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Linear Contextual Modal Type Theory?

Anders Schack-Nielsen and Carsten Schürmann

IT University of Copenhagen
Copenhagen, Denmark

anderssn|carsten@itu.dk

Abstract. When one implements a logical framework based on linear type theory, for example the Celf sys-
tem [SNS08], one is immediately confronted with questions about their equational theory and how to deal with
logic variables. In this paper, we propose linear contextual modal type theory that gives a mathematical account
of the nature of logic variables. Our type theory is conservative over intuitionistic contextual modal type theory
proposed by Nanevski, Pfenning, and Pientka. Our main contributions include a mechanically checked proof of
soundness and a working implementation.

1 Introduction

Over recent years, linear logic has become increasingly popular as a logic for concurrency, stateful computation, and
even security. So far, the idea of resource awareness has had far reaching consequences for the design and imple-
mentation of logics and logical frameworks; LLF [CP96], CLF [CPWW02] and even separation logic [Rey02] use
ideas borrowed from linear logic at their cores. There are implementations of theorem provers, logic programming
languages, and proof assistants that do implement linear logic, as for example, Lolli [HM94], and Celf [SNS08].

All of these implementations depend crucially on the choice of fragment of linear logic and the choice of logic
variable. Logic variables stand, for example, for open subgoals in a derivation tree or holes in a term to be instantiated
via unification. As a motivating example consider the unification problem

ĉ (F ̂x̂y) = ĉ (F ̂y ̂x)
where we write F for the logic variable, x, y for the two resources that need to be consumed exactly once, c for
constant symbols, and ̂ for linear application. If ̂ were intuitionistic application then any instantiation of F with a
constant function is a solution. In the multiplicative fragment of linear logic, the problem has no solution because any
instantiation of F will need to mention x and y exactly once on two different rigid paths. Thus the left hand side and
the right hand side of the equation above will differ in these two places. If we were to work in linear logic with >, the
problem is also solvable by choosing the constant function F = λ̂x. λ̂y. F ′ ̂ 〈〉 where we write λ̂ for linear functional
abstraction and 〈〉 for the proof term of >.

This little example illustrates the complex nature of logic variables in linear logic and their role in higher-order
linear unification. In the >-free case, every linear resource needs to be consumed by the same term on both sides of
the equation. In the presence of >, however, this is no longer the case. Therefore, without a clear understanding of the
nature of logic variables from a mathematical point of view, it seems hopeless to try to devise and design algorithms
for equality in linear logic.

In this paper we provide such an understanding by the means of linear contextual modal type theory that gives a
precise mathematical meaning to logic variables for linear logic, building on ideas from contextual modal type theory
by Nanevski, Pfenning, and Pientka [NPP08]. In their paper they work out a modal explanation of contextual validity,
which accounts for the contexts that are usually associated with logic variables in the intuitionistic setting [DHKP96].
In this paper we define a contextual modal type theory for linear logic, which accounts for the definition of logic
variables used for Cervesato’s and Pfenning’s linear pre-unification algorithm [CP97].

The underlying philosophical basis for this work is provided by Martin-Löf’s view of logical truth in form of
judgments and evidence in form of axioms and inference rules. Using his technique we construct the meaning of
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availability, which corresponds to the multiplicative fragment of linear logic with ( as the main connective, truth,
which corresponds to truth in intuitionistic logic with→ as the main connective, and contextual validity, which corre-
sponds to the logic of logic variables with [Γ ;∆]→ as the main connective (pronounced box arrow Γ , ∆). If we know
that A [Γ ;∆]→ B is true, then a proof of B may mention a logic variable of type [Γ ;∆]A, which may refer arbitrarily
many times to assumptions in Γ and exactly once to each assumption in ∆. The justification of this construction can
be found in Section 2.

Next we show the soundness of linear contextual modal logic in Section 3. To this end we give a sound and
complete proof theoretical account of availability, truth, and contextual validity in form of a sequent calculus. Next
we prove the admissibility of cut, which guarantees the existence of canonical proofs in linear contextual modal logic.
The cut-elimination result of this section is formalized and machine-checked in Twelf [PS99]. The proofs can be
downloaded at http://www.twelf.org/˜celf/download/lcml.tgz.

In Section 4 we introduce proof terms [Bie94] via a Curry-Howard correspondence. In this section we define all
basic operations on logic variables including abstraction, instantiation, and substitution application. The choice of
canonical proofs induces the equational theory based on β reduction and η expansion. We show that every term is
equivalent to a β-normal η-long form.

Linear contextual modal type theory presents the theoretical foundation of our implementation of the Celf proof
assistant [SNS08].

2 Linear Contextual Modal Logic

The central idea in linear logic [Gir87] is that of a resource. Linear assumptions play the role of a fixed set of available
resources that must be consumed (exactly once) in a derivation. Therefore, available resources form the philosophical
foundation of linear contextual modal logic. The idea of linear logic as a resource oriented logic has rendered it
attractive to many application areas. In Petri nets, tokens can be modeled as resources, in programming language
theory it is state, and in security simply messages that are being created and consumed.

Traditionally one recovers intuitionistic logic from linear logic by singling out those resources that can be con-
structed without resource consumption. They can be used as often as desired, and thus, constructively speaking, they
are true.

Finally, we introduce the judgment of contextual validity, which will ultimately serve as the logical justification of
the existence of logic variables. We say that a judgment is valid if it is true in all contexts. But here we refine this idea
one step further and refer to the validity of a proposition in a context Γ ;∆, where Γ is a collection of true propositions,
and ∆ is a collection of available resources.

These three judgments can be defined by a set of inference rules and axioms following the ideas of the judgmental
reconstruction of modal logic that goes back to Davies and Pfenning [DP01].

Linear Judgments In linear logic, resources are constructed from other resources, all of which are necessarily con-
sumed during the process. We call judgments of this form linear judgments. If A is constructed using each linear
resource among A1 . . . An exactly once, we write

x1 : A1 avail, . . . , xn : An avail ` A avail

The list of linear resources to the left of the ` symbol enjoys among the three structural properties only exchange (and
neither weakening nor contraction) and will be abbreviated in the remainder of this paper by the aforementioned ∆.
In the remainder of the paper we refer to xi : Ai avail as a linear assumption and to Ai as a resource.

In our formulation of the rules that define introduction and elimination forms for the linear implication connective
(, we use the ` symbol as a notational convenience for accounting all resources consumed by the derivation A avail.

lhypx
x :A avail ` A avail

(∆,x :A avail) ` B avail
( Ix

∆ ` A( B avail

∆1 ` A( B avail ∆2 ` A avail
( E

(∆1,∆2) ` B avail
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Theorem 1 (Principle of substitution). If ∆1 ` A avail and (∆2, x :A avail) ` B avail then (∆1, ∆2) ` B avail.

Proof. By induction on the second assumption.

Hypothetical Judgments We define the judgmentA true to mean thatA is available irrespective of which resources are
available. This is only possible in the case that the derivation ofA avail does not consume any resources. In compliance
with the literature, we call the truth judgment a hypothetical judgment because it may rely on the assumptions that
x1 : A1 true, . . . , xn : An true.

x1 : A1 true, . . . , xn : An true ` A true

In contrast to above, this list enjoys all structural properties, i.e. weakening, exchange, and contraction. In the following
we will abbreviate the list of assumptions by Γ and refer to xi : Ai as an intuitionistic assumption.

Using Γ ;∆ ` A avail as an appropriate notational device for linear judgments, we introduce truth in the following
way.

Γ ; · ` A avail

Γ ` A true
Furthermore, we define the rules regarding the introduction and elimination of the intuitionistic implication con-

nective→ as follows.
hypx

(Γ, x :A true); · ` A avail

(Γ, x :A true);∆ ` B avail
→ Ix

Γ ;∆ ` A→ B avail

Γ ;∆ ` A→ B avail Γ ` A true
→ E

Γ ;∆ ` B avail

Theorem 2 (Principle of substitution). If Γ ; · ` A avail and (Γ, x :A true);∆ ` B avail then Γ ;∆ ` B avail.

Proof. By induction on the second assumption.

Categorical Judgments We write A valid[Γ ;∆] if A is valid relative to a list of hypothetical judgments Γ and linear
judgments∆. This means thatA is available whenever all hypotheses in Γ are true and all resources in∆ are available.
Furthermore, we write

u1 ::A1 valid[Γ1;∆1] . . . un ::An valid[Γn;∆n] ` A valid[Γ ;∆]

for the judgments of relative validity. As above, the list of assumptions to the left of the ` symbol enjoys the full set
of structural properties, including exchange, weakening, and contraction. In the interest of clarity, we abbreviate this
list by Ψ , and refer to a declaration Ai valid[Γi;∆i] as a contextual modal hypothesis. We introduce it in the following
way.

Ψ ;Γ ;∆ ` A avail

Ψ ` A valid[Γ ;∆]

When using a contextual modal hypothesis in Ψ ;Γ ;∆ of type A valid[Γ ′;∆′], we need to make sure that all
hypotheses Γ ′ are true and all resources in ∆′ can be provided. More formally, we express this fact by Ψ ;Γ ;∆ `
Γ ′;∆′, which is defined as follows: all hypotheses A in Γ ′ must satisfy Ψ ;Γ ` A true, and for some partition of
∆ = ∆1, . . . ,∆n the following holds: Ψ ;Γ ;∆i ` Bi avail for all resources Bi in ∆′. The presence of this new kind
of contextual assumption gives rise to a new arrow, which is defined by the following introduction and elimination
rule.

(Ψ, u ::A valid[Γ ′;∆′]);Γ ;∆ ` Γ ′;∆′

mhypu
(Ψ, u ::A valid[Γ ′;∆′]);Γ ;∆ ` A avail

(Ψ, u ::A valid[Γ ′;∆′]);Γ ;∆ ` B avail
2→ Iu

Ψ ;Γ ;∆ ` A [Γ ′;∆′]→ B avail

Ψ ;Γ ;∆ ` A [Γ ′;∆′]→ B avail Ψ ` A valid[Γ ′;∆′]
2→ E

Ψ ;Γ ;∆ ` B avail
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hypx
Ψ ; (Γ, x :A true); · ` A avail

lhypx
Ψ ;Γ ;x :A avail ` A avail

(Ψ, u ::A valid[Γ ′;∆′]);Γ ;∆ ` Γ ′;∆′

mhypu
(Ψ, u ::A valid[Γ ′;∆′]);Γ ;∆ ` A avail

Ψ ; (Γ, x :A true);∆ ` B avail
→ Ix

Ψ ;Γ ;∆ ` A→ B avail

Ψ ;Γ ;∆ ` A→ B avail Ψ ;Γ ; · ` A avail
→ E

Ψ ;Γ ;∆ ` B avail

Ψ ;Γ ; (∆,x :A avail) ` B avail
( Ix

Ψ ;Γ ;∆ ` A( B avail

Ψ ;Γ ;∆1 ` A( B avail Ψ ;Γ ;∆2 ` A avail
( E

Ψ ;Γ ; (∆1,∆2) ` B avail

(Ψ, u ::A valid[Γ ′;∆′]);Γ ;∆ ` B avail
2→ Iu

Ψ ;Γ ;∆ ` A [Γ ′;∆′]→ B avail

Ψ ;Γ ;∆ ` A [Γ ′;∆′]→ B avail Ψ ;Γ ′;∆′ ` A avail
2→ E

Ψ ;Γ ;∆ ` B avail

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψ ;Γ ; · ` ·; ·

Ψ ;Γ ;∆ ` Γ ′; · Ψ ;Γ ; · ` A avail

Ψ ;Γ ;∆ ` (Γ ′, x :A); ·

Ψ ;Γ ;∆1 ` Γ ′;∆′ Ψ ;Γ ;∆2 ` A avail

Ψ ;Γ ; (∆1,∆2) ` Γ ′; (∆′, x :A)

Fig. 1. Natural Deduction Calculus for LCML

Theorem 3 (Principle of substitution). If Ψ ;Γ ′;∆′ ` A avail and (Ψ, u ::A valid[Γ ′;∆′]);Γ ;∆ ` B avail then
Ψ ;Γ ;∆ ` B avail.

Proof. By induction on the second assumption.

Figure 1 summarizes the rules that define the meaning of the connectives purely in terms of availability. This can
always be achieved because truth and contextual validity is defined by one single rule, which is always invertible. We
call the resulting logic linear contextual modal logic (LCML).

Returning to our motivating example, contextual modal assumptions are logic variables.

Example 1 (Logic Variables). u ::A valid[·; ·] is a logic variable that can only be instantiated by closed terms (that may
neither refer to intuitionistic or linear assumptions). v ::A valid[·; (u :B, v :C)] is a logic variable that must consume
the two respective resources u and v exactly once. w ::A valid[u :B; v :C] is a logic variable that must consume the
resource v, but may mention u arbitrarily many times.

3 Proof Theory

The rules defining the meaning of the connectives of linear contextual modal logic are sound in the sense that we
understand the meaning of a proposition by examining only its constituents, in analogy to how global soundness is
defined for contextual modal type theory [NPP08].

In pursuit of establishing soundness, we proceed by defining a sequent calculus for our logic for which we then
show cut-elimination. Furthermore, we can argue that the sequent calculus is a sound and complete characterization
of the rules introduced above.

The defining judgment of the sequent calculus for linear contextual modal logic is written as

Ψ ;Γ ;∆ =⇒ A.
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init
Ψ ;Γ ;P =⇒ P

Ψ ; (Γ,A); (∆,A) =⇒ C
copy

Ψ ; (Γ,A);∆ =⇒ C

(Ψ,A[Γ ′;∆′]);Γ ;∆1 =⇒ Γ ′;∆′ (Ψ,A[Γ ′;∆′]);Γ ; (∆2, A) =⇒ C
reflect

(Ψ,A[Γ ′;∆′]);Γ ; (∆1,∆2) =⇒ C

Ψ ; (Γ,A);∆ =⇒ B
→ R

Ψ ;Γ ;∆ =⇒ A→ B

Ψ ;Γ ; · =⇒ A Ψ ;Γ ; (∆,B) =⇒ C
→ L

Ψ ;Γ ; (∆,A→ B) =⇒ C

Ψ ;Γ ; (∆,A) =⇒ B
( R

Ψ ;Γ ;∆ =⇒ A( B

Ψ ;Γ ;∆1 =⇒ A Ψ ;Γ ; (∆2, B) =⇒ C
( L

Ψ ;Γ ; (∆1,∆2, A( B) =⇒ C

(Ψ,A[Γ ′;∆′]);Γ ;∆ =⇒ B
2→ R

Ψ ;Γ ;∆ =⇒ A [Γ ′;∆′]→ B

Ψ ;Γ ′;∆′ =⇒ A Ψ ;Γ ; (∆,B) =⇒ C
2→ L

Ψ ;Γ ; (∆,A [Γ ′;∆′]→ B) =⇒ C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

id
Ψ ;Γ ; · =⇒ ·; ·

Ψ ;Γ ;∆ =⇒ Γ ′; · Ψ ;Γ ; · =⇒ A
dot

Ψ ;Γ ;∆ =⇒ (Γ ′, A); ·

Ψ ;Γ ;∆1 =⇒ Γ ′;∆′ Ψ ;Γ ;∆2 =⇒ A
ldot

Ψ ;Γ ; (∆1,∆2) =⇒ Γ ′; (∆′, A)

Fig. 2. Sequent Calculus of LCML

The judgment holds if A can be proved from contextual modal hypotheses Ψ , true hypotheses Γ , and available hy-
potheses ∆.

In analogy to the previous section, we generalize this judgment to lists of true and available hypotheses Γ ;∆, for
which we write formally

Ψ ;Γ ;∆ =⇒ Γ ′;∆′.

The rules defining the sequent calculus are summarized in Figure 2. The init rule is defined for atomic propositions
P only

init.
Ψ ;Γ ;P =⇒ P

The identity principle holds for the sequent calculus.

Theorem 4 (Identity principle). For all propositions A, and contexts, Ψ , Γ , Γ ′, and ∆:

1. Ψ ;Γ ;A =⇒ A
2. Ψ ;Γ ;∆ =⇒ Γ ;∆
3. Ψ ; (Γ, Γ ′); · =⇒ Γ ; ·

Proof. By an easy mutual induction over the structure of A for 1., ∆ for 2., and Γ for 3.

Lemma 1 (Weakening).

1. If Ψ ;Γ ;∆ =⇒ C then Ψ ;Γ,A;∆ =⇒ C.
2. If Ψ ;Γ ;∆ =⇒ C then Ψ,A[Γ ′′, ∆′′];Γ ;∆ =⇒ C.
3. If Ψ ;Γ ;∆ =⇒ Γ ′;∆′ then Ψ ;Γ,A;∆ =⇒ Γ ′;∆′.
4. If Ψ ;Γ ;∆ =⇒ Γ ′;∆′ then Ψ,A[Γ ′′, ∆′′];Γ ;∆ =⇒ Γ ′;∆′.

Proof. By a mutual structural induction on the given sequent derivations.

The cut principle also holds.

Theorem 5 (Cut Principle). We must consider three different cuts, one for each of the three fragments.
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Linear cut: If Ψ ;Γ ;∆1 =⇒ A and Ψ ;Γ ; (∆2, A) =⇒ C then Ψ ;Γ ; (∆1, ∆2) =⇒ C.
Hypothetical cut: If Ψ ;Γ ; · =⇒ A and Ψ ; (Γ,A);∆ =⇒ C then Ψ ;Γ ;∆ =⇒ C.
Categorical cut: If Ψ ;Γ ′;∆′ =⇒ A and (Ψ,A[Γ ′;∆′]);Γ ;∆ =⇒ C then Ψ ;Γ ;∆ =⇒ C.

Proof. By structural induction lexicographically on the cut-formula A, the left, and the right derivation. The proof
has been formalized in Twelf, and is accessible on the web at http://www.twelf.org/˜celf/download/
lcml.tgz.

Using the cut principle we get the usual correspondence between the natural deduction and the sequent calculus.

Theorem 6 (Soundness and Completeness).

1. Ψ ;Γ ;∆ ` A avail if and only if Ψ ;Γ ;∆ =⇒ A.
2. Ψ ;Γ ;∆ ` Γ ′;∆′ if and only if Ψ ;Γ ;∆ =⇒ Γ ′;∆′.

Proof. The proofs are by mutual structural induction on the respective derivations. They have been formalized in
Twelf, and are accessible on the web at http://www.twelf.org/˜celf/download/lcml.tgz.

4 Linear Contextual Modal Type Theory

Constructive logics can be seen as type theories via the well-known Curry-Howard correspondence. Perhaps not very
surprisingly, linear contextual modal logic gives rise to linear contextual modal type theory once augmented by proof
terms.

Our version of linear contextual modal type theory (based on the rules introduced in Section 2) is perhaps less
interesting for programming but it is the foundation for logical frameworks concerned with the representation of
resource based deductive systems, such as LLF [CP96] and CLF [CPWW02], and permits us to study the very nature
of logic variables.

The proof term assignment for linear contextual modal logic is based on the rules from Figure 1. For convenience,
we drop the judgments of avail, true, and valid, and express the rules in a more traditional form as specified in
Figure 3.

Proof Terms t ::= x | u[σ] | λx :A. t | t1 t2 | λ̂x :A. t | t1 ̂ t2
| λ[Γ ;∆]u : A . t | t1

Γ ;∆
2 t2

Substitutions σ ::= · | σ, t/x | σ, t/̂x
Contexts Γ,∆ ::= · | Γ, x : A

Modal Contexts Ψ ::= · | Ψ, u ::A[Γ ;∆]

We write Γ for the list of variable names in the context Γ .
We distinguish between variables x (intuitionistic or linear) and u[σ] (contextual modal), where the contextual

modal variables should be thought of as logic variables and σ as a delayed substitution. Every implication (linear,
intuitionistic, and contextual modal) provides an abstraction and application term. Intuitionistic and linear application

are standard. Therefore we comment only on the contextual modal application t1
Γ ;∆
2 t2: all names in Γ and ∆ are

binding occurrences of those intuitionistic and linear declarations that define the world the argument term t2 lives
in. The Γ and ∆ should be viewed as iterated abstractions of t2 subject to α-conversion. Their order is therefore
important.

4.1 Substitutions

Linear contextual type theory provides two notions of substitution application. One is for the simultaneous substitu-
tions that witness derivations of the judgment : Ψ ;Γ ;∆ ` σ : Γ ′;∆′, and the other is for single point substitutions
that instantiate contextual modal variables. Recall that contextual modal variables model logic variables.
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hypx
Ψ ; (Γ, x :A); · ` x : A

lhypx
Ψ ;Γ ;x :A ` x : A

(Ψ, u ::A[Γ ′;∆′]);Γ ;∆ ` σ : Γ ′;∆′

mhypu
(Ψ, u ::A[Γ ′;∆′]);Γ ;∆ ` u[σ] : A

Ψ ; (Γ, x :A);∆ ` t : B
→ Ix

Ψ ;Γ ;∆ ` λx :A. t : A→ B

Ψ ;Γ ;∆ ` t1 : A→ B Ψ ;Γ ; · ` t2 : A
→ E

Ψ ;Γ ;∆ ` t1 t2 : B

Ψ ;Γ ; (∆,x :A) ` t : B
( Ix

Ψ ;Γ ;∆ ` λ̂x : A. t : A( B

Ψ ;Γ ;∆1 ` t1 : A( B Ψ ;Γ ;∆2 ` t2 : A
( E

Ψ ;Γ ; (∆1,∆2) ` t1 ̂ t2 : B

(Ψ, u ::A[Γ ′;∆′]);Γ ;∆ ` t : B
2→ Iu

Ψ ;Γ ;∆ ` λ[Γ ′;∆′]u : A . t : A [Γ ′;∆′]→ B

Ψ ;Γ ;∆ ` t1 : A [Γ ′;∆′]→ B Ψ ;Γ ′;∆′ ` t2 : A
2→ E

Ψ ;Γ ;∆ ` t1
Γ ′;∆′
2 t2 : B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψ ;Γ ; · ` · : ·; ·

Ψ ;Γ ;∆ ` σ : Γ ′;∆′ Ψ ;Γ ; · ` t : A

Ψ ;Γ ;∆ ` σ, t/x : (Γ ′, x :A);∆′

Ψ ;Γ ;∆1 ` σ : Γ ′;∆′ Ψ ;Γ ;∆2 ` t : A

Ψ ;Γ ; (∆1,∆2) ` σ, t/̂x : Γ ′; (∆′, x :A)

Fig. 3. Type Theory LCMTT

The definition of simultaneous substitution is given in Figure 4. The definition is largely standard, and we comment
only on the two marked equations. In (1) modal contextual variables never occur in the domain of σ. Therefore σ does
not need to be extended by x/x as in the other two abstraction cases. In (2), the argument to a contextual modal term
will always live in a world different from the domain of σ, and thus σ must not be applied to t2.

Theorem 7 (Substitution).

1. If Ψ ;Γ ;∆ ` σ : Γ ′;∆′ and Ψ ;Γ ′;∆′ ` t : A then Ψ ;Γ ;∆ ` [σ](t) : A.
2. If Ψ ;Γ ;∆ ` σ : Γ ′;∆′ and Ψ ;Γ ′;∆′ ` σ′ : Γ ′′;∆′′ then Ψ ;Γ ;∆ ` [σ](σ′) : Γ ′′;∆′′.

Proof. To account for the multiplicative splits of the linear context we must generalize the induction hypothesis. Let
σs be a sub-substitution of σ in the sense that only some ∆′s ⊆ ∆′ are substituted for and Ψ ;Γ ;∆s ` σs : Γ ′;∆′s for
the corresponding ∆s ⊆ ∆. We prove Ψ ;Γ ′;∆′s ` t : A implies Ψ ;Γ ;∆s ` [σ](t) : A and Ψ ;Γ ′;∆′s ` σ′ : Γ ′′;∆′′
implies Ψ ;Γ ;∆s ` [σ](σ′) : Γ ′′;∆′′ by mutual structural induction on the derivations of t and σ′. The statement of
the theorem can now be obtained by taking σs = σ and correspondingly ∆s = ∆ and ∆′s = ∆′.

More interesting is the definition of substitution for contextual modal variables (or logic variables). Here, it is
sufficient to define only a single point substitution, which corresponds to the instantiation of several instances of one
particular logic variable. The presence of linearity does not lead to any surprises, and the definition of substitution is
reminiscent to that described in [NPP08].

Definition 1 (Substitution for Contextual Modal Variables). A substitution for a contextual modal variable is a
single point substitution that substitutes a term t′, declared in world Γ ;∆ for the contextual modal variable u in t.
Application written in short as [[(Γ ;∆).t′/u]](t). The rules defining this judgment are depicted in Figure 5.

Contextual modal substitution application traverses the entire structure of the term and substitutes t′ into each
occurrence of u. The only two interesting cases are equations (3) and (4). The former describes the actual substitution
step: If we substitute t′ for u in u[σ], we follow the following steps. First, we replace all occurrences of the contextual

7



[σ1, t/x, σ2](x) = t [σ](t1 ̂ t2) = [σ](t1)̂ [σ](t2)
[σ1, t/̂x, σ2](x) = t [σ](λ[Γ ;∆]u :A . t) = λ[Γ ;∆]u :A . [σ](t) (1)

[σ](u[τ ]) = u[[σ](τ)] [σ](t1
Γ ;∆
2 t2) = [σ](t1)

Γ ;∆
2 t2 (2)

[σ](λx :A. t) = λx :A. [σ, x/x](t) [σ](·) = ·
[σ](t1 t2) = [σ](t1) [σ](t2) [σ](σ′, t/x) = [σ](σ′), [σ](t)/x

[σ](λ̂x :A. t) = λ̂x :A. [σ, x/̂x](t) [σ](σ′, t/̂x) = [σ](σ′), [σ](t)/̂x

Fig. 4. Simultaneous Substitution

[[(Γ ′;∆′).t′/u]](x) = x

[[(Γ ′;∆′).t′/u]](u[σ]) = [[[(Γ ′;∆′).t′/u]](σ)]t′ where dom(σ) = (Γ ′;∆′) (3)

[[(Γ ′;∆′).t′/u]](v[σ]) = v[[[(Γ ′;∆′).t′/u]](σ)] where u 6= v (4)

[[(Γ ′;∆′).t′/u]](λx :A. t) = λx :A. [[(Γ ′;∆′).t′/u]](t)

[[(Γ ′;∆′).t′/u]](t1 t2) = [[(Γ ′;∆′).t′/u]](t1) [[(Γ ′;∆′).t′/u]](t2)

[[(Γ ′;∆′).t′/u]](λ̂x :A. t) = λ̂x :A. [[(Γ ′;∆′).t′/u]](t)

[[(Γ ′;∆′).t′/u]](t1 ̂ t2) = [[(Γ ′;∆′).t′/u]](t1)̂ [[(Γ ′;∆′).t′/u]](t2)

[[(Γ ′;∆′).t′/u]](λ[Γ ;∆]v :A . t) = λ[Γ ;∆]v :A . [[(Γ ′;∆′).t′/u]](t) where v does not occur in t′

[[(Γ ′;∆′).t′/u]](t1
Γ ;∆
2 t2) = [[(Γ ′;∆′).t′/u]](t1)

Γ ;∆
2 [[(Γ ′;∆′).t′/u]](t2)

[[(Γ ′;∆′).t′/u]](·) = ·
[[(Γ ′;∆′).t′/u]](σ, t/x) = [[(Γ ′;∆′).t′/u]](σ), [[(Γ ′;∆′).t′/u]](t)/x

[[(Γ ′;∆′).t′/u]](σ, t/̂x) = [[(Γ ′;∆′).t′/u]](σ), [[(Γ ′;∆′).t′/u]](t)/̂x

Fig. 5. Substitution for Contextual Modal Variables

modal variable u in the delayed simultaneous substitution σ, written as σ′ = [[(Γ ′;∆′).t′/u]](σ). However, before σ′

can be applied to t′, we must α-rename to make sure its domain equals the variable names in Γ ′;∆′ for which we
write the side condition dom(σ′) = (Γ ′;∆′) or equivalently dom(σ) = (Γ ′;∆′).

Theorem 8 (Contextual Modal Substitution).

1. If Ψ ;Γ ′;∆′ ` t′ : C and (Ψ, u ::C[Γ ′;∆′]);Γ ;∆ ` t : A then Ψ ;Γ ;∆ ` [[(Γ ′;∆′).t′/u]](t) : A.
2. If Ψ ;Γ ′;∆′ ` t′ : C and (Ψ, u ::C[Γ ′;∆′]);Γ ;∆ ` σ : Γ ′′;∆′′ then Ψ ;Γ ;∆ ` [[(Γ ′;∆′).t′/u]](σ) : Γ ′′;∆′′.

Proof. By mutual structural induction on t in 1. and σ in 2.

4.2 Equational Theory

Based on the definition of these two notions of substitution application, every connective in linear contextual modal
type theory gives rise to a β- and an η-rule, justifying our choice of definitional equality denoted by ≡.

As a preliminary definition, we define the identity substitution on arbitrary contexts.

id(·;·) = ·
id((Γ,x);·) = id(Γ ;·), x/x

id(Γ ;(∆,x)) = id(Γ ;∆), x/̂x

8



Theorem 9 (Identity). For all contexts Ψ , Γ , and ∆,

Ψ ;Γ ;∆ ` id(Γ ;∆) : Γ ;∆

Our choice of definitional equality ≡ is defined as the symmetric, reflexive, and transitive closure of the follow-
ing typed β-reduction and η-expansion rules defining =⇒. For the fragment motivated by linear and hypothetical
judgments, the rules are standard.

(λ̂x :A. t1)̂ t2 : B =⇒ [t2/x]t1

t : A( B =⇒ λ̂x : A. t̂x
(λx :A. t1) t2 : B =⇒ [t2/x]t1

t : A→ B =⇒ λx : A. t x

The fragment that corresponds to the contextual judgment is less standard but nevertheless intuitive.

(λ[Γ ;∆]u :A . t1)
Γ ;∆
2 t2 : B =⇒ [[(Γ ;∆).t2/u]]t1

t : A [Γ ;∆]→ B =⇒ λ[Γ ;∆]u : A . t
Γ ;∆
2 u[id(Γ ;∆)]

Notice that the annotation Γ ;∆ of the contextual modal application binds variables in t2 and can therefore always be
α-renamed to match the annotation of the λ in the β-rule.

We omit the straightforward definition of the congruence rules, which also extends to substitutions. Every equiv-
alence class is represented by a β-normal η-long form, which we also call canonical forms. The idea of equivalence
and canonical form generalizes directly to simultaneous substitutions.

4.3 Meta Theory

We can reassure the reader that linear contextual modal type theory behaves as expected. First we show that reduction
preserves types.

Theorem 10 (Subject Reduction). If Ψ ;Γ ;∆ ` t : A and t : A =⇒ t′ then Ψ ;Γ ;∆ ` t′ : A.

Proof. To see that β and η rules preserve types, one returns to the interpretation of the typing derivation as a logic
derivation. Each β rule is justified by the the argument of local soundness: Introducing a connective followed imme-
diately by elimination is justified by the respective substitution principle. Each η rule is justified by the argument of
local completeness. Any derivation of a non-atomic formula followed by an elimination, and reintroduction of the
main connective ends in exactly the same derivation of the non-atomic formula we started with.

Subject reduction ensures that the equivalence classes induced by ≡ are indeed well-defined sets of typed terms.

Theorem 11 (Canonical forms).

1. If Ψ ;Γ ;∆ ` t : A then there exists a unique term t′ in canonical form, such that Ψ ;Γ ;∆ ` t′ : A and t ≡ t′.
2. If Ψ ;Γ ;∆ ` σ : Γ ′;∆′ then there exists a unique substitution σ′ in canonical form, such that Ψ ;Γ ;∆ ` σ′ :
Γ ′;∆′ and σ ≡ σ′.

Proof. This theorem follows from the fact that canonical forms correspond to cut-free derivations in the sequent
calculus.

With canonical forms we can give a nice concise proof of raising and lowering.

Theorem 12 (Raising and Lowering).

1. There is a bijection between proof terms t1 with (Ψ, u ::B[Γ ′; (∆′, x :A)]);Γ ;∆ ` t1 : C and proof terms t2 with
(Ψ, v :: (A( B)[Γ ′;∆′]);Γ ;∆ ` t2 : C

2. There is a bijection between proof terms t1 with (Ψ, u ::B[(Γ ′, x :A);∆′]);Γ ;∆ ` t1 : C and proof terms t2 with
(Ψ, v :: (A→ B)[Γ ′;∆′]);Γ ;∆ ` t2 : C

Proof. In canonical forms the term u[σ, t/x] is interchangeable with v[σ]̂ t in 1. and v[σ] t in 2.
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5 Applications

The development of linear contextual modal type theory was driven by the necessity to understand higher-order unifi-
cation in the concurrent logical framework CLF. In the interest of clarity we glossed over the issues with dependencies,
which can be added without much trouble. The construction follows the steps of [NPP08].

Celf, as many other modern proof assistants, relies on unification, for example, for type reconstruction, logic
programming, and proof search. Linear contextual modal type theory provides us with precise type invariants for
unification problems, which we discuss in this section using a representation of the asynchronous π-calculus in Celf
as a running example.

The π-calculus is defined in Celf as an algebra of expressions expr and channel names chan: we write zero for
the empty process, par P Q for parallel composition, new (λu : chan. P ) for the process that creates a new channel
name, out U V for the process that writes a message V on channel U , and finally cin U (λm : chan. P ) for the
process that reads message m from channel U . As running example, we will use

new (λu : chan. par (new (λm. out u m)) (cin u (λx : chan. zero))), (5)

a process that creates and transmits a channel name m from the left process to the right.
The operational semantics builds on the following idea. We use the linear context to contain thunks of the processes

still to be executed (as linear hypotheses of type proc P ) and messages that are currently available “on the network”
(as linear hypotheses of type msg U V ). As they are represented by linear resources, they must be consumed before the
computation can terminate. Simulating a reduction sequence in the π-calculus corresponds therefore to constructing
an object of the desired type in linear contextual modal type theory, which we call run.

In Celf, one may specify the reduction semantics of the π-calculus as follows.

p done : run.

p zero : run ( proc zero ( run.

p par : ΠP : expr. ΠQ : expr.
(proc P ( proc Q( run) ( proc (par P Q) ( run.

p new : ΠP : chan→ expr.
(Πu : chan. proc (P u) ( run) ( proc (new P ) ( run.

p out : ΠU : chan. ΠV : chan.
(msg U V ( run) ( proc (out U V ) ( run.

p cin : ΠP : chan→ expr. ΠU : chan. ΠV : chan.
(proc (P V ) ( run) ( msg U V ( proc (cin U P ) ( run.

There are other possibilities, some take advantage of the concurrency monad, but since we did not discuss it in this
paper, we restrict ourselves to the LLF fragment of CLF to illustrate how logic variables are used. In linear contextual
modal type theory, the query from above is then formulated as the following judgment

u :: (proc (5) ( run)[·; ·]; ·; · ` u[id; id] : proc (5) ( run

The semantics of such a query is to search for an instantiation (categorical cut) of u. The first step of the search
procedure is to η-expand and apply lowering (Theorem 12), which instantiates u by

λ̂p0 :proc (5). v[id; p0/p0]/u,

which (after one right focusing step) leads to

v ::run[·; p0 :proc (5)]; ·; p0 : proc (5) ` v[id; p0/p0] : run.

Notice how u above is declared with empty contexts but through lowering implicitly specifies the contexts of v. In
general Celf uses lowering in this way to give a nice clean interface for the specification of meta-variable contexts.
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We show one more step. As the linear context is no longer empty, we cannot apply the rule p done. Instead, we
use p new. After several steps, backchaining results in the modal contextual substitution

p new (λu : chan. (6))̂ (λu : chan. λ̂p1 : proc (6). w[u/u; p1/p1])̂p0/v.
with the following abbreviation

par (new (λm. out u m)) (cin u (λx : chan. zero)) (6)

and a new proof state with the meta-variable w:

w ::run[u : chan; prog (6)];u : chan; p1 : prog (6) ` w[u/u; p1/p1] : run.

After six more steps, we can discharge all meta-variables, and arrive at a “solved state”. For increased readability, we
omit the arguments that are usually called implicit (because they can be easily inferred).

· ·; · ` λ̂p0. p neŵ (λu. λ̂p1. p par̂ (λ̂p2. λ̂p3. p neŵ (λu1. λ̂p4. p out̂ (λ̂p5.
p cin̂ (λ̂p6. p zerôp donêp6)̂p5 ̂p3)̂p4)̂p2)̂p1)̂p0

This concludes the example.

6 Conclusion

In this paper we present linear contextual modal type theory as a mathematical explanation for logic variables in the
presence of linear types. We prove the existence of canonical forms by means of cut-elimination, whose proof has
been formalized and verified in the proof assistant Twelf.

Linear contextual modal type theory provides us with a deep understanding of the interaction between linear type
theory and logic variables that are prevalent in many systems based on linear logic, for example, theorem provers
and logic programming languages. It can easily be extended to dependent types in the style of LLF because the
dependent Π only binds intuitionistic variables, thus making linearity and dependent types orthogonal extensions.
The dependently typed version forms the theoretical foundation for our implementation of the concurrent logical
framework CLF [CPWW02] in the Celf system [SNS08].
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[SNS08] Anders Schack-Nielsen and Carsten Schürmann. System description: Celf – a logical framework for deductive and
concurrent systems. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, International Joint Con-
ference on Automated Reasoning (IJCAR), pages 320–331, Sydney, Australia, 2008.

12


