
The λσ-Calculus and Strong Normalization

Anders Schack-Nielsen
Carsten Schürmann

IT University Technical Report Series TR-2011-TR-2011-150

ISSN 1600–6100 December 2011

Copyright c© 2011, Anders Schack-Nielsen
Carsten Schürmann

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-249-3

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

The λσ-Calculus and Strong Normalization

Anders Schack-Nielsen Carsten Schürmann
IT University of Copenhagen

No Institute Given

Abstract. Explicit substitution calculi can be classified into several distinct categories depending on whether
they are confluent, meta-confluent, strong normalization preserving, strongly normalizing, simulating, fully
compositional, and/or local. In this paper we present a variant of the λσ-calculus, which satisfies all seven
conditions. In particular, we show how to circumvent Mellies counter-example to strong normalization by a
slight restriction of the congruence rules. The calculus is implemented as the core data structure of the Celf
logical framework. All meta-theoretic aspects of this work have been mechanized in the Abella proof assistant.

1 Introduction

Explicit substitution calculi are useful when implementing λ-calculi with meta-variables, and serve therefore as
the formal foundation for many proof assistants. By making substitutions explicit, however, some properties, such
as, for example, strong normalization [Mel95] or meta-confluence [CHL96] may be broken. Different flavors of
explicit substitution calculi have been studied and classified extensively, for example, by Kesner [Kes07]. One
property that we refer to as locality, however, is absent from the usual classifications: A calculus is local, if no
reduction rule relies on side conditions that inspect arbitrarily large terms. So far, all attempts to render the original
λσ-calculus strongly normalizing have resulted in non-local reduction rules, the loss of confluence in the presence
of meta-variables, or have other undesirable side effects. In this paper we solve this problem and give a strongly
normalizing version of the λσ-calculus, which is elegant, concise, and satisfies the usually desired properties plus
locality.

Consider the λ-calculus and its reduction semantics→β :

t ::= x | t1 t2 | λx. t

(λx. t1) t2 →β t1{t2/x}

Explicit substitution calculi are usually formulated and studied without reference to meta-variables as they can
always be considered an extension. However, meta-variables illustrate our interest in explicit substitution calculi
well. In a λ-calculus with meta-variables, substitutions can no longer be pushed into the term until they disappear,
instead they get stuck until the meta-variable is instantiated. Explicit substitutions have become popular among
programming language, theorem prover, and proof assistant developers.

The simplest way to internalize substitutions is to turn t1{t2/x} into a term constructor t1[t2/x]:

t ::= · · · | t1[t2/x]

and the definition of t1{t2/x} into reduction rules:

x[t/x]→ t (t1 t2)[t3/x]→ t1[t3/x] t2[t3/x]

y[t/x]→ y if x 6= y (λy. t1)[t2/x]→ λy. t1[t2/x] if x 6= y and y /∈ fv(t2)

along with the β-rule (λx. t1) t2 → t1[t2/x]. This explicit substitution calculus is known as λx [Kes07,BR95].
However, without any way to compose substitutions, this calculus is not confluent in the presence of meta-
variables, and a naive addition of composition rules breaks normalization.

Many different explicit substitution calculi have been proposed trying to capture as many good properties
as possible. Kesner gives a nice overview of related work in [Kes07] and highlights six important and desirable
properties: confluence (C) of the reduction relation, meta-confluence (MC), i.e. confluence in the presence of
meta-variables, the preservation of strong normalization (PSN) (which means that any explicit substitution free
term that is strongly normalizing with respect to →β is also strongly normalizing with respect to →), strong
normalization (SN) of well-typed terms, simulation (SIM) (which means the reduction relation → can simulate

beta (λM) N → M [N . id]

clos-var 1[M . s] → M
clos-clos M [s][t] → M [s ◦ t]
clos-lam (λM)[s] → λ(M [1 . (s ◦ ↑)])
clos-app (M N)[s] → M [s] N [s]
clos-var-id 1[id] → 1

comp-id-L id ◦ s → s
comp-shift-id ↑ ◦ id → ↑
comp-shift ↑ ◦ (M . s) → s
comp-cons (M . s) ◦ t → M [t] . (s ◦ t)
comp-comp (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

Fig. 1. Basic reduction rules

β-reduction, i.e. t1 →β t2 implies t1 →∗ t2), and finally, full composition (FC) (which states that for any t1
and t2 it holds that t1[t2/x] →∗ t1{t2/x} for an appropriate extension of ordinary capture-avoiding substitution
to terms with explicit substitutions). In addition, we propose to consider the property we refer to as locality (L),
where we define calculus to be local, if no reduction rule relies on side conditions that inspect arbitrarily large
terms.

All the rules of λx above are local. However, the rule gc below that is known from several explicit substitution
calculi [Kes07,BR95] is not.

(gc) t1[t2/x]→ t1 if x /∈ fv(t1)

This side condition differs from checking for α-equivalence, because the structure of t1 must be traversed, and
this operation can hence not be executed in constant time.

The λσ-calculus is a simple minimalistic explicit substitution calculus, which has most of the properties we
desire from an explicit substitution calculus (C, SIM, FC, L) [Kes09].

In this paper we show how a small restriction in the reduction rules allows us to recover the remaining three
properties PSN, SN, and MC. The meta-theory of this paper has been completely mechanized in the proof assistant
Abella, and each theorem is marked with the corresponding Abella file and theorem name. The Abella source
files can be found at http://www.itu.dk/people/anderssn/exsub-sn.tgz. The proofs have been
incorporated into the Abella example collection where they can be easily browsed: http://abella.cs.umn.
edu/examples/lambda-calculus/exsub-sn/.

2 Preliminaries

The syntax of the λσ-calculus consists of terms and substitutions written in de Bruijn notation:

Terms: M,N ::= 1 |M [s] | λM |M N

Substitutions: s, t ::= id | ↑ |M . s | s ◦ t

The variable 1 refers to the innermost λ-binder. Other variables are represented with a closure and a sequence of
shifts, e.g. 3 = 1[↑ ◦ ↑].

The intuition behind each of the substitution constructs is the following: A term under an identity (id) is
supposed to reduce to itself. A shift (↑) applied to a term increments all freely occurring variables by one. An
extension M .s will substitute M for the variable 1, decrement all other freely occurring variables, and then apply
s to them. Finally, a composition of two substitutions s ◦ t represents the substitution that first applies s and then
t, i.e. M [s ◦ t] is supposed to reduce to the same term as reducing each closure individually in M [s][t].

We will use ↑n where n ≥ 0 as a short-hand for n compositions of shift, i.e. ↑ ◦ (↑ ◦ (. . . ◦ (↑ ◦ ↑) . . .)), where
↑0 means id. Additionally, de Bruijn indices n with n > 1 are short-hand for 1[↑n−1].

The reduction rules are shown in Figure 1. In addition to these rules we consider every possible congruence
rule, i.e. we allow rewrites to occur anywhere inside a term or substitution.

The rule beta corresponds to the ordinary β-step in the λ-calculus and introduces an explicit substitution
inside a closure. The rest of the rules are called σ-rules and details how to evaluate closures and substitution

beta (λM) N → M [N . id]

clos-const c[s] → c
clos-var-dot1 1[M . s] → M
clos-var-dot2 (n+ 1)[M . s] → n[s]
clos-var-shift n[↑m] → n+m
clos-clos M [s][t] → M [s ◦ t]
clos-lam (λM)[s] → λ(M [1 . (s ◦ ↑1)])
clos-app (M N)[s] → M [s] N [s]

comp-id-L ↑0 ◦ s → s
comp-cons (M . s) ◦ t → M [t] . (s ◦ t)
comp-shift-dot ↑n+1 ◦ (M . s) → ↑n ◦ s
comp-shift-shift ↑n ◦ ↑m → ↑n+m
comp-comp (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

eta-subst (n+ 1) . ↑n+1 → ↑n

Fig. 2. Reduction rules

compositions. The fragment of the rules that excludes the beta rule is called the σ-fragment and the corresponding
relation is written→σ .

In the presence of meta-variables this calculus is not even locally confluent. The critical pair ((λM)N)[s]
can reduce to both M [N [s] . s] and M [N [s] . (s ◦ id)]. Closing the critical pairs gives rise to the following four
additional rules:

comp-id-R s ◦ id → s
clos-id M [id] →M
var-shift 1 . ↑ → id
s-cons 1[s] . (↑ ◦ s)→ s

The first two rules are the general right-identity rules and thus replace clos-var-id and comp-shift-id. The var-
shift and s-cons rules can be seen as η-contraction rules on substitutions. The resulting system is easily seen to
be locally confluent by checking all critical pairs. Constants can be added to the calculus with a single additional
rule:

clos-const c[s]→ c

We can also represent de Bruijn indices and sequences of shifts directly in the syntax with the following five
rules:

clos-var-dot2 (n+ 1)[M . s] → n[s]
clos-var-shift n[↑m] → n+m

comp-shift-dot ↑n+1 ◦ (M . s)→ ↑n ◦ s
comp-shift-shift ↑n ◦ ↑m → ↑n+m
eta-subst (n+ 1) . ↑n+1 → ↑n

These rules are essentially shortcuts in the sense that the first four can be obtained by a sequence of the reduction
steps shown in Figure 1 when n and ↑n are syntactic short-hands. It is also easy to check that the addition of the
first four rules suffices to evaluate all compositions and closures. These rules render clos-var-id, comp-shift-id,
and comp-shift obsolete. The last rule generalizes var-shift and corresponds to s-cons in the case when s = ↑n.

In summary, we base this paper on the following definition of λσ:

Terms: M,N ::= n | c |M [s] | λM |M N

Substitutions: s, t ::= ↑n |M . s | s ◦ t

where de Bruijn indices n have n ≥ 1 and shifts ↑n have n ≥ 0. The reduction rules are given in Figure 2. We have
excluded the two general right-identity rules, as we can easily prove them admissible for the transitive closure:

Theorem 1 (beta.thm:clos id ext). For all M and s we have M [↑0]→∗ M and s ◦ ↑0 →∗ s.

We have also omitted the general s-cons rule and only included eta-subst in its place. The general s-cons rule
is problematic in the sense that it is not left-linear, so it is worth analyzing what it actually adds. It is easy to see that

any composition can reduce to either M . s or ↑n (a concrete reduction sequence is given by Theorem 15 below).
In these two cases s-cons gives us the two reductions 1[M . s] . (↑1 ◦ (M . s))→M . s and 1[↑n] . (↑1 ◦ ↑n)→ ↑n.
The former can be achieved in two steps without s-cons, and the latter corresponds to eta-subst. This shows that
we do not lose any reduction sequences by excluding the problematic s-cons in favor of eta-subst, and thus it is
the better choice.

We are not going to say much about the congruence rules yet, so for now we will just assume that we can
perform any reduction step anywhere within a term or substitution. We will return to this matter below in Section 3.

Mellies showed in [Mel95] that the simply typed term

λv.(λx.(λy.y)((λz.z)x))((λw.w)v)

has an infinite reduction sequence in λσ. This is very counter-intuitive since the ordinary simply typed λ-calculus
is strongly normalizing and the σ-fragment of λσ is also strongly normalizing [CHR92] (even on untyped terms).

We sketch the idea of the counter-example. Consider a β-redex under a closure ((λM) N)[s] If we evaluate
the redex first and then the substitution composition we arrive at M [N [s].s]. If we instead begin by pushing the
substitution through the application we can get the following reduction sequence:

((λM) N)[s]→ (λM)[s] N [s]

→ (λM [1 . s ◦ ↑1]) N [s]

→M [1 . s ◦ ↑1][N [s] . ↑0]
→∗ M [N [s] . s ◦ (↑1 ◦ (N [s] . ↑0))]

Here we see a substitution s′ = ↑1 ◦ (N [s] . ↑0), which contains s, being applied to s itself. Of course s′ can
reduce in one step to ↑0, but if we carefully avoid that specific reduction step and if s contains a β-redex then we
can push s′ into s and through the redex in s and thus replicate the situation above with s′ instead of s. Now since
s′ contains s and therefore also a β-redex we can keep on doing this (see [Mel95] for all the details).

The term that we end up creating in this way consists of a sequence of closures nested arbitrarily deep:

M [. . .M [. . .M [. . .M [. . .] . . .] . . .] . . .]

And consequently the reduction steps that we perform are similarly nested deeper and deeper through an arbitrary
number of closures and substitutions.

This also highlights the brittle nature of the counter-example. If we at any time were to reduce any of the
arising s′s to ↑0 the entire thing would normalize. Thus we have an indication that a suitable minor tweak to the
reduction strategy will give us strong normalization (as opposed to the current non-deterministic, everything-is-
allowed reduction strategy).

3 Regaining Strong Normalization

Let us present the congruence rules that up until now have remained implicit:

M →M ′

M . s→M ′ . s

s→ s′

M . s→M . s′
s→ s′

s ◦ t→ s′ ◦ t
t→ t′

s ◦ t→ s ◦ t′

M →M ′

λM → λM ′
M →M ′

M N →M ′ N

N → N ′

M N →M N ′

M →M ′

M [s]→M ′[s]

s→ s′
(∗)

M [s]→M [s′]

In order to prevent Mellies’ counter example, we will have to disallow certain reductions within a term. If we get
rid of the second congruence rule for closures (∗) then certainly we will have a strongly normalizing calculus, but
this is overly restrictive. If we instead replace it by a version that only allows σ-steps then since the σ-fragment by
itself is strongly normalizing, we can hope for strong normalization. We are therefore going to use the following
congruence rule in place of (∗):

s→σ s
′

M [s]→σ M [s′]

c[e] → c 1[e1 . e2] → e1
(n+ 1)[e1 . e2] → n[e2] n[↑m] → n+m
e1[e2][e3] → e1[e2[e3]] (λe1)[e2] → λe1[1 . e2[↑1]]
(e1 . e2)[e3] → e1[e3] . e2[e3] ↑0[e] → e
↑n+1[e1 . e2] → ↑n[e2] ↑n[↑m] → ↑n+m
(n+ 1) . ↑n+1 → ↑n

e1 → e′1

e1[e2]→ e′1[e2]

e2 → e′2

e1[e2]→ e1[e
′
2]

e→ e′

λe→ λe′

e1 → e′1

e1 . e2 → e′1 . e2

e2 → e′2

e1 . e2 → e1 . e
′
2

Fig. 3. Expression reduction rules

Now, β-steps may not be performed in closures, however the resulting rewrite system is still C, SIM, FC, and L:
we can always reduce the closure itself. In addition, it is strongly normalizing for simply typed terms as we will
discuss next.

Strong normalization of λσ. The proof of strong normalization can be summarized to the following: Take any
reduction sequence and divide it into groups of σ-steps and beta-steps (applications of the beta-rule). We relate
each term to its σ-normal form and then we show PSN by proving that every beta-step in λσ corresponds to a
β-reduction step in the λ-calculus.

Strong normalization of the σ-fragment. In [CHR92] the σ-fragment of λσ was shown to be strongly normalizing.
Central to their argument was the proof that if e is strongly normalizing then e[↑1] is also strongly normalizing,
where e is an expression (defined below). The proof we give in this section shares the same overall structure, but
we would like to emphasize that our proof of the strong normalization of e[↑1] given strong normalization of e is
greatly simplified (Lemma 4 and Lemma 5 below).

In order to give a simpler proof of strong normalization of the σ-fragment, we collapse the syntactic classes of
terms and substitutions into a single class called expressions:

Expressions: e ::= n | c | ↑n | e1[e2] | λe | e1 . e2

The set of reduction rules for expressions is given in Figure 3. We use the following translation from terms
and substitutions into expressions:

E(n) = n E(c) = c E(M [s]) = E(M)[E(s)]

E(λM) = λE(M) E(M N) = E(M) . E(N) E(↑n) = ↑n

E(M . s) = E(M) . E(s) E(s ◦ t) = E(s)[E(t)]

It is easy to see that σ-reductions are preserved by the translation, and therefore strong normalization of expres-
sions implies strong normalization of the σ-fragment.

We shall write SN for the set of strongly normalizing expressions, and then aim to prove e ∈ SN for all
expressions e. Strong normalization of the cases λe and e1 . e2 are easy.

Lemma 1 (sigma-strong.thm:esn lam). If e ∈ SN then λe ∈ SN .

Lemma 2 (sigma-strong.thm:esn dot,esn dot inv). e1 . e2 ∈ SN if and only if e1 ∈ SN and
e2 ∈ SN .

Closures are a lot more difficult due to the rewrite (λe1)[e2] → λe1[1 . e2[↑1]]. We will therefore split the
proof depending on whether the given expressions contain λs. We write the exclusion of λs from an expression e
as λ /∈ e.1

1 The formalized proof represents the exclusion of λ by a predicate nolam. This predicate also excludes constants to reduce
the number of cases needed in the proofs, but it could just as well have included them, and the general theorem is proved
later anyway. Thus, whenever we write λ /∈ e we will also exclude occurrences of constants in e.

Lemma 3 (sigma-strong.thm:esn clos nolam). If e1 ∈ SN , e2 ∈ SN , and λ /∈ e1 then e1[e2] ∈ SN .

Theorem 2 (sigma-strong.thm:nolam esn). If λ /∈ e then e ∈ SN .

In order to prove the general statement we are going to need a version of Lemma 3 without the restriction on
e1. The tricky part is proving that e2 ∈ SN implies e2[↑1] ∈ SN (and thus 1 . e2[↑1] ∈ SN).

If we do an intuitive comparison between reduction sequences for e and e[↑1] it seems that any reduction in
e[↑1] either can be mimicked by a reduction in e or consists of pushing the ↑1 through e. We will formalize this
intuitive idea by building a relation e /∼ e′, such that e /∼ e[↑1] for any e, and for any e′1 → e′2 with e1

/∼ e′1
then either e1

/∼ e′2 or e1 → e2 with e2
/∼ e′2. In the former case the reduction e′1 → e′2 is intended to be one of

the steps associated with pushing the ↑1 through the structure of the expression and thus the number of such steps
should be bounded by the structure of the expression. Given such a relation we would get the desired lemma as a
corollary to the fact that e ∈ SN and e /∼ e′ implies e′ ∈ SN .

In order to build the relation such that it is closed under the conditions stated above, we need it to contain
e
/∼ e[e′] where e′ can be ↑1 and is closed under at least 1 . · ◦ ↑1 and reduction. Instead of characterizing this

class of expressions we can simply take expressions without λ as we already know this class to be in SN . The
relation is defined as follows:

c
/∼ c

λ /∈ e λ /∈ e′

e
/∼ e′

e2
/∼ e′2

e1[e2]
/∼ e1[e′2]

e1
/∼ e′1 e2

/∼ e′2

e1 . e2
/∼ e′1 . e′2

e
/∼ e′

λe
/∼ λe′

λ /∈ e′

e
/∼ e[e′]

e1
/∼ e′1 λ /∈ e2

e1[e2]
/∼ e′1[e2]

The following theorem states the desired simulation properties.

Lemma 4 (sigma-strong.thm:is esn rel under shift). If e0
/∼ e′0 then there exists a k such that

for all reductions e′0 → e′1 → · · · → e′n in n steps there exists a sequence e0, e1, . . . , en such that

1. either ei → ei+1 or ei = ei+1 for 0 ≤ i < n,
2. ei

/∼ e′i for 0 ≤ i ≤ n, and
3. n ≥ k implies ei → ei+1 for some i.

It is noteworthy to consider how Lemma 4 is encoded in Abella. The statement of the lemma is similar to strong
normalization in the sense that some limit k exists after which any reduction sequence will bottom out in some
way; in this case, have a corresponding reduction in the /∼-related expression. The Abella-encoding of SN is the
following inductive definition:

e ∈ SN := ∀e′. e→ e′ ⊃ e′ ∈ SN
We can then give a similar, but slightly more complicated, inductive definition of a relation SN [e] (denoted
esn rel under shift in the formalization).

e′1 ∈ SN [e1] := e1
/∼ e′1 ∧ ∀e′2. e′1 → e′2 ⊃

(∃e2. e1 → e2 ∧ e2
/∼ e′2) ∨ e′2 ∈ SN [e1]

Lemma 4 can now be represented as the statement e /∼ e′ ⊃ e′ ∈ SN [e]. By a nested induction on the strong
normalization of e and k from Lemma 4 we get:

Lemma 5 (sigma-strong.thm:exp under shift esn). If e ∈ SN and e /∼ e′ then e′ ∈ SN .

As an immediate corollary we get that e ∈ SN implies e[↑1] ∈ SN . This gives us the desired version of Lemma 3
without the restriction on e1.

Lemma 6 (sigma-strong.thm:esn clos). If e1 ∈ SN and e2 ∈ SN then e1[e2] ∈ SN .

Together Lemmas 1, 2, and 6 yield the strong normalization theorem:

Theorem 3 (sigma-strong.thm:exp esn). Every expression is strongly normalizing: e ∈ SN for all e.

And thus, we have strong normalization of the σ-fragment of λσ.

Theorem 4 (lambda-sigma.thm:tm sn su,sub sns su). The reduction relation→σ is strongly normal-
izing for terms and substitutions.

Σ(c) = A

Γ ` c : A
Γ `M : A→ B Γ ` N : A

Γ `M N : B

Γ,A `M : B

Γ ` λM : A→ B

Γ,A ` 1 : A

Γ ` n : A

Γ,B ` n+ 1 : A

Γ ` s : Γ ′ Γ ′ `M : A

Γ `M [s] : A Γ ` ↑0 : Γ

Γ ` ↑n : Γ ′

Γ,A ` ↑n+1 : Γ ′

Γ `M : A Γ ` s : Γ ′

Γ `M . s : Γ ′, A

Γ ` t : Γ ′′ Γ ′′ ` s : Γ ′

Γ ` s ◦ t : Γ ′

Fig. 4. Types for λσ

Confluence of the σ-fragment. With strong normalization we can easily prove confluence of the σ-fragment by
first proving local confluence.

Theorem 5 (conf.thm:local conf). The σ-fragment is locally confluent.

1. If M1 σ←M →σ M2 then there exists an M ′ s.t. M1 →∗σ M ′ ∗σ←M2.
2. If s1 σ← s→σ s2 then there exists an s′ s.t. s1 →∗σ s′ ∗σ← s2.

Theorem 6 (conf.thm:conf tm,conf sub). The σ-fragment is confluent.

1. If M1
∗
σ←M →∗σ M2 then there exists an M ′ s.t. M1 →∗σ M ′ ∗σ←M2.

2. If s1 ∗σ← s→∗σ s2 then there exists an s′ s.t. s1 →∗σ s′ ∗σ← s2.

Together confluence and strong normalization give us the existence of unique σ-normal forms. We shall denote
the σ-normal form of a term M or substitution s as σ(M) and σ(s), respectively.

Preservation of strong normalization. With the σ-fragment covered, we turn our attention to the beta-steps. Let
→β denote a beta-step. Then the reduction relation→ is the disjoint union of→σ and→β . The σ-normal forms
correspond to the ordinary λ-calculus, so for such terms we can define ordinary β-reduction in the following way:

M ⇒β M
′ := M →β M

′′ ∧M ′ = σ(M ′′)

Preservation of strong normalization (PSN) is the property that strong normalization of σ(M) with respect to
⇒β implies strong normalization of M with respect to →. Our restriction of the congruence rules allows us to
prove that beta-steps correspond to β-steps in the ordinary λ-calculus. Together with C and SN of the σ-fragment,
we immediately get PSN:

Theorem 7 (beta.thm:project beta). If M →β M
′ then σ(M)⇒β σ(M

′).

Theorem 8 (strong-norm.thm:psn). If σ(M) is strongly normalizing with respect to⇒β thenM is strongly
normalizing with respect to→.

Strong normalization of simply typed λσ. So far, we have only considered untyped terms and substitutions. So
before we can talk about strong normalization of well-typed terms and substitutions, we need to introduce the type
system. The typing rules are standard for λσ and given in Figure 4.

Theorem 9 (typing.thm:of step ext). Subject reduction.

1. If Γ `M : A and M →M ′ then Γ `M ′ : A.
2. If Γ ` s : Γ ′ and s→ s′ then Γ ` s′ : Γ ′.

Since well-typed σ-normal forms are exactly the simply typed λ-calculus, we have the usual proof of strong
normalization using a logical relation. The Abella proof is adapted from Girard’s proof of strong normalization in
the example suite of Abella [Abe].

Theorem 10 (beta-sn.thm:strong beta). Let M be a σ-normal form with Γ ` M : A. Then M is
strongly normalizing with respect to⇒β .

PSN (Theorem 8) guarantees strong normalization of simply typed terms:

Theorem 11 (strong-norm.thm:strong tm). If Γ ` M : A then M is strongly normalizing with respect
to→.

We can adapt the proof of Lemma 3 to prove strong normalization of compositions. We will not have to
consider λs in this case, since for terms we can simply appeal to Theorem 11.

Lemma 7 (strong-norm.thm:sns clos). If Γ ` t : Γ ′′, Γ ′′ ` s : Γ ′, and s and t are strongly normalizing
then s ◦ t is strongly normalizing.

Theorem 12 (strong-norm.thm:strong sub). If Γ ` s : Γ ′ then s is strongly normalizing.

4 Meta-Confluence

We consider now a formulation of λσ-calculus extended by term meta-variables as known from contextual modal
type theory [NPP08]. From a term rewriting perspective we want to keep the property that any closure M [s] can
reduce (FC), and from a contextual modal type theory perspective logic variables are always under a substitution.
Therefore, we do not consider the new normal form X[s] to be a closure, but rather a logic variable along with a
substitution, which allows all congruence rules.

The key to MC is the shape of normal forms. As we mentioned in Section 2, it is easy to see that compositions
can reduce to either M . s or ↑n, and thus eta-subst can replace s-cons. With eta-subst we get confluence in the
presence of term meta-variables, as we have show in [SNS10]. We even mechanized the proof in Twelf, which
remains valid, because it relies on σ-normalization, and for σ-normal-forms the restricted operational semantics
coincides with the unrestricted. However, adding substitution meta-variables breaks confluence [CHL96]. In prac-
tice, substitution meta-variables are of lesser interest than term meta-variables, so it is tempting to simply ignore
them and declare meta-confluence achieved, but we will discuss them here for completeness.

The counterexample to confluence works by creating two diverging reduction paths through the clever use
of s-cons, which cannot be recombined due to the fact that s-cons is not left-linear. Since s-cons essentially
implements η-equivalence of substitutions we propose to turn the rule around as s → 1[s] . (↑ ◦ s). Without any
type-directed restrictions this rule is of course trivially non-terminating, but we conjecture that all that is needed
to keep termination is the length of the context being substituted for. This information can easily be maintained
through simple Church-style annotations: in the style of [Pfe08] we keep length-of-contexts as an intrinsic property
of terms and substitutions and all other potential typing extrinsic.

With intrinsic information about context-lengths we can also add the η-rule s → ↑n that applies whenever s
occurs in a context of length n and substitutes for a context of length 0, as ↑n should be the only such substitution.

Let S denote a substitution meta-variable. Now, with a reverse s-cons S ◦ s is no longer a normal form but can
expand to 1[S ◦s] .2[S ◦s] .3[S ◦s] . . .↑m. The individual entries n[S ◦s] correspond to term meta-variablesXn[s]
and thus we have reduced the need for substitution meta-variables to term meta-variables for which confluence
(MC) is already established.

5 Even Stronger Normalization

So far we have achieved strong normalization by disallowing β-steps in closures. With Theorem 12 we showed
that substitutions are strongly normalizing, and it is therefore plausible that we could allow a single application of
the unrestricted congruence rule in each step without breaking strong normalization. The intuition is that whenever
we take a step inside a substitution we maintain the overall structure of the term disregarding the contents of
substitutions. Thus, a nested induction on the strong normalization of the term and the strong normalization of
all substitutions occurring within the term could presumably extend the strong normalization to this slightly more
general reduction relation.

Going further, we can consider an extension of the reduction relation that allows the unrestricted congruence
rule at most k times in each step for some fixed number k. As we saw in the counter-example, the non-terminating
reduction sequence involved deeper and deeper nesting of beta-steps using the unrestricted closure congruence
rule. This means that having such a fixed limit k is still going to rule out this particular counter-example.

In this section we formalize these ideas and prove the extended reduction relation strongly normalizing on
well-typed terms and substitutions, thereby pushing the boundary of strong normalization right up to the limit set
by the counter-example. We will in the following assume that every term and substitution is well-typed.

beta (λM) N
k−→ M [N . id]

clos-const c[s]
k−→ c

clos-var-dot1 1[M . s]
k−→ M

clos-var-dot2 (n+ 1)[M . s]
k−→ n[s]

clos-var-shift n[↑m]
k−→ n+m

clos-clos M [s][t]
k−→ M [s ◦ t]

clos-lam (λM)[s]
k−→ λ(M [1 . (s ◦ ↑1)])

clos-app (M N)[s]
k−→ M [s] N [s]

comp-id-L ↑0 ◦ s k−→ s

comp-cons (M . s) ◦ t k−→ M [t] . (s ◦ t)
comp-shift-dot ↑n+1 ◦ (M . s)

k−→ ↑n ◦ s
comp-shift-shift ↑n ◦ ↑m k−→ ↑n+m
comp-comp (s1 ◦ s2) ◦ s3

k−→ s1 ◦ (s2 ◦ s3)

eta-subst (n+ 1) . ↑n+1 k−→ ↑n

M
k−→M ′

M . s
k−→M ′ . s

s
k−→ s′

M . s
k−→M . s′

s
k−→ s′

s ◦ t k−→ s′ ◦ t

t
k−→ t′

s ◦ t k−→ s ◦ t′

M
k−→M ′

λM
k−→ λM ′

M
k−→M ′

M N
k−→M ′ N

N
k−→ N ′

M N
k−→M N ′

M
k−→M ′

M [s]
k−→M ′[s]

s
k−→ s′

clos1
M [s]

k+1−−→M [s′]

s→σ s
′

clos2
M [s]

0−→M [s′]

Fig. 5. Reduction rules

We will define a reduction relation k−→ for each natural number k ≥ 0 that allows k applications of the unre-
stricted congruence rule.

The reduction relation k−→ is shown in its entirety in Figure 5. Notice that, for k = 0 the relation coincides with
our regular reduction relation 0−→ =→, and of course a larger value of k allows more reductions k−→ ⊂ k+1−−→.

We will denote the subrelation of k−→ that uses one of the rules clos1 or clos2 at least once as k−→[] (read k−→[]

as “k-step-closure”, the subscript closure brackets [] should remind you that the reduction must happen inside a
closure.) The subrelation that uses neither clos1 nor clos2 is denoted k−→6 [] (read k−→6 [] as “k-step-no-closure”, the
subscript crossed-over closure brackets 6 [] should remind you that the reduction must not happen inside a closure),
such that k−→ =

k−→[] ∪
k−→6 []. Since k−→6 [] is independent of the value of k we will also write this relation as→6 [].

We prove k−→ strongly normalizing for terms and substitutions by induction on k. For k = 0 the relation is equal
to → and therefore strongly normalizing by Theorems 11 and 12. In the following we will prove the induction
step.

If we first consider k+1−−→[] then every step uses clos1. And this relation is therefore strongly normalizing by
the simultaneous induction on the strong normalization of every substitution occurring inside the term, since these
substitutions are in turn strongly normalizing by the induction on k.

Theorem 13 (strong-ext.thm:is sn1 clo,is sn1s clo). Assuming that k−→ is strongly normalizing
on substitutions, the relation k+1−−→[] is strongly normalizing on terms and substitutions.

Assume we have M1
k+1−−→∗[] M2 and we wish to prove M2 strongly normalizing with respect to k+1−−→. Any

k+1−−→ step taken by M2 is either a k+1−−→[] step or a k+1−−→6 [] step. In the first case we again have M1
k+1−−→∗[] M ′2 with

the same M1, and this case cannot happen indefinitely since k+1−−→[] is strongly normalizing. In the second case we
have M1

k+1−−→∗[] M2 →6 [] M ′2. Since the steps from M1 to M2 only occur inside substitutions and the step from
M2 to M ′2 only occurs outside substitutions, the idea is to prove that these two parts commute in some sense. That
is, if we could prove M1 →M ′1

k+1−−→∗[] M ′2 then we could appeal to induction on the strong normalization of M1

with respect to→. Unfortunately this is not always the case, but this idea will lead us to something similar, which
in the end will get us there.

One of the hard cases turns out to be 1[s1]
k+1−−→∗[] 1[M ′2 . s2]→6 [] M ′2 since this only gives us s1

k−→∗ M ′2 . s2 to
work with. To deal with this case (and a few similar cases) we will introduce a weak head normalization function
for substitution compositions.

The functions wcomp(s) and wcomp(n; s) compute a weak head normal form of s and ↑n ◦ s, respectively.
They are defined as follows and easily seen to be total.

wcomp(s) = wcomp(0; s)
wcomp(n1; ↑n2) = ↑n1+n2

wcomp(0;M . s) =M . s
wcomp(n+ 1;M . s) = wcomp(n; s)
wcomp(n; s1 ◦ s2) = case wcomp(n; s1) of↑n

′
⇒ wcomp(n′; s2)

M . s⇒M [s2] . (s ◦ s2)

Since wcomp plays a bit with the associativity of composition, the following theorems are not entirely trivial, but
nevertheless true.

Theorem 14 (strong-ext.thm:wcomp to msteps su0). If wcomp(n; s) = s′ then ↑n ◦ s→∗σ s′.

Theorem 15 (strong-ext.thm:wcomp0 to msteps su0). If wcomp(s) = s′ then s→∗σ s′.

The definition of wcomp is designed to do as little as possible. In particular, for s1 ◦ s2 it avoids any reduction
in s2 whenever possible. This means that wcomp computes the least possibly reduced weak head normal form in a
sense made precise by the following theorem. In particular, any reduction to a substitution s2 with wcomp(s2) =
s2 factors through wcomp.

Theorem 16 (strong-ext.thm:commute wcomp mstep1). If s1
m−→∗ s2 then wcomp(n; s1)

m+1−−−→∗

wcomp(n; s2).

Returning our attention to the case 1[s1]
m−→∗[] 1[M . s2] →6 [] M , we can apply Theorem 16 to s1

m−→∗ M . s2

and thereby get a→ reduction step of 1[s1] to someM ′ withM ′ m+1−−−→∗ M . This deals with most of the otherwise
problematic cases and allows us to prove the following theorem.

Theorem 17 (strong-ext.thm:commute clo noc). If M1
m−→∗[] M2 →6 [] M3 then there exists an M such

that M1 →+ M
m+1−−−→∗ M3.

Theorem 17 presents the following diagram:

M1 M2

M M3

m ∗
[]

+ m+ 1 ∗ 6 []

Unfortunately, the bottom arrow is a general reduction sequence M m+1−−−→∗ M3 and not a reduction sequence
inside closures M m+1−−−→∗[] M3. The reduction sequence from M to M3 can be divided into m+1−−−→[] steps and→6 []
steps, so if it is not entirely consisting of m+1−−−→[] steps, we can split it as M m+1−−−→∗[] M4 →6 [] M5

m+1−−−→∗ M3 and
apply Theorem 17 to the left half:

M M4

M ′ M5 M3

m+ 1 ∗
[]

+ m+ 2 ∗ m+ 1 ∗6 []

We can repeat this construction on M ′ m+2−−−→∗ M3 and since M is strongly normalizing with respect to→ we will
eventually reach M →+ M ′′

m′

−−→∗[] M3 for some m′. Thus, we have strengthened Theorem 17 into:

Theorem 18 (strong-ext.thm:commute clo noc2). If M1
m−→∗[] M2 →6 [] M3 then there exists m′ and

M such that M1 →+ M
m′

−−→∗[] M3.

Now we can prove k+1−−→ strongly normalizing for some given term M2 by a nested induction on the strong
normalization ofM1 with respect to→ and the strong normalization ofM2 with respect to k+1−−→[] and the invariant
M1

m−→∗[] M2 for some m.

Theorem 19 (strong-ext.thm:is sn1). If k+1−−→[] is strongly normalizing then k+1−−→ is strongly normalizing
for terms.

Is it easy to adjust the proofs of Lemma 7 and Theorem 12 to yield strong normalization for substitutions with
respect to k+1−−→ given strong normalization for terms.

With Theorem 13 and Theorem 19 we now have all the pieces to finish the induction on k and prove k−→
strongly normalizing for all k.

Theorem 20 (strong-ext.thm:strong N). The reduction relation k−→ is strongly normalizing for well-
typed terms and substitutions for all k ≥ 0.

6 Conclusion

We have shown how a small restriction of the congruence rules of λσ yields a strongly normalizing calculus.
We have shown that under this restriction, the λσ-calculus satisfies the six desired properties C, MC, PSN, SN,
SIM, and FC, and also the property L, i.e. no reduction rule relies on side conditions that inspect arbitrarily
large terms. In addition to general insight into the normalization properties of explicit substitution calculi, this
result also provides a very flexible foundation for the design of normalization procedures in any λ-calculus-based
implementation, e.g. logical frameworks and proof assistants.

References

[Abe] Girard’s proof of strong normalization of the simply-typed lambda-calculus. http://abella.cs.umn.edu/
examples/.

[BR95] Roel Bloo and Kristoffer H. Rose. Preservation of Strong Normalisation in Named Lambda Calculi with Explicit
Substitution and Garbage Collection. In Computer Science in the Netherlands (CSN’95), pages 62–72, 1995.

[CHL96] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence Properties of Weak and Strong Calculi of Explicit Substitutions.
Journal of the ACM (JACM), 43(2):362–397, 1996.

[CHR92] P.-L. Curien, T. Hardin, and A. Rı́os. Strong Normalization of Substitutions. Mathematical Foundations of Computer
Science 1992, pages 209–217, 1992.

[Kes07] Delia Kesner. The theory of calculi with explicit substitutions revisited. In Computer Science Logic, pages 238–252.
Springer, 2007.

[Kes09] Delia Kesner. A Theory of Explicit Substitutions with Safe and Full Composition. LMCS, 2009.
[Mel95] Paul-André Mellies. Typed λ-calculi with explicit substitutions may not terminate. Typed Lambda Calculi and

Applications, pages 328–334, 1995.
[NPP08] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. ACM Trans. Comput.

Logic, 9:23:1–23:49, June 2008.
[Pfe08] Frank Pfenning. Church and Curry: Combining intrinsic and extrinsic typing. In Reasoning in Simple Type The-

ory: Festschrift in Honor of Peter B. Andrews on His 70th Birthday, Studies in Logic 17, pages 303–338. College
Publications, 2008.

[SNS10] Anders Schack-Nielsen and Carsten Schürmann. Curry-Style Explicit Substitutions for the Linear and Affine
Lambda Calculus. In International Joint Conference on Automated Reasoning (IJCAR), pages 1–14, Edinburgh,
UK, 2010. Springer LNCS 6173.

