation (but does not cause cells to be needlessly recalculated). Also, no effort
is made to coalesce adjacent support ranges into one. Such cleanup is expected to
require more effort than it saves, given that there is no simple way to ensure that
support ranges that are adjacent or overlapping in the grid structure are also stored
near each other in the array list. Moreover, completely avoiding overlaps between
support ranges might increase the number of support ranges needed to represent
the support set.

A SupportRange object has an Apply method that takes as argument a delegate
act , and calls act(sheet, col, row) for each cell in the support range. This is
used during minimal recalculation (section 4.3).

public abstract void Apply(Action<Sheet,int,int> act);

§4.2 Supporting blocks of cells 75

The SupportRange class has a static method Make that creates an appropriate rep-
resentation of a cell range, according as the range consists of a single cell or multiple
cells, where

public static SupportRange Make(Sheet sheet, Interval col Int,
Interval rowInt)

{
if (colInt.min == colInt.max && rowInt.min == rowInt.max)

return new SupportCell(sheet, colInt.min, rowInt.min);
else

return new SupportArea(sheet, colInt, rowInt);
}

The Make method is called from a support set’s AddSupport method, which adds
a range, given as the product of columns suppCols and rows suppRows , to the
support set of cell sheet[col,row] :

public void AddSupport(Sheet sheet, int col, int row,
Sheet suppSheet, Interval suppCols, Interval suppRows)

{
SupportRange range = SupportRange.Make(sheet, suppCols, suppRows);
if (!range.RemoveCell(this, sheet, col, row))

ranges.Add(range);
}

The objective of the range.RemoveCell call above is to exclude the cell (at [col,row])
itself from the support set, because such direct self-support causes problems when
using the support graph for minimal recalculation for array formulas (section 4.3.4).
Those problems could be avoided by additional run-time checks and requiring also
array formulas to have cell state, but it is more efficient to avoid such unit cycles in
the support graph from the outset. The RemoveCell call returns true if it removed
something from the range, in which case it also already added any remaining cell
areas to the list ranges of support ranges.

Removing a single cell from a support range (also needed when updating support
sets, section 4.2.6) can be done as follows:

• Removing a cell address from a single-cell support range (a SupportCell) either
eliminates the support range completely, if the cell address is the one described
by the support range; or else has no effect.

• Removing a cell address ca from a multi-cell support range (a SupportArea)
either replaces the given support range with between one and four smaller
support ranges, if ca is within the support area; or else has no effect. The
smaller subranges are North, the partial column above ca; South, the partial
column below ca; West, the block consisting of all rows and of the columns to
the left of ca; East, the block consisting of all rows and of the columns to the
right of ca. Any one of these areas may be empty, may consist of a single cell,
or may be a proper cell area, depending on the position of ca within the given
support area.

76 Supporting blocks of cells §4.2

We do not attempt to minimize the representation of a support set, for instance
by joining adjacent SupportCells into a SupportArea, after removing a cell from
the support set. After a large number of edits, this may cause deterioration of the
support set representation. That can be mitigated by requesting a full recalculation
after rebuild to rebuild the support graph from scratch.

4.2.6 Maintaining the support sets

The support graph must be maintained as the user edits the workbook interactively.
Whenever a cell is edited, so that its contents changes from, say, 27 to 42, the cell’s
old support set should be transferred to the new cell contents: Editing the cell does
not affect which other cells refer to it (except for self-references, which we avoid in
this context, see above). This is done by method TransferSupportTo in class Cell.

Editing the cell’s contents clearly may change what other cells supports the cell.
Specifically, if the edited cell previously did not refer to other cells, and we type
or copy or paste in a formula that does, this cell should be added the support sets
of the referred cells. Conversely, if the edited cell previously contained a formula
that refers to other cells, then one can remove this cell from the support sets of the
previously referred-to cells.

But note that whereas adding the cell is necessary for correct recalculation (for
otherwise the new formula will not be recalculated when the referred cells change),
recalculation would not be incorrect if we neglected to remove the cell from those
support sets. Leaving the cell there would make the support graph imprecise (but
still safe) which might cause the cell to be needlessly recalculated; results would
still be correct but some recalculation effort may be wasted.

However, removing the cell from those support sets and maintaining precision
of the support graph brings other benefits. In particular, in that case the support
set will not contain artificial cycles, only such cycles that could potentially lead to
cyclic dependencies during recalculation. The advantage of this becomes clear in
section 4.3.2 when we describe how the support graph is used during minimal cal-
culation.

So when we delete a formula from a cell cell, we must remove the cell from
the support sets to which it belongs. But those are precisely the support sets of
those cells that cell’s formula refers to. Hence we can find them by traversing the
formula’s expression and processing each CellRef and AreaRef expression (once),
removing cell cell from the cells referred to by these reference expressions.

Traversing the formula of cell is likely to be fast (because formulas are small),
but the procedure has two other costs that may be significant. First, even a small
formula may refer to many such cells; consider the formula =SUM(A1:Z10000) .
Second, the support set of each such cell may consist of many support ranges, and
for each such support range, we must determine whether it contains cell, and if so,
remove cell from the support range. This can be done as explained in section 4.2.5;
in general it will require the support range to be replaced by between zero and
four smaller support ranges. Hence deleting a cell from a support set may make

§4.2 Supporting blocks of cells 77

the representation of the support set larger (although the represented set becomes
smaller).

4.2.7 The support graph and array formulas

Recall that an array formula (section 1.4 and figure 1.6) is an array-valued formula
whose result is displayed over a range of cells, called the display area. Array formu-
las require special attention in relation to support sets.

Each cell in the display area may be referred to from other cells, and so should
maintain its own support set; this is in line with the treatment of all other cells.
In addition, all cells in the display area share the same underlying array-valued
formula (although displaying only a part of its value), so the support set of that
underlying formula must include all cells in the display area. In fact, no other cell
can refer directly to the underlying formula, so its support set is exactly the cells
in the display area. Finally, the underlying formula may refer to other cells, and
hence must be added to the support set of those cells, once. To ensure that the
underlying cached formula is added only once to referred cells, we add update flags
to the CachedArrayFormula object.

This setup avoids adding every cell in the display area to every cell referred to by
the shared underlying formula, which would lead to redundant work during recal-
culation. Section 4.3.4 describes how array formulas are handled during minimal
recalculation.

4.2.8 Rebuilding the support graph (at load-time)

When loading a workbook from file, we need to rebuild the support graph from
scratch. This can be done by determining blocks of identical formulas, then treating
each such block as if it resulted from copying a formula from the block’s upper left
corner to the entire block, using the machinery from section 4.2.2 to update support
sets.

A given formula may be copied to many cells of the sheet, and ideally we want to
find the minimal set of disjoint rectangles that cover all those cells. However, this is
a version of the black and white Rectilinear Picture Compression problem which is
NP-complete [46, problem SR25]. Therefore we must be satisfied with determining a
modest but perhaps not minimal set of rectangles that cover all the formula copied.
The procedure outlined below processes an entire sheet in time Ø(n) where n is the
number of cells, and appear to work well in practice.

We scan each sheet from left to right and top to bottom, and for each formula
cell not yet covered, we use a greedy approach to find a large rectangle of virtual
copies with that cell as upper left corner, as follows. First we determine the largest
square of virtual copies with that cell as the upper left corner. Then we determine
the largest extension (to the right or downwards) of that square to a rectangle of
virtual copies. The cells in that rectangle are marked as covered, and the process
proceeds to the next uncovered cell in the sheet. To find a largest square of size n2

we need at most n2+2n+1 operations, or at most 4 times the number of cells in the

78 Minimal recalculation using a support graph §4.3

resulting square. To extend that to a largest rectangle requires at most 2 times as
many operations as there are cells in the final rectangle. Hence the entire process
is linear in the number of cells. Since formulas are “interned” when reading them—
only a single copy of each formula expression abstract syntax tree is created—a
simple reference equality comparison suffices to determine whether one formula is
a virtual copy of another.

As a practical matter, instead of equipping each cell with an additional Visited
flag, we temporarily abuse the cell state (section 2.11) for this purpose, interpreting
Uptodate as Visited and Dirty as non-Visited. The ResetCellState method then
can be used to initialize all cells to non-Visited before the scan, and to reset the cells
again after the scan. Only formula cells matter in the scan, and it is precisely the
formula cells that have cell state.

4.3 Minimal recalculation using a support graph

Given a support graph for a workbook, one can implement minimal recalculation
(section 3.3) by a modest extension of the simple top-down recalculation mechanism
described in section 2.11. This section describes the scheme actually implemented
in the current version of Corecalc and Funcalc. This scheme work is independent
of the support graph representation and works both with the interval-based one
presented in this chapter and the more sophisticated one presented in chapter 5.

4.3.1 Types of recalculation

Here we summarize the different kinds of recalculations that may be performed in
Corecalc and Funcalc, and how they rely on the cell states (section 2.11) to control
the recalculation process. As can be seen, the different kinds of recalculation appear
to correspond closely to those of Microsoft Excel.

Let a volatile cell be a formula cell whose expression contains a call to a volatile
function. In general, a recalculation of a workbook will reevaluate those formula
cells that depend, directly or indirectly, on the recalculation roots. In a standard
(minimal) recalculation, the recalculation roots are the newly edited cells and the
volatile cells. In a full recalculation, performed just after loading the workbook or
after a cycle has been discovered, all cells are recalculation roots.

• A standard minimal recalculation recalculates only those cells that depend on
recalculation roots. It assumes that all cells are Uptodate before the recalcu-
lation, and it guarantees that all cells are Uptodate after the recalculation,
unless there is a cycle, which may leave some cells not Uptodate. (Hence a
standard recalculation cannot be used after a cycle has been discovered).

A standard recalculation happens whenever one or more cells have been edited,
in which case the recalculation roots are the edited cells and all volatile cells.
It may also be requested explicitly by pressing F9, just as in Microsoft Excel,
in which case the recalculation roots are the volatile cells. In Microsoft Excel,

§4.3 Minimal recalculation using a support graph 79

the request is equivalent to calling Application.Calculate in a VBA macro. In
Funcalc, standard recalculation is implemented by method Recalculate in
class Workbook, as described in section 4.3.2 below.

• A full recalculation forces recalculation of all cells. It first marks all cells Dirty
and then evaluates all of them, in top-down order. It leaves all cells Uptodate
unless there is a cycle, which may leave some cells not Uptodate. A full recal-
culation is automatically performed once after loading a workbook from file. It
may also be requested explicitly by pressing Ctrl+Alt+F9, just as in Microsoft
Excel. Moreover, any attempt at recalculation of a workbook in which a cycle
has been discovered will result in a full recalculation. Full recalculation is
implemented by method RecalculateFull in class Workbook. In Microsoft
Excel, it is equivalent to calling Application.CalculateFull in a VBA macro.

• A full recalculation with rebuild will rebuild the support graph as described
in section 4.2.8 and then perform a full recalculation. A plausible use of this
is to clean up support sets that have become overly conservative due to vigor-
ous editing of the workbook or that have otherwise have grown inconsistent
with the actual dependencies. There is anecdotal evidence that it serves such
clean-up purposes in Microsoft Excel [71, 89]. A full recalculation with rebuild
may be requested by pressing Ctrl+Alt+Shift+F9 as in MS Excel. Full recal-
culation with rebuild is implemented by method RecalculateFullRebuild
in class Workbook. In Microsoft Excel it is equivalent to calling Applica-
tion.CalculateFullRebuild in a VBA macro.

The discovery of a dependency cycle may leave cells in the states Dirty, Enqueued
and Computing, so the next recalculation cannot rely on cells being Uptodate. A safe
solution to this problem is to force a full recalculation, which will begin by marking
all cells Dirty.

It seems that a more parsimonious approach would be possible, because any
cell that depends on the yet unevaluated cells, including the cells involved in the
cycle(s), will be in state Dirty, Enqueued, or Computing. Hence it would suffice to
reset all those to Dirty and leave the Uptodate ones in that state. The resetting
would require a visit to all cells, but the subsequent recalculation would be faster
because it does not affect the Uptodate cells.

However, we stick to the simpler approach of resetting and recalculating all cells
because a cyclic dependency should be a mistake and hence an infrequent occur-
rence.

4.3.2 Standard minimal recalculation

Standard minimal recalculation is performed as a mixture of bottom-up recalcula-
tion driven by the support graph and top-down recalculation driven by one cell’s
need for the value of another cell that has not yet been recalculated. It is a smooth
extension of the simple top-down mechanism described in section 2.11.

80 Minimal recalculation using a support graph §4.3

The mechanism relies on the cell states Dirty, Enqueued, Computing, and Upto-
date, three of which have already been described in section 2.11. State Enqueued is
essentially a substate of Dirty, indicating that the cell is Dirty but in addition has
been put on a recalculation queue.

A standard minimal recalculation assumes that all cells are Uptodate (in partic-
ular, no dependency cycle has yet been discovered, as that may leave some cells not
Uptodate). Also, a set of recalculation roots is given.

The recalculation proceeds in two stages, the Mark stage and the Evaluate stage:

• (1) The Mark stage marks Dirty those cells transitively reachable from recal-
culation roots via the support graph. Cycles in the process are avoided by
marking cells that are Uptodate. It can be implemented by pseudo-code like
this:

foreach r in roots do
MarkDirty(r)

where procedure MarkDirty is this:

procedure MarkDirty(c) is
foreach d in supported(c) do

if d.state<>Dirty then
d.state = Dirty
MarkDirty(d)

• Stage (2), called the Evaluate stage, evaluates cells bottom-up based on sup-
port sets, but when a dependency of a dirty cell c on another dirty cell d is
discovered, we evaluate d and enqueue its set of supported cells (unless they
are already Enqueued, Computing or Uptodate) instead of evaluating them
eagerly. In particular, this means that c , which may be in the support set of d,
will not be pushed nor wrongly considered causing a cycle. Whenever the eval-
uation of a root has finished, new cells to evaluate are taken from the queue or
stack, and are evaluated unless in the meantime they have become Uptodate.
This can be expressed in pseudo-code like this:

queue = roots
while (queue is non-empty)

c = some cell from the queue
Eval(c)

The pseudo-code for procedure Eval(c) is this, where c.v is the cached value
of cell c :

procedure Eval(c) is
switch c.state on

case Uptodate: do nothing

§4.3 Minimal recalculation using a support graph 81

case Computing: CYCLE detected
case Dirty: case Enqueued:

c.state = Computing
c.v = c.e.Eval()
c.state = Uptodate
foreach d in supported(c) do

if d.state=Dirty then
d.state=Enqueued
put d on queue

end switch
return c.v

After the Mark phase, some formula cells are Dirty, namely those that need recalcu-
lation. After the Evaluate phase, all formula cells are Uptodate again. To maintain
this cell state invariant, a newly created cell (corresponding to a newly edited con-
stant or formula) should be created Uptodate, so that the Mark phase will also mark
cells in its supported set.

The above pseudo-code is a simplification. For instance, only Formula cells have
state, but that saves some space (relative to maintaining state on all cells) and
suffices for dynamic cycle detection, because any cycle must go through a Formula.
An edited cell may be a constant, not a formula, and so have no cell state, but
anything that depends on the cell (or on anything else) must be a formula. Hence to
apply MarkDirty to a non-formula cell, we can simply apply MarkDirty to every
cell in its support set.

This shortcut potentially would cause a problem if we did not remove support
graph edges when updating a cell. Namely, consider the accidental creation of a
direct cycle, such as cell A1 containing the formula =A1+2, which would cause A1’s
support set to contain A1 itself. Then assume we fix the mistake by editing A1 to
contain the constant 99, and that the support set of A1 gets transferred to the new
cell contents. Then MarkDirty will be called on non-formula cell A1, which will
cause MarkDirty to be called on A1, and so on, infinitely. An analogous problem
exists for longer cycles, and this is the chief reason we take care to remove edges
from the support graph when editing cells (section 4.2.6).

It might seem tempting to introduce an optimization in Eval above so that it
does not enqueue, for reevaluation, the cells supported by a cell whose value did
not change. This could save a large amount of recalculation work, especially in the
case of IF , CHOOSEand INDEX formulas, which may appear to depend on many
more cells than actually affect their value in particular evaluation. But if we do so,
the recalculation would leave those unenqueued cells artificially Dirty, which would
confuse the subsequent Mark phase. If we want to use this optimization, we must
use a more advanced cell state representation, possibly representing the four cell
states as some integer modulo 4, increment the recalculation count in increments of
4, and consider any state s strictly smaller than the recalculation count Uptodate?

The minimal-recalculation version of the Eval method for a formula cell is so
similar to the simple one on page 2.11 that they can be unified just by treating the
Enqueued cell state the same as the Dirty cell state and introducing a workbook-

82 Minimal recalculation using a support graph §4.3

wide flag UseSupportSets to control whether a formula cell’s support set should
be enqueued after evaluating it:

public override Value Eval(Sheet sheet, int col, int row) {
switch (state) {

case CellState.Uptodate:
break;

case CellState.Computing:
FullCellAddr culprit = new FullCellAddr(sheet, col, row);
String msg = String.Format("### CYCLE in cell {0} formula {1 }",

culprit, Show(col, row, workbook.format));
throw new CyclicException(msg, culprit);

case CellState.Dirty:
case CellState.Enqueued:

state = CellState.Computing;
v = e.Eval(sheet, col, row);
state = CellState.Uptodate;
if (workbook.UseSupportSets)

ForEachSupported(EnqueueCellForEvaluation);
break;

}
return v;

}

4.3.3 Detecting volatile cells

The recalculation roots (section 4.3.1) include all volatile cells, that is, cells whose
formula involves a volatile function. We let each workbook maintain a hash set
volatileCells of the workbook’s volatile cells’ addresses. Volatility is a local prop-
erty that can be determined by a simple traversal of the cell’s formula expression,
in contrast to the support set of a cell which potentially is influenced by any other
cell in the workbook (section 4.2.6). We therefore update the volatile set whenever
a cell is edited to accurately reflect the cell’s volatility.

The set-accessor of the [col,row] indexer on a sheet makes sure that this up-
date is performed, as shown here. If the old cell contents was a volatile formula, the
cell is removed from the volatile set; if the new cell contents is a volatile formula, it
is added to the volatile set:

public Cell this[int col, int row] {
set {

Cell oldCell = cells[col, row];
if (oldCell != value) {

if (oldCell != null) {
oldCell.TransferSupport(ref value);
workbook.DecreaseVolatileSet(oldCell, this, col, row);

}
workbook.IncreaseVolatileSet(value, this, col, row);
cells[col, row] = value;

§4.3 Minimal recalculation using a support graph 83

workbook.RecordCellChange(col, row, this);
}

}
}

To determine whether a formula is volatile, we define a readonly property IsVolatile
on the Expr hierarchy of abstract syntax classes:

public abstract bool IsVolatile { get; }

Its only interesting override is on a function call expression (FunCall), which is
volatile if the called function, or any of the arguments, is volatile:

public override bool IsVolatile {
get {

if (function.IsVolatile(es))
return true;

foreach (Expr e in es)
if (e.IsVolatile)

return true;
return false;

}
}

The built-in functions NOWand RANDare volatile (section 1.7.5). A sheet-defined
function (section 6) whose definition involves a volatile function is itself volatile. An
external function (section 8.7) is not itself considered volatile, but calls to the func-
tion can be wrapped in the VOLATILIZE function (section A.2.2) and then become
volatile.

The simple treatment of volatile sheet-defined functions can be made to work
for higher-order functions too. If function FOO(x,y) is volatile, then we just need to
consider partial applications such as CLOSURE("FOO", NA(), 42) and CLOSURE("FOO",
42, NA()) volatile as well, by an appropriate definition of function.IsVolatile(es)
above. Then in every recalculation, the CLOSUREexpression will be reevaluated and
hence everything (that is, any APPLYcall) that depends on it will be reevaluated as
well.

Finally, some very dynamic built-in spreadsheet functions, such as Excel’s INDIRECT,
may depend of any cell of the workbook. Instead of adding each cell that contains
such a function to the support graph, one may simply consider the INDIRECT func-
tion volatile, thus making sure that it gets evaluated in every recalculation; see
section 5.7.

We have decided not to trace whether a sheet-defined function depends on volatile
cells on ordinary sheets. Doing so would involve a fixed-point computation, and
makes it more expensive to accurately maintain the volatility status of cells and
sheet-defined functions as cells and functions are being edited.

84 Minimal recalculation using a support graph §4.3

4.3.4 Minimal recalculation and array formulas

As described in section 4.2.7, each cell of an array formula’s display area maintains
its own support set, any cell referenced by the underlying formula supports that for-
mula (by supporting a specified cell in the display area), and the underlying formula
supports every cell in the display area.

How do we use this information during a minimal recalculation? In other words,
what should happen during the Mark and Evaluate phases of recalculation?

• The Mark phase for array formulas. If any cell of which the underlying for-
mula depends gets marked, then MarkDirty will be called on some cell (con-
taining an ArrayFormula object) in the display area. If the underlying formula
is still Uptodate, then MarkDirty is called on the underlying formula, mak-
ing it Dirty. Since all cells in the display area are in the underlying formula’s
support set, MarkDirty will automatically be called again on all those cells.
So the cell’s MarkDirty will be called again, but now the underlying formula
is already Dirty and we proceed to call MarkDirty on the cell’s support set
(but we do not mark the array formula cell itself, because it has no state). This
is implemented by ArrayFormula’s MarkDirty , where caf.formula is the
underlying formula:

void MarkDirty() {
switch (caf.formula.state) {

case CellState.Uptodate:
caf.formula.MarkDirty(); break;

case CellState.Dirty:
ForEachSupported(MarkCellDirty); break;

}
}

• The Evaluate phase for array formulas. For an array formula display cell,
EnqueueForEvaluation must perform two tasks. First, it must make sure
that the underlying formula gets evaluated. Second, it must cause everything
dependent on the array formula cell to be enqueued. As in the Mark phase,
we exploit the general machinery and the cell state of the underlying formula
caf.formula . If the underlying formula is still Dirty, we evaluate it by calling
Eval on the formula. Eventually, this will cause EnqueueForEvaluation to
be called on every cell in the underlying formula’s support set, that is, on every
cell in the display area. Hence EnqueueForEvaluation will be called again,
but now the underlying formula is Uptodate we proceed to enqueue all cells in
the display cell’s support set.

Since only the array formulas can refer to their underlying formula, its evalu-
ation can be initiated only via the array formulas, so a direct call to its Eval
method will not lead to spurious detection of cycles. On the other hand, if the
formula depends on one of the display area’s array formulas, then the evalua-
tion of the formula will lead to a call to Eval on the array formula and hence

§4.3 Minimal recalculation using a support graph 85

back to a call to Eval on the underlying formula, leading to the detection of a
cycle.

void EnqueueForEvaluation(Sheet sheet, int col, int row) {
switch (caf.formula.state) {

case CellState.Dirty:
caf.Eval(); break;

case CellState.Uptodate:
ForEachSupported(EnqueueCellForEvaluation); break;

}
}

With the array formula recalculation scheme discussed above, we cannot allow di-
rect self-dependencies (where a cell belongs to its own support set) in the support
graph. Consider a cyclic array formula such as {=TRANSPOSE(A1:B2)} entered
in cell A1 and with display area A1:B2. If we allow direct self-dependencies, the
underlying formula TRANSPOSE(A1:B2), at cell A1, will have support set A1:B2.
Now if we call MarkDirty on array formula cell A1, then that will call MarkDirty
on the underlying cell, which in turn calls MarkDirty on each of A1:B2, including
A1 itself. Thus MarkDirty will enter an infinite recursion. This could probably be
avoided by adding cell state to array formulas, but it is more easily and efficiently
avoided by preventing a cell from belonging to its own support set.

86 Minimal recalculation using a support graph §4.3

Chapter 5

Non-contiguous support

This chapter describes a concept of support graph that generalizes that presented
in chapter 4 above. Instead of restricting a supported area to be a product of two
intervals (of columns and rows), it may be the product of two arithmetic progres-

sions. What we have discussed until now will become the special case where b = 1
below. This more general idea was presented in our technical reports [106, chapter
4] and has been tested in an experimental extension of Corecalc, as part of Morten
Poulsen’s and Poul Serek’s MSc thesis [94], but it is not part of the current Core-
calc/Funcalc implementation.

While in principle the support graph representation presented in this chapter
is more general and powerful and not much harder to implement, practical experi-
ments seemed to indicate that few real-life spreadsheets would benefit from it. For
those spreadsheets that do benefit, it can make the support graph representation
dramatically more compact.

5.1 Arithmetic progressions and FAP sets

A finite arithmetic progression has the form a, a + b, . . . , a+ (k − 1)b where a, b and
k ≥ 0 are integers. Arithmetic progressions are interesting because the row num-
bers (and column numbers) of virtual copies of an expression can be described by an
arithmetic progression with b ≥ 1 and k ≥ 1. To make this observation seem pro-
found, we shall refer to the set of elements in such a finite arithmetic progression as
a FAP set, and call a its offset, b its period, and k its cardinality. Clearly, FAP sets
generalize singleton sets (k = 1) and integer intervals (b = 1).

First observe that a FAP set can be represented compactly by the triple (a, b, k).
We shall abuse notation and denote the set itself by the triple, like this:

(a, b, k) = {a, a+ b, . . . , a+ (k − 1)b}

For the empty set (k = 0) and for one-element sets (k = 1) the representation by a
triple is not unique. We shall usually not represent the empty set by a triple at all,

87

88 Arithmetic progressions and FAP sets §5.1

and we therefore say that the representation is normalized if b ≥ 1, and k ≥ 1, and
k = 1 ⇒ b = 1. Figure 5.1 shows some equivalences for FAP sets.

(m, b, 0) = {} empty set
(m, b, 1) = {m} singleton

(m, 1, n−m+ 1) = {m,m+ 1, . . . , n} interval
(a, b, k1 + k2) = (a, b, k1) ∪ (a+ bk1, b, k2) chop
(a, 1, k1 + k2) = (a, 2, k1) ∪ (a+ 1, 2, k2) zip two

Figure 5.1: Some equivalences for FAP sets.

The “zip two” equivalence in the figure is a special case of this “zip multiple”
equivalence (with b = 1 and n = 2):

(a, b, k) = (a, nb, k0) ∪ (a+ b, nb, k1) ∪ . . . ∪ (a+ (n− 1)b, nb, kn−1)

where ki ≥ 0 is the greatest integer such that n(ki − 1) ≤ k − 1 − i, which can be
computed as k_i=(k-1-i+n)/n . This can be used to find a non-redundant FAP set
representation of the union of two FAP sets, in the form of a set of mutually disjoint
FAP sets.

For example, to represent the union of (a1, b1, k1) = (0, 2, 10) and (a2, b2, k2) =
(0, 3, 8), notice that the least common multiple of b1 and b2 is b = lcm(2, 3) = 6.
We use the “zip multiple” equivalence to rewrite the two FAP sets to use the com-
mon period b = 6, with the multipliers n being n1 = b/b1 = 3 and n2 = b/b2 = 2
respectively:

(0, 2, 10) = (0, 6, 4) ∪ (2, 6, 3) ∪ (4, 6, 3)
(0, 3, 8) = (0, 6, 4) ∪ (3, 6, 4)

We see that the component FAP sets (0, 6, 4) are identical whereas all the other
component FAP sets are disjoint. Hence one non-redundant representation of the
union of the sets is this:

(0, 2, 10) ∪ (0, 3, 8) = (0, 6, 4) ∪ (2, 6, 3) ∪ (3, 6, 4) ∪ (4, 6, 3)

In the above case the offsets of the two FAP sets were the same, namely a1 = a2 = 0.
When the offsets are distinct, there is not necessarily any overlap between compo-
nent FAP sets in the expansion. The two set overlap if there exist i1 and i2 with
0 ≤ i1 < k1 and 0 ≤ i2 < k2 such that a1 + i1b1 = a2 + i2b2. To see when this is
the case, let again b = lcm(b1, b2) and further let β = gcd(b1, b2) = b1b2/b so we have
n1 = b/b1 = b2/β and n2 = b/b2 = b1/β.

Now if the two sets overlap, then there exist 0 ≤ i1 < k1 and 0 ≤ i2 < k2 such
that a2 − a1 = i1b1 − i2b2 = i1βn2 − i2βn1 = β(i1n2 − i2n1), so a1 ≡ a2(mod β).

Hence if a1 6≡ a2(mod β) then the FAP sets (a1, b1, k1) and (a2, b2, k2) are disjoint
and there is no need to expand them to obtain an irredundant representation.

On the other hand, if a1 ≡ a2(mod β), it depends also on the cardinalities k1 and
k2 whether the sets overlap. Loosely speaking, if the cardinalities are large enough

§5.2 Support graph edge families and FAP sets 89

the sets will overlap, otherwise not. The sets overlap iff there are 0 ≤ i1 < k1 and
0 ≤ i2 < k2 such that i1n2 − i2n1 = (a2 − a1)/β, and whether this is the case depends
on the bounds k1 and k2 on i1 and i2. Namely, since n1 and n2 are coprime, this
equation would always have a solution if there were no bounds on i1 and i2.

5.2 Support graph edge families and FAP sets

The core idea is to represent the family of support graph edges from a cell to virtual
copies of an expression by a pair of FAP sets, and hence by a pair ((ac, bc, kc), (ar, br, kr))
of triples. Namely, each copy operation giving rise to virtual copies creates a regu-
lar rectangular grid of virtual copies, and we let the triple (ac, bc, kc) represent all
the columns containing virtual copies, and let the triple (ar, br, kr) represent all the
rows containing virtual copies. Hence the virtual copies occupy precisely the cells
with these absolute, zero-based column and row numbers:

{ (c, r) | c ∈ (ac, bc, kc), r ∈ (ar, br, kr) }

We shall refer to such a product of FAP sets as a FAP grid. For a simple example,
assume that cell B1 contains the formula SUM(A$1:A$10000) , and assume that
formula is copied to the area B2:B5000, as shown in figure 5.2.

A B

1 0.5 =SUM(A$1:A$10000)
2 =A1* 1.00001 =SUM(A$1:A$10000)
3 =A2* 1.00001 =SUM(A$1:A$10000)

.
5000 =A4999* 1.0001 =SUM(A$1:A$10000)

.
10000 =A9999* 1.00001

Figure 5.2: A sheet with 15 000 active cells and 50 million support graph edges.

Then cell A1 must have support graph edges to cells B1, B2, . . . , B5000, and
likewise for A2, . . . , A10000. In each case, this family of support graph edges can be
represented by this FAP grid, or pair of FAP sets:

((ac, bc, kc), (ar, br, kr)) = ((1, 1, 1), (0, 1, 5000))

of triples, that is, column 1, rows 0–4999. This representation must be used for
each of the 10 000 cells in column A that support the cells in column B, but the
space needed per cell in column A has been reduced from 5 000 cell addresses to
six integers. In this case, a single pair of triples can even be shared among all the
column A cells. Clearly, cell A1 also supports A2, A2 supports A3, and so on, so the
support edges must be represented as the union of families of support graph edges,
where each family can be represented by a pair of triples.

90 Creating and maintaining support graph edges §5.3

For a more interesting example, let cell B1 contain the formula SUM(A$1:A1) ,
as in figure 1.5, and assume that formula is copied to the area B2:B5000. Then cell
A1 has support graph edges to cell B1; cell A2 has support graph edges to cells B1
and B2; and more generally, cell An has support graph edges to cells B1, B2, . . . ,
Bn. For cell An, where 1 ≤ n, the family of support graph edges can be represented
by the pair ((1, 1, 1), (n− 1, 1, 5000− n+ 1)). Hence six integers per cell in column A
still suffice to represent the support graph edge family, although the pairs of triples
can no longer be shared between all the cells in column A.

To illustrate the need for FAP sets rather than just integer intervals, assume
again that cell B1 contains the formula SUM(A1:A30) , that the cells C1, D1,
B2, C2 and D2 contain other formulas, and that the 3 × 2 block B1:D2 of formulas
is copied to the cell area B1:M30 which has 12 columns and 30 rows, or 4 · 15 = 60
virtual copies of each of the formulas from B1:D2. As outlined in figure 5.3, the
virtual copies of cell B1 are in cells B1, E1, H1, K1, B3, E3, . . . , K29. This family of
cells can be represented by the pair of triples ((1, 3, 4), (0, 2, 15)), where the column
triple (1, 3, 4) = {1, 4, 7, 10} represents the columns B, E, H and K, and the row triple
(0, 2, 15) = {0, 2, 4, . . . , 28} represents rows 1,3,5,. . . , 29.

A B C D E F G . . . M

1 0.5 =SUM(A1:A30) =SUM(A1:A30) . . .
2 =A1 . . .
3 =A2 =SUM(A1:A30) =SUM(A1:A30) . . .
4 =A3 . . .

. . .
29 =A28 =SUM(A1:A30) =SUM(A1:A30) . . .
30 =A29 . . .

Figure 5.3: Making virtual copies of a 3× 2 cell area.

5.3 Creating and maintaining support graph edges

Let St be the set of absolute cell addresses of cells directly supported by the cell at
address t. The support graph must have an edge (t, s) for each s ∈ St.

Assume that the formula f , if at cell ca, contains references to a set T of cells;
that is, it directly statically depends on the cells in T . Then creation, deletion,
copying and moving of that formula affects the support set of each cell t ∈ T as
follows:

• When creating the formula in the cell at address ca, we must add ca to St for
each cell t ∈ T .

• When deleting the formula from the cell at ca, we must remove ca from St for
each cell t ∈ T .

§5.3 Creating and maintaining support graph edges 91

• When copying the formula from cell ca = (c, r) within a cols× rows block that
is being copied to a cell area whose upper left hand corner is (cul, rul), then the
pair of triples ((cul − c, cols, kc), (rul − r, rows, kr)) must be added to St for each
t ∈ T . Here kc is the number of columns that receive copies of the formula,
and kr is the number of rows that receive copies of the formula. This is true
for absolute cell references in formula f to the cell addresses in T .

Since relative references get adjusted by the copying, the story for those is a
little more complicated. Define f [c′, r′] to be the formula at target cell (c′, r′),
that is, with relative reference adjusted by the copying, and let refers(f [c′, r′])
denote the set of cell addresses referenced from f [c′, r′]. Then for each c′ ∈
(cul, cols, kc) and each r′ ∈ (rul, rows, kr) we must add (c′, r′) to each Sca where
ca ∈ refers(f [c′, r′]). If we do this naively as described here, then the support
graph representation may require quadratic space. Using the technique from
section 5.4.5, this can be done efficiently in a way that results in a much more
compact support graph representation.

Obviously, this operation also overwrites any formulas within the target cell
area of the copying operation, which affects the support graph.

• When moving a formula from cell ca1 to cell ca2, we must remove ca1 from and
add ca2 to the support set of each cell t ∈ T .

• When inserting N ≥ 1 new rows just before row R ≥ 0, each St that includes a
row r ≥ R must be adjusted.

More precisely, when the FAP set pair ((ac, bc, kc), (ar, br, kr)) ⊆ St satisfies
that ar + br(kr − 1) ≥ R, then St must be adjusted.

When ar ≥ R too, simply add N to each member of the row FAP set (ar, br, kr)
to obtain (ar +N, br, kr).

Otherwise, when ar < R ≤ ar + br(kr − 1) we must split the row FAP set
into two. One set represents those rows preceding the insertion, and another
set representing those rows following the insertion, and then we must add
N to each element of the latter set. Determine the integer k such that ar +
br(k − 1) < R ≤ ar + bk, then the resulting row FAP sets are (ar, br, k) and
(ar + brk +N, br, kr − k).

Insertion of columns is completely similar.

• When deleting the N ≥ 1 rows numbered R,R + 1, . . . , R + N − 1, those rows
must be removed from each row FAP set (ar, br, kr), and for each row FAP
set, N must be subtracted from the numbers of any rows following the deleted
ones.

Let k1 be the greatest integer such that ar + br(k1− 1) < R. The idea is that k1,
if positive, is the number of rows in the row FAP set that precede the deleted
rows. Similarly, let k2 be the least integer such that R + N ≤ ar + brk2; then
kr − k2, if positive, is the number of rows in the row FAP set that follow the
deleted rows.

92 Creating and maintaining support graph edges §5.4

The original row FAP set must be replaced by zero, one or two non-empty row
support sets, as follows:

– If 1 ≤ k1 then (ar, br, k1) is part of the resulting row FAP set. These are
the rows preceding the deleted rows.

One can compute k1 by the expression k_1 = (R-a_r+b_r-1)/b_r ; see
section 5.4.6.

– If k2 < kr then (ar + brk2 −N, br, kr − k2) is part of the resulting row FAP
set. These are the rows following the deleted rows.

One can compute k2 by the expression k_2 = (R+N-a_r+b_r-1)/b_r ;
see section 5.4.6.

Figure 5.4 shows examples of adjustment of row FAP sets for some formula
=Z1 when the shaded rows 4 through 7 are deleted. The original FAP set
triples (ar, br, kr) and the resulting k1 and k2 are shown below the spreadsheet
fragment.

A B C D E

1 =Z1
2 =Z1
3 =Z1
4 =Z1 =Z1 =Z1
5 =Z1
6 =Z1
7 =Z1 =Z1 =Z1
8 =Z1
9 =Z1

10 =Z1 =Z1

ar 0 1 2 3 3
br 3 3 3 3 3
kr 4 3 3 3 2
k1 1 1 1 0 0
k2 3 2 2 2 2

Figure 5.4: Effect on row FAP set for S=Z1 of deleting the grey rows (N = 4 and
R = 3).

Deletion of columns is completely similar.

It seems that it is never necessary to have more than one instance of a given row
FAP set representation in the implementation. Namely, assume FAP set S appears
in the support of two different cells. Then if any formula in a cell in S is updated
so that set S must be changed, then this change affects both cells in the same way.
Hence updates to the support graph can be made very simple; they just require
some mechanism to avoid performing the update more than once.

§5.4 Reconstructing the support graph 93

5.4 Reconstructing the support graph

The previous section describes how the support graph can be maintained while in-
serting, deleting, moving and copying formulas, and so on. An equally relevant
challenge is to efficiently create the support graph from a spreadsheet that does not
have one, such as a newly loaded spreadsheet created by an external program. It
is trivial to find a poor solution to this problem, but finding an optimal one is quite
likely an NP-complete problem, as it involves finding a kind of minimal exact set
cover.

We propose a two-stage approach in which one first builds an occurrence map for
each formula (section 5.4.1), and then uses the occurrence map to build the support
graph (sections 5.4.2 through 5.4.5).

5.4.1 Building a formula occurrence map

The following procedure seems usable for building a reasonably compact occurrence
map for typical spreadsheets:

• Scan columns from left to right.

• In the scan of a column c, we maintain a map m from expressions e (in the in-
ternal, copy-invariant representation) to a sequence m(e) of triples, each triple
representing a FAP set.

The goal is that after scanning the column, the union of the members of the
triples in m(e) is exactly the set of those cells (in that column) that contain
formula e.

We maintain a map from expressions (to a sequence of triples), rather than a
map from the cells that those expressions refer to. The reason is that the latter
map could have a much larger domain: an expression such as SUM(A1:A10000)
in effect represents 10 000 cells, and clearly it is more efficient to map from one
such expression than from 10 000 individual cells.

The map from expressions to sequences of FAP sets can be maintained as a
hash dictionary, with equality being expression object reference identity or
expression abstract syntax tree equality. The former is faster but less precise
than the latter, but imprecision just leads to a less compact representation of
the support graph, not to wrong results.

At the beginning of the scan of the column, the map m is empty.

• The rows of the column are scanned in order from row 0. Assume the cell in
row r contains a formula e, then we proceed as follows:

– If e /∈ dom(m) then set m(e) := [(r, 1, 1)].

The expression e has not been seen before in this column.

94 Reconstructing the support graph §5.4

– Otherwise assume m(e) = [. . . , (r′, b′, k′)].

The expression has been seen before and the most recent occurrence was
at r′ + b′(k′ − 1).

– If k′ = 1 then update the last item of m(e) to (r′, r − r′, 2).

The most recent FAP set has only one element, and we can extend it to
have k = 2, with the step b being the difference r − r′ between this row
and the row in the FAP set.

– Otherwise, if r = r′+b′k′ then update the last item of m(e) to (r′, b′, k′+1).

The new row is an additional member of the most recent FAP set, so we
extend that set.

– Otherwise, add a new last item (r, 1, 1) to m(e).

The new row is not a member of the most recent FAP set, so we do not
extend that sequence, but begin a new one.

This simple scheme can be defeated by writing a formula in A1, copying it to
A3, then copying the block A1:A3 to many further cells. It would give alternat-
ing distances 2,1,2,1,2,1, . . .

Hence instead we might collect the sequence of distances as above, and infer
the FAP sets (0, 3, k1) and (2, 3, k2) from them. This is quite easy, presumably,
by considering derived sequences of 2-sums, 3-sums etc. that are constant.

Another approach would be to use a Fast Fourier Transform (FFT) [25] of the
column’s formula identities to find the spectrum of the formula occurrences.
In the example sketched here, one would expect to find the periods 1, 2 and
3, with 3 having twice the power of 1 and 2, which would indicate that 3 is
the most interesting period for that column. (Periods that are multiples of 3
would appear also, but with lesser power). After noting this, one can perform
a column scan that keeps for each formula up to 3 partially constructed FAP
sets.

A conceptually simpler auto-correlation computation might serve the same
purpose as the FFT, but might be slower if the correlation window needs to
be large. In both cases, a possible weakness of this method is that the pattern
of virtual formula copies may not be uniform over the column.

Even more speculatively, could we perform a two-dimensional Fourier Trans-
form to find repetitive structure in columns and rows at the same time? It
would seem that a two-dimensional auto-correlation function could easily be
computed. However, it would increase computational cost a good deal, espe-
cially if we want to handle copying of blocks up to, say, 20x20 cells.

• Let mc be the map resulting from scanning column c as outlined above. Now
scan all columns, building a map M , from pairs (f, ts) of formulas f and triple
sequences ts, to a list of set of pairs ((ac, bc, kc), (ar, br, kr)) of triples, using a
scheme similar to the above.

§5.4 Reconstructing the support graph 95

• When the map M has been built, the support graph can be created as explained
in the next section.

Instead of building a map m from formulas e to sequences of triples, we could build
a map from ccars, where a ccar is a cell reference such as B7 or cell area reference
such as B7:D8 . The chief advantage of this would be to permit better sharing of
support graph edge descriptions. The disadvantages are that it would exacerbate
the problem mentioned in the Note above and make a solution to that problem more
urgent, and that it would require a traversal of each expression e ∈ dom(m) when
processing a cell in a column, instead of just looking up the expression’s reference
in m. However, even if we stick to letting m map from expressions e, the processing
of each e described in the sections below would consist of processing each ccar in e.

5.4.2 From formula occurrence map to support graph

Now let us consider how to build the support graph. This is done by two nested
loops:

• For each e ∈ dom(M), for each member (C,R) ∈ M(e), find the set CA of
absolute cell addresses that is referred by at least one occurrence of formula f
within the grid of cells described by (C,R). This can be computed in constant
time for each ccar, as shown in section 5.4.4.

• Then for each such cell address ca ∈ CA, compute the pair of triples that
represents the subset of (C,R) that ca actually supports. For each ca this
computation is a constant time operation, as shown in section 5.4.5.

5.4.3 Some examples

First let us consider some concrete examples of virtual formula copies that contain
cell area references, such as those in figure 5.5. The task is to find which cells in
column A support which cells in column B, C and D. The column B and C formula
copies are described by the triple (0, 2, 5); the column D formula copies are described
by the triple (1, 2, 5).

In column B, each of cells A1–A10 support all of the cells B1, B3, B5, B7 and B9,
which can be described by the triple (0, 2, 5).

In column C, cell A1 supports C1, C3, C5, C7 and C9, described by (0, 2, 5); cells
A2 and A3 both support C3, C5, C7 and C9, described by (2, 2, 4); cells A4 and A5
both support C5, C7 and C9, described by (4, 2, 3); cells A6 and A7 both support C7
and C9, described by (6, 2, 1); cells A8 and A9 both support C7 and C9, described by
(6, 2, 1); and cell A10 supports nothing in column C.

In column D, cell A1 and A2 both support D2, D4, D6, D8 and D10, described
by (1, 2, 5); cells A3 and A4 both support D4, D6, D8 and D10, described by (3, 2, 4);
cells A5 and A6 both support D6, D8 and D10, described by (5, 2, 3); cells A7 and A8
both support D8 and D10, described by (7, 2, 2); and cells A9 and A10 both support
D10, described by (9, 2, 1).

96 Reconstructing the support graph §5.4

A B C D

1 11 SUM(A1:A10) SUM(A1:$A1)
2 12 SUM(A1:$A2)
3 13 SUM(A1:A10) SUM(A1:$A3)
4 14 SUM(A1:$A4)
5 15 SUM(A1:A10) SUM(A1:$A5)
6 16 SUM(A1:$A6)
7 17 SUM(A1:A10) SUM(A1:$A7)
8 18 SUM(A1:$A8)
9 19 SUM(A1:A10) SUM(A1:$A9)

10 20 SUM(A1:$A10)

Figure 5.5: Finding the support edges from each cell in column A.

In continuation of the above example, consider figure 5.6 and let us find which
cells in column A support which cells in column E, F and G. The column E formula
copies are described by the triple (0, 2, 5); the column F formula copies by (2, 2, 4);
and the column G formula copies are described by (1, 3, 3).

In column E, cells A1 and A2 both support E1 only, described by (0, 2, 1); cell A3
supports E1 and E3, described by (0, 2, 2); cell A4 supports E1, E3, E5, E7 and E9,
described by (0, 2, 5); cell A5 supports E5, E7 and E9, described by (4, 2, 3); cells A6
and A7 both support E7 and E9, described by (6, 2, 2); cells A8 and A9 both support
E9, described by (8, 2, 1); and cell A10 supports nothing in column E.

In column F, cells A1 and A2 both support F3, described by (2, 2, 1); cell A3 sup-
ports F3 and F5, described by (2, 2, 2); cell A4 supports F5, described by (4, 2, 1);
cell A5 supports F5 and F7, described by (4, 2, 2); cell A6 supports F7, described
by (6, 2, 1); cell A7 supports F7 and F9, described by (6, 2, 2); cells A8 and A9 both
support F9, described by (8, 2, 1); and cell A10 supports nothing in column F.

In column G, cells A1 and A2 both support G2, described by (1, 3, 1); cell A3
supports nothing in column G; cells A4 and A5 both support G5, described by (4, 3, 1);
cell A6 supports nothing in column G; cells A7 and A8 both support G8, described by
(7, 3, 1); and cells A9 and A10 support nothing in column G. In this case, with non-
overlapping areas of supporting cells, each triple represents a single edge, and no
space is saved by our supposedly compact support graph representation. However,
the number of support graph edges is already only linear in the number of formula
occurrences.

5.4.4 From occurrence map to referred cells

Now let us consider more generally the problem of finding the set of cell addresses
referred to by the occurrences of a formula; this is the first step in section 5.4.2.
For simplicity we will consider this problem in one dimension only, working on the
formula (or ccar) occurrences in one column at a time. Hence we consider triples of
the form (ar, br, kr), describing a pattern of occurrences of a single formula or ccar.

§5.4 Reconstructing the support graph 97

A . . . E F G

1 11 . . . SUM(A4:$A1)
2 12 . . . SUM($A1:$A2)
3 13 . . . SUM(A4:$A3) AVERAGE($A1:$A3)
4 14 . . .
5 15 . . . SUM(A4:$A5) AVERAGE($A3:$A5) SUM($A4:$A5)
6 16 . . .
7 17 . . . SUM(A4:$A7) AVERAGE($A5:$A7)
8 18 . . . SUM($A7:$A8)
9 19 . . . SUM(A4:$A9) AVERAGE($A7:$A9)

10 20 . . .

Figure 5.6: Finding the support edges from each cell in column A; more cases.

In fact, regardless of whether the occurrence map M created in the previous section
maps from formulas f or ccars ccar, we shall consider one ccar at a time, if necessary
extracted from the formulas in the domain of M .

Hence we consider a ccar that appears in a given column c and an associated
triple (a, b, k) that describes the rows of that column in which the ccar appears. The
procedure then becomes:

(1) First we find the set CA of all those absolute cell addresses ca that are referred
to by some occurrence ccar[c, r] for r ∈ (a, b, k). This set can be represented by
an interval (in the one-dimensional case) or the product of two intervals (in
the general case).

The point of computing CA in advance is to avoid analysing any ca more than
once in step (2). Namely the cell areas referenced by different occurrences of
the same formula may overlap, and certainly do in columns B, C, D, E and F
above, and processing each such cell area in turn could change a linear time
algorithm to a quadratic time algorithm.

(2) Next, for each ca ∈ CA we compute the triple (a′, b, k′) representing the sub-
set of (a, b, k) that ca actually supports. This triple then is used to represent
support graph edges from ca to cells in column c supported by ca.

Step (1) above in principle must compute r = a + bi for all 0 ≤ i < k, and then find
the union of the sets of cells referred to by each occurrence ccar[c, r] of the cell/cell
area reference:

CA =
⋃

0≤i<k

refers(ccar[c, a+ bi])

This looks like a potentially expensive operation, but it turns out that CA is an inter-
val and can be computed in constant time in all cases where computing it matters,
namely when the referred-to cell areas overlap, so that processing the areas one by

98 Reconstructing the support graph §5.4

one would duplicate work. The CA sets for the examples in figures 5.5 and 5.6 are
shown in figure 5.7, in A1 and C0R0 format. The column G case shows that CA in
general may not be an interval.

Formula (A1) Formula (C0R0) Occurs Referred-to cells (CA)
B SUM(A1:A10) SUM(C0R0:C0R9) (0, 2, 5) { A1, A2, . . . , A9, A10 }
C SUM(A1:$A1) SUM(C0R0:C0R[0]) (0, 2, 5) { A1, A2, . . . , A9 }
D SUM(A1:$A2) SUM(C0R0:C0R[0]) (1, 2, 5) { A1, A2, . . . , A9, A10 }
E SUM(A4:$A1) SUM(C0R4:C0R[0]) (0, 2, 5) { A1, A2, . . . , A9 }
F AVERAGE($A1:$A3) AVERAGE(C0R[-2]:C0R[0]) (2, 2, 4) { A1, A2, . . . , A9 }
G SUM($A1:$A2) SUM(C0R[-1]:C0R[0]) (1, 3, 3) { A1, A2, A4, A5, A7, A8 }

Figure 5.7: Formula occurrences and referred-to cells in figures 5.5 and 5.6.

To see that the set CA can be computed efficiently, consider the four possible forms
of ccar, using C0R0-format references (figure 2.3) for the two corners. We assume
here that ccar is a cell area reference, since a simple cell reference such as A1 can
be represented by a cell area reference A1:A1.

• When ccar is C0Ri1:C0R i2, that is, both corners are absolute references, the
occurrences (a, b, k) do not matter. Obviously the exact result is an interval,
namely, assuming wlog i1 ≤ i2:

CA = {i1, . . . , i2}

• When ccar is C0Ri1:C0R [i2], that is, one corner is an absolute reference, the
other is a relative one, the occurrences do matter. Still the exact result is an
interval, namely:

CA = {n1, . . . , n2}

where

n1 = min(i1, a+ i2, a+ b(k − 1) + i2) and n2 = max(i1, a+ i2, a+ b(k − 1) + i2)

• When ccar is C0R[i1]:C0R i2, that is, one corner is a relative reference, the other
is an absolute one, we have the same situation as above; simply swap i1 and i2
in the formulas.

• When ccar is C0R[i1]:C0R [i2], and assuming wlog i1 ≤ i2, the exact set is

CA =
⋃

0≤i<k

{a+ ib+ i1, . . . , a+ ib+ i2}

§5.4 Reconstructing the support graph 99

This can be approximated by an interval:

CA ⊆ {a+ i1, . . . , a+ i(k − 1) + i2}

In fact, this interval is the exact answer when the cell areas referred to from
the formula occurrences are adjacent or even overlap, that is, when i2−i1+1 ≥
b as in column F of figure 5.6. When this is not the case, there is no point in
building the set CA explicitly; instead step (2) described in section 5.4.5 below
should iterate over the ca in each set {a+ ib + i1, . . . , a + ib + i2} individually,
for 0 ≤ i < k. Precisely because those sets do not overlap, this means that no
ca will be analysed twice.

For the formulas in figures 5.5 and 5.6, we find precisely the CA sets shown in
figure 5.7.

5.4.5 The support graph edges from a referred cell

Now let us consider how to find the support graph edges from a given referred-to
cell; this is the inner loop (2) in section 5.4.4 above. We consider an absolute cell
address (c′, r′) = ca ∈ CA, where CA was computed in the previous section, and
recall that the occurrences of ccar are described by (a, b, k). We must find the set

Sca = { j | ca ∈ refers(ccar[c, j]), j = a+ bi, 0 ≤ i < k }

The challenge is to compute this set efficiently, and to find a compact representation
of it. Preferably, we want to find a triple (a′, b, k′) that is equivalent to Sca. Again
this computation can be performed by case analysis in the form of the ccar.

• When ccar is C0Ri1:C0R i2 and ca ∈ CA, clearly ca supports every occurrence
of the ccar, so

Sca = (a′, b, k′) = (a, b, k)

• When ccar is C0Ri1:C0R [i2], there are three cases, according as r′ equals, pre-
cedes, or follows the anchor point i1:

– If r′ = i1 then

Sca = (a, b, k)

– If r′ < i1, find the greatest k1 ≤ k such that i2 + a+ b(k1 − 1) ≤ r′. Then if
k1 ≥ 1 then the set is non-empty:

Sca = (a, b, k1)

The number k1 can be computed as k_1 = Math.Min(k, (r’-i_2-a+b)/b) .

100 Reconstructing the support graph §5.4

– If i1 < r′, find the least k1 ≥ 0 such that r′ ≤ i2 + a + bk1. Then if k1 < k
then the set is non-empty:

Sca = (a+ bk1, b, k − k1)

The number k1 can be computed as k_1 = Math.Max(0, (r’-i_2-a+b-1)/b) .

• When ccar is C0R[i1]:C0R i2, then the cases and solutions are exactly as above,
only with i1 and i2 swapped.

• When ccar is C0R[i1]:C0R [i2], and assuming wlog i1 ≤ i2, determine the great-
est k1 such that i2+a+b(k1−1) < r′ and the least k2 such that r′ < i1+a+bk2,
and define k′1 = max(0, k1) and k′2 = min(k, k2). Then if k′1 < k′2 we have

Sca = (a+ bk′1, b, k
′
2 − k′1)

The number k′1 can be computed as k_1’ = Math.Max(0, (r’-i_2-a+b-1)/b) .

The number k′2 can be computed as k_2’ = Math.Min(k, (r’-i_1-a+b)/b) .

See figures 5.9 for an example where the referred-to row ranges overlap, and
figure 5.10 for an example where the referred-to row ranges do not overlap.

Considering the formulas in figure 5.7, we find for each cell in column A the support
graph edge families shown in figure 5.8. Fortunately, these agree with the sets of
supported cells found in the informal discussion of those figures.

Cell r′ B C D E F G
A1 0 (0, 2, 5) (0, 2, 5) (1, 2, 5) (0, 2, 1) (2, 2, 1) (1, 3, 1)
A2 1 (0, 2, 5) (2, 2, 4) (1, 2, 5) (0, 2, 1) (2, 2, 1) (1, 3, 1)
A3 2 (0, 2, 5) (2, 2, 4) (3, 2, 4) (0, 2, 2) (2, 2, 2) {}
A4 3 (0, 2, 5) (4, 2, 3) (3, 2, 4) (0, 2, 5) (4, 2, 1) (4, 3, 1)
A5 4 (0, 2, 5) (4, 2, 3) (5, 2, 3) (4, 2, 3) (4, 2, 2) (4, 3, 1)
A6 5 (0, 2, 5) (6, 2, 2) (5, 2, 3) (6, 2, 2) (6, 2, 1) {}
A7 6 (0, 2, 5) (6, 2, 2) (7, 2, 2) (6, 2, 2) (6, 2, 2) (7, 3, 1)
A8 7 (0, 2, 5) (8, 2, 1) (7, 2, 2) (8, 2, 1) (8, 2, 1) (7, 3, 1)
A9 8 (0, 2, 5) (8, 2, 1) (9, 2, 1) (8, 2, 1) (8, 2, 1) {}
A10 9 (0, 2, 5) {} (9, 2, 1) {} {} {}

Figure 5.8: Support graph edge families for column A cells in figures 5.5 and 5.6.

5.4.6 Computer integer arithmetics

Computing with integers and inequalities requires some care, both because the alge-
bra rules are different from those of arithmetics on reals, and because programming
languages (except for Standard ML [77]) traditionally implement integer division

§5.4 Reconstructing the support graph 101

i +a+bi1

k
1

Referring

Referred−to

0 1 2 3 4

i +a+bi2

a+bi =

i =

r’

k
2

Figure 5.9: Five virtual copies of a cell area reference ccar of form C0R[i1]:C0R [i2],
that is, with both endpoints relative. Non-overlapping cell areas. The row number
r′ is included in the cell areas referred by i for which k1 ≤ i < k2, in this case, i = 2.

i +a+bi1

k
1

k
2

2i +a+bi

Referring

Referred−to

0 1 2 3 4

a+bi =

i =

r’

Figure 5.10: Five virtual copies of a cell area reference ccar of form C0R[i1]:C0R [i2],
that is, with both endpoints relative. Overlapping cell areas. The row number r′ is
included in the cell areas referred by i for which k1 ≤ i < k2, in this case, i = 1, 2, 3.

102 Other applications of a support graph §5.5

with negative numerators in a peculiar way. Essentially, most languages let integer
division truncate towards zero rather than towards minus infinity, and therefore
satisfy (−n)/d = −(n/d) but not (n+ d)/d = n/d+ 1 for d > 0.

Let an integer d > 0 be given.

• To find the least integer q such that n ≤ dq, where n ≥ 0,
compute q = (n+d-1)/d .

• To find the greatest integer q such that dq ≤ n, where n ≥ 0,
compute q = n/d .

• To find the greatest integer q such that dq < n, where n ≥ 0,
compute q = (n-1)/d .

• To find the greatest integer q such that dq ≤ n, where n ≥ −d,
compute q = (n+d)/d-1 .

Computing this as q = n/d would be wrong because integer division in most
programming languages truncates the quotient towards zero rather than to-
wards minus infinity, and therefore does not satisfy the expected equivalence
(n+ d)/d = n/d+ 1 for integers n and d > 0.

• To find the greatest integer q such that dq < n, where n ≥ −d,
compute q = (n+d-1)/d-1 .

• To find the greatest integer q such that d(q − 1) < n, where n ≥ −d,
compute q = (n+d-1)/d .

5.5 Other applications of a support graph

• The scheme for minimal recalculation described in section 4.3 is relatively
simple and deals correctly with support graphs that have (static and/or dy-
namic) cycles. However, when the static support graph contains no static cy-
cles, it is beneficial to perform a topological sort of the reachable cells in the
support graph. This produces a safe recalculation order, in which all refer-
ring expressions can assume that referred-to cells are up to date, thus saving
evaluation-time checks and recalculation time, and avoiding the need for a re-
cursion stack. The Expr subclasses could have a special version of the Eval
method for this purpose.

• The topologically sorted cell list seems especially useful in a multiprocessor
implementation. A multiprocessor implementation of the scheme for minimal
recalculation in section 4.3 would appear to require an expensive lock on each
formula cell because multiple threads could discover dynamically that they
need the value of that (as yet unevaluated) cell. With a topological sort, cells
evaluated in parallel can safely refer to any cell they depend on; such a cell
will already have been evaluated.

§5.7 Related work 103

• When the static support graph contains no (static) cycles, the cycle check can
be left out, thus saving recalculation time.

• If we create “efficient” versions of expressions by inter-cell type analysis, the
support graph can be used to efficiently find the cells whose type analysis may
be affected by a type change in a given cell.

• The support graph could help compile expressions to sequential code, for in-
stance to generate code from function sheets.

• The support graph could help schedule recalculation for multiprocessor archi-
tectures, general-purpose graphics processors (GPGPU), and implementations
based on field-programmable gate arrays (FPGA) [66].

5.6 Related work

It is clear that some explicit representation of the support graph in used both in
Excel [31] and in Gnumeric [74]. However, it seems that the representation in both
cases is considerably different from what is suggested here; see section 3.3.5.

Burnett and others [18] introduces the concept of cp-similar cells, essentially
meaning that their formulas could have arisen by a copy-paste operation from one
cell to the other. This is equivalent to saying that their R1C1-representations (or
C0R0-representations) are identical. They further define a region to be a group of
adjacent cp-similar cells; which is a special case of a FAP grid of formula copies. The
purpose of grouping cells into regions is not to support recalculation, but to reduce
the task of testing to one representative from each region.

A paper by Mittermeir and Clermont proposes the highly relevant idea of a “se-
mantic class” of cells [79], which corresponds to Burnett’s notion of cp-similar cells,
but the cells in a semantic class are not necessarily adjacent. As above, the paper’s
goal is to assist users in discovering irregularities and bugs in spreadsheets, not
to implement spreadsheet programs. The paper defines semantic class using first
order logic but does not suggest how to represent semantic classes and does not
provide algorithms for reconstructing or maintaining semantic classes.

Abraham and Erwig [3] use the concept of cp-similarity to infer templates for
spreadsheets, in the sense of Gencel [39]. This paper seems to work with regular
grids of cp-similar cells, which makes this idea very similar to FAP grids, but there
is no explanation of an algorithm for discovering such regular grids. The purpose
of template inference (and Gencel) is to guide and limit the editing of a spreadsheet
and hence to prevent the introduction of errors.

5.7 Limitations and challenges

The interval representation (chapter 4) and FAP grid representation (this chapter)
of the support graph provide a compact support graph for highly regular grids of

104 Limitations and challenges §5.7

formulas. Moreover, these support graph representations can be efficiently con-
structed and maintained. However, for spreadsheets with an irregular structure,
which cannot be built using only a few copy operations, the FAP grid representation
may degenerate to a representation of all single edges. For instance, a spreadsheet
to compute the discrete Fourier transform [10, 25] has a structure that cannot easily
be built using copy operations, as shown in figure 5.11. It is unlikely to be worth-
while to devise a support graph representation that can compactly represent this
pattern of dependencies.

Figure 5.11: Dependencies in a discrete Fourier transform. (Spreadsheet from
[120]).

In general, and especially in the presence of SUMformulas and other functions
with cell area arguments, it may be useful to supplement the FAP grid representa-
tion of the support graph with other representations. One way to obtain a compact
support graph representation is to maintain only an overapproximation of the ac-
tual support graph. This will not lead to wrong results, only to unnecessary work
during recalculation. But an arbitrary amount of such extra work (up to recalcu-
lating the entire workbook) may be caused by including just one extraneous cell
in a support set, because that extraneous cell may indirectly support most of the
workbook.

In a sense, such an approximation is needed in any case to deal with various
dynamic features of spreadsheet programs. In particular, the functions HLOOKUP
and VLOOKUPare used to search for a given value in a range, and the function INDEX
is used to retrieve a cell from a range given row and column. The exact dependencies
are determined by the given value or the given row and column number. To obtain
a static support graph, one must make an (obvious) overapproximation: Every cell
in these functions’ range argument supports the cell in which the function is used.

Similar problems are caused by Excel functions such as COUNTIFand SUMIF,

§5.7 Limitations and challenges 105

whose second argument is a string that dynamically gets interpreted as a formula,
as in COUNTIF(A1:A10000, "> 42") . If such a formula could contain references
to arbitrary cells, it would require parsing of the text string to find the cells sup-
porting this formula. In Funcalc, the second argument to COUNTIFand SUMIFmust
be a sheet-defined function (example 6.20 and section A.2.2), so the general support
graph construction automatically handles this case correctly.

An even more dynamic Excel function is INDIRECT(ref) , which evaluates its
argument ref to a string and then interprets the string as a cell reference. In
general, the value of this function depends on the entire workbook. A simple way to
deal with this is to treat INDIRECT as a volatile function, just like RANDand NOW.
This means that any occurrence of INDIRECT gets evaluated in every recalculation,
that is, whenever anything on which it may depend could change.

106 Limitations and challenges §5.7

Part II

Funcalc and compilation

107

Chapter 6

Sheet-defined functions

6.1 Introduction

Several authors have proposed functionality that allows spreadsheet users to define
new functions while staying with the sheet, cell and formula metaphor, rather than
using external languages such as Visual Basic, Java, Python or similar. By a sheet-
defined function (SDF) we here mean a function that is defined by designating input
cells and an output cell. The defined function transforms the values in the input
cells to the value computed by the output cell. A sheet-defined function can be
called by ordinary spreadsheet formulas and by other sheet-defined functions.

Notable proposals for sheet-defined functions are due to Nuñez [85, section 5.2.2],
and to Peyton-Jones, Blackwell and Burnett [92]. Interpretive prototype implemen-
tations have been made by Nuñez, and by Cortes and Hansen [26] who based theirs
on the Corecalc infrastructure.

However, as far as we know, no implementation has exploited or investigated the
opportunities for performance gains that would accrue by compiling sheet-defined
functions to machine code at runtime. Here we shall do this by generating byte-
code for Microsoft .NET and then letting the just-in-time compiler of the execution
environment compile that to real machine code.

Our implementation supports recursive as well as higher-order sheet-defined
functions, as in Cortes and Hansen’s work (see section 6.4.1). Without recursion,
sheet-defined functions add encapsulation (of intermediate results), abstraction (of
function parameters) and modularization (of functionality and tabular data); with
recursion, they add Turing-completeness also. Higher-order sheet-defined functions
can be used to define general, declarative, and properly scoped versions of Excel’s
COUNTIF, SUMIF functions, its Goal Seek functionality, and so on.

6.1.1 Code generation from functions or from ordinary sheets?

This part of the book discusses how to generate code, at run-time, from function def-
initions. Alternatively, one could compile ordinary spreadsheet formulas to code at

109

110 Introduction §6.1

run-time for better performance, but we believe that the former approach is better.
There are two reasons. First, ordinary sheets, with their mixture of formulas and
data, are typically being edited more frequently than function definitions, so that
expending too much effort compiling them to high-performance machine code could
slow down interaction unacceptably. Second, function definitions (if well structured)
should isolate functionality in smaller chunks that are fast to recompile upon inter-
active editing, whereas ordinary sheets can have complex dependencies between
many thousand formulas.

Neverthless, Thomas Iversen’s 2006 MSc thesis [60] created a version of Corecalc
called TinyCalc that would compile ordinary sheets to .NET bytecode [67] at run-
time, performing a number of optimizations. The goal was to avoid the overhead of
repeated dispatch on the abstract syntax and the need to wrap floating-point results
as NumberValue objects (section 2.7).

In fact, the ability to perform runtime code generation (RTCG) for formulas was
a Corecalc design goal in 2005, and is one reason for the design of sharable ex-
pressions (section 2.8) and for preserving sharing at row or column insertions (sec-
tions 2.16 and 2.17). Runtime code generation is expensive in time and memory,
and that expense should be sharable among all virtual copies of a formula.

Iversen performed a number of measurements [60], also reported in [106, chap-
ter 5], of full recalculations on some artificial but rather large spreadssheets, com-
paring TinyCalc (and Corecalc) with Microsoft Excel and the open source spread-
sheet implementations Gnumeric and OpenOffice Calc. They showed that the base-
line interpretive Corecalc implementation was faster than Gnumeric and OpenOf-
fice (in their 2006 incarnations), but slower than Microsoft Excel.

Moreover, for complex formulas, TinyCalc’s runtime code generation could pro-
vide considerable speed-ups, often giving recalculation times comparable to those of
Microsoft Excel. The main exception was functions that take cell areas or arrays as
arguments, where the best results were only half as fast as Excel. Thus there must
be a second factor, which probably is that Excel uses the “bare” IEEE754 number
representation instead of an object-oriented representation of runtime values.

Excel’s CalculateFullRebuild , which rebuilds the dependency graph for the
workbook, turned out to be surprisingly slow; see sections 3.3.5 and 4.3.

Runtime code generation from spreadsheet formulas is not a new idea, as shown
by the Schlafly patents, numbers 194 and 213 in appendix C. These patents describe
the generation of x86 machine code from spreadsheet formulas, were originally as-
signed to Borland, and were presumably exploited in Borland’s QuattroPro spread-
sheet. Schlafly’s approach exploits the NaN values of the IEEE754 floating-point
representation to propagate errors codes without avoid any wrapping of runtime
values, indeed just what IEEE754 NaNs were designed for.

It is plausible that a similar runtime code generation technique and value repre-
sentation is used in Excel but not Gnumeric and OpenOffice, and that that accounts
for the considerable speed advantage of Excel. Moreover, Schlafly’s patent states
that the runtime code generation technique is not used when a formula contains
transcendental functions such as SIN . This might explain how, without any use of
runtime code generation, Iversen’s TinyCalc level 0 (and hence Corecalc) can out-

§6.2 Examples of sheet-defined functions 111

perform Excel on the formula =SIN(A1) [60,].

6.2 Examples of sheet-defined functions

Example 6.1 Assume we have the side lengths of a large number of triangles in
columns A, B and C of a spreadsheet, and we want to compute the area of each
triangle in column D. The area is given by the formula

√

s(s− a)(s− b)(s− c) where
s = (a+ b+ c)/2 is half the perimeter.

To use this formula in the spreadsheet, we could compute s in column E us-
ing the formula =(A1+B1+C1)/2 , compute the area in column D using the for-
mula =SQRT(E1* (E1-A1) * (E1-B1) * (E1-C1)) and then copy both formulas for
all rows. However, this introduces the distracting extra column E, and the formulas
look a little daunting even for this simple task. Alternatively, we might avoid the
extra column E and inline the computation directly in the column D, resulting in
the formula

=SQRT((A1+B1+C1)/2 * ((A1+B1+C1)/2-A1) * ((A1+B1+C1)/2-B1) * ((A1+B1+C1)/2-C1))

which computes the subexpression for s no less than four times. Even the slightly
simplified version

=SQRT((A1+B1+C1)/2 * (-A1+B1+C1)/2 * (A1-B1+C1)/2 * (A1+B1-C1)/2)

is both inefficient, unwieldy and easy to get wrong.
Using a sheet-defined function, TRIAREAsay, we can hide the intermediate vari-

able s and use the simpler D formula, document the computation there, and rely on
runtime compilation to produce fast code. Then the main sheet can use the formula
=TRIAREA(A1,B1,C1) in column D and no longer needs the extra column E.

Figure 6.1 shows the function definition. The function can be called as TRIAREA(3,
4, 5) , as shown in figure A.1 in appendix A.

Figure 6.1: Definition of function TRIAREA, formula view. Cells A3, B3, and C3 are
input cells, cell D3 computes half the perimeter as an intermediate result, and cell
E3 computes the function’s output. The call to DEFINE in F3 creates the TRIAREA
sheet-defined function, specifying its input cells and output cell.

The bytecode generated for this definition of function TRIAREA is shown below.
The code in the first column converts the three arguments (passed in CIL arguments
V_0, V_1, and V_2) to floating-point numbers (stored in CIL variables V_4, V_5, and
V_6), and computes half the perimeter s and stores it in variable V_7. The code in

112 Examples of sheet-defined functions §6.2

the second column computes the product of the differences, takes the square root,
and wraps the result as a NumberValue:

0000: ldarg V_0 0035: ldloc.s V_7
0004: call Value.ToDoubleOrNan 0037: ldloc.s V_7
0009: stloc.s V_4 0039: ldloc.s V_4
000b: ldarg V_1 003b: sub
000f: call Value.ToDoubleOrNan 003c: mul
0014: stloc.s V_5 003d: ldloc.s V_7
0016: ldarg V_2 003f: ldloc.s V_5
001a: call Value.ToDoubleOrNan 0041: sub
001f: stloc.s V_6 0042: mul
0021: ldloc.s V_4 0043: ldloc.s V_7
0023: ldloc.s V_5 0045: ldloc.s V_6
0025: add 0047: sub
0026: ldloc.s V_6 0048: mul
0028: add 0049: call Math.Sqrt
0029: ldc.r8 2 004e: call NumberValue.Make
0032: div 0053: ret
0033: stloc.s V_7

One call TRIAREA(15,20,25) of this function takes approximately 73 ns (mea-
sured as average of 10m calls to on a 2.66 GHz Core 2 Duo) despite the unwrap-
ping and wrapping. Errors are propagated correctly thanks to the NaN encoding
of error values (section 2.7.1). For instance, if the function is applied to a string ar-
gument, the ToDoubleOrNan function will produce a NaN representing ArgTypeEr-
ror, which will propagate through the arithmetic functions, and the NumberValue.Make
function will turn that into an ArgTypeError error value. Similarly, if the function
is called on side lengths that cannot make up a triangle, Sqrt will be called on
a negative number and produce a NaN that NumberValue.Make will turn into a
NumError.

Example 6.2 A sheet-defined function NDIE(n) that simulates a general n-sided
die can be defined as follows:

A1 = <input>
A2 = FLOOR(RAND()* A1,1)+1
<output> = A2

Rolls of a six-sided die are computed by calling NDIE(6) . Function NDIE in file
testsdf.xml.

Example 6.3 Calendrical calculations. Many functions concerning the Gregorian
calendar, the ISO calendar, the date of Easter Sunday in Christian calendars, and
so on, can be found on sheet @Calendar in testsdf.xml. These are based on Der-
showitz and Reingold’s algorithms [33]. The initial implementations are dure to IT
University MSc students Hui Xu and Mainul Liton. For a very simple example,
LEAPYEAR(year) can be implemented like this:

§6.2 Examples of sheet-defined functions 113

B5 = <input> = year
B6 = AND(MOD(B5, 4)=0, OR(MOD(B5, 100)<>0, MOD(B5, 400)=0))
<output> = B6

The conversion FIXDATE(yyyy,mm,dd) from a Gregorian calendar date and a fix-
date (number of days since 1 January year 1) can be implemented like this:

B9 = <input> = yyyy
B10 = <input> = MM
B11 = <input> = DD
B12 = B9+FLOOR((B10+9)/12, 1)
B13 = 12+MOD(B10-2, -12)
B14 = -306+365 * (B12-1) + FLOOR((B12-1)/4, 1)

- FLOOR((B12-1)/100, 1) + FLOOR((B12-1)/400, 1)
+ FLOOR((3 * B13-1)/5, 1) + 30 * (B13-1)+B11

<output> = B14

The conversion in the opposite direction—obtaining Gregorian year, month and date
from a fixdate—can be expressed with similar amounts of spreadsheet “code”.

Using these functions, it is quite easy to implement EASTER(yyyy) , the function
that find the fixdate of Easter Sunday in year yyyy , as follows:

B122 = <input> = yyyy
B123 = FLOOR(B122/100, 1)+1
B124 = MOD(14+11* MOD(B122,19)-FLOOR(3 * B123/4,1)+FLOOR((5+8 * B123)/25,1),30)
B125 = IF(OR(B124=0, AND(B124=1, 10<MOD(B123, 19))), B124 +1, B124)
B126 = FIXDATE(B122, 4, 19)-B125
B127 = KDAYA(B126, 6)
<output> = B127

The EASTERfunction may look complicated, but its is taken straight from the Der-
showitz and Reingold book [33, section 4.3] and it is fast enough: it executes in
around 640 ns per call (1m calls, 2.66 GHz Core 2 Duo), or more than 1,560,000
calls per second. The KDAYAfunction (not shown) is very simple, taken from the
same book, and essentially uses modulo to find the fixdate of the nearest Sunday
(weekday 6) after the fixdate represented by B126.

These examples are interesting because they show that calendrical calculations,
can be implemented in a simple and rational manner using sheet-defined functions.
Thus one can easily find the first Monday, or last Tuesday, or last working day, and
so on, of a given month. It is also easy to implement computations with ISO week
numbers, which are widely used outside the USA, yet unsupported by MS Excel,
and which are difficult to compute correctly using Excel’s built-in date functions.

Example 6.4 The density function φµ,σ(x) for the normal distribution N(µ, σ) is
defined like this

φµ,σ(x) =
1

σ
√
2π

exp

(

− (x− µ)2

2σ2

)

114 Examples of sheet-defined functions §6.2

and can be computed by a function NORMDENSITYGENERAL(x,µ, σ) in Funcalc like
this:

B8 = <input x>
B9 = <input mu>
B10 = <input sigma>
B11 = (B8-B9)/B10
B12 = <output>

= 0.39894228040143267794 * EXP(-0.5 * B11* B11)/B10

The mysterious constant 0.3989 . . . is 1/
√
2π. See sheet @Functions in file testsdf.xml.

This is the same as Excel’s NORMDIST(x,µ, σ,0) .

Example 6.5 The cumulative distribution function NORMDISTCDF(x) for the nor-
mal (Gaussian) distribution N(0, 1), and its inverse INVNORMDISTCDF(p). These
are well suited as test cases for compilation of sheet-defined functions, since they
contain a mixture of conditionals and floating-point multiplication, division and ad-
dition and 10-25 high-precision floating-point constants.

See functions NORMDISTCDFand INVNORMDISTCDFin file testsdf.xls. These are
the same as Excel’s NORMSDIST(x) and NORMSINV(x).

The bytecode generated for NORMDISTCDFexecutes in approximately 118 ns/call
(1m calls, 2.66 GHz Core 2 Duo, 32-bit mode). This compares with 1140 ns/call for
the Excel 2007 built-in NORMSDIST, 64 ns/call for an implementation in C# on .NET,
and 54 ns/call for an implementation in C, compiled with aggressive optimization
(-O3) and gcc version 4.2.1.

Example 6.6 The binomial coefficients BINOM(a, b) = (a+b)!/(a!b!) can be
computed efficiently for a range of small integers a and b by indexing into a pre-
computed table. For instance, BINOM(3, 49) is the number of ways to select 3
cards from a deck of 52. One can build a table of values of n! for n=0..100 , say,
in an ordinary sheet called Data , and then define a sheet-defined function that uses
INDEX(Data!B3:B54, a+b) and so on to index into that table, like this:

A1 = <input>
B1 = <input>
C1 = <output> = INDEX(Data!B3:B102, A1+B1)

/ INDEX(Data!B3:B102, A1)
/ INDEX(Data!B3:B102, B1))

See function BINOM, which refers to a table in the ordinary sheet called Data , in file
testsdf.xml. This is a special case of Excel’s Analysis Toolpak function MULTINOMIAL(a,b) .
It takes roughly 400 ns to compute BINOM(3,49) = 22, 100 as a sheet-defined func-
tion.

§6.2 Examples of sheet-defined functions 115

Example 6.7 More binomial coefficients. When we need to compute BINOM(a,b)
for a and b whose sum exceeds 170, it is necessary to compute with logarithms of n!
instead of n! , because 64-bit IEEE floating-point cannot represent n! for n greater
than 170. Using logarithms the results will be less accurate, though. We build a
table of values of log(n!) by addition of logarithms in sheet Data , and define the
alternative function BINOMLOG(a,b) like this:

A1 = <input>
B1 = <input>
C1 = <output> = EXP(INDEX(Data!h3:h102, A1+B1)

- INDEX(Data!h3:h102, A1)
- INDEX(Data!h3:h102, B1))

See function BINOMLOGin file testsdf.xml.

Example 6.8 Even more binomial coefficients. One can compute binomial coeffi-
cients more accurately at the cost of vastly increased space usage. Simply build Pas-
cal’s triangle, using additions only, in an ordinary data sheet, say area Data!A1:D4 ,
like this:

1 1 1 1 ...
1 2 3 4
1 3 6 10
1 4 10 20
...

and then use two-dimensional lookup =INDEX(Data!A1:D4, A1+1, B1+1)
in that data sheet.

Example 6.9 A financial function. Assume that a bullet bond (one whose principal
is paid only on maturity) pays a coupon of y dollars each term, and pays $100 on ma-
turity after n terms. Then we can define a function BULLETPV(y,n,r) to compute
the present value of the bullet bond by discounting future payments by the effective
interest rate r, like this:

B4 = <input y>
B5 = <input n>
B6 = <input r>
B7 = =(1+B6/100)ˆB5
D7 = <output>

= =100/B7+B4 * (B7-1)/B6 * 100/B7

Example 6.22 below shows how we can solve the opposite, and often more interest-
ing problem: Given the current price p, the coupon y, and the number of terms n,
find the effective interest rate. See sheet @BulletLoan in workbook testsdf.xml.

116 Examples of sheet-defined functions §6.2

Example 6.10 Table lookup. Excel’s built-in lookup function MATCHcan be imple-
mented as a sheet-defined functions. The call MATCH(x, arr) should return the
number of the last column or row in array arr whose value is less than or equal
to key x ; or return error #N/A if there is no such column or row. Column and row
numbers within arr start with 1. The area arr must be one-dimensional and its
values must be arranged in ascending order. If arr has multiple columns and one
row, the function returns the column number of x ; if it has multiple rows and one
column, the function returns the row number of x .

We can implement MATCH(x, arr) as a sheet-defined function, using binary
search, or recursive bisection, within arr .

Let us first consider the case where arr is a single row arr[1, n], with n ≥ 1,
of ordered values. We define an auxiliary function MATCHCOLAUX(x, arr, a, b)
that returns the column of x within the array segment arr[a, b]. This function is
called as MATCHCOLAUX(x, arr, 1, COLUMNS(arr)) from MATCH(x, arr) to
search all of arr .

Function MATCHCOLAUX(x, arr, a, b) can be defined as follows. If b > a
it returns the error value #N/A ; otherwise if arr[b] ≤ x it returns b; otherwise it
computes m = CEILING((a + b)/2, 1) and if arr[m] ≤ x, it calls MATCHCOLAUX(x,
arr, m, b) , otherwise it calls MATCHCOLAUX(x, arr, a, m-1) .

B4 = <input x>
B5 = <input arr>
B6 = <input a>
B7 = <input b>
B8 = CEILING((B6+B7)/2, 1)
B9 = <output>

= IF(B6>B7, NA(),
IF(INDEX(B5,1,B7)<=B4, B7,

IF(INDEX(B5,1, B8)<=B4,
MATCHCOLAUX(B4,B5,B8,B7),
MATCHCOLAUX(B4,B5,B6,B8-1))))

Another function MATCHROWAUX(x, arr, a, b) is defined analogously — only the
row and column arguments in INDEX are swapped — to search for x in a segment
arr[a, b] of a one-column array.

Then the general MATCH(x, arr) can be defined as follows:

B20 = <input x>
B21 = <input arr:
B22 = <output> =

IF(ROWS(B21)=1,
MATCHCOLAUX(B20,B21,1,COLUMNS(B21)),
MATCHROWAUX(B20,B21,1,ROWS(B21)))

See functions MATCHCOLAUX, MATCHROWAUXand MATCHin sheet @Lookup in work-
book testsdf.xml.

§6.2 Examples of sheet-defined functions 117

Example 6.11 Like MATCH, Excel’s built-in VLOOKUPand HLOOKUPfunctions can
be implemented as sheet-defined functions. Let us first consider the “horizontal”
lookup function HLOOKUP(x, arr, r) which finds the first column in area arr
whose first-row value is less than or equal to key x , then returns the contents of
row r in that column, counting from 1. It should return error #N/A if no first-row
value is less than or equal to key x, and error #REF! if r is not a legal row number
in area tab. (Here we ignore the regular expression-style capabilities that are also
built into Excel’s HLOOKUPand VLOOKUP).

To implement HLOOKUP(x, arr, r) , call MATCHCOLAUX(x, arr, 1, COLUMNS(arr))
to get the column c that matches x , then look up the value in row r of that column
using INDEX(arr, r, c) . So we can implement HLOOKUPvery easily like this:

B25 = <input x>
B26 = <input arr>
B27 = <input r>
B28 = <output>

= INDEX(B26, B27, MATCHCOLAUX(B25, B26, 1, COLUMNS(B26)))

Thanks to error propagation semantics, if MATCHCOLAUXreturns #N/A because no
row matches x , then so does HLOOKUP.

The analogous “vertical” lookup function VLOOKUP(x, arr, c) is implemented
in much the same way, but uses MATCHROWAUXinstead of MATCHCOLAUXto find the
row matching x , then returns column c of that row. See sheet Lookup in workbook
testsdf.xml.

Example 6.12 Biology, engineering and science often need specialized statistical
distributions, such as a mixture of the normal distribution N(µ, σ) and the Poisson
distribution, defined by this integral:

F (µ, σ, s) =

∫ ∞

−∞

φµ,σ(ℓ)(1− es10
ℓ

)dℓ

where φµ,σ(ℓ) is the density of the normal distribution, see example 6.4. Since
this function is extremely small for ℓ far away from µ, the integral can be well
approximated by summation from −10σ + µ to +10σ + µ. This is done in function
POISSONLOGNORMAL2(µ, σ, s) by calling an auxiliary function POISSONLOGNORMALAUX2(µ, σ, s, b, e, δ
where b is the start of the summation, e is the end, and δ is the step, which can be
chosen as 0.2σ.

The function F (µ, σ, s) can be used to describe sampling for microbiological food
safety. Namely, if contaminating microorganisms (cells) appear in a food lot with
a frequency whose logarithm is normally distributed with mean µ and standard
deviation σ (so the frequency itself is log-normally distributed), then F (µ, σ, s) is
the probability that a sample of size s will contain the contamination [119]. For
instance, µ = −2 = log10(0.01) indicates on average 0.01 microorganisms per gram,
or 1 per 100 gram, in the lot. If the standard deviation σ is 0.8 then the probability

118 Examples of sheet-defined functions §6.2

that a sample of size s = 100 gram contains a microorganism is F (−2, 0.8, 100) =
0.592 or 59.2%.

In other words, if µ = −2 describes the desired maximal level of contamination,
then we have a chance of 59.2% of actually discovering that a product exceeds this
limit by taking a single sample of size s = 100 gram.

See sheet @Sampling in workbook testsdf.xml .

Example 6.13 The probability F (µ, σ, s) computed in example 6.12 can be used to
design sampling plans for microbiological food safety. More precisely, assume we
take n samples, each of size s grams, of which we allow c < n to test positive, and
we assume that the probability of occurrence of a microbiological contaminant is
log-normally distributed with mean µ and standard deviation σ as before.

Then the probability of accepting a lot whose contamination exceeds the accept-
able level is P (accept), where

P (accept) =

i=c
∑

i=0

(

n
i

)

(1− F (µ, σ, s))n−iF (µ, σ, s)i

Namely, if c = 3 say, we must consider the four mutually exclusive possibilities
of precisely i = 0, i = 1, i = 2 and i = 3 samples showing contamination. To
find the probability of the case of i = 1 say, observe that the probability of i = 1
sample showing contamination is F (µ, σ, s)i and the probability of the remaining
n − i samples showing no contamination is (1 − F (µ, σ, s))n−i. Finally, there are
n over i ways to “choose” the sample(s) that shows contamination. This gives the
summands for each i = 0, . . . , c.

This computation is performed, for n up to 10, by function ACCEPTin sheet
@Sampling of file testsdf.xml. It uses function POISSONLOGNORMAL2from exam-
ple 6.12 and BINOMfrom example 6.6.

Having gotten this far, we can further use this function together with GOALSEEK
from example 6.21 to find the number of samples n necessary to obtain a desired
(low) level of risk of accepting a contaminated food lot. Or to find the highest level
(µ) of contamination that will go undetected with a particular probability. See sheet
@Sampling in workbook testsdf.xml.

The functions in this and the preceding example are based [119].

Example 6.14 The Excel built-in function REPT(s,n) , returns the string sn, that
is, string s concatenated with itself n times. It can be implemented efficiently as a
sheet-defined function in several ways. The REPTfunction is particularly useful for
creating simple in-sheet bar charts. To graphically display the A1:A5 values in cells
B1:B5, enter REPT("|", A1) in B1 and copy it to B2:B5. To show the numbers on
a relative scale, enter instead REPT("|", 50 * A1/MAX(A1:A5)) in B1 and copy it.

First let us consider a surprising non-recursive implementation, REPT1(s,n) .
Of course it can work only for a bounded range on n, say up to 1023, but that would

§6.2 Examples of sheet-defined functions 119

be entirely sufficient for the bar chart example. The idea is to compute powers of
two (1, 2, 4, 8, and so on) in B43:B52, and compute the corresponding powers of s (s1,
s2, s4, s8 and so on) in column D43:D52 by successive squaring, e.g. s8 = ((s2)2)2.
In column E43:E52 we calculate, from the bottom up, the number of copies of s
still needed, in column F43:F52 a logical value that says whether the corresponding
square of s in D43:D52 shall be included in the result, and in G42:G53 we build
up the result. The total cost of this procedure is O(n). See sheet @Functions in
workbook testsdf.xml.

Example 6.15 Here we consider a more traditional recursive implementation REPT2(s,n)
of the Excel REPTfunction. The simplest approach is to add one copy of s in each
recursive call. This will performs n recursive calls and n string concatenations of
increasing length, so its total execution time is a dismal O(n2):

B56 = <input s>
B57 = <input n>
B58 = <output>

= IF(B57=0, "", B56 & REPT2(B56,B57-1))

Much better solutions exist, see example 6.16 and 9.1.

Example 6.16 A far better recursive implementation REPT3(s,n) exploits that
s0 = ǫ is the empty string, s1 = s itself, and most importantly s2m = (ss)m and
s2m+1 = s(ss)m. Hence sn can be computed by REPT3(s,n) in only O(log n) recur-
sive steps and O(log n) string concatenations, at a total cost of O(n):

B61 = <input s>
B62 = <input n>
B63 = <output>

= IF(B62=0, "",
IF(B62=1, B61,
IF(MOD(B62,2), B61 & REPT3(B61&B61, FLOOR(B62/2,1)),

REPT3(B61&B61, FLOOR(B62/2,1)))))

The test IF(B62=1, "", ...) is not strictly necessary for correctness, but with-
out it, the recursion will always terminate with creating a string that is twice as
long as the actual result, and then discarding that string, which is wasteful.

An even neater and equally efficient solution would avoid the extra test as well
as the nearly identical branches of the innermost IF . Such a solution REPT4(s,n)
is presented only later in example 9.1, where it is used to illustrate the need for a
fairly advanced compilation scheme.

Example 6.17 The binary van der Corput sequence [118] is a sequence of numbers,
dense in the unit interval [0, 1]:

1

2
,
1

4
,
3

2
,
1

8
,
5

8
,
3

8
,
7

8
, . . .

The sequence is useful for quasi-random or quasi-Monte Carlo simulation.

120 Examples of sheet-defined functions §6.2

...

Example 6.18 Black-Scholes model for pricing of European options [9]; see sheet
@BlackScholes in file testsdf.xml.

Example 6.19 As shown in example 6.2 we can create a sheet-defined function
NDIE(n) that produces a roll of an n-sided die.

This general die function can be partially applied to obtain function values that
represent specialized dice, for instance, one with n=6 sides and another with n=20
sides, that can subsequently be rolled as many times as desired:

A1 = CLOSURE("NDIE", 6)
A2 = APPLY(A1)
A3 = APPLY(A1)
...
B1 = CLOSURE("NDIE", 20)
B2 = APPLY(B1)
B3 = APPLY(B1)
...

See sheet Results in file testsdf.xml.

Example 6.20 Generalized predicates. In Excel, the functions COUNTIFand SUMIF
take as argument a cell area and a criterion, where the criterion may be a constant
number such as 20, a constant string such as "apple" , or a string that encodes a
comparison such as ">= 18.5" . However, one cannot express composite criteria
and ranges such as "18.5 <= x < 25" .

By passing the criterion as a sheet-defined function, we can easily express such
composite criteria, and obtain a much clearer semantics for COUNTIFand SUMIF.
The criterion must be a one-argument function value that acts as a predicate; that
is, it must return 0 to mean false and a non-zero value to mean true.

For instance, we may create a sheet-defined function NORMALBMIwith input cell
A1 and output cell containing =AND(18.5<=A1, A1<25) , and then use

COUNTIF(C1:C100, CLOSURE("NORMALBMI"))

to count the number of people in range C1:C100 whose body mass index (BMI) is
between 18.5 and 25, that is, “normal”.

Example 6.21 Numerical equation solving. We define a function GOALSEEK(f,r,a)
for numerically finding a solution x to the equation f(x) = r if one exists. The input
is a continuous function f , a target value r, and an initial guess a at the value of
x. The function uses bisection, either as a recursive sheet-defined function or more
simply by a finite number of explicit bisection steps. Just 30 such steps seems to
give better precision than Excel’s built-in Goal Seek dialog. An auxiliary function
FINDENDis needed; see example 6.23 below.

See function GOALSEEKin file testsdf.xml.

§6.2 Examples of sheet-defined functions 121

Example 6.22 The effective interest rate of a bullet loan. We can use GOALSEEK
from example 6.21 to solve the opposite problem of that in example 6.9, namely:
Given the current price p of the loan, the coupon y, and the number of terms n, find
the effective interest rate r. This cannot be computed by a closed formula, but we
can use GOALSEEKto find the r that proides a numerical solution to the equation
BULLETPV(y,n,r) = p . For instance, to find the effective interest rate r = 4.90%
for a bullet loan with coupon y = 4, n = 10 terms, and current price $93, we simply
compute:

GOALSEEK(CLOSURE("BULLETPV", 4, 10), 93, 4)

Above, the last occurrence of 4 is the initial guess at the solution. This computa-
tion takes 26,500 ns, so we can compute roughly 37,500 effective interest rates per
second using this approach.

Example 6.23 For convenient use of function GOALSEEKabove we need an auxil-
iary function FINDEND(f,a) that tries to find and return another initial value b
such that f(a) and f(b) have opposite signs, or more precisely, f(a)f(b) ≤ 0. It can
be implemented by bounded search: try b = a± 1, a± 0.1, a± 10.0, a± 0.01, a± 100.0
and so on; or by a recursive function.

See auxiliary function FINDEND(f,a) in file testsdf.xml.

Example 6.24 Adaptive quadrature is a well-known technique for numerical inte-
gration of a function f(x) on an interval [a, b]. It can be implemented by putting
m = (a+ b)/2 and computing two approximations to the integral, for instance Simp-
son’s rule (b − a)(f(a) + 4f(m) + f(b))/6 and the midpoint formula (b − a)f(m). If
the two approximations are nearly equal, return one of them; otherwise recursively
compute the integral of f on [a,m] and the integral of f on [b,m] and add the results.
This implementation naturally relies on recursion, and on higher-order functions for
passing the function f whose integral is being computed. With sheet-defined func-
tions the implementation of this is straightforward and quite efficient, as shown in
figure 6.2.

Figure 6.2: The INTEGRATEsheet-defined function, higher-order and recursive.

Using only standard spreadsheet functions or VBA one cannot define adaptive inte-
gration this way, because neither supports higher-order functions.

See function INTEGRATE(f,a,b) in file testsdf.xml.

122 Examples of sheet-defined functions §6.2

Example 6.25 Excel has a feature called a data table, activated by the menu Data
> Table , that can calculate the values of a complex of formulas for given values
of one or two “input cells”, whose values are drawn from the column to the left of
the table and/or the row above the table. Interestingly, this seems to provide a kind
of poor man’s sheet-defined function in Excel: the function from the table’s input
cell(s) to the tables output cells.

Let’s consider an example of an Excel Data Table. Assume that cell B3 contains
an interest rate r and cell B4 contains a number of terms n, and that we compute
in cell B5 the future value of $100 after n terms at interest rate r, using using
compound interest. Cell B5 could contain the formula =100 * (1+B3)ˆB4 .

Now create an Excel data table as follows. Let row cells B7:D7 contain some
argument values for n, let column cells A8:A11 contain some argument values for
r, and insert in A7 a reference =B5 to the future value computed in B5. To create
a data table we mark A7:D11, select Data > Table , and choose Row input cell to
be B4 and Column input cell to be B3. Now Excel will fill the cells B8:D11 with the
computed future value for all 3 · 4 = 12 combinations of r and n:

| A B C D
---+-----------------------

7 | =B5 5 10 15
8 | 1%
9 | 2%

10 | 3%
11 | 4%

The formulas in B8:D11 will display as array formulas {=TABLE(B4,B3)} .

However, using sheet-defined functions one can create such data table without
any special machinery, and with much better functionality than in Excel, see be-
low. Let SAVING(r,n) be the function computed by output cell B5 from input cells
B3 and B4. Enter the formula =SAVING($A8,B$7) in B8 and copy it to the area
B8:D11. The relative cell references will be adjusted correctly by the copying, for
instance to =SAVING($A11,D$7) in cell D11, thus achieving the same effect as the
Excel data table.

Moreover, further calculations based on the values of computed cells work cor-
rectly, both when a data table input depends on a computed value in the same data
table, and when it depends on a computed value in another data table. This is not
the case in Excel (2003), whose recalculation mechanism does not handle data ta-
bles correctly. First, when an input argument (column or row) of a data table entry
depends on some cell of the same data table, the affected dependent cells of the Data
Table are not recalculated at all, not even when recalculation is explicitly requested
by pressing F9.

Secondly, when an input argument (column or row) of one data table depends on
the results of another data table, Excel’s recalculation seems to work correctly only
to a depth of approximately eight such dependencies. The values of the subsequent
(that is, ninth) data table are not computed correctly. However, strangely, further

§6.3 What’s wrong with VBA functions? 123

dependent cells do get recomputed, but based on the wrong data table cell values.
Pressing F9 enough times does seem to propagate the correct values.

See sheets DataTable and Goalseek in workbook poissongaussian.xls.
Incidentally, OpenOffice Calc 3.0.0 does not allow data table inputs to depend on

data table results at all, not even between unrelated data tables (there called Data
> Multiple Operations). Instead an error message is produced.

Example 6.26 A curiosity: Array values can be nested to any depth, so Funcalc
actually embodies a Lisp (or Scheme) implementation. Namely, we can represent a
cons cell as an array with one row and two columns, and then define CONS(x,y) in
terms of HARRAY, define CARand CDRin terms of INDEX, and define ATOMPin terms
of ISARRAY.

B36 = <input>
B37 = INDEX(B36, 1, 2) -- CDR

B41 = <input x>
B42 = <input y>
B43 = HARRAY(B41, B42) -- CONS

6.3 What’s wrong with VBA functions?

Most spreadsheet programs allow users to define their own functions in some ex-
ternal programming language. For instance, in Excel on can use the VBA language
to define functions that are callable from spreadsheets. However, the mental and
conceptual step from spreadsheets to such programming languages is big, and leads
to many wrong or poor solutions. Here is an example.

There is a function DATE in Excel, which allows one to add 2 years, 3 months and
4 days to the date in A1 like this: =DATE(YEAR(A1)+2, MONTH(A1)+3, DAY(A1)+4) .
Apparently, VBA does not offer a similar function, and one cannot call the Excel
built-in function from VBA. Hence if one need this functionality in VBA, one must
program it in VBA.

The following (wrong) VBA solution to this problem was posted on 1 September
2008 on the newsgroup microsoft.public.excel.programming; the program comments
are from the original post:

Function AddToDate(startDate As Date, addYears As Integer , _
addMonths As Integer, addDays As Integer) As Date

Dim newYear As Integer
Dim tempMonth As Integer
Dim newMonth As Integer
Dim newDay As Integer
newYear = Year(startDate) + addYears
newMonth = Month(startDate)
newDay = Day(startDate)

124 Problem statement §6.4

’month is difficult, may cause a
’rollover to another year
tempMonth = newMonth + addMonths
’increment newYear by years worth of
’months added
newYear = newYear + Int(tempMonth / 12)
’use MOD math to determine what month
’the added months creates
newMonth = tempMonth Mod 12
’12 Mod 12 = 0, so if result was
’0 the month is December
If newMonth = 0 Then

newMonth = 12
End If
’put it all back together as new date
AddToDate = DateSerial(newYear, newMonth, newDay + addDay s)

End Function

You see an “expert” at work here: He handles the “difficult” problem that, say, Au-
gust (month 8) plus 4 months gives 12, the 12-modulus of which is 0, and so requires
an adjustment to produce the number 12 for December. But no similar adjustment
is performed on the year, which will therefore be 1 too high.

Of course one can also get this wrong using sheet-defined functions, but when
staying within the spreadsheet world one can use the built-in DATEfunction which
already does the job. Moreover, it is likely that the mental stress caused by the un-
familiar VBA concepts made the programmer forget that there is a relation between
months and years. Finally, since sheet-defined functions are ”live” while being de-
veloped, it is likely that the mistake concerning the resulting year would be discov-
ered during experimentation, even without systematic testing. Moreover, existing
proposals for systematic testing of spreadsheet models would immediately benefit
sheet-defined functions too [100].

6.4 Problem statement

The problem we need to address is this: Given a sheet-defined function, defined us-
ing ordinary sheets, cells and formulas, generate code that will execute the function.
The code should be compact (no duplication of operations) and fast (no unnecessary
computation) and the computed results should agree with those of the interpretive
Corecalc implementation.

Technically, the sheet-defined function will be compiled to .NET (CLI) bytecode to
create the body of a so-called DynamicMethod, from which one can obtain delegate
object of type Func<Value[],Value> . Such a delegate can be invoked efficiently
from the interpretive Corecalc implementation.

General desiderata:

G1 A cell’s formula should be evaluated at most once, to preserve efficiency of

§6.4 Problem statement 125

the spreadsheet model, and to preserve the semantics of formulas that involve
volatile functions such as RANDand NOW.

G2 A cell’s formula should be compiled at most once, and the code should not be
duplicated at sites of use, to preserve compactness of the implementation.

G3 A cell’s formula should be evaluated only if needed by the sheet’s output. Oth-
erwise a sheet-defined function cannot safely contain recursive calls.

G4 Constant cells, and formulas that depend only on constant cells, should be pre-
allocated and/or precomputed, so that one can use a table of computed values
in a sheet-defined function without allocating the table at each invocation of
the sheet-defined function. Alternatively, require that such tables are allo-
cated in ordinary sheets, and let the sheet-defined function refer to that sheet,
e.g. using the INDEX, VLOOKUPand HLOOKUPfunctions. We have chosen the
latter approach here. Using an accurate recalculation mechanism, for instance
based on a support graph, the data tables will not be recalculated unless nec-
essary.

We also make some simplifying assumptions:

• Design goal G3 will be ignored until chapter 8 below.

• A sheet-defined function has a fixed number of arguments. It seems easy
enough to handle multiple results, but we have not implemented this yet.

• A sheet-defined function must have no static cycles. This means that the out-
put cell’s dependencies on the input cells can be sorted topologically and the
variables representing the sheet-defined function’s cells can be computed in
the reverse of that order.

• Sheet-defined functions are stateless. A design for stateful sheet-defined func-
tion is presented in section 8.8 but has not been implemented.

6.4.1 Related work

Simon Peyton Jones, Alan Blackwell and Margaret Burnett proposed in a 2003 pa-
per [92] and in patent application 91 that user-defined functions should be definable
as so-called function sheets using ordinary spreadsheet formulas. Their goal was to
allow “lay” spreadsheet users to define their own functions without forcing them to
use a separate programming language such as VBA. Rather, functions should be
definable using familiar concepts such as sheets, formulas, references, and so on. To
accommodate sheet-defined array functions, a spreadsheet cell should be allowed to
contain an entire array. These ideas are the subject of a patent application, num-
ber 91 in appendix C, by the same authors.

Rather similar ideas seem to be incorporated in Nuñez’s Scheme-based spread-
sheet system ViSSh [85, section 5.2.2], the subject of his 2000 MSc thesis. However,

126 Problem statement §6.4

ViSSh generalizes and modifies the spreadsheet paradigm in many other ways and
would not appear familiar to most Excel users. Hence it would possibly fail some of
the design goals of Peyton Jones et al.

Daniel S. Cortes and Morten W. Hansen in their IT University of Copenhagen
MSc thesis [26] set out to further elaborate and implement the concept of sheet-
defined functions. Based on Corecalc, they created a series of interpretive prototype
implementations of sheet-defined functions supporting array values, higher-order
functions, and recursive functions. They demonstrated the utility of these features
in application case studies, mostly actuarial computations relevant to the life insur-
ance business. In all cases, sheet-defined functions led to conceptual and practical
simplifications, which shows that sheet-defined functions can be added in a natural
way to spreadsheet programs while maintaining their familiar look and feel. More
details can be found in their thesis [26] and in [106, section 6.1].

Quan Vi Tran and Phong Ha in their MSc thesis [51] investigated whether sheet-
defined functions could be implemented using the infrastructure already provided
by Microsoft Excel and VBA. They created a plug-in for Excel that allowed users
to define functions using ordinary Excel sheets, and to call them as if they were de-
fined as macros using VBA. However, the implementation was considerably slower
than calling VBA functions, most likely due to the complicated means needed to cir-
cumvent restrictions in Excel. A more detailed summary in English can be found in
[106, section 6.2].

Some other work relevant to the implementation of sheet-defined functions is
listed already in section 1.11. In particular, there are patents, papers and commer-
cial tools for compiling spreadsheets to code in various languages. For instance,
Schlafly’s patents (numbers 194 and 213) and Iversen’s thesis [60] describe runtime
code generation from formulas in individual spreadsheet cells.

More immediately interesting for the present purposes is Francoeur’s work on
generating Java code from entire spreadsheet models with designated input cells
and output cells [44].

There are several patents and patent applications claiming to have invented code
generation for various target platforms from such models, including Khosrowshahi
and Woloshin’s patent (number 141), Rank and Pampuch’s patent application (num-
ber 132), Rubin and Smialek’s patent application (number 101), Waldau’s patent
application (number 82), and Tanenbaum’s patent applications (number 16 and 46).
They present variants of the same fairly obvious algorithm: compute the transitive
closure of the output cells’ static dependencies, perform topological sorting, and then
generate code in dependency order, naming intermediate results in some way. None
of the patents or patent applications describe how to deal efficiently with error val-
ues or non-strict functions (IF and CHOOSE), although Waldau’s patent application
stands out as especially comprehensive, describing for instance how to implement
functions such as INDEX efficiently. We do not use Waldau’s method.

There are several commercial tools for turning spreadsheet models into Java
programs, web services, PDA applications and so on. Notable examples are For-
mula One for Java [95] and SpreadsheetGear for .NET [111]; the lead developer for
both is (or was) Joe Erickson. Two other implementations are KDCalc [58] from

§6.4 Problem statement 127

Knowledge Dynamics Inc. (probably based on Rubin and Smialek’s patent applica-
tion number 101) and SpreadsheetConverter by Framtidsforum AB [43] (probably
based on Waldau’s patent application number 82).

6.4.2 Why not code generation from ordinary sheets?

Runtime code generation for sheet-defined functions is more rewarding than code
generation for ordinary spreadsheet formulas. It is more rewarding in terms of
saved computation time because a sheet-defined function may be invoked – and
hence its formulas evaluated – any number of times during a single recalculation
of a spreadsheet workbook, whereas an ordinary formula will be evaluated at most
once in each recalculation.

Compilation of a sheet-defined function to efficient code is both simpler and more
complicated than compilation of general spreadsheet models. It is simpler because
a direction of computation can be assumed, from designated input cells to desig-
nated output cells. It is more complicated because evaluation of unneeded cells,
which in ordinary sheet evaluation will just slow down computation, can cause non-
termination of a sheet-defined function that calls itself recursively. Also, since a
sheet-defined function may be invoked thousands or millions of times for each re-
calculation of the workbook, the memory consumption and allocation speed for con-
stants, cells and arrays is far more important than for evaluation of an ordinary
spreadsheet model.

In the rest of this work we distinguish function sheets, which are used to de-
fine sheet-defined functions, from ordinary sheets, which contain data and ordinary
formulas.

A sheet-defined function must be defined on a function sheet, and may refer to
cells on ordinary sheets and on the function sheet in which it is defined, but not to
cells on other function sheets. An ordinary sheet can refer only to cells on ordinary
sheets, not to cells on function sheets. Apart from these restrictions, function sheets
support both ordinary evaluation and creation of sheet-defined functions. Thus a
sheet-defined function can be developed on a function sheet by experimenting with
the formulas and various inputs, and then turned into a (fast, self-contained) sheet-
defined function once it works as required.

The distinction between function sheets and ordinary sheets is not strictly neces-
sary but leads to a clearer semantics and a simpler implementation: If an ordinary
sheet could refer to a function sheet cell that is affected by the input to a sheet-
defined function, then what value should that reference have? One possible answer
is the value most recently put in that cell by the sheet-defined function, but then
the value would depend on the recalculation order and introduce an unpleasant ele-
ment of nondeterminism, and also this decision would constrain the implementation
of sheet-defined functions.

Since ordinary sheets are likely to be evaluated only once or a few times per
edit performed on the sheets, and a single edit might affect the types of an arbi-
trary number of cells, we shall refrain from performing type-based optimizations in
ordinary sheets. In more detail, the reasoning goes like this:

128 Design basis: spreadsheet principles §6.5

• In ordinary sheets, only a constant amount of time can be saved per cell per
recalculation, because each cell is evaluated at most once. (We assume that
external wizards like Goal Seek, Solver, Data Table, etc, are replaced by func-
tions operating on sheet-defined functions). In function sheets, the same cells
may be evaluated thousands or millions of times per recalculation, and there-
fore it is more likely to be worthwhile to optimize operations there. Hence in
ordinary sheets the time savings is limited by the size of the sheet; this is not
the case in function sheets. If an ordinary sheet is large, the time savings may
be large, but in that case the time to optimize/recompile the ordinary sheet
due to edits is likely to be large as well.

• The distinction between ordinary sheets and function sheets is further moti-
vated by the assumption that function sheets will be more stable than ordinary
sheets. Since ordinary sheets contain a mixture of data and computations, they
are more likely to be updated due to changes in the data. Of course function
sheets are likely to be playgrounds for algorithmic experimentation, but even
so, after a period of experiments, the functions are likely to be used unmodified
in many different computations for a long time.

• Also, because of the mixture of data and computation in ordinary sheets, they
are likely to be much larger than function sheets, and although bytecode gener-
ation is quite fast, it would take a noticeable amount of time to optimize/regenerate
a sheet with 10,000 non-blank cells, which would be very irritating in an envi-
ronment that otherwise invites rapid experimentation.

In short, function sheets are likely to be edited less frequently than ordinary sheets,
so one can afford spending more time analysing or optimizing them for each edit.
Moreover, such optimization is likely to be more worthwhile because the code gener-
ated for a function sheet is likely to be used many times per recalculation, whereas
that in an ordinary sheet is not.

Therefore we evaluate ordinary sheets using the Corecalc interpretive mecha-
nism, with value wrapping and so on, whereas sheet-defined functions on function
sheets are compiled to bytecode and evaluated by executing the bytecode, avoiding
value wrapping to a large extent. That way, changes to ordinary sheets are fast and
their evaluation comparatively slower, whereas changes to sheet-defined functions
are relatively slow, but their evaluation is fast. Still the total time to compile a
sheet-defined function, such as NORMDISTCDFfrom example 6.5, seems to be less
than 5 ms.

6.5 Design basis: spreadsheet principles

To answer the question “what is a spreadsheet?” one may point to Microsoft Excel
or OpenOffice Calc or Gnumeric. However, that would provide poor guidance for de-
signing variations and novel extensions to the spreadsheet concept, as in this book.

§6.5 Design basis: spreadsheet principles 129

Such variations and extensions should behave “as expected” by experienced spread-
sheet users; an idea that is known as the principle of least astonishment. This is
particularly important when considering partial application and partial evaluation
of sheet-defined functions, and stateful sheet-defined functions.

We therefore propose the following principles:

• Consistency of cell values and formulas: After a recalculation, the value of a
cell is consistent with the cell’s formula and the values of the cells that the
formula refers. In other words, if the formula contains no calls to volatile
functions, then reevaluating (only) the formula would give the same value.
Similarly, if the formula does contain calls to volatile functions, then there
must be plausible values of those volatile functions that would result in the
cell’s value.

• Unspecified recalculation order: The order in which cell values are updated
during a recalculation is unspecified, and the order in which the subexpres-
sions of a formula are evaluated, is unspecified. For instance, the result of
NOW()-NOW() may in principle be negative, zero or positive.

• At most one evaluation of each cell: Each cell is evaluated at most once in each
recalculation, regardless how many times the cell’s value is used. In particular,
even if the cell’s value depends on a volatile function, all dependent formulas
will observe the same value of the cell.

• Volatile functions always get evaluated: A formula whose result depends on
a volatile function such as RAND() or NOW(), is evaluated once in each recal-
culation. For instance, a cell containing the formula =IF(RAND()>0.5, 11,
22) will be evaluated in every recalculation and may or may not produce a new
value each time. However, in IF(RAND()>0.5, NOW(), 10) , if the condition
happens to evaluate to false, then the call to NOW() may not be evaluated.

• Minimal recalculation: A cell formula that does not contain calls to volatile
functions, and whose precedent cells’ values have not changed since the last
recalculation, may or may not be evaluated in a given recalculation. The con-
sistency principle means that such evaluation (or not) is not observable, but if
the cell formula contains a call to an external function that has a side effect,
then it may be observable thanks to the side effect.

• Discovery of cyclic dependencies: If a cell dynamically depends on itself in a
recalculation, then this will be discovered and reported, regardless of whether
there exists a value of the cell that would satisfy the consistency principle.

• Error propagation: If a subexpression of a formula evaluates to an error value,
then this error value will be propagated as the result of the formula. If mul-
tiple subexpressions evaluate to error values, one of them will be propagated
as the result of the formula. This is similar to exception propagation in an
imperative language whose evaluation order is indeterminate. In particular,

130 Design basis: spreadsheet principles §6.5

if e1 evaluates to an error in IF(e1, e2, e3) , then the entire IF-expression
evaluates to that error. Note that this principle is violated in a few cases,
such as xˆ0 which should give 1.0 by IEEE floating-point arithmetics even if
x evaluates to an error.

It should be noted that these principles are not universally agreed or adhered to.
For instance, some existing features of Excel violate some of them. As discussed
in example 6.25, Excel’s data table feature does not discover dynamic cyclic depen-
dencies, and does not satisfy the consistency principle. Also, Excel’s behavior when
calling VBA functions from cell formulas indicate that a cell may be evaluated more
than once in each recalculation.

Chapter 7

Compiling sheet-defined

functions

7.1 Basic approach to code generation

Let us consider a lightly contrived example of a sheet-defined function. For numeric
arguments between −37 and 37 it returns the density of the normal distribution
N(0, 1) multiplied by a random number, and for numeric arguments outside that
range it returns a random number:

A1=<input> <-- input cell
A2=ABS(A1)
A3=EXP(-A2 * A2/2)
A4=RAND()* IF(A2>37, 1, 0.3989 * A3) <-- output cell

Our basic idea is to create a variable v_A2 for each cell A2, to hold the value of that
cell. For instance, cell A2, which contains the formula =ABS(A1) , will be compiled
to a variable definition of the form

v_A2 = Math.Abs(v_A1);

Similarly, cell A4 which contains the formula =RAND()* IF(A2>37, 1, 0.3989 * A3)
will be compiled to a variable definition of the form

v_A4 = rnd.NextDouble() * (v_A2>37 ? 1 : 0.3989 * v_A3);

In total, we might get the following code from the sheet-defined function shown
above:

v_A1 = <input>; <-- input cell
v_A2 = Math.Abs(v_A1);
v_A3 = Math.Exp(-v_A2 * v_A2/2);
v_A4 = rnd.NextDouble() * (v_A2>37 ? 1 : 0.3989 * v_A3);
return v_A4;

131

132 Taking value representation into account §7.2

This compilation scheme is simple, and the resulting computation model is data
driven, or forwards, as is usual for spreadsheets. Also, by building the variable
definitions backwards from the output cell by following static dependencies, one
ensures that cells are computed in the correct order, and that cells that are not
needed at all will n are be computed either.

However, more gets computed than what is strictly necessary. For instance, cell
A3 above gets computed regards of whether its value is used by the output cell A4.
We will address this problem in much detail in section 8 below.

To make our discussions a little more precise, let us adopt this terminology:

• A static use of a variable is a non-defining occurrence, such as in the right-
hand side of an assignment or in a return expression.

• A dynamic use of a variable is the runtime evaluation of a non-defining occur-
rence.

A variable can be used dynamically at most as many times as it is used statically,
because no variable definition is evaluated twice. A variable may be used twice
statically yet be used only once dynamically, for instance if it is used statically in
different branches of a conditional (... ? v_C2+1 : v_C2+2) .

Some improvements of the above compilation scheme suggest themselves:

• If a variable is used statically exactly once, we can inline the variable’s expres-
sion at its use. For instance, A3 is used only once and its expression could be
inlined in the expression for A4. We shall consider that in section 7.10 below.

A variable that is used more than once statically should not be inlined, even if
it is used only once dynamically. Such inlining could increase code size expo-
nentially, unless the variable’s right-hand side is itself just a variable.

• We could use register allocation techniques to map several cells to the same
generated-program variable, thus reusing local variables. For instance, A2
could be stored in the same variable as A1, because when A2 has been com-
puted, A1 is no longer needed. This is probably not a good idea, since such
variable reuse may confuse the just-in-time compiler’s register allocation in-
stead, causing it to do a poorer job.

• We could make an effort to compute only what is necessary, respecting dynamic
dependencies. For instance, we need to compute A3 above only if NOT(A2>37) ,
because only in that case is A3 needed to compute A4. This is considered at
length in chapter 9.

7.2 Taking value representation into account

The generated code shown at the beginning of section 1 is misleadingly simple:

§7.2 Taking value representation into account 133

v_A1 = <input>; <-- input cell
v_A2 = Math.Abs(v_A1);
v_A3 = Math.Exp(-v_A2 * v_A2/2);
v_A4 = rnd.NextDouble() * (v_A2>37 ? 1 : 0.3989 * v_A3);
return v_A4; <-- output

Here we have blithely assumed that all cells contain numbers, but spreadsheets are
dynamically typed, so the value of a spreadsheet cell may be a number, a string, an
array value, or an error.

Hence in an interpretive spreadsheet implementation such as Corecalc, all val-
ues are wrapped as objects and computation code needs to be very defensive, with
runtime checks, casts, and wrapping.

For instance, the innocent computation:

v_A2 = Math.Abs(v_A1);

might have to be implemented using something like this:

v_A2 = v_A1 is NumberValue
? new NumberValue(Math.Abs((NumberValue)v_A1).value)
: v_A1 is ErrorValue
? v_A1
: new ErrorValue("ArgTypeError");

Namely, the result is a number only if cell A1 evaluates to a number. In that case
the actual number must be extracted and its absolute value computed, and then a
new NumberValue object must be constructed. If cell A1 evaluates to an error, then
that should be the result of A2 as well, thanks to error propagation. If A1 is any
other value, an argument type error must be produced as the value of A2.

In total, the naive code above must be replaced with something like this:

Value v_A1 = <input>
v_A2 = v_A1 is NumberValue

? new NumberValue(Math.Abs((NumberValue)v_A1).value)
: v_A1 is ErrorValue
? v_A1
: new ErrorValue("ArgTypeError");

v_A3 = v_A2 is NumberValue
? new NumberValue(Math.Exp(- ((NumberValue)v_A2).value

* ((NumberValue)v_A2).value / 2))
: v_A2 is ErrorValue
? v_A2
: new ErrorValue("ArgTypeError");

v_A4 = v_A2 is NumberValue
? (((NumberValue)v_A2).value > 37

? new NumberValue(rnd.NextDouble() * 1)
: (v_A3 is NumberValue

? new NumberValue(rnd.NextDouble()

134 Taking value representation into account §7.2

* 0.3989 * ((NumberValue)v_A3).value)
: v_A3 is ErrorValue
? v_A3
: new ErrorValue("ArgTypeError"))

)
: v_A2 is ErrorValue
? v_A2
: new ErrorValue("ArgTypeError")

return v_A4;

This of course looks cumbersome and slow, and rather closely emulates what must
happen in an interpretive spreadsheet implementation. Moreover, we have even
simplified expressions slightly on the fly: in the definition of A3 we test A2 only
once, then unwrap and use it twice.

A possible improvement is to introduce extra variables to avoid repeated un-
wrapping of values. For instance, one could replace the definition of v_A3 with this:

n_A2 = v_A2 as NumberValue;
v_A3 = n_A2 != null

? new NumberValue(Math.Exp(- (v_A2.value

* (v_A2.value / 2))
: v_A2 is ErrorValue
? v_A2
: new ErrorValue("ArgTypeError");

or even this

if (v_A2 is NumberValue) {
double d_A2 = ((NumberValue)v_A2).value;
v_A3 = new NumberValue(Math.Exp(-d_A2 * d_A2/2));

} else if (v_A2 is ErrorValue) {
v_A3 = v_A2;

} else
v_A3 = new ErrorValue("ArgTypeError");

Here we have used the convention that a variable named n_A2 is known to hold a
NumberValue or null, and variable named d_A2 is known to hold a double . We
shall see in section 7.7 how to obtain this effect in general.

An obvious improvement is to avoid wrapping and unwrapping intermediate val-
ues where possible. That is to avoid creating a NumberValue object only to take it
apart a moment later. In particular, it is important to avoid the object creation,
which involves the memory manager and garbage collector, and therefore is likely
to be much slower than arithmetic operations. We consider this in detail in sec-
tion 7.6.

Another seemingly useful idea is to return an error value as early as possible,
when it is known beyond doubt that the function cannot produce a proper result. For
instance, if A1 is not a NumberValue, then the function must return an ErrorValue.

§7.3 The .Net bytecode corresponding to the C# code 135

For this particular sheet-defined function the converse holds too: If A1 is a number
then the function returns a number.

A hypothetical code sequence for this sheet-defined function might be the follow-
ing, which almost gets us back to the naive code shown initially:

static Value Foo(Value[] input) {
Value v_A1 = input[0];
if (v_A1 is NumberValue) {

double d_A1 = ((NumberValue)v_A1).value;
double d_A2 = Math.Abs(d_A1);
double d_A3 = Math.Exp(-d_A2 * d_A2/2);
double d_A4 = rnd.NextDouble() * (d_A2>37 ? 1 : 0.3989 * d_A3);
return new NumberValue(d_A4);

} else if (v_A1 is ErrorValue)
return v_A1;

else
return new ErrorValue("ArgTypeError");

}

Such a neat result cannot in general be expected for a sheet-defined function that
refers to cells in other sheets, because every such reference must check whether the
result has the correct type.

Also, when a sheet-defined function has multiple output cells, some of the results
may be NumberValues and others may be ErrorValues, and hence it is unworkable
to return an ErrorValue just because part of the computation leads to errors. So
in general the values of all output cells must be computed, and one cannot return
ErrorValue early.

Moreover, some numeric operations and functions produce an ErrorValue even
on NumberValue arguments. Consider for instance SQRT(-1) and LOG(-1) that
produce NaNs, as well as EXP(10000) and LOG(0) that produce positive or nega-
tive infinities, and 1/0 or 0/0 that report division by zero. In Excel, all of these give
an error value.

However IEEE floating-point point saves us at this point, because a NaN value
can represent an error, and the standard requires arithmetic operations to preserve
NaNs, as explained in more detail in section 2.7.1. In particular, when the result of
an expression is a number or an error, we use variables of type double to uniformly
represent numbers as well as errors. Only the subsequent runtime conversion of
a double to a Value will create a NumberValue when d is proper and create an
ErrorValue when d is NaN or an infinity.

7.3 The .Net bytecode corresponding to the C# code

In a real implementation of sheet-defined functions we do not want to generate
C# code but .NET bytecode, also called CIL bytecode, for Common Intermediate
Language; see Ecma Standard 335 [36]. Fortunately, there is a close correspondence
between C# expressions and CIL bytecode.

136 The .Net bytecode corresponding to the C# code §7.3

Unfortunately, there are also some terminological clashes. The 64-bit floating-
point type which is called double in C#, is called float64 in CIL, binary64 in
the IEEE 754-2008 floating-point standard [57], and is denoted R8 on CIL instruc-
tion suffixes. We shall use the C# term double here, despite the CIL code saying
float64 .

Consider this arithmetic expression and assignment:

double d_A3 = Math.Exp(-v_A2 * v_A2/2);

It is executed by loading local variable d_A2 onto the evaluation stack twice, multi-
plying the two numbers so that the result is on the stack, loading the constant 2.0,
dividing, negating, and storing the result in local variable d_A2. The bytecode that
performs this task may look like this:

ldloc V_2
neg
ldloc V_2
mul
ldc_r8 2.0
div
stloc V_3

Here we have assumed that d_A1 is local variable V_2 and d_A2 is local variable
V_3.

A conditional expression such as

v_A2>37 ? 1 : 0.3989 * v_A3

would compile to bytecode that pushes the comparison’s left-hand side and right-
hand side, performs the comparison, and jumps to the false-branch if the condition
is false, else falls through to the true-branch:

ldloc V_2
ldc.r8 37.0
ble L1
ldc.r8 1.0
br L2

L1: ldc.r8 0.3989
ldloc V_3
mul

L2:

A class instance test is compiled to an isinst instruction, and a cast is compiled
to a castclass instruction. The isinst instruction takes an object reference from
the evaluation stack and either succeeds, leaving the reference on the stack, or fails,
leaving a null on the stack. The castclass instruction throws an InvalidCastEx-
ception in case of failure and otherwise leaves the reference on the stack.

Here is the actual CIL code generated from the Foo method above. We used
Microsoft’s C# compiler csc (with optimization enabled) and then disassembled it
with ildasm . The C# variables are mapped to CIL local variables as follows:

§7.3 The .Net bytecode corresponding to the C# code 137

v_A1 class Value V_0
d_A1 float64 V_1
d_A2 float64 V_2
d_A3 float64 V_3
d_A4 float64 V_4

The CIL bytecode, commented with the corresponding source lines, is this:

// Value v_A1 = input[0];
0000: ldarg.0
0001: ldc.i4.0
0002: ldelem.ref
0003: stloc.0
// if (v_A1 is NumberValue) {
0004: ldloc.0
0005: isinst NumberValue
000a: brfalse.s 006a
// double d_A1 = ((NumberValue)v_A1).value;
000c: ldloc.0
000d: castclass NumberValue
0012: ldfld NumberValue::value
0017: stloc.1
// double d_A2 = Math.Abs(d_A1);
0018: ldloc.1
0019: call float64 [mscorlib]System.Math::Abs(float64)
001e: stloc.2
// double d_A3 = Math.Exp(-d_A2 * d_A2/2);
001f: ldloc.2
0020: neg
0021: ldloc.2
0022: mul
0023: ldc.r8 2.
002c: div
002d: call Math::Exp
0032: stloc.3
// double d_A4 = rnd.NextDouble() * (d_A2>37 ? 1 : 0.3989 * d_A3);
0033: ldsfld rnd
0038: callvirt Random::NextDouble()
003d: ldloc.2
003e: ldc.r8 37.
0047: bgt.s 0056
0049: ldc.r8 0.3989
0052: ldloc.3
0053: mul
0054: br.s 005f
0056: ldc.r8 1.
005f: mul
0060: stloc.s V_4
// return new NumberValue(d_A4);

138 Generating .Net bytecode with a C# program §7.4

0062: ldloc.s V_4
0064: newobj NumberValue::.ctor
0069: ret
// } else if (v_A1 is ErrorValue)
006a: ldloc.0
006b: isinst ErrorValue
0070: brfalse.s 0074
// return v_A1;
0072: ldloc.0
0073: ret
// return new ErrorValue("ArgTypeError");
0074: ldstr "ArgTypeError"
0079: newobj ErrorValue::.ctor
007e: ret

Even if somewhat verbose, this should be quite easy to follow.

7.4 Generating .Net bytecode with a C# program

To generate the bytecode shown above at runtime, one uses classes from the Sys-
tem.Reflection.Emit namespace, here abbreviated SRE. This namespace is not stan-
dardized by Ecma-335 but is implemented by Microsoft .NET as well as Mono.

The simplest approach is to create an SRE.DynamicMethod object, obtain an
SRE.ILGenerator from it and use that to generate a method body, and then extract
a delegate object from the DynamicMethod object. First we need a delegate type
VA2V to describe methods that take as argument a Value and return a Value:

public delegate Value VA2V(Value[] arguments);

Then we can build, at runtime, such a method

static Value Foo(Value[] input) { ... }

as follows:

DynamicMethod methodBuilder =
new DynamicMethod("Foo", // Method name

typeof(Value), // Return type
new Type[] { typeof(Value[]) }, // Arg. types
typeof(MyClass).Module); // Module

ILGenerator ilg = methodBuilder.GetILGenerator();
ilg.Emit(...); // This creates the method’s body, see below
VA2V foo = (VA2V)methodBuilder.CreateDelegate(typeof(V A2V));

The newly created method can then be called like any other C# delegate, for in-
stance:

§7.4 Generating .Net bytecode with a C# program 139

Value result = foo(new Value[] { new NumberValue(10.0) });

The body of the Foo method is built using the ilg object, some of whose more im-
portant methods are:

Method Effect
ilg.Emit(ins) Generate bytecode instruction
ilg.Emit(OpCodes.Call, mth) Generate call instruction
ilg.DeclareLocal(type) Declare local variable of the given type
ilg.DefineLabel() Create a new label
ilg.MarkLabel(lab) Put label on next instruction

The SRE.OpCodes class has a static readonly field corresponding to every bytecode
instruction that can be used as an argument to ilg.Emit(...) .

Hence, to generate the bytecode shown above, one might use the following se-
quence of calls to ilg methods:

LocalBuilder v_A1 = ilg.DeclareLocal(typeof(Value));
LocalBuilder d_A1 = ilg.DeclareLocal(typeof(double));
LocalBuilder d_A2 = ilg.DeclareLocal(typeof(double));
LocalBuilder d_A3 = ilg.DeclareLocal(typeof(double));
LocalBuilder d_A4 = ilg.DeclareLocal(typeof(double));

Label a1NotNumberLabel = ilg.DefineLabel();
Label a4TrueLabel = ilg.DefineLabel();
Label a4EndLabel = ilg.DefineLabel();
Label a1NotErrorLabel = ilg.DefineLabel();
FieldInfo numberValueDotValue = typeof(NumberValue).Ge tField("value");
FieldInfo rndField = typeof(MyClass).GetField("rnd");

// Value v_A1 = input[0];
ilg.Emit(OpCodes.Ldarg, 0);
ilg.Emit(OpCodes.Ldc_i4, 0);
ilg.Emit(OpCodes.Ldelem_Ref);
ilg.Emit(OpCodes.Stloc, v_A1);
// if (v_A1 is NumberValue) {
ilg.Emit(OpCodes.Ldloc, v_A1);
ilg.Emit(OpCodes.Isinst, typeof(NumberValue));
ilg.Emit(OpCodes.Brfalse, a1NotNumberLabel);
// double d_A1 = ((NumberValue)v_A1).value;
ilg.Emit(OpCodes.Ldloc, v_A1);
ilg.Emit(OpCodes.Castclass, typeof(NumberValue));
ilg.Emit(OpCodes.Ldfld, numberValueDotValue);
ilg.Emit(OpCodes.Stloc, d_A1);
// double d_A2 = Math.Abs(d_A1);
ilg.Emit(OpCodes.Ldloc, d_A1);
ilg.Emit(OpCodes.Call, typeof(System.Math).GetMethod ("Abs",

new Type[] { typeof(double) }));

140 Generating .Net bytecode with a C# program §7.4

ilg.Emit(OpCodes.Stloc, d_A2);
// double d_A3 = Math.Exp(-d_A2 * d_A2/2);
ilg.Emit(OpCodes.Ldloc, d_A2);
ilg.Emit(OpCodes.Neg);
ilg.Emit(OpCodes.Ldloc, d_A2);
ilg.Emit(OpCodes.Mul);
ilg.Emit(OpCodes.Ldc_R8, 2.0);
ilg.Emit(OpCodes.Div);
ilg.Emit(OpCodes.Call, typeof(System.Math)

.GetMethod("Exp", new Type[] { typeof(double) }));
ilg.Emit(OpCodes.Stloc, d_A3);
// double d_A4 = rnd.NextDouble() * (d_A2>37 ? 1 : 0.3989 * d_A3);
ilg.Emit(OpCodes.Ldsfl, rndField);
ilg.Emit(OpCodes.Call, typeof(System.Random)

.GetMethod("NextDouble"), new Type[] { });
ilg.Emit(OpCodes.Ldloc, d_A2);
ilg.Emit(OpCodes.Ldc_R8, 37.0);
ilg.Emit(OpCodes.Bgt, a4TrueLabel);
ilg.Emit(OpCodes.Ldc_R8, 0.3989);
ilg.Emit(OpCodes.Ldloc, d_A3);
ilg.Emit(OpCodes.Mul);
ilg.Emit(OpCodes.Br, a4EndLabel);
ilg.MarkLabel(a4TrueLabel);
ilg.Emit(OpCodes.Ldc_R8, 1.0);
ilg.Emit(OpCodes.Mul);
ilg.MarkLabel(a4EndLabel);
ilg.Emit(OpCodes.Stloc, d_A4);
// return new NumberValue(d_A4);
ilg.Emit(OpCodes.Ldloc, d_A4);
ilg.Emit(OpCodes.Newobj, typeof(NumberValue)

.GetConstructor(new Type[] { typeof(double) }));
ilg.Emit(OpCodes.Ret);
// } else if (v_A1 is ErrorValue)
ilg.MarkLabel(a1NotNumberLabel);
ilg.Emit(OpCodes.Ldloc, v_A1);
ilg.Emit(OpCodes.Isinst, typeof(ErrorValue));
ilg.Emit(OpCodes.Brfalse, a1NotErrorLabel);
// return v_A1;
ilg.Emit(OpCodes.Ldloc, v_A1);
ilg.Emit(OpCodes.Ret);
ilg.MarkLabel(a1NotErrorLabel);
// return new ErrorValue("ArgTypeError");
ilg.Emit(OpCodes.Ldstr, "ArgTypeError");
ilg.Emit(OpCodes.Newobj, typeof(ErrorValue)

.GetConstructor(new Type[] { typeof(string) }));
ilg.Emit(OpCodes.Ret);

Of course one would never write a sheet-specific code generator like this, but the
above example shows how the ILGenerator and associated tools in the System.Reflection.Emit

§7.5 Translation scheme (with value wrapping) 141

namespace can be used. Note in particular how labels are created (DefineLabel),
used in branch instructions, and associated with code points (MarkLabel).

7.5 Translation scheme (with value wrapping)

7.5.1 The net effect principle for Compile()

We will adhere to the following net effect principle for bytecode generation from a
spreadsheet expression, using the Compile() method:

Let e be a spreadsheet expression and let ce be the bytecode gener-
ated for e by calling e.Compile() . Then executing ce will leave the
value of e on the stack top, as reference to a Value object.

The execution can assume that if a cell (such as A8) is needed for the
evaluation of e, then that cell has been evaluated. The cell’s value is
available in the local variable that is represented in the code generator
as the LocalBuilder object CellReferences[fca].Var where fca is
the full cell address corresponding to cell A8.

The full cell address, of type FullCellAddr, is an absolute reference to a particular
cell on a particular (function) sheet.

The code generation for sheet-defined functions is kept separate from the orig-
inal interpretive Corecalc. There is a new class hierarchy called CGExpr, for code
generating expression, which parallels and refines the Expr class hierarchy; see
figure 7.1.

Figure 7.1: Class diagram for Funcalc’s code generating expressions. This is a re-
finement of the Expr class hierarchy in figure 2.1.

142 Translation scheme (with value wrapping) §7.5

The abstract base class CGExpr further derives from class CodeGenerate which
contains many shared methods for code generation, and makes some data available
to the code generator:

• The LocalBuilder testValue is an auxiliary local variable of type Value. It is
used when testing whether a Value is of a particular subclass, such as Num-
berValue, TextValue, ArrayValue or FunctionValue.

• The LocalBuilder testDouble is an auxiliary local variable of type double . It
is used when testing whether a number is infinity or a NaN. In out later com-
pilation schemes, the error path of floating-point computations will assume
that this variable contains the latest error NaN.

• The ILGenerator ilg is the IL generator for the method currently being gen-
erated.

• Several standard ErrorValue objects are pre-allocated as static fields in class
ErrorValue.

• Generated code must be able to refer to the pre-allocated NumberValue objects
for 0.0, 1.0, and π. Therefore class NumberValue has static fields zeroField
and so on, of type FieldInfo, that reflectively represent these pre-allocated
fields. The code generator will use ilg.Emit to emit a “load static field” in-
struction for the required field.

• Similarly, most subclasses of Value (section 2.7), as well as class Function
(section 2.13), have public static methods that must be callable from gener-
ated code. For this purpose, the code generator obtains the methods’ reflective
MethodInfo representations and then use ilg.Emit to emit a method call to
the required method.

Using these resources we can easily generate code for a cell reference, such as A8:

FullCellAddr fca = new FullCellAddr("A8", "Sheet1");
ilg.Emit(OpCodes.Ldloc, CellReferences[fca].Var);

Cell references are stored in a dictionary that maps a FullCellAddr to a Variable
object, which contains information about the cell:

• The Name of the variable, such as "dA1" or "vB7" .

• A LocalBuilder representing the variable at code generation time.

• The type Typ of the cell, which is Value, Number, Text, Function, Array or
Error.

§7.5 Translation scheme (with value wrapping) 143

7.5.2 Code generation with NaNs

Basic code generation for arithmetic expressions, without wrapping/unwrapping op-
timizations, could be based on the following principles:

• The code for an arithmetic expression creates a double , and then wraps this
as a Value by calling method NumberValue.Make from section 2.7.1, and
leaves this value on the stack top. The wrapping may produce a Number-
Value if the double is a number, or may produce an ErrorValue if the double
is an infinity or a NaN. Which error value is produced depends on the NaN’s
payload.

• An arithmetic operation or mathematical function expects its operands to be
present on the stack as double s, possibly representing errors. So operands
are always pre-unwrapped, by calling method Value.ToDoubleOrNan . This
unwrapping may produce a double that represents a number, or a NaN that
represents an error value. In the latter case, the arithmetic operation or math-
ematical function is guaranteed to preserve the NaN’s payload, so the subse-
quent wrapping of the result as a Value will reconstruct the original Error-
Value, if any.

Following this scheme, code generation for a numeric constant, such as 42.1 will
push the constant as a double , then convert it to a Value by calling NumberValue.Make :

void Compile() {
ilg.Emit(OpCodes.Ldc_R8, 42.1);
ilg.Emit(OpCodes.Call, typeof(NumberValue).GetMethod ("Make"));

}

Code generation for a reference to a function sheet cell, say, at full cell address ca,
simply loads the variable, which has type Value:

void Compile() {
ilg.Emit(OpCodes.Ldloc, CellReferences[fca].Var);

}

Code generation for e1+e2 , or any other strict two-argument numeric operator:

void Compile() {
e1.Compile();
ilg.Emit(OpCodes.Call, typeof(Value).GetMethod("ToDo ubleOrNan");
e2.Compile();
ilg.Emit(OpCodes.Call, typeof(Value).GetMethod("ToDo ubleOrNan");
ilg.Emit(OpCodes.Add);
ilg.Emit(OpCodes.Call, typeof(NumberValue).GetMethod ("Make");

}

Similarly, to compile EXP(e1) or any other strict function from double to double :

144 Translation scheme (with value wrapping) §7.5

void Compile() {
e1.CompileToDoubleOrNan();
ilg.Emit(OpCodes.Call, typeof(Value).GetMethod("ToDo ubleOrNan");
ilg.Emit(OpCodes.Call, typeof(Math)

.GetMethod("Exp", new Type[] { typeof(double) }));
ilg.Emit(OpCodes.Call, typeof(NumberValue).GetMethod ("Make");

}

Method Compile is implemented in the subclasses of CGExpr. Some Compile()
methods are identical except for the operator and are therefore shared in a super-
class. For instance, addition, subtraction, multiplication and division only differ in
the bytecode operation (OpCodes.Add , OpCodes.Sub , and so on) used in the previ-
ous example. Using the template method pattern, we have implemented an abstract
GetOperation() method in a common superclass CGArithmetic2, representing all
arithmetic expressions that take two arguments.

The code generated by the above scheme fairly closely reflects what happens in
the interpretative Corecalc implementation, and the bytecode size is only linear in
the expression size, but still it is far from optimal.

Code generation for IF(e1, e2, e3) would have to work along these lines, to
make sure that if the argument expression e1 evaluates to an error value, then that
value is propagated as the result of the entire IF -expression:

void Compile() {
e1.Compile();
ilg.Emit(OpCodes.Call, typeof(Value).GetMethod("ToDo ubleOrNan"));
ilg.Emit(OpCodes.Stloc, testDouble);
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.Emit(OpCodes.Call, isInfinityMethod);
Label errorLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Brtrue, errorLabel);
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.Emit(OpCodes.Call, isNaNMethod);
ilg.Emit(OpCodes.Brtrue, errorLabel);
ilg.Emit(OpCodes.Ldloc, testDouble);
Label falseLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Ldc_R8, 0.0);
ilg.Emit(OpCodes.Ceq);
ilg.Emit(OpCodes.Brfalse, falseLabel);
e2.Compile();
ilg.Emit(Br, endLabel);
ilg.MarkLabel(falseLabel);
e3.Compile();
ilg.Emit(OpCodes.Br, endLabel);
ilg.MarkLabel(errorLabel);
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.Emit(OpCodes.Call, typeof(NumberValue).GetMethod ("Make"));
ilg.MarkLabel(endLabel);

}

§7.6 Avoiding intra-formula value wrapping 145

To obtain correct error propagation it is necessary to test the value of e1 for being
infinity or NaN, and if so, create and push an appropriate error value; this is done
after the errorLabel . If the value of e1 is a proper number, then if it is non-zero,
the code for e2 must be executed, otherwise the code for e3 .

Any attempt to optimize the above code by avoiding wrapping and unwrapping
must be made with great care. Namely, in IEEE/C#/.NET the expression x>0 is
true if x is positive infinity, and false if x is NaN, but in no case is it undefined.
Hence implementing IF(x>0, y, z) by the bytecode equivalent of (x>0 ? y :
z) , without any wrapping, would be wrong: it would not propagate errors from x .

An alternative way to achieve error propagation is to use .NET exceptions. How-
ever, this is exceedingly slow, compared to floating-point arithmetics. Throwing an
exception takes around 15,000 times longer than a 64-bit floating-point addition.
Most of this time is spent creating a stack trace in the exception object, which is
done when it is thrown, not when it is created (unlike in the Java Virtual Machine).
While this overhead can be reduced by some tricks, using NaNs is a far better way
to propagate errors within arithmetic code.

The code generation scheme described here is not the one we actually use, be-
cause it suffers from a number of efficiency problems, which we address in the next
section.

7.6 Avoiding intra-formula value wrapping

It would be desirable to improve the bytecode generated by the approach in sec-
tion 7.5 in at least two respects:

• Avoid wrapping and unwrapping the results of intermediate expressions in a
formula. For instance, in (A1+A2)+A3 , the floating-point result of (A1+A2)
should not be wrapped as a Value only to be immediately tested and un-
wrapped as a double . This is described in section 7.6.1 below.

• Avoid testing and unwrapping a referred-to cell more than once in a given ex-
pression. For instance, in A1+A1+A1+A1, the value of A1 should be unwrapped
from a Value to a double only once and then be used four times. This is dis-
cussed in section 7.6.2.

7.6.1 Code generation without local wrapping

To avoid needless wrapping and unwrapping, two approaches seem feasible:

• Code that needs a double asks the code generator for the preceding expression
to generate code that delivers a double .

• Code that can produce a y does it, and tells the subsequent code whether it
produced a double or a general Value.

146 Avoiding intra-formula value wrapping §7.6

The latter approach has the drawback that if the subsequent code does not need a
double but a Value (say, because it computes the value of a cell, or the return value
of a sheet-defined function) then the subsequent code must wrap the double . But
the preceding code may just have spent some effort unwrapping the value, in vain,
just because it was possible.

Hence the former approach is preferable: A double should be produced only
when useful to the consumer, that is, the code following the computation of the
value. And only the consumer knows whether it will be useful.

This leads to the following idea: In addition to the Compile method, class CG-
Expr should have an additional method CompileToDoubleOrNan , which generates
code that leaves a double on the stack top. This double may represent a proper
number or an error value, as in section 2.7.1. The CompileToDoubleOrNan method
will be called in contexts, such as the operands of the addition operator, that need a
double operand. In fact, it should be called whenever we would otherwise have a
call of the Compile() method immediately followed by an unwrapping, that is, by
a call to Value.ToDoubleOrNan .

The net effect principle for the CompileToDoubleOrNan method is:

Let e be a spreadsheet expression and let ce be the bytecode gener-
ated by e.CompileToDoubleOrNan() . Then executing ce will leave the
value of e on the stack top, as a double . If the value is a NaN, then the
evaluation of e produced an error and the payload of that NaN explains
which error.

The CompileToDoubleOrNan method should work as follows to generate code for
a numeric constant, such as 42.1:

void CompileToDoubleOrNan() {
ilg.Emit(OpCodes.Ldc_R8, 42.1);

}

Code generation for a reference to a function sheet cell, say, at full cell address fca ,
loads the variable and unwraps its value:

void Compile() {
ilg.Emit(OpCodes.Ldloc, CellReferences[fca].Var);
ilg.Emit(OpCodes.Call, typeof(Value).GetMethod("ToDo ubleOrNan"));

}

To compile e1+e2 , or any other strict two-argument numeric operator, to an expres-
sion that produces a double:

void CompileToDoubleOrNan() {
e1.CompileToDoubleOrNan();
e2.CompileToDoubleOrNan();
ilg.Emit(OpCodes.Add);

}

§7.6 Avoiding intra-formula value wrapping 147

Similarly, generating code for EXP(e1) or any other strict function of from type
double to double :

void CompileToDoubleOrNan() {
e1.CompileToDoubleOrNan();
ilg.Emit(OpCodes.Call, typeof(Math)

.GetMethod("Exp", new Type[] { typeof(double) }));
}

What if e1+e2 , EXP(e1) , or another arithmetic operation is used in a context that
expect a Value, not a double ? Such compilation is the responsibility of Compile() ,
which simply calls CompileToDoubleOrNan to generate code that is then followed
by code that wraps the double in the stack top:

void Compile() {
CompileToDoubleOrNan();
ilg.Emit(OpCodes.Call, typeof(NumberValue).GetMethod ("Make"));

}

As explained in section 2.7.1, NumberValue.Make turns a proper double into a
NumberValue instance, and turns infinities and NaN into appropriate ErrorValue
instances.

The compilation of IF(e1, e2, e3) should have a CompileToDoubleOrNan
variant also, for when IF is used in a calculation such as 5* IF(A2<>0, 1/A2,
A5) . The main difference from the Compile method sketched earlier is that the
branches e2 and e3 must be compiled with CompileToDoubleOrNan because of
the double-expecting context. Of course the condition e1 should be compiled by
CompileToDoubleOrNan also, to avoid a wrapping and unwrapping.

void Compile() {
e1.CompileToDoubleOrNan();
ilg.Emit(OpCodes.Stloc, testDouble);
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.Emit(OpCodes.Call, isInfinityMethod);
Label errorLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Brtrue, errorLabel);
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.Emit(OpCodes.Call, isNaNMethod);
ilg.Emit(OpCodes.Brtrue, errorLabel);
ilg.Emit(OpCodes.Ldloc, testDouble);
Label falseLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Ldc_R8, 0.0);
ilg.Emit(OpCodes.Ceq);
ilg.Emit(OpCodes.Brfalse, falseLabel);
e2.CompileToDoubleOrNan();
ilg.Emit(Br, endLabel);
ilg.MarkLabel(falseLabel);
e3.CompileToDoubleOrNan();

148 Avoiding intra-formula value wrapping §7.6

ilg.Emit(OpCodes.Br, endLabel);
ilg.MarkLabel(errorLabel);
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.MarkLabel(endLabel);

}

Finally, if e1 evaluates to a NaN, representing an error, then that should not be
converted to an ErrorValue (just before the endLabel).

7.6.2 Unwrap variables early

To avoid repeated unwrapping of cells stored as Values, we shall perform two passes.
First we analyse the formulas of the sheet-defined function to find the set of cells
that are used as numbers. Basically this is the set of cells whose reference will be
immediately followed by an unwrapping in the generated code. For this purpose we
consider only cells that are used strictly in some cell formula, that is, will be used
in any evaluation of that formula. For instance, A2 is used strictly, but A5 is not, in
this expression:

5* IF(A2<>0, 1/A2, A5)

A cell that is used in both branches of a conditional, such as A6 below, is used
strictly:

IF(RAND()>0.5, A6, A6 * 10)

The second pass then uses the information gathered in the first pass to generate
code that tests and unwraps all cells that are used strictly, writing each such cell C
to a new local variable d_C of type double. If the subsequent code generation need
the contents of a cell C as a double, it checks whether the variable d_C is available,
and loads that variable. This way any cell that is used strictly in the expression can
be tested and unwrapped once, regardless how often it is used in the expression.
Since the cell is used strictly, early unwrapping incurs no loss of efficiency, because
the cell must be tested and unwrapped during expression evaluation in any case.

Concretely, the first pass builds a dictionary NumberVariables that records
that a variable of type double has been allocated for a given cell, by mapping the
cell’s FullCellAddr to the Variable. This is used as follows in CompileToDoubleOrNan
for a cell reference:

public override void CompileToDoubleOrNan() {
Variable doubleVar;
if (NumberVariables.TryGetValue(cellAddr, out doubleVa r))

ilg.Emit(OpCodes.Ldloc, doubleVar.Var);
else {

Variable var = CellReferences[cellAddr];
if (var.Type == Typ.Value) {

ilg.Emit(OpCodes.Ldloc, var.Var);

§7.7 Avoiding inter-formula wrapping 149

UnwrapToDoubleOrNan();
} else if (var.Type == Typ.Number)

ilg.Emit(OpCodes.Ldloc, var.Var);
else

LoadArgTypeErrorNan();
}

}

If an unwrapped (double) variable has been allocated, load that; otherwise if the
variable has type Value, load that and unwrap; if the cell has been declared as type
Number (see section 7.7 below), then load that; otherwise load an error, because the
variable must be of an incompatible type.

The above scheme means that each unwrapped cell gets to be stored twice, once
as a Value object and once as a double. Apart from space consumption, this does not
matter, because cells are never updated.

The code generation scheme proposed in sections 7.6.1 and 7.6.2 will only avoid
intra-formula wrapping and unwrapping, and the generated will therefore look like
a somewhat neater version of the (C#) code shown in section 7.2. In particular, it
would avoid multiple unwrappings such as ((NumberValue)v_A2).value seen in
the definition of v_A3 there.

7.7 Avoiding inter-formula wrapping

Section 7.6 showed how to reduce the amount of wrapping and unwrapping per-
formed in the code generated for a single formula. Ideally, one should avoid unnec-
essary wrapping and unwrapping between formulas. For instance, in our example
sheet-defined function, the value of cell A2 is used only in contexts that expect a
double. Hence there’s no need to wrap the value of A2 as a NumberValue, it would
be better to store it as a double in a variable d_A2 as in the C# code shown in sec-
tion 7.2.

There are several ways to achieve this:

A. Perform an inter-cell type analysis. It should discover the possible types of a
cell’s formula. If a formula’s value must be a NumberValue or an ErrorValue,
represent it as a double , and use NaN to represent ErrorValue.

B. Create two CIL local variables for each cell C, one called v_C of type Value and
one called d_C of type double . When v_C holds a a NumberValue, then d_C
holds the corresponding floating-point value; otherwise it holds a NaN or plus
or minus infinity. When a reference to cell C appears in a context that expects
a double, then d_C is used, otherwise v_C.

The current implementation uses approach A. Option B is simpler to implement be-
cause it does not need a type analysis, but will often perform some useless work, and
double the number of local variables used to implement a sheet-defined function.

150 Avoiding inter-formula wrapping §7.7

7.7.1 Types of Funcalc values

Below we describe how the type analysis (A) could be implemented. We assume
that the cells of the sheet-defined function have been sorted topologically according
to dependencies as described in section 9.2.

First we need an enumeration to describe the possible types of expressions:

enum Typ { Error, Number, Text, Array, Value, Function };

The meaning of types, in terms of possible runtime values, is the following:

M[Typ.Error] = { ErrorValue }
M[Typ.Number] = { ErrorValue, NumberValue }
M[Typ.Text] = { ErrorValue, TextValue }
M[Typ.Array] = { ErrorValue, ArrayValue }
M[Typ.Function] = { ErrorValue, FunctionValue }
M[Typ.Value] = { ErrorValue, NumberValue, TextValue,

ArrayValue, FunctionValue }

Hence the subtype ordering is this:

Error <= { Number, Text, Array, Function } <= Value

7.7.2 Using types during compilation

The idea is that the sheet-defined function’s input cells will have type Typ.Value,
and then we compute the Typ for all other cells in the dependency order as deter-
mined by the topological sort.

This type information is then used as follows:

• If a cell gets assigned the type Typ.Number, we store its value in a local vari-
able of type double , which holds a proper number to represent an unwrapped
NumberValue, or NaN or plus or minus infinity to represent an ErrorValue.

• If a cell gets assigned the type Typ.Text, we store its value in a local variable
of type Value, which holds a TextValue or an ErrorValue. Alternatively, we
could unwrap to a value of type String, but first, then we could represent only
one error value (using null), and second, it would not improve efficiency much,
because String objects are heap-allocated anyway, unlike double s.

• If a cell gets assigned the type Typ.Array, we store its value in a local variable
of type Value, which holds an ArrayValue or an ErrorValue. As for Strings,
we forgo the modest efficiency gains that would accrue from representing the
array as Value[][] instead.

• When, during subsequent compilation, we refer to a cell ca of type Typ.Number
in a context that expects a double , we simply load that floating-point number.
When referring to it in a context that expects a Value, we wrap the number
as a NumberValue. When referring to it in a context that expects a String, we
convert the number to a String if it is a proper number, else to an ErrorValue.

§7.7 Avoiding inter-formula wrapping 151

• When, during subsequent compilation, we refer to a cell ca of type Typ.Value
in a context that expects a double, we generate code to test and then unwrap
the number (using method UnwrapToDoubleOrNaN in class CodeGenerate).

The computation of a cell’s type is done by a new method in class Expression:

public abstract Typ Type()

The current implementation maintains a dictionary CodeGenerate.cellReferences
that maps a cell address to a Variable object. This object contains the cell’s type as
well as its LocalBuilder, for use during code generation.

The type of a NumberConst is Typ.Number:

public Typ Type{} {
return Typ.Number;

}

The type of a TextConst is Typ.Text:

public Typ Type{} {
return Typ.Text;

}

The type of a cell reference to cellAddr is found in the CellReferences dictionary
(due to the topological sorting the CellReferences[cellAddr] entry has been
defined already):

public override Typ Type() {
return CellReferences[cellAddr].Type;

}

The type of an addition or any other arithmetic function is Typ.Number. The type
of a string function is Typ.Text. In general, types are computed from inputs to
outputs, treating the different CGExpr constructs as needed. For instance, IF(e1,
e2, e3) should be treated like this:

public Typ Type() {
return Lub(e2.Type(), e3.Type());

}

Here, Lub is a static method that computes the least upper bound of two Typ values
in the ordering shown in figure ?? above:

public static Lub(Typ t1, Typ t2) {
if (t1==t2)

return t1;
else

switch (t1) {
case Typ.Error:

152 Compilation of comparisons and conditions §7.8

return t2;
case Typ.Number: case Typ.Text: case Type.Array: case Type .Function:

return t2==Typ.Error ? t1 : Typ.Value;
case Typ.Value:

return Typ.Value;
default:

throw new ImpossibleException("Lub(Typ, Typ)");
}

}

This means that if one branch of an IF has type Typ.Number and the other has type
Typ.Text, then the whole IF-expression has type Typ.Value, namely, the least upper
bound of Typ.Number and Typ.Text.

7.8 Compilation of comparisons and conditions

7.8.1 Compilation of comparisons

As explained in section 7.5.2 above, care must be taken to obtain proper Excel se-
mantics of comparisons e1<e2 and conditionals IF(e1<e2,...) in the presence of
improper numbers such as infinities and NaNs. An error arising during the evalu-
ation of e1 or e2 must be propagated as the result of the comparison e1<e2 and as
the result of the entire conditional IF(e1<e2,...) . This can be done by introduc-
ing in CGExpr a method

void CompileToDoubleProper(Gen ifProper, Gen ifOther)

that generates code that tests for NaN and infinities, and continues with the code
generated by ifOther if one of those values are encountered, else continues with
the code generated by ifProper .

For now, Gen is just a delegate type for encapsulating a statement block:

public delegate void Gen()

One can think of the arguments ifProper and ifOther as code generators that
may or may not be invoked by CompileToDoubleProper. More in all cases they will
be generators of code that represent possible continuations of the current expression
being compiled.

In general, this method could be implemented by compiling to a double, and
testing for the result being proper, like this:

void CompileToDoubleProper(Gen ifProper, Gen ifOther) {
CompileToDoubleOrNan();
Label otherLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Stloc, testDouble);
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.Emit(OpCodes.Call, isInfinityMethod);

§7.8 Compilation of comparisons and conditions 153

ilg.Emit(OpCodes.Brtrue, otherLabel);
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.Emit(OpCodes.Call, isNaNMethod);
ilg.Emit(OpCodes.Brtrue, otherLabel);
ilg.Emit(OpCodes.Ldloc, testDouble);
ifProper();
Label endLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Br, endLabel);
ifOther();
ilg.MarkLabel(endLabel);

}

Note the use of a temporary local variable testDouble instead of duplicating a value
that would subsequently need to be popped. The advantage of this approach is that
multiple occurrences of ifOther() should be representable by one piece of code,
and we should be able to avoid some code duplication and some jumps to jumps. A
single such intermediate variable suffices because no other code intervenes between
its definition and its last use.

For a number constant, the test for infinities and NaN can be performed at
compile-time, so the generated code will be simpler:

void CompileToDoubleProper(Gen ifProper, Gen ifOther) {
if (double.IsInfinity(number.value) || double.IsNaN(nu mber.value)) {

ilg.Emit(OpCodes.Ldc_R8, number.value);
ilg.Emit(OpCodes.Stloc, testDouble);
ifOther();

} else {
ilg.Emit(OpCodes.Ldc_R8, number.value);
ifProper();

}
}

In the code generated by first (failure) branch, the constant is stored into variable
testDouble so that the ifOther code can retrieve and analyse it.

The CompileToDoubleProper methods may be used as follows in the compila-
tion of a comparison operation such as e1 < e2 to make it error-preserving:

void CompileToDoubleProper(Gen ifProper, Gen ifOther) {
e1.CompileToDoubleProper(

delegate {
e2.CompileToDoubleProper(

delegate {
ilg.Emit(OpCodes.Lt);
ilg.Emit(OpCodes.Conv_R8);
ifProper();

},
delegate {

ilg.Emit(OpCodes.Pop);

154 Compilation of comparisons and conditions §7.8

ifOther();
});

},
ifOther());

}

By contrast, arithmetic operators and functions such as (*), (+), Math.Sin and so
on, that are already error-preserving thanks to IEEE floating-point semantics, can
be compiled using the simpler approach in CompileToDoubleOrNan as shown in
section 7.6.1.

7.8.2 Compilation of conditions

Compilation of conditions should be performed by a special method in each AST
class. This way one can avoid the repeated comparisons with zero, and obtain better
code for composite logic expressions involving NOT, AND, and OR. For instance, for
AND(e1,e2) one can distinguish between the context 10+AND(e1,e2) and the con-
text IF(AND(e1,e2),11,22) , and generate code for the former case that pushes
1.0 or 0.0 on the stack, whereas in the latter case it pushes 11.0 or 22.0 without first
pushing and testing 1.0 or 0.0.

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r)

In general, this method can be implemented in terms of CompileToDoubleProper ,
as follows:

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {
CompileToDoubleProper(

delegate {
Label falseLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Ldc_R8, 0.0);
ilg.Emit(OpCodes.Ceq);
ilg.Emit(OpCodes.Brfalse, falseLabel);
ifTrue();
Label endLabel = ilg.DefineLabel();
ilg.Emit(Br, endLabel);
ilg.MarkLabel(falseLabel);
ifFalse();
ilg.MarkLabel(endLabel);

},
ifOther);

}

This would be the default version, used e.g. for cell references, where the CompileToDoubleProper
method takes care of determining whether the cell needs unboxing etc; and for gen-
eral arithmetic operations and so on.

But for most abstract syntax nodes, better code can be generated. In the case of
a number constant CGNumberConst(value) , one can decide the test statically:

§7.8 Compilation of comparisons and conditions 155

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {
if (Double.IsInfinity(value) || Double.IsNaN(value)) {

ilg.Emit(OpCodes.Ldc_R8, number.value);
ilg.Emit(OpCodes.Stloc, testDouble);
ifOther();

} else if (value != 0)
ifTrue();

else
ifFalse();

}

Again, the failure branch generates code to load the offending number into the
testDouble local variable, for subsequent use by the ifOther code.

In the case of the unary logical operator NOT(e0) , one simply swaps the ifTrue
and ifFalse delegates:

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {
es[0].CompileCondition(ifFalse, ifTrue, ifOther);

}

You may say that nobody in his right mind writes IF(NOT(e1),e2,e3) but first,
there may be reasons to do so, and secondly, the above code also optimizes AND(e1,
NOT(e2), e3) and OR(e1, NOT(e2), e3) which is more plausible. Finally, such
code is very likely generated by the evaluation condition generator presented later
in chapter 9.

In the case of a two-argument logical operator AND(e0,e1) , one could chain the
delegates as follows to obtain short-circuit evaluation (as in C, Java and C# but
actually not Excel):

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {
es[0].CompileCondition(

delegate {
es[1].CompileCondition(ifTrue, ifFalse, ifOther);

},
ifFalse,
ifOther);

}
}

so in AND(e0,e1) the code generated by ifTrue gets executed only if both e0 and
e1 evaluate to a proper and non-zero double .

To obtain the actual Excel semantics, in which AND(e0,e1) is strict in both its
arguments, and evaluates to an error when e1 does even if e0 is false, we should
evaluate e1 and test it for being proper also in the false branch of e0 . It could be
done like this (but it is not the approach we are taking):

void CompileToDoubleProper(Gen ifProper, Gen ifOther) {
es[0].CompileToDoubleProper(

156 Compilation of comparisons and conditions §7.8

delegate {
ilg.Emit(OpCodes.Ldc_R8, 0.0);
ilg.Emit(OpCodes.Ceq);
es[1].CompileToDoubleProper(
delegate {

ilg.Emit(OpCodes.Ldc_R8, 0.0);
ilg.Emit(OpCodes.Ceq);
ilg.Emit(OpCodes.Or);
ilg.Emit(OpCodes.Ldc_I4, 0);
ilg.Emit(OpCodes.Ceq);
ilg.Emit(OpCodes.Conv_R8);
ifProper.Gen(ilg);

},
ifOther)

},
ifOther);

}

Actually, the above evaluates AND(e0,e1) as NOT(OR(NOT(e0),NOT(e1))) using
de Morgan’s laws, using IL instruction Ceq to compare a double for being zero (re-
sulting in an integer on the stack), and using And to form the bitwise and of two
integers. The IL instruction set does not allow bitwise logical operations on doubles,
and does not have an instruction that pushes integer 1 when a double is non-zero.

Our implementation actually supports AND(e1,...,en) with arbitrary arity
n ≥ 0. Code generation for short-circuit evaluation can be implemented elegantly by
compiling the conjuncts e1,...,en backwards, to build up ifTrue code generation
continuation:

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {
for (int i = es.Length - 1; i >= 0; i--)

ifTrue = delegate { es[i].CompileCondition(ifTrue, ifFal se, ifOther); };
ifTrue();

}

The above code generation scheme builds up a code generator backwards to achieve
the following effects:

• If n = 0 then the code generated by the original ifTrue is executed uncondi-
tionally. This reflects that if n = 0 then AND() must evaluate to true.

• If n > 0 then code is generated to evaluate and test e1 ; if true, execution con-
tinues with code generated as if for AND(e2,...,en) , if false, then execution
continues with the code generated by ifFalse ; and if error, with ifOther .
This reflects that if n > 0 then AND(e1,e2,...,en) has the same meaning
as AND(e1,AND(e2,...,en)) .

Also note that if some conjunct ei is constant false, then no code is generated for the
subsequent conjuncts e(i+1),...,en because the AND-expression cannot be true;
the ifTrue code continuation of ei is ignored by

§7.8 Compilation of comparisons and conditions 157

ei.CompileCondition(ifTrue,ifFalse,ifOther)

However, code for the preceding conjuncts e1,...,e(i-1) will — and must — be
generated, for if one of those evaluate to an error, then so must the AND-expression.
If some conjunct ei is constant true, then no code is generated for it, because only
the ifTrue code continuation will be used by the ei.CompileCondition call.

However, the otherwise elegant loop above does not quite work, because anony-
mous methods in C# capture lvalues, not rvalues, of local variables such as i and
ifTrue . As a consequence, when the call ifTrue() is performed after the loop,
the value of i is −1, so the indexing es[i] throws an IndexOutOfRangeException.
Even disregarding this problem, the generated code would not work because the
occurrence of ifTrue inside the delegate refers to the final value of ifTrue , so if
es[i] happens to evaluate to true, then the code goes into an infinite loop.

To capture the rvalues of i and ifTrue , one may introduce local loop body vari-
ables like this:

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {
for (int i = es.Length - 1; i >= 0; i--) {

CGExpr ei = es[i];
Gen localIfTrue = ifTrue;
ifTrue = delegate { ei.CompileCondition(localIfTrue, ifF alse, ifOther); });

}
ifTrue();

}

Note that all the subexpressions of ANDhave the same ifFalse and ifOther code
generators.

To compile a disjunction OR(e1,...,en) of arbitrary arity n ≥ 0 with short-
circuit evaluation, we use exactly the same code generation scheme, but we update
the ifFalse code generator instead of the ifTrue code generator:

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {
for (int i = es.Length - 1; i >= 0; i--) {

CGExpr ei = es[i];
Gen localIfFalse = ifFalse;
ifFalse = delegate { ei.CompileCondition(ifTrue, localIf False, ifOther); };

}
ifFalse();

}

All the subexpressions of ORhave the same ifTrue and ifOther code generators.
Again one might consider a more Excel-like semantics, without short-circuit evalu-
ation, but we shall not do that here.

The code for a comparison e0<e1 (and similarly for =, <>, <=, >=, < and >), must
evaluate the two subexpressions, check that both are proper (and failing that, use
ifOther), and then test whether the stated relation between them holds (ifTrue)
or not (ifFalse).

158 Compilation of comparisons and conditions §7.8

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {
es[0].CompileToDoubleProper(

delegate {
es[1].CompileToDoubleProper(

delegate {
Label falseLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Lt); // Or other comparison
ilg.Emit(OpCodes.Brfalse, falseLabel);
ifTrue();
Label endLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Br, endLabel);
ilg.MarkLabel(falseLabel);
ifFalse();
ilg.MarkLabel(endLabel);

},
delegate {

ilg.Emit(OpCodes.Pop);
ifOther();

});
},
ifOther);

}

This way, if any of the operands is a non-number or a non-proper number, the code
generated by ifOther() will be executed. Only if both operands are proper num-
bers, the comparison will be performed and the result tested.

Note: Here we have focused on numerical comparisons. In general, these com-
parison operators should work also on TextValue and perhaps other values. The
type analysis should help generate efficient code when it is known statically that
the operands are NumberValues.

7.8.3 Compilation of conditional expressions

Using the CompileCondition method, the various compilation methods for IF(e0,
e1, e2) can be implemented as shown here.

To compile IF(e0, e1, e2) in a context that expects a Value, we use Compile :

void Compile() {
es[0].CompileCondition(

delegate { es[1].Compile(); },
delegate { es[2].Compile(); },
delegate {

ilg.Emit(OpCodes.Ldloc, testDouble);
WrapDoubleToNumberValue();

});
}

To compile IF(e0, e1, e2) in a context that expects a double , such as 10* IF(e0,
e1, e2) :

§7.9 Avoiding duplicate generation of code 159

void CompileToDoubleOrNan() {
es[0].CompileCondition(

delegate { es[1].CompileToDoubleOrNan(); },
delegate { es[2].CompileToDoubleOrNan(); },
delegate { ilg.Emit(OpCodes.Ldloc, testDouble); }

);
}

To compile IF(e0, e1, e2) in a context that expects a proper double , such as
IF(e0, e1, e2) > 50 :

void CompileToDoubleProper(Gen ifProper, Gen ifOther) {
es[0].CompileCondition(

delegate { es[1].CompileToDoubleProper(ifProper, ifOth er); },
delegate { es[2].CompileToDoubleProper(ifProper, ifOth er); },
ifOther);

}

To compile IF(...) in a context where it is used as a condition, such as the inner
IF in IF(IF(e00, e01, e02), e1, e2) :

\cfunindexx{CompileCondition}{CGIf}
void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {

es[0].CompileCondition(
delegate { es[1].CompileCondition(ifTrue, ifFalse, ifOt her); },
delegate { es[2].CompileCondition(ifTrue, ifFalse, ifOt her); },
ifOther);

}

Due to the duplication of the code generation continuations ifTrue , ifFalse and
ifProper , the latter case basically gets compiled as IF(e00, IF(e01, e1, e2),
IF(e02, e1, e2)) . This may expose some optimization opportunities when e01
or e02 are constants or comparison operations.

It may also cause code duplication, unless the techniques shown in section 7.9
below are used. If those techniques generate good enough code, we could simply
treat AND(e1, e2) as shorthand for IF(e1, e2, FALSE) and treat OR(e1, e2)
as shorthand for IF(e1, TRUE, e2) , thus avoiding some special cases in the code
generation. We shall not do that, though.

There is still room for improving the code generated for a nested IF -expression
IF(e11,e12,IF(e21,e22,IF(e31,e32,e33))) . Namely, if the conditions e11 ,
e21 , e31 , . . . are comparisons a11<b11 and so on, then the their “other” branches
for compiling ai1 to a proper double could be shared, and similarly for all the bi1 .
But currently each gets its own identical code continuation, which creates some
jumps to jumps, but no code duplication.

7.9 Avoiding duplicate generation of code

The code generation schemes shown above may call each code generation function,
such as ifOther , multiple times, and hence generate multiple copies of functionally

160 Avoiding duplicate generation of code §7.9

identical bytecode. This is undesirable, and can be avoided by wrapping each code
generation action inside a caching object. The first time the cache is asked to gener-
ate the code, it labels and generates it; any subsequent request for code generation
simply generates a jump to that label. The cache can also return the label (for use in
conditional jumps to the generated code), and can be queried whether the code has
already been generated (this sometimes can avoid generating a superfluous jump
around it).

The design described above is our third attempt at designing such a code gener-
ation cache, while also to some extent avoiding the generation of dead code and of
jumps to jumps. The first two attempts failed in this respect because they did not
integrate the label generation and the label marking with the cache, and hence were
difficult to use correctly in the compilation functions. Also, they required the compi-
lation functions to test prematurely for the code being generated (namely, when the
label were created) which lead to many unnecessary jumps to jumps.

How much sharing of generated code is actually permissible? Clearly, it would be
wrong to share, by address, code copies that should have appeared in different con-
texts; that is, with different continuations. But so far all our compilation functions
have a simple property: every code fragment generated by a delegate argument ap-
pears in tail position. That is, the actions performed by the code generated by the
delegate are the last actions performed by the code generated by the compilation
function, except possibly for jumps that brings the flow of control to the end of the
generated code. From this observation it follows that all copies of generated code
would have the same continuation.

Another view of this continuation argument. One could pass program labels in-
stead of code generation functions, effectively representing each continuation by its
label. That would have the advantage of being more transparent, and the code block
sharing would be more obviously correct. However, it also has the disadvantage of
introducing a jump to code where none is needed, namely where the code could
simply be generated in-line as in the current compilation functions. Also, it would
become more complicated to avoid generating code that is not needed, such as the
infinity/NaN test in a comparison that involves a constant.

In the final design, the cache for a code generator has three states, with state 1
being the initial one:

1. Code created but not yet labelled (label == null)

2. Code labelled but not yet generated (label != null && !generated)

3. Code generated (label != null && generated)

The comments refer to the states of the actual implementation in the class Gen:

class Gen {
private readonly Action generate;
private Label? label;
private bool generated; // Invariant: generated implies la bel.HasValue
public Gen(Action generate) {

§7.9 Avoiding duplicate generation of code 161

this.generate = generate;
label = null;
generated = false;

}
public Label GetLabel(ILGenerator ilg) {

if (!label.HasValue)
label = ilg.DefineLabel();

return label.Value;
}
public bool Gend { get { return generated; } }
public void Gen(ILGenerator ilg) {

if (generated)
ilg.Emit(OpCodes.Br, GetLabel(ilg));

else {
ilg.MarkLabel(GetLabel(ilg));
generated = true;
generate();

}
}

}

If ever Gen(ilg) is invoked, the label will be defined and marked in the bytecode.
Thanks to the flag called generated , this happens at most once, and likewise the
inner generate() delegate will be called at most once. Note that if Gen(ilg) is
called before the first call to GetLabel(ilg) , a fresh label will be created, to be
returned by any future calls to GetLabel .

Even if, in some strange circumstances, the execution of the generate() del-
egate would cause further recursive calls to Gen(ilg) , such recursive calls would
simply generate jumps to the beginning of the code currently being generated.

Class Gen could be used as follows in the general version of CompileCondition:

void CompileCondition(Gen ifTrue, Gen ifFalse, Gen ifOthe r) {
CompileToDoubleProper(

new Gen(delegate {
ilg.Emit(OpCodes.Ldc_R8, 0.0);
ilg.Emit(OpCodes.Beq, ifFalse.GetLabel(ilg));
ifTrue.Gen(ilg);
if (!ifFalse.Generated) {

Label endLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Br, endLabel);
ifFalse.Gen(ilg);
ilg.MarkLabel(endLabel);

}
}),
ifOther);

}

If ifFalse.Generated is true, then definitely the falseLabel has been marked;
either prior to the ifFalse.GetLabel call, or as a side effect of the ifTrue.Gen

162 Avoiding duplicate generation of code §7.9

call. If ifFalse.Generated is false, the label belonging to ifFalse will next be
marked as a consequence of the call ifFalse.Gen .

Here is how class Gen is used within the general CompileToDoubleProper
method:

void CompileToDoubleProper(Gen ifProper, Gen ifOther) {
CompileToDoubleOrNan();
ilg.Emit(OpCodes.Stloc, testDouble);
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.EmitCall(OpCodes.Call, isInfinityMethod, null);
ilg.Emit(OpCodes.Brtrue, ifOther.GetLabel(ilg));
ilg.Emit(OpCodes.Ldloc, testDouble);
ilg.EmitCall(OpCodes.Call, isNaNMethod, null);
ilg.Emit(OpCodes.Brtrue, ifOther.GetLabel(ilg));
ilg.Emit(OpCodes.Ldloc, testDouble);
ifProper.Gen(ilg);
if (!ifOther.Generated) {

Label endLabel = ilg.DefineLabel();
ilg.Emit(OpCodes.Br, endLabel);
ifOther.Gen(ilg);
ilg.MarkLabel(endLabel);

}
}

The current code generation scheme occasionally generates unreachable bytecode
instructions (typically an unconditional jump preceded by an unconditional jump).
While a little inelegant, this is explicitly permitted by the CLI standard [36, section
III.1.7.1]. We suspect the unreachable code is due to, say, ifProper.Gen(ilg)
above generating an unconditional jump because ifProper has already been gen-
erated, and then, because ifOther has not yet been generated, an unreachable
jump to endLabel will be generated. The code generation scheme also generates a
few jumps to jumps. Both could possibly be avoided by further complicating the Gen
class and the code that uses it. For instance, the call ifProper.Gen(ilg) above
may tell whether it generated an unconditional jump, and in that case we can avoid
generating the jump to endLabel , and then avoid generating endLabel at all.

To see the effect of the various code generation functions from sections 7.6 to 7.8
and of the Gen class above, let us compare the code generated within different con-
texts for a logical expression involving comparisons. In the first case, the truth value
should be produced as the number 1.0 or 0.0:

=AND(A1<0.001, 5>B1 * C1)

In the second case the truth value will be used in a conditional and should not be
generated on the stack:

=10* IF(AND(A1<0.001, 5>B1 * C1), 11, 22)

§7.9 Avoiding duplicate generation of code 163

In both cases, A1, B1 and C1 are input cells, and the formula shown is that of the
output cell.

First, consider AND(A1<0.001, 5>B1 * C1) . The entire formula is compiled by
Compile , which invokes CompileCondition with an ifTrue continuation that
pushes NumberValue.ONE , an ifFalse continuation that pushes NumberValue.ZERO ,
and an ifOther continuation that pushes an ErrorValue based on the contents of
testDouble .

The CompileCondition method in turn invokes CompileCondition on the
conjuncts A1<0.001 and 5>B1* C1. Each of these in turn invokes CompileToDoubleProper
on the operands (A1, 0.001 , 5, B1* C1) of the comparisons. This method invokes
CompileToDoubleOrNan to compile the subexpressions and then issues the IsInfinity
and IsNaN tests on A1 and on the product B1* C1, but not on the constants 0.001
and 5. Note that if B1* C1 is not proper, then the left operand (5) will be popped
from the stack by instruction 009d.

Thanks to the Gen machinery, the ifFalse continuation at instruction 0093
is shared between the two conjuncts of AND(...) , witness the conditional branch
instructions at 004f and 0084. Also, the outer ifOther continuation at 009e is
shared, in the sense that the ifOther continuation of 5>B1* C1 consists of the pop
instruction at 009d with a fall-through to the outer ifOther continuation at 009e.
This fall-through is a consequence of the test !ifOther.Generated in the general
CompileToDoubleProper method shown above.

0000: ldarg.0 002f: ldloc.0 006e: call IsInfinity
0001: ldc.i4 0 0030: call IsInfinity 0073: brtrue 009d
0006: ldelem Value 0035: brtrue 009e 0078: ldloc.0
000b: stloc.3 003a: ldloc.0 0079: call Double.IsNaN
000c: ldarg.0 003b: call IsNaN 007e: brtrue 009d
000d: ldc.i4 1 0040: brtrue 009e 0083: ldloc.0
0012: ldelem Value 0045: ldloc.0 0084: ble 0093
0017: stloc.s V_4 0046: ldc.r8 0.001 0089: ldsfld NumberVal ue.ONE
0019: ldarg.0 004f: bge 0093 008e: br 0098
001a: ldc.i4 2 0054: ldc.r8 5 0093: ldsfld NumberValue.ZERO
001f: ldelem Value 005d: ldloc.s V_4 0098: br 00a4
0024: stloc.s V_5 005f: call ToDoubleOrNan 009d: pop
0026: ldloc.3 0064: ldloc.s V_5 009e: ldloc.0
0027: call ToDoubleOrNan 0066: call ToDoubleOrNan 009f: ca ll NumberValue.Make
002c: stloc.2 006b: mul 00a4: ret
002d: ldloc.2 006c: stloc.0
002e: stloc.0 006d: ldloc.0

Next consider =10* IF(AND(A1<0.001, 5>B1 * C1), 11, 22) . The entire expres-
sion is compiled by method Compile , which invokes CompileToDoubleOrNan on
the IF(...) expression. Method CompileToDoubleOrNan is invoked on the AND(...)
expression with an ifTrue continuation that pushes 11.0 as a double , an ifFalse
continuation that pushes 22.0 as a double , and an ifOther continuation that
pushes testDouble .

0000: ldarg.0 0037: stloc.0 0076: ldloc.0
0001: ldc.i4 0 0038: ldloc.0 0077: call IsInfinity
0006: ldelem Value 0039: call IsInfinity 007c: brtrue 00ae

164 Reduce the use of local variables §7.10

000b: stloc.3 003e: brtrue 00af 0081: ldloc.0
000c: ldarg.0 0043: ldloc.0 0082: call IsNaN
000d: ldc.i4 1 0044: call IsNaN 0087: brtrue 00ae
0012: ldelem Value 0049: brtrue 00af 008c: ldloc.0
0017: stloc.s V_4 004e: ldloc.0 008d: ble 00a0
0019: ldarg.0 004f: ldc.r8 0.001 0092: ldc.r8 11
001a: ldc.i4 2 0058: bge 00a0 009b: br 00a9
001f: ldelem Value 005d: ldc.r8 5 00a0: ldc.r8 22
0024: stloc.s V_5 0066: ldloc.s V_4 00a9: br 00b0
0026: ldloc.3 0068: call ToDoubleOrNan 00ae: pop
0027: call ToDoubleOrNan 006d: ldloc.s V_5 00af: ldloc.0
002c: stloc.2 006f: call ToDoubleOrNan 00b0: mul
002d: ldc.r8 10 0074: mul 00b1: call NumberValue.Make
0036: ldloc.2 0075: stloc.0 00b6: ret

Finally, consider =10* IF(IF(A1, 0, 6), 11, 22) , where A1 is an input cell, to
see the effect of applying CompileCondition to the inner IF(A1, 0, 6) . The
resulting code unwraps A1 as a double, tests whether it is an infinity or NaN and
if so multiplies it with 10 and creates the requisite ErrorValue. Otherwise tests
whether A1 is 0, and if so pushes 11, otherwise 22, and finally multiplies 10 with
this number. The intermediate 0 and 6 have been compiled away:

0000: ldarg.0 001d: call IsInfinity 004a: br 0058
0001: ldc.i4 0 0022: brtrue 005d 004f: ldc.r8 11
0006: ldelem Value 0027: ldloc.0 0058: br 005e
000b: stloc.2 0028: call IsNaN 005d: ldloc.0
000c: ldc.r8 10 002d: brtrue 005d 005e: mul
0015: ldloc.2 0032: ldloc.0 005f: call NumberValue.Make
0016: call ToDoubleOrNan 0033: ldc.r8 0 0064: ret
001b: stloc.0 003c: beq 004f
001c: ldloc.0 0041: ldc.r8 22

7.10 Reduce the use of local variables

Until now we have assumed that every cell that contains a formula would have an
associated local variable in the generated code. When the value of the formula is
used exactly once in the computation, this is wasteful. In fact, the value will be
computed and stored to a local variable only to be immediately loaded (due to the
topological sort), and then never used again. Hence in code generated by an earlier
implementation, this pattern is seen frequently:

stloc.s V_6
ldloc.s V_6 // Only use of V_6

Clearly, it would be safe to compute the cell’s value on the stack instead, and never
store in in a local variable.

Hence we change the translation from Expr to CGExpr, so that no local variable
is allocated for a cell that is referred exactly once. Instead, the translation (in the
CGExpressionBuilder visitor) will inline the CGExpr at the single point of use.

§7.10 Reduce the use of local variables 165

If a cell C has two or more dependents (cells that statically refer to it) according
to the dependency graph, then C is used more than once and a local variable will be
allocated for it. If the cell has exactly one dependent cell (it cannot have only zero
dependents; in that case it would not be in the dependency graph), then we need to
count the number of references inside the dependent’s formula. This is done by a
new CountUseVisitor. If there are two or more uses, then C is used more than once
and a local variable will be allocated for it.

If cell C has only one dependent cell, whose formula has only one occurrence of
C, then no variable is allocated for it. When subsequently the CGExpressionBuilder
visitor’s CallVisitor(CellRef cellRef) compiles a reference to cell C, it will
find that it is not a key in the addressToVariable map, and will use a new CGEx-
pressionBuilder instance to compile the formula in cell C to a CGExpr that is then
inlined into the CGExpr built for the dependent cell.

This works and generates correct, shorter and faster code. Apparently it is ben-
eficial to compute a subexpression only at the last moment, and the Microsoft .NET
JIT seems better able to deal with rather deep stack use than with superfluous local
variables. Perhaps the large number of local variables confuses the JIT and upsets
register allocation, although the live ranges are short and not overlapping.

166 Reduce the use of local variables §7.10

Chapter 8

Functions and calls

8.1 Calling built-ins from sheet-defined functions

Built-in functions such as SQRTor RANDcan be called from formulas in sheet-defined
functions, just as from formulas in ordinary sheets. Code generation for built-in
functions, corresponding to the interpretive Expr subclass FunCall, is performed by
the CGExpr subclass CGFunctionCall.

8.1.1 Different kinds of built-in functions

Since class FunCall is used to represent a wide range of operations and functions,
they must be compiled in very different ways. Method Make in CGFunctionCall
makes the following distinctions:

• Arithmetic operations (+, * , - , /) are represented by subclasses CGArith-
metic1 and CGArithmetic2 and are compiled to their corresponding bytecode
instructions, like this:

ilg.Emit(OpCodes.Add);

• Comparison operations (=, <>, <, >, <=, >=) are represented by subclasses of
abstract class CGComparison. Compilation of comparisons implement error
propagation from the operands, as well as optimizations when operands are
constants.

• Non-strict functions (IF , AND, ORand CHOOSE) are represented by classes CGIf,
CGAnd, CGOr and CGChoose. Compilation implements error propagation,
avoids evaluating unneeded arguments, and performs some optimizations.

• The NOTand NEGfunctions are represented by classes CGNot and CGNeg to
expose some optimization opportunities and to generate efficient bytecode in-
structions for them.

167

168 Calling built-ins from sheet-defined functions §8.1

• Most mathematical functions supported by the .NET libraries even hardware
(SQRT, SIN , and so on) are compiled to calls to static functions in the .NET
System.Math class; in principle as follows:

ilg.Emit(OpCodes.Call, typeof(Math).GetMethod("Sqrt"));

• A few mathematical function (ATAN2, FLOOR, MOD, ROUND) are compiled as
calls to static methods in the Function class to obtain Excel-compatible behav-
ior. The same static methods are used by the interpretive implementation in
class Functions; in principle as follows:

ilg.Emit(OpCodes.Call, typeof(Function).GetMethod("E xcelAtan2"));

• Some special built-ins, notably APPLY, and CLOSURE, ERR, and EXTERN, are
represented and compiled by specific classes CGApply, CGClosure, CGErr, and
CGExtern (section 8.7).

• Any other strict built-in function, whether of variable arity (AVERAGE, HARRAY,
HCAT, and so on) or of fixed arity (INDEX, SLICE , and so on), is represented as
a CGFunctionCall object. This object contains a FunctionInfo object, which
contains among other things a Signature object describing the function’s argu-
ment types and return type; see section 8.1.2.

Compilation of the argument expressions emits the relevant argument check-
ing code, guided by the function’s signature. If the return type according to the
signature is Typ.Number, then method CompileToDoubleOrNan can avoid
creating unwrapping code. This machinery is described in more detail in sec-
tion 8.1.3 and is quite similar to the machinery for compiling EXTERNcalls.

• A call to a sheet-defined function is represented by class CGSdfCall, as de-
scribed in section 8.2.1.

In all cases, care is taken to perform the reflective lookup of MethodInfo objects only
once, and to create signatures only once, regardless how many occurrences there are
of calls to the function.

8.1.2 The Signature and FunctionInfo classes

Class Signature describes argument types and result type of built-in functions,
where Typ is discussed in section 7.7.1:

public class Signature {
public readonly Typ retType;
public readonly Typ[] argTypes; // null means variadic
...

}

§8.2 Calling a sheet-defined function 169

Each built-in function is described by a FunctionInfo object, which contains the
function’s name, signature (for compilation of arguments and conversion of result
value), MethodInfo object (when generating bytecode to actually call the function),
and applier (used during partial evaluation, see chapter 10):

public class FunctionInfo {
public readonly String name; // For lookup and display
public readonly MethodInfo methodInfo; // For code generat ion
public readonly Signature signature; // For arg. compilati on
public readonly bool isSerious; // Cache it or not?
public readonly Applier applier; // For specialization

private static readonly IDictionary<String, FunctionInf o>
functions = new Dictionary<String, FunctionInfo>();

...
}

The FunctionInfo class also maintains a static pre-allocated table of all built-in func-
tions, so that there will be a single FunctionInfo object for each function, rather than
one for each call to the function.

8.1.3 Compilation of calls to built-ins using signatures

A call such as INDEX(e1, e2, e3) to a built-in function is compiled by first gener-
ating code for the argument expressions; this is done by method CompileArgumentsAndApply
in class CGFunctionCall. Then code is generated to call the function, and finally to
convert the function’s result value from a .NET value to a Funcalc value.

The compilation of argument expressions and the conversion of the function’s
result is guided by the types specified in the function signature (section 8.1.2). To
compile an argument expression, first code is generated to evaluate the expression,
then code to check that the argument value is of the required type (for instance,
Typ.Number), and then code to convert the Funcalc value to a .NET value (for in-
stance, a double).

8.2 Calling a sheet-defined function

8.2.1 Calling from a sheet-defined function

A sheet-defined function should be able to call other sheet-defined functions, and
even itself. There are at least four different ways to compile a call to a sheet-defined
function:

1. The first approach is to generate code that looks up the sheet-defined function
by name in a table to get the delegate representing it, and then calls that
delegate. This immediately allows sheet-defined functions to be recursive and
mutually recursive, but incurs the cost of the table lookup at each invocation,

170 Calling a sheet-defined function §8.2

which is slower than a call to a built-in function from an interpreted formula
(where the function name has been replaced by a delegate reference before
evaluation).

2. The second approach is to retrieve, at generation time, the MethodInfo ob-
ject corresponding to the delegate compiled for the sheet-defined function, and
then generate a bytecode call straight to that MethodInfo object. This avoids
the table lookup at call time but precludes recursive and mutually recursive
sheet-defined functions, because a sheet-defined function could not be called
before it has been defined. Also, if the function were modified and recompiled,
all functions calling it would have to be recompiled as well.

3. A third and intermediate approach is to maintain a map from names of sheet-
defined functions to indexes 0, 1, 2, . . . of sheet-defined functions, and a global
array sdfDelegates[] that maps an index to the DynamicMethod delegate
generated for that sheet-defined function. A call to the sheet-defined function
with index i then gets compiled to an array access followed by an invocation as
in sdfDelegates[i]() . Whenever the sheet-defined function with index i
has been (re)compiled, the entry at sdfDelegates[i] must be updated with
the new delegate. This permits recursive and mutually recursive sheet-defined
functions, and replaces a hash table lookup by an array indexing.

4. A fourth approach would be to store a direct reference to the delegate within
the sheet-defined function object to be called. To keep this reference up to
date, a “compiled” event is added to every sheet-defined function, and listeners
are added to this event, causing it to update all those delegate fields upon
(re)compilation. This would save one array indexing per call to the sheet-
defined function but is more likely to go wrong and harder to debug.

Hence, approach number three has been implemented in classes SdfManager and
SdfInfo in file CGManager.cs.

8.2.2 Passing arguments to a sheet-defined function

When calling a sheet-defined function we need to pass its evaluated arguments to it
somehow. Two approaches suggest themselves immediately:

A. Compile every sheet-defined function, regardless of argument count, as a dele-
gate that takes an array of Values and returns a Value, of type SdfDelegate :

delegate Value SdfDelegate(Value[])

Then we could call a sheet-defined function f(e1,...,en) at index sdfIndex
as follows:

– Allocate a Value[] array arguments with n elements.

§8.2 Calling a sheet-defined function 171

– Evaluate arguments e1 , . . . , en and store their values into the arguments
array.

– Call the function as sdfDelegates[index](arguments) .

B Alternatively, to avoid allocating an argument array, use different delegate
types for different numbers of arguments. We can use the generic delegate
types from section 2.13, representing zero-argument functions as type Func<Value> ,
one-argument functions as type Func<Value,Value> and so on. All of these
are subtypes of type System.Delegate, so we can still store all function in an
array of type System.Delegate[].

Then we could call a sheet-defined function f(e1,...,en) at index i as fol-
lows:

– Get the delegate sdfDelegates[i] from the array of delegates.

– Based on the arity n, cast the delegate to the correct type. For instance,
when n=1 cast to type Func<Value,Value> , to obtain a delegate dlg .

– Evaluate arguments e1 , . . . , en and push them onto the stack.

– Call instance method dlg.Invoke from the requisite delegate type, such
as Func<Value,Value> . This is equivalent to the C# delegate call syn-
tax dlg(v1,...,vn) where v1,...,vn are the values on stack.

We have chosen approach (B) because it is faster. Experiments show that (B)’s cast
takes only 3 ns, whereas (A)’s allocation of an array and storing arguments into
it takes 30 ns for a one-element array and 150 ns for a ten-element array. More-
over, method (B) makes it easier to further differentiate sheet-defined functions by
their argument types, which opens the way for further optimizations, especially the
avoidance of wrapping and unwrapping of value.

The main drawback of the chosen approach (B) is that it works only for limited
argument counts; so far the implementation supports sheet-defined functions with
0 to 9 arguments. Higher numbers of arguments could be supported by falling back
on the (A) approach, passing the arguments in an array.

Another drawback of (B) is that it requires a fair amount of (rather trivial) code
duplication to implement calls from ordinary sheets to a sheet-defined function; see
section 8.2.3.

On the other hand, it is easy to generate good code for approach (B) to call a
sheet-defined function from a sheet-defined function, and it is easy to support tail
calls as shown in section 8.3.

8.2.3 Speculation: Using more type information

Calls to a sheet-defined function could be further optimized by generating a del-
egate with more specific argument type than just Value, thus avoiding argument
wrapping and unwrapping. For instance, a function such as REPT1(s,n) could

172 Recursive calls and tail calls §8.3

be compiled to a delegate of type Func<String,double,String> rather than
Func<Value,Value,Value> .

It is easier to detect the actual argument types in generated code, when calling
a sheet-defined function from a sheet-defined function, than when calling it from
an ordinary sheet. Hence we could create two versions of each sheet-defined func-
tion: A worker and a wrapper. The worker would be a delegate that takes specific
argument types, and the wrapper would be a delegate that takes Value arguments,
unwrap them to the specific argument types, calls the worker, and wraps its re-
sult. Within compiled code generated for a sheet-defined function, the worker can
be called directly. Within ordinary sheets, the wrapper would be called instead.

The function sheet type analysis described in section 7.6.2 could be refined, as
outlined in section 8.5, to discriminate FunctionValues based on their argument and
return types, as in Function<Number,Number> and Function<Number,Text> .
For instance, the type analysis may find that a function sheet needs one of its ar-
gument types to be not only a FunctionValue but of type Func<double,double>
and may unwrap it early to a local variable of that type, just as it does for Num-
berValue arguments. The unwrapping of the sheet-defined function would retrieve
worker[sdfInfo.index] , perform an IsInst check on a suitable instance of
Func<...> built using reflection at code generation time, and store the value in
a local variable of that type. A call to the worker can then be performed without any
wrapping and unwrapping of arguments or results.

We have not currently implemented the worker-wrapper distinction.

8.2.4 Calling from an ordinary sheet

A call to a sheet-defined function from an ordinary sheet formula is compiled us-
ing method number three, combined with argument passing approach (B), in sec-
tion 8.2.1 above. First, we use a hash dictionary to convert the name of the sheet-
defined function into its index i . Then each call is executed as follows:

• Get the delegate sdfDelegates[i] from the array of delegates.

• Based on the arity n, cast the delegate to the correct type. For instance, when
n=1 cast to type Func<Value,Value> , to obtain a delegate dlg .

• Evaluate arguments e1 , . . . , en and store them in local variables v1,...,vn .

• Call the delegate as dlg(v1,...,vn) .

In the case n=1 this is equivalent to ((Func<Value,Value>)(sdfDelegates[i]))(v0) ,
all in all. A big switch is needed to distinguish the 10 different cases corresponding
to 0 to 9 arguments.

8.3 Recursive calls and tail calls

To support mutual recursion it would be convenient to have a forward declaration
mechanism, so one can state that there will be a sheet-defined function with such

§8.3 Recursive calls and tail calls 173

and such name, argument types, and return type. In any case, the workbook import
mechanism needs to be improved so that it first creates such forward declarations
for all sheet-defined functions in the workbook, then loads and compiles the sheet-
defined functions.

8.3.1 Tail recursive functions

In connection with directly recursive or mutually recursive sheet-defined functions,
tail call optimization is important. When a call from one sheet-defined function (to
itself or another one) is the last action in the method being generated, then the call
can be made into a tail call by emitting the “tail. ” prefix immediately before the
call instruction:

ilg.Emit(OpCode.Tailcall);

This is particularly useful for writing recursive sheet-defined functions. A call is a
tail call if the dynamically following instruction is a return instruction; the called
method’s result will be the calling method’s result. The current structure of the
CGExpr compilation functions does not support tail call optimizations well, because
the (code) continuation is not always available.

However, tail calls could be supported by separately analysing the CGExpr com-
piled for the sheet-defined function’s output cell, before invoking Compile on it. The
natural place to do this is right after the output cell’s expression has been converted
into a CGExpr. Namely, any tail call must be a last action executed by the expres-
sion in the output cell. That may include a function call that is actually in another
cell, but whose only use is in (a branch of) the output cell, like this:

A6=...
A7=FOO()
A8=IF(A6,A7,42) <-- output cell

In this case, the A7 formula would be inlined in the A8 formula, and would become
a tail call. Note that for code size reasons, this would not be the case here:

A6=...
A7=FOO()
A8=IF(A6,A7,A7) <-- output cell

Because the multiple (static) occurrences of A7 would mean that the code for FOO()
is followed by a store to the local variable for A7, so FOO() is no longer in tail
position. By manual code duplication the calls could be turned into tail calls again,
like this:

A6=...
A8=IF(A6,FOO(),FOO()) <-- output cell

174 Recursive calls and tail calls §8.3

This code duplication seems rather harmless, and hence the use of auxiliary cell
A7 seems pointless. But FOO(...) may have a long list of complicated argument
expressions, and moreover may appear multiple times in different branches of the
final IF -expression, like this:

A8=IF(..., FOO(), IF(..., ..., IF(..., FOO(), IF(..., FOO(), ...))))

In this case it is meaningful to use the auxiliary A7 to save space, ensure consistency
between the FOO(...) expressions, and hence improve maintainability. However,
we shall not attempt to recognize tail position in such auxiliaries.

Which positions are tail positions? Assuming that the entire expression e is in
tail position, the subexpressions in tail position are as follows:

• If e is IF(e1,e2,e3) then e2 and e3 are in tail position.

• If e is CHOOSE(e0,e1,...,en) then e1 , . . . , en are in tail position.

If the processing is done during the conversion from Expr to CGExpr, then the CG-
ExpressionBuilder.FunCall would have to distinguish IF and CHOOSEfrom other
cases, which is unpleasant. It seems better to traverse the resulting CGExpr and
decorate CGSdfCall and CGApply expressions with an isTail property.

We therefore add a Boolean field isInTailPosition to classes CGSdfCall and
CGApply, which are the only ones that can perform recursive call. The compilation
functions in CGSdfCall and CGApply must take the isInTailPosition flag into
account when generating code, emitting the “tail. ” prefix before the call and a
return instruction after it, like this:

tail.
call
ret

which is the only legal use of that prefix, according to the CLI specification [36,
section III.2.4]. Also, we add a virtual method NoteTailPosition to CGExpr hier-
archy, which does nothing except in the overrides in classes CGIf, CGChoose, CGSd-
fCall and CGApply. The method should be called (only) on the CGExpr generated for
the output cell in method ConvertExprToCGExpr in class TopoListToCGExprList

We need to perform calls to sheet-defined functions directly in bytecode for the
tail call optimization to work as intended. It does not work to perform the calls
through an auxiliary C# method, say. Even if such a method itself is tail recursive,
the C# compiler does not care and never emits the “tail. ” prefix.

8.3.2 No tail call optimization in APPLY

Ideally, tail calls should be optimized also when a sheet-defined function is called
via APPLY(fv,b1,...,bm) . Unfortunately, this would require generating a large
amount of bytecode for each occurrence of APPLY.

§8.3 Recursive calls and tail calls 175

The reason is that we do not know, at compile-time, the full arity N of the sheet-
defined function encapsulated in the function value fv , except that it must be at
least m. Hence we cannot generate a single instruction to correctly cast the sheet-
defined function’s delegate to its runtime type Func<Value,...,Value> , and we
cannot find the single correct Invoke method token corresponding to that delegate
type.

Alternatively, we could code to detect the arity of the sheet-defined function
encapsulated in fv , perform the relevant cast and call the corresponding Invoke
method, all at runtime. However, this would generate a large amount of bytecode
for each APPLY, which could be detrimental to performance of the CIL just-in-time
compiler.

What we shall do instead is to implement the arity detection, cast, and Invoke
call once and for all in C# rather than CIL bytecode, and call on the C# code to per-
form the requisite runtime tests. This precludes true tail call optimization because
the C# compiler does not optimize tail calls. Presumably this is less of a problem
for APPLYthan for direct calls to a sheet-defined function, because on non-constant
space recursion through APPLYcan happen only if a function value calls itself recur-
sively, directly or indirectly; and this in turn can happen only if the function value
was called with itself as argument. Consider function (non- TAILREC3 with input
cells B139 and B140, and output cell B140:

B139 = <input f>
B140 = <input n>
B141 = <output>

= IF(B140, APPLY(B139, B139, B140-1), 117)

This function performs a tail call to the function value in B139. If we apply TAILREC3
to itself, then the tail call becomes a self-recursive call:

B150 = TAILREC3(CLOSURE("TAILREC3"), 1000000)

Although this looks rather contrived, there are nevertheless some plausible uses.
Should these uses turn out to be frequent, then tail call optimization for APPLY
could still be achieved in two ways: First, one could manipulate the IL code gener-
ated by the C# compiler to make the requisite C# methods properly tail recursive.
Second, one could generate the complex version of the APPLYcode only when APPLY
is actually in tail position, falling back on the C# code in other cases.

8.3.3 The performance of tail recursive functions

The simplest terminating tail-recursive function is this, LOOP(n) :

B3 = <input>
B4 = <output>

=IF(B3, LOOP(B3-1), 117)

176 Recursive calls and tail calls §8.3

Without optimization With tail call optimization
n Time (ns) Time/n (ns) Time (ns) Time/n (ns)

1000 415,000 415 131,000 131
2000 1,410,000 705 254,100 127
5000 6,310,000 1262 635,200 127

30,000 190,000,000 6,333 3,740,000 125
40,000 stack overflow 4,866,000 122

10,000,000 stack overflow 1,159,360,000 116

Figure 8.1: Performance impact of the tail call optimization. The left columns show
execution time without optimization, the right ones with tail call optimization. Each
pair of columns shows the total time for performing n calls and the time per call.
Without optimization the time per call grows linearly in the call depth; with opti-
mization the time per call is constant.

We investigate the performance calls LOOP(n) for a range of values of n, and both
with and without the tail recursion optimization in place.

The results are shown in figure 8.1. Without the tail call optimization the time
per recursive call is almost linear in the recursion depth n. This is probably because
(1) one Value[] object and one NumberValue object is allocated per recursive call,
so the .NET garbage collector must run frequently; and (2) the garbage collector
must scan the execution stack for each minor collection, which takes time linear in
the stack depth, which grows linearly with the recursion depth. On the Microsoft
MS .NET 3.5 runtime the Funcalc implementation works correctly up to a call depth
of at least 30,000, but at call depth 40,000 it throws a StackOverflowException after
a computing for nearly one minute.

With the tail call optimization, the time per recursive call is constant, unaffected
by the recursion depth, because the stack depth is constant. This constancy of course
is expected for any positive n and has been verified for n up to 10,000,000 iterations.
The optimized implementation takes around 116 ns per iteration, which allows for
8.6 million calls per second. This is quite good, but there is still considerable room
for improvement, especially in getting rid of the NumberValue wrapping. Also, for
comparison, a For loop VBA loop takes roughly 25 ns per iteration, which is almost
5 times faster than our tail recursive calls.

Here is the generated code for the tail recursive call LOOP(B3-1) :

0033: ldsfld SdfManager.sdfDelegates
0038: ldc.i4 22 // LOOP’s offset in sdfDelegates array
003d: ldelem.ref // Load delegate for function LOOP
003e: castclass Func<Value,Value>
0043: ldloc.3 // Load B3
0044: call Value.ToDoubleOrNan
0049: ldc.r8 1
0052: sub // B3-1
0053: call NumberValue.Make

§8.5 Higher-order sheet-defined functions 177

0058: tail.
005a: call Fun‘2[Value,Value].Invoke
005f: ret

8.4 Higher-order sheet-defined functions

8.4.1 Sheet-defined functions as values

How can we handle sheet-defined functions as values, and call them, and hence im-
plement higher-order sheet-defined functions? Clearly, we can pass the name of a
sheet-defined function as a text string, and look up the name in SdfManager’s dictio-
nary at every invocation. However, this provides very late binding, incurs overhead
for lookup in the dictionary, and gives no opportunity for type-based optimization,
more efficient calling conventions, and so on.

A more general and more efficient approach would be to introduce a new kind
of value, namely FunctionValue as a subclass of Value. A FunctionValue contains
an index into the sdfDelegate table and an array of zero or more already-given
arguments (to make a closure), so that an sheet-defined function can be partially
applied; otherwise we do not obtain the full power of higher-order functions.

We introduce a new built-in function CLOSURE("name", a1, ..., an) whose
basic version creates a FunctionValue closure from the name of a sheet-defined func-
tion as well as argument expressions a1, ..., an , where n is the arity of the
sheet-defined function. The values of the arguments ai will be incorporated into
the closure, except those argument values that are #NA, which represent arguments
that will be provided later; think of #NA as “not available” (yet). Hence the arity k
of the function value is the number of #NAvalues among the ai .

The resulting function value fv can be called using another new built-in function
APPLY(fv, b1, ..., bk) ; this call will execute the sheet-defined function on the
values of all its arguments, using the non-#NAarguments from the ai and using the
bj , in order, as replacements for the #NAarguments among the ai .

Moreover, a function value fv can be supplied with further arguments by an
application CLOSURE(fv, b1, ..., bk) where the values of the bj are incorpo-
rated into the closure (in addition to those ai already there), except those argument
values that are #NA.

In the basic version of CLOSURE("name", a1, ..., an) we require the func-
tion name to be a string constant, and not just a string-valued expression for ef-
ficiency of compiled code. When CLOSUREis used within a sheet-defined function,
it suffices to look up the name at compile-time, resolving it to an index into the
sdfDelegate array. It also enables (in future versions of Funcalc) better type anal-
ysis for sheet-defined functions, and hence less argument wrapping and unwrapping
and better speed.

Once we have a more general name mechanism for Funcalc, presumably the
string "name" could be replaced by just the name. Moreover, CLOSURE("name")
could be replaced by name, when no arguments are given.

178 Speculation: Type analysis for function calls §8.5

8.5 Speculation: Type analysis for function calls

An execution of APPLY(e0,e1,...) must check that the value of e0 is a Function-
Value. When e0 is just an (input) cell reference, one can avoid multiple checks
by an early check and unwrapping as done for NumberValue cells. This would
be particularly valuable for the GOALSEEKand FINDENDfunctions (examples 6.21
and ex-sdf-findend) which call the same function many times. However, the sav-
ings are not nearly as big as for NumberValues, where an object indirections and a
field offset are replaced by a simple load.

More significant speedups would accrue from avoiding the wrapping (as Value
objects, in a Value[] array) and, subsequent unwrapping, of function arguments. To
do this systematically both for first-order and higher-order sheet-defined functions,
one needs richer types, and presumably either explicit type specification or type
inference by unification, respecting the subtypes. The following infinite family of
types seem to be needed, as a generalization of the type Typ in section 7.6.2:

type Typ =
| Error
| Number
| Text
| Array
| Value
| Function of Typ list * Typ

with this ordering

Error <= { Number, Text, Array, Function(_,_) } <= Value

The question is whether there should be an induced ordering of Function types
(covariance of return types and contravariance of argument types), so that:

Function([Value],Number) < Function([Number],Value)

This says that a function f accepting a Value argument and returning a Number
result can be used wherever a function accepting a Number argument and returning
a Value is expected – because the Number argument can be wrapped as a Value
before being passed to f and the Number result can be wrapped as a Value after
being returned by f .

The answer to this is determined by the kinds of coercions that can be performed
efficiently at runtime. For purposes of type inference, we seem to need a notion
of subtyping, so that a function that is used inconsistently can be assigned a type
involving Value. This is both useful and in line with the dynamic typing used in
most spreadsheet programs.

Similarly, one could parametrize the Array type to obtain a family of uniform-
element array types like this:

§8.6 Dynamic sheet indexing 179

type Typ =
...
| Array of Typ
...

The most interesting case here is Array(Number) because such values could be rep-
resented by dense two-dimensional double[,] arrays. But note that – surprisingly
– .NET computations involving such rectangular arrays are sometimes slower [107]
than computations using arrays of arrays, of type double[][] . Again, whether it
is useful to have a subtype relation on Array types depends on the computational
impact this has. Quite likely, some inspiration could be drawn from the OCaml type
analysis of floating-point computations [65].

We have not currently implemented type analysis to support efficient function
calls, but Poul Brønnum’s Master’s thesis [16] presents an unboxing technique based
on a monomorphic type system, and shows that performance can be improved by a
factor of 2 or 3 relative to the implementation presented here.

8.6 Dynamic sheet indexing

Most spreadsheet programs, including Microsoft Excel, support dynamic indexing
into a sheet using various built-in functions, a good representative of which is the
INDEX function. The call INDEX(arr, r, c) returns the contents of the cell at
row r and column c in cell area arr . Other functions in this family are HLOOKUP,
VLOOKUPand MATCH, and the even more dynamic INDIRECT

What these functions have in common is that they consider part of the sheet as
an array that can be accessed using indexes dynamically. However, the compilation
schemes for sheet-defined functions we have proposed above will represent each cell
by a (stack allocated) local variable, which precludes efficient indexing and search.

A simple implementation scheme for the above indexing and lookup functions
would allocate an array to hold the values of the area argument of each of the
lookup/index function calls that appear in the function sheet. Then, as each of the
sheet cells gets evaluated, its value must be stored also in any array of which the
cell is a member. This works because cells are immutable: once calculated (in a par-
ticular invocation of the sheet-defined function), the value of a cell is not updated,
so it is unproblematic to store the value multiple locations.

In case of the INDIRECT function, the entire sheet is the target area and hence
in general needs to be indexable and be represented as an array. In some particular
cases this could be optimized; for instance INDIRECT("B" & A1) can refer only to
columns whose name begins with “B”, but it is unlikely that this kind of optimization
is worthwhile. Hence a single occurrence of INDIRECT is likely to ruin the efficiency
of a sheet-defined function. Hence the obvious choice is to not implement it for the
time being, and to focus on the other functions; or to require the target of INDIRECT
to be on ordinary sheets.

In case of the INDEX, HLOOKUP, VLOOKUPand MATCHfunctions, it is likely that
the area contains many constant values, in which case the argument area array

180 Dynamic sheet indexing §8.7

could be allocated once and for all and associated with the sheet-defined function.
This is unproblematic if (1) all cells of the array are constants, or (2) there is ever
only one active instance of the sheet-defined function, that is, no recursive calls. In
the former case, there will never be updates to the array and all instances can share
it; in the latter case, array locations can be updated as needed and subsequently
used in computations on the same sheet-defined function. In the general case where
the target area contains non-constant cells, and the sheet-defined function may call
itself recursively, one may create and initialize a fresh copy of the array holding
the target area, for each recursive call. If the area is large and the sheet-defined
function performs little computation, this may be very slow; but in general table
lookups are probably leaf functions and hence non-recursive, in which case a fast
implementation is feasible.

One drawback of the above scheme is that the same cell value may be a member
of a large number of target areas, and its value would need to be stored in each
of these arrays. For instance, a sheet-defined function may contain 100 copies of a
formula such as =MATCH(x, A1:$A100) , in which case cell A1 appears in 100
arrays. Such multiple storage could be avoided by allocating a single array repre-
senting the “maximal” area, storing the values into that array as they are computed,
and then having the implementations of HLOOKUP and so on work from some off-
sets into that array.

A simpler solution is to allow dynamic indexing only into ordinary (non-function)
sheets, which would actually cover a large number of plausible use cases. We can im-
plement INDEX(Sheet!<area>, dRow, dCol) in a compiled sheet-defined func-
tion rather easily, provided the Sheet!<area> reference is to an ordinary sheet,
not a function sheet. We simply add to class ArrayValue a public method

Value Index(double r, double c)

that accesses the cell row at row r and column c of the array value. Then we main-
tain a global static cache of array values that are really just views of ordinary sheets,
and compile an area reference such as Sheets!B3:C14 to an index into this global
cache. We use hashing ensures that each such ArrayView is allocated only once re-
gardless how many times the area appears in a sheet-defined function: a function
such as INDEX(Data!A1:A100) may have been copied dozens of times, but we
need only allocate one ArrayView object for it.

The implementation of CGNormalCellArea generates code to load the requisite
ArrayView object. A subsequent call to INDEX computes the row and column offsets,
and calls arrayView.Index(r, c) .

An ArrayView consists of a non-null Sheet (which must be a non-function sheet)
and two CellAddr objects ulCa and lrCa , which are normalized so that ulCa is to
the left and above lrCa . The Index method performs a bounds check on r and c
and returns error value #REF! in case one of the indices is illegal.

In summary, we make class ArrayValue abstract, with two concrete subclasses:
one called ArrayExplicit that represents an array explicitly as an array of type
Value[,] , and one called ArrayView that represents it by an absolute (ulCa ,lrCa)
window onto an ordinary sheet.

§8.7 Calling external library functions 181

8.7 Calling external library functions

In some spreadsheet implementations, such as Excel with VBA, external function
calls are very slow, as documented later in section 8.7.6. Because of the dynamic
nature of spreadsheets, an external function call must use some form of reflection
to locate the function to be called, then must check argument types and wrap (or
“marshall”) argument values to call the function, and finally must unwrap (or “un-
marshall”) the result value.

Sheet-defined functions in Funcalc provide an opportunity to drastically reduce
both costs. The reflective lookup of the external function can be performed once and
for all during code generation for the sheet-defined function. Static type information
also allows the code generation stage to perform much of the argument type check-
ing early, and can reduce the marshalling and unmarshalling costs. For instance,
when calling external function Math.Sinh on an arithmetic expression, inside an
arithmetic expression, the argument and result can be passed as native double val-
ues rather than NumberValues or Objects, hence eliminating the need for call-time
type checking, marshalling, and unmarshalling.

As a consequence, by wrapping a call to an external function inside a sheet-
defined function, one can reduce the call cost by at least an order of magnitude
relative to Funcalc’s (already rather efficient) interpreted external function calls.
Overall, a compiled call to an external (.NET) function in Funcalc seems to be 330
times faster than a VBA call from Excel.

In addition, the ability to call external functions is particularly valuable in Fun-
calc. In a purely interpretive spreadsheet implementation a new built-in function
can usually be added just by extending some table of functions, used when interpret-
ing expressions of the form FOO(...) . In Funcalc, however, each built-in function
must have both an interpreted implementation for use in ordinary sheets, and a
compiled implementation for use in sheet-defined functions. These two implemen-
tations must agree, or else users will be confused. By providing a single mechanism
for calling external functions both from ordinary sheets and from sheet-defined func-
tions, the need to painstakingly implement built-in functions in Funcalc is reduced
considerably.

A word of caution: Unbridled external function calls, like macros in Microsoft
Excel and Microsoft Word, can be abused by malicious spreadsheet programmers.
For instance, a single external function call can wipe out an entire directory (folder)
structure. A serious implementation of external function calls should require cer-
tificates of authorship or disallow most external calls by default.

8.7.1 Possible mechanisms for external function calls

In this chapter we describe the implementation of a mechanism to call .NET library
functions and other external managed functions. This can be done in two ways:

1. By a direct call mechanism that specificies the name and signature of the
method to call, for instance:

182 Calling external library functions §8.7

EXTERN("System.Math.Cos$(D)D", 1.2)

This would retrieve the method with the given name System.Math.Cos and
signature (D)D , evaluate the argument 1.2, and call the function. In the im-
plementation of sheet-defined functions this can be done very efficiently, be-
cause the compilation performs reflection and interpretation of the signature
string once, and then the method can be called efficiently any number of times,
without reflection.

Within ordinary interpreted sheets, it would be inefficient to use reflection at
every call. To avoid this, one could (1A) rewrite the expression to some in-
ternal optimized form on first evaluation, but this would add complications
to the formula evaluation and it should be done in a way that coexists peace-
fully with the internal sharing of (copied) formulas. Alternatively, (1B) one
could disallow the use of this function within ordinary sheets, so if an ordi-
nary sheet needs to call a .NET function, one must first create a sheet-defined
function that wraps it, and then call the sheet-defined function. This would
appear rather cumbersome to users, and could lead to abuse of function sheets
for hosting ordinary interpreted computations. Yet another possibility (1C) is
to perform the interpretation of the signature and the reflective lookup of the
method only once, and cache the MethodInfo object and argument conversions
in a dictionary for all subsequent uses. An EXTERNcall would still incur the
cost of argument value wrapping and reflective method call, but this is likely
to be much less than the reflective method lookup. The caching dictionary
could simply map the concatenation of name and signature to a structure that
contains the MethodInfo object, the argument converters, and the result con-
verter.

2. Instead of a direct EXTERNcall one could force the user to carry a the two-step
invocation, by having a built-in function that retrieves the function without
calling it. For instance:

GETEXTERN("nameAndSignature", e1, ..., em)

This would be similar to CLOSURE("name", e1, ..., em) , except that the
returned function value fv is a partially applied .NET method, not a sheet-
defined one. The GETEXTERNfunction should use reflection on nameAndSignature
to obtain a MethodInfo object that can both be called from generated bytecode
and from ordinary interpreted sheets. An application of the method must use
APPLY(fv, ...) , and this call only needs to consider the argument unwrap-
ping and the result wrapping, but needs no reflective lookup. The given signa-
ture should also be used for creating type tests and avoiding value wrapping
when generating bytecode. Hence, ideally, one should be able to do this:

A1 = GETMETHOD("System.Math.Cos$D(D)")
A2 = <input>

§8.7 Calling external library functions 183

A3 = APPLY(A1, A2 * 2)/7
A4 = DEFINE("mycos",A3,A2)

to create a sheet-defined function that calls the raw System.Math.Cos with-
out performing any wrapping of (A2*2) nor any unwrapping of the result before
the division by 7.

Alternative 1A cannot be implemented by letting the Function object within the
FunCall expression update the applier field of the EXTERNfunction, because the
applier is shared between all occurrences of EXTERN. Early reflective lookup of the
MethodInfo object might instead be performed when constructing the FunCall(...)
abstract syntax tree node in the parser; a special Extern node type might be con-
structed containing the MethodInfo object and the argument and result conversions.
However, this may complicate compilation of EXTERNcalls within sheet-defined
functions, where performance could otherwise be very good. Hence we disregard
1A for now.

We do not want alternative 1B either, because the whole point of sheet-defined
functions is that one can experiment with (interpreted) computations before turning
them into (compiled) functions.

The two-stage approach required by alternative 2 is undesirable because it is rel-
evant only for efficiency in ordinary sheet evaluation, and therefore an unnecessary
complication within sheet-defined functions.

Hence we are left with 1C, that is one-stage reflective evaluation in ordinary
sheets, with caching of parsed signature, MethodInfo object, and argument and re-
sult converters.

This may be somewhat slow in ordinary interpreted sheets, but is usable and
actually 60 times faster than calls from Excel to VBA.

8.7.2 The implementation of external function calls

We adopt alternative 1C, so EXTERN("nameAndSignature", e1, ..., en) is
implemented as follows:

• Split the text constant nameAndSignature into name and signature. If they
are separated by $ then the method is static, otherwise a (possibly virtual)
instance method.

• Parse the signature to obtain a Type[] array for the arguments.

• Check that the arity of the signature agrees with the number n of given ar-
guments. An instance method must have one additional argument for the
receiver object.

• Split the name into type name (System.Math) and method name (Cos), and
use reflection on type name, method name and argument type array to obtain
a MethodInfo object.

184 Calling external library functions §8.7

• Analyse the argument types and return type to produce argument value con-
version methods and a return value conversion method. This is necessary
because the conversion of a Funcalc NumberValue argument depends on the
corresponding formal parameter type, which could be int , double or bool .

• Allocate an n-element array of type Object[] for the argument values.

• Evaluate e1, ..., en and convert each resulting Value vi to an Object that
is stored in the argument array.

• Call the MethodInfo object reflectively on the argument array.

• Convert the returned Object to a Value, and return it.

The argument value conversion and return value conversion methods are delegates
of these types

Func<Value, Object>
Func<Object, Value>

For instance, class NumberValue could define a static conversion method from Num-
berValue to double (boxed as Object), and conversely, from double (boxed as Object)
to NumberValue, like this:

public static Object ToDouble(Value v) {
NumberValue nv = v as NumberValue;
return nv != null ? (Object)nv.value : null; // Causes boxing

}

public static Value FromDouble(Object o) {
if (o is double)

return Value.MakeNumberValue((double)o);
else

ErrorValue.numErrorValue;
}

We need to map each argument and return type (of type System.Type) to an ap-
propriate converter. A flexible solution is to use a HashDictionary to perform this
mapping:

IDictionary<Type,Func<Value,Object>> toObjectConvert er
= new HashDictionary<Type,Func<Value,Object>>();

toObjectConverter.Add(typeof(System.Int32), NumberVa lue.ToInt32);
toObjectConverter.Add(typeof(System.Double), NumberV alue.ToDouble);
...

and so on, and similarly in the opposite direction:

§8.7 Calling external library functions 185

IDictionary<Type,Func<Object,Value>> fromObjectConve rter
= new HashDictionary<Type, Func<Object,Value>>();

fromObjectConverter.Add(typeof(System.Int32), Number Value.FromInt32);
fromObjectConverter.Add(typeof(System.Double), Numbe rValue.FromDouble);
...

It is useful to allow an external function to return an “abstract” value (such as a
handle to an external stream of data) that can Funcalc cannot manipulate in any
way except pass to another external function. We use subclass ObjectValue of class
Value to wrap such “abstract” values.

We create a class ExternalFunction to contain the necessary cached information
about each external function, as well as the above dictionaries of conversion meth-
ods. To call the external function from within an ordinary sheet it must store:

• An array of argument value conversion functions, of type Value -> Object .

• A return value conversion function, of type Object -> Value .

• The MethodInfo object for the external method.

To avoid repeated reflective method lookup and so on, a cache of external functions
is maintained, using a dictionary that maps the nameAndSignature string to an Ex-
ternalFunction object. We do this using static members in class ExternalFunction.
In particular, there is a static method

ExternalFunction Make(String nameAndSignature)

that checks whether an external function is in the cache. If it is, then it is returned,
otherwise it is created, added to the cache, and returned.

8.7.3 Specifying the type of an external method

To write a method signature as a string, we use the compact format inspired by that
used internally in Java bytecode [68]. The sequence of parameter type abbreviations
is enclosed in parentheses, followed by the return type abbreviation. For instance,
the signature String foo(double d, int i) is written like this:

(DI)T

where T means text or String. Since C# and .NET has many more types than
the JVM, notably uint and other unsigned integers, and decimal , we use a non-
standard set of abbreviations, shown in figure A.3 on page 255 in the Funcalc user
manual. Using those abbreviations, the signature of a hypothetical method String
Format(String s, int[] i, bool b) would be written

(LString;[IZ)LString;

or more compactly, as

186 Calling external library functions §8.7

(T[IZ)T

To parse a method signature, we create a tokenizer that takes a string and produces
a stream of signature tokens:

private static IEnumerable<SigToken> Tokenizer(String s ignature)

A small handwritten recursive descent parser turns the token stream into a repre-
sentation of the method signature. For the purpose of EXTERN, this is simply a pair
of an array of argument types and a return type, where all types are .NET types.
For the purpose of possibly specifying the types of sheet-defined functions, an argu-
ment type or return type may also be a function type, giving rise to signatures such
as these:

(D)(D)D corresponding to D -> (D -> D)
((D)D)D corresponding to (D -> D) -> D

We also provide an abbreviation, namely W, for the .NET void , although it can
be used only for return types, and there seems to be little point in calling a void
method from a spreadsheet. Nevertheless it may be useful, for instance, for call-
ing System.Console.WriteLine to track evaluation or automate some logging or
tracing during development.

To be able to call both instance and static methods, we use the following conven-
tion. If the name and signature are separated by a dollar sign ($) then the method is
static; otherwise it is a (possibly virtual) instance method. Mnemonically, the dollar
sign ($) is familiar to spreadsheet users as a way to indicate an absolute reference,
here to a class, and also looks like the “s” in static. When calling a static method,
all n arguments e1, ..., en of EXTERNare passed to the method as ordinary ar-
guments, the receiver argument in the reflective Invoke call is null , and the CLI
call instruction is used. When calling an instance method, the first argument e1
is the receiver, passed as the first argument of the Invoke method, whereas the re-
maining arguments e2, ..., en are passed to the method, and the CLI callvirt
instruction is used.

8.7.4 Speculation: Type notation for sheet-defined functions

The same type notation could be useful later for specifying the types of sheet-defined
functions. That is the reason we use the letter Wfor the .NET type void ; this allows
us to use the letter V for the Funcalc type called Value. The following abbreviations
will be especially useful:

§8.7 Calling external library functions 187

Example Meaning
N number, double
T text, String
V value
[N row (1D array) of numbers
{N array (2D) of numbers
()N argumentless function that returns a number
(N)N function from a number to a number
(NN)N function from two numbers to a number
(N)T function from a number to a text

Then one could imagine the following example definitions of typed sheet-defined
functions:

DEFINE("DIE6", "()N", A1)
DEFINE("NDIE", "(N)N", B37, B36)
DEFINE("BINOM", "(NN)N", B24, B22, B23)
DEFINE("WEEKDAYNAME", "(N)T", B41, B40)
DEFINE("REPT", "(TN)T", B46, B44, B45)
DEFINE("GOALSEEK", "((N)NNN)N", D55, B19, D19, F19)

We could overload the DEFINE function for this purpose, because the second argu-
ment must be a cell reference in the untyped case and a text constant in the typed
case.

The type notation still has two shortcomings: It cannot be used to specify function-
type arguments that return more than one result; and we do not yet have a design
for generic, or parametric polymorphic, types.

8.7.5 Compiling EXTERN calls in a sheet-defined function

Now let us turn to code generation for a call to an external method within a sheet-
defined function. We need a new CGExtern subclass called CGExtern to represent
an EXTERN("nameAndString", e1, ..., en) call. The constructor of this class
should call Make in ExternalFunction to obtain a ExternalFunction object repre-
senting the external function; prior interpretive evaluation of the function sheet
has most likely created and cached that object. For purposes of code generation, the
ExternalFunction object additionally needs to store:

• A MethodInfo object representing the return value conversion function for this
external method.

• An array of System.Type objects representing the argument types.

• A System.Type object representing the return type.

The two latter fields are used to eliminate argument and return value conversions
in the compiled code when possible, as follows:

188 Calling external library functions §8.7

If the type of an external method argument is System.Double, then the argu-
ment expression is compiled using CompileToDoubleOrNan and no conversion is
needed; if it is System.Single, then a conv.r4 conversion to 32-bit float is per-
formed; if it is an integer type or Boolean, then the argument expression is com-
piled using CompileToDoubleProper , where an appropriate integer conversion is
performed in the ifProper continuation, and the ifOther continuation produces
an ArgTypeError. If the argument type is System.String, then the argument is
compiled using Compile and then unwrapped from TextValue to String. If the ar-
gument type is System.Object, then the argument is compiled using Compile and
a Value-specific conversion to Object is performed. In summary, an argument to the
external function is compiled and unwrapped as follows, depending on the specified
argument type:

Argument type Compilation and conversion
System.Double CompileToDoubleOrNan
System.Single CompileToDoubleOrNan , conv.r4
System.Int32 CompileToDoubleProper ,conv.i4 ; same for other int types
System.UInt32 CompileToDoubleProper , conv.u4 ; same for other uint types
System.Int64 CompileToDoubleProper , conv.i8
System.UInt64 CompileToDoubleProper , conv.u8
System.Boolean CompileToDoubleProper , ldc.r8 0.0 , ceq
System.String Compile , unwrap to System.String
System.Object Compile , Value-specific conversion to Object

Conversely, the result of the external function must be wrapped for use in Funcalc.
This unwrapping depends on the specified argument type as well as which method
is used to compile the EXTERNcall.

When the EXTERNcall is compiled using CompileToDoubleOrNan , then the re-
turn value is converted as follows:

Return type Conversion
System.Double No conversion
System.Single conv.r8
System.Int32 conv.r8 ; same for other int types
System.UInt32 conv.r8 ; same for other uint types
System.Int64 conv.r8
System.UInt64 conv.r8
System.Boolean conv.r8
System.Decimal [not implemented]
Any other type return ArgTypeError

When the EXTERNcall is compiled using Compile , then a return value conversion
is emitted unconditionally, using the MethodInfo handle for the return value con-
version function. The conversions are as follows:

§8.7 Calling external library functions 189

Return type Conversion
System.Double NumberValue.Make
System.Single conv.r8 , NumberValue.Make
System.Int32 conv.r8 , NumberValue.Make ; same for other int types
System.UInt32 conv.r8 , NumberValue.Make ; same for other uint types
System.Int64 conv.r8 , NumberValue.Make
System.UInt64 conv.r8 , NumberValue.Make
System.Decimal [not implemented]
System.Boolean conv.r8 , NumberValue.Make
System.String TextValue.Make
void load the text “<void> ”
All other types Value.ToObject

When the EXTERNcall is compiled using CompileCondition , the default imple-
mentation (section 7.8.2) in terms of CompileToDoubleOrNan is perfectly ade-
quate. The Boolean return value is represented by an int32 (namely 0 or 1) on the
stack, and CompileToDoubleOrNan will emit conv.r8 to convert this to a double
which will then be tested. By special implementation of the CompileCondition
case we could avoid executing one conv.r8 instruction, but this is insignificant
compared to the cost of calling the external function.

The argument compilation can be performed by compiling the argument expres-
sions backwards, starting with a success code continuation that calls the external
method, and using a common error code continuation that represents the case where
an argument value cannot be converted to the required argument type:

for (int i = argCount - 1; i >= 0; i--) {
if (ef.ArgType(i) == typeof(System.Double))

ifSuccess = new Gen(
delegate {

es[i+1].CompileToDoubleOrNan();
ifSuccess.Gen(ilg);

});
else if (ef.ArgType(i) == typeof(System.Single))

ifSuccess = new Gen(
delegate {

es[i+1].CompileToDoubleOrNan();
ilg.Emit(OpCodes.Conv_R4);
ifSuccess.Gen(ilg);

});
else if (signed32.Contains(ef.ArgType(i)))

ifSuccess = new Gen(
delegate {

es[i+1].CompileToDoubleProper(
new Gen(delegate {

ilg.Emit(OpCodes.Conv_I4);
ifSuccess.Gen(ilg);

}),

190 Calling external library functions §8.7

errorCont[i]);
});

else if (unsigned32.Contains(ef.ArgType(i)))
...

}
ifSuccess.Gen(ilg);

Here we have ignored the notational problems caused by C#’s capturing lvalues
rather than rvalues in anonymous methods.

When called from Compile , the success code continuation ifSuccess must end
with a call and a conversion from the external result type to Value.

When called from CompileToDoubleOrNan and when the external result has
type double , the success continuation ifSuccess ends with a call but no conver-
sion.

When called from CompileToDoubleOrNan and when the external result has
an integer, 32-bit floating-point or Boolean type, the success code continuation ends
with a conversion to double (conv.r8).

As to the error continuation, we in fact need a whole family errorCont[] of
those. Namely, assume that the first m argument evaluations succeed, each pushing
an argument value on the stack, and then the (m + 1)’st conversion fails. Then
we need to pop the m computed argument values from the stack before returning
ArgTypeError. So each argument expression is evaluated and converted with a
different failure continuation, but of course some code should be shared between
these failure continuations.

8.7.6 Speed of EXTERN calls

As a consequence of the implementation outlined above, calls from Funcalc spread-
sheets to external .NET methods are very fast, considerably faster than calls from
Excel to VBA functions. Figure 8.2 gives some results for calling a simple external
function to square a number. In the benchmark, we measure the time to evaluate
1,000 cells containing the formula SQUARE(RAND()) which calls a VBA function
defined like this:

Public Function square(ByVal x As Double) As Double
Let square = x * x

End Function

In Funcalc we measure the time for evaluation of 1,000 cells containing the for-
mula EXTERN("System.Math.Pow$(DD)D",RAND(),2) which calls the external
.NET method Pow in class System.Math. This shows how much faster interpretive
external calls are in Funcalc.

We also measure the time for evaluation of 20,000 cells containing the formula
EXTSQUARE(RAND()) where EXTSQUAREis a sheet-defined function that contains
a call EXTERN("System.Math.Pow$(DD)D",A1,2) where A1 is the function’s sole
input cell. This shows how much faster compiled external calls are.

§8.8 Speculation: Functions with state 191

Finally, for comparison we measure the time for evaluation of 20,000 cells con-
taining the formula SQUARE(RAND()) where SQUAREis a sheet-defined function
with output cell =A1* A1 where A1 is the function’s sole input cell.

Call Time/ns
Excel to VBA 190,000
Funcalc interpreted EXTERN 3,900
Funcalc compiled EXTERN 511
Funcalc sheet-defined function 350

Figure 8.2: Execution time for simple external function calls in Excel and Funcalc.
All times are nanoseconds per call.

8.8 Speculation: Functions with state

8.8.1 Why state?

Although the declarative, side effect free, computation model of spreadsheets makes
them easy to understand and relatively safe to use, some functionality is hard to im-
plement without state and side effects. For instance, a pseudo-random number gen-
erator typically needs to store a seed, which is updated for each number generated
and which is used to generate the next random number.

Several mechanisms for maintaining such state are possible:

1. Introduce side-effecting built-in functions such as GET("var") and SET("var",
value) to get and set sheet-local variables. But this raises the question when
and in what order such function calls are evaluated, if there are multiple calls
to SETor if there are calls to both GETand SET.

2. Distinguish some cells as persistent, so that they retain their values between
calls to the sheet-defined functions. (Similar to ”own” variables in Algol 60
blocks and procedures)

Henceforth we consider only the second possibility, because each call to the function
can perform only one “assignment” to a persistent cell; namely the cell’s (new) value
is given by the formula contained in the cell.

One possible notation is to have a pseudo-function DELAYthat must be the top-
most one in a cell formula, as in =DELAY(init, next) . It could be implemented
by a sheet-specific field that is initialized from the expression init .

A plausible semantics might be as follows: In any execution of the sheet-defined
function, the value of such a delay cell would be the value previously computed for
it (or the value of init , at the first call); but also, the expression next will be
evaluated and its value will be the next value of the cell.

Probably the next expression of a DELAYcell should be (re)computed in each
invocation of the enclosing sheet-defined function regardless of whether there is

192 Speculation: Functions with state §8.8

another cell that needs its value in this computation. For instance, we may we want
use to a DELAYcell to count the number of times a sheet-defined function has been
called, like this:

A1 = DELAY(0, A1+1)

If a DELAYcell were to be evaluated only if its value is being used, then we would
have to “use” its value in some artifical way to make sure the evaluation takes place.

If the value of a delay cell were not uniformly the value computed and cached in
the previous invocation of the sheet-defined function, then the result of definitions
such as these:

A1 = DELAY(0, A2+1)
A2 = DELAY(0, A1+1)

would depend on the relative evaluation order of the cells, breaking the simple and
declarative spreadsheets semantics. Would A1 and A2 be incremented by 1 or by
2 in each iteration? This is unclear, unless we require that a reference to a delay
cell returns its old value, as proposed above, and gets update in each invocation of
the enclosing sheet-defined function. In that case, we see that A1 and A2 proceed in
lockstep, increasing by 1 in each call to the sheet-defined function. This also ensures
that all cells in the sheet have a consistent view of the delay cell’s contents in any
given invocation of the sheet-defined function.

When the new value of a persistent cell B1 depends on the cell’s old value because
the next expression refer to B1, as in the case of the random number generator
above, we have what looks like a static dependency cycle from B1 to B1. But this is
harmless, because the formula’s B1 would refer to the old value, not the new one.
Hence a static dependency cycle in a sheet-defined function should be considered
legal if it involves at least one persistent cell.

8.8.2 Further design questions

What limits must be imposed on the init expression in DELAY(init,Next) ? Clearly
the init expression should not call the enclosing sheet-defined function (directly or
indirectly); that could make the value of init depend on itself. Moreover, init
should be evaluated before the first call to the sheet-defined function and therefore
init should not (directly or indirectly) refer to the function’s input cells. Namely,
the first call to the sheet-defined function should be accompanied by the first evalu-
ation of next . On the other hand, init may well contain calls to built-in functions.

Another design question is whether a DELAYcell should be shared between mul-
tiple sheet-defined functions on the same sheet? This would probably correspond to
users’ expectations and intentions, if they let two or more sheet-defined functions
have DELAY cells in common. So we shall permit this, but have so far not inves-
tigated the consequences. In implementation terms, if a DELAYcell can be shared
between multiple sheet-defined functions, it cannot be allocated inside each func-
tion, but must be allocated in some common state object that those functions refer

§8.8 Speculation: Functions with state 193

to. Such state can conveniently be shared between sheet-defined functions by creat-
ing and encapsulation a reference to it using method the .NET library method

DynamicMethod.CreateDelegate(typeof(Delegate), state)

to create the Delegate, thus encapsulating the state reference in the delegate. There
should be a single such state object for each function sheet, containing all the sheet’s
DELAYcells. The state object should be an extensible array (and DELAYcells referred
to by index), because new DELAYcells may be added to the sheet after some sheet-
defined functions have been created, and new sheet-defined functions may refer to
the old as well as the new DELAYcells.

A third design question is whether it would be reasonable to allow the pseudo-
function DELAY(init,next) to appear anywhere in a formula, not only at top level.
Its value at first evaluation would be that of init , while also evaluating next ;
and in every subsequent evaluation, its value is the previous result of next , which
also evaluating next (for use in the next evaluation of that DELAY expression).
This would be potentially rather confusing in a context such as IF(A1, DELAY(0,
B1), ...) ; will the DELAY-expression be evaluated only if A1 is true? That makes
a difference for the next invocation of the sheet-defined function. Probably this
generalization is not desirable.

8.8.3 Examples of stateful sheet-defined functions

Example 8.1 A one-step delay line; the function returns the argument with which
it was last called; returns 0 the first time:

A1 = <input>
B1 = DELAY(0, A1)
<output> = B1

Example 8.2 A two-step delay line; the function returns the argument with which
it was last called; returns 0 the first two times:

A1 = <input>
B1 = DELAY(0, A1)
B2 = DELAY(0, B1)
<output> = B2

Example 8.3 A “counter” function that starts at zero, returns 1 at the first call,
returns 2 at the second call, and so on:

B1 = DELAY(0, B1+1)
<output> = B1

Let’s assume this function is called COUNTER(). Obviously, there is an evaluation
order dependency when a formula depends on multiple calls to COUNTER(). For
instance, in the ordinary sheet

194 Speculation: Functions with state §8.8

A1 = COUNTER()
A2 = COUNTER()
A3 = (A1<=A2)

the value of A3 may be true or false depending on the evaluation order; but this
is not different from calls to volatile functions such as NOW() or RAND() . We shall
make no attempt to control this form of nondeterminism. On the other hand, one
might stipulate that an expression such as COUNTER()<=COUNTER()must be true;
that is, that expressions are evaluated left to right as in Standard ML, Java and
C#. Standard spreadsheet programs hardly make such guarantees, and we shall
not either. In any case, the inter-cell recalculation order is unspecified so making
intra-cell guarantees would not be very useful.

Example 8.4 A “counter” sheet that starts at zero, returns 1 at the first call, re-
turns 2 at the second call, and so on; and can be reset to 0 by calling the sheet-
defined function with the argument "reset" :

A1 = <input>
B1 = DELAY(0, IF(A1="reset", 0, B1+1))
<output> = B1

Example 8.5 An efficient generator of the Fibonacci numbers, returning 1, 1, 2, 3,
5, 8, . . . :

B1 = DELAY(1, B1+B2)
B2 = DELAY(1, B1)
<output> = B2

Example 8.6 A linear congruential random number generator as specified for the
Java class library, here seeded with 117:

B1 = DELAY(117, MOD(B1 * 25214903917+11, 281474976710656))
<output> = B2 = B1/281474976710656

One could replace the fixed seed 117 with an expression such as FLOOR(86400000 * NOW(),1)
which would obtain the seed from the system clock at millisecond resolution.

Example 8.7 For another example that needs state, a sheet-defined function imple-
menting the Box-Muller generator would consume two uniformly distributed ran-
dom numbers on [0, 1[to generate two normally distributed N(0, 1) random num-
bers; one of these should be returned and the other one stored, so it can be returned
at the next call to the function:

§8.8 Speculation: Functions with state 195

<no input>
A1 = DELAY(FALSE, NOT(A1))
A2 = SQRT(-2 * LN(RAND()))
A3 = 2 * PI() * RAND()
A4 = A2 * COS(A3)
A5 = DELAY(999, A2 * SIN(A3)) // cache
<output> = B1 = IF(A1, A5, A4)

The idea is that A1 toggles between false and true for each call to the function, and
that A1 is true precisely when there is an unused normal deviate in cell A5. But
the implementation is not really correct: namely, the second argument of DELAYcell
A5 is evaluated in every invocation of the sheet, so A2 and A3 get evaluated, and
the RANDand SQRTfunctions get executed once more, even if A1 is true and there is
a usable random number in the A5 cache. The value 999 is a dummy value, never
used.

One could fix it by redefining A5 like this:

A5 = DELAY(999, IF(A1, 999, A2 * SIN(A3)))

where the IF makes sure that if A1 is true, then the expression A2* SIN(A3) is not
recomputed and hence A2 and A3 need not be computed either. This programming
technique may not seem too transparent, and shows that stateful sheet-defined
functions should probably be used sparingly and with caution.

Example 8.8 One recursive or stateful sheet-defined function may control the ”it-
erations” of another stateful sheet-defined function, for instance to perform a state
change until some convergence criterion holds, or until the controlled stateful func-
tion has reached a fixedpoint. This can be detected by further use of persistent cells
as shown below. Persistent cell C2 contains the updatable state, and cell B2 com-
putes the next state – that is, the expression eNext computes the function from old
state to new state, and presumably refers to C2. Cell D2 detects when they the state
does not change in a computation step:

B2=eNext
C2=DELAY(eInit, B2)
D2=(B2=C2)
<output> = HARRAY(D2, B2)

The output HARRAY(D2, B2) of this sheet-defined function is an array with one
row and two colums, or a pair. The first component indicates whether a fixedpoint
has been reached, and the second component is the most recent state. This sheet-
defined function would need to be called until the first component of the result is
true, in which case the second component is the fixedpoint. The example can easily
be adapted for computational states that consist of multiple persistent cells C2, C3,
and so on and corresponding computations in B2, B3, and on on.

196 Speculation: Functions with state §8.8

Example 8.9 The above function could be generalized to take as input in A1 the
function whose fixedpoint is to be calculated (rather than hardwiring it in expres-
sion next), and to take as input in A2 the initial state (rather than hardwiring it as
expression init). A new third input cell A3 is used to signal whether the fixedpoint
computation should be reset from the A2 parameter:

A1=<input: function>
A2=<input: initial state>
A3=<input: reset if TRUE>
B2=IF(A3, A2, APPLY(A1, C2))
C2=DELAY(999, B2)
D2=(B2=C2)
<output> = { D2, B2 }

Here cell B2 computes the next state (or the initial one, if A3=TRUE), cell C2 holds
the previous state, and D2 is true if a fixedpoint has been reached.

Example 8.10 A stateful sheet-defined function may also be used to control the ex-
ecution and tallying of multiple simulations, each such simulation being performed
by another sheet-defined function. However, doing this in a highly stateful way may
preclude parallelization and multicore utilization; better perform multiple simula-
tions by a higher-order operation that creates an array of simulations, and then
tally them afterwards.

8.8.4 Related concepts

The DELAY-function, permitted only at top-level in a cell, and unconditionally up-
dated at every recalculation of the sheet, gives a computation model similar to a
fragment of Chandy and Misra’s UNITY [20] or Staunstrup’s Synchronized Transi-
tions [113].

Namely, the DELAYcells hold the state, and the next-state transition is imple-
mented by the next argument of the DELAYfunction, like this:

A1 = DELAY(a1init, a1next)
A2 = DELAY(a2init, a2next)

This corresponds to an transition, in Synchronized Transitions, of the form

INITIALLY
A1=a1init
A2=a2init

BEGIN
<<A1,A2 := a1next,a2next>>

END

§8.8 Speculation: Functions with state 197

The main difference, though, is that a stateful sheet-defined function corresponds to
a single such transition, where UNITY and Synchronized Transitions support any
number of guarded transitions that may be executed in any order. On the other
hand, with stateful sheet-defined functions, the right-hand sides can contain ar-
bitrarily complex expressions, including conditions, which are allowed only on as
guards on the transitions of UNITY and Synchronized Transitions. A sheet-defined
function seems to correspond to the notion of a “cell” in Synchronized Transitions.

8.8.5 The interaction of persistence and recursion

How do persistent cells interact with recursive sheet-defined functions? There is
potentially confusing interaction between:

• the evaluation of the next expression of each DELAYcell in every invocation of
a sheet-defined function,

• the possibility of recursive calls to sheet-defined functions,

• the desire not to specify the order of evaluation of cells and hence of recursive
calls,

• the desire to maintain the spreadsheet computation model where the values
of cells appear consistent within each evaluation,

• the desire to have a simple and efficient implementation model with each
DELAYcell represented by one field belonging to the function sheet function,
plus possibly a local variable to hold the intermediate value of the cell.

Several implementation models seem plausible:

A Let all references to the old value of a delay cell be to a field, shared between
all invocations of the sheet-defined function. At the end of each invocation,
DELAY fields are overwritten with new values computed in local variables.
Pro: Simple. Con: A sheet-defined function with delay cells cannot be prop-
erly tail-recursive. Con: A sheet-defined function may see inconsistent old
values (before and after recursive invocation of self). Con: Does not support
an invocation counter because an earlier invocation will lose increments from
recursively called function sheets.

B1 Let each invocation of the sheet-defined function copy old values from fields
to local variables, and overwrite the shared fields with new values as they
are computed. Pro: Each invocation sees consistent old values. Pro: Can
be implemented properly tail-recursively. Con: An invocation may overwrite
updates performed by a recursive call, thereby losing updates. Hence does
not support an invocation counter. Con: A recursively called sheet-defined
function may see partially updated old values.

198 Speculation: Functions with state §8.8

B2 Let each invocation of the sheet-defined function copy old values from fields
(initial invocation) or local variables (all recursive invocations) to local vari-
ables, and overwrite the shared fields with new values as they are computed.
Pro: Each invocation sees consistent old values, and all invocations see the
same value. Pro: Can be implemented properly tail-recursively. Pro: A re-
cursively called sheet-defined function never sees partially updated old val-
ues. Con: An invocation may overwrite updates performed by a recursive call,
thereby losing updates. Hence does not support an invocation counter.

C Sidestep the issue by disallowing the combination of state and recursion: A re-
cursive invocation chain cannot involve any stateful of sheet-defined function.
One can still count the number of invocations of a recursive function sheet, by
letting it call a separate counting sheet once.

At this time option C — prohibiting a stateful sheet-defined function from calling it-
self — seems to be the only reasonable one, because the other ones lead to a counter-
intuitive semantics. However, reliably enforcing this prohibition requires a global
analysis of which functions a sheet-defined function can call, and in the presence
of function values and APPLY, this analysis can only be approximite. A cruder but
simpler approach is to prohibit all function calls and APPLYin stateful functions.

8.8.6 State of implementation

At the time of writing (January 2012) stateful sheet-defined functions have not been
implemented, nor are they likely to be.

Chapter 9

Evaluation conditions

With the compilation model described so far one can implement a wide range of
useful sheet-defined functions, as shown by the examples in section 6.2. However,
recursive sheet-defined functions must be programmed with great care to avoid in-
finite loops, and also some non-recursive functions perform much more computation
than is strictly needed.

This chapter demonstrates how these problems can be avoided by computing a
so-called evaluation condition for each cell in the function and using that condition
to sometimes avoid evaluating the cell’s formula. This might sound like a small im-
provement only, but if the formula involves calls to other functions, whether sheet-
defined or external, the amount of wasted computation may be arbitrarily large;
and if the formula involves a call to the sheet-defined function itself, the amount of
wasted computation may be infinite.

9.1 Why evaluation conditions?

To see why evaluation conditions are needed, recall the function REPT3(s,n) , which
returns string s concatenated with itself n times, from example 6.16. That function
was efficient enough but contained some code duplication in its output cell:

IF(B62=0, "",
IF(B62=1, B61,

IF(MOD(B62,2), B61 & REPT3(B61&B61, FLOOR(B62/2,1)),
REPT3(B61&B61, FLOOR(B62/2,1)))))

The next example shows a neater solution to the same problem.

Example 9.1 This function REPT4(s,n) computes string s concatenated with it-
self n times, is just as efficient as REPT3 from example 6.16, and avoids the code
duplication as well as the test B62=1:

199

200 The basic compilation process §9.2

B66 = <input s>
B67 = <input n>
B68 = REPT4(B66, FLOOR(B67/2,1))
B69 = <output>

= IF(B67=0, "", IF(MOD(B67,2), B66&B68&B68, B68&B68))

There is a hitch, though: The recursive call to REPT4 in cell B68 does not appear
inside an IF -expression. Our compilation scheme needs to realize that it should
evaluate B68 and the recursive call only when B67=0 is false. Note that it should
not just inline the B68 formula into the branches of the inner IF in B69, because
that would duplicate the recursive call and increase the number of recursive calls
from O(log n) to O(n), and increase the total computation time from O(n) to O(n2).

9.2 The basic compilation process

First, let us summarize the basic compilation process, without evaluation condi-
tions. The compilation of sheet-defined functions is implemented in a number of
stages, primarily in the classes SdfManager, DependencyGraph, TopologicalSorter,
CodeGenerate, ProgramLines, and the CGExpr hierarchy. It works in the following
steps:

1. Starting from the sheet-defined function’s output cell, find all cells on this func-
tion sheet that its formula (as an Expr) depends on. This is done by computing
the transitive closure of the “precedents” relation from the output cell.

This also builds the static dependency graph whose nodes are function sheet
cells, and where a node has arrows to all its precedents: the cells that it directly
depends on; and to all its dependents: the cells that directly depend on it.

If the static dependency graph is cyclic, this is discovered and reported during
construction.

2. Perform a topological sort of this graph starting from the output cell. The
result is a list of function sheet cells, encapsulated in a ProgramLines object,
so that every cell follows all the cells that its formula depends on. Constant
cells are not included in the topologically sorted list, which means that they
will become inlined in the referring expression(s) in step 4a below.

3. Create a generator object of type TopoListToCGExprList, encapsulating the
topologically sorted list of cell addresses.

4a. Create a DynamicMethod object and obtain its ILGenerator, to enable genera-
tion of local variables to hold the values of cells.

For each cell whose value is referred (statically) more than once, we con-
vert the cell’s formula’s Expr into a CGExpr (using method CGExpression-
Builder.BuildExpression), allocate a local variable of appropriate type for the

§9.3 The improved compilation model 201

cell and record this local variable in the cellToVariable map. This builds a pro-
gram list each of whose elements is a pair of a cell formula of type CGExpr and
the local variable destined to hold the cell’s value.

This means that no local variable is allocated for a cell that is used only once
statically (it has one dependent cell, whose formula refers it statically only
once). The conversion from Expr to CGExpr will create and inline the referred-
to cell’s CGExpr where it is used.

5. If a cell’s value is allocated to a local (of type Value), and is a number, then
allocate another local variable of type double, generate code to unwrap the
Value as a double, and insert that code right after the cell’s computation in the
program list.

This is slightly wasteful and could be optimized a bit by checking numbers of
uses as in step 4a: If the cell is used only as a number, then there’s no need to
allocate it as Value also; and if it is used as number only once statically, there’s
no need to allocate it to a local of type double (this can happen only if it is an
input cell).

One could consider reusing local variables, by allocating them from a pool and
returning a variable to the pool when its live range end. However, this may
confuse the IL just-in-time compiler’s register allocation and do more harm
than good, so we shall not do that.

6. Traverse the program list in forward order and call Compile() on each CG-
Expr to generate IL code for the body of the sheet-defined function. Then
create a Delegate from the DynamicMethod obtained in step 4.

As part of the process we register also the cells that belong to this sheet-defined
function. This is used to determine when the function needs to be recompiled after
edit to one of its cells, and to color function sheet cells in the user interface.

9.3 The improved compilation model

What we shall do in this chapter is add some more steps between the step 4a con-
version and inlining, and the step 5 construction of the program list and the actual
code generation, namely:

4b. Compute the evaluation condition for each CGExpr cell, in the reverse order
of the topologically sorted dependency graph, that is, starting from the output
cell; see section 9.6. Attach the evaluation condition to the CGExpr as well as
the local variable that it should initialize.

4c. Analyse each cell’s CGExpr and its evaluation condition for dependencies to
build a new dependency graph, which makes sure that every cell needed for
evaluation of the evaluation condition or the CGExpr has been evaluated be-
fore the evaluation condition or the CGExpr gets evaluated.

202 The improved compilation model §9.3

4d. Perform topological sort of this new dependency graph, starting from the out-
put cell, to obtain a new program list, each of whose elements holds a cell
formula, a variable for the cell, and the cell’s evaluation condition.

Moreover, the code generation in step 6 now must take the evaluation condition into
account:

6’. Traverse the new program list in forward order, and generate code for the eval-
uation condition and the cell’s formula, and a conditional test that evaluates
the cell’s formula only if the evaluation condition is true, like this:

if (evalcond)
var = formula;

Of course, if the evaluation condition is constant true, just generate code for
the formula, as before.

Consider again the example from section 7.1:

A1=<input> <-- input cell
A2=ABS(A1)
A3=EXP(-A2 * A2/2)
A4=RAND()* IF(A2>37, 1, 0.3989 * A3) <-- output cell

To avoid evaluating A3 unless it is needed by the output cell A4, we could enclose
its evaluation in a conditional like this:

v_A1 = <input>; <-- input cell
v_A2 = Math.Abs(v_A1);
if (!(v_A2>37))

v_A3 = Math.Exp(-v_A2 * v_A2/2);
v_A4 = rnd.NextDouble() * (v_A2>37 ? 1 : 0.3989 * v_A3);
return v_A4;

Here we assume that variable v_A3 is initialized with some value, and indeed this
is easily done in CIL using a .locals init directive.

In this particular case, the same effect could be obtained by inlining A3 into A4,
as is actually done by our implementation (step 4a in section 9.2), obtaining this:

v_A1 = <input>; <-- input cell
v_A2 = Math.Abs(v_A1);
v_A4 = rnd.NextDouble() * (v_A2>37 ? 1 : 0.3989 * Math.Exp(-v_A2 * v_A2/2));
return v_A4;

But this does not work if A3 is used dynamically more than once since A3 may
involve volatile functions so each evaluation may produce a different result.

Some special cases:

§9.4 Evaluation conditions 203

• A3 is needed unconditionally elsewhere anyway, and hence must be computed
unconditionally

• A3 is needed in both branches of the conditional, and hence must be computed
unconditionally

• A3 is needed only in one branch of one conditional, and hence must be com-
puted as determined by that conditional

• A3 is needed in one branch of one conditional and one branch of another, and
hence is needed under the logical “or” of those conditionals

• A3 is needed in one branch of a conditional, which in turn is needed by one
branch of another conditional, and hence is needed under the logical “and” of
those conditionals

An alternative would be to calculate lazily those variables that may or may not be
needed by the result cells. That is, we associate a status of not-yet-calculated or
already-calculated with each such variable, and calculate it only the first time it is
needed. This avoids the potentially complex determination of the conditions under
which variables such as A3 must be computed. However, it introduces new overhead
in the form of flags and runtime tests, and is somewhat similar to the machinery
used in Cortes and Hansen’s interpretive implementation [26]; see section 6.4.1. It
is exactly such runtime overhead that we want to avoid.

9.4 Evaluation conditions

The labels on the edges of the conditional dependency graph are used to determine
the conditions under which a given cell, conditionally needed by the output, must be
evaluated. Roughly, multiple dependencies along different paths give rise to logical
disjunction of the labels, and chains of dependencies give rise to logical conjunction
of the labels.

More precisely, consider a given cell c and let P be the set of labelled dependency
paths from the output to cell c. For a path p ∈ P and edge e ∈ p, let be be the
label (logical expression) on edge e. Let b be the disjunction over all paths p of the
conjunctions of all edge labels in p:

b =
∨

p∈P

∧

e∈p

be

Then the formula in cell c must be evaluated exactly when b is true; b is the evalu-

ation condition for cell c. Hence we must generate code like this for computing cell
c:

if (b)
v_c = ...;

204 Evaluation conditions §9.4

Obviously, when b is constant true, only code to compute and assign v_c should
be generated, no code for the condition and test, no code should be generated at
all. Code for the variables should be generated in dependency order, respecting the
augmented dependency graph.

Note the following special cases and optimizations, which agree with our intu-
ition:

• Formally, there is a single empty path from the output cell to itself; the con-
junction of labels along this path is true, and the singleton disjunction is true
also. Intuition: the output cell’s evaluated condition is true because its formula
must always be evaluated.

• Formally, if there is no path from the output to a cell c, then the resulting
empty disjunction is equivalent to false. Intuition: a cell on which the out-
put does not depend has evaluation condition false because it should not be
evaluated.

• Formally, if a path set P contains two paths p and q where p’s label sequence
is b1 ∧ . . . ∧ bi ∧ . . . ∧ bk and q’s label sequence is b1 ∧ . . . ∧ ¬bi ∧ . . . ∧ bk, then p
and q can be replaced by a single path where bi and its negation have been left
out: b1 ∧ . . .∧ . . .∧ bk. Intuition: if a cell is needed by both the true-branch and
the false-branch of a conditional, then it is needed by the conditional.

The resulting evaluation conditions may be rather complicated: long conjunctions
may appear due to a cell conditionally depending on a cell conditionally depending
on a cell and so on; and long disjunctions may appear due to many cells conditionally
depending on the same cell, but with different conditions. This is likely to cause the
same subexpression to appear in conditions on a large number of edges, so subex-
pressions should be preserved and one should make sure they are computed only
once, and the value reused (which is easy to do correctly thanks to the declarative
semantics of spreadsheets).

Even with a naive syntactic treatment of the logical conditions on dependencies,
the above approach would generate code that computes the correct values. However,
the generated code may be needlessly complicated. For instance, consider

C1= ... <-- input cell
C2=C1+5
C3=IF(C1>0, C2, 10) + IF(C1>0, 10, C2)

which would give these dependencies:

C2====>C1
C3==C1>0==>C2
C3==!(C1>0)==>C2

corresponding to this generated code

§9.5 Representing evaluation conditions 205

if (d_C1>0 || !(d_C1>0)) {
d_C2=d_C1+5;

}
d_C3=(d_C1>0 ? d_C2 : 10) + (d_C1>0 ? 10 : d_C2);

Clearly, the above set of dependencies could be reduced to these simpler dependen-
cies, using that p ∨ ¬p equals true:

C2====>C1
C3====>C2

These simple dependencies would cause d_C2 to be computed unconditionally:

d_C2=d_C1+5;
d_C3=(d_C1>0 ? d_C2 : 10) + (d_C1>0 ? 10 : d_C2);

(Clearly, the definition of d_C3 could be optimized as well, but that is another mat-
ter.) Covering all such simplifications can become rather complicated, though, and
is replete with pitfalls. For instance, consider this variant of C3:

C4=IF(C1>0, C2, 10) + IF(C1<5, C2, 10)

Here it seems that since every number is either greater than 0 or less than 5, or
both, this could be optimized just like the C3 binding above. However, if C1 is an
error value, then the value of C2 will actually not be used anyway. Hence we refrain
from using facts about numbers.

This performs no unnecessary computations, but a rather large number of tests.
It is essential that the individual conditional expressions (from the spreadsheet)
are evaluated only once and that their results are cached; duplicating a conditional
expression that involves volatile functions such as RAND()>0.5 will produce wrong
results. However, order of evaluation need not be preserved. First, it should not be
observable unless NOW() has nanosecond resolution, and second, usual spreadsheet
semantics does not postulate a particular order of evaluation.

9.5 Representing evaluation conditions

We associate a single logical expression with each cell used by the sheet-defined
function; this expression describes the conditions under which the cell should be
evaluated. We can use a dictionary to associate a conditional expression with each
cell. For the output cell(s) the condition is true; for all other cells it is initially
set to false. We compute the conditions incrementally by updating them in reverse
topological order of the augmented dependency graph, that is, starting from the
output cell(s).

If cell c1 has condition p1 and cell c2 has condition p2, and c1 uses cell c2 under
condition q, then we update the condition of c2 to p2 ∨ p1 ∧ q. Due to the visit in
topological order (and of course the absence of cycles), the condition of c1 will be

206 Representing evaluation conditions §9.5

correct when we visit it, and hence the update of c2’s condition will be the relevant
one.

For a given cell c, the evaluation condition is found as the disjunction over all
references r from dependent cells, of the conjunction of the evaluation condition
condd of the cell d in which r appears, and the condition under which reference r in d
gets evaluated. Note that in this description, there may be multiple references from
a cell d to cell c; each such reference contributes to disjunction.

An evaluation condition is a logical expression, using “and” and “or”, whose
atoms are (possibly negated) formula expressions of type CGExpr. How shall we
represent evaluation conditions? There are two obvious possibilities:

• Use the standard CGExpr subclasses CGAnd, CGOr, and CGNot.

• Introduce a specialized representation as another class hierarchy.

The advantage of the first option is that the code generation is already in place, and
the advantage of the second option is that we have a separate place to implement
logical reductions, a special representation that supports such reductions, common
subexpression elimination, and similar features. Moreover, for reasons that become
clear later, the short-circuit evaluation of CGAnd and CGOr may not be appropriate
for evaluation conditions.

So we create a specialized representation of logical expressions, using an ab-
stract superclass PathCond with subclasses CachedAtom for encapsulating a (pos-
sibly negated CGExpr), Conj for multi-conjunctions, and Disj for multi-disjunctions.
Note that negation needs to be applied only to atoms, not to composite logical ex-
pressions.

The “atomic” subexpressions are CGExprs because they arise from the conditions
in non-strict expressions such as AND(...) , OR(...) , IF(...) and CHOOSE(...) .
For now we will not further analyse these atoms. But observe that in principle,
IF(IF(A,B,C),D,E) could be rewritten as IF(OR(AND(A,B),AND(NOT(A),C)),D,E) ,
thus converting the inner IF(...) from a CGExpr into a logical expression, al-
though at the expense of duplicating the A subexpression.

We use multi-disjunctions
∨

(PathCond*) and multi-conjunctions
∧

(PathCond*),
where PathCond*, denotes a sequence of path conditions of type PathCond. The
constant false is represented by the empty multi-disjunction and the constant true
by the empty multi-conjunction.

So, in grammar terms, path conditions P have the form:

Class
PathCond ::= CGExpr CachedAtom(CGExpr)

|
∨

PathCond* Disj(PathCond*)
| ∧

PathCond* Conj(PathCond*)

This naturally gives a class hierarchy with superclass PathCond and three sub-
classes. We make the representation functional, with immutable fields, so that

§9.6 Generating evaluation conditions 207

subexpressions can be shared freely. This means that operations on logical expres-
sion should not destructively update existing structure, but should construct new
object structures, possibly incorporating existing ones.

This allows object structures (subexpressions of the logical expressions) to be
shared between multiple evaluation conditions; that would be impossible or very
hard to get right if the operations were destructive. Since each cell has its own
evaluation condition, and the evaluation conditions are built in topological order
from simpler expressions to more complex ones, the substructure sharing should be
quite effective in saving space.

The PathCond classes should support a method to convert the path condition to
a CGExpr, which can subsequently be compiled using the usual machinery:

CGExpr ToCGExpr()

9.6 Generating evaluation conditions

To hold the evaluation condition for each cell, we create a dictionary evalConds
that maps a FullCellAddr to a PathCond. This is initialized to false for all cells
except the output cell(s), for which it is true.

The we process the cells in reverse topological order, starting from the output
cells, as follows. A cell that has CGExpr expr and evaluation condition cond
will be processed by a call to method expr.EvalCond(evalCond, evalConds) .
This method will traverse expression expr , and for each cell reference fca in expr
that gets evaluated under condition cond , it will update evalConds[fca] to hold
evalConds[fca].Or(cond) .

For instance, if expr consists simply of a cell reference to cell C1, we will

• Update evalConds[C1] to hold evalConds[C1].Or(evalCond) .

For another example, if expr is an IF -expression IF(e1,C1,C2) , we will:

• Compute e1.EvalCond(evalCond, evalConds) recursively.

• Update evalConds[C1] to hold evalConds[C1].Or(evalCond.And(e1)) .

• Update evalConds[C2] to hold evalConds[C2].Or(evalCond.AndNot(e1)) .

More generally, if expr is an IF -expression IF(e1,e2,e3) , we will:

• Compute e1.EvalCond(evalCond, evalConds) .

• Compute e2.EvalCond(evalCond.And(e1)) .

• Compute e3.EvalCond(evalCond.AndNot(e1)) .

Finally, if expr is an CHOOSE-expression CHOOSE(e0,e1,e2,...,en) , we will:

• Compute e0.EvalCond(evalCond, evalConds) .

208 Generating evaluation conditions §9.6

• Compute ei.EvalCond(evalCond.And(e0=i)) for each i from 1 to n.

Concretely, the implementation of EvalCond on IF(es[0], es[1], es[2]) in
class CGIf works roughly like this:

void EvalCond(PathCond evalCond, IDictionary<...> evalC onds) {
es[0].EvalCond(evalCond, evalConds);
es[1].EvalCond(evalCond.And(es[0]), evalConds);
es[2].EvalCond(evalCond.AndNot(es[0]), evalConds);

}

In actual fact, the duplication of expression es[0] implied above would be wrong,
as shown in section 9.6.1. The true implementation of EvalCond for IF is given in
section 9.6.2.

To support the generation of evaluation conditions, the PathCond class supports
exactly the operations Or , And and AndNot :

public abstract class PathCond : IEquatable<PathCond> {
public static readonly PathCond FALSE = new Disj();
public static readonly PathCond TRUE = new Conj();

public abstract PathCond And(CachedAtom expr);
public abstract PathCond AndNot(CachedAtom expr);
public abstract PathCond Or(PathCond other);
...

}

The CachedAtom machinery is used to ensure that expressions are evaluated at
most once, and is explained in section 9.6.2.

9.6.1 Conditions must be evaluated at most once

As shown above, for IF(e1,e2,e3) we generate evaluation conditions involving e1
as well as NOT(e1) , and each of these may be duplicated in case there are further
non-strict function calls in e2 or e3 . However, for correctness (as well as efficiency)
we must evaluate e1 at most once, and in particular when e1 may contain calls to
volatile or external functions. Similarly, for CHOOSE(e0,e1,...,en) we generate
conditions of the form e0=1 , e0=2 , . . . , e0=n ; yet we must evaluate e0 at most once.

Example 9.2 To see that we must cache expressions in evaluation conditions, con-
sider this example where cell B180 should evaluate to sin(π/2) = 1 with probability
20%, and evaluate to 10 with probability 80%:

B179 = EXTERN("System.Math.Sin$(D)D", PI()/2)
B180 = IF(RAND()<0.2, B179 * B179, 10)

The evaluation condition of B179 is RAND()<0.2 , but since RANDis volatile, each
evaluation may produce a different result. Hence we should compute that expres-
sion once, cache it, and reuse the value, like this:

§9.6 Generating evaluation conditions 209

if (cache#0[RAND()<0.2])
v_B179 = EXTERN("System.Math.Sin$(D)D", PI()/2);

v_B180 = cache#0[RAND()<0.2] ? v_B179 * v_B179 : 10.0;

Here the notation cache#0[RAND()<0.2] means that cache number 0 evaluates
RAND()<0.2 at most once and caches its result. If, instead of caching RAND()<0.2
we computed it twice, then v_B179 would be correctly initialized only in 20% of its
subsequent uses.

Example 9.3 The previous example shows that we should be careful not to dupli-
cate the evaluation of expressions that are used in evaluation conditions. On the
other hand, it would also be wrong cache too aggressively, thereby folding, or coa-
lescing, computations that should be kept separate. Consider this example, wherein
cell B186 should evaluate to sin(π/2) = 1 with probability 36% = 0.2 + 0.8 · 0.2, and
evaluate to 10 with probability 64%:

B185 = EXTERN("System.Math.Sin$(D)D", PI()/2)
B186 = IF(RAND()<0.2, B185 * B185, IF(RAND()<0.2, B185 * B185, 10))

If we mistakenly create only one cache variable for the two structurally identical,
but distinct, expressions RAND()<0.2 , then the function would return 1 with prob-
ability 20% instead of 36%, which clearly would be wrong. We must create one cache
for each subexpression, like this:

if (CACHE#1[RAND()<0.2] || (!CACHE#1[RAND()<0.2] && CACH E#0[RAND()<0.2]))
v_B185 = EXTERN("System.Math.Sin$(D)D", PI()/2);

v_B186 = CACHE#1[RAND()<0.2] ? v_B179 * v_B179
: CACHE#0[RAND()<0.2] ? v_B179 * v_B179 : 10.0;

9.6.2 Implementation of expression caching

The previous section shows that for correctness we must evaluate an expression
e that is used as condition in IF(c, ..., ...) or CHOOSE(e, ...) at most
once. Therefore, when such an expression is used also in an evaluation condition,
we must cache the result of its first evaluation and reuse it. Therefore we allocate
a local cache variable for each such subexpression. Upon the first use, we evaluate
the expression and store the result in the variable; all subsequent uses refer to that
variable.

We use the following scheme. Each CGExpr expression e that must be evaluated
at most once gets wrapped in a stateful CGCachedExpr object, which may then
be incorporated multiple times in PathCond expressions. Also, we overwrite the
original occurrence of the expression e in the abstract syntax tree with its cached
version. For example, in IF(es[0], es[1], es[2]) , we overwrite the condition
expression es[0] with its cached version like this:

210 Generating evaluation conditions §9.6

void EvalCond(PathCond evalCond, IDictionary<...> evalC onds) {
CachedAtom atom = new CachedAtom(es[0]);
es[0].EvalCond(evalCond, evalConds);
es[0] = atom.cachedExpr;
es[1].EvalCond(evalCond.And(atom), evalConds);
es[2].EvalCond(evalCond.AndNot(atom), evalConds);

}

Each compilation of a CGCachedExpr abstract syntax tree node checks whether
the expression has already been evaluated, and if so, simply returns the result;
otherwise it evaluates the expression e, stores the result in the local cache variable,
and returns it.

We generate code for the cached expressions in static order of use. This is not
necessarily the dynamic order of use, although the dynamic order is embedded in
the static order: there are no loops or other back edges. Since the statically first use
may be executed only conditionally, we cannot simply compute the expression and
save it to the cache at the statically first use, and the let all subsequent uses load
from the cache. This is because we compile composite evaluation conditions using
short-circuit “and” and “or”. Indeed we must use short-circuit logical operations
when compiling the evaluation conditions. Consider a function FOOwhose output
cell contains this formula:

IF(e1, C11 * C11, IF(e2, C12 * C12..., ...))

Here the evaluation condition of C11 is e1 , which must be evaluated. The evaluation
condition of C12 is NOT(e1) && e2 , and we must avoid evaluating e2 in case e1 is
true. Namely, the condition e2 may involve a recursive call to function FOOitself,
like this:

IF(e1, ..., IF(FOO(...), ..., ...))

If we were to evaluate e2 unconditionally, then we would create an infinite loop.
Hence evaluation conditions must be compiled for short-circuit evaluation, and hence
we cannot rely on the statically first occurrence of a cached expression being evalu-
ated before the other ones. Hence we must be able to look at a cache variable and
determine whether its expression has evaluated (and the result stored) or not.

This leads to the following design for evaluation of cached expressions. Since
an expression e is cached only because it was used as a condition in IF or as an
index in CHOOSE, it must evaluate to a number (or an error). So the cache variables
should have type double, and so we can use a special NaN value to denote “cache
not yet filled”. Concretely we use the NaN in which the 32 least significant bits of
the payload is 1, corresponding to ErrorValue.MakeNan(-1) .

At each occurrence of the cached expression, we test the value of the cache vari-
able. If it is this particular NaN, we evaluate the expression and save its value in
the cache; otherwise just produce the value from the cache. Even if the expression
happens to evaluate to this particular NaN, this scheme would give the correct re-
sult, but it may cause the cached expression to be evaluated more than once. All

§9.7 Refining evaluation conditions 211

the cache variables must be initialized with the indicated NaN at the beginning of
a function’s code.

Unfortunately it does seem necessary to create a copy of the code of the cached
expression e at every use of the cached expression. It would be desirable to create
a form of subroutine for its evaluation, in the style of the Java Virtual Machine’s
infamous “local subroutines” [68, 7.13]. Most of this could be done in .NET bytecode
by passing to the local subroutines a number that indicates which of the finitely call
sites it would have to return to, and use a CIL switch instruction to jump to the
indicated one. But it would not work in general, because such a “local subroutine”
may be called from different expression nestings, and hence different stack depths,
and this violates CLI verification conditions. The CLI standard says “The type state
of the stack (the stack depth and types of each element on the stack) at any given
point in a program shall be identical for all possible control flow paths” [36, section
I.12.3.2.1]. The power (and implementation complexity) of the Java Virtual Machine
local subroutines stem precisely from their stack depth polymorphism.

Hence it seems that we have to duplicate the code (but not the evaluation) for the
cached expression e at each use. Since this cannot happen recursively, the risk in
terms of code size growth is small, and in practice it seems not to cause a problem.

9.6.3 Avoiding caching

As an important optimization, note that even if an expresion e gets incorporated
into an evaluation condition, and so potentially will need to have a cache created for
it, it may happen that e is used (statically) at most once. This is because the evalu-
ation condition be reduced to true, or ignored; see section 9.7. When the expression
is used (statically) at most one use, we do not need to cache it and do not need to
allocate a local cache variable. We can perform this optimization by introducing an
extra stage:

• Wrap the CGExpr as an object of class CGCachedExpr, and create a CachedAtom
object (subclass of PathCond) with mutual references between the CGCached-
Expr and the CachedAtom object.

• The CachedAtom.ToCGExpr conversion method simply returns the CGCached-
Expr object, but counts the total number of times it is asked to return it.

• The CGCachedExpr.Compile method allocates a local variable for caching
only if the count is two or more.

9.7 Refining evaluation conditions

9.7.1 Reducing evaluation conditions

While it is fairly easy to correctly create the evaluation condition as the disjunction
of conjunctions over the paths from the output cell, the resulting expressions may

212 Refining evaluation conditions §9.7

be unwieldy. For good runtime performance, it is essential to reduce the evaluation
conditions as much as possible, ideally to the constant true — so the evaluation
condition need not be evaluated at all at runtime.

The PathCond classes implement the following reductions:

¬¬p =⇒ p
p ∧ false =⇒ false
p ∧ true =⇒ p
p ∨ false =⇒ p
p ∨ true =⇒ true
p ∧ ¬p =⇒ false
p ∨ ¬p =⇒ true
p ∧ q ∨ p ∧ r =⇒ p ∧ (q ∨ r)
p ∨ (p ∧ q) =⇒ p

The last reduction is especially important, because it will likely appear frequently
during the construction of evaluation conditions. Namely, if cell B3, which itself has
evaluation condition p, has both an unconditional and a conditional dependence on
B2, then B2 has evaluation condition p ∨ (p ∧ . . .) which should reduce to p.

FIXME: To preserve the evaluation order of the conditions we represent multi-
conjunction and multi-disjunctions as lists of PathConds, and to implement the op-
timizations efficiently, we further use hash indexes on the arraylists; more precisely,
we use a class HashList<T>, which is an aggregation of the .NET 4.0 List<T> and
HashSet<T> classes. Nevertheless, the optimizations are somewhat cumbersome to
express in our object-oriented implementation language C# because of the lack of
pattern matching.

9.7.2 Cells with trivial formulas

In some cases, a cell that contains a rather simple formula has a complex evaluation
condition, and the effort to evaluate the condition exceeds the effort to evaluate the
cell’s formula. In such cases it would be better to simply set the cell’s evaluation
condition to constant true (after finding the evaluation conditions of all cells), and
hence evaluate it unconditionally.

Hence we distinguish define that an expression is trivial if it is a constant or
a cell reference or a call to a trivial function with trivial arguments, and its ab-
stract syntax tree has less than a certain number of nodes. Trivial functions include
arithmetic operations, mathematical functions such as SIN . Non-trivial functions
are array operations (which may be time-consuming), sheet-defined functions and
APPLY (which may involve recursion), and EXTERN(which can be time consuming
and have side effects).

Since a trivial cell may depend on a non-trivial one that has a non-true evalua-
tion condition, the trivial cell may refer to local variables that hold default values
(null or 0.0). This should cause no problems, since the trivial cells do not call
sheet-defined or external functions.

§9.7 Refining evaluation conditions 213

9.7.3 We do not take short-circuit evaluation into account

In Corecalc and Funcalc, the AND(...) and OR(...) functions are strict only in
their first argument. Hence to generate precise evaluation conditions for AND(e1,
e2, ..., en) we could proceed as follows (ORis completely analogous, only dual
to AND):

• Define evalCond1 to be evalCond .

• Compute e1.EvalCond(evalCond1, evalConds)

• Set evalCond2 equal to AND(evalCond1,e1) .

• Compute e2.EvalCond(evalCond2, evalConds)

• Set evalCond3 equal to AND(evalCond2,e2) .

• Compute e3.EvalCond(evalCond3, evalConds)

• . . . and so on.

Namely, e2 would be evaluated (and the cell references inside it would be needed)
only in case evalCond is true and e1 is true, and similarly for e3 and so on.

In implementation terms, here is CGAnd’s current EvalCond method, which con-
siders all operands e1 , . . . , en to have the same evaluation condition, effectively
considering ANDstrict:

void EvalCond(PathCond evalCond, IDictionary<...> evalC onds) {
for (int i = 0; i < es.Length; i++)

es[i].EvalCond(evalCond, evalConds);
}

We could replace it by this version, which updates the evaluation conditions for e2 ,
. . . , en as indicated above:

void EvalCond(PathCond evalCond, IDictionary<...> evalC onds) {
for (int i = 0; i < es.Length; i++) {

es[i].EvalCond(evalCond, evalConds);
CachedAtom atom = new CachedAtom(es[i]);
evalCond = evalCond.And(atom);
es[i] = atom.cachedExpr;

}
}

However, this generates very complex evaluation conditions, which moreover appear
unpleasantly cyclic. For instance:

evalConds[@Functions!B23] =
(@Functions!B22>0 || AND(@Functions!B22>0,@Functions! B23>0))

214 Refining evaluation conditions §9.7

evalConds[@Functions!B28] =
(AND(@Functions!B27>0,@Functions!B28>0) || @Functions !B27>0)

All of the above have the form p∨p∧q, where the self-dependency appears in the term
q, and therefore could be eliminated because the expression is equivalent to just p.
In all cases, such reduction would require us to take into account the semantics of
CGExprs, for instance by expanding CGExpr AND, OR, NOT, IF as PathCond terms.
But that should be done with great care to avoid duplicating (or folding) expressions
that involve volatile functions or have side effects; so we have not done that.

A simple way to avoid eliminate the problem, at least for all the sheet-defined
functions we consider, is to ignore short-circuit evaluation of AND and OR when
generating evaluation conditions. This change eliminates all the self-dependencies
listed above. It also means that too much gets computed, and that clever program-
ming idioms such as defining ALLTRUE(xs) recursively as

ALLTRUE(xs) = OR(LENGTH(xs)=0, AND(CAR(xs), ALLTRUE(CDR (xs))))

will not work. Instead one must use an explicit test:

ALLTRUE(xs) = IF(LENGTH(xs)=0, TRUE, IF(CAR(xs), ALLTRUE (CDR(xs)), FALSE))

9.7.4 No new dependency cycles

How can we be sure that the new dependency graph contains no cycles incurred by
the extra dependencies? Simply by considering dependencies from the evaluation
condition only if there is not already a dependency the other way?

For instance, it would seem that the following situation could arise. The evalua-
tion condition for cell B2 involve cell B2 itself; this would create a cyclic dependency:

if (B2)
B2 = B1+1;

However, this could arise only if somewhere the use of B2 depends on B2, as in

B3 = IF(B2, B2, 42);

But in that case B2 is unconditionally needed (assuming B3 is), and the condition
on B2 should be true. More generally, if the evaluation condition on B3 is p, then
the evaluation condition on B2 will be p too; reduced from p ∨ p ∧ B2.

An apparent problem is that in some cases the inferred evaluation condition for
a cell appears to involve the cell itself, which is not very meaningful. A case in point
is @Functions!B23 :

evalConds[@Functions!B23] =
(@Functions!B22>0 || AND(@Functions!B22>0,@Functions! B23>0))

Of course, this could be reduced to

§9.8 Example evaluation conditions 215

evalConds[@Functions!B23] =
@Functions!B22>0

in which the condition evaluation for B23 does not depend on B23 itself. However,
this reduction would require the logical reductions to take into account the seman-
tics of CGExpr AND(...) , and in general we can hardly be sure to cover all such
cases.

So is there a simpler approach we could take? Note that if the evaluation condi-
tion of a cell really depends on the cell itself, then the sheet-defined function would
already contain a cyclic dependency, as in

B23 = IF(B23>0, ..., ...)

So one way to deal with this problem is to generate evaluation conditions as out-
lined in section 9.6, and simply set to true those subexpressions of each evaluation
condition that refer to cells that have not been computed yet.

9.7.5 Speculation: Sharing condition subexpressions

When the evaluation of multiple cells depends on the same logical expression, it is
desirable to perform that test once, and evaluate all the cells in one go. Even if the
logical expression itself has been pre-evaluated, we should reduce the number of
conditional jumps to avoid pipeline stalls caused by branch misprediction.

More generally, it might be desirable to use nested conditions rather than more
complex logical expressions to control conditional evaluation.

9.8 Example evaluation conditions

Returning to the REPT4function from section 9.1 and example 9.1, we find that the
evaluation condition for cell B68 is exactly what it should be, namely:

NOT(CACHE#0[NOT(@Functions!B67)])

Here NOT(@Functions!B67) is another way of saying B67=0, the CACHE#27is a
cache variable created for that expression, and the outer NOTsays that B68 should
only be evaluated if B67 is non-zero.

The NORMDISTCDFfrom example 6.5 has a single not-true evaluation condition,
namely for cell @NormalDist!B9 :

NOT(CACHE#1[@NormalDist!B8>37]

However, the formula =EXP(-B8 * B8/2) in cell B9 is trivial; it is probably no slower
to evaluate that formula than to evaluate and cache the evaluation condition. Hence
our implementation sets the evaluation condition to true and caches nothing.

The “unrolled” version of function FINDENDfrom example 6.23 has no less than
28 non-true evaluation conditions, some of them very complex. However, all these

216 Example evaluation conditions §9.8

evaluation conditions control cells containing trivial formulas, such as A7+$B10 ,
and we can therefore ignore these evaluation conditions. If we laboriously evaluate
and cache all evaluation conditions, also for the 28 cells with trivial formulas, then
GOALSEEK, which uses FINDENDas a subroutine, is slowed down by a factor of 1.65.

For the “unrolled” version of function GOALSEEKfrom example 6.21, all evalua-
tion conditions reduce to constant true, except that non-trivial cell @Goalseek!C22
has this evaluation condition:

CACHE#58[@Goalseek!D22<=0] || NOT(CACHE#59[@Goalseek! D22<=0])

This condition is equivalent to true, of course. It was not reduced to true because
the two conditions @Goalseek!D22<=0 originate from different spreadsheet cells,
as indicated by the distinct caches CACHE#58and CACHE#59created for them. This
happens because cell B26 contains the formula =IF(D22<=0,B22,C22) and cell
C26 contains =IF(D22<=0,C22,B22) ; so regardless of the value of C22 must be
evaluated.

We can further improve the evaluation condition generator to reduce this eval-
uation condition to true. We would need to define a notion of equality of CGExpr
that describes when two expressions will evaluate to the same value. It suffices to
require that they are structurally equal and that they contain no calls to volatile,
external or sheet-defined functions.

Chapter 10

Partial evaluation

The function call CLOSURE("name", a1, ..., an) constructs a function value
fv , or closure, in the form of a so-called partial application of function name. The
closure fv is just a package of the underlying named sheet-defined function and
some early, non-#NA, arguments for it. Applying it using APPLY(fv, b1, ...,
bk) simply inserts the values of b1 . . . bk instead of the #NA arguments and then
calls the underlying sheet-defined function; this is no faster than calling the original
function.

However, if the closure fv is to be called more than once, it may be worthwhile to
perform a specialization or partial evaluation of the underlying sheet-defined func-
tion with respect to the non-#NAvalues among the arguments a1 . . . an . In Funcalc,
this can be done by the built-in function SPECIALIZE(fv) , which will produce a
specialized function spfv that can be used exactly like fv . In particular, the spe-
cialized function can be called using APPLY(spfv, b1, ..., bk) .

Often, the specialized function is faster than the general one, and often the spe-
cialized function can be generated once and then applied many times. For instance,
this may be the case when finding a root or computing the integral of a function, or
when doing a Monte Carlo simulation (where all parameters except one are fixed).

This chapter explains how the SPECIALIZE function has been implemented and
shows some examples of it use. The Funcalc manual decribes it more briefly in
section A.2.3.

Automatic specialization, or partial evaluation, has been studied for a wide range
of languages in many contexts and for many purposes [61, 53]. Yet specialization in
the context of sheet-defined functions appears to offer new opportunities, for several
reasons:

• Performing the specialization at runtime using so-called online techniques,
when applying the built-in SPECIALIZE function, offers more opportunities for
specialization than specialization before execution [102]. On the other hand, it
also makes it more important that the specialization process itself is fast, and
that one can decide when to specialize and when not to.

217

218 Partial evaluation §10.0

• The spreadsheet style makes it relatively easy to estimate whether specializa-
tion is worth-while. Namely, it may be evident from the workbook that the
function obtained by CLOSURE("name",a1,...,an) will be called from, say,
500 cells due to replicated formulas. A support graph provide this information
very cheaply; just count the number of cells directly supported by the cell that
evaluates the CLOSURE-expression. Such estimates are far harder in general
functional and procedural languages. Of course, the more sophisticated the
spreadsheet model is, the harder it may be to obtain good estimates. If users
replace explicit formula replication with recursive functions, then the advan-
tages relative to traditional languages are reduced.

• The declarative computation model makes specialization fairly easy. The main
sources of complication are (1) operations that are volatile or update or rely on
external state; and (2) recursive function calls. In both respects one can draw
on a large body of experience from specialization of Scheme; see eg. Bondorf
[11].

• Actual bytecode generation for a specialized function can use the same ma-
chinery as for non-specialized ones; specialized functions are not penalized by
poorer code generation.

• In the absence of recursion, it would be easy to predict the size of the special-
ized function as well as the amount of work saved by specializing it.

• In the presence of recursion, the well-known program-point specialization tech-
nique can be used. But maybe it is preferable not to specialize recursive func-
tions, because of the risk that the specialized program will be much larger
than the given one.

• Specialization of sheet-defined functions that involve volatile functions (sec-
tion 1.7.5) or persistent cells (section 8.8) requires some care. Probably a
volatile function’s results should be considered dynamic. If the early/static
or late/dynamic evaluation of a volatile function call is determined solely on
the basis of binding times of the enclosing expression, then imprecision in the
binding-time analysis and accidental changes to the structure of the function
could seriously influence the value computed by it. Moreover, we should prob-
ably in turn consider volatility of other sheet-defined functions called by the
function being partially evaluated.

• It seems that partial evaluation can yield extraordinary benefits in connection
with parallelization for graphics processors (see also section 11.1. Namely, a
graphics processor can efficiently run many instances of the same straight-
line numeric code in parallel, but it is poorly equipped for executing branching
code, such as that resulting from the translation of IF(...) and CHOOSE(...)
in spreadsheet formulas. So whereas partial evaluation, with inlining of con-
stants and early evaluation of conditionals, offers modest speed-ups on a gen-
eral cpu, it may offer dramatic speedups when the code is to be executed on
graphics processors.

§10.2 Background on partial evaluation 219

Automatic specialization should permit generality without performance penalties.
For instance, a company can develop general financial or statistical functions, and
rely on automatic specialization to create efficient specialized versions, removing
the need to develop and maintain hand-specialized ones.

The rest of this chapter explains automatic function specialization as currently
implemented in Funcalc.

10.1 Background on partial evaluation

Partial evaluation, or automatic program specialization, of a function requires that
values for some of the function’s arguments are available. These are called static
arguments and correspond exactly to the early (non-#NA) arguments of a Funcalc
function closure.

10.2 Partial evaluation of a sheet-defined function

For generality, we implement specialization, or partial evaluation by a built-in Fun-
calc function SPECIALIZE(fv) that takes a argument a function closure. Partial
evaluation then specializes the underlying sheet-defined function based on the early
arguments included in the closure.

Partial evaluation processes the sheet-defined function’s ProgramLines repre-
sentation, which is basically a list of bindings of CGExpr expressions to variables
(section 9.2), saved in the function’s SdfInfo object (section 8.2.1). The result is a
new specialized SdfInfo object, including a specialized ProgramLines list containing
specialized versions of the existing CGExpr expressions; sections 10.2.1 and 10.2.2
describe the processing of CGExpr expressions and function calls. Caution is re-
quired because some CGExpr objects are mutable; these cannot be shared between
the original and the specialized ProgramLines objects, and so must be copied during
partial evaluation.

The specialized ProgramLines object is subsequently used to generate bytecode
for the specialized function, via the machinery already in place for this purpose.
Furthermore, the ProgramLines object can be used in subsequent further special-
ization of the newly specialized sheet-defined function; this rather unusual func-
tionality comes for free in Funcalc.

A unique name will be synthesized for each specialized function. For instance,
if the display value of the given closure fv is ADD(42,#NA) , then the result of
SPECIALIZE(fv) will have a name like ADD(42,#NA)#117 , where #117 is a unique
internal function number.

The specialized functions will be cached, so that two closures that are equal
(based on underlying function and argument values) will give rise a single shared
specialized function. That avoids some wasteful specialization and also is the obvi-
ous way to allow for loops (via recursive function calls) in specialized functions.

220 Partial evaluation of a sheet-defined function §10.2

The specialization of CGExpr expressions, descibed in section 10.2.1 below, takes
place in a partial evaluation environment pEnv which is initialized and updated as
follows. Initially, pEnv maps the cell address of each static (non-#NA) input cell to
a constant representing that input cell’s value. Moreover, pEnv maps each remain-
ing (#NA) input cell address to a new CGCellRef encapsulating a corresponding IL
method argument description (in a LocalArgument object).

During partial evaluation of a (cell address, expression) pair (ca,e) in the Pro-
gramLines list, the pEnv is extended as follows. If the result of partially evaluating
the formula e in (non-output) cell ca is a CGConst, then extend pEnv to map ca
to that constant, so that the constant will be inlined at all subsequent occurrences.
Otherwise, create a fresh LocalVariable as a copy of the existing cell variable ca ,
and add a ComputeCell to the resulting specialized ProgramLines list that will, at
runtime, evaluate the residual expression and store its value in the new LocalVari-
able. Also, extend pEnv to map ca to the new LocalVariable, so that subsequent
references to cell ca will refer to the new local variable and thereby at runtime will
fetch the value computed by the residual expression. Specifically for the output cell,
one must always generate a ComputeCell object in the specialized ProgramLines
list.

When the residual ProgramLines list is complete, the dependency graph is built,
a topological sort is performed, use-once cells are inlined, evaluation conditions are
recomputed, and so on, as for a normal sheet-defined function (sections 9.2 and 9.3).

10.2.1 Partial evaluation of CGExpr terms

We now consider how specialization, or partial evaluation, should process each kind
of expression in the abstract syntax class hierarchy seen in figure 7.1.

• Partial evaluation of an expression of class CGConst or one of its subclasses
produces that expression itself.

• Partial evaluation of an expression of form CGCellRef(c) produces a CGConst
static value if cell c is a static input cell or another cell that has been reduced to
a CGConst subclass; otherwise it produces the given expression CGCellRef(c)
itself. This avoids inlining (and hence duplicating) of residual computations,
while still exposing static values to further partial evaluation.

• Partial evaluation of an expression of form CGNormalCellRef(c) produces that
expression itself, not the value currently found in the referred cell c , because
that value might change before the residual sheet-defined function gets called.

• Partial evaluation of an expression of form CGNormalCellArea(area) pro-
duces that expression itself, not the values currently found in the referred
cells, because those values might change before the residual sheet-defined
function gets called.

§10.2 Partial evaluation of a sheet-defined function 221

• Partial evaluation of expressions of class CGStrictOperation and most of its
subclasses proceeds uniformly as follows. Partially evaluate the argument ex-
pressions, and if they are all constants, then evaluate the operation as usual;
otherwise residualize the operation. In particular, this holds for CGArith-
metic1, CGArithmetic2, CGComparison and CGFunctionCall (except for volatile
functions). Volatile functions such as NOW() and RAND() should always be
residualized, not evaluated, during partial evaluation. For instance, a sheet-
defined function could perform a stochastic simulation, choosing between two
scenarios by IF(RAND()<0.2, ..., ...) . In this case early evaluation of
RAND()<0.2 and the conditional would make all executions of the residual
function behave the same, which is useless.

The exceptions to the general partial evaluation of CGStrictOperation are
CGApply (residualize to avoid infinite loops), CGFunctionCall (when the called
built-in function is volatile), CGExtern (residualize to avoid specialization-
time side effects), and CGSdfCall (residualize to avoid infinite loops).

To implement the general partial evaluation of CGStrictOperation, we de-
fine a PEval method in that class and use the template method pattern to
parametrize it with the residualization operation. Subclasses must implement
abstract method Residualize(CGExpr[] res) which is given as argument
the partially evaluated operand expressions.

Method PEval in class CGStrictOperation performs early evaluation (when all
operands are constant) using the standard applier that is already defined by
the interpretive CoreCalc implementation, typically in class Function. The ap-
plier, of type Applier, takes CoreCalc expressions as arguments, so PEval must
convert the CGConst subclasses to Const subclasses before calling the applier
(and also pass fake sheet, column and row arguments, all unused because the
expressions are constant). Although this is slightly inefficient, it ensures that
early and late evaluation agree. A somewhat cleaner alternative would have
to duplicate the actual function code, wrapping it both in an applier and in a
function of type Func<Value[],Value> , say.

Whenever a CGStrictOperation is created, its applier field is set to the ap-
plier (from class Function) associated with the operation or function, except
in the case of CGApply, CGExtern and CGSdfCall which should not be evalu-
ated as aggressively as the other CGStrictOperation subclasses. These three
always residualize and hence do not need the applier.

• Partial evaluation of a CGClosure expression follows the general CGStrictOp-
eration scheme for partial evaluation. First it reduces its argument expres-
sions. If all are constant, then it calls the interpretive applier correspond-
ing to built-in function CLOSUREand produces a CGValueConst wrapping a
FunctionValue containing the given sheet-defined function and the given pa-
rameters; otherwise it residualizes. Alternatively, in the case of all-constant
arguments it could partially evaluate the sheet-defined function with respect
to the given parameters, producing either a static value or a CGValueConst

222 Partial evaluation of a sheet-defined function §10.2

that wraps a FunctionValue containing a new residual sheet-defined function
and an empty list of partial argument values. We currently do not do that.

• Partial evaluation of a call to a sheet-defined function (CGSdfCall) is discussed
separately in section 10.2.2.

• Partial evaluation of a CGApply(e0 , e1 , . . . , en) expression should first reduce
all operands, both the function expression and its arguments. If the function
expression in e0 is static and is a FunctionValue wrapped in a CGValueConst,
then partial evaluation can produce a CGSdfCall expression, otherwise it must
reduce to a CGApply based on the residual operand expressions. Even if both
the function and all the arguments are static values, it is dangerous to actually
call the indicated sheet-defined function; this could result in an infinite loop.

It is worth pondering whether a more aggressive evaluation is possible when
the function expression e0 is static and hence is a known FunctionValue.
Could we simply further process it as if partially evaluating a CGSdfCall ex-
pression, using the exact same machinery?

• Partial evaluation of CGIf(e0 , e1 , e2) or CGChoose(e0 , e1 , . . . , en) should
produce the result of partially evaluating the relevant branch ei if the first
expression e0 is a static value. Otherwise, they must residualize to a CGIf or
CGChoose constructed from the residual argument expressions.

• Partial evaluation of a CGAnd expression, short-cut style, can proceed as fol-
lows. Each argument is partially evaluated in turn, from left to right. If the re-
sult is constant false (zero), then the residual expression for the entire CGAnd
is the constant false; if the result is constant true (non-zero) then it is ignored;
and if the result is non-constant, then it is kept for possible inclusion in the
residual expression. If no argument reduced to false, then the residual expres-
sion for the entire CGAnd is the conjunction of the residual expressions of the
non-true arguments. In case all constant arguments were true, the result is
the empty conjunction, that is, true.

• Partial evaluation of a CGOr expression, is dual to CGAnd: just swap false
and true in the description above.

• A CGCachedExpr expression may be wrapped around the conditions of IF and
CHOOSE, for use in evaluation conditions. Since we ignore evaluation condi-
tions during partial evaluation, partial evaluation of a CGCachedExpr should
simply partially evaluate the enclosed expression.

10.2.2 Partial evaluation of function calls

Partial evaluation of a function call, whether a direct call of a named sheet-defined
function or a call of a function closure via APPLY, pose special challenges that may
cause partial evaluation to fail to terminate. First, we would like to avoid infinite

unfolding, which may result when a call to function F encountered during partial

§10.2 Partial evaluation of a sheet-defined function 223

evaluation of the same function F. Secondly, would like to avoid infinite specializa-

tion, in which partial evaluation attempts to create an infinite number of specialized
versions of the same function, such as ADD(1,#NA) , ADD(2,#NA) , ADD(3,#NA) ,
and so on.

Moreover, we would like to avoid generating a finite but large number of special-
ized versions of a function, when these turn out to be nearly identical and offer no
significant speed-up. This particular problem is discussed in section 10.2.3.

Some of the problems we need to address are:

• When should we create further specializations of sheet-defined functions, while
in the process of creating a specialized one?

• More precisely, given a sheet-defined function and static values of some of its
arguments, with of these arguments should actually be used when specializing
the function? Deciding that the empty set of arguments should be used may
be considered equivalent to not specializing the function at all.

• When all arguments to a sheet-defined function, encountered during partial
evaluation, are static, should we then attempt to fully evaluate the function or
specialize it?

• Note that when the result of a function is non-static (because some arguments
are non-static or the function body contains a call to a volatile or extern func-
tion), then we may uniformly decide not to unfold the call, but replace it by a
call to a residual function, with out affecting the aggressiveness, meaning or
termination properties of the partial evaluation process. However, when the
result of partially evaluating the function body would be static, then unfolding
would propagate the concrete value to the call context, thus enabling further
computation.

It may seem safe approach is to fully evaluate a call if all of its arguments are static.
However, consider the function in example 10.1 which samples from a discrete ex-
ponential distribution:

Example 10.1 Function EXPSAMPLEpermits sampling from the exponential distri-
bution:

EXPSAMPLE(p,n) = IF(p<=0.0, ERR("P"),
IF(p<RAND(), EXPSAMPLE(p,n+1), n)

Function EXPSAMPLE(p,n) either terminates immediately (with probability p) or
otherwise performs one more recursive call. Thus EXPSAMPLE(1,1) will return
1 immediately; EXPSAMPLE(0,1) will never return but go into an infinite loop;
EXPSAMPLE(0.5,1) will return 1 with probability 0.5, will return 2 with proba-
bility 0.25, will return 3 with probability 0.0125, and so on, that is, on average will
return 2; EXPSAMPLE(p,1) will on average return 1/p , the mean value of the ex-
ponential distribution with parameter p.

Bytecode resulting from specialization of EXPSAMPLEis shown in example 10.7.

224 Partial evaluation of a sheet-defined function §10.2

When both arguments to EXPSAMPLE(P,N) are static, the arguments of the recur-
sive call will be static too. But since the condition P<RAND() is volatile and will be
residualized, the IF-expression will be residualized too, unfolding of the recursive
function call would go on indefinitely, in an attempt to construct an infinite tree of
conditionals.

A better policy might therefore be: unfold a call with fully static arguments
only if it does not occur under dynamic control, where we say that an expression
is under dynamic control if some conditional (IF , CHOOSE) with dynamic condition
encloses the expression. Whether an expression appears under dynamic control
can be determined by passing a context argument along with the partial evaluation
environment pEnv in the recursive CGExpr.PEval calls.

This will avoid infinite unfolding, only to cause infinite specialization instead, in
an attempt to create an infinite number of specialized versions of EXPSAMPLE.

To avoid this, we can generalize some static arguments, simply by reclassifying
them as dynamic, that is, consider them to be #NA in further specialization. We
will generalize as follows. If, in the process of specializing a sheet-defined function
F, we encounter a recursive call to F(e1,...,en) under static control, then we
specialize F in the recursive call only with respect to those arguments that have the
same constant value in both cases. This generalization in essence means that we
only create simple residual loops, from a residual version of the function back to
itself.

Although this seems draconically conservative, it will serve one large class of
specialization cases well, namely where some static “configuration” or “problem”
parameters are passed to the function initially, and passed on unchanged in all
recursive calls. Such static parameters will be inlined (and possibly cause IF and
CHOOSEexpressions to be reduced) but the part of the control structure that depends
on dynamic parameters will be preserved. The draconic policy can be loosened a
little but permitting specialization with respect to literal constants given in the
function (since there are only finitely many of those) – but it is unclear whether this
is worthwhile in general..

To implement the above policy, we need a partial evaluation context that says
which functions are currently being specialized with respect to which constant ar-
guments, and the value of those arguments, (so we can deal with mutually recursive
functions), and an indication whether the current expression (especially call) is un-
der dynamic control.

A partial evaluation context must tell us (1) whether the expression being par-
tially evaluated is under dynamic control, so we can decide what to do with calls
CGApply or CGSdfCall; (2) which functions are currently being partially evaluated,
so we can recognize recursive calls; (3) the arguments given to the functions cur-
rently being partially evaluated.

Property (1) is a local property of a subexpression of a ComputeCell, determined
by the cell’s evaluation condition and the conditions enclosing that subexpression
in the cell. This notion of context could therefore be represented by an argument
IsDynamicControl passed in as an argument of the PEval method. For an evaluation
condition it is initially false; for the expression in a ComputeCell it is true iff its

§10.2 Partial evaluation of a sheet-defined function 225

evaluation condition is dynamic. For CgIf and CGChoose (and possibly CGAnd and
CGOr) it is determined as one might expect. Note the difference from the partial
evaluation environment pEnv, which grows monotonically while processing the list
of ComputeCells belonging to a given sheet-defined function.

Properties (2) and (3) are somewhat more global. They too could be represented
by a parameter to the PEval methods, but would need much broader scope, namely
not only the partial evaluation of a given sheet-defined function, but a family of such
functions.

Alternatively, we can used the partial evaluation cache to provide this context.
If we register a FunctionValue at the moment we start partially evaluating it, and
record the fact that we have not finished yet (eg simply by not having a Program-
Lines object in the associated Sdf), then we know from the collection of yet unfin-
ished partial evaluations which function calls are “on the stack”. Since we need to
know also the set of (static) parameter vectors with respect to which the function
is being partially evaluated, a more specialized structure might be better (easier,
faster); for instance, one that maps the function name to a set of the static parame-
ter vectors with respect to which it is currently being partially evaluated.

This scheme presupposes a form of depth-first partial evaluation, where the spe-
cialization Fv of function F with respect to argument v does not end until all func-
tions callable from Fv have been specialized. To create recursive residual functions
we need to add the mapping of a function value to its residual function to the resid-
ualization cache before we undertake the actual specialization; that will allow us to
look up the SdfInfo representing its specialization and hence create a recursive call.

Example 10.2 Ackermann’s function is sometimed used to illustrate partial evalu-
ation of recursive functions [61, section 17.3]. It may be defined like this:

ackA(m,n) = IF(m=0, n+1, IF(n=0, ackA(m-1,1), ackA(m-1, ac kA(m, n-1))))

If we assume that mis static and equal to 2, and n is dynamic, then the outer IF is
static and but the inner one is dynamic. Using the generalization strategy outlined
above, we get the following specialized function:

ackA2(n) = IF(n=0, ackA(1,1), ackA(1, ackA2(n-1)))

which basically specializes only with respect to the first value of m, and misses a
lot of optimization opportunities. But to make sure that the specialization of ackA
with respect to static first argument m-1 will terminate, we really need to know
that the first argument is descending and bounded from below (as in several static
termination analyses). For the bound, we really also need to use that mis an inte-
ger and non-negative. This requires a somewhat sophisticated static analysis, or a
combination of static and specialization-time analysis.

The next example shows that by writing the Ackermann function in a slightly dif-
ferent style, we achieve much better specialization.

226 Partial evaluation of a sheet-defined function §10.3

Example 10.3 Now let us define Ackermann’s function like this, pushing the con-
ditional inside the recursive call:

ackB(m,n) = IF(m=0, n+1, ackB(m-1, IF(n=0, 1, ackB(m, n-1))))

Then we get the following much better specialization for m=2static and n dynamic:

ackB2(n) = ackB1(IF(n=0, 1, ackB2(n-1)))
ackB1(n) = ackB0(IF(n=0, 1, ackB1(n-1)))
ackB0(n) = n+1

This is just as we would like it, and what one would get from an off-line partial
evaluator and a binding-time analysis.

10.2.3 More on termination and generalization

[TODO: For online generalization strategies, see Ruf and Weise [101], [123]. Static
termination analysis and homeomorphic embedded hard to use because no tree-
structured data. Some work by James Avery on termination based on numeric con-
ditions.]

[TODO: Poor man’s generalization [54] will not help ensure termination, but
should help keep the number of specialized versions in check, avoiding fruitless and
costly code generation that gives little performance benefit. A precise determination
of which arguments are used to control IF and CHOOSEor even recursive function
calls requires an interprocedural analysis, and the language is higher-order, so not
entirely straightforward.]

10.2.4 Simplification of arithmetic expressions

During partial evaluation it is natural to use mathematical identities to simplify
arithmetical expressions. For instance, e + 0 may be reduced to e. The full list of
reductions, implemented in class CGArithmetics2, is shown in figure 10.1.

Some “obvious” mathematical identities, such as reducing e ∗ 0 to 0, do not in
general preserve spreadsheet semantics because e ∗ 0 will evaluate to an error if e
does, but 0 will not. Nevertheless we have implemented all the listed reductions.
Conversely, it may seem wrong in general to replace eˆ 0 and 1ˆ e with 1, but the
IEEE754 floating-point standard [57, section 9.2.1] does prescribe these identities
for all values of e, even NaN.

When specializing NORMDENSITYGENERALfrom (example 6.4) to µ = 0 and σ = 1,
the arithmetic simplifications in figure 10.1 ensure that the resulting bytecode is
exactly the same as that of the “hand-specialized” NORMDENSITYfunction (exam-
ple 6.4).

§10.3 Specialization examples 227

Original Simplified Note
0 + e −→ e
e+ 0 −→ e
e− 0 −→ e
0− e −→ −e
e ∗ 0 −→ 0 (*)
0 ∗ e −→ 0 (*)
1 ∗ e −→ e
e ∗ 1 −→ e
e/1 −→ e
eˆ 1 −→ e
eˆ 0 −→ 1 IEEE754
1ˆ e −→ 1 IEEE754

Figure 10.1: Some arithmetic simplifications performed during partial evaluation.
Those marked (*) may not preserve spreadsheet semantics. Those marked (*) may
not preserve spreadsheet semantics but agree with the IEEE754 floating-point stan-
dard.

10.3 Specialization examples

Example 10.4 Function MONTHLEN(y,m) computes the length of month min year
y , taking leapyears into account:

MONTHLEN(y,m) =
CHOOSE(m, 31,

28+OR(AND(NOT(MOD(y, 4)), MOD(y, 100)), NOT(MOD(y, 400))),
31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

Specializing this function to a given year, such as 2012, produces a function where
all the logic concerning leapyears has been removed. This is the bytecode for the
specialization of MONTHLEN(2012,NA()) ; note the result 29 of computing 28+1 at
specialization time:

IL_0000: ldarg V_0
IL_0004: call Value.ToDoubleOrNan
IL_0009: stloc.0
IL_000a: ldloc.0
IL_000b: call IsInfinity(Double)
IL_0010: brtrue IL_0150
IL_0015: ldloc.0
IL_0016: call IsNaN(Double)
IL_001b: brtrue IL_0150
IL_0020: ldloc.0
IL_0021: conv.i4
IL_0022: ldc.i4 1
IL_0027: sub

228 Specialization examples §10.3

IL_0028: switch (IL_006c, IL_007f, IL_0092, IL_00a5, IL_0 0b8, IL_00cb,
IL_00de, IL_00f1, IL_0104, IL_0117, IL_012a, IL_013d)

IL_005d: ldc.i4 5
IL_0062: call ErrorValue.FromIndex(Int32)
IL_0067: br IL_014b
IL_006c: ldc.r8 31
IL_0075: call NumberValue.Make(Double)
IL_007a: br IL_014b
IL_007f: ldc.r8 29
IL_0088: call NumberValue.Make(Double)
IL_008d: br IL_014b
IL_0092: ldc.r8 31
IL_00ae: call NumberValue.Make(Double)
... and so on for April through November ...
IL_0138: br IL_014b
IL_013d: ldc.r8 31
IL_0146: call NumberValue.Make(Double)
IL_014b: br IL_015a
IL_0150: ldc.i4 2
IL_0155: call ErrorValue.FromIndex(Int32)
IL_015a: ret

On the other hand, specializing MONTHLENto a fixed month mwill either leave only
the leapyear logic, eliminating the switch (when mis 2), or eliminate both that logic
and the switch (when mis not 2). Here is the residual function for MONTHLEN(NA(),3) :

IL_0000: ldc.r8 31
IL_0009: call NumberValue.Make(Double)
IL_000e: ret

Example 10.5 Function REPT4(s,n) from example 9.1, which computes string s
concatenated with itself n times, can be specialized with respect to a given string s
or with respect to a given number n.

Specialization with respect to a given string, as in REPT4("abc",NA()) , achieves
nothing useful. The bytecode for the resulting specialized function is nearly idential
to that for the original REPT4. Both are 123 bytecode instructions long (some of
which implement evaluation conditions), and identical except that the specialized
function loads the string "ABC" from a table of string values, whereas the original
one takes it from the first function argument.

Specialization with respect to a given n, as in RESIDUAL(NA(),7) , is much more
interesting. Since the value of n determines the control flow, parameter n as well as
all tests on it will be eliminated. The result is not one but four specialized functions,
corresponding to the values of n encountered in the recursive calls, namely 7, 3, 1
and 0.

This is REPT4(#NA,7)#201 :

IL_0000: ldsfld SdfManager.sdfDelegates

§10.3 Specialization examples 229

IL_0005: ldc.i4 202
IL_000a: ldelem.ref
IL_000b: castclass System.Func‘2[Value,Value]
IL_0010: ldarg V_0
IL_0014: call Invoke
IL_0019: stloc.3
IL_001a: ldarg V_0
IL_001e: ldloc.3
IL_001f: call Function.ExcelConcat
IL_0024: ldloc.3
IL_0025: call Function.ExcelConcat
IL_002a: ret

That function computes s7 for any string s . It does so by calling function #202
to compute s3 and concatenates s with that result, twice. Function #202 is the
automatically generated specialization of REPT4(#NA,3)#202 :

IL_0000: ldsfld SdfManager.sdfDelegates
IL_0005: ldc.i4 203
IL_000a: ldelem.ref
IL_000b: castclass System.Func‘2[Value,Value]
IL_0010: ldarg V_0
IL_0014: call Invoke
IL_0019: stloc.3
IL_001a: ldarg V_0
IL_001e: ldloc.3
IL_001f: call Function.ExcelConcat
IL_0024: ldloc.3
IL_0025: call Function.ExcelConcat
IL_002a: ret

It in turn calls function #203 which is REPT4(#NA,1)#203 :

IL_0000: ldsfld SdfManager.sdfDelegates
IL_0005: ldc.i4 204
IL_000a: ldelem.ref
IL_000b: castclass System.Func‘2[Value,Value]
IL_0010: ldarg V_0
IL_0014: call Invoke
IL_0019: stloc.3
IL_001a: ldarg V_0
IL_001e: ldloc.3
IL_001f: call Function.ExcelConcat
IL_0024: ldloc.3
IL_0025: call Function.ExcelConcat
IL_002a: ret

And finally, that in turn calls function #204 which is REPT4(#NA,0)#204 ; the func-
tion that computes s0, that is, the empty string:

230 Specialization examples §10.3

IL_0000: ldsfld TextValue.EMPTY
IL_0005: ret

Whereas calling the original function REPT4("abc",7) takes 1200 ns/call, calling
the specialized REPT4(#NA,7) on argument "abc" takes only 524 ns/call. Further
speedup could be achieved by inlining the calls to the auxiliary specialized functions.

Example 10.6 To illustrate multistage specialization, consider the three-argument
function ADD3(x,y,z) :

ADD3(x,y,z) = x+y+z

The original bytecode for ADD3is this:

IL_0000: ldarg V_0
IL_0004: call Value.ToDoubleOrNan
IL_0009: ldarg V_1
IL_000d: call Value.ToDoubleOrNan
IL_0012: add
IL_0013: ldarg V_2
IL_0017: call Value.ToDoubleOrNan
IL_001c: add
IL_001d: call NumberValue.Make(Double)
IL_0022: ret

The function ADD3(11,#NA,#NA)#20 resulting from specializing ADD3to its first
argument being 11 is this two-argument function:

IL_0000: ldc.r8 11
IL_0009: ldarg V_0
IL_000d: call Value.ToDoubleOrNan
IL_0012: add
IL_0013: ldarg V_1
IL_0017: call Value.ToDoubleOrNan
IL_001c: add
IL_001d: call NumberValue.Make(Double)
IL_0022: ret

The function ADD3(11,NA(),NA())#20(23,#NA)#21 resulting from further spe-
cializing that function to its first (remaining) argument being 23 is this one-argument
function:

IL_0000: ldc.r8 34
IL_0009: ldarg V_0
IL_000d: call Value.ToDoubleOrNan
IL_0012: add
IL_0013: call NumberValue.Make(Double)
IL_0018: ret

§10.3 Specialization examples 231

Finally, the function ADD3(11,NA(),NA())#20(23,#NA)#21(32)#22 resulting from
specializing the above function to its last (remaining) argument being 32 is this
zero-argument function:

IL_0000: ldc.r8 66
IL_0009: call NumberValue.Make(Double)
IL_000e: ret

The execution times of the above four functions are the following: 52, 44, 38, 29
ns/call. Much of this cost, roughly 17 ns/call, arises not from parameter passing,
parameter unwrapping, of the addition operations, but from the final wrapping of a
floating-point result as a NumberValue object.

Example 10.7 Specializing EXPSAMPLE(0.15,1) from example 10.1 gives a resid-
ual function, even though all arguments are static, because the original function
involves the volatile RAND() function:

IL_0000: call ExcelRand()
IL_0005: ldc.r8 0.15
IL_000e: bge IL_001d
IL_0013: ldsfld NumberValue.ONE
IL_0018: br IL_0043
IL_001d: ldsfld SdfManager.sdfDelegates
IL_0022: ldc.i4 26
IL_0027: ldelem.ref
IL_0028: castclass System.Func‘2[Value,Value]
IL_002d: ldc.r8 2
IL_0036: call NumberValue.Make(Double)
IL_003b: tail.
IL_003d: call Invoke(Value)
IL_0042: ret
IL_0043: ret

The original EXPSAMPLEfunction calls itself recursively with arguments (0.15,2) ,
where the static argument 2 differs from the previous value 1. Since the recursive
call is under dynamic control (section 10.2.2) the second argument gets generalized
to #NA, so the recursive call becomes a call to the specialization of EXPSAMPLE(0.15,#NA) .
The call appears above as a call to function #26 , and that residual function has this
bytecode:

IL_0000: call ExcelRand()
IL_0005: ldc.r8 0.15
IL_000e: bge IL_001c
IL_0013: ldarg V_0
IL_0017: br IL_004c
IL_001c: ldsfld SdfManager.sdfDelegates
IL_0021: ldc.i4 26

232 Perspectives and future work §10.4

IL_0026: ldelem.ref
IL_0027: castclass System.Func‘2[Value,Value]
IL_002c: ldarg V_0
IL_0030: call Value.ToDoubleOrNan(Value)
IL_0035: ldc.r8 1
IL_003e: add
IL_003f: call NumberValue.Make(Double)
IL_0044: tail.
IL_0046: call Invoke(Value)
IL_004b: ret
IL_004c: ret

This residual function calls itself recursively, as function #26 .

10.4 Perspectives and future work

It would be desirable to have a better generalization strategy, especially one whose
termination properties are well understood. Also, there generation of useless spe-
cializations should be prevented. As a less desirable alternative, there could be
mechanisms to interactively control and tame excess generation of specialized func-
tions. For instance, there might simply be a way to turn of specialization once a
certain number of specialized functions has been generated.

When the specialization process terminates, one may ask whether the resulting
specialized function is correct. This clearly depends on the expected semantics of
sheet-defined functions, which in turn depends on the expected semantics of spread-
sheet computations. This is mostly obvious, with the exception of (1) error values
and their propagation, and (2) the meaning of volatile functions such as RAND() and
NOW(). We believe our treatment of these, described in section 10.2.1, is sensible,
but would like to have a formal semantics with which to underpin this claim.

Chapter 11

Extensions and projects

This chapter lists possible extensions to Corecalc and Funcalc, and projects that
could be undertaken based on the prototype. The list includes both minor improve-
ments and more radical changes.

11.1 Parallelization

Shared memory multiprocessors (SMP) are now standard on desktop and laptop
computers, offering cheap multiple instruction stream multiple data stream (MIMD)
parallel computing. Also, widely available high-performance graphics processors
(GPUs) now have double precision floating-point units, offering cheap single-instruction
multiple-data (SIMD) parallel computing, as well as heterogeneous computing plat-
forms such as game consoles with Cell-style multiprocessors, or even FPGA-based
“soft hardware” architectures.

Moreover, a number of fairly portable programming interfaces to these plat-
forms exist, such as Microsoft’s Task Parallel Library (basically namespace Sys-
tem.Threading.Tasks in the .NET library [75]) for multicore machines, as well as
OpenCL [50] and Nvidia CUDA [104] for general purpose graphics processors. Since
Funcalc is implemented in C# on the .NET platform, the Accelerator framework
[114, 96] from Microsoft Research is of particular interest for interfacing to graph-
ics processors.

Because parallelism is quite explicit in spreadsheets present quite, it is rela-
tively easy to schedule their computations for efficient parallel execution. This is
in contrast to programs written in C, C++, Fortran, Java, C# and similar general
languages, where the parallelism is only implicit. In such languages a paralleliz-
ing compiler must untangle essential sequentiality (needed to make an algorithm
work correctly) from accidental sequentiality (introduced by the imperative execu-
tion paradigm of the language). To do this, the compiler must discover the absence
of loop-carried dependencies, and rely on alias analyses to detect when destructive
updates and reads cannot interfere with each other.

233

234 Parallelization §11.1

Lazy functional languages have some of the same qualities as spreadsheets in
this regard, but in general it is difficult to statically predict which subexpressions
need to be evaluated, and therefore difficult to allocate large chunks of computation
to processing units. Also, while lazy functional languages do not perform arbitrary
updates to memory, they do overwrite closures with computed values, which further
complicates efficient scheduling on multiprocessor machines.

Using spreadsheets as a means to exploit parallel computers is an old idea. Al-
ready in 1984 Mani Chandy proposed this in his invited address “Concurrent pro-
gramming for the masses” [21], but the necessary hardware has only recently be-
come cheap and widespread enough to make this a truly practical proposition. In-
deed, if parallelization is near automatic and performance is adequate, spreadsheets
would become an even better framework for scientific and financial simulation [5].

An explicit support graph (chapter 4) should help scheduling of operations on
ordinary sheets. There is some prior work in this direction, notably Andrew Wack’s
1995 PhD thesis [121] which proposes a graph partitioning algorithm that allo-
cates computation chunks to shared memory machines or to networked worksta-
tions (more realistic at the time), based on a communication cost model. Also the
work by Yirsaw Ayalew on compiling spreadsheets to FPGA code should be relevant
[66].

Sheet-defined functions may play an interesting role in parallelization: since a
function may be called thousands of times in each recalculation, it is a more in-
teresting target for optimal parallelization than an ordinary spreadsheet formula,
which is evaluated at most once in each recalculation. Evaluation conditions, and
logical implications between evaluation conditions, may help with scheduling deci-
sions: which

Some questions to be addressed are:

• “Global” parallelization for ordinary sheets, which may exhibit much “embar-
rasingly parallel” computation, as well as complex dependencies. For example,
a formula (possibly involving calls to sheet-defined functions) may be copied
1,000 times over a row, and each row’s computation may be independent of
all the other rows (but possibly contribute to a common sum in the end). For
another example, a sheet-defined formula may be tabulated over 1,000 values,
producing an array of results, which is then postprocessed in some way. In
both cases, we have 1,000 computations that can proceed in parallel.

• “Local” parallelization for non-recursive sheet-defined functions (including func-
tions that call other non-recursive sheet-defined functions). Here it is fairly
easy to give lower and upper bounds for the amount of computation incurred
by an execution of the function, and by each part of it, and to give an up-
per bound on the amount of global memory (cell areas on ordinary sheets) the
function may need to access.

• Parallelization for recursive sheet-defined functions. Although it might be pos-
sible to estimate, given the numeric value or array size of an input parameter,

§11.3 Moving and copying cells 235

the total amount of computation performed by the function, this is more dif-
ficult and might lead to some of the same complexities as parallelization of
general programming languages. Hence, for a first approximation, we shall
refrain from that.

• Parallelization for array computations. Each such operation may exhibit a
large amount of parallelism, specific that operation, such as map, filter, matrix
multiplication, or matrix inversion.

• Which computations may be performed in parallel, because they do not have
dependencies on each other.

• Which computations must be scheduled sequentially, because they do have
dependencies on each other.

• Which computations should be performed only conditionally, because the eval-
uation condition depends on something that needs to be computed first. Such
computations may be performed speculatively too, if there are spare compu-
tation resources, the evaluation decision becomes known only late, and the
conditionally needed computation is on the critical path to the output.

11.2 Moving and copying cells

• Check that a formula about to be edited, or about to be cut (Ctrl-X), or about
to be copied into or pasted into, is not part of an array formula.

• Before copy and move operations on a cell or cell area, one can inspect the cell
or the cell area’s border cells for array formulas; if any array formula straddles
the border, the copy or move should be rejected.

• Before row or column insertion, check whether the insert would split an array
formula, and reject the operation in that case.

• Before a row or column deletion, one should check whether the deletion would
affect an array formula, and reject it in that case.

• Moving of formulas is not fully implemented: The adjustment of references
previously to the donor cell has not been implemented. Implementing it should
preserve the sharing of virtual copies of formulas.

• Maybe implement a general sharing-preservation mechanism (hash-consing
style) instead of handling all the cases individually?

11.3 Interpretive evaluation mechanism

• Add new “efficient” specialized subclasses to Expr. For instance, arithmetic
operators such as + could be represented by separate classes rather than the

236 Other project ideas §11.5

general FunCall class, thus avoiding argument array creation, delegate calls
and other runtime overhead.

• Also, one could perform type checks while building such specialized expression
representations, thus avoiding the overhead of building NumberValue wrap-
pers and allocating them.

• However, inter-cell type checks arising from this would require invalidation
of such an “efficient” expression when cells that it depends on are edited to
contain a different type of value. An explicit support graph would enable the
system to efficiently find the cells possibly affected by such an edit operation.

• The support graph enables further optimizations to the evaluation mecha-
nism, see section 5.5. Assuming an acyclic support graph, one can schedule
recalculation so that the evaluation of each cell can assume that any cell it
refers to has already been evaluated. This means that the generated code can
avoid some checks, which would seem to open new opportunities for inlining
and generation of efficient (real) machine code at the JIT compiler level.

• Implement support for very large but sparse sheets. For instance, instead of
using a single two-dimensional array of cells, use a more clever data structure.

• We should have more benchmarks on more realistic workbooks, containing a
richer mixture of dependency types and dependency directions.

11.4 Graphical user interface

• Add support for key-based navigation, and for using arrow keys or mouse
pointing to mark cells or areas.

• Make the user interface more complete, to support more of the non-patented
features from Microsoft Excel. Test it systematically.

11.5 Other project ideas

• Formalize a semantics for spreadsheets. Such a formalization should probably
include a logical specification of sheet (and workbook) consistency after recal-
culation, as well as a more operational specification of what actions must lead
to a recalculation. The semantics should avoid modelling how recalculation
is performed, leaving the implementation as much latitude in this respect as
possible. It should build on and flesh out the informal principles laid out in
section 6.5.

• Augment the Corecalc source code with non-null specifications, exception spec-
ifications, invariants, and pre- and post-specifications using Spec# [110] or
similar.

§11.5 Other project ideas 237

• Implement import of other workbook formats, such as Open Document Format
[42] or Office Open XML (see Ecma [35] TC45).

• To handle named sheets, add an IDictionary〈String,Sheet〉 to class Workbook.

• To handle (absolute) named cells and cell areas as in Excel, Gnumeric, and
OpenOffice, each sheet or workbook should maintain a mapping from cell
names to cell addresses and a mapping from cell areas names to cell areas
IDictionary〈String,CellAddr〉 or IDictionary〈String,Pair〈CellAddr,CellAddr〉〉map-
ping to class Sheet.

• Currently a cell formula (and hence a function call) can evaluate to an array
of values, which may be represented explicitly or be a view of part of a sheet
in the workbook. A more general idea is to let a cell contain an actual sheet,
including formulas that may be inspected and edited. While this surely opens
new possibilities, it seems to go counter to the general goal of maintaining a
relatively familiar conceptual model.

• Add serious matrix algebra functions, or create an interface to them using
sheet-defined functions and EXTERNcalls. It would be reasonable to build on
the MathNet.Numerics [1] library which appears to be of high quality, building
on Lapack, and actively maintained.

• Add serious statistics functions, or create an interface to them using sheet-
defined functions and EXTERNcalls, presumably by translating Java code from
the CERN Colt library [24], other Java code at NIST Java Numerics [86], or
code from Statlib. Consider also the results of McCullough’s comparison be-
tween Excel and Gnumeric statistical functions [73].

• Find or implement a good SOLVEfunction to perform optimization in multi-
ple dimensions, possibly as a sheet-defined function. Linear programming,
possibly bounded optimization problems, possibly non-linear problems, and
possibly integer problems. This makes for sheets that have high computa-
tional demands, and for which a support graph-based minimal recalculation
mechanism would be extremely valuable. Possibly base it on the Java code
from http://www1.fpl.fs.fed.us/optimization.html, or directly on Fortran Min-
pack code from Netlib [83] that must then be translated to C#, or on some
BFGS implementation.

238 Other project ideas

Appendix A

Funcalc user manual

Funcalc 2011 is a spreadsheet implementation that supports sheet-defined func-
tions: functions created using ordinary formulas and cell references, no external
language.

Figure A.1: Ordinary sheet. Cells D2:D7 call sheet-defined function TRIAREA.

Figure A.2: Function sheet, values view. Figure 6.1 shows the underlying formulas.

A sheet-defined function may be invoked from a formula simply by writing its
name and a list of arguments, as in =TRIAREA(A2, B2, C2) ; see figure A.1 cell
D2. The TRIAREA function is defined in a function sheet, using standard spread-
sheet formulas and cell references; see figure A.2. More examples of sheet-defined
functions can be found in section 6.2.

239

240 Funcalc features

A.1 Funcalc features

The currect version of Funcalc has the following features:

• A reasonably fast core spreadsheet implementation, using a support graph for
minimal recalculation after any cell update.

• Many of the built-in operators and functions known from Excel are avail-
able, including array formulas. Moreover, some functions from Excel, such
as SUMIF, have been considerably generalized in Funcalc, using higher-order
functions.

• External .NET instance methods and static methods may be called from for-
mulas with very low overhead; this makes the entire .NET class library acces-
sible from the spreadsheet formulas and from sheet-defined functions.

• Excel workbooks saved in the Excel 2003 XMLSS format (.xml files) may be
imported fast. Excel formats, pivot tables and so on are ignored.

• Additional functions may be defined (with function DEFINE, page 253) without
resorting to any external programming language; only standard spreadsheet
concepts are needed. Such functions are compiled to very efficient .NET byte-
code at runtime. If any part of such a user-defined function is edited, it will
automatically be recompiled, and the workbook will be recalculated.

• A user-defined function may be turned into a closure (with function CLOSURE,
page 252) which is a value exactly like the other kinds of spreadsheet values: a
number, a text, an external object, an error value, or an array of values. Thus
Funcalc supports higher-order functions as well as nested values, just like any
proper (dynamically typed) functional languages.

• User-defined functions may be mutually recursive (within the same function
sheet), and tail calls to known functions are executed in constant space. Hence
unbounded iteration is possible, even without loops.

• A user-defined function may be automatically specialized, or partially evalu-
ated, with respect to known values of some arguments, to obtain a faster ver-
sion of the function (function SPECIALIZE , page 253). A specialized function
can be used in exactly the same ways as other sheet-defined functions.

• Funcalc includes facilities for benchmarking workbook recalculation (menu
Benchmarks, page 244), for benchmarking individual sheet-defined functions
(function BENCHMARK, page 252), and for inspecting the CIL bytecode gener-
ated for a sheet-defined function (menu Tools > SDF , page 243).

This user manual is intended for those who wish to experiment with the Funcalc
prototype and investigate its inner workings. The manual and the implementation
are not suitable for general spreadsheet end-users.

Funcalc features 241

A.1.1 Installing Funcalc

Funcalc consists of a .NET executable funcalc.exe and two .NET external li-
braries ILReader.dll and ILVisualizer.dll implementing bytecode inspection [70].
The total size of the binaries is around 300 KB. The Funcalc binary is compiled
for .NET version 4.0, which can be obtained as the .NET 4.0 redistributable [75]. It
may also be possible to build Funcalc from sources on the Mono .NET implementa-
tion [80].

A.1.2 Ordinary sheets and function sheets

In Funcalc, ordinary formulas are evaluated interpretively as in Corecalc, whereas
sheet-defined functions are compiled to efficient .NET bytecode and therefore exe-
cuted more efficiently.

We distinguish between ordinary sheets and function sheets. An ordinary sheet
may contain data and formulas, but no definitions of sheet-defined functions, and
no references to cells on function sheets. An ordinary sheet is shown with gray row
and column headers. A function sheet may contain data and formulas as well as
definitions of sheet-defined functions, and may refer to ordinary sheets but not to
other function sheets; it has pink row and column headers.

In other words, there can be no references from other sheets into a function
sheet, except that sheet-defined functions in the function sheet can be called, of
course. One advantage of this is that there cannot be external references to the
cells used by a sheet-defined function.

Within Funcalc, a sheet-defined function can be defined by experimenting with
formulas on a function sheet, and once the formulas are satisfactory, they can be
turned into one or more sheet-defined functions.

A.1.3 User interface

Funcalc has a rudimentary user interface, that allows the creation of workbooks
containing ordinary sheets and function sheets, entry of data and formulas, def-
inition of sheet-defined functions, recalculation, and benchmarking. There is no
mechanism for saving a workbook. The most convenient way to experiment with
sheet-defined functions therefore is:

• Use Excel to create and edit a workbook.

• Save the workbook in XMLSS format from Excel using File > Save As >
Save as type > XML Spreadsheet (* .xml) .

• The workbook must be closed from Excel using File > Close or Ctrl+F4
before it can be opened in Funcalc. Otherwise Windows complains that the
workbook file is already used by another program.

242 Funcalc features

• Load the workbook into Funcalc using File > Import Workbook or Ctrl+O.
A worksheet whose name begins with an at-sign (@) is considered a function
sheet; all other sheets are considered ordinary sheets.

• There are a few limitations to the use of Excel as “editor” for Funcalc work-
books. Namely, if the name of a sheet-defined function, such as ISODDhappens
to coincide with one from an Excel plugin library, then it may be rendered as
ATPVBAEN.XLA!ISODDor similar in the XML file, which confuses Funcalc.

The Funcalc user interface offers the following menu points:

• File or Alt+F

– File > Import Workbook or Ctrl+O: Loads a workbook from file in
XMLSS format (* .xml). This discards, without warning, any workbook
already loaded.

– File > Exit or Alt+F4: Terminates Funcalc without saving anything.
It is currently not possible to save anything from Funcalc.

• Edit or Alt+E: Excel-style operations on formulas in cells, with adjustment of
relative references within the formulas.

– Edit > Copy or Ctrl+C: Mark one cell whose contents is to be copied.

– Edit > Cut or Ctrl+X: Delete cell contents and enable pasting it into
another cell. [Not implemented]

– Edit > Paste or Ctrl+V: Copy or paste into the one or more marked
cells.

– Edit > Delete or Del: Delete cell contents. [Currently can delete only
one cell at a time].

• Insert or Alt+I

– Insert > New sheet or Ctrl+N: Inserts a new ordinary sheet (with 20
columns and 1000 rows) after the existing sheets.

– Insert > New function sheet or Ctrl+N: Inserts a new function sheet
after the existing sheets.

– Insert > Column : Inserts a new column before the cell that has focus,
adjusting references to all cells that get shifted right as a consequence of
the insertion.

– Insert > Row : Inserts a new row before the cell that has focus, adjust-
ing references to all cells that get shifted down as a consequence of the
insertion.

• Tools or Alt+T

Funcalc features 243

– Tools > Recalculate or F9 for a standard recalculation: Recalculate
only cells that depend on volatile built-ins (such as RAND() or NOW) or
volatile user-defined or external functions.

– Tools > Recalculate full or Ctrl+Alt+F9: Recalculate all cells in
the workbook.

– Tools > Recalculate full rebuild or Ctrl+Alt+Shift+F9: Rebuild
the support graph then recalculate all cells in the workbook.

– Tools > Reference format : Determine how cell and area references
should be displayed. The standard Excel and Funcalc display format is
A1; the XMLSS files use R1C1; and Corecalc and Funcalc use C0R0 inter-
nally. See section 1.3 for a definition of the A1, C0R0 and R1C1 formats.

– Tools > Show formulas : Toggles between showing cells’ values (the
default) and showing their formulas. Use this to investigate the anatomy
of a sheet-defined function, or to make screenshots of function definitions
with Alt+PrtSc.

– Tools > Regenerate all SDF : Recompiles all existing sheet-defined
functions. Each function retains its index into the table of sheet-defined
functions, but the bytecode at that index is regenerated.

– Tools > SDF or Ctrl+I: Opens a dialog that shows an alphabetical list of
all sheet-defined functions. Double-clicking a function in the list switches
to the function sheet on which it is defined, and scrolls to its definition.
Press the “Show bytecode” button to open a window that shows the func-
tion’s IL code. The window is readonly and modal, so you cannot interact
with Funcalc while the window is open; to close it press ESC or Alt+F4.

• Audit : Traces the precedent and dependent cells for a given cell, that is, the
cells to which it refers and the cells that refer to it. A precedent cell is indicated
by an arrow pointing from the precedent cell; a dependent cell is indicated by
an arrow pointing to the dependent cell. Precedents and dependents on other
sheets are currently not shown.

– Audit > More precedents or Ctrl+P extends the trace of arrows from
precedent cells to this one (and from their precedents to them and so on).

– Audit > Fewer precedents or Ctrl+Shift+P shrinks the trace of ar-
rows pointing from precedent cells.

– Audit > More dependents or Ctrl+D extends the trace of arrows point-
ing to dependent cells (and further to their dependents and so on).

– Audit > Fewer dependents or Ctrl+Shift+D shrinks the trace of ar-
rows pointing to dependent cells.

– Audit > Erase arrows or Ctrl+E erases all arrows from precedents
and to dependents. Changing focus to another cell or switching to another
sheet also erases all arrows.

244 Funcalc features

• Benchmarks or Alt+B: Use the textbox to specify the number of recalculations
to perform for benchmarking. Then choose one of the following:

– Click Benchmarks > Standard recalculation to measure the aver-
age wall-clock time for a standard recalculation of the workbook (as if
requested by F9).

– Click Benchmarks > Full recalculation to measure the average wall-
clock time for a full recalculation of the workbook (as if requested by
Ctrl+Alt+F9).

– Click Benchmarks > Full recalculation rebuild to measure the
average wall-clock time for a support graph rebuild followed by a full re-
calculation of the workbook (as if invoked by Ctrl+Alt+Shift+F9).

To benchmark the code for a single sheet-defined function (and the sheet-
defined functions it calls), use instead the BENCHMARKbuilt-in function; see
section A.2.3 below.

• Help > About : Display version number and other elementary information
about Funcalc.

The status line below the Funcalc cell grid shows the current reference format (A1,
C0R0, or R1C1); the current memory consumption, which may fluctuate due to
garbage collection; the number of recalculations performed so far; and the wall-clock
time consumed by the most recent recalculation (or the average of recalculations af-
ter a benchmarking).

If there is cyclic dependency in the workbook, then the status line will give the
address and formula of one cell involved in the cycle, and that cell will be marked
with an error symbol in the cell grid.

If an interactively edited cell has a syntax error, then an error dialog will be
shown and you must edit the cell until it is correct, or cancel the edit by pressing
ESC.

A.1.4 Array formulas

Like Excel, Funcalc supports array formulas, which display an array of values over
a range of individual cells. To create an array formula within an ordinary sheet,
selectio a cell area, type in an array-valued formula (such as a cell area reference
A1:B2, or TRANSPOSE), then finish the formula by typing Ctrl+Shift+Enter instead
of Enter. Array formulas are not available within sheet-defined functions, but array-
valued expressions are available, and sheet-defined functions can take array values
as argument, can compute with array values, and can return array values.

Built-in functions 245

A.2 Built-in functions

Funcalc offers many built-in functions known from Excel (section A.2.2), as well as a
few special functions for defining and using sheet-defined functions (section A.2.3).
In addition, it is easy and efficient to call external .NET functions (section A.2.4).

Finally — and this is one of the main objectives of this work — many functions
and tools from Excel can be defined by the user as sheet-defined functions within
Funcalc, and often in a more general, robust or efficient way. For instance, sec-
tion 6.2 shows that one can use sheet-defined functions to create analogs of Excel’s
NORMSDIST, REPT, MATCH, HLOOKUPand VLOOKUPfunctions, as well as the Goal
Seek and Data Table tools.

The logical value false is represented by the number 0.0, and true by any non-
zero number, typically 1.0.

A.2.1 Funcalc built-in operators

These operators are mostly as in Excel, except when the (+) operator is applied to
a number and a quoted text, Excel will try to interpret the text as a number and
perform the addition; Funcalc will not. Also, in Funcalc the comparisons (=, <>, <,
<=, >=, >) currently only work on numbers, not texts or other values. To determine
the equality of general Funcalc values, use EQUAL(v1,v2) .

• x ˆ y returns xy , that is, x to the power y . Unlike in Excel, 0ˆ0 gives 1, as
required by IEEE754 [57].

• x * y returns x times y .

• x / y returns x divided by y .

• x + y returns x plus y .

• x - y returns x minus y .

• s & t returns the text concatenation of the values s and t , converting s and
t to text first, if necessary.

• x < y returns true if x is less than y , and returns false if x is not less than
y . Currently works only for numbers, not texts; this is the case for the other
comparisons also.

• x <= y returns true if x is less than or equal to y , and returns false if x is not
less than or equal to y .

• x >= y returns true if x is greater than or equal to y , and returns false if x is
not greater than or equal to y .

• x > y returns true if x is greater than y , and returns false if x is not greater
than y .

246 Built-in functions

• x = y returns true if x equals y , and returns false if x does not equal y .

• x <> y returns true if x is different from y , and returns false if x is not differ-
ent from y .

A.2.2 Funcalc built-in standard functions

These built-in functions are mostly in Excel, although with function-related im-
provements in COUNTIFand SUMIF. All operators and functions propagate errors
from their arguments to the result, even comparisons. Non-strict functions such as
AND, OR, IF and CHOOSEpropagate errors only from the arguments that are actually
evaluated.

• ABS(x) returns the absolute value of x . As in Excel.

• ASIN(x) returns the arc sine of x , in radians. As in Excel.

• ACOS(x) returns the arc cosine of x , in radians. As in Excel.

• AND(e1, e2, ..., en) returns the logical “and” (conjunction) of e1 , . . . , en .
More precisely, it returns true if n is 0. If n>0 , it evaluates e1 and returns false
if the result was false, returns AND(e2, ..., en) if the result was true, and
returns an error if the result was an error. Note that unlike Excel, the case
n=0 is legal and works as intended, and that if some ej evaluates to false, the
final result is false, even if some subsequent ei with i>j would have produced
an error.

• ATAN(x) returns the arc tangent of x , in radians. As in Excel.

• ATAN2(x,y) returns ATAN(y/x) taking signs of x and y into account. As in
Excel.

• AVERAGE(e1, ..., en) returns the average of the values of e1 , . . . , , where
each ei may evaluate to a number or an array, which is then processed recur-
sively. Returns a numerical error if the average is taken over zero numbers.
When used within a sheet-defined function, any array-valued arguments and
ranges must refer to ordinary sheets. Generalizes the corresponding Excel
function.

• CONSTARRAY(v, rows, cols) returns an array with rows rows and cols
columns, all of whose elements are the value v . Returns error value #SIZE if
cols or rows is negative.

• CEILING(x, signif) returns the nearest multiple of signif that is equal
to or larger than x when signif is positive (that is, rounds towards plus in-
finity); and returns the nearest multiple of signif that is equal to or smaller
than x when signif is negative (that is, rounds towards minus infinity). Re-
turns NumError when signif is 0.0. Almost as in Excel.

Built-in functions 247

• CHOOSE(e0, e1, e2, ..., en) evaluates e0 to a number and truncates it
to an integer i ; then evaluates ei and returns the value if 1<=i<=n ; otherwise
returns error value #VALUE! . As in Excel.

• COLMAP(fv, arr) calls function value fv on each column arr[-,j] of the
array arr and returns a new array containing the values of fv(array[-,j]) .
The resulting array will have one row and the same number of columns as arr .
Returns ArgType error if fv is not a function, and returns ArgCount error if
the arity of fv is different from ROWS(arr) . The COLMAPfunction does not
exist in Excel.

• COLUMNS(arr) evaluates arr to an array and returns its number of columns.
As in Excel.

• COS(x) returns the cosine of x , with x in radians. As in Excel.

• COUNTIF(fv, arr) applies the fv predicate to all values in the array arr
and returns the number of times it returns true. The predicate fv must be a
one-argument function value that returns a number. This considerably gener-
alizes Excel’s COUNTIF, which allows only restricted forms of predicates. When
used within a sheet-defined function, the array argument must refer to an or-
dinary sheet.

• EQUAL(v1, v2) returns 1 (that is, true) if value v1 and v2 are equal, other-
wise 0 (that is, false). This works for numbers, strings, arrays and function
values, in contrast to the “=” operator, which works only for numbers. Returns
an error value if any of v1 and v2 is an error; hence cannot be used to compare
error values.

• ERR("message") produces an error value such as #ERR: message ; the given
message must be a text constant. This allows sheet-defined functions to return
custom errors.

• EXP(x) returns ex, that is, e = 2.71828 . . . raised to the power x . As in Excel.

• EXTERN("nameAndSignature", e1, ..., en) evaluates e1 , . . . , en to val-
ues v1...vn , where n >= 0 , and calls the external .NET method with the
given name and signature on these argument values. The method may be an
instance method or a static method. External calls are particularly fast inside
sheet-defined functions, but even in an interpreted ordinary sheet, they are
much faster than Excel-to-VBA calls. See section A.2.4 below for more informa-
tion about EXTERN. The EXTERNfunction is intended for calling external func-
tions whose results are completely determined by their arguments and that
have no external effects; for other external functions, use VOLATILIZE(EXTERN(...)) .

• FLOOR(x, signif) returns the nearest multiple of signif that is equal to
or smaller than x when signif is positive (that is, rounds towards minus in-
finity); and returns the nearest multiple of signif that is equal to or greater

248 Built-in functions

than x when signif is negative (that is, rounds towards plus infinity). Re-
turns an NumError when signif is 0.0. Almost as in Excel.

• HARRAY(e1, ..., en) returns a horizontal array whose elements are the
values v1...vn of the arguments. The resulting array has one row and n
columns. In particular, any array value among v1...vn is simply inserted as
an element of the resulting array; unlike in HCAT(e1, ..., en) its columns
are not made into columns of the resulting array.

• HCAT(e1, ..., en) horizontally concatenates the values v1...vn of the ar-
guments (side-by-side), returning an array value. Each ei must either evalu-
ate to an atomic value or to an array value. All array values among v1...vn
must have the same number of rows. An atomic value among v1...vn will be
replicated to make a one-column array with that number of rows.

• HSCAN(fv, c1, n) creates an (n+1) column matrix whose first column is
c1 , whose second column is fv(c1) , and whose i ’th column is fv (i−1)(c1)
where i is 1, . . . , n + 1. Argument c1 must a one-column array. Function fv
must preserve the length of its argument, that is, ROWS(fv(x)) must equal
ROWS(x).

• IF(e1, e2, e3) evaluates e1 ; if the result of e1 is true, evaluates e2 and
returns the result; if the result of e1 is false, evaluates e3 and returns the
result. As in Excel.

• INDEX(arr, row, col) evaluates row and col to numbers and truncates
them to an integer row number r and an integer column number c . Then
returns the value of the cell at row r , column , in the array value arr , with
base offset 1. Returns 0.0 for empty array cells. Returns error #REF! unless 1
<= r <= ROWS(arr) and 1 <= c <= COLUMNS(arr) . When using INDEX
on a function sheet, arr must be a cell area in an ordinary sheet. As in Excel,
but cannot be used to retrieve whole rows or columns; use SLICE instead.

• ISARRAY(e) evaluates e and returns true if the result is an array, false oth-
erwise.

• ISERROR(e) evaluates e and returns true if the result is an error, false other-
wise. As in Excel.

• LN(x) returns the natural (base e = 2.71828 . . .) logarithm of x . As in Excel.

• LOG(x) returns the base 10 logarithm of x . As in Excel.

• LOG10(x) returns the base 10 logarithm of x . As in Excel.

• MAP(fv, arr1, ..., arrn) computes fv(arr1[i,j],...,arrn[i,j])
for each index (i,j) in the arrays arrk and returns a new array contain-
ing the resulting values. The given arrays arr1 , . . . , arrn must all have the

Built-in functions 249

same shape, which is then also the shape of the resulting array; otherwise re-
turns an array shape error. Returns ArgType error if fv is not a function or
the arrk are not arrays, and returns ArgCount error if n is zero or if fv does
not take exactly n arguments.

• MAX(e1, ..., en) returns the maximum of the values of e1 , . . . , en , where
each ei may evaluate to a number or an array, which is then processed re-
cursively. When used within a sheet-defined function, any array-valued argu-
ments and ranges must refer to ordinary sheets. Generalizes the correspond-
ing Excel function.

• MIN(e1, ..., en) returns the minimum of the values of e1 , . . . , en , where
each ei may evaluate to a number or an array, which is then processed re-
cursively. When used within a sheet-defined function, any array-valued argu-
ments and ranges must refer to ordinary sheets. Generalizes the correspond-
ing Excel function.

• MOD(x,y) returns the signed remainder of x by y , that is, x-FLOOR(x/y,1) * y .
Returns NumError if y is 0.0. As in Excel.

• NA() returns the special error value #N/A .

• NEG(x) returns minus x .

• NOT(e) evaluates e and returns true if the result was false, and returns false
if the result was true. As in Excel.

• NOW() returns the number of days (and fractional days) since 30 December
1899. As in Excel.

• OR(e1, e2, ..., en) returns the logical “or” (disjunction) of e1 , . . . , en .
More precisely, it returns false if n is 0. If n>0 , it evaluates e1 and returns
true if the result was true, returns OR(e2, ..., en) if the result was false,
and returns an error if the result was an error. Note that unlike Excel, the case
n=0 is legal and works as intended, and that if some ej evaluates to true, the
final result is true, even if some subsequent ei with i>j would have produced
an error.

• PI() returns π = 3.14159 . . ., the ratio of the circumference to the diameter of
a circle. As in Excel.

• RAND() returns a pseudo-random number x from a uniform distribution such
that 0 <= x < 1 . As in Excel.

• REDUCE(fv, x0, arr) folds function fv over the elements of array value
arr with x0 as starting value. More precisely, if the values of arr elements
in row-major order are a11, a12, . . . , a1c, a21, . . . , arc, and we think of function fv
as a left-associative infix operator ⋆ then it will compute x0⋆a11 ⋆a12 ⋆ . . .⋆a21 ⋆
. . . ⋆ arc. Function fv must take two arguments; otherwise ArgCountError is
returned.

250 Built-in functions

• ROUND(x,d) returns x rounded to d decimal digits. That is, rounds to nearest
integer when d is 0, to nearest multiple of 0.1 when d is +1, to nearest multiple
of 10 when d is −1, and so on. In case of a tie, rounds away from zero. First d
is truncated (towards zero) to obtain an integer. As in Excel.

• ROWMAP(fv, arr) calls function value fv on each row arr[i,-] of the array
arr and returns a new array containing the values of fv(array[i,-]) . The
resulting array will have one column and the same number of rows as arr .
Returns ArgType error if fv is not a function, and returns ArgCount error if
the arity of fv is different from COLUMNS(arr) .

• ROWS(arr) evaluates arr to an array and returns its number of rows. As in
Excel.

• SIGN(x) returns the sign of x , that is, +1 when x is positive, −1 when x is
negative, and 0 when x is zero. As in Excel.

• SIN(x) returns the sine of x , with x in radians. As in Excel.

• SLICE(arr, r1, c1, r2, c2) returns an array value representing the slice
of array arr that has upper left-hand corner (r1 ,c1) and lower right-hand
corner (r2 ,c2), where row and column indices are 1-based and truncated to
integers (towards zero). The slice has r2-r1+1 rows and c2-c1+1 columns,
and is a view of the underlying array, not a copy of it. The slice will have
zero rows if r2=r1-1 and zero columns if c2=c1-1 . It must hold that 1 <=
r1 <= r2 + 1 and r2 <= ROWS(arr) and 1 <= c1 <= c2 + 1 and c2 <=
COLUMNS(arr) , otherwise error value #REF! is returned. Evaluation takes
constant time, because the function returns a window on the given array arr ,
not a copy of its values.

To return row number r , call SLICE(arr, r, 1, r, COLUMNS(arr)) . To
return column number c , call SLICE(arr, 1, c, ROWS(arr), c) .

• SQRT(x) returns the square root of x. As in Excel.

• SUM(e1, ..., en) returns the sum of the values of e1 , . . . , en , where each
ei may evaluate to a number or an array, which is then processed recursively.
When used within a sheet-defined function, any array-valued arguments and
ranges must refer to ordinary sheets. Generalizes the corresponding Excel
function.

• SUMIF(fv, arr) applies the predicate fv to all values in the array arr and
returns the sum of those values (which must be numbers) for which the pred-
icate returns true. The predicate fv must be a one-argument function value
that returns a number. This considerably generalizes Excel’s COUNTIF, which
allows only restricted forms of predicates. When used within a sheet-defined
function, the array argument must refer to an ordinary sheet. Generalizes the
corresponding Excel function.

Built-in functions 251

• TABULATE(fv, rows, cols) returns an array with rows rows and cols
columns, where the value at row i and column j is computed by APPLY(fv,i,j) ;
row and column indexes start at 1. Hence fv must be a function value taking
two numeric arguments. Returns error value #SIZE if cols or rows is nega-
tive.

• TAN(x) returns the tangent of x , with x in radians. As in Excel.

• TRANSPOSE(arr) evaluates arr to an array and returns its transpose. When
used within a sheet-defined function, the array argument must refer to an
ordinary sheet. As in Excel.

• VARRAY(e1, ..., en) returns a vertical array whose elements are the val-
ues v1...vn of the arguments. The resulting array has one column and n
rows. In particular, any array value among v1...vn is simply inserted as an
element of the resulting array; unlike in VCAT(e1, ..., en) its rows are
not made into rows of the resulting array.

• VCAT(e1, ..., en) vertically concatenates, or stacks, the values v1...vn
of the arguments (one atop the next one), returning an array value. Each ei
must either evaluate to an atomic value or to an array value. All array values
among v1...vn must have the same number of columns. An atomic value
among v1...vn will be replicated to make a one-row array with that number
of columns. This can be used to add a new constant row to an array.

• VOLATILIZE(e1) has the same result as its argument e1 , but marks the ex-
pression as volatile, so that it will be reevaluated in any recalculation, even if
no argument expression has changed. A typical use is VOLATILIZE(EXTERN(...)) ,
to call an external function that depends on external state (such as the time,
temperature, stock quotes, and so on) or that has external effects (such as writ-
ing to a log, console, database, or similar). Another use is for experimenting
with the recalculation mechanism, where VOLATILIZE(0.5) is the natural
way to make a constant volatile, clearer than 0.5+0 * RAND() . A better name
would be VOLATILE but that is illegal in MS Excel.

• VSCAN(fv,r1,n) creates an (n+1) row matrix whose first row is r1 , whose
second row is fv(r1) , and whose i ’th row is fv (i−1)(r1) where i is 1, . . . , n+1.
Argument r1 must be a one-row array. Function fv must preserve the length
of its argument, that is, COLUMNS(fv(x)) must equal COLUMNS(x).

A.2.3 Functions that manipulate sheet-defined functions

The entire machinery of sheet-defined functions is made available through only
three new built-in functions: DEFINE, CLOSUREand APPLY. In addition, there is
a function EXTERNfor calling .NET functions, and a function BENCHMARKfor mea-
suring performance of sheet-defined functions.

252 Built-in functions

• APPLY(fv, e1, ..., ek) evaluates expression fv to a function value, or
closure, and evaluates e1 , . . . , ek to values b1...bk . Then it applies the
closure to these values, that is, completes the early arguments stored in the
closure with the additional late arguments b1...bk and calls the closure’s
underlying sheet-defined function on this full set of arguments. The closure
fv must have arity k .

The APPLYfunction itself is not error-strict. Any error values among the argu-
ments will be passed to the underlying function, so it can test for them using
the ISERRORfunction.

• BENCHMARK(fv, count) evaluates fv to a closure, evaluates count to a
number and truncates it to an integer n, then performs n calls to the internal
representation of fv and returns the average number of wall-clock nanosec-
onds per call. The function value fv must have arity zero, that is, it must be
a sheet-defined function that has been given all its arguments, otherwise an
ArgCount error is returned. If n <= 0 then NumError is returned. For in-
stance, BENCHMARK(CLOSURE("NORMDISTCDF",-3), 100000) returns the
per-call cost of 100,000 calls to NORMDISTCDF(-3). The result should be in
the range 80-300 ns on modern hardware.

Note that one can also benchmark residual functions resulting from partial
evaluation (chapter 10). Let BINOMbe a two-argument function that we par-
tially evaluate with respect to static argument 17, and assume we want to
measure the execution time of the residual function when applied to argu-
ment 42. This can be done by the expression
=BENCHMARK(CLOSURE(SPECIALIZE("BINOM",17,NA()),42), 10000) .

Some advice on benchmarking:

– Run Funcalc from the command line, not from Visual Studio. Even in
Release builds, the latter is noticeably slower.

– Before running the benchmark, close other applications, such as browsers,
database servers, and mail clients, that may consume CPU cycles.

– If you are using a laptop system, note that the power savings scheme in
force may seriously influence benchmark results.

• CLOSURE("name", e1, ..., en) or CLOSURE(fv, e1, ..., en) evalu-
ates e1...en to values a1...an and returns a function value for, or closure,
for the named sheet-defined function or the given function value fv , but does
not call the function or evaluate any part of it.

An argument ai that is not #NA is called an early argument and will become
part of the closure. An argument whose value is #NAindicates a late argument,
that is, one that will become a parameter of resulting function value. When the
Hence if k is the number of late (#NA) arguments, then the resulting function
value will have arity k .

Built-in functions 253

When no arguments are given, so n=0 and the call has form CLOSURE(e0), all
arguments will be considered late (#NA). If any arguments are given, so n>0 ,
then n must equal the given function’s arity.

The resulting function value can be applied using the APPLY function and
benchmarked using the BENCHMARKfunction. Moreover, it can be supplied
with further arguments using the CLOSUREfunction, or specialized using the
SPECIALIZE function.

The function value displays as name(a1,...,an) , for instance ADD(42,#NA) ,
that is, the function name followed by a list of the argument values, where #NA
values represent arguments yet to be supplied.

The function given as first argument to CLOSUREmust be a text constant
"name" or an expression that evaluates to a function value fv .

The CLOSUREfunction itself is not error-strict. Any non-#NA error values
among the arguments are simply stored in the closure and passed to the un-
derlying sheet-defined function when the closure is applied; this allows the
function to test for them using ISERROR.

• DEFINE("name", out, in1, ..., inn) creates a sheet-defined function
with the given name, result cell out , and input cells in1, ..., inn , where
n >= 0 . The given "name" must be a text constant. The DEFINE function can
be used only on a function sheet, and the outCell , inCell1 , . . . , inCelln
must all be cell references within the same function sheet. A sheet-defined
function can currently have at most 9 arguments. Function DEFINE cannot be
called from a sheet-defined function.

• SPECIALIZE(fv) takes as argument a closure or function value fv returns a
new closure representing a specialized function. The result of SPECIALIZE(fv)
is functionally equivalent to fv , but SPECIALIZE performs partial evaluation

(see chapter 10) of the given closure fv with respect to the values of its non-
#NA-arguments, thereby producing a specialized or residual function value.
Calling this resulting function should be faster than calling the functionally
equivalent closure produced by CLOSURE.

Like any other function value, the resulting function can be called using APPLY,
benchmarked using BENCHMARK, provided with further arguments using CLOSURE,
and further specialized using SPECIALIZE .

When fv is a closure all of whose enclosed arguments are #NA, then the result
of SPECIALIZE(fv) is just fv .

The given function value fv will typically be the result of a call to CLOSURE,
such as CLOSURE("ADD",42,NA()) . For simplicity of notation, SPECIALIZE(e0,
e1, ..., en) is treated as a syntactic sugar for SPECIALIZE(CLOSURE((e0,
e1, ..., en)) when n>=1 .

The result of SPECIALIZE(fv) displays almost as fv , but with #f added
at the end, where f is the internal number. For instance, if fv is the re-

254 Built-in functions

sult of CLOSURE("ADD",42,NA()) then fv will display as ADD(42,#NA) , and
SPECIALIZE(fv) may display as ADD(42,#NA)#117 .

A.2.4 Calling external .NET methods

External methods, properties, indexers and constructors can be called using the
EXTERN built-in function, like this:

EXTERN("nameAndSignature", e1, ..., en)

Such a call evaluates e1 , . . . , en to values v1...vn , where n >= 0 , and calls the ex-
ternal .NET method with the given name and signature on these argument values.
The nameAndSignature is a concatenation of the method’s name and signature,
and must be a text constant. The method may be an instance method or a static
method. Due to minimal recalculation, an EXTERNfunction will only be called when
one of its arguments change. Use the idiom VOLATILIZE(EXTERN(...)) to call
an external function if it must be called at every recalculation; for instance, if it
depends on volatile external state (such as stock quotes) or updates external state
(such as a log file).

The name must include the method’s namespace and class; to call a method that
is not in the currently executing assembly, nor in mscorlib.dll, qualify the name with
the name of the assembly also. (The latter is easier said than done in .NET 4.0).

A constructor is called as if it were a static method called new. The get and
set accessors of a property P of type t are called as methods t get_P() and
void set_P(t value) . The get and set accessors of an indexer this[...] of
type t are called as methods t get_Item(...) and void set_P(t value, ...)
where the ... are the “normal” arguments to the indexer.

To call the get and set accessors of an indexer on a class C, use the method
names get_P and set_P .

The signature describes the method’s argument types and return type, using a
notation inspired by Java’s bytecode format, where the argument types are enclosed
in parentheses and followed by the return type. Thus "(DI)T" is the signature of
a method that takes two arguments of type double and int and returns result of
type String (text). The type codes are shown in figure A.3.

The signature of method String Format(String s, int[] i, bool b) can
be written

(LString;[IZ)LString;

or more compactly, as

(T[IZ)T

The signature of a static method must begin with a dollar sign ($). For instance,
"System.Math.Sinh$(D)D" , specifies the static method in class System.Math that
computes hyperbolic sine:

Built-in functions 255

Code .NET type Funcalc type
Z bool Number
B byte Number
b sbyte Number
S short Number
s ushort Number
I int Number
i uint Number
J long Number
j ulong Number
D double Number
N double Number
F float Number
M decimal N/A
T String, equivalent to LSystem.String; Text
O Object, equivalent to LSystem.Object; Object
V Value Value
W void , only for return type <void>
Lc; class c Object
[t 1D row array of t , that is, t[] Array
{t 2D array of t , that is, t[,] Array
(args)ret N/A Function

Figure A.3: Type codes for external method signatures in Funcalc.

256 Built-in functions

static double Sinh(double)

To denote an instance method or a virtual method, leave out the dollar sign and
specify only the method’s parameter types, not the receiver type, in the signature.
For instance, "System.String.IndexOf(T)I" specifies this instance method in
class System.String:

int IndexOf(String)

Here are some more examples of external function calls:

• Logarithm to base 2, a two-argument static method:

EXTERN("System.Math.Log$(DD)D", 1024, 2)

• String concatenation, a two-argument static String method:

EXTERN("System.String.Concat$(TT)T", "abc", "def")

• String formatting, a static String method:

EXTERN("System.String.Format$(TO)T", "x={0:F6}", RAND ())

• Formatting of year, month and date to an ISO date format string, such as
"2011-08-15" :

EXTERN("System.String.Format$(TOOO)T",
"{0:0000}-{1:00}-{2:00}", 2011, 8, 15)

• String search, instance method, integer result:

EXTERN("System.String.IndexOf(T)I", "abcdefg", "bcde")

• Substring, instance method, integer arguments, string result:

EXTERN("System.String.Substring(II)T", "abcdef", 2, 3)

• String length, an instance property with no arguments and integer result:

EXTERN("System.String.get_Length()I", B44)

• Conversion of string to upper case string; an instance method with no argu-
ments and String result:

EXTERN("System.String.ToUpper()T", B35)

Inspecting generated bytecode 257

• String starts-with test; an instance method with Boolean result:

EXTERN("System.String.StartsWith(T)Z", B30, B31)

• Print to console; side effect but no return value (void return type):

EXTERN("System.Console.WriteLine$(T)W", "Hello world! ")

• Call to a static method inside the Corecalc implementation itself:

EXTERN("Corecalc.Function.ExcelMod$(DD)D", 7, 3)

• Delete a file from the current directory:

EXTERN("System.IO.File.Delete$(T)W", "thesis-final.t ex")

CAUTION: Don’t accept workbooks from strangers. Loading a workbook will eval-
uate all its external function calls, even those within function sheets. As the last
example above shows, an external function can do anything, even erase your file
system.

A.3 Inspecting generated bytecode

To inspect the bytecode generated for a sheet-defined function, choose Tools > SDF
in the menu, or use shortcut Ctrl+I, select a function in the list, and click the “Show
bytecode” button. Then the function’s IL bytecode will be shown in a modal dialog.
Hence you must close it before you can continue interacting with Funcalc.

This is implemented using Haibo Luo’s ILVisualizer in its VS2010 incarnation
[70], with a very modest addition to its MethodBodyViewer class so that it can dis-
play the bytecode of a MethodBase object. This object is obtained from the func-
tion’s Delegate object, which in turn is fetched from the static array sdfDelegates
in class SdfManager . Note that we do not use ILVisualizer as a debugger plug-in
within Visual Studio, but as a component that gets called directly from Funcalc.

258 Inspecting generated bytecode

Appendix B

Source file organization

The source code of Funcalc is organized as a Visual Studio 2010 “solution” called
Corecalc that contains a “project” also called Corecalc. The core interpretive spread-
sheet functionality is in the Corecalc namespace (figure B.1), whereas most of the
machinery for compiled sheet-defined functions is in the Corecalc.SheetDefinedFunctions
namespace (figure B.2).

The current (January 2012) size of the source code is around 11,700 lines includ-
ing sparse comments, and the size of the compiled funcalc.exe executable and
supporting libraries is around 300 KB.

259

260 Source file organization

File Contents Classes
CellAddressing.cs Cell addresses CellAddr, FullCellAddr, Interval,

RARef, SupportRange (SupportArea,
SupportCell)

Cells.cs Sheet cell contents ArrayFormula, CachedArrayFor-
mula, Cell, CellState, ConstCell

(BlankCell, NumberCell, QuoteCell,
TextCell), Formula

Expressions.cs Expression AST CellArea, CellRef, Const (Error,
NumberConst, TextConst, Value-
Const), Expr, FunCall, IExpression-
Visitor, RefSet

Functions.cs Built-in functions Function
Program.cs Main program Program
Sheet.cs Worksheets Sheet
Types.cs Auxiliary types Applier, CyclicException, Formats,

HashBag, HashList, ValueCache,
ValueTable

Values.cs Run-time values ArrayValue (ArrayDouble, ArrayEx-
plicit, ArrayView), ErrorValue, Func-
tionValue, NumberValue, Object-
Value, TextValue, Value

Workbook.cs Workbooks Workbook
Coco/Spreadsheet.ATG Parser specification
GUI/AboutBox.cs An “about” dialog AboutBox
GUI/GUI.cs Cell grid, sheet tabs ClipBoardCell, SheetTab, Workbook-

Form
GUI/SDF.cs SDF list SdfForm
IO/WorkbookIO.cs Spreadsheet import IOFormat, XMLSSIOFormat

Figure B.1: Source files for core interpretive spreadsheet functionality (Corecalc),
all in namespace Corecalc. Abstract types are in italics. Local subtypes are shown
in parentheses.

Source file organization 261

File Contents Classes

CGExpr.cs Compilable AST CGExpr and its subclasses (fig-
ure 7.1), FunctionInfo, Gen, Signa-
ture

CellsInFuns.cs Track SDF cells CellsUsedInFunctions
CodeGenerate.cs IL generation utilities CodeGenerate, Typ
DependencyGraph.cs Dependency graph DependencyGraph
ExprToCGExpr.cs From Expr to GCExpr CGExpressionBuilder
PathConditions.cs Evaluation conditions PathCond (CachedAtom, Conj, Disj)
ProgramLines.cs Sequenced expressions ComputeCell, IDepend, Program-

Lines, UnwrapInputCell
SdfManager.cs SDF management SdfInfo, SdfManager
SdfTypes.cs Types for SDFs ExternalFunction, SdfType (Array-

Type, FunctionType, SimpleType)
Variable.cs Variables in SDFs Variable (LocalVariable, LocalArgu-

ment)

Figure B.2: Source files for compiling sheet-defined functions (Funcalc), all in
namespace Corecalc.Funcalc, and all in subdirectory Funcalc.

262 Source file organization

Appendix C

Patents and applications

This is a list of US patents (label USnnnnnnn) and US patent applications (label
USyyyynnnnnn) in which the word “spreadsheet” appears in the title or abstract.
Documents that were obviously not about spreadsheet implementation have been
omitted from the list, but probably some documents remain that only use spread-
sheets for some purpose. The list was created by searches of the Espacenet [87]
database on 26 July 2006 and is presented in reverse order of date of inclusion in
the database. The date shown below is the date granted for patents, and the date
of submission for applications. Unusual spelling in document titles has been pre-
served.

The full text of the patent documents themselves can be obtained in PDF from
the European Patent Office [87] and in HTML from the US Patents and Trademarks
Office [116]. In both cases, simply do a “number search” using the patent number
USnnnnnnn or the patent application number USyyyynnnnnn.

Documents marked with an asterisk (*) are discussed in the main text. In most
cases we give a brief summary of each patent or patent application below.

Disclaimer: Neither the author nor the IT University of Copenhagen nor the
publisher can take any responsibility for the completeness of the list or the correct-
ness and completeness of the summaries, nor for any legal, technical or monetary
consequences of using the list and the summaries.

1. Embedded ad hoc browser web to spreadsheet conversion control; US2006156221; 2006-
07-13. By Yen-Fu Chen , John Handy-Bosma and Keith Walker. A web browser plug-in
that allows any displayed HTML table to be turned into a spreadsheet component.

2. Method, system, and computer-readable medium for determining whether to reproduce
chart images calculated from a workbook; US2006136535; 2006-06-22. By Sean Boon,
application by Microsoft. Using a hash value of data to avoid re-creating a chart when
data are unchanged.

3. Method, system, and computer-readable medium for controlling the calculation of volatile
functions in a spreadsheet; US2006136534; 2006-06-22. By Sean Boon, application by
Microsoft. How to use time stamps to mostly avoid needless recalculation of volatile
functions that vary only slowly, such as TODAY() .

263

264 Patents and applications

4. Block properties and calculated columns in a spreadsheet application; US2006136808;
2006-06-22. By Joseph Chirilov and others; application by Microsoft. How to prescribe
properties, such as formatting, for blocks, where a block is a logical area of a spread-
sheet that grows or shrinks as rows and columns are added to or removed from it.

5. System and method for automatically completing spreadsheet formulas; US2006129929;
2006-06-15. By Brandon Weber and Charles Ellis; application by Microsoft. Propos-
ing possible completion of a partially entered formula, in the style of “intellisense” as
known from integrated development environments.

6. Method and system for converting a schema-based hierarchical data structure into a
flat data structure; US2006117251; 2006-06-01. By Chad Rothschiller, Michael McCor-
mack and Ramakrishnan Natarajan; application by Microsoft. Using schema-derived
layout rules to allocate the elements of an XML document to cells in a spreadsheet.

7. Method and system for inferring a schema from a hierarchical data structure for use in
a spreadsheet; US2006117250; 2006-06-01. By Chad Rothschiller and others; applica-
tion by Microsoft. Inferring a schema for XML data stored in a spreadsheet program.

8. System and method for performing over time statistics in an electronic spreadsheet en-
vironment; US2006117246; 2006-06-01. By Frederic Bauchot and Gerard Marmigere;
application by IBM. Computing statistics from a stream of values, appearing one value
at a time in a particular cell.

9. Importing and exporting markup language data in a spreadsheet application docu-
ment; US2006112329; 2006-05-25. By Robert Collie and others; application by Mi-
crosoft. Processing and using XML maps and XML schemas in a spreadsheet program.

10. Method for expanding and collapsing data cells in a spreadsheet report; US2006107196;
2006-05-18. By Lakshmi Thanu and others; application by Microsoft. Showing and hid-
ing subitems in a report, as generated by the subtotals and group-and-outline features
of Excel.

11. Method, system, and apparatus for providing access to asynchronous data in a spread-
sheet application program; US7047484; 2006-05-16. By Andrew Becker and others;
patent assigned to Microsoft. Protocol for reading and using external data streams
from a spreadsheet.

12. Spreadsheet application builder; US2006101391; 2006-05-11. By Markus Ulke, Kai
Wachter and Gerhild Krauthauf. Application development by drag-and-drop in a spread-
sheet style development environment.

13. Error correction mechanisms in spreadsheet packages; US2006101326; 2006-05-11. By
Stephen Todd; application by IBM. Introduces pairs of a referencing array and a bound
array. If a cell within a referencing array refers to some cell outside the corresponding
bound array, an error is signaled.

14. Embedded spreadsheet commands; US2006095832; 2006-05-04. By Bill Serra, Salil
Pradhan and Antoni Drudis; application by Hewlett-Packard. Store commands in the
comment fields of spreadsheet cells, and interpreting those commands as ties to exter-
nal events, thus making the spreadsheet update itself – for instance, when a signal
from an RFID device indicates that an item has been moved.

15. Method and apparatus for automatically producing spreadsheet-based models;
US2006095833; 2006-05-04. By Andrew Orchard and Geoffrey Bristow. A way to de-
scribe expandable formulas. Possibly similar ideas as in application 69 and Gencel
[39].

16. Program / method for converting spreadsheet models to callable, compiled routines;
US2006090156; 2006-04-27. By Richard Tanenbaum. Closely related to application 46.

Patents and applications 265

17. Two pass calculation to optimize formula calculations for a spreadsheet; US2006085386;
2006-04-20. By Lakshmi Thanu, Peter Eberhardy and Xiaohong Yang; application
by Microsoft. How to efficiently access external data such as relational databases for
OLAP queries and similar.

18. Method and system for enabling undo across object model modifications; US2006085486;
2006-04-20. By Lakshmi Thanu, Peter Eberhardy and Vijay Baliga; application by Mi-
crosoft. Improved undo mechanism using two stacks of acts.

19. Methods, systems and computer program products for processing cells in a spreadsheet;
US2006080595; 2006-04-13. By Michael Chavoustie and others. Describes a kind in-
lining of expressions from referred-to cells.

20. Methods, systems and computer program products for facilitating visualization of in-
terrelationships in a spreadsheet; US2006080594; 2006-04-13. By Michael Chavoustie
and others. Various ways to display parts of the dependency graph or support graph.

21. Design of spreadsheet functions for working with tables of data; US2006075328; 2006-
04-06. By Andrew Becker and others; application by Microsoft. Using database-style
queries on named tables in spreadsheets. Related to application 23.

22. One click conditional formatting method and system for software programs;
US2006074866; 2006-04-06. By Benjamin Chamberlain and others; application by Mi-
crosoft. Using logical conditions to control formatting of spreadsheet cells, and using
graphical components (such as histograms) in spreadsheet cells.

23. Method and implementation for referencing of dynamic data within spreadsheet for-
mulas; US2006069696; 2006-03-30. By Andrew Becker and others; application by Mi-
crosoft. Notation for referring to tables by symbolic name in spreadsheets, as well as
parts of tables and data computed from tables. Related to application 21.

24. * Method and system for multithread processing of spreadsheet chain calculations;
US2006069993; 2006-03-30. By Bruce Jones and others; application by Microsoft. De-
scribes multiprocessor recalculation of spreadsheet formulas, and as a side effect, also
describes a uniprocessor implementation, probably similar to that of Excel.

25. Graphically defining a formula for use within a spreadsheet program; US2006053363;
2006-03-09. By Christopher Bargh, Gregory Johnston and Russell Jones. How to call a
function defined using an external graphical tool.

26. Management of markup language data mappings available to a spreadsheet applica-
tion workbook; US7007033; 2006-02-28. By Chad Rothschiller and others; application
by Microsoft. Processing and using XML maps and XML schemas in a spreadsheet
program.

27. Logical spreadsheets; US2006048044; 2006-03-02. By Michael Genesereth, Michael
Kassoff and Nathaniel Love. A spreadsheet in which logical constraints on the values of
cells can be specified, and the values of cells can be set in any order, possibly restricting
or conflicting with values in other cells. Binary decision diagrams [15] would seem ideal
for implementing this in the case of discrete cell values.

28. Support for user-specified spreadsheet functions; US2006036939; 2006-02-16. Craig
Hobbs and Daniel Clay; application by Microsoft. Permits a user to define a function
with named parameters in a spreadsheet cell and call it from other cells. Calls have
the syntax F(funcell, "arg1name", arg1, ..., "argNname", argN) . Within
the function cell, an argument is referred to using the expression R("argname") .

29. Method, system, and apparatus for exposing workbooks as data sources; US2006024653;
2006-02-02. By Daniel Battagin and others; application by Microsoft. Appears related
to application 40.

266 Patents and applications

30. Method and apparatus for integrating a list of selected data entries into a spreadsheet;
US2006026137; 2006-02-02. By Juergen Sattler and others. Appears related to appli-
cation 37.

31. Sending a range; US2006020673; 2006-01-26. By Terri Sorge and others; application
by Microsoft. Facility in a spreadsheet program to extract data from a spreadsheet,
format it and automatically send it by email to an indicated recipient.

32. Method and system for presenting editable spreadsheet page layout view; US2006015804;
2006-01-19. By Kristopher Barton, Aaron Mandelbaum and Tisha Abastillas; applica-
tion by Microsoft. Indicating spreadsheet page layout while maintaining the ability to
edit sheets.

33. Transforming a portion of a database into a custom spreadsheet; US2006015525; 2006-
01-19. By Jo-Ann Geuss and others. Creating a spreadsheet from a database view.

34. Networked spreadsheet template designer; US2006015806; 2006-01-19. By Wallace
Robert. Plug-in for designing spreadsheet templates.

35. Client side, web-based spreadsheet; US6988241; 2006-01-17. By Steven Guttman and
Joseph Ternasky; assigned to IBM. Describes a spreadsheet that can be run in a
browser, permitting people collaborate and share spreadsheets on the web, and permit-
ting the sheet to use real-time data from the web (such as stock quotes). How similar
is Google’s recently announced web-based spreadsheet to this?

36. System and method for role-based spreadsheet data integration; US2006010118; 2006-
01-12. By Juergen Sattler and Joachim Gaffga. Closely related to application 37.

37. System and method for spreadsheet data integration; US2006010367; 2006-01-12. By
Juergen Sattler and Joachim Gaffga. Interfacing spreadsheet program with server
data, using access control. Closely related to application 37.

38. System and method for automatically populating a dynamic resolution list;
US2006004843; 2006-01-05. By John Tafoya and others; application by Microsoft.
Closely related to application 50.

39. Method and apparatus for viewing and interacting with a spreadsheet from within a
web browser; US2005268215; 2005-12-01. By Daniel Battagin and Yariv Ben-Tovim;
application by Microsoft. Using server-side scripts and a server-side spreadsheet en-
gine to generate HTML, possibly with scripts for inactivity, that when displayed in a
client-side browser will provide a spreadsheet user interface.

40. Method, system, and apparatus for exposing workbook ranges as data sources;
US2005267853; 2005-12-01. By Amir Netz and others; application by Microsoft. Ac-
cessing parts of a spreadsheet document using the same interface (such as ODBC) as
for a database.

41. Representing spreadsheet document content; US2005273695; 2005-12-08. By Jeffrey
Schnurr. Transmitting part of a spreadsheet to display it on a mobile device.

42. Worldwide number format for a spreadsheet program module; US2005257133; 2005-
11-17. By Marise Chan and others; application by Microsoft. Using locale metadata
to control the conversion from a numeric time value (as used in spreadsheet programs,
see section 2.13.3) to a displayed date appropriate for the user: month names, weekday
names, Gregorian or non-Gregorian calendar, and so on.

43. System and method for OLAP report generation with spreadsheet report within the
network user interface; US2005267868; 2005-12-01. By Herbert Liebl, Inbarajan Sel-
varajan and Lee Harold; application by Microstrategy. Presenting server-side enter-
prise data from an OLAP cube, using a spreadsheet interface on the client side.

Patents and applications 267

44. Method and apparatus for spreadsheet automation; US2005273311; 2005-12-08. By
Robert Lautt and Zoltan Grose; application by A3 Solutions. Integrating spreadsheet
models with enterprise data, to avoid inconsistent data, replication of work, and man-
ual re-integration of spreadsheet models.

45. Method for generating source code in a procedural, re-entrant-compatible programming
language using a spreadsheet representation; US2005188352; 2005-08-25. By Bruno
Jager and Matthias Rosenau. Describes a method to implement database queries by
compiling a spreadsheet, extended with some reflective capabilities, to source code in a
procedural language.

46. Program / method for converting spreadsheet models to callable, compiled routines;
US2005193379; 2005-09-01. By Richard Tanenbaum. How to compile spreadsheet
formulas to C source code. Closely related to application 16.

47. Reporting status of external references in a spreadsheet without updating;
US2005097115; 2005-05-05. By Jesse Bedford and others; application by Microsoft.
Closely related to applications 48 and 136.

48. Reporting status of external references in a spreadsheet without updating;
US2005108623; 2005-05-19. By Jesse Bedford and others; application by Microsoft.
Describes how to check existence of external workbooks and so on before attempting to
update links to them. Closely related to applications 47 and 136.

49. Method of updating a database created with a spreadsheet program; US2005149482;
2005-07-07. By Patrick Dillon; application by Thales. Ensuring the correctness of
database updates performed from a spreadsheet.

50. System and method for facilitating user input by providing dynamically generated com-
pletion information; US2005108344; 2005-05-19. By John Tafoya and others; applica-
tion by Microsoft. Dynamic input completion based on multiple data sources such as
sent and received emails, text documents and other spreadsheet files. Closely related
to application 38.

51. System and method for integrating spreadsheets and word processing tables;
US2005125377; 2005-06-09. By Matthew Kotler and others; application by Microsoft.
Closely related to applications 52, 56, 57, 58 and 63.

52. System and method for integrated spreadsheets and word processing tables;
US2005055626; 2005-03-10. By Matthew Kotler and others; application by Microsoft.
Closely related to applications 51, 56, 57, 58 and 63.

53. Spreadsheet fields in text; US2005066265; 2005-03-24. By Matthew Kotler and others;
application by Microsoft. Closely related to applications 54 and 55.

54. Spreadsheet fields in text; US2005044497; 2005-02-24. By Matthew Kotler and others;
application by Microsoft. Closely related to applications 53 and 55.

55. Spreadsheet fields in text; US2005044496; 2005-02-24 By Matthew Kotler and others;
application by Microsoft. Closely related to applications 53 and 54. Provide individual
text elements, such as a text field in an HTML forms, to have spreadsheet functionality:
formulas, references to other text elements, and recalculation.

56. System and method for integrating spreadsheets and word processing tables;
US2005050088; 2005-03-03. Closely related to applications 51, 52, 57, 58 and 63.

57. User interface for integrated spreadsheets and word processing tables; US2005034060;
2005-02-10. By Matthew Kotler and others; application by Microsoft. Closely related
to applications 51, 52, 56, 58 and 63.

268 Patents and applications

58. User interface for integrated spreadsheets and word processing tables; US2005044486;
2005-02-24. By Matthew Kotler and others; application by Microsoft. Closely related
to applications 51, 52, 56, 57, and 63.

59. Method and system for handling data available in multidimensional databases using
a spreadsheet; US2005091206; 2005-04-28. By Francois Koukerdjinian and Jean-
Philippe Jauffret. Extracting data from a database to create a local database, from
which a spreadsheet can then draw its data.

60. Storing objects in a spreadsheet; US2005015714; 2005-01-20. By Jason Cahill and
Jason Allen; application by Microsoft. A mechanism to store general objects (in addition
to numbers, texts and errors) in spreadsheet cells, and to invoke methods on them from
other cells. The objects may be external and the method calls performed using COM,
so this is probably a generalization of Piersol [93] and Nuñez [85]. Very similar to
patent 135.

61. Spreadsheet to SQL translation; US2005039114; 2005-02-17. By Aman Naimat and
others; application by Oracle. A form of query-by-example, where a model is developed
on sample database data within a spreadsheet program. Then the spreadsheet model
is compiled into SQL queries that can be run on the entire database, possibly through
a web interface.

62. Modular application development in a spreadsheet using indication values;
US2004225957; 2004-11-11. By Ágúst Egilsson. Closely related to application 130 and
patent 178.

63. User interface for integrated spreadsheets and word processing tables; US2004210822;
2004-10-21. By Matthew Kotler and others; application by Microsoft. General table
architecture providing spreadsheet functionality (formulas, recalculation and so on)
also within word processors and other programs, and permitting nested tables. Closely
related to applications 51, 52, 56, 57 and 58.

64. Code assist for non-free-form programming; US2005240984; 2005-10-27. By George
Farr and David McKnight; application by IBM. Suggesting completions while typing
data into a spreadsheet or similar.

65. System and method for schemaless data mapping with nested tables; US2005172217;
2005-08-04. By Yiu-Ming Leung ; application possibly by Microsoft. Handling and
displaying nested tables of data, as from an XML document, without the need for a
predetermined schema or XML map.

66. System and method for generating an executable procedure; US2005028136; 2005-02-
03. By Ronald Woodley. Generating C++ (or other) source code, where the code gen-
eration is controlled by data stored in a spreadsheet; not about generating code from
spreadsheet formulas.

67. Methods of updating spreadsheets; US2005210369; 2005-09-22. By John Damm. How
to update a cell by tapping on it and/or selecting from a drop-down list, intended for
PDAs.

68. Clipboard content and document metadata collection; US2005203935; 2005-09-15. By
James McArdle; application by IBM. An enhanced clipboard collects information about
the source of clippings (date, time, source document, URL, or the like) so that such
metadata can be saved in the target document along with the pasted text or data.

69. System and method in a spreadsheet for exporting-importing the content of input cells
from a scalable template instance to another; US2005015379; 2005-01-20. By Jean-
Jacques Aureglia and Frederic Bauchot. Extended mechanism for copying and pasting

Patents and applications 269

a range of cells between scalable templates. Is a “scalable template” somehow related
to the hex and vex groups of Erwig’s Gencel [39] system?

70. Method and system in an electronic spreadsheet for handling graphical objects refer-
ring to working ranges of cells in a copy/cut and paste operation; US2004143788; 2004-
07-22. By Jean-Jacques Aureglia, Frederic Bauchot and Catherine Soler; application
possibly by IBM. Extended mechanism for copying and pasting a range of cells and
graphical objects.

71. Systems, methods and computer program products for modeling an event in a spread-
sheet environment; US2005102127; 2005-05-12. By Trevor Crowe; application by Boe-
ing. Event-driven computation in a spreadsheet program.

72. Compile-time optimizations of queries with SQL spreadsheet; US2004133568; 2004-
07-08. By Andrew Witkowski and others; application by Oracle. Closely related to
application 73.

73. Run-time optimizations of queries with SQL spreadsheet; US2004133567; 2004-07-08.
By Andrew Witkowski and others; application by Oracle. Efficient queries and recalcu-
lation in a spreadsheet drawing data from a relational data base; pruning; paralleliza-
tion; use of a dependency graph. Closely related to application 72. This looks like a
rather substantial patent application. **

74. Determining a location for placing data in a spreadsheet based on a location of the data
source; US2005097447; 2005-05-05. By Bill Serra, Salil Pradhan and Antoni Drudis;
application possibly by Hewlett-Packard. Handling streams of input values, as from
multiple external sensors, in a continually updated spreadsheet. Mentions “depen-
dency trees”. **

75. Visual programming system and method; US2005081141; 2005-04-14. By Gunnlau-
gur Jonsson; application by Einfalt EHF. Object-oriented software development from
spreadsheets. Seems related to Piersol [93].

76. Extension of formulas and formatting in an electronic spreadsheet; US2004060001;
2004-03-25. By Wayne Coffen and Kent Lowry; application by Microsoft. Closely re-
lated to patent 154.

77. Method and apparatus for data; US2005039113; 2005-02-17. By Corrado Balducci and
others; application by IBM. Transforming a spreadsheet into server-side components
(such as Java servlets) that generate HTML for spreadsheet display in a browser at
client-side.

78. System and method for cross attribute analysis and manipulation in online analytical
processing (OLAP) and multi-dimensional planning applications by dimension split-
ting; US2005038768; 2005-02-17. By Richard Morris; application by Retek. Manipu-
lating and displaying hierarchical multi-dimensional data.

79. Flexible multiple spreadsheet data consolidation system; US2005034058; 2005-02-10.
By Scott Mills and others; application by SBC Knowledge Ventures. Consolidating
multiple spreadsheets into one.

80. Method for generating a stand-alone multi-user application from predefined spread-
sheet logic; US2004064470; 2004-04-01. By Kristian Raue; application by Jedox GmbH.
Compiling a spreadsheet to web scripts (in PHP) supporting multi-user distributed ac-
cess.

81. System and method for formatting source text files to be imported into a spreadsheet
file; US2005022111; 2005-01-27. By Jean-Luc Collet, Jean-Christophe Mestres and
Carole Truntschka; application by IBM. Using a file format profile to guide the import
of text files into a spreadsheet program.

270 Patents and applications

82. * Method in connection with a spreadsheet program; US2003226105; 2003-12-04. By
Mattias Waldau. Describes cross-compilation to another platform, such as a mobile
phone or web service. This is a technically substantial patent with references to rele-
vant prior art, such as Schlafly’s patents. It describes compilation to dynamically typed
and statically typed languages (JavaScript and Java), and how to present the gener-
ated code as a WML service, say. Probably the technology described by this application
is that used in the SpreadsheetConverter product [43].

83. Methods, systems and computer program products for incorporating spreadsheet for-
mulas of multi-dimensional cube data into a multi-dimentional cube; US2004237029;
2004-11-25. By John Medicke, Feng-Wei Chen Russell, and Stephen Rutledge. Con-
verting a spreadsheet formula into a query on multi-dimensional data.

84. Method of feeding a spreadsheet type tool with data; US2003212953; 2003-11-13. By
Jacob Serraf; application by Eurofinancials. Transmitting spreadsheet data on a net-
work.

85. Software replicator functions for generating reports; US2004111666; 2004-06-10. By
James Hollcraft. Specifying automatic replication of formulas to grow with data.

86. Method for automatically protecting data from being unintentionally overwritten in
electronic forms; US2003159108; 2003-08-21. By Gerhard Spitz. Rules for automati-
cally determining cells whose contents should be protected from overwriting.

87. Methods and apparatus for generating a spreadsheet report template; US2004088650;
2004-05-06. By Brian Killen and others; application by Actuate. Extracting data from
a relational database and creating reports in a spreadsheet program.

88. Thin client framework deployment of spreadsheet applications in a web browser based
environment; US2004181748; 2004-09-16. By Ardeshir Jamshidi and Hardeep Singh;
application by IBM. Client and server collaborating to support a browser-based spread-
sheet program.

89. Method and system for the direct manipulation of cells in an electronic spreadsheet
program or the like; US2003164817; 2003-09-04. By Christopher Graham, Ross Hunter
and Lisa James; application by Microsoft. Describes how keys and mouse can be used
to control whether insertion of cell blocks overwrite cells or add new rows and columns.
Implemented in Excel. Appears closely related to patent 206.

90. System, method, and computer program product for an integrated spreadsheet and
database; US2004103365; 2004-05-27. By Alan Cox. Integrating relational queries
in a spreadsheet program, so that a query can create and populate a new worksheet,
containing appropriately copied and adjusted formulas .

91. * User defined spreadsheet functions; US2004103366; 2004-05-27. By Simon Peyton
Jones, Alan Blackwell and Margaret Burnett; application by Microsoft. Describes the
concepts presented also in their paper [92].

92. System and method in an electronic spreadsheet for displaying and/or hiding range of
cells; US2003188259; 2003-10-02. Much the same as application 94.

93. System and method in an electronic spreadsheet for displaying and/or hiding range of
cells; US2003188258; 2003-10-02. Much the same as application 94.

94. System and method in an electronic spreadsheet for displaying and/or hiding range of
cells; US2003188257; 2003-10-02. By Jean-Jacques Aureglia and Frederic Bauchot;
application by IBM. Hiding and displaying cells in a multi-dimensional spreadsheet
program.

Patents and applications 271

95. System and method in an electronic spreadsheet for copying and posting displayed
elements of a range of cells; US2003188256; 2003-10-02. By Jean-Jacques Aureglia
and Frederic Bauchot; application by IBM. Cell copy-and-paste in a multi-dimensional
spreadsheet when some cells of the source region are hidden.

96. System and method for editing a spreadsheet via an improved editing and cell selection
model; US2003051209; 2003-03-13. By Matthew Androski and others; application by
Microsoft. Detailed description of editing gestures in a spreadsheet program.

97. System and method for automated data extraction, manipulation and charting;
US2004080514; 2004-04-29. By Richard Dorwart. Automatically creating appropri-
ate charts from tabular spreadsheet data, and exporting the charts to a presentation
program.

98. System and method for displaying spreadsheet cell formulas in two dimensional mathe-
matical notation; US2003056181; 2003-03-20. By Sharad Marathe. Displaying spread-
sheet formulas in usual mathematical notation. This would seem to be what symbolic
mathematics programs such as Maple and Mathematica routinely perform.

99. Functions acting on arbitrary geometric paths; US2005034059; 2005-02-10. By Craig
Hobbs; application by Microsoft. Functions for a spreadsheet component used to calcu-
late and transform graphical objects as in Microsoft Visio.

100. Data-bidirectional spreadsheet; US2004044954; 2004-03-04. By Michael Hosea; appli-
cation possibly by Texas Instruments. Interfacing a spreadsheet program to an exter-
nal calculcation engine, as in an electronic graphical pocket calculcator.

101. * Parser, code generator, and data calculation and transformation engine for spread-
sheet calculations; US2003106040; 2003-06-05. By Michael Rubin and Michael Smi-
alek. Describes compilation of spreadsheets to Java source code.

102. Spreadsheet data processing system; US2004205524; 2004-10-14. By John Richter,
Christopher Tregenza and Morten Siersted; application by F1F9. A method for pro-
cessing, not implementing, a spreadsheet.

103. System and method for efficiently and flexibly utilizing spreadsheet information;
US2003110191; 2003-06-12. By Robert Handsaker, Gregory Rasin and Andrey Knourenko.
Creating and using a family of parametrized spreadsheet workbooks.

104. Method and system for creating graphical and interactive representations of input and
output data; US2003169295; 2003-09-11. By Santiago Becerra. Controlling input to
spreadsheet cells, and displaying output from them, using graphical components such
as charts, sliders, and so on. This was proposed also by Piersol [93] and Nuñez [85].

105. Interface for an electronic spreadsheet and a database management system;
US2003182287; 2003-09-25. By Carlo Parlanti. Accessing relational databases from a
spreadsheet with ODBC and UDA.

106. Systems and methods providing dynamic spreadsheet functionality; US2002169799;
2002-11-14. By Perlie Voshell. Dynamic report creation in relation to databases.

107. Individually locked cells on a spreadsheet; US2003117447; 2003-06-26. By Gayle Mu-
jica and Michelle Miller; application possibly by Texas Instruments. Allow individ-
ual locking of cells (instead of bulk locking and individual unlocking as in Excel), and
graphical marking of locked cells.

108. Calculating in spreadsheet cells without using formulas; US2003120999; 2003-06-26.
By Michelle Miller and others; application possibly by Texas Instruments. Formula
entry on a graphical calculator.

272 Patents and applications

109. Spreadsheet Web server system and spreadsheet Web system; US2002065846; 2002-
05-30. By Atsuro Ogawa and Hideo Takata. A server-side spreadsheet component that
generates HTML tables for display in a web browser on the client side.

110. Method and system in an electronic spreadsheet for persistently filling by samples a
range of cells; US2002103825; 2002-08-01. By Frederic Bauchot; application by IBM.
Fill a cell range by sampling and interpolating from existing values.

111. Method and apparatus for handling scenarios in spreadsheet documents; US2002055953;
2002-05-09. By Falko Tesch and Matthias Breuer. Preserving, and displaying a tree
structure, the scenarios explored using a spreadsheet.

112. User interface for a multi-dimensional data store; US2003088586; 2003-05-08. By
Alexander Fitzpatrick and Sasan Seydnejad. Spreadsheet user interface to multi-
dimensional data, so-called “planning data repository”.

113. Methods and systems for inputting data into spreadsheet documents; US2002055954;
2002-05-09. By Matthias Breuer. User input, undo and recalculation based on previous
value.

114. Parallel execution mechanism for spreadsheets; US2001056440; 2001-12-27. By David
Abramson and Paul Roe. A method for explicitly initiating a parallel computation from
a spreadsheet cell; not a parallel implementation of the standard recalculation mecha-
nism.

115. Method and apparatus for entry and editing of spreadsheet formulas; US2003033329;
2003-02-13. By Eric Bergman and Paul Rank. Terminate the editing of a formula on
a PDA when user selects a different cell while the cursor in the formula is at a point
inappropriate for insertion of a cell reference.

116. Method and system in an electronic spreadsheet for persistently self-replicatig multiple
ranges of cells through a copy-paste operation; US2002049785; 2002-04-25. By Frederic
Bauchot; application by IBM. Closely related to application 120.

117. Dynamic conversion of spreadsheet formulas to multidimensional calculation rules;
US2003009649; 2003-01-09. By Paul Martin, William Angold, and Nicolaas Kichen-
brand. Calculating on multidimensional data, as obtained from a relational database.
Closely related to application 118.

118. Multidimensional data entry in a spreadsheet; US2002184260; 2002-12-05. By Paul
Martin, William Angold, and Nicolaas Kichenbrand. Accessing, displaying, editing and
writing back multidimensional data, as obtained from a relational database. Closely
related to application 117.

119. Dynamic data display having slide drawer windowing; US2002198906; 2002-12-26. By
Robert Press; application by IBM. A graphical display of data in which multiple “draw-
ers”, each displaying a fragment of a spreadsheet, may be visible simultaneously, and
may automatically resize themselves.

120. Method and system in an electronic spreadsheet for persistently copy-pasting a source
range of cells onto one or more destination ranges of cells; US2002049784; 2002-04-25.
By Frederic Bauchot; application by IBM. Mechanism to make persistent copies of a
formula, so that the copies are automatically updated when the original is updated.
Closely related to application 116. This seems similar to Montigel’s Wizcell [81].

121. Method and system for automated data manipulation in an electronic spreadsheet pro-
gram or the like; US2002174141; 2002-11-21. By Shing-Ming Chen . Spreadsheet
as database front-end, addressing cells with ranges and cell collections, and recording
macros.

Patents and applications 273

122. Method and system in an electronic spreadsheet for comparing series of cells;
US2002023106; 2002-02-21. By Bauchot and Daniel Mauduit; application by IBM. Use
Boolean functions to determine whether two ranges of cells overlap, are disjoint, are
equal or are contained one in the other.

123. Method and system in an electronic spreadsheet for handling user-defined options in a
copy/cut - paste operation; US2002007380; 2002-01-17. By Bauchot and Albert Harari;
application by IBM. How to control the setting of user-defined options in a cell copying
operation, when the options were set for the source range of cells.

124. Method and system in an electronic spreadsheet for managing and handling user-
defined options; US2002007372; 2002-01-17. By Bauchot and Albert Harari; appli-
cation by IBM. How to create or change user-defined options using a table.

125. Method and system in an electronic spreadsheet for applying user-defined options;
US2002059233; 2002-05-16. By Bauchot and Albert Harari; application by IBM. How
to set options to true or false.

126. The applications US2002143811, US2002143831, US2002143810, US2004205676,
US2002143809, US2002140734, US2002143730 and US2002143830 are all by Paul
Bennett, Round Rock, Texas, USA:

• System and method for vertical calculation using multiple columns in a screen
display; US2002143811; 2002-10-03.

• System and method for calculation using spreadsheet lines and vertical calcula-
tions in a single document; US2002143831; 2002-10-03.

• System and method for calculation using vertical parentheses; US2002143810;
2002-10-03.

• System and method for calculation using a subtotal function; US2004205676;
2004-10-14. Describes a graphical way to specify subtotal computations.

• System and method for calculation using multi-field columns with hidden fields;
US2002143809; 2002-10-03.

• System and method for calculation using formulas in number fields; US2002140734;
2002-10-03.

• System and method for calculation using a calculator input mode; US2002143730;
2002-10-03.

• System and method for calculation using multi-field columns with modifiable field
order; US2002143830; 2002-10-03. Unclear what is new relative to the general
concept of a spreadsheet.

127. Method and system in an electronic spreadsheet for handling absolute references in a
copy/cut and paste operation according to different modes; US2001032214; 2001-10-18.
By Frederic Bauchot and Albert Harari; application by IBM. Describes a method and
conditions for replacing absolute cell references to the source range by (other) absolute
cell references in the target range when copying formulas.

128. Spreadsheet error checker; US2002161799; 2002-10-31. By Justin Maguire; applica-
tion by Microsoft. A rule-based error checker for individual cells of a spreadsheet.

129. Multi-dimensional table data management unit and recording medium storing therein
a spreadsheet program; US2001016855; 2001-08-23. By Yuko Hiroshige. Selecting and
manipulating three-dimensional data.

130. Graphical environment for managing and developing applications; US2002010713;
2002-01-24. By Ágúst Egilsson. Closely related to patent 178 and application 62.

274 Patents and applications

131. Method and system for distributing and collecting spreadsheet information;
US2002010743; 2002-01-24. By Mark Ryan, David Keeney and Ronald Tanner. As-
signing individual sheets of a master workbook to one or more contributors, sending
copies of the sheets to the contributors for updating, and reintegrating them into the
master workbook.

132. * Method and apparatus for formula evaluation in spreadsheets on small devices;
US2002143829; 2002-10-03. By Paul Rank and John Pampuch. Describes the idea, but
few technical details, of cross-compilation of spreadsheet formulas for space-conserving
execution on a PDA. This involves, for instance, leaving out unused library functions.

133. Universal graph compilation tool; US6883161; 2005-04-19. By Andre Chovin and
Chatenay Alain; assigned to Crouzet Automatismes. Compilation of a visual software
model, drawn in spreadsheet program, to code for embedded devices.

134. Enhanced find and replace for electronic documents; US2002129053; 2002-09-12. By
Marise Chan and others; application by Microsoft. A find-and-replace function that
handles multiple sheets in a workbook; can find and change formatting attributes; and
can be suspended for editing and later resumed.

135. Storing objects in a spreadsheet; US6779151; 2004-08-17. By Jason Cahill and Jason
Allen; assigned to Microsoft. Very similar to application 60.

136. Reporting status of external references in a spreadsheet without updating;
US2002091730; 2002-07-11. By Jesse Bedford and others; application by Microsoft.
Closely related to applications 47 and 48.

137. Method and apparatus for a file format for storing spreadsheets compactly;
US2002124016; 2002-09-05. By Paul Rank and others. Storing a spreadsheet on a PDA
in a number of database records.

138. Method for dynamic function loading in spreadsheets on small devices; US2002087593;
2002-07-04. By Paul Rank. On demand loading of functions and features in spread-
sheet program for PDAs.

139. Functional visualization of spreadsheets; US2002078086; 2002-06-20. By Jeffrey Alden
and Daniel Reaume. Construction, visual display and maintenance of the support
graph (chapter 4) or dependency graph, in the appliciaton called “influence diagram”.
Focus is on the visual display, not on compact representation or efficient construction.

140. Method and system in an electronic spreadsheet for adding or removing elements from
a cell named range according to different modes; US2001007988; 2001-07-12. By Fred-
eric Bauchot and Albert Harari; application by IBM. Mechanism for updating referring
formulas when rows or columns are added to or deleted from a cell range.

141. * Methods and systems for generating a structured language model from a spreadsheet
model; US6766512; 2004-07-20. By Farzad Khosrowshahi and Murray Woloshin at JP
Morgan & Co; assigned to Furraylogic Ltd. Compiling a spreadsheet model, with des-
ignated input cells and output cells, to code for a function in a procedural programming
language.

142. Method and system in an electronic spreadsheet for introducing new elements in a
cell named range according to different modes; US6725422; 2004-04-20. By Frederic
Bauchot and Albert Harari; assigned to IBM. Differentiating between closed and open
named ranges of cells; the latter can be expanded by insertion of new rows and columns
in the open direction.

143. Computerized spreadsheet with auto-calculator; US6430584; 2002-08-06. By Ross
Comer and David Williams Jr; assigned to Microsoft. Closely related to patent 181.

Patents and applications 275

144. * Methodology for testing spreadsheet grids; US6766509; 2004-07-20. By Andrei Shere-
tov, Margaret Burnett and Gregg Rothermel; assigned to University of Oregon. Two
methods for using du-associations to test spreadsheets; in the more advanced method,
the testing of a single representative cell can increase the testedness of a range of cells
containing similar formulas.

145. * Methodology for testing spreadsheets; US6948154; 2005-09-20. By Gregg Rother-
mel, Margaret Burnett, and Lixin Li; assigned to University of Oregon. Using du-
associations to gradually test a spreadsheet, displaying each cell’s testedness.

146. Spreadsheet recalculation engine version stamp; US6523167; 2003-02-18. By Timothy
Ahlers and Andrew Becker, assigned to Microsoft. Explains how recalculation – or not
– at loading can be controlled by calculation engine version stamp. This technique ap-
pears to be used in Excel 2000 and later to enforce a full recalculation when loading a
workbook that was last saved by Excel’97 or older, and avoid that recalculation other-
wise. (Maybe the intention is to guard against an Excel’97 recalculation flaw; see note
under patent 182).

147. Apparatus and method for dynamically updating a computer-implemented table and
associated objects; US6411959; 2002-06-25. By Todd Kelsey; assigned to IBM. Au-
tomatically copying formulas and extending references to a table when new rows or
columns are added. Much the same idea as Microsoft’s patent 154.

148. Method and system in an electronic spreadsheet for processing different cell protection
modes US6592626; 2003-07-15. By Frederic Bauchot and Albert Harari; assigned to
IBM. Changing the protection mode of single cells.

149. Binding data from data source to cells in a spreadsheet; US6631497; 2003-10-07. By
Ardeshir Jamshidi, Farzad Farahbod and Hardeep Singh; assigned to IBM. Dynami-
cally importing data from external sources (such as databases), with no need for pro-
gramming.

150. Binding spreadsheet cells to objects; US6701485; 2004-03-02. By Mark Igra, Eric Mat-
teson and Andrew Milton; assigned to Microsoft. Binding a spreadsheet cell to an
external event source, such as a stock ticker, for instance when a spreadsheet program
(Excel) runs as component in a web browser (Internet Explorer).

151. Automatic formatting of pivot table reports within a spreadsheet; US6626959; 2003-09-
30. By Wesner Moise, Thomas Conlon and Michelle Thompson; assigned to Microsoft.
The automatic formatting of finished pivot tables as known from Excel.

152. User interface for creating a spreadsheet pivottable; US6411313; 2002-06-25.
By Thomas Conlon and Paul Hagger; assigned to Microsoft. The pivot table user inter-
face as known from Excel.

153. Method and apparatus for organizing and processing information using a digital com-
puter; US6166739; 2000-12-26. By Kent Lowry and others; assigned to Microsoft. Ini-
tiate cell editing by two single-clicks rather than one double-click when a spreadsheet
program (Excel) runs as component in a web browser (Internet Explorer).

154. Extension of formulas and formatting in an electronic spreadsheet; US6640234; 2003-
10-28. By Wayne Coffen and others; assigned to Microsoft. Describes a system by which
a previously blank but newly edited cell, which extends a list of consistently typed and
formatted cells, will automatically be formatted like those cells and will be included in
existing formulas and aggregating expressions that include all of those cells. Closely
related to patent application 76.

155. System and method for editing a spreadsheet via an improved editing and cell selection
model; US6549878; 2003-04-15.

276 Patents and applications

156. Method and apparatus for accessing multidimensional data; US6317750; 2001-11-13.
By Thomas Tortolani and Nouri Koorosh; assigned to Hyperion Solutions. Manipulat-
ing and displaying data from an external (database) source, with automatic replication
of formulas.

157. Visualization spreadsheet; US2001049695; 2001-12-06. By Ed Chi and others. The
authors and the patent seem unrelated to Nuñez [85], but the general idea is the same.

158. Analytic network engine and spreadsheet interface system; US6199078; 2001-03-06.
By Philip Brittan and others; assigned to Sphere Software Engineering. A calculation
mechanism that attempts to handle circular cell dependencies.

159. Multidimensional electronic spreadsheet system and method; US2002091728; 2002-07-
11. By Henrik Kjaer and Dan Pedersen. A three-dimensional spreadsheet in which a
usual cell (in the two-dimensional grid) can contain a stack of cells.

160. Visual aid to simplify achieving correct cell interrelations in spreadsheets; US2002023105;
2002-02-21. By Robert Wisniewski. Describes a system for visualizing which cells a
given cell depends on, and vice versa.

161. System and methods for improved spreadsheet interface with user-familiar objects;
US6282551; 2001-08-28. By Charles Anderson and others; assigned to Borland. Closely
related to patent 186.

162. Automatic spreadsheet forms; US5966716; 1999-10-12. By Ross Comer, John Misko
and Troy Link; assigned to Microsoft. Closely related to patent 179.

163. Spreadsheet view enhancement system; US6185582; 2001-02-06. By Polle Zellweger;
assigned to Xerox. Related to patent 164.

164. Animated spreadsheet for dynamic display of constraint graphs; US6256649; 2001-07-
03. By Jock Mackinlay and others; assigned to Xerox. Related to patent 163.

165. System and method for processing data in an electronic spreadsheet in accordance with
a data type; US6138130; 2000-10-24. By Dan Adler and Roberto Salama; assigned to
Inventure Technologies. Seems related to patent 189 but additionally mentions the
Java programming language.

166. Method and system for detecting and selectively correcting cell reference errors;
US6317758; 2001-11-13. By Robert Madsen, Daren Thayne and Gary Gibb; assigned
to Corel. Changing a reference in a formula from relative to absolute after copying the
formula.

167. System for displaying desired portions of a spreadsheet on a display screen by adjoining
the desired portions without the need for increasing the memory capacity; US6115759;
2000-09-05. By Kazumi Sugimura and Shuzo Kugimiya; assigned to Sharp. How to
hide and later redisplay selected rows and columns.

168. * Constraint-based spreadsheet system capable of displaying a process of execution
of programs; US5799295; 1998-08-25. By Yasuo Nagai; assigned to Tokyo Shibaura
Electric Co. A spreadsheet based on constraints in addition to formulas.

169. On-screen indentification and manipulation of sources that an object depends upon;
US6057837; 2000-05-02. By Darrin Hatakeda and others; assigned to Microsoft. Using
colors to indicate the various cell areas that a formula or graph depends on. Imple-
mented in Excel.

170. Method and apparatus for using label references in spreadsheet formulas; US5987481;
1999-11-16. By Eric Michelman, Joseph Barnett and Jonathan Lange; assigned to
Microsoft. Using names (symbolic labels) to refer to ranges in a spreadsheet. The
intersection of a row name and a column name denotes a cell.

Patents and applications 277

171. Spreadsheet-calculating system and method; US5970506; 1999-10-19. By Hiroki Kiyan,
Takaki Tokuyama and Motohide Tamura; assigned to Justsystem Corporation. A cell
area can be held fixed when the sheet is scrolled.

172. Method and system for establishing area boundaries in computer applications;
US6005573; 1999-12-21. By William Beyda and Gregory Noel; assigned to Siemens.
Limiting scrolling and editing in a graphical user interface.

173. System and methods for building spreadsheet applications; US5883623; 1999-03-16.
By Istvan Cseri; assigned to Borland. Seems closely related to patent 207.

174. Method and system for linking controls with cells of a spreadsheet; US5721847; 1998-
02-24. By Jeffrey Johnson; assigned to Microsoft. Associating graphic controls (a view
and a controller) with spreadsheet cells (a model).

175. Method and system for the direct manipulation of cells in an electronic spreadsheet
program or the like; US6112214; 2000-08-29. By Christopher Graham, Ross Hunter
and Lisa James; assigned to Microsoft. Moving or copying a marked block of cells by
dragging its border and using control keys. Implemented in Excel. Appears related to
patent 206.

176. Spreadsheet image showing data items as indirect graphical representations; US5880742;
1999-03-09. By Ramana Rao and Stuart Card; assigned to Xerox. Displaying multidi-
mensional data graphically and manipulating the graphs in the user interface.

177. Transformation of real time data into times series and filtered real time data within
a spreadsheet application; US5926822; 1999-07-20. By Mark Garman; assigned to
Financial Engineering. A spreadsheet program that permit real-time update of cells
reflecting a stream of input values.

178. Graphical environment for managing and developing applications; US6286017; 2001-
09-04. By Ágúst Egilsson. An extended spreadsheet paradigm in which a spread-
sheet may refer to external program fragments and the like. Closely related to applica-
tions 62 and 130.

179. Automatic spreadsheet forms; US5819293; 1998-10-06. By Ross Comer, John Misko
and Troy Link; assigned to Microsoft. Generating multiple spreadsheet form instances
from a template, associating each form with a database row. Closely related to patent 162.

180. Method and apparatus for suggesting completions for a partially entered data item
based on previously-entered, associated data items; US5845300; 1998-12-01. By Ross
Comer, Adam Stein and David Williams Jr; assigned to Microsoft. How to propose
completion of partially typed cell entries from a dynamically updated list.

181. Computerized spreadsheet with auto-calculator; US6055548; 2000-04-25. By Ross
Comer and David Williams Jr; assigned to Microsoft. Describes a mechanism to ap-
ply a function (such as SUM) to a selected cell area, where the user may interactively
and graphically change the selection. Excel and other spreadsheet programs imple-
ment this functionality for SUM(only?), displaying the value in the status bar. Closely
related to patent 143.

182. * Method and system of sharing common formulas in a spreadsheet program and of
adjusting the same to conform with editing operations; US5742835; 1998-04-21. By
Richard Kaethler,, assigned to Microsoft; very similar to patent 204. First, describes
a technique to identify identical formulas in a contiguous block of cells, and to share
a single representation of the formula between all cells in the block. The need for
this presupposes a particular formula representation, which is not made explicit, but
which clearly is different from that chosen in Corecalc. Second, notes that the sharing

278 Patents and applications

makes insertion and deletion of entire rows and columns more complicated, should they
happen to intersect with a block.

This problem is the same as that discussed in section 2.16 here, but the patent’s solu-
tion makes a point of creating small cell blocks, distinguishing between blocks with 1
to 4, 5 to 16, and 16 or more columns; and with 1 to 15, 16 to 31, 31 to 48, and 49 to 200
rows. The point of this is not yet clear.

Maybe a faulty implementation of this approach caused bugs number KB171339 (“Some
values not recalculated when using multiple formulas”) and KB154134 (“Functions in
filled formulas may not be recalculated”) in Excel’97; see Microsoft Developer Network
Knowledge base at http://support.microsoft.com/kb/q174868/.

183. System and methods for reformatting multi-dimensional spreadsheet information;
US5604854; 1997-02-18. By Colin Glassey; assigned to Borland. Transforming data
from relational to multi-dimensional tabular form, and swapping axes, in the manner
of pivot tables.

184. Method and system for detecting and correcting errors in a spreadsheet formula;
US5842180; 1998-11-24. By Karan Khanna and Edward Martinez; assigned to Mi-
crosoft. Parsing of formula expressions with error recovery and display of dialog box.

185. Method and system for allowing multiple users to simultaneously edit a spreadsheet;
US6006239; 1999-12-21. By Anil Bhansali and Rohit Wad; assigned to Microsoft. De-
scribes a kind of concurrent versioning system for multiple users to edit and save the
same spreadsheet.

186. System and methods for improved spreadsheet interface with user-familiar objects;
US5664127; 1997-09-02. By Charles Anderson and others; assigned to Borland. A
workbook containing multiple spreadsheets. Closely related to patent 161.

187. System and methods for improved scenario management in an electronic spreadsheet;
US6438565; 2002-08-20. By Joseph Ammirato and Gavin Peacock; assigned to Borland.
Closely related to patent 218.

188. Method and apparatus for retrieving data and inputting retrieved data to spreadsheet
including descriptive sentence input means and natural language interface means;
US5734889; 1998-03-31. By Tomoharu Yamaguchi; assigned to Nippon Electric Co.
Translating a natural language phrase to a database query an executing it in a spread-
sheet.

189. Computer-based system and method for data processing; US5768158; 1998-06-16. By
Dan Adler, Roberto Salama and Gerald Zaks; assigned to Inventure America Inc. A
spreadsheet program in which a cell may contain any object.

Piersol’s 1986 paper [93] is mentioned in the application but apparently not considered
prior art, because a formula cannot change the value of another cell in Piersol’s system.

190. Method and apparatus for entering and manipulating spreadsheet cell data; US5717939;
1998-02-10. By Daniel Bricklin, William Lynch and John Friend; assigned to Compaq
Computer. Similar to patent 197.

191. Method and system for constructing a formula in a spreadsheet; US5890174; 1999-
03-30. By Karan Khanna and Edward Martinez; assigned to Microsoft. Displaying
information about a function and its argument types during formula editing.

192. System and methods for automated graphing of spreadsheet information; US5581678;
1996-12-03. By Philippe Kahn; assigned to Borland. Automatically proposing a graph
type (pie chart, curve, 2D or 3D bar chart, . . .) based on the number of data points and
the complexity of selected data. Similar to patent 202.

Patents and applications 279

193. Method and system for mapping non-uniform table-structure input data to a uniform
cellular data structure; US5881381; 1999-03-09. By Akio Yamashita and Yuki Hi-
rayama; assigned to IBM. Pasting a table from a text document into a spreadsheet,
such that each spreadsheet cell receives one table item.

194. * Methods for compiling formulas stored in an electronic spreadsheet system;
US5633998; 1997-05-27. By Roger Schlafly; assigned to Borland. Related to patent 213.

195. Process and device for the automatic generation of spreadsheets; US5752253; 1998-05-
12. By Jean Paul Geymond and Massimo Paltrinieri; assigned to Bull SA. Generating
a spreadsheet from the schema of a relational database.

196. System and method of integrating a spreadsheet and external program having out-
put data calculated automatically in response to input data from the spreadsheet;
US5893123; 1999-04-06. By Paul Tuinenga. Using OLE to call an external function
from a spreadsheet (when recalculating) and getting the result back into the spread-
sheet.

197. Method and apparatus for entering and manipulating spreadsheet cell data; US5848187;
1998-12-08. By Daniel Bricklin, William Lynch and John Friend; assigned to Compaq
Computer. How to read and then assign hand-written data to spreadsheet cells. Simi-
lar to patent 190.

198. Method and system for automatically entering a data series into contiguous cells of an
electronic spreadsheet program or the like; US5685001; 1997-11-04. By Brian Capson
and others; assigned to Microsoft. Use mouse and/or keyboard to quickly enter series
such as 1, 2, . . . ; or Monday, Tuesday, . . . , as used in Excel.

199. Graphic indexing system; US5867150; 1999-02-02. By Dan Bricklin and others; as-
signed to Compaq Computer. Similar to patent 209.

200. System and methods for improved spreadsheet interface with user-familiar objects;
US5590259; 1996-12-31. By Charles Anderson and others; assigned to Borland. Also
published as US5416895.

201. Location structure for a multi-dimensional spreadsheet; US6002865; 1999-12-14. By
Erik Thomsen.

202. Systems and methods for automated graphing of spreadsheet information; US5461708;
1995-10-24. By Philippe Kahn; assigned to Borland. Similar to patent 192.

203. Method and system for direct cell formatting in a spreadsheet; US5598519; 1997-01-
28. By Raman Narayanan; assigned to Microsoft. Sharing cell formatting information
between cells by storing the formatting information in a separate formatting table, and
mapping cell coordinates to entries in that table.

204. * Method and system of sharing common formulas in a spreadsheet program and of
adjusting the same to conform with editing operations; US5553215; 1996-09-03. By
Richard Kaethler, assigned to Microsoft; very similar to patent 182.

205. Methods for composing formulas in an electronic spreadsheet system; US5603021;
1997-02-11. By Percy Spencer and others; assigned to Borland. Displaying informa-
tion about a function and its argument types during formula editing.

206. Method and system for the direct manipulation of cells in an electronic spreadsheet
program or the like; US5623282; 1997-04-22. By Christopher Graham, Ross Hunter
and Lisa James; assigned to Microsoft. Appears closely related to application 89.

207. System and methods for building spreadsheet applications; US5623591; 1997-04-22.
By Istvan Cseri; assigned to Borland. Linking objects with events and actions.

280 Patents and applications

208. Auto-formatting of tables in a spreadsheet program; US5613131; 1997-03-18. By Ken
Moss and Andrew Kwatinetz; assigned to Microsoft. Describes table autoformatting
using heuristics, as known from Excel.

209. Graphic indexing system; US5539427; 1996-07-23. By Dan Bricklin and others; as-
signed to Compaq Computer. Using a lasso gesture in handwriting entry to indicate
items to index. Similar to patent 199.

210. System and methods for improved scenario management in an electronic spreadsheet;
US5499180; 1996-03-12. By Joseph Ammirato and Gavin Peacock; assigned to Borland.
Closely related to patent 218.

211. Code generation and data access system; US5544298; 1996-08-06. By Walter Kanavy
and Timothy Brown; assigned to Data Management Corporation. A system to speed up
the creation of database queries and the like.

212. Visually aging scroll bar; US5532715; 1996-07-02. By Cary Bates and others; assigned
to IBM. Visually “heating” a controlled cell as long as a scrollbar slider remains the
same position.

213. * Electronic spreadsheet system and methods for compiling a formula stored in a spread-
sheet into native machine code for execution by a floating-point unit upon spreadsheet
recalculation; US5471612; 1995-11-28. By Roger Schlafly; assigned to Borland. Com-
ments: Unusually well-written and technically substantial. See sections 1.13 and 6.4.1.

214. Electronic spreadsheet system producing generalized answers including formulas;
US5418902; 1995-05-23. By Vincent West and Edward Babb; assigned to Int Comput-
ers Ltd. Translate spreadsheet formulas into logic and evaluate symbolically; allows
symbolic and bidirectional computations.

215. Spreadsheet command/function callback capability from a dynamic-link library;
US5437006; 1995-07-25. By Andrzej Turski; assigned to Microsoft. Supporting call-
backs into a spreadsheet program.

216. Fuzzy spreadsheet data processing system; US5381517; 1995-01-10. By Karl Thorndike
and Joseph Vrba; assigned to Fuziware. Computing with fuzzy numbers and displaying
fuzzy results in a spreadsheet program.

217. Sorting a table by rows or columns in response to interactive prompting with a dialog
box graphical icon; US5396621; 1995-03-07. By Kathryn Macgregor and Elisabeth
Waymire; assigned to Claris. Choosing and indicating graphically whether sorting is
by row or column.

218. System and methods for improved scenario management in an electronic spreadsheet;
US5303146; 1994-04-12. By Joseph Ammirato and Gavin Peacock; assigned to Borland.
A form of version control permitting maintenance of several scenarios on the same
spreadsheet. Closely related to patent 210.

219. Data processing apparatus and method for a reformattable multidimensional spread-
sheet; US5317686; 1994-05-31. By R. Pito Salas and others; assigned to Lotus Devel-
opment Corporation. Naming and display of cells.

220. * Method of bidirectional recalculation; US5339410; 1994-08-16. By Naoki Kanai; as-
signed to IBM. Proposes to replace the standard unidirectional computation by bidirec-
tional constraints. This seems to require formulas to be inverted, which isn’t possible
in general.

221. Spreadsheet program which implements alternative range references; US5371675; 1994-
12-06. By Irene Greif, Richard Landsman and Robert Balaban; assigned to Lotus De-
velopment Corporation. Use a menu to choose between different source cell ranges in
a calculation.

Patents and applications 281

222. System and method for storing and retrieving information from a multidimensional
array; US5319777; 1994-06-07. By Manuel Perez; assigned to Sinper. Networked mul-
tidimensional spreadsheet program allowing concurrent updates.

223. * Method for optimal recalculation; US5276607; 1994-01-04. By Bret Harris and Lewis
Bastian; assigned to WordPerfect Corporation. See section 3.3.7.

224. Method for hiding and showing spreadsheet cells; US5255356; 1993-10-19. By Eric
Michelman and Devin Ben-Hur; assigned to Microsoft. Hiding or showing cells that
contribute to subtotals and schematic, according to the cells’ formulas.

225. Computer-aided decision making with a symbolic spreadsheet; US5182793; 1993-01-
26. By Rhonda Alexander, Michael Irrgang and John Kirchner; assigned to Texas In-
struments. Using a spreadsheet program to make decisions.

226. Spreadsheet cell having multiple data fields; US5247611; 1993-09-21. By Ronald Norden-
Paul and John Brimm; assigned to Emtek Health Care Systems. Display, or not,
spreadsheet cells holding mandatory as well as optional information.

227. Graph-based programming system and associated method; US5255363; 1993-10-19. By
Mark Seyler; assigned to Mentor Graphics. Generalization of formulas to actions and
event listeners, and of cell contents to graphical components.

228. Method and system for processing formatting information in a spreadsheet; US5231577;
1993-07-27. By Michael Koss; assigned to Microsoft. Cell formatting information and
how to share it among cells.

229. Method for controlling the order of editing cells in a spreadsheet by evaluating entered
next cell attribute of current cell; US5121499; 1992-06-09. By Rex McCaskill and Bev-
erly Machart; assigned to IBM. Let each cell determine which cell is “next” in editing
order.

230. Graphic file directory and spreadsheet; US5093907; 1992-03-03. By Yao Hwong and
Mitsuro Kaneko; assigned to Axa. Display and process (miniatures of) image files in a
matrix of cells.

231. Method for assisting the operator of an interactive data processing system to enter
data directly into a selected cell of a spreadsheet; US5021973; 1991-06-04. By Irene
Hernandez and Beverly Machart; assigned to IBM. Type the desired contents of a cell
into the cell – presumably unlike early DOS-based spreadsheets, in which the text was
typed in a separate editor line above the sheet.

232. System for generating worksheet files for electronic spreadsheets; US5033009; 1991-
07-16. By Steven Dubnoff. Generate new sheets by inserting variable data into a
pattern sheet, in the style of word processor merge files.

233. Intermediate spreadsheet structure; US5055998; 1991-10-08. By Terrence Wright,
Scott Mayo and Ray Lischner; assigned to Wang Laboratories. Describes an inter-
change format for multidimensional spreadsheets.

282 Patents and applications

Bibliography

[1] Mathnet.numerics open source numerical library. Webpage. At
http://mathnetnumerics.codeplex.com/, seen 2011-03-23.

[2] Robin Abraham and Martin Erwig. Header and unit inference for spreadsheets
through spatial analyses. In IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC’04), pages 165–172, 2004. At
http://web.engr.oregonstate.edu/˜ erwig/papers/HeaderInf VLHCC04.pdf on 26
October 2996.

[3] Robin Abraham and Martin Erwig. Inferring templates from spreadsheets. In ICSE

’06: Proceeding of the 28th international conference on Software engineering, pages
182–191. ACM Press, 2006.

[4] Robin Abraham and Martin Erwig. Type inference for spreadsheets. In PPDP ’06:

Proceedings of the 8th ACM SIGPLAN Symposium on Principles and Practice of

Declarative Programming, pages 73–84. ACM Press, 2006.

[5] D. Abramson, P. Roe, L. Kotler, and D. Mather Activesheets: Super-computing with
spreadsheets. In 2001 High Performance Computing Symposium (HPC’01), Seattle,

USA, pages 110–115, 2001.

[6] Yanif Ahmad, Tudor Antoniu, Sharon Goldwater, and Shriram Krishnamurthi. A type
system for statically detecting spreadsheet errors. In 18th IEEE International

Conference on Automated Software Engineering (ASE’03), pages 174–183, 2003.

[7] Tudor Antoniu et al. Validating the unit correctness of spreadsheet programs. In
ICSE ’04: Proceedings of the 26th International Conference on Software Engineering,
pages 439–448. IEEE Computer Society, 2004.

[8] Yirsaw Ayalew. Spreadsheet Testing Using Interval Analysis. PhD thesis, Institut für
Informatik-Systeme, Universität Klagenfurt, 2001. At
https://143.205.180.128/Publications/pubfiles/psfiles/2001-0125-YA.ps on 22 August
2006.

[9] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.
Journal of Political Economy, 81(3):637–654, 1973.

[10] S.C. Bloch Excel for Engineers and Scientists. Wiley, second edition, 2003.

[11] A. Bondorf. Automatic autoprojection of higher order recursive equations. Science of

Computer Programming, 17:3–34, 1991.

[12] Borland. Antique software: Turbo Pascal v1.0. Webpage. At
http://bdn.borland.com/article/20693 on 26 October 2006.

283

284 Bibliography

[13] Dan Bricklin. Visicalc information. Webpage. At
http://www.danbricklin.com/visicalc.htm on 3 March 2011.

[14] Chris B. Browne. Linux spreadsheets. Webpage. At
http://linuxfinances.info/info/spreadsheets.html on 3 March 2011.

[15] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677–691, 1986.

[16] Poul Brønnum. Type analysis for sheet-defined functions. Master’s thesis, IT
University of Copenhagen, 2009.

[17] Margaret Burnett et al. Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm. Journal of Functional Programming,
11(2):155–206, March 2001.

[18] Margaret Burnett, Andrei Sheretov, Bing Ren, and Gregg Rothermel. Testing
homogeneous spreadsheet grids with the ”what you see is what you test” methodology.
IEEE Transactions on Software Engineering, 28(6):576–594, 2002.

[19] Rommert J. Casimir Real programmers don’t use spreadsheets. ACM SIGPLAN

Notices, 27(6):10–16, June 1992.

[20] M. Chandy and J. Misra Parallel Program Design. Addison-Wesley, 1988.

[21] M. Chandy. Concurrent programming for the masses. (PODC 1984 invited address).
In Principles of Distributed Computing 1985, pages 1–12. ACM, 1985.

[22] Chris Clack and Lee Braine. Object-oriented functional spreadsheets. In Proceedings

of the 10th Glasgow Workshop on Functional Programming (GlaFP’97), September
1997. At http://citeseer.ist.psu.edu/clack97objectoriented.html.

[23] Michael Coblenz. Using objects of measurements to detect spreadsheet errors.
Technical Report CMU-CS-05-150, School of Computer Science, Carnegie Mellon
University, July 2005. At
http://reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-150.pdf on 26 October
2006.

[24] Colt. Homepage. Webpage. At http://dsd.lbl.gov/˜ hoschek/colt/ on 26 October 2006.

[25] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation, 19:297–301, 1965.

[26] Daniel S. Cortes and Morten Hansen User-defined functions in spreadsheets.
Master’s thesis, IT University of Copenhagen, September 2006.

[27] Tony Davie and Kevin Hammond. Functional hypersheets. In Eighth international

Workshop on Implementation of Functional Languages, pages 39–48, 1996. At
http://www-fp.dcs.st-and.ac.uk/˜ kh/papers/Hypersheets/Hypersheets.html 31 August
2006.

[28] Walter de Hoon. Designing a spreadsheet in a pure functional graph rewriting
language. Master’s thesis, University of Nijmegen, 1993.

[29] Walter de Hoon, Luc Rutten, and Marko van Eekelen. Implementing a functional
spreadsheet in Clean. Journal of Functional Programming, 5(3):383–414, 1995.

[30] Stefano de Pascale and Eero Hyvönen. An extended interval arithmetic library for
Microsoft Excel. Research report, VTT Information Technology, Espöö, Finland, 1994.

Bibliography 285

[31] Decision Models. Excel pages – calculation secrets. Website. At
http://www.decisionmodels.com/calcsecrets.htm of 26 October 2006.

[32] Decision Models. Homepage. Website. At http://www.decisionmodels.com/ of 26
October 2006.

[33] N. Dershowitz and E. M. Reingold Calendrical calculations. Cambridge University
Press, third edition edition, 2008.

[34] Weichang Du and William W. Wadge The eductive implementation of a
three-dimensional spreadsheet. Software Practice and Experience, 20(11):1097–1114,
1990.

[35] Ecma International. Homepage.

[36] Ecma TC39 TG3. Common Language Infrastructure (CLI). Standard ECMA-335, 3rd

edition. Ecma International, June 2005.

[37] John English. Ada 95: The Craft of Object-Oriented Programming. Prentice-Hall,
1997. At http://www.it.bton.ac.uk/staff/je/adacraft/ on 26 October 2006.

[38] Martin Erwig and Margaret M. Burnett. Adding apples and oranges. In Shriram
Krishnamurthi and C. R. Ramakrishnan, editors, PADL ’02: Proceedings of the 4th

International Symposium on Practical Aspects of Declarative Languages. Lecture

Notes in Computer Science, vol. 2257, pages 173–191, London, UK, 2002.
Springer-Verlag.

[39] Martin Erwig et al. Gencel: A program generator for correct spreadsheets. Journal of

Functional Programming, 16(3):293–325, 2006.

[40] European Spreadsheet Risks Interest Group. Homepage. Webpage. At
http://www.eusprig.org/.

[41] Marc Fisher et al. Integrating automated test generation into the wysiwyt
spreadsheet testing methodology. ACM Transactions on Software Engineering

Methodology, 15(2):150–194, 2006.

[42] OASIS Foundation. Open document format for office applications (OpenDocument)
TC. Webpage. At http://www.oasis-open.org/committees/office/ on 25 August 2006.

[43] Framtidsforum. SpreadsheetConverter. Webpage. At
http://www.spreadsheetconverter.com/ on 10 August 2007.

[44] Joe Francoeur. Algorithms using Java for spreadsheet dependent cell recomputation.
Technical Report cs.DS/0301036v2, arXiv, June 2003. At
http://arxiv.org/abs/cs.DS/0301036.

[45] Joe Francoeur. Personal communication, August 2006.

[46] M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the Theory of

NP-Completeness. W.H. Freeman, 1979.

[47] Gnumeric. Homepage. Webpage. At http://www.gnome.org/projects/gnumeric/ on 26
October 2006.

[48] David Goldberg. What every computer scientist should know about floating-point
arithmetic. Computing Surveys, 23(1):5–48, March 1991.

[49] Vincent Granet. The XXL spreadsheet project. Linux Journal, April 1999. At
http://www.linuxjournal.com/article/3186.

286 Bibliography

[50] Khronos OpenCL Working Group. The OpenCL specification. Technical report,
Khronos Group, April 2009.

[51] Phong Ha and Quan Vi Tran. Brugerdefinerede funktioner i Excel. (User-defined
functions in Excel). Master’s thesis, IT University of Copenhagen, June 2006. In
Danish.

[52] Haskell. Homepage. Webpage. At http://www.haskell.org/.

[53] John Hatcliff, Torben Mogensen, and Peter Thiemann, editors. Partial Evaluation:

Practice and Theory: DIKU 1998 International Summer School, volume 1706 of
Lecture Notes in Computer Science. Springer-Verlag, 1998.

[54] Carsten Kehler Holst. Poor man’s generalization. Note, August 1988. 2 pages.

[55] Eero Hyvönen and Stefano de Pascale. Interval computations on the spreadsheet. In
R. B. Kearfott and V. Kreinovich, editors, Applications of Interval Computations,

Applied Optimization, pages 169–209. Kluwer, 1996.

[56] Eero Hyvönen and Stefano de Pascale. A new basis for spreadsheet computing.
Interval Solver(TM) for Microsoft Excel. In 11th Conference on Innovative

Applications of Artificial Intelligence (IAAI-99), pages 799–806. AAAI Press, 1999. At
http://www.mcs.vuw.ac.nz/˜ elvis/db/references/NBSSC.pdf on 26 October 2006.

[57] IEEE. IEEE standard for floating-point arithmetics. IEEE Std 754-2008, 2008.

[58] Knowledge Dynamics Inc. Kdcalc. Web page. At http://www.kdcalc.com/ on 10 August
2007.

[59] Tomás Isakowitz, Shimon Schocken, and Henry C. Lucas Toward a logical/physical
theory of spreadsheet modeling. ACM Transactions on Information Systems,
13(1):1–37, 1995.

[60] Thomas S. Iversen Runtime code generation to speed up spreadsheet computations.
Master’s thesis, DIKU, University of Copenhagen, August 2006. At
http://www.itu.dk/people/sestoft/corecalc/Iversen.pdf.

[61] Neil D. Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation and Automatic

Program Generation. Englewood Cliffs, NJ: Prentice Hall, 1993. At
http://www.itu.dk/people/sestoft/pebook/pebook.html.

[62] Brian Kahin. The software patent crisis. Technology Review, April 1990. At
http://antipatents.8m.com/software-patents.html on 26 October 2006.

[63] R. Kelsey, W. Clinger, and J. Rees (editors). Revised5 report on the algorithmic
language Scheme. Higher-Order and Symbolic Computation, 11(1), August 1998.

[64] Loreen La Penna. Recalculation in Microsoft Excel 2002. Web page, October 2001. At
http://msdn.microsoft.com/library/en-us/dnexcl2k2/html/odc xlrecalc.asp on 26
October 2006.

[65] X. Leroy The Zinc experiment: An economical implementation of the ML language.
Rapport Technique 117, INRIA Rocquencourt, France, 1990. Available as
ftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/economical-ML-
implementation.ps.gz.

[66] A. Lew and R. Halverson A FCCM for dataflow (spreadsheet) programs. In FCCM ’95:

Proceedings of the IEEE Symposium on FPGA’s for Custom Computing Machines,
pages 2–10. IEEE Computer Society, 1995.

Bibliography 287

[67] Serge Lidin. Inside Microsoft .Net IL Assembler. Microsoft Press, 2002.

[68] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley,
second edition, 1999.

[69] Björn Lisper and Johan Malmström. Haxcel: A spreadsheet interface to haskell. In
14th International Workshop on the Implementation of Functional Languages, pages
206–222, 2002. At http://www.mrtc.mdh.se/publications/0435.pdf on 31 August 2006.

[70] Haibo Luo. Ilvisualizer homepage.
http://blogs.msdn.com/b/haibo luo/archive/2010/04/19/9998595.aspx.

[71] Bill Manville. Update linked cells within a workbook??? ExcelBanter online forum
posting, reply 20 January 2005, 2005. At
http://www.excelbanter.com/showthread.php?t=557.

[72] Chuck Martin. sc . Webpage. At http://freshmeat.net/projects/sc/ on 26 October 2006.

[73] B. D. McCullough Fixing statistical errors in spreadsheet software: The cases of
Gnumeric and Excel. CSDA Statistical Software Newsletter, 2003. At
http://www.csdassn.org/software_reports.cfm on 26 October 2006.

[74] Michael Meeks and Jody Goldberg. A discussion of the new dependency code, version
0.3. Code documentation, October 2003. File doc/developer/Dependencies.txt in
Gnumeric source distribution, at http://www.gnome.org/projects/gnumeric/.

[75] Microsoft. .net framework. Webpage. At
http://msdn.microsoft.com/en-us/netframework/.

[76] Microsoft. Office online. Webpage. At http://office.microsoft.com/.

[77] R. Milner, M. Tofte, R. Harper, and D.B. MacQueen The Definition of Standard ML

(Revised). The MIT Press, 1997.

[78] Vincens Riber Mink and Daniel Schiermer. Collaborative spreadsheet. BSc thesis, IT
University of Copenhagen, May 2010.

[79] Roland Mittermeir and Markus Clermont. Finding high-level structures in
spreadsheet programs. In Arie van Deursen and Elizabeth Burd, editors, Proceedings

of the 9th Working Conference in Reverse Engineering, Richmond, VA, USA, pages
221–232. IEEE Computer Society, 2002. At
https://143.205.180.128/Publications/pubfiles/pdffiles/2002-0190-RMAM.pdf on 24
August 2006.

[80] Mono project. Home page. At http://www.mono-project.com/ .

[81] Markus Montigel. Portability and reuse of components for spreadsheet languages. In
IEEE Symposia on Human Centric Computing Languages and Environments, pages
77–79, 2002.

[82] Hanspeter Mössenböck, Albrecht Wöß, and Markus Löberbauer. The compiler
generator Coco/R. Webpage. At http://www.ssw.uni-linz.ac.at/Coco/.

[83] Netlib. Homepage. Webpage. At http://www.netlib.org/.

[84] Microsoft Developer Network. Excel primary interop assembly reference. Class
ApplicationClass. Webpage. At http://msdn2.microsoft.com/en-
us/library/microsoft.office.interop.excel.applicationclass.aspx.

[85] Fabian Nuñez. An extended spreadsheet paradigm for data visualisation systems,
and its implementation. Master’s thesis, University of Cape Town, November 2000.

288 Bibliography

[86] National Institute of Standards. Javanumerics. Webpage. At
http://math.nist.gov/javanumerics/.

[87] European Patent Office. Espacenet. Webpage. At http://ep.espacenet.com/.

[88] OpenOffice. Calc – the all-purpose spreadsheet. Webpage. At
http://www.openoffice.org/product/calc.html.

[89] Niek Otten. Re: Ctrl+alt+f9 not performing full recalculation on some PCs. Excel
Forum posting, 8 October 2006, 2006. At http://www.excelforum.com/excel-worksheet-
functions/570413-ctrl-alt-f9-not-performing-full-recalculation-on-some-pcs.html.

[90] Ray Panko. Spreadsheet research. Website. At http://panko.cba.hawaii.edu/ssr/.

[91] Einar Pehrson. Cleansheets. Webpage. At http://freshmeat.net/projects/csheets/.

[92] Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A user-centred approach
to functions in Excel. In ICFP ’03: Proceedings of the eighth ACM SIGPLAN

international conference on Functional programming, pages 165–176. ACM, 2003.

[93] Kurt W. Piersol Object-oriented spreadsheets: the analytic spreadsheet package. In
Conference proceedings on Object-oriented programming systems, languages and

applications (OOPSLA’86), Portland, Oregon, pages 385–390. ACM Press, 1986.

[94] Morten Poulsen and Poul Serek. Optimized recalculation for spreadsheets with the
use of support graph. Master’s thesis, IT University of Copenhagen, Denmark, 2007.

[95] ReportingEngines. Formula One for Java. Webpage. At
http://www.reportingengines.com/ on 19 September 2006.

[96] Microsoft Research. Accelerator v2 programming guide. Webpage, November 2009. At
https://connect.microsoft.com/acceleratorv2.

[97] Boaz Ronen, Michael A. Palley, and Henry C. Lucas Spreadsheet analysis and design.
Communications of the ACM, 32(1):84–93, 1989.

[98] Gregg Rothermel et al. A methodology for testing spreadsheets. ACM Transactions on

Software Engineering Methodology, 10(1):110–147, 2001.

[99] Gregg Rothermel, Lixin Li, and Margaret Burnett. Testing strategies for form-based
visual programs. In Eighth International Symposium on Software Reliability

Engineering, pages 96–107. IEEE Computer Society, 1997.

[100] Gregg Rothermel, Lixin Li, C. DuPuis, and Margaret Burnett. What you see is what
you test: a methodology for testing form-based visual programs. In 20th International

Conference on Software Engineering, pages 198–207. IEEE Computer Society, 1998.

[101] Erik Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford University,
California, February 1993. Published as technical report CSL-TR-93-563.

[102] Erik Ruf and Daniel Weise. Opportunities for online partial evaluation. Technical
Report CSL-TR-92-516, Computer Systems Laboratory, Stanford University, Stanford,
CA, April 1992.

[103] Nader Salas. Collaborative spreadsheet with traceability. Master’s thesis, IT
University of Copenhagen, August 2011.

[104] Jason Sanders and Edward Kandrot. CUDA by example: An introduction to

general-purpose GPU programming. Addison-Wesley, 2010.

[105] Russell Schulz. comp.apps.spreadsheet FAQ. Newsgroup, June 2002. At
http://www.faqs.org/faqs/spreadsheets/faq/.

Bibliography 289

[106] P. Sestoft. A Spreadsheet Core Implementation in C#. Technical Report
ITU-TR-2006-91, IT University of Copenhagen, September 2006. 135 pages.

[107] Peter Sestoft. Numeric performance in C, C# and Java. Technical report, IT
University of Copenhagen, February 2009. 14 pages. At
http://www.itu.dk/people/sestoft/papers/numericperformance.pdf.

[108] Bradford L. Smith Abykus. an object-oriented spreadsheet for windows. Website. At
http://www.abykus.com/ on 7 September 2006.

[109] EUSES: End Users Shaping Effective Software. Wysiwyt: What you see is what you
test. Webpage. At http://eusesconsortium.org/wysiwyt.php.

[110] Spec#. Homepage. At http://research.microsoft.com/specsharp/.

[111] SpreadsheetGear LLC. SpreadsheetGear for .NET. Webpage. At
http://www.spreadsheetgear.com/ on 19 September 2006.

[112] Marc Stadelmann. A spreadsheet based on constraints. In UIST ’93: Proceedings of

the 6th annual ACM symposium on User Interface Software and Technology, pages
217–224. ACM Press, 1993.

[113] J. Staunstrup. A Formal Approach to Program Design. Kluwer, 1994.

[114] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data parallelism to
program GPUs for general-purpose uses. In ASPLOS 2006, pages 325–335. ACM
Press, 2006.

[115] United States Court of Appeals for the Federal Circuit. Refac versus Lotus. Opinion
95-1350, April 1996. At
http://www.ll.georgetown.edu/Federal/judicial/fed/opinions/95opinions/95-1350.html.

[116] United States Patent and Trademark Office. Patent full-text and full-page image
databases. Webpage. At http://www.uspto.gov/patft/.

[117] Usenet. comp.apps.spreadsheet. Newsgroup.

[118] J. G. van der Corput. Verteilungsfunktionen. Proc. Ned. Akad. v. Wet., 38:813–821,
1935.

[119] M. van Schothost et al. Relating microbiological criteria to food safety objectives and
performance objectives. Food Control, 2008. (In press).

[120] Noah Vawter. DFT multiply demo spreadsheet. Webpage, 2002. At
http://www.gweep.net/˜ shifty/portfolio/fftmulspreadsheet/ on 29 August 2006.

[121] Andrew P. Wack Partitioning dependency graphs for concurrent execution: a parallel

spreadsheet on a realistically modelled message passing environment. PhD thesis,
University of Delaware, 1995.

[122] Guijun Wang and Allen Ambler. Solving display-based problems. In IEEE

Symposium on Visual Languages, Boulder, Colorado, pages 122–129. IEEE Computer
Society, 1996.

[123] D. Weise, R. Conybeare, E. Ruf, and S. Seligman Automatic online partial evaluation.
In J. Hughes, editor, Functional Programming Languages and Computer Architecture,

Cambridge, Massachusetts, August 1991 (Lecture Notes in Computer Science, vol. 523),
pages 165–191. Springer-Verlag, 1991.

[124] Wikipedia. Spreadsheet. Webpage. At http://en.wikipedia.org/wiki/Spreadsheet.

[125] Wikipedia. Visicalc. Webpage. At http://en.wikipedia.org/wiki/VisiCalc.

290 Bibliography

[126] Stephen Wolfram. The Mathematica Book. Cambridge University Press, 1999.

[127] Alan G. Yoder and David L. Cohn Architectural issues in spreadsheet languages. In
1994 Conference on Programming Languages and System Architectures. Lecture Notes

in Computer Science, vol. 782. Springer-Verlag, 1994. Also at
http://www.cse.nd.edu/research/tech reports/1993.html.

[128] Alan G. Yoder and David L. Cohn Observations on spreadsheet languages, intension
and dataflow. Technical Report TR-94-22, Computer Science and Engineering,
University of Notre Dame, 1994. At
ftp://www.cse.nd.edu/pub/Reports/1994/tr-94-22.ps.

[129] Alan G. Yoder and David L. Cohn Real spreadsheets for real programmers. In
Proceedings of the IEEE Computer Society 1994 International Conference on Computer

Languages, May 16-19, 1994, Toulouse, France, pages 20–30, 1994. Also at
ftp://www.cse.nd.edu/pub/Reports/1994/tr-94-9.ps.

[130] Alan G. Yoder and David L. Cohn Domain-specific and general-purpose aspects of
spreadsheet languages. In Sam Kamin, editor, DSL ’97 - First ACM SIGPLAN

Workshop on Domain-Specific Languages, Paris, France, University of Illinois
Computer Science Report, pages 37–47, 1997. At
http://www-sal.cs.uiuc.edu/˜ kamin/dsl.

Index 291

Index

A1 reference format, 12
Abastillas, Tisha, 266
AboutBox class, 260
Abraham, Robin, 23, 103, 283
Abramson, D., 283
Abramson, David, 272
ABSbuiltin function, 246
absolute reference, 12
Abykus spreadsheet program, 23
Accelerator, 288, 289
ACKAexample function, 225
ACKBexample function, 226
ACOSbuiltin function, 246
Action delegate type, 39
AddSheet method (Workbook), 33
AddToSupport method (CellArea), 72
Adjusted¡T¿ class, 56
Adler, Dan, 276, 278
Ahlers, Timothy, 275
Ahmad, Yanif, 283
Alden, Jeffrey, 274
Alexander, Rhonda, 281
Allen, Jason, 268, 274
Ambler, Allen, 21, 289
Ammirato, Joseph, 278, 280
ANDbuiltin function, 246
Anderson, Charles, 276, 278, 279
Androski, Matthew, 271
Angold, William, 272
Antoniu, Tudor, 23, 283
Applier delegate type, 47, 260
APPLYbuiltin function, 252
Apply method

ArrayValue, 42
SupportRange, 74
Value, 39

ArgType error value, 20
arithmetic progression, 87
array

double matrix, 41
explicit, 30, 41
formula, 15, 30
matrix, 42
value, 30
view, 30, 41, 42

ArrayDouble class, 41, 260
ArrayExplicit class, 30, 41, 260
ArrayFormula class, 29, 30, 36, 260
ArrayType class, 261
ArrayValue class, 30, 41, 260
ArrayView class, 30, 41, 260
ASIN builtin function, 246
ATANbuiltin function, 246
ATAN2builtin function, 246
atomic value, 30
ATOMPexample function, 123
audit, 243
Aureglia, Jean-Jacques, 268–271
AVERAGEbuiltin function, 50, 246
Ayalew, Yirsaw, 22, 234, 283

Babb, Edward, 280
Balaban, Robert, 280
Balducci, Corrado, 269
Baliga, Vijay, 265
Bargh, Christopher, 265
Barnett, Joseph, 276
Barton, Kristopher, 266
Bastian, Lewis, 68, 281
Bates, Cary, 280
Battagin, Daniel, 265, 266
Bauchot, Frederic, 264, 268–275
Becerra, Santiago, 271
Becker, Andrew, 264, 265, 275
Bedford, Jesse, 267, 274
Ben-Hur, Devin, 281
Ben-Tovim, Yariv, 266
BENCHMARKbuiltin function, 252
benchmarking Funcalc, 244
Bennett, Paul, 273
Bergman, Eric, 272
Beyda, William, 277
Bhansali, Anil, 278
BINOMexample function, 114
BINOMLOGexample function, 115
Blackwell, Alan, 4, 125, 270, 288
BlankCell class, 260
Bloch, S.C., 283
Boon, Sean, 263
bottom-up recalculation, 17

292 Index

Box-Muller random number generator,
194

Brønnum, Poul, 179, 284
Braine, Lee, 22, 284
Breuer, Matthias, 272
Bricklin, Dan, 11, 278–280, 284
Brimm, John, 281
Bristow, Geoffrey, 264
Brittan, Philip, 276
Brown, Timothy, 280
Browne, Chris, 23, 284
Bryant, Randal, 284
BULLETPVexample function, 115
Burnett, Margaret, 285, 288
Burnett, Margaret, 4, 21–23, 103, 125,

270, 275, 284, 288

C0R0 reference format, 43
cached array formula, 30
CachedArrayFormula class, 30, 36, 260
CachedAtom class, 261
Cahill, Jason, 268, 274
Calc, See OpenOffice Calc
Calculate (Excel interop), 67
CalculateFull (Excel interop), 67
CalculateFullRebuild (Excel interop),

67, 110
Capson, Brian, 279
CARexample function, 123
Card, Stuart, 277
cardinality of FAP set, 87
Casimir, Rommert J., 284
ccar, 95
CDRexample function, 123
CEILING builtin function, 246
cell, 29

volatile, 78
cell address, 31
Cell class, 29, 35, 260
cell state, 80
CellAddr struct, 31, 44, 260
CellArea class, 30, 260
CellRef class, 30, 260
CellState enumeration, 45
CellState enumeration, 30, 260
CellsUsedInFunctions class, 261
CGArithmetic1 class, 167
CGArithmetic2 class, 167
CGExpr class, 261

CGExpressionBuilder class, 261
CGFunctionCall class, 167
Chamberlain, Benjamin, 265
Chan, Marise, 266, 274
Chandy, M., 284
Chandy, Mani, 234, 284
Chatenay Alain, 274
Chavoustie, Michael, 265
Chen, Shing-Ming, 272
Chen, Yen-Fu, 263
Chi, Ed, 276
Chirilov, Joseph, 264
CHOOSEbuiltin function, 247
Chovin, Andre, 274
Clack, Chris, 22, 284
class diagram

for Corecalc, 32
for Funcalc, 141

Clay, Daniel, 265
CleanSheets, 23
Clermont, Markus, 287
Clermont, Markus, 103
Clinger, W., 286
ClipBoardCell class, 260
closure, 217, 252

specialized, 253
CLOSUREbuiltin function, 252
Coblenz, Michael, 23, 284
CodeGenerate class, 261
Coffen, Wayne, 269, 275
Cohn, David L., 290
Cohn, Michael L., 22
Collet, Jean-Luc, 269
Collie, Robert, 264
COLMAPbuiltin function, 247
COLUMNSbuiltin function, 247
Comer, Ross, 274, 276, 277
Compile method

CGIf, 158
CGNumberConst, 143

CompileArgumentsAndApply method
(CGFunctionCall), 169

CompileCondition method
CGAnd, 155–157
CGComparison, 157
CGExpr, 154
CGNumberConst, 154
CGOr, 157

CompileToDoubleOrNan method

Index 293

CGCellRef, 148
CGIf, 158
CGNumberConst, 146

CompileToDoubleProper method
CGComparison, 153
CGExpr, 152
CGIf, 159
CGNumberConst, 153

ComputeCell class, 261
Computing cell state, 45
Conj class, 261
Conlon, Thomas, 275
CONSexample function, 123
Const class, 260
CONSTARRAYbuiltin function, 246
ConstCell class, 260
Conybeare, R., 289
Cooley, James, 284
copy, virtual, 43
Cordel, Bruce, 24
Corecalc

class diagram, 32
formula syntax, 31
implementation, 29–59

Cortes, Daniel S., 4, 126, 284
COSbuiltin function, 48, 247
COUNTIFbuiltin function, 104, 247
Cox, Alan, 270
cp-similarity, 103
Crowe, Trevor, 269
Cseri, Istvan, 277, 279
Ctrl+Alt+F9 key (full recalculation), 79
Ctrl+Alt+F9 key (full recalculation), 67,

243
Ctrl+Alt+Shift+F9 key (full recalculation

rebuild), 243
Ctrl+Shift+Enter, 15, 33
cycle

dynamic, 17
static, 17

CyclicException class, 260

Damm, John, 268
Davie, Tony, 21, 284
de Hoon, Walter, 21, 284
de Pascale, Stefano, 22, 284, 286
Decision Models (company), 23, 67, 285
DEFINE builtin function, 253
DELAYbuiltin function, 191

dependence
direct, 16
dynamic, 17
static, 17
transitive, 17

dependency tree (Excel), 67
DependencyGraph class, 261
dependent cell, 200
dependents

trace, 243
Dershowitz, N., 285
Dillon, Patrick, 267
direct support, 16
Dirty cell state, 45
Disj class, 261
display area, 15
Dorwart, Richard, 271
Drudis, Antoni, 264, 269
Du, Weichang, 20, 285
Dubnoff, Steven, 281
DuPuis, C., 288
dynamic control, 224
dynamic cycle, 17
dynamic use, 132

early argument, 252
EASTERexample function, 113
Eberhardy, Peter, 265
eductive evaluation, 20
Egilsson, Ágúst, 268, 273, 277
Ellis, Charles, 264
English, John, 23, 285
Enqueued cell state, 80, 81
EnqueueForEvaluation method

ArrayFormula, 85
EQUALbuiltin function, 247
Erickson, Joe, 23, 126
ERRbuiltin function, 247
Error class, 30, 260
error value, 19, 40
ErrorNaN method (ErrorValue), 41
ErrorValue class, 30, 41, 260
Erwig, Martin, 23, 103, 269, 283, 285
EUSES consortium, 22
Eval method

Cell, 35
CellArea, 38
CellRef, 37
Expr, 36

294 Index

Formula, 46, 82
FunCall, 39
NumberConst, 37
TextConst, 37

evaluation condition, 199–216
Excel, See Microsoft Excel
ExcelComp recalculation engine, 21
EXPbuiltin function, 247
Expr class, 30, 36, 260
expression, 30
EXPSAMPLEexample function, 223, 231
EXTERNbuiltin function, 247, 254
ExternalFunction class, 261

F9 key (recalculation), 67, 78, 243
FAP grid, 89
FAP set, 87

equivalences, 88
Farahbod, Farzad, 275
Farr, George, 268
Fast Fourier Transform, 94
FINDENDexample function, 121
Fisher, Marc, 285
Fitzpatrick, Alexander, 272
FIXDATE example function, 113
floating-point standard, 40
FLOORbuiltin function, 247
Format class, 59
Formats class, 260
Forms/3 spreadsheet program, 21
formula, 11, 29

audit, 16
Formula class, 29, 30, 35, 260
Formula One for Java, 23, 126
Formulate spreadsheet program, 21
FPGA implementation, 22, 233
Francoeur, Joe, 21, 285
Frankston, Bob, 11
Friend, John, 278, 279
FromNan method (ErrorValue), 41
full recalculation rebuild, 79
full recalculation, 67, 79
FullCellAddr struct, 260
Func delegate type, 47
Funcalc, 109–232

class diagram, 141
user manual, 239–257

FunCall class, 30, 38, 260
function, 47–52

non-strict, 18
strict, 18, 48
volatile, 19

Function class, 31, 47, 260
Functional Hypersheets, 21
FunctionInfo class, 169, 261
FunctionType class, 261
FunctionValue class, 30, 42, 260

Gaffga, Joachim, 266
Garman, Mark, 277
Gen class, 160, 261
Gencel system, 103
generalization, 224
Genesereth, Michael, 265
Geuss, Jo-Ann, 266
Geymond, Jean Paul, 279
Gibb, Gary, 276
Glassey, Colin, 278
Gnumeric, 11, 110
GOAL.SEEKbuiltin function, 17
GOALSEEKexample function, 120
Goldberg, David, 285
Goldberg, Jody, 68, 287
Goldwater, Sharon, 283
Gomard, Carsten K., 286
Gosling, James, 23
Graham, Christopher, 270, 277, 279
grammar of Corecalc formulas, 31
Granet, Vincent, 23, 285
graphics processor, 218, 233
Greif, Irene, 280
Grose, Zoltan, 267
Guttman, Steven, 266

Ha, Phong, 4, 126, 286
Hagger, Paul, 275
Halverson, R., 22, 286
Hammond, Kevin, 21, 284
Handsaker, Robert, 271
Handy-Bosma, John, 263
Hansen, Morten W., 284
Hansen, Morten W., 4, 126
Harari, Albert, 273–275
Harold, Lee, 266
Harper, Robert, 287
HARRAYbuiltin function, 248
Harris, Bret, 68, 281
HashBag class, 260

Index 295

HashList class, 260
Hatakeda, Darrin, 276
Haxcel, 21
HCATbuiltin function, 248
Hernandez, Irene, 281
Hirayama, Yuki, 279
Hiroshige, Yuko, 273
HLOOKUPbuiltin function, 104
HLOOKUPexample function, 117
Hobbs, Craig, 265, 271
Hollcraft, James, 270
Hosea, Michael, 271
HSCANbuiltin function, 248
Hunter, Ross, 270, 277, 279
Hwong, Yao, 281
Hyvönen, Eero, 284
Hyvönen, Eero, 22, 286

IDepend interface, 261
IEEE 754 standard, 40
IExpressionVisitor interface, 260
IF builtin function, 18, 248

implementation, 51
Igra, Mark, 275
ILVisualizer, 257
INDEX builtin function, 104, 248
INDIRECT builtin function, 105
infinite specialization, 223
infinite unfolding, 222
infix operator, 59
InsertArrayCell method (Sheet), 34
InsertCell method (Sheet), 34
InsertRowCols method

Cell, 35
Expr, 36
Sheet, 34

InsertRowCols method, 56
integer arithmetics, 100–102
INTEGRATEexample function, 121
interning of text value, 37
Interval struct, 260
INVNORMDISTCDFexample function, 114
IOFormat class, 260
Irrgang, Michael, 281
Isakowitz, Tomás, 12, 286
ISARRAYbuiltin function, 248
ISERRORbuiltin function, 248
Iversen, Thomas S., 4, 110, 286

Jager, Bruno, 267
James, Lisa, 270, 277, 279
Jamshidi, Ardeshir, 270, 275
Jauffret, Jean-Philippe, 268
Johnson, Jeffrey, 277
Johnston, Gregory, 265
Jones, Bruce, 265
Jones, Neil D., 286
Jones, Russell, 265
Jonsson, Gunnlaugur, 269

Kaethler, Richard, 277, 279
Kahan, Willam, 50
Kahin, Brian, 286
Kahn, Philippe, 278, 279
Kanai, Naoki, 280
Kanavy, Walter, 280
Kandrot, Edward, 288
Kaneko, Mitsuro, 281
Kassoff, Michael, 265
KDAYAexample function, 113
KDCalc, 23, 25, 126
Keeney, David, 274
Kehler Holst, Carsten, 286
Kelsey, R., 286
Kelsey, Todd, 275
Khanna, Karan, 278
Khosrowshahi, Farzad, 274
Kichenbrand, Nicolaas, 272
Killen, Brian, 270
Kirchner, John, 281
Kiyan, Hiroki, 277
Kjaer, Henrik, 276
Knourenko Andrey, 271
Koorosh, Nouri, 276
Koss, Michael, 281
Kotler, L., 283
Kotler, Matthew, 267, 268
Koukerdjinian, Francois, 268
Krauthauf Gerhild, 264
Krishnamurthi, Shriram, 283
Kugimiya, Shuzo, 276
Kwatinetz, Andrew, 280

La Penna, Loreen, 66, 286
Landau, Remy, 24
Landsman, Richard, 280
Lange, Jonathan, 276
late argument, 252

296 Index

Lautt, Robert, 267
LEAPYEARexample function, 112
Leroy, X., 286
Leung, Yiu-Ming, 268
Lew, A., 22, 286
Li, Lixin, 275, 288
Lidin, Serge, 287
Liebl, Herbert, 266
Link, Troy, 276, 277
Lischner, Ray, 281
Lisper, Björn, 21, 287
LN builtin function, 248
LocalArgument class, 261
LocalVariable class, 261
LOGbuiltin function, 248
LOG10builtin function, 248
Lotus 1-2-3, 11
Love, Nathaniel, 265
Lowry, Kent, 269, 275
Lucas, Henry C., 286, 288
Luo, Haibo, 257, 287
Lynch, William, 278, 279

Macgregor, Kathryn, 280
Machart, Beverly, 281
Mackinlay, Jock, 276
MacQueen, David B., 287
Madsen, Robert, 276
Maguire, Justin, 273
Make method

SupportRange, 75
Make method (NumberValue), 40
MakeNan method (ErrorValue), 41
MakeNumberFunction method

(Function), 48
MakePredicate method (Function), 48
Malmström, Johan, 21, 287
Mandelbaum, Aaron, 266
MAPbuiltin function, 248
Marathe, Sharad, 271
MarkDirty method

ArrayFormula, 84
Marmigere, Gerard, 264
Martin, Chuck, 23, 287
Martin, Paul, 272
Martinez, Edward, 278
MATCHexample function, 116
Mather, D., 283
Matteson, Eric, 275

Mauduit, Daniel, 273
MAXbuiltin function, 50, 249
Mayo, Scott, 281
McArdle, James, 268
McCaskill, Rex, 281
McCormack, Michael, 264
McCullough, B. D., 287
McKnight, David, 268
Medicke, John, 270
Meeks, Michael, 68, 287
Mestres, Jean-Christophe, 269
Michelman, Eric, 276, 281
MicroCalc spreadsheet program, 23
Microsoft Excel, 11

recalculation, 78
Miller, Michelle, 271
Mills, Scott, 269
Milner, Robin, 287
Milton, Andrew, 275
MIN builtin function, 50, 249
Mink, Vincens Riber, 4, 287
Misko, John, 276, 277
Misra, J., 284
Mittermeir, Roland, 103, 287
MMULTbuiltin function, 51
MODbuiltin function, 249
Mogensen, Torben, 4
Moise, Wesner, 275
MONTHLENexample function, 227
Montigel, Markus, 272, 287
Morris, Richard, 269
Moss, Ken, 280
Move method (Expr), 36
MoveCell method (Sheet), 34
MoveContents method (Cell), 35
moving a formula, 52
Mujica, Gayle, 271
Multiplan spreadsheet program, 14
multistage specialization (example), 230

NAbuiltin function, 249
Nagai, Yasuo, 276
Naimat, Aman, 268
NaN (not a number), 40, 41
Narayanan, Raman, 279
Natarajan, Ramakrishnan, 264
NDIE example function, 112
NEGbuiltin function, 249
net effect principle

Index 297

CompileToDoubleOrNan, 146
Netz, Amir, 266
Noel, Gregory, 277
non-strict function, 18
Norden-Paul, Ronald, 281
normalized FAP set, 88
NORMDENSITYGENERALexample function,

114
NORMDISTCDFexample function, 114
NOTbuiltin function, 249
NOWbuiltin function, 19, 249

implementation, 49
NumberCell class, 29, 35, 260
NumberConst class, 30, 260
NumberValue class, 30, 40, 260
NumError, 20
Nuñez, Fabian, 20, 21, 125, 287

ObjectValue class, 30, 185, 260
offset of FAP set, 87
Ogawa, Atsuro, 272
Oglesby, Jose, 289
OpenCL, 286
OpenOffice Calc, 11, 110
ORbuiltin function, 249
Orchard, Andrew, 264

Palley, Michael A., 288
Paltrinieri, Massimo, 279
Pampuch, John, 274
Panko, Ray, 288
Pardo, Rene K., 24
Parlanti, Carlo, 271
Parse method (Cell), 35
partial evaluation, 217–232
Pastecell method (Sheet), 34
patent, 24–25, 263–281
PathCond class, 261
payload of a NaN, 40
Peacock, Gavin, 278, 280
Pedersen, Dan, 276
Pehrson, Einar, 23, 288
Perez, Manuel, 281
period of FAP set, 87
Peyton Jones, Simon, 4, 125, 270, 288
PI builtin function, 249
Piersol, Kurt W., 14, 21, 269, 271, 278,

288
PlanPerfect, 11

POISSONLOGNORMAL2example function,
117

Poulsen, Morten, 4, 87, 288
Pradhan, Salil, 264, 269
precedent cell, 200
precedents

trace, 243
Press, Robert, 272
prettyprinting, 59
Program class, 260
ProgramLines class, 200, 261
Puri, Sidd, 289

QuattroPro, 11, 110
QuoteCell class, 29, 260

R1C1 reference format, 14
RANDbuiltin function, 19, 249

implementation, 49
Rank, Paul, 272, 274
Rao, Ramana, 277
RARef class, 31, 43, 260
Rasin, Gregory, 271
Raue, Kristian, 269
Reaume, Daniel, 274
Recalculate method

Workbook, 33
RecalculateFull method

Sheet, 34
Workbook, 33

RecalculateFullRebuild method
Workbook, 33

recalculation, 78, 243
benchmark, 244
bottom-up, 17
Excel, 67
full, 67, 243
full with rebuild, 243
top-down, 17

recalculation root, 78
REDUCEbuiltin function, 249
Rees, J., 286
RefAndSupp method (CellArea), 72
reference

absolute, 12
relative, 12

reference format
A1, 12
C0R0, 43

298 Index

R1C1, 14
RefSet class, 260
Reingold, E. M., 285
relative reference, 12
relative/absolute reference, 31
Ren, Bing, 284
REPTexample function, 118
REPT1example function, 118
REPT2example function, 119
REPT3example function, 119
REPT4example function, 199, 228
Reset method

Sheet, 34
ResetCellState method

Cell, 35
Richter, John, 271
Robert, Wallace, 266
Roe, Paul, 272, 283
Ronen, Boaz, 288
root of recalculation, 78
Rosenau, Matthias, 267
Rothermel, Gregg, 284
Rothermel, Gregg, 275, 288
Rothschiller, Chad, 264, 265
ROUNDbuiltin function, 48, 250
ROWMAPbuiltin function, 250
ROWSbuiltin function, 250
RTCG, See runtime code generation
Rubin, Michael, 271
Ruf, Erik, 289
Ruf, Erik, 288
Russell, Feng-Wei Chen, 270
Rutledge, Stephen, 270
Rutten, Luc, 284
Ryan, Mark, 274

Salama, Roberto, 276, 278
Salas, Nader, 4, 288
Salas, R. Pito, 280
Sanders, Jason, 288
Sattler, Juergen, 266
sc (spreadsheet calculator), 23
Schiermer, Daniel, 4, 287
Schlafly, Roger, 24, 110, 279, 280
Schnurr, Jeffrey, 266
Schocken, Shimon, 286
Schulz, Russell, 288
SdfForm class, 260
SdfInfo class, 170, 261

SdfManager class, 170, 261
SdfType class, 261
Seligman, S., 289
Selvarajan, Inbarajan, 266
semantic class of cells, 103
Serek, Poul, 4, 87, 288
Serra, Bill, 264, 269
Serraf, Jacob, 270
Seydnejad, Sasan, 272
Seyler, Mark, 281
sheet, 29
Sheet class, 29, 33, 260
sheet-defined functions, 109–130
SheetTab class, 260
Sheretov, Andrei, 284
Sheretov, Andrei, 275
Show method

Cell, 35
Expr, 36, 59
Sheet, 34

ShowAll method
Sheet, 34

ShowValue method
Cell, 35
Sheet, 34

Siersted, Morten, 271
SIGN builtin function, 250
Signature class, 168, 261
SimpleType class, 261
SIN builtin function, 48, 250
Singh, Hardeep, 270, 275
SLICE builtin function, 250
Smialek, Michael, 271
Smith, Bradford L., 23, 289
Soler, Catherine, 269
Sorge, Terri, 266
source file organization, 259
SPECIALIZE builtin function, 253
specialized closure, 253
Spencer, Percy, 279
Spitz, Gerhard, 270
SpreadsheetConverter, 23, 25, 127, 270
SpreadsheetGear for .NET, 23, 126
SQRTbuiltin function, 250
Stadelmann, Marc, 22, 289
static cycle, 17
static use, 132
status line, 244
Stein, Adam, 277

Index 299

strict function, 18
Sugimura, Kazumi, 276
SUMbuiltin function, 250

implementation, 50
SUMIF, 104
SUMIF builtin function, 250
summation formula, Kahan, 50
support

direct, 16
graph, 64, 69–105
transitive, 17

support set, 70
SupportArea class, 74, 260
SupportCell class, 74, 260
SupportRange class, 74, 260
SupportSet method

AddSupport, 75
syntax of Corecalc formulas, 31

TABULATEbuiltin function, 251
Tafoya, John, 266, 267
tail call

performance, 176
Takata, Hideo, 272
Tamura, Motohide, 277
TANbuiltin function, 251
Tanenbaum, Richard, 264, 267
Tanner, Ronald, 274
Tarditi, David, 289
Ternasky, Joseph, 266
Tesch, Falko, 272
TextCell class, 29, 35, 260
TextConst class, 30, 260
TextValue class, 30, 260
Thanu, Lakshmi, 264, 265
Thayne, Daren, 276
this[] method

Sheet, 35
Workbook, 33

Thompson, Michelle, 275
Thomsen, Erik, 279
Thorndike, Karl, 280
TinyCalc, 110
Todd, Stephen, 264
ToDoubleOrNan method (Value), 40
Tofte, Mads, 287
Tokuyama, Takaki, 277
top-down recalculation, 17
topological sorting, 65

Tortolani, Thomas, 276
trace

dependents, 243
precedents, 243

Tran, Quan Vi, 4, 126, 286
TransferSupportTo method

Cell, 76
transitive support, 17
TRANSPOSEbuiltin function, 251

implementation, 51
Tregenza, Christopher, 271
TRIAREAexample function, 111, 239
trivial expression, 212
Truntschka, Carole, 269
Tuinenga, Paul, 279
Tukey, John, 284
Turski, Andrzej, 280
Typ class, 261

Ulke, Markus, 264
UnwrapInputCell class, 261
Uptodate cell state, 45
US2001007988 (patent 140), 274
US2001016855 (patent 129), 273
US2001032214 (patent 127), 273
US2001049695 (patent 157), 276
US2001056440 (patent 114), 272
US2002007372 (patent 124), 273
US2002007380 (patent 123), 273
US2002010713 (patent 130), 268, 273,

277
US2002010743 (patent 131), 274
US2002023105 (patent 160), 276
US2002023106 (patent 122), 273
US2002049784 (patent 120), 272
US2002049785 (patent 116), 272
US2002055953 (patent 111), 272
US2002055954 (patent 113), 272
US2002059233 (patent 125), 273
US2002065846 (patent 109), 272
US2002078086 (patent 139), 274
US2002087593 (patent 138), 274
US2002091728 (patent 159), 276
US2002091730 (patent 136), 267, 274
US2002103825 (patent 110), 272
US2002124016 (patent 137), 274
US2002129053 (patent 134), 274
US2002140734 (patent 126), 273
US2002143730 (patent 126), 273

300 Index

US2002143809 (patent 126), 273
US2002143810 (patent 126), 273
US2002143811 (patent 126), 273
US2002143829 (patent 132), 24, 126, 274
US2002143830 (patent 126), 273
US2002143831 (patent 126), 273
US2002161799 (patent 128), 273
US2002169799 (patent 106), 271
US2002174141 (patent 121), 272
US2002184260 (patent 118), 272
US2002198906 (patent 119), 272
US2003009649 (patent 117), 272
US2003033329 (patent 115), 272
US2003051209 (patent 96), 271
US2003056181 (patent 98), 271
US2003088586 (patent 112), 272
US2003106040 (patent 101), 25, 126, 127,

271
US2003110191 (patent 103), 271
US2003117447 (patent 107), 271
US2003120999 (patent 108), 271
US2003159108 (patent 86), 270
US2003164817 (patent 89), 270, 279
US2003169295 (patent 104), 271
US2003182287 (patent 105), 271
US2003188256 (patent 95), 271
US2003188257 (patent 94), 270
US2003188258 (patent 93), 270
US2003188259 (patent 92), 270
US2003212953 (patent 84), 270
US2003226105 (patent 82), 25, 126, 127,

270
US2004044954 (patent 100), 271
US2004060001 (patent 76), 269, 275
US2004064470 (patent 80), 269
US2004080514 (patent 97), 271
US2004088650 (patent 87), 270
US2004103365 (patent 90), 270
US2004103366 (patent 91), 125, 270
US2004111666 (patent 85), 270
US2004133567 (patent 73), 269
US2004133568 (patent 72), 269
US2004143788 (patent 70), 269
US2004181748 (patent 88), 270
US2004205524 (patent 102), 271
US2004205676 (patent 126), 273
US2004210822 (patent 63), 267, 268
US2004225957 (patent 62), 268, 273, 277
US2004237029 (patent 83), 270

US2005015379 (patent 69), 264, 268
US2005015714 (patent 60), 268, 274
US2005022111 (patent 81), 269
US2005028136 (patent 66), 268
US2005034058 (patent 79), 269
US2005034059 (patent 99), 271
US2005034060 (patent 57), 267, 268
US2005038768 (patent 78), 269
US2005039113 (patent 77), 269
US2005039114 (patent 61), 268
US2005044486 (patent 58), 267, 268
US2005044496 (patent 55), 267
US2005044497 (patent 54), 267
US2005050088 (patent 56), 267, 268
US2005055626 (patent 52), 267, 268
US2005066265 (patent 53), 267
US2005081141 (patent 75), 269
US2005091206 (patent 59), 268
US2005097115 (patent 47), 267, 274
US2005097447 (patent 74), 269
US2005102127 (patent 71), 269
US2005108344 (patent 50), 266, 267
US2005108623 (patent 48), 267, 274
US2005125377 (patent 51), 267, 268
US2005149482 (patent 49), 267
US2005172217 (patent 65), 268
US2005188352 (patent 45), 267
US2005193379 (patent 46), 25, 126, 264,

267
US2005203935 (patent 68), 268
US2005210369 (patent 67), 268
US2005240984 (patent 64), 268
US2005257133 (patent 42), 266
US2005267853 (patent 40), 265, 266
US2005267868 (patent 43), 266
US2005268215 (patent 39), 266
US2005273311 (patent 44), 267
US2005273695 (patent 41), 266
US2006004843 (patent 38), 266, 267
US2006010118 (patent 36), 266
US2006010367 (patent 37), 266
US2006015525 (patent 33), 266
US2006015804 (patent 32), 266
US2006015806 (patent 34), 266
US2006020673 (patent 31), 266
US2006024653 (patent 29), 265
US2006026137 (patent 30), 266
US2006036939 (patent 28), 265
US2006048044 (patent 27), 265

Index 301

US2006053363 (patent 25), 265
US2006069696 (patent 23), 265
US2006069993 (patent 24), 24, 265
US2006074866 (patent 22), 265
US2006075328 (patent 21), 265
US2006080594 (patent 20), 265
US2006080595 (patent 19), 265
US2006085386 (patent 17), 265
US2006085486 (patent 18), 265
US2006090156 (patent 16), 25, 126, 264,

267
US2006095832 (patent 14), 264
US2006095833 (patent 15), 264
US2006101326 (patent 13), 264
US2006101391 (patent 12), 264
US2006107196 (patent 10), 264
US2006112329 (patent 9), 264
US2006117246 (patent 8), 264
US2006117250 (patent 7), 264
US2006117251 (patent 6), 264
US2006129929 (patent 5), 264
US2006136534 (patent 3), 263
US2006136535 (patent 2), 263
US2006136808 (patent 4), 264
US2006156221 (patent 1), 263
US5021973 (patent 231), 281
US5033009 (patent 232), 281
US5055998 (patent 233), 281
US5093907 (patent 230), 281
US5121499 (patent 229), 281
US5182793 (patent 225), 281
US5231577 (patent 228), 281
US5247611 (patent 226), 281
US5255356 (patent 224), 281
US5255363 (patent 227), 281
US5276607 (patent 223), 24, 68, 281
US5303146 (patent 218), 278, 280
US5317686 (patent 219), 280
US5319777 (patent 222), 281
US5339410 (patent 220), 22, 280
US5371675 (patent 221), 280
US5381517 (patent 216), 280
US5396621 (patent 217), 280
US5418902 (patent 214), 280
US5437006 (patent 215), 280
US5461708 (patent 202), 278, 279
US5471612 (patent 213), 24, 62, 67, 110,

126, 279, 280
US5499180 (patent 210), 280

US5532715 (patent 212), 280
US5539427 (patent 209), 279, 280
US5544298 (patent 211), 280
US5553215 (patent 204), 62, 277, 279
US5581678 (patent 192), 278, 279
US5590259 (patent 200), 279
US5598519 (patent 203), 279
US5603021 (patent 205), 279
US5604854 (patent 183), 278
US5613131 (patent 208), 280
US5623282 (patent 206), 270, 277, 279
US5623591 (patent 207), 277, 279
US5633998 (patent 194), 24, 62, 67, 110,

126, 279
US5664127 (patent 186), 276, 278
US5685001 (patent 198), 279
US5717939 (patent 190), 278, 279
US5721847 (patent 174), 277
US5734889 (patent 188), 278
US5742835 (patent 182), 62, 275, 277,

279
US5752253 (patent 195), 279
US5768158 (patent 189), 276, 278
US5799295 (patent 168), 22, 276
US5819293 (patent 179), 276, 277
US5842180 (patent 184), 278
US5845300 (patent 180), 277
US5848187 (patent 197), 278, 279
US5867150 (patent 199), 279, 280
US5880742 (patent 176), 277
US5881381 (patent 193), 279
US5883623 (patent 173), 277
US5890174 (patent 191), 278
US5893123 (patent 196), 279
US5926822 (patent 177), 277
US5966716 (patent 162), 276, 277
US5970506 (patent 171), 277
US5987481 (patent 170), 276
US6002865 (patent 201), 279
US6005573 (patent 172), 277
US6006239 (patent 185), 278
US6055548 (patent 181), 274, 277
US6057837 (patent 169), 276
US6112214 (patent 175), 277
US6115759 (patent 167), 276
US6138130 (patent 165), 276
US6166739 (patent 153), 275
US6185582 (patent 163), 276
US6199078 (patent 158), 276

302 Index

US6256649 (patent 164), 276
US6282551 (patent 161), 276, 278
US6286017 (patent 178), 268, 273, 277
US6317750 (patent 156), 276
US6317758 (patent 166), 276
US6411313 (patent 152), 275
US6411959 (patent 147), 275
US6430584 (patent 143), 274, 277
US6438565 (patent 187), 278
US6523167 (patent 146), 275
US6549878 (patent 155), 275
US6592626 (patent 148), 275
US6626959 (patent 151), 275
US6631497 (patent 149), 275
US6640234 (patent 154), 269, 275
US6701485 (patent 150), 275
US6725422 (patent 142), 274
US6766509 (patent 144), 22, 275
US6766512 (patent 141), 24, 126, 274
US6779151 (patent 135), 268, 274
US6883161 (patent 133), 274
US6948154 (patent 145), 22, 275
US6988241 (patent 35), 266
US7007033 (patent 26), 265
US7047484 (patent 11), 264
user manual, 239–257

value, 30
array, 30
atomic, 30

Value class, 30, 39, 260
ValueCache class, 260
ValueConst class, 260
ValueTable class, 260
van der Corput sequence, 119
van Eekelen, Marko, 284
van Schothost, M., 289
Variable class, 261
VARRAYbuiltin function, 251
Vawter, Noah, 289
VCATbuiltin function, 251
virtual copy, 43
ViSSh system, 21, 125
VLOOKUPbuiltin function, 104
VLOOKUPexample function, 117
volatile

cell, 78
volatile function, 19, 49
VOLATILIZE builtin function, 251

Voshell, Perlie, 271
Vrba, Joseph, 280
VSCANbuiltin function, 251

Wachter, Kai, 264
Wack, Andrew, 234
Wack, Andrew P., 22, 289
Wad, Rohit, 278
Wadge, William W., 20, 285
Waldau, Mattias, 270
Walker, Keith, 263
Wang, Guijun, 21, 289
Waymire, Elisabeth, 280
Weber, Brandon, 264
Weise, D., 289
Weise, Daniel, 288
West, Vincent, 280
Williams, David Jr, 274, 277
Wisniewski, Robert, 276
Witkowski, Andrew, 269
Wizcell implementation, 272
Wolfram, Stephen, 290
Woloshin, Murray, 274
Woodley, Ronald, 268
workbook, 16, 29
Workbook class, 29, 33, 260
WorkbookForm class, 260
worker/wrapper pair, 172
wrapper/worker pair, 172
Wright, Terrence, 281
WYSIWYT testing approach, 22

XMLSSIOFormat class, 260
XXL spreadsheet program, 23

Yamaguchi, Tomoharu, 278
Yamashita, Akio, 279
Yang, Xiaohong, 265
Yanif, Ahmad, 23
Yoder, Alan G., 22, 290

Zaks, Gerald, 278
Zellweger, Polle, 276

