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The λσ-Calculus and Strong Normalization

Anders Schack-Nielsen

October, 2010

Abstract

The general λσ-calculus is not strongly normalizing [Mel95], but we show how a small restriction in the
reduction rules allows us to prove strong normalization.

The proof has been formalized in the proof assistant Abella.

1 Introduction
The λσ-calculus has a lot of nice properties. It allows us to represent the intermediate stages of β-reduction in the
λ-calculus, thereby allowing an easy implementation of lazy β-reduction with the added benefit that we can com-
pose substitutions and reduce the number of passes required to evaluate several β-reduction steps. Additionally, an
explicit substitution calculus such as λσ is useful for reasoning about and implementing higher-order unification.

However, the calculus also has some theoretical short-comings. The system does not preserve strong normal-
ization, i.e. a strongly normalizing λ-term might not be strongly normalizing as a λσ-term [Mel95].

In this report we show how a small restriction in the reduction rules allows us to prove strong normalization.
The entire development is formalized in the proof assistant Abella, and each theorem is marked with the

corresponding Abella file and theorem name. The Abella source files can be found at http://www.itu.dk/
people/anderssn/exsub-sn.tgz.

2 The λσ-calculus
The syntax of the λσ-calculus consists of terms and substitutions written in de Bruijn notation:

Terms: M,N ::= 1 |M [s] | λM |M N

Substitutions: s, t ::= id | ↑ |M . s | s ◦ t

The variable 1 refers to the innermost λ-binder. Other variables are represented with a closure and a sequence of
shifts, e.g. 3 = 1[↑ ◦ ↑].

The intuition behind each of the substitution constructs is the following: A term under an identity is supposed
to reduce to itself. A shift applied to a term increments all freely occurring variables by one. An extension M . s
will substitute M for the variable 1, decrement all other freely occurring variables, and then apply s to them.
Finally a composition of two substitutions s ◦ t represents the substitution that first applies s and then t, i.e.
M [s ◦ t] is supposed to reduce to the same term as reducing each closure individually in M [s][t].

We will use ↑n where n ≥ 0 as a short-hand for n compositions of shift, i.e. ↑ ◦ (↑ ◦ (. . . ◦ (↑ ◦ ↑) . . .)), where
↑0 means id. Additionally, de Bruijn indices n with n > 1 are short-hand for 1[↑n−1].

The reduction rules are shown in Figure 1. In addition to these rules we are also going to include every possible
congruence rule, i.e. we allow rewrites to occur anywhere inside a term or substitution.

The rule beta corresponds to the ordinary β-step in λ-calculus and introduces an explicit substitution inside a
closure. The rest of the rules are called σ-rules and details how to evaluate closures and substitution compositions.
The fragment of the rules that excludes the beta rule is called the σ-fragment and the corresponding relation is
written→σ .
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beta (λM) N → M [N . id]

clos-var 1[M . s] → M
clos-clos M [s][t] → M [s ◦ t]
clos-lam (λM)[s] → λ(M [1 . (s ◦ ↑)])
clos-app (M N)[s] → M [s] N [s]
clos-var-id 1[id] → 1

comp-id-L id ◦ s → s
comp-shift-id ↑ ◦ id → ↑
comp-shift ↑ ◦ (M . s) → s
comp-cons (M . s) ◦ t → M [t] . (s ◦ t)
comp-comp (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

Figure 1: Basic reduction rules

2.1 Variations of λσ
Several variations of λσ have been treated in the literature. The most important distinction is whether or not we
include term and substitution meta-variables. In the presence of meta-variables the system presented above is not
even locally confluent, since the critical pair ((λM)N)[s] can reduce to both M [N [s] . s] and M [N [s] . (s ◦ id)].
Closing the critical pairs leads to the following four additional rules:

comp-id-R s ◦ id → s
clos-id M [id] → M
var-shift 1 . ↑ → id
s-cons 1[s] . (↑ ◦ s) → s

The first two rules are the general right-identity rules and thus replace clos-var-id and comp-shift-id. The var-
shift and s-cons rules can be seen as η-contraction rules on substitutions. The resulting system is easily seen to be
locally confluent by checking all the critical pairs.

Constants can be added to the calculus with just a single additional rule:

clos-const c[s] → c

We can also represent de Bruijn indices and sequences of shifts directly in the syntax with the following five
rules:

clos-var-dot2 (n+ 1)[M . s] → n[s]
clos-var-shift n[↑m] → n+m

comp-shift-dot ↑n+1 ◦ (M . s) → ↑n ◦ s
comp-shift-shift ↑n ◦ ↑m → ↑n+m
eta-subst (n+ 1) . ↑n+1 → ↑n

These rules are essentially shortcuts in the sense that the first four can be obtained by a sequence of the reduc-
tion steps shown in Figure 1 when n and ↑n are syntactic short-hands. The last rule generalizes var-shift and
corresponds to s-cons in the case when s = ↑n.

We will not discuss meta-variables in this report. For the remainder of this report we will therefore define λσ
to be:

Terms: M,N ::= n | c |M [s] | λM |M N

Substitutions: s, t ::= ↑n |M . s | s ◦ t

where de Bruijn indices n have n ≥ 1 and shifts ↑n have n ≥ 0. The reduction rules are given in Figure 2.
We have excluded the two general right-identity rules, as we can easily prove them admissible for the transitive
closure:

Theorem 2.1 (beta.thm:clos id ext). For all M and s we have M [↑0]→∗ M and s ◦ ↑0 →∗ s.
Proof. The proof is an easy mutual induction over M and s.

We are not going to say much about the congruence rules, so for now we will just assume that we can perform
any reduction step anywhere within a term or substitution. We will return to this matter below in section 4.
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beta (λM) N → M [N . id]

clos-const c[s] → c
clos-var-dot1 1[M . s] → M
clos-var-dot2 (n+ 1)[M . s] → n[s]
clos-var-shift n[↑m] → n+m
clos-clos M [s][t] → M [s ◦ t]
clos-lam (λM)[s] → λ(M [1 . (s ◦ ↑1)])
clos-app (M N)[s] → M [s] N [s]

comp-id-L ↑0 ◦ s → s
comp-cons (M . s) ◦ t → M [t] . (s ◦ t)
comp-shift-dot ↑n+1 ◦ (M . s) → ↑n ◦ s
comp-shift-shift ↑n ◦ ↑m → ↑n+m
comp-comp (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

eta-subst (n+ 1) . ↑n+1 → ↑n

Figure 2: Reduction rules

3 A non-terminating example
Mellies showed in [Mel95] that the simply typed term

λv.(λx.(λy.y)((λz.z)x))((λw.w)v)

has an infinite reduction sequence in λσ. This is very counter-intuitive since the ordinary simply typed λ-calculus
is strongly normalizing and the σ-fragment of λσ is also strongly normalizing [CHR92] (even on untyped terms).

We will sketch the idea of the counter-example here. Consider a β-redex under a closure:

((λM) N)[s]

If we evaluate the redex first and then the substitution composition we arrive at M [N [s].s]. If we instead begin by
pushing the substitution through the application we can get the following reduction sequence:

((λM) N)[s]→ (λM)[s] N [s]

→ (λM [1 . s ◦ ↑]) N [s]

→M [1 . s ◦ ↑1][N [s] . ↑0]

→∗ M [N [s] . s ◦ (↑1 ◦ (N [s] . ↑0))]

Here we see a substitution s′ = ↑1 ◦ (N [s] . ↑0), which contains s, being applied to s itself. Of course s′ can
reduce in one step to ↑0, but if we carefully avoid that specific reduction step and if s contains a β-redex then we
can push s′ into s and through the redex in s and thus replicate the situation above with s′ instead of s. Now since
s′ contains s and therefore also a β-redex we can keep on doing this (see [Mel95] for all the details).

The term that we end up creating in this way consists of a sequence of closures nested arbitrarily deep:

M [. . .M [. . .M [. . .M [. . .] . . .] . . .] . . .]

And consequently the reduction steps that we perform are similarly nested deeper and deeper through an arbitrary
number of closures and substitutions.

This also highlights the brittle nature of the counter-example. If we at any time were to reduce any of the
arising s′s to ↑0 the entire thing would normalize. Thus we have an indication that a suitable minor tweak to the
reduction strategy will give us strong normalization (as opposed to the current non-deterministic, everything-is-
allowed reduction strategy).
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4 Revisiting the congruence rules
Let us present the congruence rules that up until now have remained implicit:

M →M ′

M . s→M ′ . s

s→ s′

M . s→M . s′
s→ s′

s ◦ t→ s′ ◦ t
t→ t′

s ◦ t→ s ◦ t′

M →M ′

λM → λM ′
M →M ′

M N →M ′ N

N → N ′

M N →M N ′

M →M ′

M [s]→M ′[s]

s→ s′
(∗)

M [s]→M [s′]

If we get rid of the second congruence rule for closures (∗) then certainly we will have a strongly normalizing
calculus, but this is overly restrictive. If we instead replace it by a version that only allows σ-steps then since the
σ-fragment by itself is strongly normalizing, we can hope for strong normalization. We are therefore going to use
the following congruence rule in place of (∗):

s→σ s
′

M [s]→σ M [s′]

The resulting rewrite system is indeed strongly normalizing for simply typed terms as we will see below.

5 Strong normalization of λσ
The proof of strong normalization can be summarized to the following: Take any reduction sequence and divide
it into groups of σ-steps and applications of beta. Since the σ-fragment is strongly normalizing we can focus on
the beta steps. If we relate each term to its σ-normal form then we can show that every beta step corresponds to
a regular β-reduction step in the λ-calculus, and we therefore get preservation of strong normalization.

The complete proof is formalized in the proof assistant Abella. Below are the central theorems along with
references to the Abella source files.

5.1 Strong normalization of the σ-fragment
In [CHR92] the σ-fragment of λσ was proved strongly normalizing. The central part of the proof consists of
showing that if e is strongly normalizing then e[↑1] is also strongly normalizing, where e is an expression (defined
below). The proof we give in this section share the same overall structure, but our proof of the strong normalization
of e[↑1] given strong normalization of e is greatly simplified (Lemma 5.5 and Lemma 5.6 below).

In order to give a simpler proof of strong normalization of the σ-fragment, we collapse the syntactic classes of
terms and substitutions into a single class called expressions:

Expressions: e ::= n | c | ↑n | e1[e2] | λe | e1 . e2

The set of reduction rules for expressions is given in Figure 3. We use the following translation from terms
and substitutions into expressions:

E(n) = n E(c) = c E(M [s]) = E(M)[E(s)]

E(λM) = λE(M) E(M N) = E(M) . E(N) E(↑n) = ↑n

E(M . s) = E(M) . E(s) E(s ◦ t) = E(s)[E(t)]

It is easy to see that σ-reductions are preserved by the translation, and therefore strong normalization of expres-
sions implies strong normalization of the σ-fragment.

We shall write SN for the set of strongly normalizing expressions, and then aim to prove e ∈ SN for all
expressions e.

Strong normalization of the cases λe and e1 . e2 are fairly easy.
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c[e] → c 1[e1 . e2] → e1
(n+ 1)[e1 . e2] → n[e2] n[↑m] → n+m

e1[e2][e3] → e1[e2[e3]] (λe1)[e2] → λe1[1 . e2[↑1]]

(e1 . e2)[e3] → e1[e3] . e2[e3] ↑0[e] → e

↑n+1[e1 . e2] → ↑n[e2] ↑n[↑m] → ↑n+m
(n+ 1) . ↑n+1 → ↑n

e1 → e′1

e1[e2]→ e′1[e2]

e2 → e′2

e1[e2]→ e1[e′2]

e→ e′

λe→ λe′

e1 → e′1

e1 . e2 → e′1 . e2

e2 → e′2

e1 . e2 → e1 . e
′
2

Figure 3: Expression reduction rules

Lemma 5.1 (sigma-strong.thm:esn lam). If e ∈ SN then λe ∈ SN .

Lemma 5.2 (sigma-strong.thm:esn dot,esn dot inv). e1 . e2 ∈ SN if and only if e1 ∈ SN and
e2 ∈ SN .

Closures are a lot more difficult due to the rewrite (λe1)[e2] → λe1[1 . e2[↑1]]. We will therefore split the
proof depending on whether the given expressions contain λs. We write the exclusion of λs from an expression e
as λ /∈ e.1

Lemma 5.3 (sigma-strong.thm:esn clos nolam). If e1 ∈ SN , e2 ∈ SN , and λ /∈ e1 then e1[e2] ∈
SN .

These lemmas can be put together to prove strong normalization in the absence of λs:

Theorem 5.4 (sigma-strong.thm:nolam esn). If λ /∈ e then e ∈ SN .

In order to prove the general statement we are going to need a version of Lemma 5.3 without the restriction on
e1. The tricky part is proving that e ∈ SN implies e[↑1] ∈ SN .

If we do an intuitive comparison between reduction sequences for e and e[↑1] it seems that any reduction in
e[↑1] either can be mimicked by a reduction in e or consists of pushing the ↑1 through e. We will formalize this
intuitive idea by building a relation e /∼ e′, such that e /∼ e[↑1] for any e, and whenever e′1 → e′2 with e1

/∼ e′1
then either e1

/∼ e′2 or e1 → e2 with e2
/∼ e′2. In the former case the reduction e′1 → e′2 is intended to be one of

the steps associated with pushing the ↑1 through the structure of the expression and thus the number of such steps
should be bounded by the structure of the expression. Given such a relation we would get the desired lemma as a
corollary to the fact that e ∈ SN and e /∼ e′ implies e′ ∈ SN .

In order to build the relation such that it is closed under the conditions stated above, we need it to contain
e
/∼ e[e′] where e′ can be ↑1 and is closed under at least 1 . · ◦ ↑1 and reduction. Instead of characterizing this

class of expressions we can simply take expressions without λ as we already know this class to be in SN .
The relation is defined as follows:

c
/∼ c

λ /∈ e λ /∈ e′

e
/∼ e′

e2
/∼ e′2

e1[e2]
/∼ e1[e′2]

e1
/∼ e′1 e2

/∼ e′2

e1 . e2
/∼ e′1 . e′2

e
/∼ e′

λe
/∼ λe′

λ /∈ e′

e
/∼ e[e′]

e1
/∼ e′1 λ /∈ e2

e1[e2]
/∼ e′1[e2]

The following theorem states the desired simulation properties.

1The formalized proof represents the exclusion of λ by a predicate nolam. This predicate also excludes constants to reduce the number of
cases needed in the proofs, but it could just as well have included them, and the general theorem is proved later anyway. Thus, whenever we
write λ /∈ e we will also exclude occurrences of constants in e.
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Lemma 5.5 (sigma-strong.thm:is esn rel under shift). If e0
/∼ e′0 then there exists a k such that

for all reductions e′0 → e′1 → · · · → e′n in n steps there exists a sequence e0, e1, . . . , en such that

1. either ei → ei+1 or ei = ei+1 for 0 ≤ i < n,

2. ei
/∼ e′i for 0 ≤ i ≤ n, and

3. n ≥ k implies ei → ei+1 for some i.

It is noteworthy to consider how Lemma 5.5 is encoded in Abella. The statement of the lemma is kind of like
strong normalization in the sense that some limit k exists after which any reduction sequence will bottom out in
some way; in this case, have a corresponding reduction in the /∼-related expression. The Abella-encoding of SN
is the following inductive definition:

e ∈ SN := ∀e′. e→ e′ ⊃ e′ ∈ SN

We can then give a similar, but slightly more complicated, inductive definition of a relation SN [e] (denoted
esn rel under shift in the formalization).

e′1 ∈ SN [e1] := e1
/∼ e′1 ∧ ∀e′2. e′1 → e′2 ⊃

(∃e2. e1 → e2 ∧ e2
/∼ e′2) ∨ e′2 ∈ SN [e1]

Lemma 5.5 can now be represented as the statement e /∼ e′ ⊃ e′ ∈ SN [e].
By a nested induction on the strong normalization of e and the k from Lemma 5.5 we get the following lemma:

Lemma 5.6 (sigma-strong.thm:exp under shift esn). If e ∈ SN and e /∼ e′ then e′ ∈ SN .

As an immidiate corollary we get that e ∈ SN implies e[↑1] ∈ SN . This gives us the desired version of
Lemma 5.3 without the restriction on e1.

Lemma 5.7 (sigma-strong.thm:esn clos). If e1 ∈ SN and e2 ∈ SN then e1[e2] ∈ SN .

Together Lemma 5.1, Lemma 5.2, and Lemma 5.7 give the strong normalization theorem:

Theorem 5.8 (sigma-strong.thm:exp esn). Every expression is strongly normalizing: e ∈ SN for all e.

And thus, we have strong normalization of the σ-fragment of λσ.

Theorem 5.9 (lambda-sigma.thm:tm sn su,sub sns su). The reduction relation →σ is strongly nor-
malizing for terms and substitutions.

5.2 Confluence of the σ-fragment
With strong normalization we can easily prove confluence of the σ-fragment by first proving local confluence.

Theorem 5.10 (conf.thm:local conf). The σ-fragment is locally confluent.

1. If M1 σ←M →σ M2 then there exists an M ′ such that M1 →∗σ M ′ ∗σ←M2.

2. If s1 σ← s→σ s2 then there exists an s′ such that s1 →∗σ s′ ∗σ← s2.

Theorem 5.11 (conf.thm:conf tm,conf sub). The σ-fragment is confluent.

1. If M1
∗
σ←M →∗σ M2 then there exists an M ′ such that M1 →∗σ M ′ ∗σ←M2.

2. If s1 ∗σ← s→∗σ s2 then there exists an s′ such that s1 →∗σ s′ ∗σ← s2.

Together confluence and strong normalization give us the existence of unique σ-normal forms. We shall denote
the σ-normal form of a term M or substitution s as σ(M) and σ(s), respectively.
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Γ, A ` 1 : A

Γ ` n : A

Γ, B ` n+ 1 : A

Γ ` s : Γ′ Γ′ `M : A

Γ `M [s] : A

Σ(c) = A

Γ ` c : A

Γ `M : A→ B Γ ` N : A

Γ `M N : B

Γ, A `M : B

Γ ` λM : A→ B

Γ ` ↑0 : Γ

Γ ` ↑n : Γ′

Γ, A ` ↑n+1 : Γ′

Γ `M : A Γ ` s : Γ′

Γ `M . s : Γ′, A

Γ ` t : Γ′′ Γ′′ ` s : Γ′

Γ ` s ◦ t : Γ′

Figure 4: Types for λσ

5.3 Preservation of strong normalization
With the σ-fragment covered, we turn our attention to the beta steps. Let →β denote a beta step. Then the
reduction relation→ is the disjoint union of→σ and→β . The σ-normal forms correspond to the ordinary lambda
calculus, so for such terms we can define ordinary β-reduction in the following way:

M ⇒β M
′ := M →β M

′′ ∧M ′ = σ(M ′′)

Preservation of strong normalization (PSN) is the property that strong normalization of σ(M) with respect to
⇒β implies strong normalization of M with respect to→.

Our restriction of the congruence rules allows us to prove that beta steps correspond to β-steps in the ordinary
lambda calculus:

Theorem 5.12 (beta.thm:project beta). If M →β M
′ then σ(M)⇒β σ(M ′).

Together with confluence and strong normalization of the σ-fragment, we immidiately get PSN:

Theorem 5.13 (strong-norm.thm:psn). If σ(M) is strongly normalizing with respect to ⇒β then M is
strongly normalizing with respect to→.

5.4 Strong normalization of simply typed λσ

So far, we have only considered untyped terms and substitutions. So before we can talk about strong normalization
of well-typed terms and substitutions, we need to introduce the type system. The typing rules are standard for λσ
and given in Figure 4.

Theorem 5.14 (typing.thm:of step ext). Subject reduction.

1. If Γ `M : A and M →M ′ then Γ `M ′ : A.

2. If Γ ` s : Γ′ and s→ s′ then Γ ` s′ : Γ′.

Since well-typed σ-normal forms are exactly the simply typed lambda calculus, we have the usual proof of
strong normalization using a logical relation. The Abella proof is adapted from Girard’s proof of strong normal-
ization in the example suite of Abella [Abe].

Theorem 5.15 (beta-sn.thm:strong beta). Let M be a σ-normal form with Γ ` M : A. Then M is
strongly normalizing with respect to⇒β .

Now PSN (Theorem 5.13) gives us strong normalization of simply typed terms:

Theorem 5.16 (strong-norm.thm:strong tm). If Γ `M : A then M is strongly normalizing with respect
to→.

We can adapt the proof of Lemma 5.3 to prove strong normalization of compositions. We will not have to
consider λs in this case, since for terms we can simply appeal to Theorem 5.16.

7



Lemma 5.17 (strong-norm.thm:sns clos). If Γ ` t : Γ′′, Γ′′ ` s : Γ′, and s and t are strongly normaliz-
ing then s ◦ t is strongly normalizing.

As an immidiate consequence we get strong normalization of substitutions:

Theorem 5.18 (strong-norm.thm:strong sub). If Γ ` s : Γ′ then s is strongly normalizing.

6 Extending the strong normalization proof
So far we have achieved strong normalization with the restricted congruence rule:

s→σ s
′

M [s]→σ M [s′]

With Theorem 5.18 we showed that substitutions are strongly normalizing, and it is therefore plausible that
we could allow a single application of the unrestricted congruence rule in each step without breaking strong
normalization. The intuition is that whenever we take a step inside a substitution we maintain the overall structure
of the term disregarding the contents of substitutions. Thus, a nested induction on the strong normalization of
the term and the strong normalization of all substitutions occurring within the term could presumably extend the
strong normalization to this slightly more general reduction relation.

Going further, we can consider an extension of the reduction relation that allows the unrestricted congruence
rule at most k times in each step for some fixed number k. As we saw in the counter-example, the non-terminating
reduction sequence involved deeper and deeper nesting of beta steps using the unrestricted closure congruence
rule. This means that having such a fixed limit k is still going to rule out this particular counter-example.

In this section we will formalize these ideas and prove the extended reduction relation strongly normalizing
on well-typed terms and substitutions, thereby pushing the boundary of strong normalization right up to the limit
set by the counter-example.

We will in the following assume that every term and substitution is well-typed.

6.1 The extended reduction relation
We will define a reduction relation k−→ for each natural number k ≥ 0 that allows k applications of the unrestricted
congruence rule.

The reduction relation k−→ is shown in its entirety in Figure 5. Notice that, for k = 0 the relation coincides with
our regular reduction relation 0−→ =→, and of course a larger value of k allows more reductions k−→ ⊂ k+1−−→.

We will denote the subrelation that uses one of the rules clos1 or clos2 at least once as k−→[]. The subrelation
that uses neither clos1 nor clos2 is denoted k−→6 [], such that k−→ =

k−→[] ∪
k−→6 []. Since k−→6 [] is independent of the value

of k we will also write this relation as→6 [].

6.2 Strong normalization of the extended reduction relation
We will prove k−→ strongly normalizing for terms and substitutions by induction on k. For k = 0 the relation is
equal to→ and therefore strongly normalizing by Theorem 5.16 and Theorem 5.18.

In the following we will prove the induction step.
If we first consider k+1−−→[] then every step uses clos1. And this relation is therefore strongly normalizing by

the simultaneous induction on the strong normalization of every substitution occurring inside the term, since these
substitutions are in turn strongly normalizing by the induction on k.

Theorem 6.1 (strong-ext.thm:is sn1 clo,is sn1s clo). Assuming that k−→ is strongly normalizing
on substitutions, the relation k+1−−→[] is strongly normalizing on terms and substitutions.

Assume we have M1
k+1−−→∗[] M2 and we wish to prove M2 strongly normalizing with respect to k+1−−→. Any

k+1−−→ step taken by M2 is either a k+1−−→[] step or a k+1−−→6 [] step. In the first case we again have M1
k+1−−→∗[] M ′2 with

the same M1, and this case cannot happen indefinitely since k+1−−→[] is strongly normalizing. In the second case we
have M1

k+1−−→∗[] M2 →6 [] M ′2. Since the steps from M1 to M2 only occur inside substitutions and the step from
M2 to M ′2 only occurs outside substitutions, the idea is to prove that these two parts commute in some sense. That
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beta (λM) N
k−→ M [N . id]

clos-const c[s]
k−→ c

clos-var-dot1 1[M . s]
k−→ M

clos-var-dot2 (n+ 1)[M . s]
k−→ n[s]

clos-var-shift n[↑m]
k−→ n+m

clos-clos M [s][t]
k−→ M [s ◦ t]

clos-lam (λM)[s]
k−→ λ(M [1 . (s ◦ ↑1)])

clos-app (M N)[s]
k−→ M [s] N [s]

comp-id-L ↑0 ◦ s k−→ s
comp-cons (M . s) ◦ t k−→ M [t] . (s ◦ t)
comp-shift-dot ↑n+1 ◦ (M . s)

k−→ ↑n ◦ s
comp-shift-shift ↑n ◦ ↑m k−→ ↑n+m
comp-comp (s1 ◦ s2) ◦ s3

k−→ s1 ◦ (s2 ◦ s3)

eta-subst (n+ 1) . ↑n+1 k−→ ↑n

M
k−→M ′

M . s
k−→M ′ . s

s
k−→ s′

M . s
k−→M . s′

s
k−→ s′

s ◦ t k−→ s′ ◦ t

t
k−→ t′

s ◦ t k−→ s ◦ t′

M
k−→M ′

λM
k−→ λM ′

M
k−→M ′

M N
k−→M ′ N

N
k−→ N ′

M N
k−→M N ′

M
k−→M ′

M [s]
k−→M ′[s]

s
k−→ s′

clos1
M [s]

k+1−−→M [s′]

s→σ s
′

clos2
M [s]

0−→M [s′]

Figure 5: Reduction rules

is, if we could prove M1 →M ′1
k+1−−→∗[] M ′2 then we could appeal to induction on the strong normalization of M1

with respect to→. Unfortunately this is not always the case, but this idea will lead us to something similar, which
in the end will get us there.

One of the hard cases turns out to be 1[s1]
k+1−−→∗[] 1[M ′2 . s2]→6 [] M ′2 since this only gives us s1

k−→∗ M ′2 . s2 to
work with. To deal with this case (and a few similar cases) we will introduce a weak head normalization function
for substitution compositions.

The functions wcomp(s) and wcomp(n; s) compute a weak head normal form of s and ↑n ◦ s, respectively.
They are defined as follows and easily seen to be total.

wcomp(s) = wcomp(0; s)
wcomp(n1; ↑n2) = ↑n1+n2

wcomp(0;M . s) = M . s
wcomp(n+ 1;M . s) = wcomp(n; s)
wcomp(n; s1 ◦ s2) = case wcomp(n; s1) of

↑n
′
⇒ wcomp(n′; s2)

M . s⇒M [s2] . (s ◦ s2)

Since wcomp plays a bit with the associativity of composition, the following theorems are not entirely trivial, but
nevertheless true.

Theorem 6.2 (strong-ext.thm:wcomp to msteps su0). If wcomp(n; s) = s′ then ↑n ◦ s→∗σ s′.

Theorem 6.3 (strong-ext.thm:wcomp0 to msteps su0). If wcomp(s) = s′ then s→∗σ s′.

The definition of wcomp is designed to do as little as possible. In particular, for s1 ◦s2 it avoids any reduction
in s2 whenever possible. This means that wcomp computes the least possibly reduced weak head normal form in a
sense made precise by the following theorem. In particular, any reduction to a substitution s2 with wcomp(s2) =
s2 factors through wcomp.
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Theorem 6.4 (strong-ext.thm:commute wcomp mstep1). If s1
m−→∗ s2 then wcomp(n; s1)

m+1−−−→∗

wcomp(n; s2).

Returning our attention to the case 1[s1]
m−→∗[] 1[M . s2]→6 [] M , we can apply Theorem 6.4 to s1

m−→∗ M . s2

and thereby get a→ reduction step of 1[s1] to someM ′ withM ′ m+1−−−→∗ M . This deals with most of the otherwise
problematic cases and allows us to prove the following theorem.

Theorem 6.5 (strong-ext.thm:commute clo noc). If M1
m−→∗[] M2 →6 [] M3 then there exists an M such

that M1 →+ M
m+1−−−→∗ M3.

Theorem 6.5 presents the following diagram:

M1 M2

M M3

m ∗
[]

+ m+ 1 ∗
6 []

Unfortunately, the bottom arrow is M m+1−−−→∗ M3 and not M m+1−−−→∗[] M3. The reduction sequence from M to M3

can be divided into m+1−−−→[] steps and→6 [] steps, so if it is not entirely consisting of m+1−−−→[] steps, we can split it as
M

m+1−−−→∗[] M4 →6 [] M5
m+1−−−→∗ M3 and apply Theorem 6.5 to the left half:

M M4

M ′ M5 M3

m+ 1 ∗
[]

+ m+ 2 ∗ m+ 1 ∗
6 []

We can repeat this construction on M ′ m+2−−−→∗ M3 and since M is strongly normalizing with respect to→ we will
eventually reach M →+ M ′′

m′

−−→∗[] M3 for some m′. Thus, we have strengthened Theorem 6.5 into:

Theorem 6.6 (strong-ext.thm:commute clo noc2). If M1
m−→∗[] M2 →6 [] M3 then there exists m′ and

M such that M1 →+ M
m′

−−→∗[] M3.

Now we can prove k+1−−→ strongly normalizing for some given term M2 by a nested induction on the strong
normalization ofM1 with respect to→ and the strong normalization ofM2 with respect to k+1−−→[] and the invariant
M1

m−→∗[] M2 for some m.

Theorem 6.7 (strong-ext.thm:is sn1). If k+1−−→[] is strongly normalizing then k+1−−→ is strongly normaliz-
ing for terms.

Is it easy to refit the proofs of Lemma 5.17 and Theorem 5.18 to yield strong normalization for substitutions
with respect to k+1−−→ given strong normalization for terms.

With Theorem 6.1 and Theorem 6.7 we now have all the pieces to finish the induction on k and prove k−→
strongly normalizing for all k.

Theorem 6.8 (strong-ext.thm:strong N). The reduction relation k−→ is strongly normalizing for well-
typed terms and substitutions for all k ≥ 0.

7 Conclusion
We have shown how a small restriction in the congruence rules of λσ gives a strongly normalizing calculus. In
addition to general insight into the normalization properties of explicit substitution calculi, this result also provides
a very flexible foundation for the design of normalization procedures in any λ-calculus-based implementation, e.g.
logical frameworks and proof assistants.
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