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Abstract

Ecologists instrument ecosystems with in-situ sensing to collect mea-
surements. Sensor networks promise to improve on existing data acqui-
sition systems by interconnecting stand-alone measurement systems into
virtual instruments. Such ecological sensor networks, however, will only
fulfill their potential if they meet the scientists requirements. In an ideal
world, an ecologist expresses requirements in terms of a target dataset,
which the sensor network then actually collects and stores. In fact, failures
occur and interesting events happen making uniform, systematic ecosys-
tem sampling neither possible nor desirable. Today, these anomalous sit-
uations are handled as exceptions treated by technicians that receive an
alert at deployment time. In this paper, we detail how ecological sensor
networks can adapt to anomalies and maximize the utility of the col-
lected datasets. More specifically, we present the design of a controller
that continuously maintains its state based on the data obtained from the
sensor network (as well as external systems), and configures motes with
parameters that satisfy a constraint optimization problem derived from
the current state. We describe our implementation, discuss its scalability,
and discuss its performance in the context of a case study.

I.2.8Computing MethodologiesArtificial Intelligence[Problem Solving,
Control Methods, and Search]

C.2.4Computer Systems OrganizationComputer-Communication Net-
works[Distributed Systems]

Design
Autonomous System, Constraint Optimization Problem, Planning, Sci-
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1 Introduction

For years, ecologists have deployed in-situ sensing infrastructures to observe and
monitor the biotic and abiotic factors in a given ecosystem. They primarily rely
on fixed data loggers to collect and store data from a wide variety of sensors.
They have been promised that low power wireless sensor networks would be
able to provide them with sampling at unprecedented scale and resolution [10].
However, the MEMS revolution has not yet delivered a radical change of the op-
tical, biological and chemical sensors that are pervasive in ecological monitoring,
and scientists cannot afford high density deployment of the current generation
of sensors, which are still bulky, energy hungry and expensive. Still, low power
wireless networks can have a tremendous impact on ecological monitoring by
transforming stand-alone devices into a networked system that is monitored
and controlled to meet the scientists requirements. In this paper, we study how
ecological sensor networks can be steered to improve the utility of the collected
datasets.
Ecologists rely on in-situ sensing to collect datasets of the form (t, x, y, z) →
(v1, v2, ..., vn), where the independent variables represent time (t) and space
(x, y, x), and the dependent variables correspond to the modalities of the sen-
sors deployed. These raw measurements are the foundation of the scientific
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workflow. They are tagged with metadata, and transformed into derived data
products via calibration, verification, or extrapolation processes. The derived
data products are then used for modeling purposes. The derivation processes
and the models are applied in the lab, as a post-processing phase, based on
the primary data collected in the field. If an offline verification process exposes
a sensor failure then the collected data is useless. If a model gives evidence
of interesting events, then the collected data might not be dense enough (in
space, time or modality) to allow a deep analysis of the phenomenon. In this
paper, we propose to move portions of the existing offline scientific processes
online, within the ecological sensor networks in order to improve the quality of
the collected data. Specifically, we propose that anomalous situations should
be recognized and handled online, while data is collected, so that the sensor
network can adapt and maintain high utility.
Consider a scientist that monitors a lake. She is interested in measuring con-
ductivity and temperature at five different depths, at a sampling rate of one
measurement per hour, for a month. This is her initial requirement based on
the dataset she wishes to collect. However, if we go further and consider poten-
tial anomalous situations, we obtain a much more complete picture:

• Failures: She can tolerate that measurements are taken up to once every
six hours; however below that threshold, measurements are useless. Also,
she requires that both conductivity and temperature are measured to-
gether; if either measurement is missing the other is useless. She indicates
a valid range for conductivity and temperature measurements; measure-
ments outside these ranges should be considered errors. Conductivity
errors might be compensated by either repeating a measurement within
a few seconds, and if that fails resetting the conductivity sensor. Tem-
perature errors might be compensated by looking up the temperature at
an adjacent depth. In addition, a sensor should not be considered dam-
aged if its measurements drift in time; regular manual samples are taken
periodically to compensate for such errors.

• Interesting events: The scientist indicates that she is interested in ther-
moclines (rapid changes in the temperature within a limited depth range)
- so if possible, measurements should be taken at additional depths if a
thermocline is detected (given a simple temperature variation threshold
for detecting thermoclines). Also, in case of a storm (signaled by the RSS
feed of a close-by weather station), the sampling rate should be increased
to twelve measurement per hour for the two depths that are closest to the
surface of the lake. The scientists notes, however, that if energy is limited
the baseline measurements should have priority.

The core of the problem is that ecological data acquisition has been based on
the premise of systematic ecosystem sampling: it is assumed that the ecosystem
is sampled with given modalities at predefined intervals in time and space. This
is neither possible (because of failures), nor desirable (because interesting events
might not be captured by the baseline settings). In contrast, we propose that
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ecological sensor networks should rely on adaptive ecosystem sampling, where
the procedure for selecting samples may depend on the values of observed vari-
ables [26]. More specifically, we propose an ecological sensor network controller
that checks the measurements it collects and adapts how the next measurements
should be obtained (in time, space and modality) to maximize their utility for
the scientists [25]. Now, the questions are: (1) How can scientists represent the
utility of measurements? (2) How can such a controller operate to maintain
high utility at reasonable cost in a changing environment? We address these
questions in this paper. Our contribution is the following:

1. We capture the scientist requirements in terms of data collection modes.
For each data collection mode, the scientist describes a range of acceptable
parameters. Utility is represented as a ranked preference of these data
collection modes.

2. We describe a controller that continuously maintains its state based on the
data obtained from the sensor network (as well as external sources), and
configures motes with parameters that satisfy a constraint optimization
problem derived from the current state.

3. We adopt a three-tier architecture, developed for autonomous systems, in
the context of a sensor network controller.

4. We detail the implementation of the ADAE system based on this design,
and discuss how it scales.

5. We describe a case study based on an actual deployment for lake moni-
toring.

2 Related Work

In this section, we look back on the evolution of data acquisition based on sensor
networks, we discuss the previous use of adaptive sampling in sensor networks,
and we review existing work on autonomous systems controllers.

2.1 Data Acquisition with Sensor Networks

Cougar [3] and TinyDB [19] introduced a distributed query processing paradigm
for sensor network data acquisition. The goal was to ensure a flexible tasking
of motes via a relational query interface. The assumption was that (a) the
relational model was appropriate to capture sensor data, (b) that users would
submit queries to task motes, and (c) that in-network processing was necessary
in the context of a sensor network. The relational query interface is not a good
abstraction for ecologists that do not wish to query the sensors but aim at
systematically collecting primary data sets for their scientific processes (see [20]
for a thorough discussion of the limitations of these approaches).
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BBQ [16] and MauveDB [8] introduced the notion of model-based querying as
an abstraction for data acquisition. The system maintains a statistical model
of the data, and instead of blindly collecting time series, only collects the data
that are needed to improve the precision of the model. For instance, correlations
across modality are leveraged to reduce the cost of data collection as expensive
measurements are replaced by cheaper ones. Users obtain probabilistic, approx-
imate answers to their queries. Such approaches are not relevant for ecologists
since they are the ones discovering new models and thus need primary datasets
as a foundation for their scientific processes.
PRESTO [18] further develops the idea of model-based querying. The PRESTO
gateway constructs a seasonal ARIMA model of the time series collected at a
given sensor. In order to maintain these models, PRESTO combines the pull
approach from MauveDB (data is collect as needed to improve precision), with
a push approach, where each sensors use the model parameters defined by the
gateway to predict future values and sends data to gateway in case an anomaly
is detected (i.e., there is a significant difference between a predication and the
actual measurement). The gateway refines the sensor model as it receives new
measurements to reflect changes in the sensed data. We share with PRESTO
this focus on anomaly detection and on adaptation to a changing environment.
PRESTO returns approximate answers that match the confidence interval spec-
ified by users. The rationale behind the design of PRESTO is to improve energy
efficiency, not to maximize utility for users.
Lance [27] introduced utility-based controllers in the context of sensor network
data acquisition. This system focuses on the collection of high-bandwith sig-
nals, where not all the data acquired by the motes can be transmitted to the
base station. Lance controls bandwidth usage by splitting the data acquired
at each mote into a sequence of data packets, and making sure that only the
most relevant data packets are transferred back to the base station. The selec-
tion is performed by the base station based on summaries sent by motes and
on a trade-off between cost and utility provided by the user. We share with
Lance a focus on optimizing the utility of the collected data. The fundamental
difference is that in Lance the optimization problem concerns the deletion of
data collected in a predefined way, while in ADAE the optimization problem
concerns the selection of the data collection parameters (e.g., sampling rate,
sensor placement, modality). Those two problems are orthogonal. In terms of
architecture, Lance focuses on flexible policy modules, while ADAE relies on
the three-tier architecture – both aspects are complementary. In the rest of the
paper, we assume that all data collected at the motes can be transmitted to the
gateway.

2.2 Adaptive Sampling in Sensor Networks

In statistics, adaptive sampling designs are those in which the selection proce-
dure may depend sequentially on observed values of the variable of interest [26].
In the context of sensor networks, adaptive sampling has been introduced to (a)
maintain high resolution while covering large regions of space using mobile sen-
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sors, e.g., light sampling with Networked Infomechanical Systems (NIMS) [4],
or to (b) reduce approximation errors with additional samples taken by mo-
bile sensors, e.g., weather forecasting with autonomous UAVs [7]. Compared to
these approaches, we do not seek to improve resolution with a reduced number
of sensors, but to maintain utility of measurements in a changing environment.
Our challenge is to take a decision on when, where or how to sample when-
ever the environment changes, rather than gradually improve the resolution of
a given model.

2.3 Autonomous Systems

Autonomous systems constitute a popular research topic in the areas of AI and
robotics. The most interesting developments have been achieved in the area of
autonomous controllers, with contributions ranging from the seminal work on
Deep Space 1 [9] to the Mars Rover [1]. An architecture for autonomous systems
has emerged [2] based on the following three tier architecture: the bottom tier
is the functional layer that is the interface with sensors and actuators, the
middle tier executes the planned actions and check their effects, and the top
tier implements the planning and scheduling functionalities. As we discuss in
Section 0.4.3, we adopt a similar architecture for the ADAE system. Note that
NASA has now made publicly available the platforms they developed for their
autonomous systems, e.g., Apex [12] or Europa [11]. We did not use these
systems because they did not support the type of solver we envisaged for our
planner, and because implementation constraints did not allow us to deploy
these systems on our target gateway1

3 The Ecologists Requirements

We aim at designing a system that autonomously adapts data acquisition to
meet the ecologists requirements. In this Section, we detail those requirements.
Note that our goal is not to define a rigid template for software engineering
purpose, but to put a stick in the ground regarding the scientists expectation
of an ecological sensor network.

3.1 Data Collection Modes

Ecologists rely on in-situ sensing to collect primary datasets. In the case of
manual sampling, they define a protocol that ensure the relevance, quality and
consistency of the collected data. In case of automatic sampling, they have to
express requirements to the monitoring system. These requirements are based
on the description of the target datasets, (t, x, y, z) → (v1, v2, ..., vn), described
in the Introduction, where the time domain defines the sampling rate as well as

1Apex relies on multi-threaded Lisp, which was not available on the Linux-based platform
we used for our deployment.
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the lifetime of the deployment, the space domain defines sensor placement, and
the dependent variables define sensor modalities and accuracy.
The traditional requirement is that given a dataset description, all data must
be stored, i.e., the whole dataset must be collected [21]. The problem with
this requirement is twofold. First, it defines an ideal goal. In case of failure, the
monitoring system will not be able to deliver the target data set. A consequence
is that system designers tend to assume that yield (what percentage of the target
dataset is actually collected) is an appropriate metric for system performance.
For ecologists however, the relevance of a dataset is not proportional to its
yield. In our experience, they identify portions of the collected data set that
they can use for modeling purposes, and portions that are useless - typically
because the dataset is locally too sparse (in time, space or modality). Second,
the requirement of uniform, systematic dataset collection does not account for
interesting events. Such events are arguably the most interesting elements of a
dataset. Their analysis might require denser sampling in time, space or modality
for a limited period of time.
For example, consider the soil monitoring project, ”Life Under Your Feet” [21].
This sensor network consists of more than hundred TelosB motes, each equipped
with two temperature and moisture sensor probes. These four probes are dug
into the soil at specific depths and sampled every ten minutes. This is fast
enough to monitor moisture evaporation but not precipitation, which changes
within seconds and not minutes. Obviously, continuously sampling at a rate
capable of capturing rain events would significantly strain the power supply.
However, using external sources such as local weather forecasts and only increase
the sampling rate when the chance of a rain event is significant would be far
less expensive power wise.
To overcome these limitations, our goal is to (a) capture an envelope of datasets
relevant for the ecologists in the context of a given deployment, and (b) a means
of representing the scientists preferences within that envelope.
We propose to capture the ecologists requirements as a ranked list of data col-
lection modes (e.g., baseline, degraded, failure, event detection). Some of the
modes are exclusive (e.g., baseline and degraded), while others can be active si-
multaneously (e.g., baseline and failure or event detection). For each collection
mode, the ecologists defines:

1. A description of the conditions that must be satisfied to activate or deac-
tivate these modes. A condition is specified using a rule (e.g., humidity
inside a mote is greater than 50%), a model (e.g., Echo State Network for
anomaly detection with a training set specified by the scientist [6]), or a
timing constraint (e.g., within five minutes or for five hours).

2. A target dataset, i.e., its time component (lifetime and sampling rate), its
space component (sensor location), and its dependent variables (modality
and accuracy). Note that, for data collection modes associated to fail-
ures, the target data set specifies relevant redundancy in time, space or
modality.
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3. A sparseness threshold for each modality, i.e., the number (or distribution)
of usable measurements per chunk of time and space.

The ranking of the collection modes defines an ordinal utility function. Despite
our insistence, none of the scientists we are collaborating with could find a non-
trivial cardinal utility in the context of their activity. In addition to these data
collection modes, the ecologists defines a target lifetime for data collection.
For example, we derive from [21], the following requirements for ”Life Under
Your Feet”:

• We define the following data collection modes: baseline, precipitation,
and fault modes (which should be defined with the ecologist).

• The baseline is always present, while the condition for the precipitation
event is when the weather forecast predicts rain and the condition for
the fault are humidity in the mote greater than a given threshold, out of
bounds measurement.

• The target dataset for the baseline is the four probes sampled every 10
minutes, for the precipitation it is every minute instead. For the fault
modes, we would need to identify redundancy in time, space or modality.

• We set the sparseness threshold to six set of samples every hour in each
data collection mode.

We derived this form of requirements from our collaboration with ecologist.
When asked about their requirements all scientists initially defined a single ideal
target dataset. When faced with the fact that failures might occur, they came
up with a form of sparseness threshold, and the definition of one or several
degraded modes. They expressed interesting events characterized by simple
conditions (external events or simple thresholds on the sensed data).

3.2 The Case for Autonomous Data Acquisition

The solution promoted in commercial data acquisition systems to tackle failures
and anomalous situations consists in involving human supervision. Let us go
back to the lake monitoring example from the Introduction. A buoy is deployed
equipped with a data logger that stores the data it collects at a predefined sam-
pling rate from the CTD sensors (conductivity, temperature, depth) deployed
at five different depths. The data logger is equipped with long-range wireless
communication and it acts as a server for telemetry and tele-command, possibly
alerting a technician in case of problems and accepting commands and config-
uration operations. This design, which is the state-of-the-art in ecological data
acquisition, is however flawed in several respects:

1. Contingency planning is weak. In case the data logger detects an anoma-
lous situation, it raises an alert and it is up to the technician to handle it.
This is a best effort approach, where response to anomalies is unspecified
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and variable. In our experience, the resources available for monitoring pur-
poses do not allow 24/7 supervision. Because, long-range communication
and technician supervision are expensive, the data logger is programmed
to send alerts in limited cases. The system is not configured to compensate
for errors or to react to interesting events.

2. No graceful degradation. When energy supplies are low, data acquisition
continues at the predefined sampling rate at the risk of thrashing. More
generally, the assumption is that the system has a single regime, and that
human intervention is needed to keep this regime operational in case of
failure.

3. The system is stand-alone. Co-located data loggers are not interconnected,
thus possibly missing opportunities for increased redundancy, and detec-
tion of interesting events.

Our goal with this work is to limit human intervention to the initial require-
ments, and let an autonomous data acquisition system handle anomalies with
a controller that continuously adapts to changes in the environment, and tasks
motes to maximize the utility of the measurements2. We detail the design and
implementation of such a controller in the next Section.

4 The ADAE System

ADAE is an autonomous gateway-based controller that tasks motes to keep on
maximizing utility in a changing environment. Before we describe its design,
architecture and implementation, we address the following question: Which
actions can ADAE take in order to control the sensor network?

4.1 Sensor Network Model

We model an ecological sensor network as a cluster of motes connected to a
gateway. We adopt a classical two-tier model [18, 27], where motes are slaves,
tasked by the gateway-based controller to sample, store and transmit data. We
do not consider any form of in-network aggregation or storage (beyond local
computation or storage on the mote that produces data). We further assume
a best effort delivery between mote and gateway (e.g., CTP [13]) that allows
the gateway to collect routing statistics. Finally, we assume that each mote is
appropriately duty cycled (based on the sampling rate and offload rate), and
that it is accessible (using a form of low-power listening [24]).
We also assume that the sample, store and transmit tasks are accomplished
by a program deployed on all motes, and that this program can be configured
with parameters to modify the sampling or transmission policy. We make this

2Obviously, when possible and affordable, human intervention should be used to maintain
the optimal regime. Our point, here, is that the system should maintain high utility and
degrade gracefully when the optimal regime is no longer sustainable.
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assumption because it allows for a straightforward integration of legacy sys-
tems (including the current generation of commercial motes). Leveraging rich
mote APIs or mote reprogramming (via tasklet distribution [14] or full image
reprogramming [15]) is an issue for future work.
We introduce virtual sensors to abstract the details of the actual motes3. Each
virtual sensor represents a modality of a given mote (we describe virtual sensors
in more detail below). Virtual sensors export a single API function, that defines
the space of possible controller actions (note that such actions must be mapped
to the API exported by the actual motes):

• configure(V S, SR, TR) to configure the sampling rate (SR) and trans-
mission rate (TR) on a given virtual sensor (V S).

4.2 Controller Design

The key questions that we need to address are: (a) What is an appropriate
abstraction of the sensor network?, (b) How to represent user requirements, i.e.,
data collection modes and utility?, (c) How to define cost?, and (d) How to plan
a sequence of actions given the controller state and the user requirements.

4.2.1 Virtual Sensors

Conceptually, the following relations can be used to organize the state variables
representing a sensor network:

VirtualSensor(VS_id, Modality, Mote_id,

X, Y, Z, SampleTime, SampleEnergy,

TransmitTime, TransmitEnergy)

VirtualSensorState(VS_id,

SamplingRate, TransmitRate)

Mote(Mote_id, BatteryCapacity, VB_id,

Forward, Overhear)

Topology(ParentMote_id, ChildMote_id)

VirtualBattery(VB_id, LifeTime, Percentage,

NbInstallments, Credit, MaxBurnRate)

VirtualBatteryState(VB_id, Balance,

InstallmentsDone, MaxOverDraft)

Each virtual sensor is identified by a V Sid and represents the Modality of a phys-
ical sensor attached to mote Moteid, at a fixed location X,Y, Z4. A calibration
phase defines the time and energy it takes to make a measurement with the given
modality (SampleT ime, SampleEnergy)5, as well as the time and energy re-
quired to transmit one measurement (TransmitEnergy, TransmitT ime). Note
that such normalized time and energy attributes correspond to the notion of

3Our notion of virtual sensor is inspired by Franklin et al. [20]
4For static sensors, (X, Y, Z) are given at deployment time, while for mobile sensor a valid

range and possibly constraints are given for these variables.
5Note that we rely on constraints to indicate the dependencies that may exist between

modalities on a same physical sensor.
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platform vector introduced in [17]. The VirtualSensor relation is configured at
deployment time and remains unchanged thereafter.
Virtual sensors are configured with two data acquisition parameters: the sam-
pling rate (SamplingRate), and the transmission rate (TransmissionRate)6.
For each mote, we store the capacity of the battery it contains (BatteryCapacity)
as well as the reference of a virtual battery V Bid, which is the abstraction [5]
that we rely on to reason about energy allocation. A calibration phase allows
to define for each mote, the cost of forwarding or overhearing a measurement.
We use a simple representation of the collection routing tree using the topology
relation. Note that our assumption here is that the topology observed at a given
time is a good predictor of the topology in the subsequent epoch. Obviously,
we do not capture network dynamics with this model, but this is not our goal.
Our goal is to represent topology and transmission costs to estimate the cost of
a data acquisition plan (see the discussion of our cost model below).
Each virtual battery is characterized by the Percentage of the total capacity
associated to sampling, forwarding or overhearing (with a given mote). Virtual
batteries are further specified with a LifeT ime requirement (given by the user),
a total number of installments (NbInstallments), a Credit rate that allows to
specify an energy allocation policy (Credit is a real number in the interval [0, 1],
e.g., 0 corresponds to a conservative policy that only grant energy installments
when there is an energy surplus, while a positive credit rate corresponds to a
policy that allows energy deficit up to Credit), and a maximum allowed energy
burn rate MaxBurnRate. The virtual battery state relation is used to maintain
the actual energy Balance, the number of Installments already received and
the maximum overdraft allowed (MaxOverDraft which is a negative number).

4.2.2 Physical Limitations

The controller maintains a set of constraints over virtual sensors that reflect
the actual limitations of the physical system. Those constraints concern the
range of possible values for the location parameters (X,Y, Z), the sampling rate
(SamplingRate), and the transmission rate (TransmissionRate). In addition,
a physical mote is represented as several virtual sensors, one for each modality.
We capture the serial or parallel constraints that exist between co-located vir-
tual sensors, in terms of location and in terms of timing of the measurements.
In order to represent the timing constraints, we do not need the whole power of
the event calculus [25], we just need to represent constraints on serial or parallel
executions. We thus introduce variables ti,j that represents the time required
before V Sj can take a measurement after V Si and use integer constraints to rep-
resent these timing constraints. To sum up, we represent the physical limitations
of the sensor network using two types of constraints: (1) domain restrictions,
and (2) integer constraints based on virtual sensors variables.

6Note that we force transmissions to be triggered by a time-based condition (the trans-
mission rate) instead of a more general form of condition (e.g., transmit when mote storage
is half full) and thus sacrifice flexibility for predictability.
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4.2.3 Data Collection Modes

To represent data collection modes, the controller maintains:

• A set of predicates P to represent the conditions that activate and de-
activate the given data collection modes. The controller implements the
rule-based, model-based or time-based methods specified by the users to
evaluate these predicates.

• Specific constraints imposed by the sparseness threshold for the given
data collection modes. These constraints are expressed as restrictions of
the state variables domains D (e.g., X ∈ [1..100]).

4.2.4 Utility Model

We base our controller on the principle of maximum expected utility [25]. Each
action taken by the controller configures motes in conformance with one of the
data collection modes described by the ecologist. We associate a cardinal utility
to each action, based on the ranked preference among the resulting data col-
lection modes. This utility function is a simple scoring function with uniform
spacing (for N modes, the scoring function is such that the top ranked mode gets
a score of N, and the bottom ranked mode gets a score of 1). Using the binomial
distribution, we model the probability of success for a configuration as the prob-
ability of collecting a number of samples higher than the sparseness threshold:
1 − 1

( SamplingRate

SparsenessT hreshold)
(where both SamplingRate and SparsenessThreshold

are defined in numbers of samples for a given epoch ∆). The sparseness thresh-
old might be defined for several modalities (i.e., several virtual sensors) within
a given data collection mode, so we select the lower probability and multiply it
by the rank to obtain the expected utility for that data collection mode.

4.2.5 Cost Model

The controller associates a cost to each virtual sensor configuration, based on
the energy used to sample, transmit and overhear measurements. We adopt a
variation of the cost model introduced in Lance [27], and represent the cost δj

of a virtual sensor configuration V Si per virtual battery V Bj . The source mote
to which V Si is associated incurs a sampling and transmit cost, while motes on
the communication path incur a forwarding cost, and motes one hop away from
the communication path incur a overhearing cost. For a given period of time T,

• Sampling and transmission cost on the source virtual sensor is estimated
as (SampleEnergyi +TransmitEnergyi) ∗ (SamplingRatei ∗T ), i.e., the
product of the energy cost of obtaining a measurement with the number
of measurements in the period.

• Forwarding cost is estimated as Forwardingj ∗ (SamplingRatei ∗ T ).
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• Overhearing cost is estimated as Overhearj ∗ (SamplingRatei ∗ T ). It is
associated to the transmission virtual batteries of all physical motes in the
neighborhood of the forwarding motes.

We introduce integer constraints derived from the virtual battery energy alloca-
tion model: for a given time period T, (1) the balance is greater than the maxi-
mum overdraft (Balance−δj > MaxOverDraft), and (2) the amount of energy
spent by V Si is bound by the maximum burn rate (δj ≤ MaxBurnRatei ∗ T ).

4.2.6 Planning Problem

Now, the question is: How does the controller pick appropriate actions given
its current state? Because the controller operates in a changing environment,
it needs to proceed online, i.e., select some actions at one point in time and
evaluate their impact regularly, possibly selecting new actions to react to a
change in the environment. We call epoch, noted ∆, the period of time after
which a given action is reevaluated (note that our cost model and utility function
are defined for limited time frames). A default epoch size is given as a system
parameter. Note that an epoch is shorter than the default, in case a data
collection mode predicate requires it (e.g., the actions following a failure might
be valid/relevant only for a short period of time). We impose a constraint that
the period corresponding to the transmit rate is lower than (or equal to) the
epoch ∆.
For each epoch, virtual sensors have a fixed configuration (i.e., fixed location,
fixed SR and TR). The actions generated, for a given epoch, are thus a collection
of at most one API call per virtual sensor. The planning problem is thus reduced
to a constraint optimization problem, where the controller must find values of
the state variables that satisfy all the constraints, maximize expected utility and
minimize cost: (V, R, C, U), where V represent variables (i.e., all the attributes
from the virtual sensor relations), R are the restrictions on these variables (ei-
ther given by the system model, the cost model or the user requirements), C are
the constraints (i.e., physical limitations, or virtual battery constraints) and U
is the expected utility. The size of the search space grows exponentially with the
number of virtual sensors O(sr range · 2N ), where N is the number of virtual
sensors and sr range is the average size of the SamplingRate domains

4.3 System Architecture

Our controller needs to address three sub-problems:

1. How to update the controller state?

2. How to generate the appropriate constraint optimization problems when
appropriate?

3. How to solve the given constraint optimization problems?

12



Figure 1: Architectural overview of ADAE.

In order to tackle these problems, we structure our controller using the classical
three-layer architecture developed for AI planning [2]:

• Functional Layer, which provides abstractions for the motes, the sensor
tasks, the storage subsystem, and the detection modules. Its interface is
generic, but its implementation is deployment-specific.

• Executive Layer, which checks the collected data, call the decision layer if
a new plan is needed, and transmits the plans from the decision layer to
the functional layer. Both its interface and implementation are generic.

• Decision Layer, which produces a new plan based on the data it gets from
the executive layer. The decision layer is composed of a generic solver and
of a deployment-specific model.

The flow of information in the individual components in this three-layer archi-
tecture is illustrated in Figure 1. Data generated from the sensor network (both
measurements and network status) is collected by SensorData. This data is
stored in a local database, and passed along to the upper layers of the controller.
We use virtual sensors to present a uniform abstraction to the upper layers of
the controller. One issue, though, is to map the data received from actual
motes into data associated to virtual sensors. This mapping is straightforward
for stationary sensors since there is a direct one-to-one mapping between vir-
tual sensors and the modality of a mote at a given location. Mobile sensorsOn
the other hand, have a one-to-many mapping, were each distinct location of a
mobile sensor corresponds to a different virtual sensor. The data associated to
virtual sensors is then passed on to PredicateGenerator. Information from
external sources, such as weather forecasts and time and date specific events are
collected by ExternalData. This data is passed on to PredicateGenerator.
In PredicateGenerator, detection and mapping algorithms are used to trans-
form the time series, network status, and external data into predicates. In terms
of architecture, one or several detection modules are attached to each virtual
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sensor. For example, the range of each measurement value can be checked and
if some are found to be out-of-bounds the OutOfBounds predicate is set to true.
The conditions described by the ecologist are also checked at this point with
each condition generating its own predicate.
These predicates are passed on to COPGenerator where they are used to
represent the current state of the system. The role of this component is twofolds.
First, it maintains the state of the virtual sensor and virtual batteries. Second,
it constructs a COP that reflects this state, and incorporates the constraints as
well as utility function from the set of data collection modes activated by the
predicates that evaluate to true. Note that we generate a single COP for the
entire network in order to account for forwarding and overhearing costs.
This COP is then passed on to COPSolver which tries to find a sensor config-
uration that satisfies all the constraints of the COP and at the same optimizes
the expected utility and minimize cost. In ADAE, we model our COP using
the MiniZinc [22] constraint programming language which allows us to define
our COPs at a high level of abstraction. This gives us the flexibility to switch
between different engines depending on performance and platform availability.
The solving of the COP is accomplished in two-steps. First, the COP formu-
lated in MiniZinc is translated to the FlatZinc language, a lower level constraint
programming language. Second, a generic solver with a FlatZinc parser is used
to solve the COP. The downside of using a generic language such as MiniZinc
is the added overhead from the intermediate step and the missed opportunity
to leverage solver specific performance enhancements, i.e., specific API calls.
The resulting plan is passed on to PlanInterpreter where a configuration
is generated for each mote and using SensorConfigurator each mote in the
network is reconfigured. Similar to the mapping process in SensorData, the
configurations for the virtual sensor abstraction are transformed into commands
and configurations specific to the physical sensor network. Virtual sensors cor-
responding to sensors with fixed locations are mapped directly, while for virtual
sensors representing mobile sensors, the robot carrying the sensor is instructed
to follow a path connecting the virtual sensors. A cache of all the current con-
figurations are kept and motes are only reconfigured if there are any changes.
Whenever possible, SensorConfigurator requires that motes piggyback their
energy status on the data they transmit. Such energy status are identified by
SensorData and used by PredicateGenerator to update the virtual battery
state.

5 Evaluation

The key question from a performance point of view is whether our approach
based on generating and solving Constraint Optimization Problems is viable,
specially in a multi-hop setting with a cluster of 40-50 motes. This is the
question we address in this Section. Our implementation of ADAE is publicly
available7 and based on the standard C++ library to ensure portability. We

7http://code.google.com/p/adae/
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only use the MiniZinc-to-FlatZinc translator provided by [22] and not the cor-
responding FlatZinc solver. Instead we use the Gecode solver with the FlatZinc
interface8, since it has better performance, supports are wider range of plat-
forms, and allows a more controlled search process. All benchmarks are run on
an Intel Core 2 T7600 2.33 GHz processsor.

5.1 Sanity Check

5.1.1 Constraints

Because we are considering Constraint Optimization Problems, we expect the
resource constraints (i.e. time and energy) to have a significant dual impact on
the search space. On one hand, tight resource constraints will limit the search
space by rendering certain states inaccessible, and thus reduce the runtime. On
the other hand, loose resource constraints will make even the high utility states
accessible, giving the full benefit of the optimization directed search. We thus
expect the search space to be largest when the resource constraints are neither
restrictive enough to render a significant portion of the state space inaccessible
nor loose enough to make the states with the highest utility available.
Of course, this only holds if the cost/benefit relation between time/energy and
utility is positive, i.e., states with higher utility requires more resources than
states with lower utility. With a negative relation, tight resource constraints
would lead to the benefits of both a small state space and a optimization directed
search, while a loose constraint would have neither. For the remainder of this
Section we choose a positive relation since this seems most applicable, i.e., higher
cost yields higher utility.
In Figure 2 we show the runtime for three different COPs, with varying energy
constraints. Because the time constraint are modeled completely analog we only
consider the energy. The number of motes and available sampling rates are all
fixed at one for all three problems.
The energy constraints are set as a fraction of the maximum energy required for
the most demanding state, since this depends on the number of virtual sensors.
As expected, there is a significant difference in runtime when the constraints are
varied. Specifically, there is a difference of three orders of magnitude between the
COPs with no energy constraints (100%) and the ones with exactly half available
(50%). This confirms our initial analysis that the search space is largest when
neither the constraints nor the optimizations can be used to minimize the search
space significantly.

5.1.2 Virtual Sensors

We know from Section 0.4.2 that the size of the state space grows exponentially
with the number of virtual sensors and linearly with the number of available

8Generic Constraint Development Environment. http://www.gecode.com/
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Figure 3: The influence of virtual sen-
sors on the search space. Note the log-
arithmic scale.

sampling rates. On the other hand, the number of motes only effects the shape
of the state space. We thus expect the former to have a significant impact on
runtime while the contribution from the latter will mostly be overhead from
book keeping.
We explore the scalability with regards to the number of virtual sensors in
Figure 3. As before, we keep the number of motes and sampling rates fixed
at one. With the new information above, we set the energy constraint to 50%
of the highest energy state in order to explore the largest search space. As
expected, the runtime grows exponentially with the number of virtual sensors
(note the logarithmic scale).

5.1.3 Sampling Rates

Next we explore the impact of the size of the sampling rate domain. Again, we
keep the number of motes fixed at one and set the energy constraint to 50% of
the highest energy state. We expect from Section 0.4.2 that the runtime grows
linearly with the sampling rate domain size, which is also the case as can be
seen in Figure 4.

5.1.4 Motes

In Figure 5 we show the run time as a function of increased number of motes.
Not surprisingly, increasing the number of motes does not have a significant
impact on runtime, with only a small linear addition when adding motes. The
reason why motes add a small amount of overhead lies in the way cost and
utility are calculated in the model: there is an intermediate calculation step for
each mote.
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5.2 Constraining Runtime

In the previous experiments, the runtimes we measured have all been for exhaus-
tive searches. However, with an exponential state space we have no guarantees
that the search space will be traversed in a timely manner.
Although our goal is the optimal solution, any assignment that satisfies our COP
will of course also satisfy the ecologist’s requirements. Hence, any solution will
be tolerable although one with higher utility is obviously preferred.
Thus, we explore the quality of the intermediate solutions (if any) that the
solver discovers during each search when subject to a hard upper bound on the
runtime. We turn our attention back to the problems from Section 0.5.1 in order
to compare both the constrained runtime with the exhaustive runtime and the
intermediate utility with that of the optimal one. However, even with the lowest
runtime we could enforce on the search, 15 ms, the solver was able to find a
solution with a utility identical to the optimal one. Even when we increased the
number of virtual sensors to 40, we still obtained the optimal solution as one of
the first solutions where an exhaustive search would have taken more than 20
days.
The reason for this surprising result is that although the problems we seek to
solve have an exponentially large search space, the solutions themselves are
rather simple; and the reason why the solver requires an exhaustive search to
find the optimal solution is because we use a generic one that can only be
given general search directions and not a problem specific solver with detailed
knowledge of the system’s dynamics.
In our case, the general search directions we use are to first establish the optimal
sampling rate, by searching in ascending order, and next determine which virtual
sensors to include, starting with them all. This strategy favors the localization
of a solution involving as many sensors as possible, which quite often is exactly

17



0 20 40 60 80 100

20

40

60

80

100

% of max. energy

E
ffi

ci
en

cy
 / 

%

 

 

1s 10s 20s 30s
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”Life Under Your Feet” COP with 100
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the lowest tolerable operation mode. We leave the creation of a constraint
programming solver tailored for environmental models open as future work.
Instead we turn our attention to a more complex and realistic COP, and con-
sider the soil monitoring sensor network described in Section 0.3.1. Besides the
increased virtual sensors needed, this COP also considers each mote’s commu-
nication cost caused by multi-hop routing. For this evaluation, we choose a
simple 4-hop binary tree topology, with the excess motes evenly spread among
the leaves.
First we consider a system of 120 virtual sensors, spread evenly among 30 motes,
each containing two datasets and two possible sampling rates. We plot the
relation between energy constraint and optimal solution for four cut-off runtimes
in Figure 6. The energy is varied between the lowest to highest state and the
efficiency is measured as the percentage of the optimal solution. Surprisingly,
the efficiency is above 88 % for even the shortest runtime of 1 s while almost
half of all the solutions found are the optimal one.
We then increase the state space by considering 400 virtual sensors attached
to 100 motes. The results can be seen in Figure 7. Overall the increased state
space decreases the efficiency for all cut-off times and not surprisingly the 1 s
cut-off suffers the most. Looking closer, although the state space has increased
by a factor of 270 the 20-30 s cut-off times are still able to achieve 80-100 %
efficiency.
This result shows that for environmental monitoring where changes happen on
the order of minutes, our controller is efficient enough to instrument the sensor
network in a timely manner. Especially, since any solution that satisfies the
COP also satisfies the needs of the ecologist, regardless of the achieved utility.
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5.3 Discussion

In the previous sections we explored the scalability of our model by measuring
the runtime over a broad range of parameters. We discovered that even with
a generic solver and an exponential search space, the first solutions found are
quite often close to the optimal solutions. This last result is encouraging since it
suggests that we can plan for even large networks by enforcing an upper bound
on the search and still be confident that the result will be close to optimal.
At the same time, it enables several contingency strategies. For instance, if
no solution can be found within the given time limit, another search can be
initiated but with a higher time limit, or relaxation techniques can be used to
simplify the problem by removing datasets from the model one at the time,
stopping with the baseline dataset. These simpler problems will thus have a
higher chance of success.

6 Case Study: Lake Monitoring

In order to illustrate the usefulness of ADAE we present a case study of a
buoy equipped with a mobile water monitor [23]. The virtual sensor abstraction
completely shields from the controller that the physical sensors are in fact mobile
and not stationary. Unlike typical wireless sensor networks built from low power
motes with inexpensive sensors attached, this water monitoring system consists
of a $20,000 high-quality data logger which has been network enabled. Being
able to control legacy systems is interesting because these are instruments the
ecologists know they can trust.
This system consists of a single buoy equipped with a water monitor capable of
measuring conductivity, temperature, dissolved oxygen, pH, and fluorescence.
These properties are important in estimating the primary production and res-
piration in the lake ecosystem.
The water monitor is attached to the buoy with a 10 m long cable. An electric
motor is used to adjust the vertical location of the water monitor thus enabling
measurements at different depths. The buoy is powered by solar panel and is
equipped with battery for night time operation. A Real-Time Control Unit
(RTCU) instruments the motor and water monitor. Collected data is directly
transmitted from the buoy to a back-end database over the Internet through a
GSM modem. This connection is also used to transmit new configurations to
the buoy, which is used by the RTCU to control the depth and sampling rate
of the water monitor. In case of network outage, the RTCU reverts to being a
data logger and stores all measurements locally until network service has been
restored, at which point the data is offloaded.
This system has been deployed continuously for an entire season. Twice an hour
the water monitor is lowered to ten predefined depths and at each depth all five
sensors are sampled.
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Figure 8: Four vertical profiles of temperature (buttom) and dissolved oxygen
(top) measurements. Measurements obtained with the baseline dataset has
been overlaid with measurements from the stratification dataset.

6.1 Problem Statement

Because of surface heating in the summer and the lake’s dynamics, two distinct
temperature regions, characterized by a sharp boundary, can be formed at the
top and bottom. This stratification is interesting for the ecologist because the
biological activity is particularly high at this boundary.
Understanding this layering with measurements clustered around the boundary
would be of significant scientific value. However, since the formation of this
stratification and its location is neither predictable nor static over time it is not
possible to specify the exact measurement depths a priori. Hence, the previous
season’s measurements have all been done at ten fixed depth, spread out evenly
down to 9 m.
As it turns out, the buoy’s power supply has been over dimensioned with a solar
panel and battery capacity exceeding the maximum power consumption of the
system, even when running continuously. On the other hand, because the water
monitor has to physically move, the system can at most measure 15 samples
every half-an-hour, due to the actual movement and the following stabilization
of the water.
Thus, in this case study the purpose of our adaptive data acquisition is not to
conserve energy or meet lifetime requirements, but rather to increase the quality
of collected data by adapting the sampling strategy.
In other words, the problems we seek to solve is (1) to detect and track the
location of this temperature boundary and (2) instruct the buoy to collect extra
samples in this region, besides the ten fixed samples.
Using the formalism presented in Section 0.3.1 we state the ecologist’s require-
ments as follows:
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• We define three data collection modes: baseline, stratification, and
correction. We did not define failure modes in this first deployment. We
will leverage some of the lessons we learnt to define failure modes in the
next deployment (based on anomalous patterns indicating a problem with
a probe as suggested in the Introduction).

• The baseline is always present, while the condition for the stratification
event is the formation of a temperature gradient greater than 0.5◦C/m.
Finally, the condition for the correction is when the sparseness threshold
is reached.

• The target dataset for the baseline is ten samples at fixed depth. For the
stratification, it is five samples clustered around the highest temperature
gradient. The correction is to re-collect missing samples.

• Only the baseline is given a sparseness threshold of ten samples every
half-an-hour.

6.2 COP Modeling

Given the requirements and the physical constraints of the system, we create
three datasets. The baseline contains five virtual sensors (one for each modality)
fixed at each of the ten depths, while the stratification is constructed from two
parameters: the epicenter and the range of the stratification. Computing the
stratification condition is straightforward, and the highest value is used as the
center and all values exceeding the 0.5◦C/m threshold constitute the range.
Last, the correction is constructed from the missing samples.
The reason behind the 30 minutes sparseness threshold is that physical changes
in the lake happens on this timescale. Thus, combining a baseline dataset with
its associated stratification dataset in one sequence is not an option because the
stratification set will by definition be shifted with the transmit rate. In other
words, the two datasets are mutually exclusive and must be applied sequentially.
We constraint the transmit rate and set the epoch to 20 min. for the baseline
and 10 min. for the stratification.
The ordering of the collection modes are then: baseline, correction, and strat-
ification.
Because energy is not an issue in this case we do not define a constraint for this
resource. However, there is still the temporal constraint on the system, where
the water monitor’s round trip time combined with the sampling time must not
exceed the time frame dictated by the sampling rate. Because the water monitor
and control unit operates in parallel we do not consider the transmission time
since this is significantly smaller than the measurement time.
The water monitor requires 90 seconds to settle at each new location and sample
all the sensors. We assign this time cost to each virtual sensor but add in the
model that virtual sensors at the same depth can be sampled in parallel. In
the application specific part of the model we define the systems temporal cost
function as the number of virtual sensors times the cost of each individual sensor
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combined with the round-trip-time of the water monitor. We model the round-
trip-time as twice the distance of the deepest placed virtual sensor divided by
the speed of the electric motor.

6.3 Results

We implemented the model above in ADAE and used it to control the deployed
buoy remotely through the back-end server. We used a low-power ARM based
single board computer to serve as our controller.
In Figure 8 we show four series of temperature (bottom) and dissolved oxygen
(top) measurements. The baseline dataset has been overlaid with the stratifica-
tion dataset in order to illustrate the benefit of adaptive sampling. In each series,
the measurements to the left are closer to the surface than the measurements
to the right.
For the temperature, we see a sharp boundary in the 7-11◦C region where
only one baseline measurement is present in each series and the rest of the
measurements are clustered either above or below this region. When we look at
the stratification measurements we see that there indeed are five in each series
and that they are filling the gap left by the baseline measurements. For the
dissolved oxygen we see a similar trend, with the extra measurements filling
out the gaps left by the baseline measurements. Interestingly, the stratification
measurements do not lie on a straight line between the baseline measurements,
meaning knowledge has been gained by adding the extra measurements.

7 Conclusion

Sensor networks promise to radically improve the data acquisition systems that
ecologists can deploy for in-situ instrumentation. There is however a risk of mis-
match between the assumption by ecologists that the sensor network delivers
exactly the time series that has been specified, and on the assumption by com-
puter scientists that the goal is to collect as much data as possible (using yield
as a performance metric). We argue that it is necessary to take failures and
interesting events into account when specifying the ecologists requirements. We
proposed data collection modes as a means to represent an envelope of target
datasets (e.g., higher sampling rate, or higher accuracy, or different combination
of modalities for a given period).
Based on the insight that uniform and systematic ecosystem sampling is nei-
ther possible, nor desirable, we proposed ADAE, a utility-based controller, that
adaptively configure motes in a changing environment. ADAE is based on the
assumption that motes export a simple configuration API in order to easily in-
terface with legacy systems. We described a three-tier architecture to organize
the complexity of communicating with motes, representing the sensor network
state and the user requirements, generating constraint optimization problems
(COP) to determine the configuration parameters, and solving these COP. We
showed that a COP solver scales to realistic multihop sensor networks, and
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we illustrated the benefits of ADAE in a lake monitoring monitoring system
deployed this summer.
We are in the process of preparing new deployments. These are needed to
explore the limitations of data collection modes, as well as ADAE. In particular,
we are investigating how to handle a very dynamic environment, and how to
handle failures in a long-term autonomous deployment.
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[21] R. Musăloiu-E., A. Terzis, K. Szlavecz, A. Szalay, J. Cogan, and J. Gray.
Life Under your Feet: A WSN for Soil Ecology. In EmNets Workshop, May
2006.

[22] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.
MiniZinc: Towards a Standard CP Modelling Language. In 13th Interna-
tional Conference on Principles and Practice of Constraint Programming,
2007.

[23] Peter A. Staehr and Rikke M. Closter. Measurement of whole system
metabolism using automatic profiling sensors. In GLEON 6, 2008.

[24] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access for
Wireless Sensor Networks. In ACM SenSys, 2004.

[25] S. Russell and P. Norvig. Artificial Intelligence A Modern Approach, 2nd
Ed. Prentice Hall, 2003.

[26] G. S. S. Thompson. Adaptive Sampling. Wiley Interscience, 1996.

[27] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh. Lance: optimiz-
ing high-resolution signal collection in wireless sensor networks. In ACM
SenSys, 2008.

24


