
A 3-Phase Randomized Constraint Based
Local Search Algorithm for Stowing Under
Deck Locations of Container Vessel Bays

Dario Pacino
Rune Møller Jensen

IT University Technical Report Series TR-2010-123

ISSN 1600–6100 January 2010

Copyright c© 2010, Dario Pacino
Rune Møller Jensen

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 9788779492059

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

A 3-Phase Randomized Constraint Based Local Search
Algorithm for Stowing Under Deck Locations of Container

Vessel Bays

Dario Pacino
Rune Møller Jensen, Dario Pacino∗,1, Rune Møller Jensen1

aIT University of Copenhagen, Software Development Department, Rued Langgaards Vej 7, 2300 Copenhagen S,
Denmark

Abstract

Even though containerized shipping is an eco-friendly mode of transportation and millions of
containers are stowed every week, container vessel stowage is an all but neglected combina-
torial optimization problem. The currently most successful approaches use hierarchical de-
compositions of the problem. The sub-problems of these decompositions consist of assigning
containers to slots in individual vessel bays and for automated stowage systems to be useful for
stowage coordinators they each must be solved within a few seconds. In this article, we define
to our knowledge the most accurate representative model to date of these problems that we have
developed in close collaboration with a larger liner shipping company since 2005. We introduce
a 3-phase randomized constraint based local search algorithm to solve the problems. The per-
formance of our algorithm has been compared to a complete and highly competitive constraint
programming approach that we have developed in a parallel project on a large benchmark suite
extracted from real stow-plans from our industrial partner. Our experimental results show that
our approach robustly finds optimal or near optimal solutions within a fraction of a second.
Our results support the hypothesis that these sub-problems due to a high-level goal of cluster-
ing similar containers in a bay often are under-constrained and thus particularly suited for local
search.

Key words: Container vessel stowage, hierarchical decomposition, local search, delta
evaluation.

1. Introduction

The last two decades of growing demand for seaborne transportation has forced interna-
tional trading companies to lower the cost of their services. To answer these demands, the
liner shipping industries have tried to approach the problem by merging into larger alliances.
This strategy however has directed the industry into using larger vessels which in turn has made
vessel stowage a very challenging problem using the traditional manual stowage planning prac-
tices. For this reason there is an increasing interest in developing efficient automated decision
support systems for container stowage planning. With today’s ships carrying up to 14.000 con-
tainers, the time of loading and unloading of cargo contributes largely to the overall cost. The

∗Corresponding author, tel. +45 7218 5049
Email addresses: dpacino@itu.dk (Dario Pacino), rmj@itu.dk (Rune Møller Jensen)

time required to load and unload the containers at any given port, is a function of the containers
arrangement in the vessel. For that reason, both ship operators and port managers are interested
in minimizing the loading and unloading time by finding an optimal cargo arrangement.

The planning of the cargo arrangement is computationally hard due to the set of constraints
that limits the way cargo can be positioned. Cargo is represented as box formed containers that
have different properties such as height, weight, power requirements (in case of refrigerated
containers) and security restrains based on the type of cargo transported. Limitations to the
planning also come from the vessel itself, where attention must be payed to height and weight
limits of stacks as well as balance and visibility constraints. Moreover, one must also take into
consideration the interaction between existing and future cargo since the ship never empties
completely at each port.

Despite of the practical importance of stowage planning, the amount of previous work is
surprisingly scarce with less than 30 scientific publications and three patents. The “flat” mod-
els among these introducing one variable for each possible container assignment or similar,
have turned out to be intractable in practice (e.g., Ambrosino et al. (2004); Botter and Brinati
(1992); Giemsch and Jellinghaus (2003)). Scalable approaches are either heuristic (e.g., Am-
brosino et al. (2004); Dubrovsky et al. (2002); Avriel et al. (1998)) or based on a hierarchical
decomposition of the problem (e.g., Ambrosino et al. (2006); Kang and Kim (2002); Wilson
and Roach (1999); Ambrosino et al. (2009)). The latter methods build on a natural two-level
decomposition of the problem used by the liner shipping stowage coordinators and are the
currently most successful for solving the problem. At the first level, the coordinators assign
containers to storage areas in bays (called locations in this article) such that overstowage is
minimized, crane utility is maximized and high-level constraints such as balance and stress
moments are satisfied. At the second level, the coordinators assign containers to specific slots
in each location, satisfying dangerous-goods requirements and stacking rules such as power
requirements and length and height limitations.

In order for stowage coordinators to use automated stowage systems efficiently, it is essen-
tial that the total computation time is in the order of 15 minutes. The reason is that several
stow-plans often must be generated to adapt the plans either to specific requirements or last
minute changes. Approaches that use hierarchical decompositions of the stowage planning
problem, typically have to stow in the order of 100 locations at the low-level part of the decom-
position. Since high quality solutions to the high-level part of the decomposition are hard to
generate in less than half of the total computation time, a time limit of 15 minutes means that
each location must be stowed within a few seconds.

In this article, we introduce a 3-phase randomized constraint based local search algorithm
for assigning a set of containers to slots in a location. Our work is the result of a close collabo-
ration with a larger liner shipping company since 2005. Our hypothesis is that the sub-problems
of stowing locations in hierarchical decompositions of stowage planning are under-constrained
since high quality solutions to the first level of the decomposition cluster similar containers in
locations and assure that capacity limits for the different types of containers are met. Thus, we
expect a large number of optimal or near optimal stow-plans to exist for each location. This
situation is ideal for local search approaches. Complete methods like Integer Programming (IP)
and Contraint Programming (CP), on the other hand, can be expected to spent too much time
proving optimality due to the large number of good solutions.

Since there is a very large number of constraints and objectives involved in stowing con-
tainers in over and under deck locations and some of these are not fully understood, we have
formulated a representative problem model in collaboration with the industry for stowing a

2

20’ Bay No.
40’ Bay No.

Hatch No.

45 43
44

3941

40

11

37 35
36

10

33 31
32

9

29 27

28

8

23
24

25

7

1921

20
6

17 15
16

5

13 11

12

4

09 07
08

3

0305
04

2

01

112

Figure 1: Vessel layout

given set of containers in an under deck location. To our knowledge, this is the most detailed
and accurate model of this sub-problem published to date. The first phase of our 3-phase local
search approach, is a construction heuristic that makes an initial assignment of containers to
slots. The second and third phase use a local search (LS) algorithm with a swap neighborhood
to find a feasible solution and a local optimum, respectively. A parallel race is performed be-
tween random restarts of the three phases, after which the best solution is selected. These LS
algorithms use incremental update of objectives and constraints. They were originally imple-
mented in COMET (Michel and Hentenryck, 2002), but an order of magnitude speedup could
be achieved by reimplementing them in C++.

The LS algorithm has been experimentally evaluated by comparing its performance with
a complete and highly competitive CP approach that we have developed in a parallel project
(Delgado et al., 2009). The comparison has been carried out on a benchmark suite of 140 real
stowage problems provided by our industrial collaborator. The experimental results support
our hypothesis. The LS approach finds optimal or near optimal solutions within a fraction of
a second (see Figure 5(a)). The complete CP approach when tuned with an efficient diving
heuristic, symmetry breaking, and good lower bounds can often prove optimality quite fast.
But as expected, there is a significant fraction of problems, where this is not the case (see
Figure 5(b)).

The remainder of this article is organized as follows. In Section 2, we introduce the prob-
lem, for which a detailed mathematical model is presented in Section 3. The method is then
presented in Section 4, and its results are analysed in Section 5. After the review of related
work in Section 6, we draw conclusions in Section 7.

2. Background

A liner shipping vessel is a ship that transports box formed containers on a fixed cyclic
route. Containers typically have a width of 8 feet, and a length of either 20 or 40-foot. There
exists however longer containers such as 45 and 50-foot. Containers can be either 8 feet or 8
feet and 6 inches high, with the exception of some higher 40-foot containers called high-cube
containers that are 1 foot taller. The weight limit of a container is about 34 tons, for a 40-foot,
and 32 tons for a 20-foot. Some containers are refrigerated and as such require a connection
to special power plugs. Other special type of containers are pallet-wide containers, where a
standard European pallet can be stored, and IMO containers, which are used to store dangerous
goods. Such containers must obey special stacking rules. In addition, there are out-of-gauge
out-of-gate (OOG) containers with cargo sticking out in the top or at the side (e.g., a yacht) and
non-containerized break-bulk like windmill wings.

The cargo space of a vessel is composed of a number of bays, which are a collection of
container stacks along the length of the ship. Each bay is divided into an upper deck and under

3

deck part by a hatch cover, which is a flat water tight structure that prevents the vessel from
taking in water. An overview of a vessel layout is show in Figure 1.

Figure 2 shows how each under deck stack is composed of two Twenty foot Equivalent Unit
(TEU) stacks and one Forty foot Equivalent Unit (FEU) stack, which hold vertically arranged
cells indexed by tiers. The TEU stack cells are composed of two slots, which are the physical
positioning of a 20-foot container. The aft slot refer to the position toward the stern on the
vessel, while fore slots are allocated on the bow side. Some of the cells have access to power
plugs and are typically situated at the bottom of the bay.

The loading and unloading of containers are carried out by quay cranes that can access the
stacks individually. Some cranes can lift two 20-foot containers at the same time, but they only
have access to the container on top of the stack.

1 2 3 4 5 6 8 9 10 11

Stacks

T
ie

rs

1
2

3
4

5
6

AFT FORE

FEU Stack

Figure 2: An under deck bay cell structure seen from behind (left) and from the side (right).

The primary objective of stowage planning is to minimize berth time, both because shipping
companies pay for berth time and because shorter berth time gives air in the schedule that can
prevent delays from rippling to downstream ports. Essentially berth time can be minimized
in two ways: by minimizing the total number of quay crane moves and by distributing these
moves evenly over the set of quay cranes assigned to the vessel (makespan minimization). The
total number of quay crane moves can be reduced by avoiding overstowage. A container A is
overstowing a container B, if A is above B in the stack but B must be discharged before A,
such that A must be moved in order to unload B. An important secondary objective of stowage
planning is to generate stow-plans that are robust to changes in the cargo forecast. The reason is
that the number of containers of each type to load in downstream ports is only fairly accurately
known three ports ahead.

When a set of containers to stow in a bay has been decided, the positioning of these con-
tainers has limited interference with containers in other bays. For this reason, it is natural to
divide the constraints and objectives of the stowage planning problem into high-level inter bay
constraints and objectives and low-level intra bay constraints and objectives.

High-level constraints mainly consider the stability of the vessel as defined by its trim,
metacentric height, and stress moments such as shear, bending and torsion. In addition, any
distribution of containers to bays must satisfy weight and volume capacity limits as well as
capacity limits of the different container types.

High-level objectives include distributing moves evenly to cranes and avoid lid-overstowage
which is overstowage between containers divided by the hatch cover. Lid-overstowage can be
very costly, a single discharge from a storage area under a hatch-lid cover requires all containers
resting on the hatch-lid and the hatch-lid itself to be unloaded. Finally, bays should cluster
containers to the same discharge port, partly to avoid overstowage in individual stacks and
partly to make the stow-plan more robust to changes in forecasted demands.

Low-level constraints are mainly stacking rules. They ensure that containers are arranged
4

in valid physical stacks satisfying the height and weight limits of the stacks, that reefer con-
tainers are positioned near power plugs, that 20-foot containers are not stacked over 40-foot
containers (40-foot containers lack physical support points for 20-foot containers), that IMO
containers are placed with the required separation, that a legal pattern of pallet-wide containers
exist horizontally in the stacks, that OOG containers have sufficient spacing around them, and
that break-bulk can be placed as required. Stacks may also have restrictions specifying which
type of container can be stacked in them. Also special constraints apply over-deck, where con-
tainers must be stacked in specific configurations in order to resist wind forces, keeping the
line-of-sight, and ensuring access to special containers or lashing rods (e.g. to water live plants
or tighten lashing rods).

Low-level objectives reflect rules of thumb used by stowage coordinators in order to get
stow-plans that are robust to changes in forecasted demands. The objectives include maxi-
mazing the number of unused stacks, clustering of containers with the same discharge port in
stacks, minimizing the number of reefer slots used for non-reefer containers, and minimizing
overstowage between containers in the same stack.

3. The Container Stowage Problem for an Under-Deck Location

As mentioned in the introduction, our hypothesis is that the sub-problems of stowing lo-
cations in hierarchical decompositions of stowage planning are under-constrained since good
solutions to the high-level problem of distributing containers to bays cluster similar containers
in locations and assure that capacity limits for the different types of containers are met. For
that reason, we assume that these problems can be solved efficiently using local search rather
than complete methods like constraint programming and integer programming that may spent
prohibitively long time searching through a large number of near optimal solutions to prove
optimality. Since stow-plans must be generated within 15 minutes to be of practical value for
stowage coordinators and there are in the order of 100 locations in a vessel, our goal is to stow
a single location for a given set of containers within a few seconds.

Due to the very large number of constraints and objectives involved in stowing containers
in over and under deck locations, we decided to make our investigation manageable by for-
mulating a representative problem called the Container Stowage Problem for an Under-Deck
Location (CSPUDL) for stowing containers in under deck locations. Our problem model is
the result of a close collaboration with a larger liner shipping company since 2005 and it is
to our knowledge the most accurate description of this problem to date. The CSPUDL covers
all constraint and objective classes of the problem and we assess that it has a high correla-
tion with the complete problem model in terms of solution algorithm performance. Specifi-
cally, the CSPUDL includes stacking rules for 20 and 40-foot containers, FEU and TEU stack
overlapping, reefer containers, pre-placed containers, and weight and height constraints. The
objectives include overstowage and three rules of the thumb used by stowage coordinators to
achieve robustness. The CSPUDL excludes break-bulk cargo, OOG containers, and odd slots
(i.e., cells that can only hold a single 20-foot container). In addition, we do not consider IMO
and pallet-wide containers since these are often placed in special locations.

Formally, let C denote the set of containers to stow in the location. A subset of these CP
defines containers that are pre-placed in the location. Slots that do not hold a container are
assigned the null container ⊥. Each slot in stack s ∈ S, tier t ∈ Ts and position p ∈ P
(the AFT (p = 1) and FORE (p = 2) part of a cell) is represented by a decision variable
xstp with domain C ∪ {⊥}. Since 40-foot containers take the space of two 20-foot containers,
the physical space assigned by the decision variables overlap. For this reason, we use the

5

convention to assign 40-foot containers to the AFT position variable only and require that the
associated FORE position variable is assigned to ⊥.

For a stack s, a tier t and a position p, the Boolean constant ARstp indicates if the slot can
hold a reefer container, while the capacity of a cell to hold a 40-foot and 20-foot container is
represented by the Boolean constant A40

st and A20
stp, respectively. Each stack s in the location

has a maximum height Hs and weight Ws. Attributes for a container c ∈ C are defined by the
functions w(c) for the weight, h(c) for the height and d(c) for the discharge port. The function
r(c) and ⊥(c) respectively indicate if a container c is a reefer container or a null container,
while the functions f(c) and t(c) identify 40-foot and 20-foot containers. Finally, a pre-placed
container c ∈ CP is assumed to be stored in the slot defined by the tuple (sc, tc, pc). Table 1
offers an overview of the model parameters.

Sets
S ∈ {1, ..., NS} The index set of stacks in the location, where NS is the number of stacks.
Ts ∈ {ts, ..., NT } The index set of tiers for stack s, where ts is the bottom tier of s and NT is

the number of tiers of the location.
P ∈ {1, 2} The index set representation of the AFT (p = 1) and FORE (p = 2) position

of a cell.
C ∈ {1, ..., NC} The index set of containers to place in the location, where NC is the number

of containers.
CP ⊂ C The subset of containers pre-placed in the location.

Constants
⊥ The null container.
A20
stp ∈ B True iff the slot in stack s ∈ S, tier t ∈ Ts and position p ∈ P can hold a

20-foot container.
A40
st ∈ B True iff the cell in stack s ∈ S and tier t ∈ Ts can hold a 40-foot container.

Ws ∈ R+ The maximum weight of the stack s ∈ S.
Hs ∈ R+ The maximum height of the stack s ∈ S.

Attribute functions
w(c) : C ∪ {⊥} 7→ R+ The weight of the container c ∈ C or 0 if c = ⊥.
h(c) : C ∪ {⊥} 7→ R+ The height of the container c ∈ C or 0 if c = ⊥.
r(c) : C ∪ {⊥} 7→ B True iff the container c ∈ C is a reefer.
⊥(c) : C ∪ {⊥} 7→ B True iff the container c = ⊥.
d(c) : C 7→ N The discharge port of the container c ∈ C.
f(c) : C ∪ {⊥} 7→ B True iff the container c ∈ C is a 40-foot container.
t(c) : C ∪ {⊥} 7→ B True iff the container c ∈ C is a 20-foot container.

Variables
xstp ∈ C ∪ {⊥} The container placed in stack s ∈ S ,tier t ∈ Ts and position p ∈ P .

Table 1: Constants, attribute functions, and variables of the CSPUDL.

3.1. Constraints
The constraints of the CSPUDL are:

∀s ∈ S, t ∈ Ts .¬f(xst2) ∧ (f(xst1)⇒ ⊥(xst2)) (1)
6

∀s ∈ S, t ∈ Ts \ {ts}, p ∈ P .¬⊥(xstp)⇒
(
t(xs(t−1)1) ∧ t(xs(t−1)2)

)
∨ f(xs(t−1)1) (2)

∀s ∈ S, t ∈ Ts, p ∈ P . t(xstp)⇒ A20
stp (3)

∀s ∈ S, t ∈ Ts . f(xst1)⇒ A40
st (4)

∀s ∈ S, t ∈ Ts \ {NT}, p ∈ P . f(xst1)⇒ ¬t(xs(t+1)p) (5)
∀c ∈ C . |{xstp = c | s ∈ S, t ∈ Ts, p ∈ P}| = 1 (6)

∀c ∈ CP . xsctcpc = c (7)

∀s ∈ S, t ∈ Ts, p ∈ P . r(xstp) ∧ t(xstp)⇒ ARstp (8)

∀s ∈ S, t ∈ Ts . r(xst1) ∧ f(xst1)⇒ ARst1 ∨ ARst2 (9)

∀s ∈ S .
∑
t∈Ts

(w(xst1) + w(xst2)) ≤ Ws (10)

∀s ∈ S .
∑
t∈Ts

max (h(xst1), h(xst2)) ≤ Hs (11)

Constraint (1) ensures that our convention for assigning 40-foot containers is maintained.
All containers are guaranteed physical support from below by (2). 20-foot and 40-foot container
restrictions are fulfilled by constraint (3) and (4). 20-foot containers are not allowed to be
stored on top of 40-foot containers by constraint (5). Each container is assigned to exactly one
slot (6). Constraint (7) ensures that pre-placed containers are given their assigned position.
20-foot reefer containers are stowed in reefer slots by constraint (8), while (9) ensures that 40-
foot reefer containers are stowed in cells where either one of the two slots has a power-plug.
Breaking weight and height maximum levels of the stacks is avoided with constraint (10) and
(11).

3.2. Objectives
The main objective of the CSPUDL is to minimize overstowage in individual stacks. Other

objectives, such as minimizing the number of used stacks and grouping containers with the
same discharge port, help achieving a container arrangement that can minimize costs at later
ports.

Oos =
∑
s∈S

∑
t∈Ts

∑
p∈P

ostp (12)

Our =
∑
s∈S

∑
t∈Ts

∑
p∈P

urstp (13)

Ops =
∑
s∈S

| {d(xstp) | t ∈ Ts, p ∈ P ,¬⊥(xstp)} | (14)

Ous =
∑
s∈S

uss (15)

In (12) one unit cost is counted for each container that is overstowing another one below
in the stack, where ostp defines whether a container c in stack s, tier t and slot position p
overstows another container in the stack. Thus, ostp = 1 if ¬⊥(xstp) and there exists a tier
t′ ∈ {ts, ..., t−1} below twith an overstowed container d(xst′p) < d(xstp). Otherwise ostp = 0.
Objective (13) counts one unit cost for each misused reefer slot, where urstp = 1 if ARstp and
(f(xst1) ∧ ¬r(xst1) ∨ t(xstp) ∧ ¬r(xstp)), and 0 otherwise. Notice that a 40-foot non-reefer
container will add a unit cost for each reefer slot it covers. In order to favor stacks stowing

7

⊥

⊥

⊥

1

1 reefer
cells
limit

⊥

2*

2** 2

2
2

Stack Stack

AFT FORE

⊥

⊥

⊥

⊥40

⊥40

⊥40

⊥40

Ti
er

1
2

3
4

1 3 1 3

⊥

2

2 2

1: Discharge Port 1
2: Discharge Port 2
*: Pre-placed Container

associated with a 40-foot container
⊥40: Null container associated
⊥: Null Container

: Reefer Container

Figure 3: A stow-plan for a small under deck location. Notice that the two 40-foot containers stored in stack one
are high-cube containers.

containers with the same port of destination, one unit cost is counted for each discharge port
present in the stack (14). In order to minimize the number of used stacks, one unit cost for
each stack used is counted by (15) where uss = 1 if there exists a t ∈ Ts and p ∈ P such that
¬⊥(xstp), and 0 otherwise. The objective function of the CSPUDL is a weighted sum of the
above objectives reflecting their importance

O = 100Oos + 5Our + 20Ops + 10Ous. (16)

As an example, Figure 3 shows a feasible stow-plan for a small under-deck location. In this
particular stow-plan there is no overstowage (Oos = 0), and since all the slots below the reefer
cell limit are reefer slots, there are three reefer slots with containers violating the free reefer
objective (Our = 3). Only one stack of the two used is pure, thus giving three unit costs for the
pure stack objective (Ops = 3) and two for the free stack objective (Ous = 2). In summary the
sample stow-plan has a total objective value of 95.

4. 3-Phase Randomised Constraint Based Local Search (3-RCLS)

Our approach to solve the CSPUDL is a three phase search procedure where the result is
improved by racing parallel randomized restarts. The main idea is to create a procedure that
is able to to find a good solution to the CSPUDL in a very short time and exploit the potential
of multi-core computing by running a race between parallel random restarts of the algorithm.
The main search procedure is composed of an initialization phase, a feasibility phase, and
an optimization phase. The initialization phase is a placement heuristic that tries to arrange
containers in the location in a way that minimizes the objectives and the number of violated
constraints. Using this initial container assignment, the feasibility phase performs a local search
based on a min-conflict heuristic (Minton et al., 1992) that finds a feasible solution. When the
feasibility phase terminates, it is possible to reduce the search space to feasible solutions. It
is within this search space that the optimality phase performs a local search and finds a local
cost minimum. The aim is to gradually reduce the complexity of the problem in such a way
that a feasible solution is found fast such that the algorithm can use more time searching for
an optimal solution. In order for the concurrent algorithms to pursue different search paths,
randomization is used whenever possible.

8

The local search for both the feasibility and optimality phase uses a neighbourhood gener-
ated by swapping containers within the location. A swap is an exchange of some containers
between a pair of cells. Formally, a swap γ is a pair of tuples γ = (〈s, t, c〉, 〈s′, t′, c′〉) where the
containers c in the cell at stack s and tier t exchange position with the containers c′ in the cell
at stack s′ and tier t′. The sets c and c′ can contain at most two containers. Swaps are imple-
mented with two functions swap20 for exchanging position of 20-foot containers, and swap40

for exchanging position of 40-foot containers.

• swap20(xstp, xs′t′p′) where p 6= p′ if (s, t) = (s′, t′), swaps the value of xstp and xs′t′p′

and covers the following swap types 1) 20′ ↔ 20′ and 2) ⊥ ↔ 20′, where 20′ indicates a
20-foot container.

• swap40 ((xst1, xst2), (xs′t′1, xs′t′2)) where (s, t) 6= (s′, t′), pairwise swaps the values of
the cell variables (xst1, xst2) and (xs′t′1, xs′t′2) and covers the following swap types 1)
(40′,⊥) ↔ (40′,⊥), 2) (⊥, 20′) ↔ (40′,⊥), 3) (20′,⊥) ↔ (40′,⊥), 4) (20′, 20′) ↔
(40′,⊥) and, 5) (⊥,⊥)↔ (40′,⊥), where 40′ indicates a 40-foot container.

Proposition 1. The swap neighborhood Γ defined by the union of swap20 and swap40 swaps
for a CSPUDL problem P is complete.

Proof. We prove the claim by showing that any current assignment π of the variables of P can
be changed to an arbitrary assignment π′ via a sequence of swaps. Let xπstp denote the value
of variable xstp in assignment π. Assume without loss of generality that the variables of P are
re-assigned from π to π′ according to some total ordering of the cells ≺. Consider assigning
the variables of cell (s, t) at some point in this ordered re-assignment. We have two cases:

1. f(xπ
′
st1) (i.e., a 40-foot container must be placed in the cell). If xπ′

st1 = xπst1 the cell
assignment is correct. Otherwise find the container xπ′

st1 in a cell (s′, t′) and use swap40

of type 1 to 5 to assign it to xst1.
2. ¬f(xπ

′
st1) (i.e., 20-foot containers or empties must be placed in the cell). If xπ′

st1 = xπst1
then the AFT slot of the cell is assigned correctly. Otherwise find the container (including
⊥) in the FORE slot of the cell or in another cell (s′, t′) and use swap20 type 1 or 2 to
assign it to xst1. Do the same for xst2, except only look for the container in another cell
(s′, t′).

Because all variables of cells previous to (s, t) have already been assigned, the cells (s′, t′) with
containers to swap into (s, t) must come after (s, t) (i.e. (s, t) ≺ (s′, t′)). Since the cell (s, t)
is arbitrarily chosen, we have that all cells can be re-assigned from π to π′ using the resulting
sequence of swaps.

4.1. Constraint Violations
In constraint based local search it is common to evaluate and represent a constraint in terms

of the set of variables that violate it. When the violation of a constraint is 0 the constraint is
satisfied. When a variable violates a constraint, its violation degree is either fixed (e.g, 1) or
reflects to which extent the variable breaks the constraint. This representation is ideal when
using the min-conflict heuristic, since it makes it possible to identify which variable violates
most constraints, and to which degree.

Let xπstp denote the value of variable xstp in assignment π. Each constraint and objective is
then defined in terms of a function σ(π) on the assignment π of variables over the violations of
each slot variable defined by ν(π, s, t, p), where s is the stack, t is the tier, and p is the position

9

of the slot. To ease the readability, we often interpret the Boolean values false and true as the
numerical values 0 and 1, respectively.

The 20 and 40-foot capacity constraint (3) and (4) are represented by

ν1(π, s, t, p) = ¬(t(xπstp)⇒ A20
stp)

σ1(π) =
∑
s∈S

∑
t∈Ts

∑
p∈P

ν1(π, s, t, p)

and

ν2(π, s, t, p) = ¬(f(xπstp)⇒ A40
st)

σ2(π) =
∑
s∈S

∑
t∈Ts

∑
p∈P

ν1(π, s, t, p).

The “no hanging containers” constraint for 20-foot and 40-foot containers (2) is represented by

ν3(π, s, t, p) =
t−1∑
t′=ts

¬
(
¬⊥(xπstp)⇒ (t(xπst′1) ∧ t(xπst′2)) ∨ f(xπst′1)

)
σ3(π) =

∑
s∈S

∑
t∈Ts\{ts}

∑
p∈P

ν3(π, s, t, p).

Thus for some stored container, the degree of violation is defined as the number of slots in cells
under it with insufficient support. The reefer constraints (8) and (9) are represented by

ν4(π, s, t, p) = ¬
(
r(xπxtp)⇒ ARstp ∨

(
f(xπstp) ∧ (ARst1 ∨ ARst2)

))
σ4(π) =

∑
s∈S

∑
t∈Ts

∑
p∈P

ν4(π, s, t, p).

The maximum stack height constraint (11) and the maximum stack weight constraint (10) are
represented by

ν5(π, s, t, p) =

{
max

(
0, ϑ

Hπ
s −Hs
|ϑCπs |

)
: ¬⊥(xπstp)

0 : otherwise

σ5(π) =
∑
s∈S

∑
t∈Ts

max
(
ν5(π, s, t, 1), ν5(π, s, t, 2)

)

ν6(π, s, t, p) =

{
max

(
0, ϑ

Wπ
s −Ws

|ϑCπs |

)
: ¬⊥(xπstp)

0 : otherwise

σ6 =
∑
s∈S

∑
t∈Ts

∑
p∈P

ν6(π, s, t, p).

where ϑWπ
s =

∑
t∈Ts

∑
p∈P w

(
xπstp
)

is the current weight, ϑHπs =
∑

t∈TS max (h (xπst1) , h (xπst2))

is the current height of stack s and ϑCπs =
∑

t∈Ts
∑

p∈P ¬⊥(xπstp) is the current number of
containers stowed in stack s for assignment π. For these constraints the violation degree is dis-
tributed equally over variables holding containers since it is not possible to identify which one

10

of them will have the largest influence. Finally, the no 20-foot over 40-foot container constraint
(5) is represented by

ν7(π, s, t, p) =
t−1∑
t′=ts

¬
(
t(xπstp)⇒ ¬f(xπst′1)

)
σ7 =

∑
s∈S

NT∑
t=ts+1

∑
p∈P

ν7(π, s, t, p).

Similar to ν3, the violation degree of a 20-foot container is the number of 40-foot containers
stored below.

The remaining constraints are implicitly satisfied by the algorithm. By first assigning pre-
placed containers to their given position, and by heuristically placing the remainder of the con-
tainers to variables at the beginning of the algorithm according to the convention of assigning
40-foot containers, constraint (1), the pre-placed constraint (7), and the all-loaded constraint
(6) are also satisfied.

4.2. Objective Violations
The objectives have been defined in the form of soft-constraints, where the number of vio-

lations is the actual objective value. The overstowage objective (12) is represented by

ν8(π, s, t, p) = ∃t′ ∈ {t− s, . . . , t− 1}, p′ ∈ P .¬⊥(xπst′p′) ∧ d(xπstp) > d(xπst′p′)

σ8(π) =
∑
s∈S

∑
t∈Ts

∑
p∈P

ν8(π, s, t, p).

The free reefer slots objective (13) is represented by

ν9(π, s, t, p) = ARstp ∧
(
f(xπst1) ∧ ¬r(xπstp) ∨ t(xπstp) ∧ ¬r(xπstp)

)
σ9 =

∑
s∈S

∑
t∈Ts

∑
p∈P

ν9(π, s, t, p).

The free stack objective (15) is represented by

ν10(π, s, t, p) =

{
1
ϑCs

: ¬⊥(xπstp)

0 : otherwise

σ10 =
∑
s∈S

∑
t∈Ts

∑
p∈P

ν10(π, s, t, p).

The last objective, pure stacks (14) is represented by

ν11(π, s, t, p) =

{
|{d(xπ

s′tp) | t
′∈Ts , p′∈P ,¬⊥(xπ

st′p′)}|
ϑCπs

: ¬⊥(xπstp)

0 : otherwise

σ11 =
∑
s∈S

∑
t∈Ts

∑
p∈P

ν11(π, s, t, p).

As for ν5 and ν6, we distribute the violation degree equally over variables holding containers
since it is not possible to identify which one of them will have the largest influence.

11

4.3. The Local Search Strategy
The feasibility and optimality phase are based on the same underlying strategy. Candidate

swap variables are selected based on their current violation degree; once the first variable is
chosen, the algorithm evaluates the possibility of swapping the container related to this variable
with the container of any other variable. The evaluation is performed using efficient algorithms,
which are able to evaluate the delta change in objective value without actually performing the
swap. The evaluation only recalculates the portion of objective or constraint violations which
are affected by the swap. If a beneficial swap is found, the selected swap is now performed on
the current assignment. It is at this point that the state of the model changes. The model is not
recalculated entirely, only those parts that are influenced by the change are re-evaluated. Such
partial re-evaluation is referred to as incremental update. Incrementally maintained variables in
the model are the violation variables (ν1...ν11 and σ1...σ11) and the auxiliary variables (ϑWs , ϑHs
and ϑCs). The next session describes how partial evaluation is carried out when evaluating swap
moves. Incremental updates are implemented using very similar principles and are therefore
not discussed any further.

4.4. Delta Evaluation of Swaps
The partial evaluation of swap moves is performed using specialized algorithms for each

constraint and objective. Evaluation of a move with those operations only involves a partial
re-computation of the constraints or objectives that are affected by the change. Formally, let
swap(π, γ) be the assignment π′ resulting from performing swap γ ∈ Γ on the current as-
signment π. For a constraint or objective σ ∈ {σ1, ..., σ11}, we then define the delta change
δπ(σ, γ) = σ(π′)− σ(π).

Taking the weight constraint (σ6) as an example, the violation based on the swap can be
recalculated by removing the weight of the swapping containers from the current weight of their
respective stacks and then adding it to the current weight of the respective stacks of destination.
The difference in violation between the new weight violation and the original one would be
the result of the delta evaluation. The delta evaluations for constraints σ1, σ2, σ4, and σ5 are
similar to the weight constraint and will not be described further. The σ3 and σ7 constraints on
the other hand are more complex, since the swap may affect many containers in the involved
stacks. Here we show how to define one of these constraints for a specific swap case. The
remaining constraints can be implemented using similar ideas.

We consider the no 20-foot containers on top of 40-foot constraint (σ7) for a swap γ =
(〈s, t, c〉, 〈s, t′, c′〉) within the same stack of a 40-foot container with two null containers (swap40

type 5). The other cases can be defined in a similar fashion. If the 40-foot container is above the
null containers, the value of the delta evaluation is equal to the number of 20-foot containers
between the null containers and the 40-foot container. Otherwise it is simply the negative of
this. Thus, if tbπ(c, c′) denote the number of 20-foot containers stored between container c and
c′, the delta evaluation for this swap case is defined by

δπ(σ7, γ) =

{
tbπ(c, c′) : t > t′

−tbπ(c′, c) : otherwise
, where tbπ(c, c′) =

t′∑
m=t

∑
p∈P

t(xπstp).

Similar to the constraints, the delta evaluation of the objectives can be divided into simple
(σ9 and σ10) and complex (σ8 and σ11) cases. The delta evaluation for objectives σ9 and σ10

are similar to the weight constraint (σ6) and are therefore not described further. Here we show
how to define the delta evaluation of the overstowage objective (σ8). The delta evaluation of
the pure stack objective (σ11) can be computed in a similar way.

12

1

2

2

2

2

2

c c′

swapping
containers

ν8(π, s, t, p)

va
′π
st(c, c

′)

vaπst(c)

ν8(π, s
′, t′, p′)

oBπ (s, t, c′) oBπ (s′, p′, c)

vaπs′t′(c
′)

va
′π
s′t′(c

′, c)

Figure 4: Graphical representation of the delta evaluation of the overstowage objective for a 20′ ↔ 20′ swap
between two distinct stacks.

Consider a single 20-foot to 20-foot swap γ = (〈s, t, c〉, 〈s′, t′, c′〉) (swap20 type 1) be-
tween two distinct stacks. The delta evaluation is computed using the following schema. For
each container, we remove the violation it contributes, and we add the violation that it creates
when swapped to its new position. A graphical representation of the algorithm is shown in fig-
ure 4. Consider for the moment the container c, following the evaluation schema. Its violation
ν8(π, s, t, p) must first be removed, but also the violations of the containers overstowing c. For
this purpose we have defined the function oπ(s, t, c), which given a cell (s, t) and a container
c, counts the number of containers stowed under the specific cell which are overstowed by c.
Formally

oπ(s, t, c) =
t−1∑
t′=1

∑
p′∈P

ovπ(c, xπst′p′), where ovπ(c, c′) =

0 : ⊥(c) ∨ ⊥(c′)

1 : d(c) > d(xπst′p′)

0 : otherwise
.

One violation can now be subtracted for each container ca above c which only overstow c (i.e.,
d(ca) > d(c) ∧ oπ(s, t, ca) = 1), since only in this case will the violation of ca change to zero
when c is removed. This is done using the function vaπst(c) =

∑NT

m=t+1

∑
n∈P

(
¬⊥(xπsmn) ∧

oπ(s,m, xπsmn) = 1 ∧ d(xπsmn) > d(c)
)
. The next step is adding the violations created by

replacing c′ with c in stack (s′, t′). Here we can use oπ(s′, t′, c) and add one violation if
oπ(s′, t′, c) > 0. Counting the number of violations caused by c to the containers above c′ is
a similar to the vaπst(c) computation, but we must remember that the current violation is based
on c′ being present in stack (s′, t′). The previous function is thus modified to be va′π

s′t′(c, c
′) =∑NT

m=t′+1

∑
n∈P ¬⊥(xπs′mn)∧(oπ(s′,m, xπs′mn) = 0 ∧ d(xπs′mn) > d(c))∨(oπ(s′,m, xπs′mn) = 1 ∧ d(xπs′mn) > d(c) ≥ d(c′)).

Performing the same operations for c′ the complete delta evaluation is given by

δπ(σ8, γ) =− ν8(π, s, t, p)− vaπst(c) + oBπ (s′, t′, c) + va
′π
s′t′(c, c

′)

− ν8(π, s
′, t′, p′)− vaπs′t′(c′) + oBπ (s, t, c′) + va

′π
st(c

′, c),

where oBπ (s, t, c) = 1 if oπ(s, t, c) > 0 and 0 otherwise.
The delta evaluations must be highly efficient operations due to their extensive use in the

search procedures. For most of the constraints and objectives (σ1, σ2, σ4, σ5, σ6, σ9, and σ10),
the delta swap function run in constant time. This is not the case for the more complex ones
(σ3, σ7, σ8, and σ11), but it is easy to show that the complexity in these cases is at most linear
in the number of tiers.

13

4.5. Placement heuristic
The aim of the placement heuristic is to find an initial container assignment. The procedure

tries to minimize the objectives and satisfy as many of the constraints as possible. The heuristic
is based on simple rules suggested by the nature of the constraints and objectives. Pre-placed
containers are assigned to their original position in a pre-processing step, thus implicitly fulfill-
ing constraint (7). Stacks are then filled bottom-up one container at a time, making sure that all
containers have support (σ3). Before the placement, all the containers to be loaded C \ CP are
sorted using the ordering �c defined by

c �c c′ ⇔ d(c) > d(c′)

∨ d(c) = d(c′) ∧ t(c) ∧ ¬t(c′)
∨ d(c) = d(c′) ∧ (t(c)⇔ t(c′)) ∧ r(c) ∧ ¬r(c′)
∨ d(c) = d(c′) ∧ (t(c)⇔ t(c′)) ∧ (r(c)⇔ r(c′))

This ordering reduces overstowage by placing first containers with a later discharge port. 20-
foot containers are placed before 40-foot containers in an attempt to avoid the placement of
20-foot containers on top of 40-foot containers (σ7), and reefer containers are assigned before
non-reefer since usually reefer slots are at the bottom of a bay (σ4).

The placement procedure is shown in Algorithm 1. A critical point is the assignment of
20-foot containers, since it is possible to have two 20-foot containers with different discharge
ports being assigned to two different stacks and generating odd cells (cells that only contain one
20-foot container). In order to avoid this behaviour, the placement heuristic uses the oddSlot
flag, which is raised when a 20-foot container is assigned to a slot in an empty cell. When the
flag is raised, the heuristic is forced to place the next 20-foot container in the empty slot of the
odd cell (line 3-4 and 15-16). This check ensures that as long as the number of containers to
load in the location is consistent with the location capacity, the placement heuristic will always
be able to assign all containers to a slot. The procedure places the containers one at a time (line
2), first trying to find space on a stack that contains containers with the same discharge port
(line 5-6). If none is found, it tries to find a stack with containers that have a greater discharge
port minimising overstowage (line 7-8). If it is not yet possible to find a placement for the
container, then an empty stack is chosen (line 9-10). Should none of those cases find a suitable
assignment, the container is pushed to the WAIT STACK (line 11-12). Once a placement
has been tried for each container, the WAIT STACK is emptied and each container is placed
sequentially on the first available stack (line 13-18). The selection of stacks (lines 5-10) is done
in an order �s based on the number of tiers: s �s s′ ⇔ |Ts| ≤ |Ts′ |. This ordering helps the
heuristic identify an assignment which uses as few stacks as possible.

4.6. Feasibility Phase
The goal of the feasibility phase is to find an assignment where all constraints are satisfied.

This phase will then permit the optimization algorithm to limit the neighbourhood to swaps
between feasible solutions. This algorithm is a hill-climbing constraint based local search based
on the min-conflict heuristic over the constraint violations. To simplify the description of the
algorithm, we define the following functions νσ(π, s, t, p) =

∑7
i=1 νi(π, s, t, p) and δσπ(γ) =∑7

i=1 δπ(σi, γ).
The feasibility phase is shown in Algorithm 2. It is important to notice that the swap

selection is done through the selection of two slots, where a slot is defined by the triple τ =
〈s, t, p〉, where s is the stack, t is the tier, and p is the position of the slot. Let T denote the

14

Algorithm 1: Placement heuristic
Require: all pre-placed containers assigned their given slot, C \ CP = {all containers to1

load} are sorted according to the ordering �c
forall c ∈ C \ CP do2

if t(c) ∧ oddSlot then3

place c in the odd slot4

else if ∃s ∈ S, t ∈ Ts, p ∈ P .¬⊥(xπstp) ∧ d(xπstp) = d(c) then5

assign c to stack s6

else if ∃s ∈ S, t ∈ Ts, p ∈ P .¬⊥(xπstp) ∧ d(xπstp) > d(c) then7

assign c to stack s8

else if ∃s ∈ S ∀t ∈ Ts, p ∈ P .⊥(xπstp) then9

assign c to stack s10

else11

push(c,WAIT STACK)12

while NOT empty(WAIT STACK) do13

c = pop(WAIT STACK)14

if t(c) ∧ oddSlot then15

place c in the odd slot16

else17

place c in the first available stack18

set of all slot triples. The function Γ(τ, τ ′) : T × T 7→ Γ then defines the swap based on the
containers found in the two slots defined by τ and τ ′.

Algorithm 2: Feasibility phase
sideMove← false1

π = placementHeuristic()2

while
∑7

i=1 σi > 0 do3

π′ ← π4

selectMax s ∈ S, t ∈ Ts, p ∈ P on νσ(π, s, t, p) do5

selectMin s′ ∈ S, t′ ∈ Ts, p′ ∈ P on δσπ(γ = Γ(〈s, t, p〉, 〈s′, t′, p′〉)) do6

π ← swap(π, γ)7

sideMove← σ(π′) = σ(π)8

return π9

The algorithm starts with the initial candidate assignment returned by the placement heuris-
tic on line 2, and then performs a local search over the neighbourhood until all the constraints
are satisfied (line 3-8). The step function, which selects a new assignment, makes the selection
of the slots that will define the swap in two phases. It begins (line 5) by selecting a slot triple
τ = 〈s, t, p〉 preventing, however, the selection of slots holding pre-placed containers or null
containers, and selects only those that actually violate some constraints. Between all the possi-
ble slots the one that contains the container with the maximum degree of violation is selected.

15

The algorithm proceeds (line 6) by selecting another slot triple τ ′ = 〈s′, t′, p′〉 and prioritises
swaps that improve the objective value. The selection in this case filters out all the slots hold-
ing pre-placed containers and make sure that the second slot is not the same as the first one.
Moreover it selects only slots, which resulting swap actually minimize the violations the most.
The sideMove flag has been included in the filter in such a way that if raised, it will allow the
selection of swaps which will result in an assignment that does not improve the solution, in an
attempt to escape the local minima. The sideMove flag is initiated in line 1 and is raised in line
8 if no selection of swap is performed. Should a swap selection have been made, the swap is
then actually performed in line 7 using the function swap(π, γ).

Using a neighbourhood operator that checks all possible swaps given an initial selection,
is clearly more expensive in terms of runtime than a more classical one where only a limited
number of swaps is evaluated. However this selection has shown to perform moves that are
highly valuable in terms of solution improvement, allowing the search to converge quickly.

4.7. Optimality Phase
Once a feasible solution has been found, the optimality phase performs a constraint based

local search for the optimal value within the search space of feasible solutions. The optimality
phase is a hill-climbing search that makes use of tie-breaking rules to avoid local minima.

For the objectives, in particular overstowage (σ8), free stack (σ10) and pure stack (σ11), a
single swap often does not lead to a change in the objective value. To address this problem,
we have defined a tie-breaking function that can evaluate a swap that has no objective value
improvement, but still causes a more desirable assignment. The function is called evalπ(o, γ)
and equals the evaluation value of the swap γ for the objective o ∈ {σ8, σ9, σ10, σ11}.

For the overstowage objective (σ8) the evaluation function is defined as the number of
containers overstowed by each container, which will make the algorithm choose a container
that overstows many containers over one that only overstows a single container. For the free
stack objective (σ10) the swap is evaluated by the number of containers in the stack, so that
the search rather swaps containers that are in almost empty stacks. The pure stack objec-
tive (σ11) calculates the evaluation by summing the quadratic product of the number of con-
tainers with the same discharge port, which will favour those stacks that have the most con-
tainers with the same discharge port. The optimality phase uses the function eval oπ(γ) =∑11

i=8 evalπ(σi, γ) as a tie-breaking rule, and similar to the feasibility phase the functions
νo(π, s, t, p) =

∑11
i=8 νi(π, s, t, p) and δoπ(γ) =

∑11
i=8 δπ(σi, γ) represent the total number of

objective violations and the sum of all the delta evaluations of swaps, respectively.
The optimality phase is shown in Algorithm 3. The optimality phase starts with the feasible

solution returned by the feasibility phase (line 1). Similarly to the feasibility algorithm, two
slots are selected from which a swap then is generated. The first slot is selected between all the
non-empty slots holding no pre-placed containers; the one with the maximal objective violation
is chosen (line 6). The second slot is selected randomly among all the slots that generate swaps
leading to feasible solutions with improved objective value (line 7). Should a swap not be
selected, the tie-breaking rule comes into action at line 12, where a new second slot is selected
using the tie-breaking rule as defined by the evaluating function on non-improving swaps. The
counter sideMove is used to limit the number of side moves that the algorithm may perform.
The local search terminates once the maximum number of side moves is reached (line 4).

16

Algorithm 3: Optimality phase
π = feasibilityPhase()1

changed = true2

sideMove = 03

while changed ∧ sideMoveCount < MAX SIDEMOVES do4

changed = false5

selectMax s ∈ S, t ∈ Ts, p ∈ P on νo(π, s, t, p) do6

select s′ ∈ S, t′ ∈ Ts, p′ ∈ P do7

changed = true on δoπ(γ = Γ(〈s, t, p〉, 〈s′, t′, p′〉))8

π = swap(π, γ)9

sideMove = 010

if ¬changed then11

select s′ ∈ S, t′ ∈ Ts, p′ ∈ P on eval oπ(γ = Γ(〈s, t, p〉, 〈s′, t′, p′〉)) do12

sideMove ← sideMove + 113

changed = true14

π = swap(π, γ)15

return π;16

5. Experimental Evaluation

The algorithm has been implemented in C++ and all experiments have been conducted on a
Linux system with 8 Gb RAM and 2 Opteron Quad Core CPUs, each running on 1.7 GHz and
having 2Mb of cache. A preliminary implementation of this model with a similar algorithm
has been done in in the COMET language (Pacino and Jensen, 2009). An order of magnitude
speedup was achieved by the current re-implementation in C++.

The proposed algorithm has been evaluated on a set of instances derived from stowage jobs
provided by our liner shipping industrial collaborator. The instances are generated from real
stowage examples from a wide range of vessels. Thus, the number of containers and their
type distribution correspond to the under deck stowage problems faced by the industry. We
have divided the instances into a test set and a training set. The test set is composed of 133
instances, including locations between 6 TEUs and 220 TEUs. Table 2 gives a summarized
overview of these instances.

The training set, has been used to tune the algorithm parameters. The parameter tuning
session, which results can be seen in Table 3, used a combination of time, variance and solution
quality to tune the parameters. This session included the tuning of the number of parallel
restarts and the maximal number of side moves to end the optimality phase. The result of the
parameter tuning session is that the algorithm performs best using as few as 50 side moves
and 8 parallel restarts. This combination of parameters gives a small variance on high quality
solutions within a short time.

The experimental results on the test data set, which can be seen in Table 4(a), show the
percentage of solutions solved within a specific optimality gap (optimal solutions have been
generated using a modification of the constraint programming algorithm described in Delgado
et al. (2009)). It is easy to see that only few instances diverge from near optimality and that in
86% of the cases the algorithm actually reached the optimal solution.

Studying the algorithm performance closer, we were able to gain some insight on the quality
17

Class 40’ 20’ Reefer HC DSP>1 Inst.
1

√
6

2
√

18
3

√ √
4

4
√ √

42
5

√ √ √
27

6
√ √ √

8
7

√ √ √ √
7

8
√ √ √

7
9

√ √ √ √
10

10
√ √ √ √

2
11

√ √ √ √ √
2

Table 2: Test Set Characteristics. The first column is an instance class ID. Column 2, 3, 4, and 5 indicate
whether 40-foot, 20-foot, reefer, and high-cube containers are present. Column 6 indicates whether more than
one discharge port is present. Finally, column 7 is the number of instances of the class.

of the different phases. The heuristic placement does not take the height and weight constraint
into account, leaving space for improvements. However Table 4 (c) and (d) show that the solu-
tion found by the heuristic placement is not far from being feasible in most of the cases. This
is supported by the fact that often feasibility is reached within 20 iterations and that 61% of
the time, the objective value is not compromised. The quality of the objective value of the first
feasible solution is also optimal in 74% of the cases (Table 4(b)), suggesting that the heuristic
placement procedure is performing well. The results also support our initial hypothesis sug-
gesting that the problem is under-constrained and that as such it is possible to heuristically
find high quality solutions in short time. The results also point to the fact that the optimality
phase improves only a limited number of instances, which however is important especially in
the cases where the optimality gap after the feasibility phase is more than 20%.

The limited improvement of solutions in the optimality phase probably happens because
the search does not allow for a large degree of diversification. Preliminary tests using tabu
search have shown that local diversification often was unsuccessful to escape a local minimum
due to large structural differences between the local minimum and an optimal solution. A
possible approach to solve this problem could be to change the initial placement and the search
procedures to follow the heuristic less closely. This method, however, would probably be more
expensive in terms of runtime performance.

It is important to remark that two of the test instances were not solved to feasibility. This
was also due to the strict following of the min-conflict heuristic during the feasibility phase.
In an industrial implementation of the algorithm, this problem can be solved by addressing a
number of special cases.

All the stow-plans for the locations have been calculated in an average time of 0.18 sec-
onds, with a worst case of 0.65 seconds. Figure 5(a) shows the runtime of the algorithm as a
function of the size of the instance measured in TEUs. As depicted, the execution time scales
well with the instance size. Figure 5(b) compares the execution time between our algorithm and
the complete constraint programming approach used for generating optimal solutions. When
generating the instance set for investigating the optimality gap shown in Table 4, we excluded
instances that were not solvable by the CP approach within 160 seconds. However, in a com-
parison between the two approaches these instances are particularly interesting.

As depicted, the CP approach is highly competitive within the set of instances that it can

18

Side moves Parallel Restarts
1 2 3 4

25 (0.02 , 241.9 , 0.51) (0.04 , 240.4 , 1.09) (0.05 , 237.8 , 0.46) (0.05 , 237.0 , 0.32)
50 (0.03 , 241.5 , 0.00) (0.07 , 237.0 , 1.42) (0.09 , 235.7 , 0.09) (0.11 , 236.3 , 0.27)
75 (0.06 , 239.2 , 0.57) (0.11 , 236.0 , 0.02) (0.14 , 235.9 , 0.03) (0.18 , 235.8 , 0.06)
100 (0.08 , 238.0 , 0.00) (0.13 , 236.0 , 0.00) (0.18 , 235.3 , 0.90) (0.24 , 235.5 , 0.14)
150 (0.10 , 236.4 , 0.51) (0.19 , 235.6 , 0.13) (0.25 , 235.5 , 0.16) (0.34 , 234.6 , 0.44)
200 (0.12 , 236.3 , 0.54) (0.25 , 235.3 , 0.22) (0.32 , 235.8 , 0.11) (0.42 , 235.9 , 0.02)
250 (0.16 , 238.0 , 0.63) (0.30 , 235.8 , 0.09) (0.41 , 234.9 , 0.77) (0.53 , 235.5 , 0.16)
300 (0.17 , 268.0 , 0.65) (0.36 , 235.1 , 0.27) (0.48 , 235.6 , 0.11) (0.63 , 235.6 , 0.98)
400 (0.22 , 235.8 , 0.06) (0.46 , 236.0 , 0.13) (0.64 , 234.9 , 0.35) (0.83 , 235.3 , 0.05)

5 6 7 8
25 (0.07 , 237.0 , 0.47) (0.08 , 236.8 , 0.70) (0.09 , 237.3 , 0.49) (0.10 , 236.8 , 0.32)
50 (0.13 , 235.5 , 0.16) (0.16 , 235.8 , 0.05) (0.19 , 235.0 , 0.14) (0.22 , 235.4 , 0.03)
75 (0.22 , 235.4 , 0.19) (0.25 , 235.4 , 0.92) (0.30 , 235.7 , 0.08) (0.34 , 235.4 , 0.03)
100 (0.28 , 235.8 , 0.09) (0.33 , 235.2 , 0.25) (0.38 , 235.7 , 0.06) (0.44 , 234.7 , 0.25)
150 (0.40 , 235.6 , 0.13) (0.46 , 235.1 , 0.27) (0.53 , 235.0 , 0.16) (0.62 , 234.7 , 0.70)
200 (0.51 , 234.2 , 0.57) (0.60 , 234.1 , 0.52) (0.71 , 235.9 , 0.03) (0.81 , 235.3 , 0.05)
250 (0.64 , 234.6 , 0.68) (0.74 , 235.7 , 0.06) (0.86 , 234.1 , 0.52) (0.98 , 234.6 , 0.27)
300 (0.75 , 234.5 , 0.46) (0.88 , 234.8 , 0.38) (1.03 , 235.0 , 0.14) (1.17 , 234.8 , 0.36)
400 (0.98 , 235.8 , 0.09) (1.15 , 235.0 , 0.14) (1.34 , 235.5 , 0.16) (1.55 , 234.7 , 0.41)

Table 3: Parameter Tuning. Each cell holds a triple 〈t, q, v〉 where t is the average time, q the average solution
cost and v the average cost variance. The highlighted cell indicates the parameter selection.

solve in 160 seconds. However our approach can solve the problematic instances for CP fast as
well. This robustness is important in practice if we want to guarantee that “good” solutions can
be returned within a second. Since a single vessel often contains in the order of 100 locations
there would be a high probability of spending more than 100 seconds on a few locations if gen-
erating solutions solely with CP. A pragmatic solution would be to execute the two approaches
in parallel and rely on the optimal CP solution for the locations where it can be generated fast.

6. Related work

Both academic and commercial organisations have contributed to model and identify meth-
ods to solve the Container Stowage Problem (CSP). Modeling of the CSPUDL can be found
embedded in larger models for the CSP in the early work of Botter and Brinati (1992). This
model, however, does not consider high-cube containers and does not allow the allocation of
20-foot and 40-foot containers in the same stack. Pre-placed containers are not considered ei-
ther since the vessel is assumed to be fully emptied at each port. Only overstowage is modelled
as objective, which is also the case for all other work discussed here except Wilson et al. (2001)
and Ambrosino et al. (2009) which we discuss below. Using an implicit enumeration Botter
and Brinati (1992) claim to solve CSPs of 740 TEUs , however no experimental results have
been provided. Avriel et al. (1998) has contributed a simplified model where only one type of
containers was handled and where reefer and high-cube containers were not taken into consid-
eration. Without considering the weight constraints, Avriel et al. (1998) designed a heuristic
which was able to solve problems of 1700 TEUs in 30 seconds. This performance is, however,
hard to evaluate if applied to the range of constraints and objectives of CSPUDL. Giemsch
and Jellinghaus (2003) recently improved the solutions to the model defined by Avriel et al.
(1998) using mixed-integer programming. But no concrete computational results were pub-

19

Opt. Gap
Gap. Freq.

0% 86%
1% 2%
2% 2%
3% 2%
4% 1%

10% 1%
15% 4%
20% 1%
30% 2%

(a)

Opt. Gap (Feas.)
Gap. Freq.

0% 74%
5% 6%

10% 2%
15% 5%
20% 3%
25% 3%
35% 3%
40% 1%

> 100% 3%

(b)

Feas. Iter.
Iter. Up to %

0 29%
5 23%

10 18%
15 8%
20 6%
25 3%
30 6%
35 1%
40 2%
45 2%
50 1%
65 2%

(c)

Feas. Worsening
Worsening % %

-20% 2%
-10% 2%
-5% 4%
0% 61%
5% 8%

10% 2%
20% 7%

> 20% 15%

(d)

Table 4: Algorithm Analysis (a) Cost gap between returned solution and optimal solution. (b) Cost gap between
feasibility phase solution and optimal solution. (c) Number of iterations needed to find a feasible solution in the
feasibility phase. (d) Worsening of the cost of the heuristic placement when making it feasible in the feasibility
phase.

lished. Wilson et al. (2001) use a hierarchical decomposition strategy for the CSP and solves a
problem similar to the CSPUDL using tabu search. Their article does mention the constraints
of the CSPUDL, but they are not formally definde. Compared to other work, Wilson et al.
(2001) introduce the pure stack objective to complement the overstowage objective. But the
free stack and reefer objective of CSPUDL are not considered. Moreover, the tabu search is
not described in detail, probably due to a commercial nature of the author’s industrial collab-
oration. Concrete results have also been omitted from the article. The authors mention that
locations in the test cases are of 12-60 TEUs and that the entire CSP can be solved in 90 min-
utes. This is well beyond the limit of 15 minutes for automated stowage planning to be of
practical value for stowage coordinators. Kang and Kim (2002) also proposes a decomposition
approach where the container to holds (locations) assignment is solved using implicit enumer-
ation. The model proposed, however, lacks the handling of reefer and high-cube containers
and only 40-foot containers are taken into consideration. The authors claim to solve the entire
CSP in 5 minutes considering a vessel with 20 bays (no size in TEUs of the vessel is given).
The simplifications made to the model makes it hard to apply to industrial instances. The same
year Dubrovsky et al. (2002) published a genetic algorithm approach again on a simplified ver-
sion of the problem where reefer and high-cube containers are not handled and only one type
of container is taken into consideration. The method was able to solve vessels of 1000 TEUs
within 30 minutes, which is too extensive compared to the size of the vessel. Moreover, such
simplified models cannot be used for industrial instances. Ambrosino et al. (2004) propose a
heuristic procedure for a problem similar to the CSPUDL except that it does not handle reefer
and pre-placed containers and only includes the overstow objective. They are only able to solve
a CSP of 188 TEUs in 718 seconds. Based on the same model Ambrosino et al. (2006) im-
prove the runtime of the problem using a 0/1 linear program for the bay assignment problem,
which solves the CSP in 383 seconds, which is still too much for a vessel of only 188 TEUs.
Successively Ambrosino et al. (2009) improved the runtime further by solving only a simpli-
fied version of the CSPUDL where each bay can only allocate one port of discharge and where

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250

T
im

e
(s

ec
.)

TEUs

Runtime performance

Runtime

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
P

 ti
m

e

LS time

LS vs CP runtime comparison

Normal
Unsolved

More than 5 sec.
More than 3 sec.

(b)

Figure 5: Algorithm Performance. (a) Execution time as a function of instance size measured in TEUs. (b)
Execution time comparison between our algorithm and the complete constraint programming approach used to
generate optimal solutions.

weight groups of containers are assigned rather than single containers. All the bay assignments
on a vessel of up to 1800 TEUs have been solved in 37.9 seconds. The model simplifications
and the removal of the overstowage objective, however, makes this model unsuitable to be used
on large industrial instances. Imai et al. (2006) propose a model which only handles one type
of containers and where reefer and high-cube containers are not taken into consideration. Solu-
tions to CSPs of 504 TEUs can be found with a genetic algorithm in 5883 seconds. The authors
however take also into consideration the minimization of overstowage in yards which makes it
hard to evaluate the runtime of the algorithm. Furthermore, they suggest that a simpler version
of the algorithm should be used on industrial instances, but no results of its runtime are given.
An IP approach was devised by Li et al. (2008) on a model that disregarded reefer, high-cubes
and pre-placed containers. Constraints such as no 20-foot containers on top of 40-foot contain-
ers are not handled. The paper mentions test instances of 800 TEUs but no results have been
published. Another decomposition approach for the CSP was published by Gumus et al. (2008)
where a problem similar to the CSPUDL was solved. The model, however, is scars in details
and seems to disregard high-cube containers. No results or details of the method have been
published.

7. Conclusion

In this article, we have introduced a representative problem model called the CSPUDL for
assigning containers to slots in under deck storage areas of container vessels. The CSPUDL
has been developed in close collaboration with a larger liner shipping company since 2005 and
is to our knowledge the currently most accurate of its kind. The CSPUDL is a sub-problem of
hierarchical decompositions of stowage planning which are currently the most efficient. Due
to the high-level constraints and objectives in stowage planning that cluster similar contain-
ers in bays, we hypothesise that the CSPUDLs solved by hierarchical algorithms are widely
under-constrained. To test this hypothesis, we have introduced a 3-phase constraint based local
search algorithm for solving the CSPUDL. Details of the algorithm in particular of incremen-
tal algorithms for fast neighbourhood evaluation have been presented. The approach has been
tested on naturally distributed real instances from the industry and is able to find high quality
solutions within an average runtime of 0.18 seconds. The experimental evaluation supports our

21

hypothesis and as expected a complete method based on constraint programming is unable to
robustly find good solutions fast. Our results suggest that an industrial system should race local
search and complete algorithms in parallel to achieve both near optimality and time robustness.
Further research is needed to develop these algorithms and complete the CSPUDL definition
(e.g., to handle IMO, OOG and palled-wide containers).

References

D. Ambrosino, A. Sciomachen, E. Tanfani, Stowing a containership: the master bay plan problem, Transportation
Research Part A: Policy and Practice 38 (2) (2004) 81–99.

R. Botter, M. Brinati, Stowage Container Planning: a Model for Getting an Optimal Solution, Computer Applica-
tion in the Automatio of Shipyard Operation and Ship Design VII (C) (1992) 217–229.

P. Giemsch, A. Jellinghaus, Optimization Models for the Containership Stowage Problem, Operations Research
Proceedings .

O. Dubrovsky, G. Levitin, M. Penn, A Genetic Algorithm with Compact Solution Encoding for the Container ship
Stowage Problem, Journal of Heuristics 8 (2002) 585–599.

M. Avriel, M. Penn, N. Shpirer, S. Witteboon, Stowage planning for container ships to reduce the number of shifts,
Annals of Operations Research 76 (1998) 55–71.

D. Ambrosino, A. Sciomachen, E. Tanfani, A decomposition heuristics for the container ship stowage problem,
Journal of Heuristics 12 (3) (2006) 211–233.

J. Kang, Y. Kim, Stowage Planning in Maritime Container Transportation, Journal of the Operational Research
Society 53 (4) (2002) 415–426.

I. Wilson, P. Roach, Principles of Combinatorial Optimisation Applied to Container-ship Stowage Planning, Jour-
nal of Heuristics 5 (1999) 403–418.

D. Ambrosino, D. Anghinolfi, M. Paolucci, A. Sciomachen, A new three-step heuristic for the
Master Bay Plan Problem, Maritime Economics and Logistics 11 (1) (2009) 98–120, URL
http://ideas.repec.org/a/pal/marecl/v11y2009i1p98-120.html.

L. Michel, P. V. Hentenryck, A constraint-based architecture for local search, ACM SIGPLAN Notices 37 (11)
(2002) 101–110, ISSN 0362-1340.

A. Delgado, R. M. Jensen, C. Schulte, Generating Optimal Stowage Plans for Container Vessel Bays, in: I. Gent
(Ed.), Fifteenth International Conference on Principles and Practice of Constraint Programming, vol. 5732 of
Lecture Notes in Computer Science, Springer-Verlag, 6–20, 2009.

S. Minton, M. D. Johnston, A. B. Philips, P. Laird, Minimizing Conflicts: A Heuristic Repair Method for Con-
straint Satisfaction and Scheduling Problems, Artif. Intell. 58 (1-3) (1992) 161–205.

D. Pacino, R. M. Jensen, A Local Search Extended Placement Heuristic for Stowing Under Deck Bays of Con-
tainer Vessels, in: Proceedings of ODYSSEUS2009, 2009.

I. Wilson, P. Roach, J. Ware, Container stowage pre-planning: using search to generate solutions, a case study,
Knowledge-Based Systems 14 (2001) 135–145.

A. Imai, K. Sasaki, E. Nishimura, S. Papadimitriou, Multi-objective simultaneous stowage and load planning for a
container ship with container rehandle in yard stacks, European Journal of Operational Research 171 (2) (2006)
373–389.

F. Li, C. Tian, R. Cao, W. Ding, Computational Science ICCS 2008, vol. 5101/2008 of Lecture Notes in Computer
Science, chap. An Integer Linear Programming for Container Stowage Problem, Springer Berlin / Heidelberg,
853–862, 2008.

M. Gumus, P. Kaminsky, E. Tiemroth, M. Ayik, A Multi-stage Decomposition Heuristic for the Container Stowage
Problem, in: Proceedings of the 2008 MSOM Conference, 2008.

22

