
Real-world Bluetooth MANET Java Middleware

Michael Nielsen
Arne John Glenstrup
Frederik Skytte
Arnar Guðnason

IT University Technical Report Series TR-2009-120

ISSN 1600–6100 October 2009



Copyright c© 2009, Michael Nielsen
Arne John Glenstrup
Frederik Skytte
Arnar Guðnason

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 9788779492028

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk



Real-world Bluetooth MANET Java
Middleware

Michael Nielsen
IT University of Copenhagen

Copenhagen, Denmark
Email: michael1982@itu.dk

Arne John Glenstrup
IT University of Copenhagen

Copenhagen, Denmark
Email: panic@itu.dk

Frederik Skytte
Email: skytte@itu.dk

Arnar Guðnason
Email: arnar@itu.dk

Abstract—We present BEDnet, a Java based middleware
for creating and maintaining a Bluetooth based mobile
ad-hoc network (MANET). MANETs are key to nomadic
computing: Mobile units can set up spontaneous local
networks when needed, removing the need for fixed net-
work infrastructure, either as wireless access points or
wired LAN. This allows for simple sharing of services
(Internet access, media storage, databases, etc.) and re-
sources (printers, scanners, GPS units, etc.). Application
areas include nomadic offices, field workers’ applications,
in-home gaming; situations where mobile units are brought
together for the duration of the task at hand.

Based on the low-cost Bluetooth chip which is ubiquitous
in handheld units, existing Bluetooth technology provides
just piconets: star-shaped networks of up to eight units
within a limited range of typically ten meters. BEDnet
connects piconets into a scatternet, thus exceeding the eight
devices and ten meters limits for spontaneous networking.

While algorithms for Bluetooth scatternet formation
and routing have been studied extensively, to the best
of our knowledge, BEDnet is the first implementation of
Bluetooth scatternet middleware running on real mobile
phones. Based on the Java JSR-82 specification, BEDnet
is portable to a wide selection of mobile phones, and is
publicly available as open source software.

Experiments show that e.g. media streaming over Blue-
tooth is feasible, and that BEDnet is able to set up
a scatternet within a couple of minutes. Surprisingly,
experiments showed that structured scatternet topologies
are not significantly better than an ad hoc master/slave
mesh topology. Experimental results also indicate that for
routing a Bluetooth MANET, DSDV is more efficient than
AODV, as DSDV requires less processing time per packet.

I. INTRODUCTION

Wireless communication is becoming increasingly
popular as mobile devices are becoming more
widespread. Since many mobile devices are shipped
with Bluetooth chips [1], forming ad hoc Bluetooth
networks is subject to much research.

A Bluetooth connection is the result of a complex
device pairing process, and provides a channel on which
many data services can be provided, such as voice,
Internet communication, file sharing, printer connection

Fig. 1. A real multi-hop routing scenario.

etc. One of the downsides are that these connections
are point to point, meaning that a device beyond the
relatively short Bluetooth distance of approximately 10
meters will not be able to detect a given service [2].

The BEDnet framework provides broadcasting over
several hops, in which one scenario (depicted in Fig-
ure 1) enables a phone 50 meters away from a printer
to use it, by routing through other mobile phones and
laptops (all running BEDnet). The framework, developed
in J2ME using the JSR-82 API, acts as a middleware
between the Bluetooth API and the application. The
framework will automatically detect new devices, de-
vices that have left the network and use a MANET
routing protocol to efficiently route packets.

II. RELATED WORK

Much existing literature in this field focuses on parts
of our subject, egg. framework [3], different scatter-
net protocols [4]–[10], programming language solu-
tions [11], [12], Bluetooth technology and optimisa-
tion [13]–[15] and P2P routing [16], [17], but very
few specific implementation studies of MANETs over
Bluetooth exist.

These attempts are mainly analysed theoretically [3]
or performed on simulators [18], which invariably yields
results that are far too optimistic, compared to the
behaviour of real-world Bluetooth devices.

One exception to this are the real life studies by [16],
[19], [20], in which they implement a MANET rout-



ing protocol over Bluetooth in order to investigate the
feasibility of using such networks. They all manage to
setup a multi-hop routing scenario, but also conclude that
performing communication that requires high bandwidth
and low latency is infeasible on the devices they had
available. All had difficulties establishing scatternets,
and fall back to either using point-2-point [16], [19] or
implementing an ineffective packet forwarding method
based on: 1) Searching for devices. 2) Connecting and
sending packets. 3) Receiver searches for new devices;
connects and sends, and so on, until the destination is
reached [20].

Another investigation of using Bluetooth networking
in an ad hoc manner is in relation to multi-player
games [21]. They have benchmarked the Bluetooth
connection, and try to fit a game category to their results.
They conclude that realtime games, such as shoot-em-up
games, are not possible to run due to too low bandwidth
and high latency. As with the previous two examples,
they were unable to establish a scatternet but uses point-
2-point Bluetooth connections instead. However, all of
their experiments were using devices with Bluetooth 1.1.
They state that with the update to Bluetooth version
2.0, greater bandwidth and lower connection-time would
enable more communication intensive games [21].

III. ENABLING TECHNOLOGIES

In the following, we describe key aspects of the four
basic technologies underlying BEDnet: Bluetooth, Java
for mobile devices, Java Bluetooth Application Protocol
Interface (API), and Mobile Ad-hoc network (MANET)
routing protocols.

A. Bluetooth

Bluetooth networks are basically organised as small
groups of devices called piconets. All the devices in
one piconet share the same communication channel,
which consists of a unique pseudo-random pattern of
radio frequencies in which the piconet devices hop
synchronously to avoid radio interference with adjacent
piconets. Each piconet consists of one master device and
up to seven active slave devices. The address space of the
active devices in a piconet limits its size to a maximum
of 8 devices. In extension to the active devices, it is also
allowed for devices to be parked, meaning that it leaves
a piconet temporarily while still being synchronised to it.
The address space for parked devices allow a maximum
of 255 devices in this mode.

The benefit of parked mode is that a single device
can leave a piconet temporarily while being active in
another. The result is that a device can be a master in one
piconet and a slave in others, or just a slave in several

Fig. 2. Bluetooth piconet

Fig. 3. Bluetooth scatternet

piconets. Devices that in this way are able to perform
inter-piconet communication, connect the piconets into
a scatternet (cf. Figure 3), allowing for communication
between devices out of transmission range.

Connecting two devices via Bluetooth requires two
phases [22]:

1) • Inquiry: This process consists of a sender
broadcasting inquiry packets, which do not
contain the identity of the sender or any other
information.

• Inquiry Scan: In this state, receiver devices
listen for inquiry packets, and upon detection
of any such packet, the device broadcasts
an inquiry response packet. This contains the
identity of the device and its native clock.

2) • Page: When paging, a sender device tries
to form a connection with a device whose
identity and clock are known. Page packets
are sent, which contain the sender’s device
address and clock, for synchronisation.

• Page Scan: In this state a receiver device
listens for page packets. Receipt is acknowl-
edged and synchronisation between the de-
vices is established.

In the inquiry phase, the sender discovers potential
receivers. This phase takes at least 10.24 seconds [23],
[24], but in our experience it takes longer, typically
around 15 seconds, depending on the device.

After the inquiry phase, the device is aware of the
Bluetooth addresses of the discovered devices. When
performing service discovery in the paging phase, the
sender connects to each desired device individually,
taking a few seconds. Service searching uses the Service

2



Discovery Protocol (SDP), which describes how an ap-
plication acts to contact Bluetooth servers services [25].
SDP uses a simple request/response model and the data
a service server stores, is contained in a single Service
Record. Some of the information stored is the services
ID, name and description. Providing these information
to a client is valuable as it can evaluate whether or not
the service is relevant for the device and/or application.

When the sender has established a connection it be-
comes master for the receiver, which in turn becomes a
slave.

The nature of this process also implies that the Blue-
tooth radio cannot be used for communication across
existing connections during inquiry or paging phases.

B. Java for mobile devices

The Java Micro Edition (ME) is a subset of the Java
Platform providing a collection of Java APIs for the
development of software for small resource constrained
devices [26]. Over a billion mobile phones supporting
Java have been sold giving a 45% market penetration,
a number that is constantly growing as new phones
produced almost all support Java [27]. This makes Java
a good choice when developing mobile applications for
portability.

Resource constrained devices that support Java
can choose to implement different profiles and con-
figurations [28]–[30]. For mobile devices the most
common configuration is Connected Limited Device
Configuration (CLDC), and profile Mobile Information
Device Profile (MIDP). Together, CLDC and MIDP pro-
vide a subset of the features known from Java Standard
Edition.

Fig. 4. Configuration for Small Devices in Java ME

In addition to the profile other Java Specification
Request (JSR) packages can be implemented as needed,

like JSR-82 package described in the next section. Fig-
ure 4 shows how the configuration and profiles relate to
the application, Operating System (OS) and hardware.

For a mobile device, the application created is called
a MIDlet. A number of MIDlets are bundled into a
MIDlet suite, which allows method invocation among the
contained MIDlets. MIDlet suites are packed into Java
archive files that can be deployed on mobile phones via
Bluetooth or HTTP.

C. Java Bluetooth API

To use Bluetooth in a Java ME application one must
use Java’s Bluetooth API, called JSR-82 [31]. JSR-82
lies as a middleware between the application and the
Bluetooth stack, allowing the same access to the stack no
matter how it is implemented. The stack can be written
in native code, C or Java, but they must all offer the
same interface, defined by JSR-82, to be called Java
compatible. When this interface is supported, a developer
can use JSR-82 methods in theory without considering
the underlying stack implementation; in practise, the
underlying implementation must in some cases be con-
sidered [32].

The rather limited interface provided by JSR-82 can
restrict an application attempting to use Bluetooth, and
from our experience the manufacturers often use the
most conservative settings when implementing their
stack. That means that in most cases, paging and inquir-
ing are not allowed during connections, master switching
(switching the rôles of two devices after connecting)
is turned off and only one service discovery can be
performed at a time; when using the JSR-82 API, these
quirks must be considered. As a developer there is
nothing to be done about this except try to work around
it as good as possible.

While JSR-82 provides wide portability, its limited
interface restricts the control of the Bluetooth operations.
JSR-82 does not provide any way of accessing methods
or attributes in the Bluetooth stack [33], limiting the
program’s abilities to determine what JSR-82 actually
does when performing its actions. One cannot detect
what connections are currently open or active for a
device, what role the device plays (master or slave)
in accordance with the connections, or how and when
polling of communication with other devices is done.

When attempting to create a scatternet, this makes it
hard to know how it is actually done in the Bluetooth
stack, as assumptions about the device roles have to be
made, based on the method invocations. Also, when a
device is connected to several devices, the method in
which the application listens for incoming packets runs

3



asynchronously to the Bluetooth radio polling scheme,
which could be a possible optimisation issue.

D. Mobile ad hoc networks (MANETs)

The main characteristics of MANETs are:
• Distributed operation: A device cannot rely on an

underlying network. It must provide security and
routing so they work under distributed conditions.

• Dynamic network topology: Devices are, generally
speaking, in motion. The network must be able to
handle new devices as well as devices moving in
and out of range.

• Low power devices: in many cases the devices are
battery driven, affecting CPU processing, memory,
signal processing and more.

During the last decades, many routing protocols have
been developed, with various properties, such as scala-
bility, robustness and network traffic optimisations [34].
Generally, the development has taken two directions:
Proactive and on-demand routing. Proactive routing pri-
marily depends on a routing table (hence it is also
referred to as table driven routing protocols), while this is
not necessarily a property of the on-demand protocols.
On-demand routing will try to establish a route when
communication is needed, reducing idle state overhead
and improving scalability [34]. This can be especially
relevant when operating in a highly dynamic topology.

In this paper, we have chosen a routing protocol of
each flavour in order to investigate which works better
on the BEDnet framework:

1) Proactive: Destination Sequenced Distance Vector
(DSDV)

2) On-demand: Ad-hoc On Demand (AODV)
Both routing protocols are quite simple, and thus well-
suited to run on resource-limited mobile devices.

1) DSDV routing: Each device maintains a routing
table and its own sequence number, which is kept as an
even number, and only updated when broadcasting its
routing table. An entry in the routing table consists of
a sequence number as well as distance in some metric
(e.g., hop count), next hop and destination address. When
a device wants to send a packet to another device, it looks
up the destination address to find the next hop address.

Routing table updates are performed in two ways;
full dump and incremental update. The full dump is
a periodical broadcast of the entire routing table to all
neighbours. The incremental update is more frequent and
is a broadcast of changes in the routing table that have
occurred since the last full dump.

Upon receiving an update, the device compares each
route in its routing table to the received routing table

entries. If a route is not present in its own routing
table it is added by incrementing the hop count and
setting the sending device as the next hop. If the route
exists in the receiver’s routing table, the hop count and
sequence number are compared to the existing values.
If the received route has a lower hop count or a higher
sequence number, it is accepted as the new route to that
destination.

If a device leaves the network, the neighbour device
will detect this. If a device detects a broken link, it
increments the sequence numbers for all routes using this
link to an odd number, indicating an invalid route. This
update is then followed by an immediate incremental
update, ensuring fast propagation.

2) AODV routing: This protocol was developed as an
improvement over DSDV, since tests have shown that
DSDV has a large overhead as the network size in-
creased. The somewhat simple solution to this overhead
problem was to have the nodes only store routes recently
used, and if a new route is needed, it would request
it from other devices in the network in a broadcasting
manner.

When a node requests a route it does not have in its
routing table, it will broadcast a Route Request (RREQ)
packet to its neighbours. Upon receiving a RREQ, a node
will evaluate the packet, and if the packet’s destination
address is the node’s address, a Route Reply (RREP)
packet is unicast back along the return path. As the
source node receives the RREP packet, the route will
be set up, and it can transmit the required packets to the
destination node. If a node has already seen a RREQ it
is disregarded, to keep paths short.

Each RREQ uses sequence numbers to ensure that
the routes are loop free and to make sure that if the
intermediate nodes reply to route messages, they reply
with the latest information only [34].

Should a node fail, or move, when data is being
transmitted, the device that recognises the link break will
send a Route Error (RERR) packet along the route to the
source node, which will broadcast a new RREQ packet.

IV. FRAMEWORK DESIGN

A. framework compartmentalisation

In order to achieve a truly robust and flexible frame-
work, that can handle a wide variety of applications, the
following requirements need to be met [11]; a) platform
independence and b) the possibility of interchanging
components or modules of the system.

Platform independence can be achieved by using the
Java programming language. The second requirement is
met by designing the framework in layers, with each

4



layer capable of being replaced as long as it adapts to a
specified interface. The BEDnet framework consists of
three layers:

• Application: The part that the user will interact
with, such as a chat program or game.

• Routing: In order to send packets, the system will
use the routing layer. This layer will hold all details
on how to route packets to other devices in the
network.

• Datalink: Will handle all Bluetooth specifics, such
as maintaining links to neighbours, sending and
receiving packets through them.

B. Scatternet formation

An ad-hoc mesh topology is able to connect the
devices, allowing the devices to communicate. However,
when comparing this topology with the more structured
topologies, egg. trees or rings [22], it could be more
inefficient due to more overhead or longer routes. In
the past years, many interesting Scatternet Formation
Algorithm (SFA)’s have been introduced. Most of these
protocols have only been tested in simulators, with a
certain abstraction level, and thus it is necessary to
evaluate whether they can be expected to perform well
in a realistic environment, using J2ME with the JSR-82
API.

Any SFA we use for BEDnet must satisfy the follow-
ing properties:

The SFA cannot assume that every device is within
communication range. Some SFA’s assume this [4], [5],
[22], and these can therefore not be expected to work
properly in a realistic environment.

The SFA must not perform Master-Slave (MS)
switching frequently. As role switching is blocking the
Bluetooth connection on the involved devices, the longer
time it takes to perform a switch, the longer a connection
is inaccessible [31]. In practise this is done by closing
and reestablishing the connection with the new master
slave configuration. We have observed that this process
takes a few seconds to perform, which could sever a
network for the duration.

Several Bluetooth procedures must not run con-
currently. Some SFA’s are using separate concurrently
running Bluetooth processes perform maintenance proce-
dures and discover new devices. This enables a device to
maintain topology while being able to locate new devices
and perform the actual communication [6], [22]. Due to
the properties of Bluetooth this is not possible unless a
device has several Bluetooth chips. As this is not the
case in most of todays Bluetooth enabled devices, all
Bluetooth related tasks must be run sequentially.

The SFA have no access to any operating system,
or Bluetooth stack specific parameters. A number of
protocols assume access to system, or even hardware-
specific data, such as the power level or full access to all
components in the Bluetooth stack. The L2CAP layer is
the lowest accessible layer when working in J2ME with
the JSR-82 API [31].

Since common scatternet procedures, such as mas-
ter/slave switching and maintaining a specific topology
is time consuming and a complex affair, we want to limit
that as much as possible. Currently, no published SFAs
that have been optimised for the Bluetooth stack, and for
that reason we implement a simple SFA, that creates an
ad-hoc Master-Slave mesh, which requires a minimum
of maintenance and does not force Bluetooth roles on
any devices.

C. Bluetooth device discoveries and connections

As most of the Bluetooth operations are blocking,
it is impossible to e.g. perform a device discovery
while sending packets to already connected devices.
However, one element that is not blocking is listening
for devices that are performing device discoveries. Thus,
it is possible to communicate while listening. For this
reason, devices that already have open connections are
also listening for incoming devices.

If a device wants to connect to an existing network,
the quickest way will be to start performing a device dis-
covery, as the other devices will be listening for joining
devices. However, if no network exists, that approach
will not work, as no devices will be listening. To solve
this, a random wait algorithm for connecting devices
is used. This will randomly alternate between listening
and searching. The time a device spends listening is
determined by measuring the time it takes to perform
a full device discovery, which ensures that other devices
are able to establish a connection to it.

V. IMPLEMENTATION

The implementation was written to support CLDC
version 1.0 and MIDP version 2.0. This maximises
compatibility, as not all mobile devices with Bluetooth
chips support the newer CLDC 1.1 and MIDP 2.1.

The BEDnet framework has been written as a single
MIDlet and can be bundled with any MIDlet Suite.
Many mobile devices are unable to execute several Java
applications at the same time, thus the framework, and
the applications that use it, are designed to run as a single
application.

5



A. Data structure

Figure 5 shows an overview of the BEDnet frame-
work. Each layer was developed as its own package
containing the interface for which the above layers could
use. Another sub-package, containing the framework
interface was also developed.

Fig. 5. Package diagram for BEDnet

The Datalink layer package consists of 7 classes and
the router layer consist of either 27 (AODV) or 15
(DSDV) classes. The application layer package does
not have any classes by default, as this is up to each
developer to write.

VI. EXPERIMENTS

In order to establish the highest available performance,
a lightweight benchmark application was developed.
This application is able to measure the latency (as round
trip time) and throughput over a single hop. The BEDnet
framework will be benchmarked against the obtained
values from the benchmark application.

A. Single hop benchmark

In order to investigate the practical limits of the
bandwidth and latency of Bluetooth, this lightweight
benchmark application was developed as a very simple
MIDlet that was only able to communicate point-2-point
(Server/client communication).

Bandwidth was measured in two ways; 1) Average
transfer rates were determined by transferring 10Mb data
and 2) peak bandwidth is determined as the fastest trans-
ferral of 250kb in 50kb chunks. Latency was measured
as Round trip times (RTT), where a total amount of 1000
packets were sent.

The results are depicted in table I. It clearly shows that
the BEDnet framework does not utilise the full band-
width of Bluetooth. The reasons for this are most likely
related to the increased complexity of the application and
the increased packet processing time. Packet handling are
probably the most time consuming element in BEDnet;
each packet has to be opened, read and compared to the

Bluetooth v1.1 benchmark BEDnet

Bandwidth avg 323±11 kbps 44 kbps

Bandwidth peak 633 kbps 45 kbps

RTT 50±4 ms 65±10 ms

Bluetooth v2.0 Benchmark BEDnet

Bandwidth avg 866±244 kbps 141±24 kbps

Bandwidth peak 1792 kbps 163 kbps

RTT 46±4 ms 55±5 ms

TABLE I
SINGLE-HOP BENCHMARK OF BANDWIDTH AND LATENCY.

internal Bluetooth address in order to establish whether
a packet should be delivered to the application layer. If
the packet destination address does not match with the
devices address, it has to look up the next hop in the
routing table, which also consumes time. As the time it
takes to perform the processing is CPU dependent, the
older mobile phones this framework was tested on, also
shows the least performance.

B. AODV vs. DSDV

The processing times were measured by sending 2000
packets, and subtracting the time spent in the Bluetooth
stack. Noticeably, even though the Sony Ericsson has a
CPU clocked at much lower speed, it is able to process
the packets faster. When using the DSDV protocol on
Sony Ericsson k750i, the processing time was too fast
to be able to measure with Java’s system call to retrieve
the time.

Table II shows the time spent for DSDV and AODV
in milliseconds for Sony Ericsson and Nokia mobile
phones. The reason that we distinguish between brands
here are the substantial differences observed. Even with
a slower CPU, Sony Ericsson appears to be handling
the packets faster than Nokia. The reasons for this could
be differences in the operating systems priority of the
virtual machine and threads and the implementation of
the virtual machine.

We have also observed a noticeable difference in
handling times between the two routing protocols. We
believe that this observation lies in the difference of the
two applications’ complexity. Mobile phones have slow
CPUs compared to laptops, and very limited memory,
which can have a severe impact on performance when
using many threads with a given Time-To-Live (TTL),
which stresses the garbage-collector and thus lowers the
performance. AODV heavily relies on route timeouts in
order to be on-demand, whereas DSDV stores the routes
much longer, which could be less stressful on the virtual
machine.

6



Device CPU DSDV AODV

Nokia 6120 ARM-11@369MHz 1.3ms 27ms

Sony Ericsson k750i ARM-9@110MHz 0ms 4.5ms

TABLE II
AODV AND DSDV PROCESSING TIME COMPARISON.

C. Network join times

Figure 6 shows the connection time of a single device
to a BEDnet network, with all network devices within
range. All communication between the devices in the
network was turned off. The figure shows that there is
an increase in connection times when more devices are in
the vicinity, which is most likely a result from the extra
service records the joining device has to process. The
increase in time is almost 100%, from approximately 13
seconds with no devices in range to approximately 25
seconds with 6 devices in range.

Fig. 6. Network join times

Experiments with bootstrapping (forming a BEDnet
network from scratch) shows that it takes between 45
and 82 seconds to connect 2 to 5 devices.

D. Scatternet formation

We tested whether or not it pays off to have a
structured scatternet topology or if an ad-hoc mesh is
sufficient. A linear topology consisting of 3 to 5 devices
is set up in different scatternet topologies, and the RTT
is measured by sending 100 packets 10 times over the
network diameter (the longest distance). Figure 7(a–g)
show the setups used.

Figure 7(d–e) shows the two formations we tested
with four devices, a mesh scatternet and an optimised
scatternet, containing 3 and 2 piconets respectively. From
Table III we see that in this case the mesh scatternet per-
formed better, with 22% higher RTTs for the optimised
scatternet.

With five devices we are able to form three different
linear scatternet topologies, with 2, 3, and 4 piconets. In

Fig. 7. Linear scatternet formations for 3 to 5 devices

Topology RTT

Two hops
Fig. 7(a) 113±8 ms

Fig. 7(b) 109±8 ms

Fig. 7(c) 100±11 ms

Three hops
Fig. 7(d) 254±93 ms

Fig. 7(e) 207±87 ms

Four hops
Fig. 7(f) 459±102 ms

Fig. 7(g) 516±90 ms

Fig. 7(h) 469±20 ms

TABLE III
RTTS IN DIFFERENT SCATTERNET FORMATIONS FOR 2,3 AND 4

HOPS

table III it is shown that all three topologies have nearly

7



the same RTTs, which indicate that the topology is not
the bottleneck in the system.

VII. CONCLUSION & FUTURE WORK

In this paper we have presented the BEDnet frame-
work, which we have shown is able to route packets in
a multihop fashion on real life devices over Bluetooth
connections. We have showed that it is possible to form
a scatternet, and also shown that when using J2ME
with the JSR-82 Bluetooth API there is no performance
penalty when a device is both a master in one piconet
and slave in another. As we have also shown that the
connection phase is still very time consuming in practise,
we recommend that the usage of structured scatternet
topologies, like rings etc., are not used.

When considering the choice of MANET routing
protocol we have shown that DSDV, a quite simple
protocol that works well in smaller networks [35],
requires less processing time for each packet than AODV,
which makes it a good candidate for a routing protocol
in Bluetooth networks. If BEDnet is to be used in large
networks (several hundreds of devices), AODV should
be considered [36].

Currently, BEDnet does not utilise the full bandwidth
of Bluetooth, but only around 15%, which could be
explained by the complexity of the framework. Experi-
ments have shown that the upper limit of the network
performance is approximately 1800kbps when using
Bluetooth v2.0 with EDR, which we expect the BEDnet
framework to be able to approach in the near future.

A packet round trip was found to take approximately
50ms for one hop, and increasing rather fast to around
500ms for four hops, which indicate that in this current
version of BEDnet, low latency applications, such as
real time gaming, should be avoided when networks can
increase only a few hops. The benchmark application
was not significantly faster, with RTTs almost the same
as BEDnet. However, we don’t believe that the main
difference lies in the single hop scenario, but in the
multihop, since factors like how BEDnet polls its con-
nections for packets, how long it takes to look up a route
process the result of the lookup into a send command to
the next hop device.

In the near future we will perform bandwidth and
latency experiments using more devices and focus on
interesting topics such as investigating in the frameworks
robustness, implementing multihop service search in a
variant of [37], enabling devices out of range retrieving
service records from each other, and develop a .NET
platform that could enable laptops to use the BEDnet
framework and e.g. act as a proxy for the Internet.

We believe this area to be promising, and we will
continue to develop the BEDnet framework. We have
showed that nomadic computing on Bluetooth enabled
devices is now possible, as we can now operate beyond
the 10 meter range, point-to-point and eight devices re-
strictions that currently are on todays Bluetooth enabled
devices.

REFERENCES

[1] Forrester and 80211.Com-report. (2003) Wi-Fi versus
Bluetooth - Forrester Opines Against the Conventional
Wisdom. [Online]. Available: http://www.mobileinfo.com/news_
2003/Issue20/Forrester_WiFiBluetooth.htm

[2] BluetoothSIG, “Specification of the Bluetooth system v2.0,”
Specification Volume 0, 2004.

[3] C. Bisdikian, “A framework for building Bluetooth scatternets:
A system design approach,” Pervasive and Mobile Computing 1,
pp. 190–212, 2005.

[4] M. Sun, C. Chang, and T. Lai, “A Self-routing Topology for
Bluetooth Scatternets,” I-SPAN, 2002.

[5] L. L.-Y. Shek and Y.-K. Kwok, “An integrated approach to
scatternet traffic management in Bluetooth ad hoc networks,”
Computer Networks 45, pp. 99–118, 2004.

[6] M. Tekkalmaz, H. Sözer, and I. Körpeoglu, “Distributed Con-
struction and Maintenance of Bandwidth-Efficient Bluetooth
Scatternets,” 2005. ICC 2005. 2005 IEEE International Confer-
ence on Communications, pp. 3223–3229, 2005.

[7] L. L.-Y. Shek and Y.-K. Kwok, “Efficient Multi-Hop Commu-
nications in Bluetooth Scattemets,” The 14m IEEE lntemational
Symposium on Persona1,lndoor and Mobile Radio Communica-
tion Proceedings, pp. 755–759, 2003.

[8] M. Kalia, S. Garg, and R. Shorey, “Scatternet Structure and Inter-
Piconet Communication in the Bluetooth system,” IEEE National
Conference on Communications New Delhi, 2000.

[9] T. Lin, Y. Tseng, K. Chang, and C. Tu, “Formation, routing and
maintenance protocols for the bluering scatternet of Bluetooths,”
Proceeding of the Hawaii International Conference on System
Science (HICSS-36), Big Island, 2003.

[10] C.Blundo and E. Cristofaro, “Configuring Bluestars: Multihop
Scatternet Formation for Bluetooth Networks,” IEEE Transac-
tions on Computers, Vol. 52, No. 6, pp. 779–789, 2003.

[11] N. Pabuwal, N. Jain, and B. N. Jain, “An Architectural Frame-
work to deploy Scatternet-based Applications over Bluetooth,”
2003. ICC ’03. IEEE International Conference on Communica-
tions, pp. 1019–1023, 2003.

[12] J. . E. Group and jsr 118-comments@jcp.org, Mobile Information
Device Profile for Java 2 Micro Edition, Version 2.1. Sun
Microsystems, Inc. and Motorola, Inc., 2006.

[13] P.-C. Wei, C.-H. Chen, C.-W. Chen, and J.-K. Lee, “Support
and optimization of Java RMI over a Bluetooth environment,”
Concurrency Computat.: Pract. Exper., pp. 1–21, 2002.

[14] S. B. Handurukande, S. Ganguly, and S. Bhatnagar, “Fast Blue-
tooth Service Discovery for Mobile Peer-to-Peer Applications,”
2006.

[15] F. Ferraguto, G. Mambrini, A. Panconesi, and C. Petrioli, “A new
approach to device discovery and scatternet formation in Blue-
tooth networks,” Proceedings of the 18th International Parallel
and Distributed Processing Symposium, 2004.

[16] S. S. Kristiansen, “Bluetooth enabled Peer2Peer services in
ActorFrame,” Master of Science in Communication Technology,
pp. 1–117, 2006.

[17] C.Blundo and E. Cristofaro, “A Bluetooth-based JXME infras-
tructure,” Proceedings of the 9th International Symposium on
Distributed Objects, Middleware, and Applications, pp. 667–682,
2007.

8

http://www.mobileinfo.com/news_2003/Issue20/Forrester_WiFiBluetooth.htm
http://www.mobileinfo.com/news_2003/Issue20/Forrester_WiFiBluetooth.htm


[18] Y. Noishiki, H. Yokota, and A. Idoue, “Design and implementa-
tion of ad-hoc communication and application on mobile phone
terminals,” 3rd International Conference on Mobile Computing
and Ubiquitous Networking (ICMU), pp. 208–214, 2006.

[19] S. Ali, “The Feasibility of Mobile Adhoc Routing Over Bluetooth
- and a discussion about the realism of simulations,” Masters
thesis in Computer Science at University College London, pp.
1–62, 2007.

[20] N. Jain, “Scatternet Formations for Multimedia Applications over
Bluetooth Personal Area Networks,” Masters Thesis: Dept. of
Computer Science and Engineering, at The Indian Institute of
Technology, Delhi, 2002.

[21] C.Blundo and E. Cristofaro, “Issues related to development
of wireless peer-to-peer games in J2ME,” Proceedings of the
Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and
Services, 2006.

[22] R. M. Whitaker, L. Hodge, and I. Chlamtac, “Bluetooth scatternet
formation: A survey.” Elsevier - Ad Hoc Networks 3, pp. 403–
450, 2005.

[23] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker, “A
Formal Analysis of Bluetooth Device Discovery,” International
Journal on Software tools technology transfer manuscript, 2006.

[24] R. Woodings, D. Joos, T. Clifton, and C. Knutson, “Rapid
Heterogenous Connection Establishment: Accelerating Bluetooth
Inquiry Using IrDa,” 2001.

[25] E. A. Gryazin, “Service Discovery in Bluetooth,” Group for
Robotics and Virtual Reality, Department of Computer Science,
Helsinki University of Technology, 2000.

[26] SunMicrosystems. (2008) Java ME technology. [Online].
Available: http://java.sun.com/javame/technology/index.jsp

[27] W. Hardy, “Journal 6: JavaOne and Trends in the Java Frame-
work,” Web Developer & Designer, 2006.

[28] K. Topley, J2ME in a Nutshell. O’Reilly, 2002.
[29] SunMicrosystems. (2008) Connected Limited Device

Configuration (CLDC). [Online]. Available: http://java.sun.
com/products/cldc/

[30] T. Appnel, “Introducing MIDP 2.0,” OnJava.com, 2002.
[31] M. Milikich, “Java APIs for Bluetooth Wireless Technology (JSR

82),” 2005.
[32] SunMicrosystems. (2008) JSR 82 - Bluetooth API 1.1. [Online].

Available: http://java.sun.com/javame/technology/msa/jsr82.jsp
[33] A. Gudnason, M. Nielsen, and F. Skytte, “Designing and imple-

menting Bluetooth Scatternets in Java,” 2007.
[34] P. Misra, “Routing protocols for ad hoc mobile wireless net-

works,” Ohio State University - http://www.cis.ohio-state.edu, pp.
1–20, 2000.

[35] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-
sequenced distance-vector routing (dsdv) for mobile computers,”
ACM SIGCOMM Conference on Communications Architectures,
Protocols and Applications, pp. 234–244, 1994.

[36] R. Khalaf, A. El-Haj-Mahmoud, and A. Kayssi, “Performance
comparison of the aodv and dsdv routing protocols in mobile ad
hoc networks,” 2005.

[37] A. Greede and D. O’Mahony, “A service driven routing protocol
for Bluetooth scatternets,” Network And Telecommunications
Research Group (NTRG) Computer Science Department, 2006.

[38] F. Skytte, A. Guðnason, and M. Nielsen, “BEDnet—Bluetooth
Enabled Device ad-hoc Network,” Master’s thesis, IT Univ. of
Copenhagen, 2008.

ACRONYMS

AODV Ad hoc On-demand Distance Vector
API Application Protocol Interface
BEDnet Bluetooth enabled device ad-hoc network
BT Bluetooth
CLDC Connected Limited Device Configuration

CRC Cyclic Redundancy Check
DAC Device Access Code
DSDV Destination-Sequenced Distance Vector
DSR Dynamic Source Routing Protocol
ERR Exhaustive Round Robin
FEC Forward Error Correcting
FHS Frequency Hopping Synchronization
FHSS Frequency Hopping Spread Spectrum
GUI Graphical User Interface
HCI Host Controller Interface
HEC Header Error Check
IDE Integrated Development Environment
IP Internet Protocol
JSR Java Specification Request
JVM Java Virtual Machine
L2CAP Logical Link Control and Adaptation Protocol
LCDUI Liquid Crystal Display User Interface
LM Link Manager
LMP Link Management Protocol
MANET Mobile Ad-hoc network
ME Micro Edition
MIDP Mobile Information Device Profile
MS Master-Slave
MTU Maximum Transmission Unit
OS Operating System
OSI Open Source Initiative
OLSR Optimized Link State Routing Protocol
PAN Personal Area Network
PDU Protocol Data Unit
PLsWRR Pseudo Random cyclic Limited Slot Weighted

Round Robin
PRR Pure Round Robin
PSB Parked Slave Broadcast
QoS Quality of Service
RF Radio Frequency
RFCOMM Radio Frequency Communication
RTT Round Trip Time
RVM Routing Vector Method
SDP Service Discovery Protocol
SIG Special Interest Group
SFA Scatternet Formation Algorithm
UML Unified Modeling Language
UUID Universally Unique Identifier
WAP Wireless Application Protocol
ZRP Zone Routing Protocol

9

http://java.sun.com/javame/technology/index.jsp
http://java.sun.com/products/cldc/
http://java.sun.com/products/cldc/
http://java.sun.com/javame/technology/msa/jsr82.jsp

	Introduction
	Related Work
	Enabling technologies
	Bluetooth
	Java for mobile devices
	Java Bluetooth API
	Mobile ad hoc networks (MANETs)
	DSDV routing
	AODV routing


	Framework design
	framework compartmentalisation
	Scatternet formation
	Bluetooth device discoveries and connections

	Implementation
	Data structure

	Experiments
	Single hop benchmark
	AODV vs. DSDV
	Network join times
	Scatternet formation

	Conclusion & Future Work
	References

