

Architecture-Level Evolvability Assessment:
Assessing Sustainability of Software Product Evolution

Hataichanok Unphon

IT University Technical Report Series TR-2010-128

ISSN 1600-6100 May 2010

Copyrigth © 2010, Hataichanok Unphon

 IT University of Copenhagen
 All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

 ISSN 1600-6100

 ISBN 9788779492196

Copies may be obtained by contacting:

 IT University of Copenhagen
 Rued Langgaards Vej 7
 DK – 2300 Copenhagen S
 Denmark

 Telephone: +45 72 18 50 00
 Telefax: +45 72 18 50 01
 Web: www.itu.dk

 1

Architecture-Level Evolvability Assessment:
Assessing Sustainability of Software Product Evolution

Hataichanok Unphon

IT University of Copenhagen

 DK-2300, Copenhagen S, Denmark
unphon@itu.dk

Abstract. This paper proposes a comprehensive architecture assessment
method, a so-called Architecture-Level Evolvability Assessment (ALEA). The
ALEA method aims at assessing how well the current architecture of software
products is able to accommodate future uses and business contexts without
jeopardizing the continuous software development. The ALEA method offers
not only to broaden prospects of architectural changes, but also to assess the
impact of changes on sustainability. In order to assess the sustainability, the
ALEA method employs an evolvability framework consisting of sufficient
contexts to propagate the effects of the architectural changes. The key element
of the ALEA method is the involvement of a ‘walking architecture’ — a person
or a group of people who carries most if not all the architectural knowledge and
makes design decisions — throughout the assessment period. Based on
empirical evidence of implementation and validation of the ALEA method (on
a case study), the ALEA method is applicable for software product line
development and agile software development approaches.

Keywords: software architecture analysis method, qualitative empirical
research

1 Introduction

The success of many IT-related businesses is critically dependent on software
products. Businesses need to be increasingly flexible and responsive to changes in the
marketplace, and to develop and market a new products and services in a timely
manner. In order to meet new business opportunities and accommodate for rapid
modification and enhancement, software needs to be as flexible as possible. When the
software evolves, the initial program structure is changed. Without being aware of the
impact of changes, the initial program structure is often corrupted by a series of
changes over time, which leads to dead-end evolution. Moreover, the software tends
to get disconnected from its context of use. This raises the question of how to ensure
that software is able to bring immediate success and support long-term evolution, or,
in other words, how to evaluate the technical adaptability of the software as well as its
sustainability with respect to the use and business contexts as well as the development
organization and practice.

 2

The main contribution of this paper is to propose a method, so called Architecture-
Level Evolvability Assessment (ALEA). Note in this context that the terms
architecture analysis, architecture assessment, architecture evaluation and architecture
review are used interchangeably throughout this paper. ALEA has been developed,
implemented, and validated during a cooperative project with a company developing
product line architecture for surface water modelling systems. Due to the
development environment, user practices, and business vision, the architecture needs
to allow for intensive tailoring and continuous development. The ALEA method
provides the necessary elements for analyzing the architecture. A framework
proposed in [27] successfully complements a keystone of ALEA from a socio-
technical perspective. Compared to existing methods of architecture evaluation, the
ALEA method puts more emphasis on sustainable development, meaning balancing
the needs of the short and the long term. The artefacts examined in the ALEA method
cover both design architecture and code architecture. ALEA is a light-weight
architecture evaluation method which can be integrated into an agile development
cycle. However, there are some challenges to ALEA which should be further refined.

This paper is outlined as follows. Section 2 presents the case description. Section 3
explains the research method. Section 4 introduces terms and definitions. Section 5
describes the ALEA method, shows an implementation of the ALEA method on the
case study, and suggests improvements to ALEA. Section 7 is discussion and related
work. Section 8 draws conclusion and looks at future work.

2 Case Description

DHI Water Environment Health (DHI) is a pioneering organisation that develops
software applications for hydraulic modelling [1]. In 1972, System 11 and System 21
were two of the first computational modelling systems developed at DHI to simulate
water flow patterns with the help of one-dimensional and two-dimensional models. A
three-dimensional simulation was developed in the 1980s. Originally, the organisation
focused on hydraulic research, not on software engineering. Software development
and software maintenance were challenges only on a small scale. All simulation
programs were built in a similar way, i.e., an engine implementing differential
equations changes the data in a set up model for one time step per simulation loop. In
the late 1980s, DHI released the MIKE 11 and the MOUSE software products. Both
products originated from System 11 following the requests of different usages, i.e.
open channels and pipe networks. MIKE 11 and MOUSE are standalone Windows-
based applications. The main users of these products are consultants who do
simulations of hydraulic conditions, i.e. water level and flow, and analyse the
hydrological effects of environmental change. Due to different market needs,
ownership was split into different consultancy departments and in the last decades
MIKE 11 and MOUSE have been developed and maintained in parallel. Released in
2005, MIKE URBAN followed requests to have a more complete and integrated
modelling framework for both water supply and wastewater systems.

Through decades of successful use and development, the requirements of the
software have evolved as well. In particular, the software is used in a more general

 3

setting, e.g. scheduled forecasts. The company was faced with the challenge of
identifying and developing a kernel for data handling, simulation setup, and graphical
interaction with simulations and their results. The first re-engineering project started
with the MIKE 11 engine in 2006. Later, the MOUSE engine was merged into the
MIKE 11 re-engineering project. Meanwhile, the organisation was changing. DHI set
up a software product department in order to strengthen the software development
process and the design. The software product department has taken development
activities and ownership of DHI’s software products. As a consequence, the
department decided to re-engineer the core computational parts of some of the one-
dimensional simulation software products, i.e. MIKE 11, MOUSE and MIKE
URBAN, in a project called MIKE 1D. The project is estimated for 360 man weeks of
implementation.

Lately, the software product department officially promoted another project called
the Decision Support System (DSS) Platform. The DSS Platform affords end users the
leverage to customise ongoing water simulation using historical, current, and
predictive data. The DSS Platform usually uses data that has already been gathered
into persistent storage and occasionally works from operational data. The simulation
it builds on has to be set up as well by developing the model of the water system.

3 Research Method

This work was conducted as qualitative empirical research aiming at providing a well-
grounded and rich detailed description based of a case study rather than superficial
measurement. The research cooperation with DHI addressed the introduction of
product line architecture into product development. The basis for the research
described here is the fieldwork which I have been involved in for two and a half
years. I wrote a research diary documenting daily observations, interviews, and
meetings. As a field worker, I was expected not only to observe, but also to influence
the projects in which I participated. The research was designed as action research by
following the cooperative method development approach (CMD) [12]. The research
activities are summarised in Table 1. Due to a lengthy period of cooperation, research
activities are chronologically divided into three cycles: 1.) MIKE 11 re-engineering
project, 2.) merging of MIKE 11 and MOUSE re-engineering project, and 3.) MIKE
1D project. Note that the research activities in the second cycle were collected when
the third cycle was ongoing. Each cycle consists of three phases, i.e., participant
observation, deliberating change, and evaluation. Most empirical evidence presented
in this paper is obtained from the last cycle.

4 Terms and Definitions

This section introduces terms and definitions used in this paper. Subsection 4.1
defines evolvability and evolvability framework. Subsection 4.2 explains socially
embedded systems. Note, again, that the terms system and software are used
interchangeably. Subsection 4.3 presents a ‘walking architecture’.

 4

Table 1. A summary of research activities

Cycle

Phase

1.) MIKE 11
re-engineering project

(Aug. – Nov. 06)

2.) Merging of MIKE 11 and
MOUSE engines
re-engineering project

(Dec. 06 – Oct. 07)

3.) MIKE 1D project

(Feb. 07 – Mar. 09)

Pa
rt

ic
ip

an
t o

bs
er

va
tio

n

- Study functionalities
and code architecture of
MIKE 11 and MOUSE
engines.
- Compare between
MIKE 11 and MOUSE
engine source code.
- Interview DHI staff
members.
- Found a striking
similarity in the source
code between MIKE 11
and MOUSE engines.

- Review of architectural
documentation and online user
references systems used at
DHI.
- Observe development
practices and technical
infrastructure of MIKE 11 and
MOUSE engines.
- Review off-the-shelf
documentation generators.
- Interview developers and
internal users of MIKE 11 and
MOUSE engines on how they
can use the architecture
document.

- Review off-the-shelf static
code analysis tools.
- Analyse MIKE 1D source
code using the reviewed tools
and identify the relative
complexity of its components.
- Compare the analysis with the
previous cycle projects.
- Join MIKE 1D project weekly
meetings.
- Interview MIKE 1D team
members on the idea of
assessing the architecture and
how they can use of the
architecture as an aspect of
software development.

D
el

ib
er

at
in

g
ch

an
ge

- Present a poster
highlighting identical
code parts between
MIKE 11 and MOUSE
engines.
- Present a talk on
software architecture and
product line architecture.
- Participate in a
subproject on developing
data access module
architecture for the
MIKE 11 re-engineering
project.

- Propose a layered
architecture to represent
architectural knowledge.
- Compare documentation
generators and recommend a
suitable one.
- Update architecture
documentation.
- Create a prototype of an
online architectural
knowledge system.

- Conduct a workshop on
architecture discovery with
MIKE 1D team members.
- Introduce the basic idea of
architectural conformity
checking.
- Recommend suitable static
code analysis tools.
- Present the “good” and “bad”
parts of the source code from
the static code analysis tools.
- Present an empirical study on
architecture evaluation in
industrial practice, the concept
of software evolvability, and
evolvability framework.
- Propose Architecture-Level
Evolvability Assessment
(ALEA).
- Organise a workshop on
MIKE 1D and DSS
compatibility.

E
va

lu
at

io
n

- Evaluate the flexibility
of the data access module
by looking at different
change scenarios at DHI
and their implications in
terms of implementation
efforts.
- Found that organisation
of software development
influenced product line
architecture development
[23].

- Found that architectural
knowledge was more visible
in the discussion than in the
document.
- Found that the prototype of
the online architectural
knowledge system has been
set up and used internally.

- Found that architectural
analysis tools and techniques
embedded in daily routine were
welcome by the development
team.
- Found that the development
team uses “build hierarchy” to
check the compliance of their
source code against the
architecture’s structure when
they build the software [24].
- Validate ALEA and
evolvability framework with
MIKE 1D team members.

 5

4.1 Evolvability and Evolvability Framework

Belady and Lehman [7] first introduced and used the term evolution as ‘a sequence of
changes to the system over its lifetime which encompasses both development and
maintenance’. In today’s competitive software market, it would be too restrictive to
limit evolvability to maintenance issues only. The growth dynamics of a system
depend highly on the business context. To increase market share, it may be vital to
add new features. Yet, a system that is used will be changed [19]. Unphon et al. [27]
have further defined evolvability as ‘the adaptability of software in order to serve the
needs of use and business contexts over time reflecting on its architecture’.
Architecture represents a common abstraction of a system that many of the system’s
stakeholders can use as a basis for mutual understanding, negotiation, consensus, and
communication [6]. Architecture and other contexts around it must be adapted to
accommodate the needs of use and business contexts. However, it would be
somewhat misleading if architecture adaptation jeopardises other contexts that have
brought a success to software. In this paper, evolvability is further refined into
technical adaptability as well as sustainability with respect to the use and business
contexts as well as the development organisation and development practice.

The evolvability framework proposed in [27] is used for reviewing the effects of
architectural changes. The proposed framework presents interaction between
architecture and the six contextual dimensions, i.e., business, use, software
engineering organisation, software engineering practice, technical infrastructure, and
technical selection. Each contextual dimension is defined and illustrated as follows:

Business context is the context or environment to which the system belongs. For
example, DHI software is a commercial software product and sold as licensed.

Use context relates the system to the work practices of the intended users. For
example, hydraulic engineers use DHI software for water flow modelling, wave
simulation, or flood forecasting.

Software engineering organisation is the organisational context in which the
software development is carried out. For example, DHI software is developed in
Denmark, the Czech Republic, and China. The DHI software product department
employs the Microsoft Solutions Framework (MSF) team model [3]. MIKE 11 and
MIKE URBAN software products were developed by different departments.

Software engineering practice refers to the work practices of the system
developers. For example, the development process at DHI is a mixture between
iterative/incremental processes and agile methods. The core computational simulation
developers are educated in hydraulic engineering, but the graphic user interface (GUI)
developers are computer scientists. Most if not all MIKE 1D developers are highly
educated in water and environmental engineering, not software engineering.

Technical infrastructure lists the hardware and basic software assets backing the
system, focusing on the design as it is now. For example, MIKE 1D components are
implemented in the C# programming language. The MIKE 1D project has unit test,
nightly build, and build hierarchy as development infrastructure. DHI software only
supports the Microsoft operating system.

Technical selection is part of a suggested design and relevant to design
implementation. It needs to be seen in the context of existing and planned systems, as

 6

well as in the context of other systems that are part of the same design. For example, a
common data access module handles setup data of MIKE 11 and MOUSE.

Others have used the notion of context or contextual factors before. Kensing [17]
proposed a conceptual framework that IT designers should be aware of when they
design applications for a specific organisation. The framework addresses 1.) project
context, separating into design and implementation; 2.) use context, dealing with
work practice and strategy; and 3.) technical context, interacting with system and
platform contexts. Kensing does not apply the framework to concrete design
proposals. Dittrich and Lindeberg [11] developed Kensing’s framework further by
mapping out contextual factors in order to understand the suitability of a less
technically advanced design for a specific industrial setting. This work further
develops this framework to support architecture-based analysis when planning to
evolve software products.

4.2 Socially Embedded Systems

Socially embedded systems [27] are ‘systems that can be modelled intensively
according to the environment and practices of its end users’. ERP systems, e-
government applications, virtual office software, and decision support systems are
examples of socially embedded systems. Design decisions of the socially embedded
systems underline the importance of human interaction with (and cooperation via) the
software in terms of societal activities. According to Lehman [20], an Embedded
program (E-program) is a part of the world which it models. This implies a constant
pressure for change. The usability of the system is the main concern of E-programs.
Close cooperation between end users, people working with the systems on a daily
basis, and developers throughout the entire development process is strongly
recommended for capturing the contexts and qualities of use that cannot be fully
anticipated in the initial phase. In use-oriented design, Participatory Design (PD) is
regarded as a method for improving usability [18]. Socially embedded systems often
allow users to tailor the software to specific needs. Examples of end user tailoring
categories are customisation, composition, expansion, and extension [13].

Socially embedded systems also evolve over time, as do technically embedded
systems1. But evolving socially embedded systems is not just constrained by
interfaces to hardware or the mechanical specification; it is also constrained by use
and business contexts as well as development practice and development organisation.
Floyd et al. [14] have already emphasised bringing the social contexts along with the
technical in the essence of software development. However, they did not explicitly
explain how to do that with respect to software architecture practice. Evolving
socially embedded systems, one has to balance social and technical requirements
while maintaining a consistent pace for supporting short and long term requirements.
This work suggests a systematic method to mediate those requirements (Section 5).

1 The concept of technical embedded systems, or embedded systems as defined in [28], refers to

any computer that is a component in a larger system and that relies on its own
microprocessor, e.g., telephone switches, hybrid cars, and printers.

 7

4.3 Walking Architecture

The concept of ‘walking architecture’ was coined in [26] as a representation of
architectural knowledge, that is to say, architecture is alive with a walking
architecture. The walking architecture is a key person, or a number of key persons,
who maintain and update the structure of the software, and are involved in discussions
of change motivated in the development, or by new requirements, and who introduce
newcomers to the structure of the software. The role of the walking architecture can
be seen in that of the chief architect. However, not all companies have a chief
architect. All product development teams have a person or group of people acting in
that role, even though their title might be different, like chief technology officer
(CTO), senior developer, product manage, project leader, or system architect.

Architectural issues arise from inside as well as outside the development team,
they cover technical and social aspects of software development, and require domain,
as well as software engineering expertise. In order to solve the architectural issues, the
chief architect interacts with technical and business people, establishes tools and
practices, and recruits or train team members for that expertise, etc. Because
architecturing is not only a matter of technical design, but also of juggling the social
contexts of software development, which makes it almost unable to automate.
Whatever methods and tools software engineering research proposes, they need to be
aligned with the practices of knowledge-sharing by, and with, the walking
architecture.

5 Architecture-Level Evolvability Assessment

Socially embedded systems evolve to support uses and business needs, which may not
exist when the systems were designed or developed initially. Walking architecture
needs to envision architecture for an intermediate success while being mindful of the
change effects for the long-term evolution. Architecture-Level Evolvability
Assessment (ALEA) is proposed as a tool for walking architecture to evaluate
adaptability and sustainability of the architecture. ALEA answers not only the
question of ‘how the envisioned architecture will look?’ or ‘how that affects quality
factors?’, but also the question of ‘how the architecture can be evolved in a
sustainable manner?’. ALEA promotes interaction between business and technical
stakeholders of the systems, e.g., end users, developers, and, more importantly,
walking architecture. It is significant that the walking architecture involves and
participates throughout the assessment period. Subsection 5.1 presented the concise
ALEA method description. Subsection 5.2 shows the implementation of the ALEA on
the DHI case. Subsection 5.3 suggested improvements to the ALEA.

5.1 The Description of ALEA Method

The ALEA method is divided into 3 stages: elicitation, assessment, and reporting.
Each stage is elaborated below.

 8

The first stage, elicitation, aims to prepare necessary elements for the assessment
stage. The elements are existing architecture, quality factors, assessment goal, and
assessment items. Existing architecture can be elicited from architectural
documentation or walking architecture. Quality factors [22] represent behavioural
characteristics of a system: correctness, reliability, flexibility, testability,
maintainability and reusability. Assessment goal describes a purpose of the
assessment. If the goal is not specifically identified, it will lead to involving
unnecessary stakeholders and cause difficulties in identifying assessment items.
Assessment items can be seen as new requirements, use scenarios [9], change issues,
etc. Each item should come from the stakeholders who tell what is expected to happen
rather than assuming change or predicting use. If the items are identified, they must,
subsequently, be prioritised in such a way that high-priority items are assessed before
low-priority items.

The second stage, assessment, aims at reviewing both architecture adaptation and
sustainability assessment of the adaptation for each assessment item. Architecture
adaptation includes: evaluating existing architecture with respect to assessment items,
envisioning architecture, and assessing the envisioned architecture with respect to
relevant quality factors. The envisioned architecture can be seen as the existing
architecture with new components added, adding new interfaces to existing
components, changing existing components, or changing existing interfaces. The
analysis of the envisioned architecture with respect to quality factors will provide a
solid basis for making an objection decision in case of design trade-offs.
Sustainability assessment addresses the envisioned architecture with respect to the
evolvability framework. If need be, some contexts might be adapted to support the
envisioned architecture or the assessment item, or the envisioned architecture has to
be refined. Because the envisioned architecture will ‘inhabit’ the same context as the
existing architecture, it is vital to be mindful of what the root context of an assessment
item is, which contexts could potentially be effected, and how they could be adapted.

The third stage, reporting, not only aims at documenting the whole assessment, but
also entails a mechanism of follow-up. It is absolutely essential that all findings in the
architecture evaluation are backed by evidence. The mechanism of follow-up makes
the design decisions visible to responsible stakeholders. The mechanism is not to
make decisions immediately, but to broaden the perspective and inform the basis on
which decisions are eventually made. For example, if the stakeholders are aware of
what they gain from a possible solution, will they favour that solution or will they
find another solution? If there are multiple solutions for the same assessment item, the
stakeholders will see which quality factors or evolvability contexts are affected by
each solution.

5.2 Implementing ALEA at the DHI

This subsection presents empirical evidence in which ALEA was first implemented at
the DHI. When the MIKE 1D project was well underway, I proposed ALEA to the
MIKE 1D team in order to analyse whether the MIKE 1D ongoing development
aligned with the DHI business vision. The idea was welcomed by the MIKE 1D team
members. The members suggested a number of assessment goals, one of which was

 9

that the MIKE 1D and DSS Platform compatibility was carried out because it could
be assessed between two in-house projects, and without hiring any external hydraulic
and environmental consultants. When we prompted a workshop on MIKE 1D and
DSS Platform compatibility, we elicited quality factors of the MIKE 1D architecture,
but the current picture of MIKE 1D architecture was given from the main developer.
We divided the workshop into two parts: the first part aimed at eliciting assessment
items from the DSS Platform project; the second part aimed at analysing the
architecture with respect to the assessment part of the ALEA method.

Due to limited funding, we arranged the first part of our workshop as a lunch
meeting2. Participants were not only team members of the MIKE 1D project and the
DSS Platform project, but also all the interested stakeholders from the DHI
consultancy departments. I also invited an architecture expert to participate in this
workshop. The workshop started with the MIKE 1D main developer presenting the
current MIKE 1D design architecture, and ideas of how the DSS Platform could work
with the MIKE 1D architecture. Then, the workshop participants gave direct input or
assessment items to the MIKE 1D team, which were discussed in the second part of
the workshop. In the first part, there were ten participants. An architecture expert and
I observed and recorded the discussion. Total time spent on the first part was one
hour.

In the second part of the workshop, there were five participants: three MIKE 1D
team members, an architecture expert and myself. I was a modulator for the second
part. We went through the given input or assessment items from the first part, and
discussed by following the ALEA method. There were two assessment items
discussed in the second part. In the end, we reflected on the ALEA method and the
evolvability framework. Total time spent on the second part was two hours. After the
workshop, I documented the discussion in a report, while the MIKE 1D team
members followed up with the issues raised in the discussions.

Fig. 1 shows the workshop report. The report has two parts: PART I captures goal,
quality factors, existing architecture, and assessment items; PART II captures a set of
assessment items along with architecture discussions, envisioned architecture, related
quality factors, sustainability discussions, conclusions and action plans.

The goal of this workshop is to assess the MIKE 1D architecture and DSS Platform
compatibility. MIKE 1D quality factors are maintainability, usability, and integrity.
Note that unrelated quality factors are omitted here. The MIKE 1D existing
architecture is shown in Fig. 1. The MIKE 1D design architecture consists of four
layers: Application, Controller, Data Access, and Utilities. Each layer is comprised of
a number of components. Note that the components of each layer are not presented in
this paper. The solid arrows show the ‘use’ relationship of components, layers, and
products. For example, a component in Application layer uses MU Proxy components.
The design decision to have a Data Access layer is an example of how the MIKE 1D
architecture promotes its quality factors. Through the Data Access layer, a component
in the Controller layer, MIKE View product, MU Proxy component, and, possibly, the

2 At DHI, the lunch meeting is considered as an internal meeting in which the host shall not

spend extra budget for any participants because it is considered as part of common
contribution. Thus, holding such a meeting means economics collaboration between different
in-house projects or departments.

 10

third-party users can handle setup of a water model in a straightforward manner
without accessing any persistent storage directly. If a user wants to simulate a specific
water model from a specific file, the user creates a specific file reader for that file and
populates a component in the Data Access layer. Then, the user can perform a
simulation without changing any component in the other layers.

A member of the DSS Platform project, who works with an operational flow
forecasting system, addressed new requirements relating to the setup of data
manipulation. One functional requirement of the DSS platform is to handle ‘what if’
situations. End users are free to change the setup data, e.g., water inflow during a
simulation cycle. To forecast the next simulation, the DSS Platform needs to know 1.)
which setup data to use; 2.) the results from previous simulations; 3.) manual input or
calibrated setup data, e.g. when starting the forecast after a computing failure.

In order to support this requirement, MIKE 1D team members suggested that one
should create a ‘wrapper’ around the Data Access layer. The wrapper is a minimal
interface component that gives high-level functionalities to the Data Access layer.
The wrapper would get data from the previous simulation, the calibrated setup data, or
another persistent storage (a database or a result file from another simulation system).
In this way, the wrapper would require metadata for transforming data appropriately.
To create such a wrapper, nothing would change in the existing MIKE 1D design
architecture. The architecture already supported the necessary extraction of the
metadata. But an envisioned architecture would add the wrapper beside the Data
Access layer, which can be done outside the MIKE 1D architecture. Fig. 1 shows the
envisioned architecture locating on the left side of the existing MIKE 1D architecture.

In the sustainability assessment, the MIKE 1D team members saw that the
manipulation of setup data originated from the context of the DSS Platform use. The

Fig. 1. A report summarising the MIKE 1D and DSS Platform compatibility workshop

 11

envisioned architecture pointed out the challenge of software engineering organisation
and business context, i.e., “With the current organisational structure, who should
implement the wrapper? The MIKE 1D team, the DSS Platform team, or someone
else?” and “Will the wrapper be one of DHI’s saleable components? If so, who will
take the lead on that?”. Both the MIKE 1D and the DSS Platform team members are
potential candidates for developing a wrapper. However, both teams were no able to
make the decision. Therefore the follow-up plan is to report this to the head of the
development group.

5.3 Evaluation of and Improvements to the ALEA method

After experiencing ALEA, the MIKE 1D team members approved of the structure, the
transparent decision-making process and the trade-off analysis. Before the ALEA
method was implemented, the MIKE 1D team members analysed the architecture
informally at the whiteboard. One of the members reported that “When we do it
(architecture assessment on the whiteboard), I think we get only half of the quality
factors and half of the contexts (of the evolvability framework) because it is not
structured. By getting this structure, we are able to make a more sound decision
about what to do.” Apart from that, ALEA endorses product-line architecture. One
difficulty at DHI was thinking in terms of product line architecture. Often, a
developer just came up with an idea to solve a problem. Due to this pragmatic
decision, the developer often added his solution directly onto the source code without
considering whether or not it could be usable for future projects. Through the
assessment stage of the ALEA method, the developer is encouraged to consider not
only the consequences of change on his own project, but also sustainable solutions for
other projects. After the first implementation of the ALEA method, the MIKE 1D
team members gradually learned the terms associated with the method as well as the
connections between the architecture and its relevant contexts. The MIKE 1D team
members planned to assess their architecture at the beginning of each milestone. “It
would be a good tool for a project leader,” one of the MIKE 1D team members
suggested. This feedback points out how to embed architecture assessment in the
development process. Moreover, the ALEA method is aligned with the principles of
Agile Manifesto [2]. MIKE 1D team members and other developers at DHI employ
those principles into their software engineering practice. By sharing the same
principles, ALEA can be seamlessly integrated into the work practice at DHI.

Positive feedback by MIKE 1D team members on the evolvability framework was
comprehensiveness, illustrations, and visualisation. The evolvability framework was
used in a sustainability discussion, as shown in Fig. 1. I found that the team members
can visualise the consequence and propagate the effects of an envisioned architecture
in a short period of time. What impressed me the most was the accuracy with which
team members were able to predict the consequences of suggested changes to the
architecture. When the evolvability framework was introduced, one team member
questioned 1.) the difference between technical selection and technical infrastructure
and 2.) how the framework relates to stakeholders. The answer to the first question is
defined and illustrated in the Subsection 4.2. The answer to the second question is that
the stakeholders belong to contextual dimensions. For example, based on an

 12

assessment item of the MIKE 1D and the DSS Platform compatibility, the DSS
Platform team represents the use context.

On the other hand, the MIKE 1D team member had difficulties with the term
‘evolvability’ because it is a rather abstract and difficult concept to grasp. Some of
them wondered why it was discussed. Eliciting quality factors was another challenge.
The team members were not familiar with the term ‘quality factors’. What this shows
is that the ALEA method should be further refined in order to be comprehensibly
conveyed in a novice environment. For example, addressing the importance of ALEA
and simplifying the terms for the ease of communication.

During the first part of the workshop, one of the DSS Platform team members
raised a well-known issue which the participants discussed in the first part of the
workshop. When the MIKE 1D team discussed in the second part of the workshop,
one of them complained: “I don’t know how they do that in practice actually.” The
elicitation of an assessment item should have been either described with extremely
precise instructions or used the participatory design approach. However, this
addresses the organisational relevance in architectural discussions, apart from the
business or technical issues.

6 Discussion & Related Work

A summary of the ALEA method based on FOCSAAM [4] is presented in Table 2.
Note that evolvability is the central ‘quality attribute’ of ALEA, while ‘quality
factors’ are the elicited quality attributes of the existing architecture. The trade-off
analysis of the quality factors are considered as part of the evolvability. E.g., in the
continuous development of a system, the quality factors of the new version can wary
tremendously from those of the old version. The artefacts examined in the ALEA
method cover both design and code architecture.

ALEA provides essential features, as does most of the well-established architecture
evaluation methods presented in [5], but on top of that, ALEA applies the evolvability
framework as its tool to facilitate the sustainability assessment. Contextual
dimensions of the evolvability framework have been discussed extensively in the
other architecture evaluation methods, such as Architecture-Level Modifiability
Analysis (ALMA) [8], Architecture Trade-off Analysis Method (ATAM) [15], and
Architecture Reviews for Intermediate Designs (ARID) [10]. But, the dimensions are
not structured for the analysis in these methods. The main difference between ALEA
and ALMA — the evaluation method which is resembles ALEA the most — is that
ALEA considers not only the modifiability, but also the sustainability with respect to
an explicit evolvability framework.

ALEA provides ‘effectiveness and usability’ [16] as the other well-established
architecture evaluation methods, according to the facts that 1.) the concept of
architecture was ‘concretised’ or fully integrated in the development environment
before the implementation of ALEA; 2.) ALEA is designed based on industrial
practice; and 3.) ALEA gives precedence to socio-technical perspective. Moreover,
ALEA is a light-weight architecture assessment method. ALEA requires half a day,
excluding preparation and preliminaries, rather than three full days spent on ATAM,

 13

or one to two days spent on ARID. In this way, architecture evaluation can be
performed more frequently.

Besides architecture evaluation, the evolvability framework is a decision-making
tool to find a sustainable way to improve software product line engineering. A BAPO-
based framework (Business-Architecture-Process-Organisation) introduced in the
Family Evaluation Framework (FEF) [21] is a model similar to the evolvability
framework. Mapping between the BAPO model and the evolvability framework can
be seen as: B-Business context, A-Architecture, P-Software engineering practice, and
O-Software engineering organisation. The BAPO model identifies interrelationships
among four independent software development concerns; applying changes in one
concern induces changes in the other three concerns. Each has its own profile scale
for benchmarking. However, an action that improves one of the profile scales may
lead to a reduction in the values of the other scales. The profile scales in the BAPO
model serves researchers for benchmarking the organisation against others rather than
serving practitioners finding an optimum profile for their own organisation, because
top marks for each dimension may not be optimal from a business and economic
perspective. The BAPO model has been developed, mostly if not exclusively, from
technically embedded systems. Therefore, the use context was not explicitly
mentioned, as opposed to the evolvability framework, which was developed from
socially embedded systems. The evolvability framework does not offer any scale for
each contextual dimension, as explicitly stated in the BAPO model. But, the
evolvability framework introduced in the ALEA method, essentially, helps
practitioners be aware of changes in one context that induce changes in the other
contexts, and involving ‘the right people’.

Table 2. A summary of ALEA based on FOCSAAM

FOCSAAM ALEA
Component Elements Brief explanation

Software architecture
definition

Structure(s) of system which comprise software elements, the
externally visible properties of those elements, and the relationships
among them [6].

Specific goal Change impact analysis
Quality attributes Evolvability and other elicited quality factors
Applicable stage All stages of software life cycle
Input & Output Embedded in method description

Context

Application domain Socially embedded systems
Benefits Continuous quality check and specific benefit according to the

assessment goal
Involved Stakeholders ‘Walking architecture’ and selected stakeholders depending on the

assessment item
Process support Embedded in method description, participatory design

(recommended)
Socio-technical issues Embedded in method description

Stakeholders

Required resources Funding, person hours spent for elicitation, assessment and reporting
Method’s activities Three main stages: elicitation, assessment and reporting
Software architecture
description

Design architecture and code architecture

Evaluation approaches Based on change requirements, an expert evaluation
Contents

Tool support Evolvability framework
Maturity of method Developing and continuous validation Reliability Method’s validation Case study

 14

In practice, architecture is often evaluated on an ad-hoc basis. One ongoing
empirical study [25], which I took part in analysing interviews, reveals that non-
technical issues (e.g., process, people, organisation, communication and finance)
oftentimes is the cause of various architectural problems presenting a challenge to the
architecture evaluation. Even if this finding cannot not be generally applied to all
organisations, it provides a guideline for the deployment and implementation of
ALEA. As a result, ALEA was welcomed at DHI because of it being simple, light-
weight, and a cost-effective architecture evaluation method, which can be used by
practitioners. The ALEA method promotes face-to-face conversation rather than
documentation. ALEA requires the involvement of a ‘walking architecture’
throughout the assessment period. ALEA embeds the assessment of non-technical or
socio-technical issues into its method in contrast to the other architecture evaluation
methods.

However, there are questions of implementing ALEA into different contexts such
as ‘what if 50 people need to be involved throughout the whole assessment period?’,
‘how about open-source software?’ or ‘how about safety critical systems where the
detail designs are documented?’ Proportionately, a higher number of participants
reduces the usability of the ALEA method. The ALEA method aims to promote
discussions within small teams (2-5 people) situated at the same physical location.
Although open-source software is developed at different locations, it sometimes has a
focused development session lasting anywhere from a day to a week. When
developers participate in such sessions, they, inevitably, prioritise the requirements,
design, code, test, and, at the end of a day, release a new version of the software. In
this way, ALEA can be integrated into the focused development session. With the
walking architecture involvement, ALEA can be used even if there is a lack of
explicit design documentation or no updated architectural documentation. The
presence of detailed design documentation does not reduce the effectiveness of the
ALEA method.

7 Conclusion and Future Work

This paper proposes a method called Architecture-Level Evolvability Assessment
(ALEA). ALEA aims at evaluating how well the current architecture of a software
product can accommodate future use and business contexts. What distinguishes
ALEA from other architecture assessment methods is the sustainability assessment.
The ALEA method consists of three stages: elicitation, assessment, and reporting. The
elicitation stage aims at eliciting existing architecture quality factors, identifying an
assessment goal, and identifying and prioritising assessment items. The assessment
stage aims at evaluating architecture adaptation and sustainability for each assessment
item. In the sustainability assessment, ALEA employs an evolvability framework in
order to propagate the effects of changes. The reporting stage aims at documenting
the whole assessment and follow-up the assessment by communicating it to ‘the right
people’. Comparing to other well-established architecture evaluation methods, ALEA
gives precedence to socio-technical perspectives. The main requirement of employing

 15

ALEA is the involvement of a ‘walking architecture’ throughout the whole
assessment period.

The ALEA method and the evolvability framework were deployed, implemented
and validated in a cooperative project with DHI. The case study shows that ALEA is
applicable for evaluating product line architecture and able to integrate seamlessly
with agile software development. After the first validation, there were some
challenges to the ALEA method, which should be further refined and addressed. In
order to support the evaluation more pragmatically, ALEA should 1.) concretise into a
development cycle, 2.) integrate with the participatory design (PD) in the elicitation
of assessment items, and 3.) simplify the terms (evolvability, quality factors, etc.) for
the ease of communication. In term of maturity, ALEA should be performed with a
wide range of assessment goals and items, and tried out with different organisations.
Future works are expected to show whether and how 1.) ALEA can be applied in
different context, 2.) comprehensible for a novice, and 3.) applicable to continuous
development of software product lines.

Acknowledgments. This work was done while I was working at IT University of
Copenhagen and DHI Water Environment Health.

References

1 DHI Water Environment Health, http://www.dhigroup.com
2 Manifesto for Agile Software Development, http://www.agilemanifesto.org
3 MSF Team Model v.3.1, Microsoft Solutions Framework (MSF) Team Model, http://-

www.microsoft.com/downloads/details.aspx?familyid=C54114A3-7CC6-4FA7-AB09-
2083C768E9AB&displaylang=en

4 Ali Babar, M., Kitchenham, B.: Assessment of a Framework for Comparing Software
Architecture Analysis Methods. In: Kitchenham, B., Brereton, P., Turner, M. (eds.)
Proceedings 11th International Conference on Evaluation and Assessment in Software
Engineering (EASE). Keele University, UK (2 - 3 April 2007)

5 Ali Babar, M., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software
Architecture Evaluation Methods. In: Proceedings Australian Software Engineering
Conference (ASWEC). pp. 309–318 (2004)

6 Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,
2nd edn. (2003)

7 Belady, L., Lehman, M.: A Model of Large Program Development. IBM Systems Journal
15(1), 225–252 (1976)

8 Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-Level Modifiability
Analysis (ALMA). J. Syst. Softw. 69(1-2), 129–147 (2004)

9 Carroll, J.M.: Making Use: Scenario-Based Design of Human-Computer Interactions. The
MIT Press, 1st edn. (2000)

10 Clements, P.C.: Active Reviews for Intermediate Designs. Tech. Rep. CMU/SEI-2000-TN-
009, SEI, Carnegie Mellon University (2000)

11 Dittrich, Y., Lindeberg, O.: Designing for Changing Work and Business Practices. In:
Adaptive Evolutionary Information Systems, pp. 152–171. IGI Publishing, USA (2003)

12 Dittrich, Y., Rönkkö, K., Eriksson, J., Hansson, C., Lindeberg, O.: Cooperative Method
Development. Empirical Softw. Engg. 13(3), 231–260 (2008)

 16

13 Eriksson, J.: Supporting the Cooperative Design Process of End-User Tailoring. Ph.D.
thesis, Department of Interaction and System Design, School of Engineering, Blekinge
Institute of Technology, Sweden (2008)

14 Floyd, C., Keil-Slawik, R., Budde, R., Zullighoven, H. (eds.): Software Development and
Reality Construction. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1992),
illustrator-Weiler-Kuhn, C.

15 Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation. Tech.
Rep. CMU/SEI-2000-TR-004, ADA382629, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA (2000), http://www.sei.cmu.edu/publications/documents/-
00.reports/00tr004.html

16 Kazman, R., Bass, L., Klein, M., Lattanze, T., Northrop, L.: A Basis for Analyzing Software
Architecture Analysis Methods. Software Quality Control 13(4), 329–355 (2005)

17 Kensing, F.: Participatory Design in a Commercial Context - a Conceptual Framework.
Participatory Design Conference, New York, USA (2000)

18 Kensing, F., Blomberg, J.: Participatory Design: Issues and Concerns. Computer Supported
Cooperative Work (CSCW) 7(3-4), 167–185 (September 1998)

19 Lehman, M.: On Understanding Law, Evolution, and Conservation in the Large-Program
Life Cycle. J. Syst. Softw. 1(3), 213–231 (1980)

20 Lehman, M.: Programs, Life Cycles, and Laws of Software Evolution. Proceedings of the
IEEE 68(9), 1060–1076 (Sept 1980)

21 van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H.: Software Product
Family Evaluation. Software Product Lines 3154, 110–129 (2004)

22 McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. Tech. Rep. RADC-
TR-77-369, U.S. Department of Commerce, Washington, DC (1977)

23 Unphon, H., Dittrich, Y.: Organisation Matters: How the Organisation of Software
Development Influences the Development of Product Line Architecture. pp. 178–183.
IASTED International Conference on Software Engineering, Innsbruck, Austria (2008)

24 Unphon, H.: Making Use of Architecture throughout the Software Life Cycle - How the
Build Hierarchy can facilitate Product Line Development. In: SHARK ’09: Proceedings of
the 2009 ICSE Workshop on Sharing and Reusing Architectural Knowledge. pp. 41–48.
IEEE Computer Society, Washington, DC, USA (2009)

25 Unphon, H., Babar, M.A., Dittrich, Y.: Identifying and Understanding Software
Architecture Evaluation Practices (2009), ITU Technical report (almost finished)

26 Unphon, H., Dittrich, Y.: Software Architecture Awareness in Software Product Evolution
(2009), submitted to J. Syst. Softw. (under revision)

27 Unphon, H., Dittrich, Y., Hubaux, A.: Taking Care of Cooperation when Evolving Socially
Embedded Systems: The PloneMeeting Case. In: CHASE ’09: Proceedings of the 2009
ICSE Workshop on Cooperative and Human Aspects on Software Engineering. pp. 96–103.
IEEE Computer Society, Washington, DC, USA (2009)

28 Wolf, W.: What Is Embedded Computing? Computer 35(1), 136–137 (Jan 2002)

