
A Generic Language for Biological Systems based on
Bigraphs

Troels C. Damgaard
Jean Krivine

IT University Technical Report Series TR-2008-115

ISSN 1600–6100 December 2008

Copyright c© 2008, Troels C. Damgaard
Jean Krivine

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 9788779491892

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

A Generic Language for Biological Systems based

on Bigraphs

Troels C. Damgaard and Jean Krivine

Abstract

Several efforts have shown that process calculi developed for reason-
ing about concurrent and mobile systems may be employed for modelling
biological systems at the molecular level. In this paper, we initiate in-
vestigation of the meta-language framework bigraphical reactive systems,
due to Milner et al., as a basis for developing rule-based languages for
molecular biology.

We describe a family of BΣ,R-calculi sharing a small set of familiar
operators and operations, and provide them with a simple operational
semantics. We show that BΣ,R-calculi and their reaction semantics cor-
respond to a version of bigraphical reaction under non-aliasing contexts
and with reaction rules extended to allow negative side-conditions for the
subset of bigraphs corresponding to BΣ,R-processes.

Finally, to illustrate the usage of BΣ,R, we show that with non-aliasing
semantics the κ-calculus may be faithfully captured as a BΣ,R-calculus.

1 Introduction

Starting with Regev, Shapiro, and Silverman [RSS01], several efforts have shown
that process calculi developed for reasoning about concurrent and mobile sys-
tems may be succesfully employed for modelling biological systems at the molec-
ular level. In the κ-calculus [DL04], Danos and Laneve suggested a paradigm,
which we may call rule-based modelling for capturing protein-protein interaction
at the level of protein domains. On top of a flat graph-based static model, a user
of the κ-calculus writes her own set of reaction rules modelling in isolation each
possible local protein-protein interaction. More recently, the κ-calculus has also
been provided with a stochastic semantics and an efficient implementation allow-
ing simulation and various methods of causality analysis [DFF+07, DFFK07].

One way of viewing how we model in the κ-calculus is, that we are allowed to
instantiate a domain-specific sub-calculus specialized for the study of a particu-
lar problem; the obvious virtue being that we may engineer the reactive system
to reflect very directly our setting. This benefit also influences the primitives
of the κ-language. Comprising essentially rewrite rules over nodes and named
edges, supported by a simple algebraic notation, the κ-calculus is relatively light
on language-idiosyncracies. This allows domain-specialists (i.e., molecular biol-

1

ogists) to more easily perform the abstraction from chemical binding between
proteins to edges between nodes.

As it stands, the κ-calculus focuses solely on protein-protein interaction.
Nature, however, consists of more than variants of chemical binding among
proteins. There are a multitude of different kinds of objects, properties of
objects, forces, and environments, which play vital roles at the molecular level.
Examples include objects such as variants of biological membranes, viruses, non-
protein organic matter, and properties such as the three-dimensional folding
structure of proteins. We may also consider how to model fluids (and properties
such as their viscosity) or energy (be that, e.g., in the form of radiation or in the
form of the energy-currency of cells—ATP/ADP-molecules); or environmental
conditions such as pressure, temperature, electricity, salinity, etc. If we wish to
model nature in more detail, we need to begin by searching for good abstractions
of some of these phenomena. Our overall goal is to develop κ-like languages to
encompass also some of these phenomena. In this paper, we shall focus on
taking some preparatory steps towards that goal; we shall investigate the so-
called bigraphical framework as a basis for developing families of calculi for
modelling biological systems at the molecular level.

Bigraphs and bigraphical reactive systems (BRSs) have been developed by
Milner and coworkers [JM04, Mil06]. Though capable of representing a wide
variety of domains, they have been aimed particularly at providing a graphical
meta-calculus capable of being instantiated to capture the structure and dynam-
ics of various nominal process calculi concerned with concurrency, mobility, and
locality. Loosely, bigraphs provide us with nodes for modelling terms, and links
for modelling names. Nodes are arranged in a place graph, a forest, providing a
model for nesting and prefixing for terms. A link graph allows nodes to connect
to links that may be named or unnamed, in turn providing a model of terms
using free or bound (fresh) names. A key design parameter for bigraphs has
been that graph isomorphism should reflect structural congruence in the mod-
elled calculus. This connection has also been well-researched [Mil05, DB06]. As
such, we may think of a bigraph as a model of a structural congruence class of
terms. We instantiate a bigraphical calculus by giving a signature (for nodes)
and a set of reaction rules.

As noted already by Regev et al. [RPS+04], the bigraphical model has a
striking resemblance to the (informal) graphical models used for bio-calculi
such as BioAmbients. In the meantime, bigraphs have succesfully been used
for modelling several calculi—many resembling those that have been developed
for studying cellular biology. Variants of bigraphs have been succesfully em-
ployed to recapture the semantics of a wide range of process calculi (such as
CCS [Mil06], variants of the π-calculus [JM04, BS06], and Homer [BH06]). Sev-
eral extensions of bigraphs have been investigated (concerned, e.g., with scop-
ing [JM04, DB06], or fusion [GM07]), and bigraphs have also been applied for
modelling directly different systems (such as context-aware systems [BDE+06]).
Implementation of bigraphs has also been investigated [BDGM07], and a pro-
totype implementation is available [BPL07]. Lately, bigraphs have also been
provided with a stochastic semantics [KMT08]. As is evident from several pro-

2

posals [PRSS01, PQ05, DFFK07], stochastics is important for biology as it
allows for more accurate quantitative biological modelling.

In all, the bigraphical framework seem well-poised as a foundation for ex-
perimenting with models and languages for biological systems. In particular, it
seems that we may employ the bigraphical meta-modelling framework to cap-
ture directly the rule-based modelling paradigm as pioneered by the κ-calculus.
Further, we expect to be able to employ the notion of nesting for adding to
κ-like languages biological compartments á la BioAmbients [RPS+04], Brane
calculi [Car04], or beta-binders [PQ05].

In this paper, we adress the following issues, to pave the way for further
studies of calculi for biology based on bigraphs.

Bigraphical idiosyncracies Traditionally bigraphs are presented as a cat-
egorically based graphical model with a closely corresponding term language
with a small set of categorically derived core operators and a wide variety of
derivable operators. In turn, the semantics for the reactive systems for bigraphs
builds upon this understanding of bigraphical components and rules. This is
important and useful for developing the bigraphical meta-calculus, but is less
convenient for appreciating a concrete calculus.

Bigraphical rules are non-contextual The bigraphical framework demands
strict non-contextuality of rules. Bigraphical rules contains no mechanisms for
expressing arbitrary contextual negative side-conditions—for instance, to re-
quire some ancestor to be of a certain type or control (although given the versa-
tility of wide rules, i.e., rules with more than one region, and with the help of the
binding variants of bigraphs [JM04, DB06], one may encode certain contextual
checks). This has lead to much skillfullness in encoding checks of such contex-
tual condition, typically using small sets of rules performing an iteration over
the necessary context (see, e.g., [BDE+06]); or using bigraphical rule-schemas,
which range over a denumerable set of bigraphical rules (see, e.g., [BH06]). Such
encoding is at best impractical, and at worst may hinder our capture of essential
atomicity or transactional properties.

In perspective, we may compare bigraphs to graphical meta-modelling frame-
works in the long tradition of graph-transformation systems (GTSs) [EPS73,
Roz97, REKE99, REKM99], or to term rewriting systems (TRSs) [TeR03]. For
both GTSs and TRSs, variants of negative side-conditions have been studied.

We should note that in modelling biological systems, focusing on local causes
for reactions is also of virtue. However, certain reaction patterns may be more
conveniently expressed using a modicum of contextual conditions. Specifically,
since we model chemical bonds with (named) edges of a graph, we expect
connectivity-constraints to become central. The forces governing chemical bonds
are inherently severely limited by range; there is no such direct correspondent
for named edges.

As an aside, one may note that the noncontextual nature of bigraphical re-
action rules is partly due to bigraphical research being rooted in investigations

3

of automatic derivation of congruential contextual equivalences for process cal-
culi. For languages and models for biology, contextual equivalences have not yet
proven very useful. The complexity of nature is such that currently our struggle
lies in finding languages with the right abstractions for representing selected
key components, events and their causes in biological systems. However, even
if we find ways to abstract faithfully certain parts and mechanisms of nature, it
is by no means clear that contextual reasoning would be able tell us anything
interesting about nature. In any model of nature we focus only on those parts
and mechanisms we are able to capture in our language; thus any contextual
equivalence is by design heavily dependent on the level of abstraction of our lan-
guage, in particular also on the amount of factors that we do not model. This
is, of course, a general point, not particularly pertaining to models of molecular
biology; but in a setting, where, for instance, a signalling pathway may be shut
off due to a minute change in complex enviromental conditions—such as a minor
change in the local acidity conditions or in the flow of the electrical current—the
point becomes acutely emphasized.1

Contributions of this paper In this paper, we aim at laying the founda-
tion for using bigraphical calculi to experiment with models and languages for
biological systems. To address the issues highlighted above, we

• discuss the usage of BRSs for modelling biological interaction and treat
bigraphical reaction under non-aliasing contexts and extend reaction rules
to include testing of negative side-conditions;

• introduce a family of BΣ,R-calculi sharing a small set of classical process
calculus operators and operations, and provide them with a self-contained
operational semantics;

• show formally that BΣ,R-calculi and their reaction semantics correspond to
bigraphical reaction under non-aliasing contexts for the subset of bigraphs
corresponding to BΣ,R-processes; and,

• show that with non-aliasing semantics the (nondeterministic) κ-calculus
may be faithfully captured as a BΣ,R-calculus.

In Section 2, we discuss the bigraphical foundation as needed by our domain
of interest—our main aim being to strip away some of the generality of the
bigraphical model, before we in the second step turn to presentation. We also
discuss how to extend bigraphical rules to allow negative side-conditions.

Previous usage of the bigraphical machinery for capturing certain domain-
specific models have used variants of lightly sugared syntax for expressing bi-
graphs
(e.g., [BDE+06]). In Section 3, we make the effort to treat carefully a family

1Debois has given a more detailed account and discussion of bigraphical modelling and
bisimulation, see [Deb06].

4

of languages more in line with standard process calculi—BΣ,R-calculi—and de-
velop also a self-contained presentation of the dynamic semantics void of most
bigraphical idiosyncracies. We stress that the effort to produce a self-contained
presentation was a goal in itself. We have expended some effort in settling on a
model, which may yield to a short and comprehensible operational semantics,
in a structural style, and resembling that given for the κ-calculus.

In Section 4, we formally state the relationship between BΣ,R-calculi and
BRSs; and we conclude this paper by illustrating in Section 5, that we may
recapture the (nondeterministic) κ-calculus, as presented in [DL04], neatly as a
BΣ,R-calculus.

Readers’ guide This paper deals in part with developing a self-contained
presentation of a certain family of bigraphical calculi. Hence, we aim the section
concerned with defining BΣ,R-calculi (Section 3), and the section on encoding
the κ-calculus as a BΣ,R-calculus (Section 5), at readers who know little or next
to nothing about bigraphs. In Section 5, we relate the κ-calculus to the BΣ,R-
framework. We briefly recap the central concepts in the κ-calculus, however,
to fully appreciate the discussion, a certain preknowledge on the κ-calculus is
probably needed, as can be gotten from, say, [DL04]. The section that deals
solely with bigraphical machinery (Section 2) and the section concerned with
establishing that BΣ,R-calculi are, in fact, a certain kind of bigraphical calculi
(Section 4), we adress mainly to readers who are familiar with the basic setup
of pure bigraphs (as can be gotten from, say, [Mil06]).

2 Bigraphical Preliminaries

In this section, we start by giving brief and informal recap of necessary con-
cepts of the theory for pure bigraphs [Mil06]. We then continue to discuss and
motivate the addition of contextual additions, and finish by supplying a new
definition of (linear) reaction rules with side-conditions.

2.1 Pure Bigraphs—a Brief Recap

A bigraph consists of a place graph; a forest, whose nodes represent a variety
of computational objects, and a link graph, which is a hyper graph connecting
ports of the nodes. Certain leafs of the place graph may contain ordered sites (or
holes). The expression 20 denotes a bigraph with a single site. The link graph
may also contain inner or outer names, and the link graph links inner names
and ports to outer names or (unnamed) edges. The outer face of a bigraph
is a pair 〈n, X〉 which registers the number of regions n and outer names X;
the inner face is a pair 〈m,Y 〉, which registers the number of sites m and inner
names Y . We may compose the bigraph B with A, if the outer face of B matches
the inner face of A. The bigraph AB is computed by plugging the sites of A
with the roots of B, and fusing the links to outer names of B with the links
from their inner name counterpart in A. With the help of composition we may

5

model name-hiding; by composing a bigraph A with the bigraph /x we may
remove the outer name x, and replace it with an edge.

We may also combine bigraphs with a tensor product, ⊗, which is simply
juxtapositioning of roots, requiring that both inner and outer names be disjoint.
From composition and product, we may derive further combinators, such as ||
that juxtaposes roots and links up equal names, and | that merges two single-
root (prime) bigraphs as well as linking up equal names.

A bigraphical signature, Σ, determines a set of controls and provides for each
control K a finite ordinal, the number of ports, and one of three types, atomic,
passive, or, active. Each node of a bigraphs is assigned such a control. Atomic
nodes are restricted to be leafs, while active and passive nodes may nest other
nodes inside. The expression K~x denotes the bigraph consisting of the single
node K with each port i linked severally to a name xi.

Bigraphs can be reconfigured by means of reaction rules. A rule is essentially
a pair of bigraphs (R,R′). Rules are parametric—R and R′ may contain holes,
which are filled with parameters. Parametric rules generate an infinite set of
ground rules, which we may then subsequently contextualize. Essentially, we
ground and contextualize (R,R′) by closing rules under composition from above
and below. We may rewrite an agent a → a′ with (R,R′), when we have
a = C(R⊗ id)d → C(R′ ⊗ id)d′ = a′ for some context C and ground parameter
d. Graphically, we may think of this as matching an instance of the pattern
R inside a and substituting it with R′. In general, bigraphical rules may both
discard and copy parameters; a so-called instantiation maps holes in R′ to R.
The bigraph d′ is computed from the parameter d by means of this instantiation.

In essence, a bigraphical reactive system consists of a set of bigraphs over a
given signature, and a set of reaction rules, which can be used to reconfigure
the set of bigraphs.

Linearity We aim to model mainly physical objects and phenomena, and in
nature, rarely it happens that matter is copied without matter being expended.
Therefore, we shall restrict ourselves to considering only linear rules, that is,
when instantiations are bijections. We seek calculi, which serve as vehicles for
investigating how nature implements low-level structures and their interaction;
not abstract away from it.

Active nesting When contextualizing bigraphical rules, the context C is re-
quired to be active, determined by requiring that the redex R be nested only
inside nodes with active control; in our setting, however, we shall only treat
nodes with active control. Passive controls are useful for modelling blocking
prefixes and may also be used for modelling passive storage compartments of
active code, for instance, modelling envelopes for mobile code. We envisage
no important usage of such passive compartments in modelling biological mat-
ter. Thus, we require contextual conditions that prevent reaction in certain
compartments be modelled explicitly.

6

2.2 Adding Contextual Conditions

In the domains where the bigraphical framework have been used up until now,
links have been applied for modelling entity-relations mostly orthogonal to the
locality-structure.

On the contrary, the structures whose essential properties we seek to capture
with links—like protein backbones, domain-domain binding, or the intermediate
state of two fusing membranes—are highly constrained by distance and locality.2

For those reasons it is convenient to be able to control sharing and freshness of
names in parameters.

Let us sketch a concrete example: Suppose that we want to express that
a node that models protein (matched in the redex) may be diffused from one
compartment to another only if the entire complex of proteins of which the
protein is part (i.e., its entire connected component) can be transported along
with it. For expressing this rule, it is highly inconvenient to require us to match
the entire complex in the rule. There is a huge number of possible configurations
of complexes (species) in which a particular protein may be a part. Hence, we
wish to match only the protein in the redex, and match the remainder of the
complex in a parameter.

However, in nature such a diffusion reaction may be prevented because of
certain local conditions otherwhere in the complex, for instance, if part of the
complex is tied to a membrane. In our model, that tied part of the complex
may be arbitrarily distant. To test such an inherently contextual condition with
vanilla bigraphical rules, we need to write rules for stepping through the complex
and perform this test for every part of the complex. This is impractical and
fails to capture the atomicity of diffusion—which in turn is problematic (but
not unfixable) should we wish to add a stochastic semantics. Essentially, we
would need the set of rules implementing diffusion in this manner to uphold a
transactional guarentee.

Instead, we aim to extend bigraphical reaction rules to internalize such con-
textual (negative) side-conditions along with rules; we shall be mostly concerned
with capturing connectedness-constraints among the parameters in reactions,
such as in the example sketched above. In doing this, it shall be convenient
for us to depart slightly from standard tradition in how we derive ground, con-
textualized rules, as we shall explain in further detail below. Traditionally,
bigraphical calculi have been provided with a semantics, which corresponds to
pushing name-fusings (i.e., bigraphical substitions) and all binders (i.e., bigraph-
ical closures) to the top. But it need not be so.

2.2.1 Non-aliasing Reaction

We define non-aliasing reaction for BRSs, which allows us to extend rules with
side-conditions which test connectedness among parameters. We shall change

2We remark that such distance-related locality constraints do not match especially well the
constraints imposed by bigraphical binding, which seeks to capture traditional lexical scoping
of bound names.

7

grounding and contextualization of rules to essentially push name-fusings and
binders as far down as possible. To explain our choices, we recall in a bit more
detail, how grounding and contextualization works.

Recall that in grounding parametric rules it is stipulated that the parameter
d be discrete, that is, with no bound or shared names. This produces bigraphs
where every link is a unique name. In particular, this restriction resolves a pos-
sible ambiguity in deriving ground, contextualized rules when the instantation is
non-linear. For example, when applying a rule that copies a parameter such as
the rule (K⊗ id)20 → (K⊗ id)(20 |20), to the agent a = /x (K⊗ id)(Mx |Mx) do
we copy the binder or not? This corresponds precisely to instantiating the pa-
rameter as either d = /x (Mx |Mx) under the empty context or as d = (Mx1 |Mx2)
under the context C = /xx/x1, x2. Both choices constitute valid decomposi-
tions of a, that is, for both choices of the parameter d and the context C, do we
have a = C(R ⊗ id)d. But only the second choice, that is, d = (Mx1 |Mx2), is
discrete. Hence, in the pure variant of bigraphs copying parameters results in
name-sharing.

As we are only concerned with linear rules, this ambiguity does not arise
in our setting. The choice to take only discrete parameters means, however,
that we cannot test in the (grounded or parametric) rule whether two links in
a parameter d will be matched as parts of the same link, as any two names
in the grounded rule (R ⊗ id)d may be fused in the context. For our purposes
this is impractical, as we want to express side-conditions, which require certain
sets of names to be disjoint. We could express these conditions as requirements
to be fullfilled by the context C instead; it turns out, however, out that by
instead enforcing the first choice above—matching binders and shared names in
the parameter—we may express the conditions directly and succinctly on the
grounded rule (R⊗ id)d.

In conclusion, we shall choose to allow any bigraph as the parameter d, but
restrict contexts C to be link-mono, or non-aliasing on names.

Now we define (linear) reaction rules with side-conditions on parameters.
We allow arbitrary conditions, but (as we shall exemplify in Section 3) we are
mostly interested in side-conditions testing the outer names of parameters.

Definition 2.1 (linear reaction rules with side-conditions). A (concrete) para-
metric linear reaction rule is a rule on the form (R : m → J,R′ : m → J, ϕ),
where R is the redex, R′ the reactum and ϕ is a predicate on ground bigraphs.
R and R′ are required to be lean, i.e., they have no idle edges.

For every ground bigraph g : 〈m,X〉, where ϕ(g) holds, the parametric rule
generates every ground reaction rule of the form (r, r′), where r l (idX ⊗ R)g
and r′ l (idX ⊗R′)g.

The non-aliasing bigraphical reactive system over rules with side-conditions
is built as usual, but for the requirement that the context C also be link-mono.
We may express when a reaction may occur as below.

Definition 2.2 (non-aliasing reaction). G → G′ with (R,R′, ϕ), if G = C(id⊗
R)g and G′ = C(id⊗R′)g, for active, link-mono C and g such that ϕ(g) holds.

8

We underline the implication of taking a non-aliasing semantics: That no
outer names in the grounded rule (be it from R or d) can be aliased in the
context, effectively means that every such name is a unique handle on every
link connected to the grounded rule. This is convenient for our purposes, but
may, of course, not be so for other applications.

Interestingly, we find that allowing parameters to share and close names, we
provide a view on matching bigraphical rules, which corresponds more easily
to viewing bigraphical languages as a generic framework for rewriting on terms
enriched with names. For instance, it directly allows us to plug the hole in the
pattern (Kx ⊗ id)20 with a term using x, e.g., (Jx ⊗ id)0, to form (Kx ⊗ id)Jx.0
instead of requiring us to think of matching it as x/x1, x2((Kx1 ⊗ id)(Jx2 ⊗ id)0).

We shall expand on this remark in Section 3 to build a self-contained char-
acterization in structural operational semantics-style of how bigraphical calculi
evolve under non-aliasing semantics.

3 A Generic Process Calculus

BΣ,R-calculi are a generic family of process calculi equipped with pure names,
a new-name operator (sometimes called also hiding), parallel product and nest-
ing, used for modelling both prefixing and nesting (i.e., á la mobile ambients).
We instantiate a BΣ,R-calculus by giving a signature, Σ, and a set of reaction
rules, R. The signature allows us to tell which function symbols we may build
processes from. Processes of BΣ,R-calculi are quotiented according to a shared
structural congruence relation, ensuring that we interpret scope of new names
and parallel product as usual. The reaction rules allow us to give the dynamic
semantics. Reactions are contextualized using a standardized scheme, which we
show in detail later.

We start by formally defining a signature.

Definition 3.1 (signature). A signature, Σ, is a set of controls, K; an arity
map, ar : K → N; and a map determining for every control, K ∈ K, whether it
is active or atomic.

The basic computing units in BΣ,R-calculi are processes. Processes are built
from function symbols with control from Σ, parallel product and new name
operators. The arity of a control tells us how many ports for names a function
symbol has. Furthermore, if a control is active, it may be a prefix. We write
prefixing with the help of an infix dot operator “.”—in correspondence with the
prefixing operator of process calculi in the π-family. For example, suppose that
Σ contains L : atomic(2) and M : active(0)—short for telling that Σ contains
the controls L and M, that L is atomic and M active, and that ar(L) = 2 and
that ar(M) = 0. Then Ly,x |M.Ly,z is a valid process. For many applications we
may intend prefixing to model containment, and then it may be more sensible
to choose an ambient-style notation for active controls. We may then define, for
instance, [P] def= M.P ; where the M is a representation of the ambient.

9

x, y, z pure names
X, Y, Z variables

K generic control
M active control
L atomic control

Figure 1: Notational conventions—names, variables and controls

In formally defining processes, we presuppose an unbounded supply of pure
names, N . We use lowercase letters, x, y, z, . . . for pure names and sanserif
letters, K, L,M, . . ., for controls. For further notational convenience, in the fol-
lowing we shall treat M as having active control, and consider L (for leaf) an
atomic control.

For writing reaction rules, we shall also need process terms with process-
valued variables; and process groups—ordered sequences of proceses, which may
share names. Variables in BΣ,R-calculi are numbered, i.e., they are drawn from
a countable set of variables V = {V0, V1, V2, . . .}. This allows us to conveniently
define substitution of a process group into a process with variables (as we shall
see below) variable in an term. We require for well-formed process terms, that
all variables in a term are distinct. We use uppercase letters X, Y, Z, . . . as
metavariables ranging over variables.

These notational conventions are summarized in Figure 1. In Definition 3.2,
we define formally processes, and in Definition 3.3, we define process groups. A
process is a special case of a group—namely, a group with exactly one process.
We use this in many of the following definitions and properties and overload the
symbols we use for operations such as structural congruence and substitution
to work for both processes and groups. Definition 3.4 formally defines the well-
formedness criterion.

Definition 3.2 (processes). BΣ,R processes over the signature Σ are defined
inductively as

M,N ::= M~y.M active prefix
| L~x atom
| (x) M new name
| M |N parallel product
| 0 the empty process
| X variable

when |~y| = ar(M) and |~x| = ar(L).

Definition 3.3 (groups). BΣ,R (process) groups over the signature Σ are de-
fined inductively as

C,D ::= M single process
| (x) C new name
| C ||D wide parallel product
| ε the empty group

10

Definition 3.4 (well-formed processes and groups). Processes M and groups
G are well-formed iff all variables in M and G are distinct.

In the following, we shall assume that all processes or groups that we treat
are well-formed, although, of course, we need to make sure that well-formedness
is preserved by the operations we define on processes. We write var(M) and
var(C) for the (possibly empty) set of variables in processes M and groups C.

Call processes or groups without variables ground. Call nonground processes
preprocesses, and nonground groups pregroups—in general, we call nonground
processes or groups, contexts. We reserve the metavariables P,Q for ground
processes, and G, F for ground groups. Finally, we shall write PΣ for ground
processes over the signature Σ.

We use parentheses for grouping as usual. To save ink for parenthesis in
large terms, we let prefixing . bind tighter than |, which binds tighter than ||,
which in turn binds tighter than the operator (x). When x̃ = {x1, · · · , xn}
we write (x1 · · ·xn) M or (x̃) M to mean (x1) · · · (xn) M . Finally, as usual, we
shall typically elide the trailing 0 under empty prefixes, for instance, writing M
instead of M.0.

3.0.2 Ordering of Variables

We are not interested in the particular numbers used for variables in a given
term, only in their relative ordering inside that term. For instance, we do not
wish to distinguish, the two processes V45 |V56 and V0 |V1. All variables in a well-
formed term are distinct, so we may order the variables in any term uniquely
according to their numbers. It is therefore clear what we mean, when we refer
to the ith variable in a given term.

We shall now define order-preserving renumbering, and by including order-
preserving renumbering in the structural congruence relation, we formalize no-
tion that we consider processes up to such order-preserving renumbering. We
write nv(C) for the set of numbers of variables in C.

Definition 3.5 (order-preserving renumbering). Given a group C and an order-
preserving and injective map r : nv(C) → N, let [C]r be the group C with all
variables renumbered according to r.

It is convenient to define also the stratifying renumbering, the renumbering
that maps every variable to the number given by its relative order. To that end,
we may order the renumberings themselves, pointwise. Formally, we simply say
that for all renumberings r and s, r ≤ s iff for all x, r ↓ x ⇐⇒ s ↓ x and
r(x) ≤ s(x). It is easy to check that this is induces a partial ordering with a
least element: the order-preserving renumbering of variables that maps the ith
variable in a term to Vi.

Definition 3.6 (stratifying renumbering). The stratifying renumbering of vari-
ables in a group C is the least order-preserving renumbering defined on nv(C).

We write [C] for the group C renumbered according to this renumbering,
and call [C] stratified.

11

The stratifying renumbering shall serve as a help in defining substitution,
by mapping, for instance, V45 | V56 to V0 | V1.

3.0.3 Free and Bound Names

The new name operator (x) M is a binder—as we shall see below instances of
the name x in M are alpha-convertible. We define inductively the set of free or
bound names of a term as usual.

Definition 3.7 (free and bound names). For processes M the free names fn(M)
and the bound names bn(M) are defined inductively as:

fn(M~y.M) = ~y ∪ fn(M) bn(M~y.M) = bn(M)
fn(L~y) = ~y bn(L~y) = ∅

fn(M |N) = fn(M) ∪ fn(N) bn(M |N) = bn(M) ∪ bn(N)
fn((x)M) = fn(M) \ x bn((x) M) = x ∪ bn(M)

fn(0) = ∅ bn(0) = ∅
fn(A) = ∅ bn(A) = ∅

For groups we extend the definition above to include also:

fn(C ||D) = fn(C) ∪ fn(D) bn(C ||D) = bn(C) ∪ bn(D)
fn((x) C) = fn(C) \ x bn((x) C) = x ∪ bn(C)

fn(ε) = ∅ bn(ε) = ∅

We call a process or group closed if all its names are bound; and open if any
names are free. We say that two processes M and N are connected if they share
free names, that is, if fn(M) ∩ fn(N) 6= ∅.

3.0.4 Structural Congruence

We quotient processes and groups according to a structural congruence relation
enforcing prominently that names in the scope of a binder are alpha-convertible
and that (x) floats freely in a term, as long as we do not indaverdently capture
free instances of the name x. Furthermore, we make parallel product associa-
tive, allow reordering, and stipulate that we may introduce (or delete) empty
processes. For groups, we make wide parallel product associative and make ε
the neutral element.

Definition 3.8 (structural congruence). Structural congruence, ≡, on processes
and groups is the least congruence relation containing α-equivalence (i.e., bijec-
tive renaming of bound names), order-preserving renumbering of variables, and
s.t.:

• parallel product, |, is associative and commutative with 0 as neutral ele-
ment;

• wide parallel product, ||, is associative with ε as neutral element;

12

and including the following scope extrusion laws

M | (x)N ≡ (x)M |N if x 6∈ fn(M) (extrusion - par)
((x) M) ||N ≡ (x)M ||N if x 6∈ fn(N) (extrusion - wide par left)

M || (x)N ≡ (x) M ||N if x 6∈ fn(M) (extrusion - wide par right)
M~y.((x)M) ≡ (x) M~y.M if x 6∈ ~y (extrusion - prefix)

(x)(y)M ≡ (y)(x)M (reordering)
(x)M ≡ M if x 6∈ fn(M) (elision)

As usual it is easy to check that free names are invariant under structural
congruence, that is, for processes M ≡ N , fn(M) = fn(N).

3.0.5 Normal Form

Using structural congruence laws we may push binders to the top (performing
α-conversion as needed), remove superfluous binders via elision, and remove
empty processes or groups to bring every process and group on a normal form,
resembling the standard form for CCS [Mil80].

Proposition 3.9 (normal forms). Every process M is structurally congruent to
a normal form

M ≡ (x̃)(M0 | · · · |Mn−1)

where each M0, · · · ,Mn−1 is a variable, an atom, or a prefix (i.e., on the form
K~y.N) containing no binders; and where x̃ ⊆ fn(M0)∪· · ·∪fn(Mn−1). (If n = 0,
then M0 | · · · |Mn−1

def= 0, and if x̃ = ∅ then the binder (x̃) is not there.)
Every group C is structurally congruent to a normal form

C ≡ (x̃)(M0 || · · · ||Mn−1)

where each M0, · · · ,Mn−1 is non-empty, contain no binders, and is otherwise
on (process) normal form; and where x̃ ⊆ fn(M0) ∪ · · · ∪ fn(Mn−1). (If n = 0,
then M0 || · · · ||Mn−1

def= ε, and if x̃ = ∅ then the binder (x̃) is not there.)
The forms are unique up to α-equivalence, and reordering of binders and

parallel processes (i.e., up to the commutative law for |).

We shall write C ≡N C ′, if C ≡ C ′ and C ′ is on normal form.
Having formalized a normal form for groups, we may conveniently define the

width of a group as the number of non-empty top-level processes.

Definition 3.10 (width of group). For

C ≡N (x̃)(M0 || · · · ||Mn−1)

let width(C) = n.

13

3.0.6 Substitution

Nonground processes (and groups) have variables for which we may substitute
other processes. For BΣ,R-calculi we shall apply substitution mainly to define
the substitution of parameters for the variables in parametric reaction rules,
that is, rules with variables.

We start by defining basic substitution of the variables in a group C by a
process M . (For ease we define substitution only for groups, C. The definition
for processes follows as a special case.) Substitution is capture-avoiding, as
usual.

Definition 3.11 (raw substitution). Let ϕ be a bijective map from variables
to processes M0,M1, . . . ,Mn−1.

The substitution Cϕ of variables in C by the processes in ϕ is defined when
| var(C)| = n, for all i ∈ n, bn(C) ∩ fn(Mi) = ∅. In that case, we define Cϕ
inductively over the structure of C,

(M~y.M) ϕ = M~y.(Mϕ)
L~x ϕ = L~x

((x)M) ϕ = (x) (Mϕ)
(M |N) ϕ = (Mϕ |Nϕ)
0 ϕ = 0

Xϕ =

{
Mi if ϕ(X) = Mi

X else

((x)C)ϕ = (x) (Cϕ)
(C ||D) ϕ = (Cϕ ||Dϕ)
ε ϕ = ε.

As each variable is a leaf in C it is easy to see that the substituted term
respects the grammar (i.e., in Definition 3.2 and in Definition 3.3). However,
in general, raw substitution does not preserve well-formedness. Any process Mi

may contain variables that C or some other process Mj also contains. Hence, we
shall only use raw substitution as a means to define two versions of substitution,
where this issue is resolved.

We start by defining total substitution, C ·D, the substitution of all variables
in a group C with the processes in a group D.3 We shall define total substitution
by pushing the binders of D to the top of the created term; hence, we also require
that both bound and free names of C be distinct from bound names in D. This
is (another) technical requirement, as we can also α-convert bound names of D
to avoid any clashes.

Definition 3.12 (total substitution). Substitution C ·D of variables in C by
processes in D is defined when | var(C)| = width(D) and bn(C) ∩ fn(D) =

3We choose an infix notation for total (and partial) substitution in analogy with the cate-
gorical notation for composition; an analogy, which we shall make formal in the next section,
when we relate BΣ,R-substitution to bigraphical composition.

14

bn(C) ∩ bn(D) = fn(C) ∩ bn(D) = ∅. In this case, for

D ≡N (x̃)(M0 || · · · ||Mn−1)

let
C ·D = (x̃)[C]{V0 7→ M0, · · · , Vn−1 7→ Mn−1},

Note, that we use a stratifying renumbering to renumber the variables in C
before substituting, to ensure that the variables in C are numbered severally
from 0 to n− 1. Observe also that, as all variables in C have been substituted,
the term C ·D is well-formed iff D is.

It is easy to check that substitution is associative.

Proposition 3.13 (total substitution is associative). (C ·D) ·E = C · (D ·E).

It shall be convenient to generalize our definition of substitution to also in-
clude partial substitution—where only some of the variables of the context C
are substituted. Partial substitution is not in general associative; by convention
we take it to be left-associative, and distinguish it with a non-symmetric sym-
bol.4 Definition 3.14 generalizes Definition 3.12 to the cases, where D has fewer
processes than C has variables.

Definition 3.14 (partial substitution). Partial substitution C / D of variables
in C by processes in D is defined when | var(C)| ≥ width(D) and (as for total
substitution) when bn(C) ∩ fn(D) = bn(C) ∩ bn(D) = bn(C) ∩ fn(D) = ∅. In
this case, let

C / D = C · ([D] || Vk || · · · || Vk+n),

for | var(C)| − width(D) = n and | var(D)| = k.

It is immediate from the definitions, that in the case where | var(C)| =
width(D), C · D ≡ C / D. In the case, where C has more variables, than
D has processes, we simply extend D with appropriately numbered variables.
More generally, we may also consider total and partial substitution as a way
to compose processes or groups with other processes or groups.5 As we shall
see, this is convenient for expressing succinctly filling parameters in rules with
variables; viewing substitution as a way to compose terms will be useful also for
seeing that a set of terms are all substitution-instances of a certain kind.

3.1 Operational Semantics

To instantiate a BΣ,R-calculus one gives a signature, Σ and a set of reaction
rules R. We start by defining reaction rules.

4It is easy to check that partial substition may be undefined if evaluated right to left (thus
the non-associativity), but is always defined if evaluated left to right.

5In bigraphs, we have substitution residing syntactically in the language—composition
is an term constructor instead of an operation as we define it as here. This is one of the
simplifications that we make for BΣ,R-calculi, whose repercussions, to the term language, the
structural congruence relation (in particular) and the structural operational semantics, help
bring the presentation more in line with standard tradition for process calculi.

15

Definition 3.15 (reaction rule). A BΣ,R-rule (over the signature Σ) (M →
N,ϕ) is a pair of processes, where fn(M) = fn(N)and var(M) = var(N); along
with ϕ, a predicate on ground groups. We call M the left-hand side (or lhs) of
the rule, and N the right-hand side (or rhs). We call fn(M) = fn(N) the free
names of the rule and var(M) = var(N) the variables of the rule. We call ϕ the
side-condition of the rule.

Loosely, any ground process P that is a substitution-instance of the left-hand
side of a rule may be rewritten with that rule.6 Given a rule (M → N,ϕ), if
for some (ground) group G, we have P ≡ M · G, we may perform a reaction
P → P ′ ≡ N · G, if ϕ(G) is satisfied. We say that P matches M with the
parameter G, since G consists of the group of processes that we will substitute
for the variables in N . We allow an arbitrary side-condition, ϕ, but we shall
be concerned mainly with predicates testing free names of the parameters of a
reaction.

In rules, variables take on their intended role of placeholders—serving only
to carry parameters across a reaction. For rules, our only concern shall be,
where variables of the left-hand side are reused on the right-hand side; neither
the numbers of variables or ordering internal to the left-hand side or right-hand
side matter. More formally, it is easy to verify, that our definition for reaction
is closed under order-preserving renumbering (applied to both sides of a rule).
Thus, by convention we shall use metavariables A,B, C, . . . in rules to denote
variables (as in the example below), thus eliding which particular (numbered)
variables are chosen.

Reactions may occur in any process context. We contextualize reactions ac-
cording to standard tradition. We close reactions under syntactic constructions,
structural congruence, and also under (bijective) renaming of free names. Defi-
nition 3.16 records a small set of rules which together characterize reactions for
processes.7

Definition 3.16 (reactive system). Given a signature Σ and a set of reaction
rules R, T Σ,R the reactive system associated with R for PΣ is given by the
reaction relation →, the least binary relation over PΣ, s.t.

rule
(M → N,ϕ) ∈ R ∃G s.t. P = M ·G and P ′ = N ·G ϕ(G) satisfied

P → P ′

par
P → P ′

P |Q → P ′ |Q
prefix

P → P ′

M~y.P → M~y.P ′

close
P → P ′

(x)P → (x)P ′ struct
Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′

subst
P → P ′ ∃x̃.α : fn(P) ↔ x̃

α(P) → α(P ′)
,

6We could have defined reaction for groups or, for that sake, for pre-processes or -groups,
but for our purposes, ground rewriting on processes shall be enough.

7Tradition differs on whether to call unlabelled transitions reactions (as in BRSs) or tran-
sitions (as in κ). To remove any confusion: our reactions are unlabelled and correspond to
transitions in κ.

16

where α is a bijection between the free names of P and fresh names x̃, and α(P)
is the process P with free names substituted by names x̃.

It follows easily from the definition that free names of P are preserved, that
is, for P → P ′, fn(P) = fn(P ′).

An important property of BΣ,R is that the semantics is non-aliasing. Let
us explicate what we mean by this. First of all, we allow bijective renaming of
free names, since the names of reaction rules are only intended as placeholders,
which may be matched to any name in a process. However, by allowing only
bijective renaming, we ensure that disconnectedness (immediate) is preserved
by contextualization. This in turn ensures us that we may meaningfully give
side-conditions, which test the free names of processes.

Consider an example. Take the rule

R = (A |B |M → A |M.B, ϕ = {fn(A) ∩ fn(B) = ∅}).

We intend this rule to mean: “When two processes A and B reside beside
each other and an M-container, one of these processes may relocate to the M-
container, only if no entities in A and B are connected with each other.”8 For
instance, we intend to reject reactions such as Kz | Kz |M → Kz |M.Kz, where
the parameter G = Kz || Kz of the reaction do indeed share names (we have
(A |B |M) · (Kz || Kz) = Kz | Kz |M).

Suppose that we had allowed arbitrary substitution, σ, in subst instead of
only bijective renaming. With this version of the subst-rule (call it substσ),
we may build the following derivation

rule
R ∈ R G = Kx || Ky ϕ satisfied

substσ

Kx | Ky |M → Kx |M.Ky σ = {y 7→ z, x 7→ z}
Kz | Kz |M → Kz |M.Kz

which contradicts our intention with the side-condition.
In Section 4, we shall see precisely, how we may consider BΣ,R-processes

and groups as corresponding to certain graphs with typed nodes corresponding
to function symbols, nesting corresponding to prefixing, and, (named) links
corresponding to usage and sharing of names.

4 Bigraphs and BΣ,R-calculi

In this section, we verify formally that we may consider BΣ,R as a sugared
and restricted language for expressing certain kinds of bigraphs, and that BΣ,R-
reaction correspond to a variant of bigraphical reaction—extended with negative
side-conditions and under non-aliasing contexts. The verification itself is fairly
straightforward—our effort has consisted mainly in choosing suitable restric-
tions.

8In expressing side-conditions for reaction rules concisely, it is convenient to overload the
usage of variable-names in the rule, such as A and B, to refer to the processes in the parameter
that we are substituting for those variables.

17

Such restrictions as we adopt in the BΣ,R-language for building processes
are key for allowing us to express reactions and contextualization as we have
done it in Definition 3.16. As opposed to bigraphs, we do not have explicit
name-substitution in the language; instead we take a rule for contextualization
that allows renaming of free names. We do not have explicit substitution or
composition as a combinator in the language, we take only the restricted prefix
combinator and define substitution as an operation, instead; and, we take as a
primitive the parallel and wide parallel operator, instead of the (bigraphical)
tensor product, which requires disjointness of names. These choices simplify
both structural congruence, and the operational semantics.9

In the following, we look to establish a dynamic correspondence between
BΣ,R-reaction and bigraphical reaction. We establish first, in Proposition 4.2, a
static correspondence verifying that BΣ,R-processes correspond to certain kinds
of bigraphs with a single root (primes). In Lemma 4.3, we state formally that
BΣ,R-substitution is engineered to correspond to a relaxed version of bigraph-
ical composition. This shall help us establish the dynamic correspondence; in
Lemma 4.4, we characterize BΣ,R-reaction via substitution. By way of this
characterization, in Theorem 4.5, we may formally state and verify the dynamic
correspondence, we are looking for.

4.1 Statics

We start by verifying that BΣ,R-processes are in one-to-one correspondence with
certain bigraphs with one root. Observe first, that for signatures the relation is
trivial—BΣ,R-signatures are simply bigraph-signatures with no passive controls.

Recall that link-epi are those link graphs with no idle outer names, and
that prime bigraphs are those with a single root and no inner names. Also
recall, that from the bigraphical ⊗-product that requires total disjointness of
both outer and inner names, we may derive a name-sharing parallel product
||, and prime product |. Finally, in the following, to distinguish bigraphs from
BΣ,R-processes, we write bigraphs with a superscripted B.

We start by stating a normal form for link-epi, prime bigraphs, which we
use to make an direct comparison with the normal forms for BΣ,R.

Lemma 4.1 (normal form for link-epi, prime bigraphs). All link-epi primes PB

may be expressed on the following normal form

MB = (K~x | idY)PB

PB = (/Z | id1)(idn |M0 | · · · |Mk−1)π

In case K is atomic, then the MB form degenerates to MB = K~x. (Also note
that, contrary to discrete normal form (cf. [Mil05]), the names ~x need not be
distinct.)

9It should, of course, be said that the categorically derived tensor product and composition
prove their worth in establishing many meta-theorems about bigraphs, and, in general, seem
to enjoy better algebraic properties [Mil05, DB06]. However, our emphasis in this paper is on
presentation; hence our effort to show that bigraphs and BRSs may be presented otherwise.

18

Proof. Follows easily from the completeness of the DNF and CNF normal forms
for bigraphs (see [Mil05]).

Comparing the normal form for BΣ,R-processes in Proposition 3.9 and the
normal form for link-epi primes above, it is easy to check the following property.

Proposition 4.2 (BΣ,R-processes are link-epi primes). BΣ,R-processes over the
signature Σ considered up to ≡ correspond one-to-one to link-epi prime bigraphs
(over the corresponding bigraphical signature Σ).

Proof. As mentioned above, BΣ,R-signatures are simply bigraph-signatures with
no passive controls. We need only compare normal forms. They are essentially
equal, up to the extra care with identities we need to take for bigraphs, and
up to the fact that ordering of variables in the bigraphical term language is
captured via a permutation π.

From Lemma 4.2 and the normal form for groups, it follows also, that BΣ,R-
groups are products of link-epi primes. Hence, we may treat BΣ,R-processes or
groups as denoting bigraphs. We extend the usage of superscripting bigraphs
with a B to allow applying it as an operator. Given a process M or a group C, in
the following we let MB or CB denote the corresponding bigraph. Substitution
for BΣ,R has been defined to behave like bigraphical composition allowing exten-
sion with a link-identity, as usual. (This is also sometimes known as bigraphical
“dotting” [Mil09].)

Lemma 4.3 (BΣ,R-substitution is bigraphical composition). (C ·D)B = (CB ||
idY)DB, for Y = fn(DB).

4.2 Dynamics

We now turn to dynamics. We relate BΣ,R-reaction rules and bigraphical rules
(with prime, link-epi redices and reactums) pointwise. Side-conditions for BΣ,R-
rules may be translated directly to bigraphical side-conditions (as defined in Sec-
tion 2.2). We extend the B-notation and write ϕB for the bigraphical predicate
corresponding to ϕ.

To pave the way for relating BΣ,R and bigraphical (non-aliasing) seman-
tics, we start by characterizing in terms of substitution the BΣ,R-processes that
Definition 3.16 allows to rewrite.

Lemma 4.4 (characterizing BΣ,R-reaction via substitution). For any BΣ,R-
reaction P → P ′ via a rule with left-hand side M and right-hand side N , we
have P ≡ (x̃)(O · α(M ·G)) and P ′ ≡ (x̃)(O · α(N ·G)), for some process with
one variable O with fn(O) = z̃, a (ground) group G, and α : x̃∪ z̃ ↔ ỹ for some
ỹ.

Proof. We may show that for any reaction P → P ′, there exists a normal
derivation, DN , of a reaction among processes Q and Q′ structurally congruent

19

to P and P ′ (i.e., Q ≡ P and Q′ ≡ P ′) given by the little grammar below:

DN ::= close∗
Dctxt

· · · Dctxt ::=



subst
rule · · ·

· · ·

par
struct

Dctxt

· · ·
· · ·

prefix
Dctxt

· · ·

Reading the grammar bottom-up, we stipulate that—modulo structural congruence—
any reaction may be derived by first applying rule, then subst to rename free
names of the rule; followed by a sequence of prefix and par to add arbi-
trary context in the form of prefixes or arbitrary processes in parallel (using
struct to shuffle the parallel components of the term, if needed); finally clos-
ing names meant to be hidden (using close∗ as a shorthand for zero or more
applications of close).

We may prove the completeness of the normal derivation by induction on the
structure of the derivation of the reaction P → P ′. The only somewhat tedious
case is when we consider a derivation concluding with a renaming α using subst.
The logic behind the positioning of subst in the normal derivation grammar
is, that the only relevant usage of that rule is to rename free names used in
the rule itself. Names used only in context introduced by par and prefix, we
may already choose freely. To conclude this formally, note that by the induction
hypothesis we have a normal derivation D′

N of a reaction without the renaming
α. To verify the case, we construct a new normal derivation by essentially
applying α across D′

N up to the rule/subst leaf, and then merge α with the
substitution in the subst already occuring in D′

N . The remaining cases may be
verified straightforwardly.

It remains to remark, that, using contiguous applications of prefix and
struct/par and the final sequence of close, we may build as context any
process (x̃) O with one variable; thus reasoning that the substitution of α(M ·G)
into O characterizes the contextualization of the core reaction. With the help
of the normal form for processes (Proposition 3.9) this is straightforward.

Having thus characterized reactions via substitution, which in turn corre-
sponds to bigraphical composition (Lemma 4.3) we may bridge the gap to bi-
graphical reaction.

Theorem 4.5 (BΣ,R reaction is bigraphical reaction under non-aliasing con-
texts). P → Q by (M → N,ϕ) iff PB → QB by (MB → NB, ϕB) as defined in
2.1 and Definition 2.2.

Proof. (⇒) We are given a reaction P → Q by (M → N,ϕ), and we need to
construct a link-mono bigraph C and a ground parameter d, s.t. PB = C.MB.g
and QB = C.NB.g.

From Lemma 4.4, we know that P ≡ (x̃) (O·α(M ·G)), and Q ≡ (x̃) (O·α(N ·
G)) for some process with one variable O and a (ground) group G. W.l.o.g.,

20

assume that x̃ ⊆ fn(O · α(M · G))—we may remove excess names from x̃ via
elision.

We have

((x̃)(O · α(N ·G)))B = (/x̃⊗ id〈1,Y]Z〉)OB.(α⊗ id1)(NB.GB),

where α : fn(N ·G) → Y and Z = fn(O). We know from Lemma 4.3 that BΣ,R-
substitution is bigraphical dotting; name-hiding and substitution correspond to
composition with closure and renaming, respectively.

We choose C = (/x̃⊗id〈1,Y]Z〉)(OB ||idY)(α⊗id1) = (/x̃⊗id〈1,Y]Z〉)(OB ||α),
and g = GB. We note that C is link-mono by construction, since OB (and any
other correspondent to a BΣ,R-process) has no inner names and α—the part of
C that will create inner names—is, by definition, link-mono (in fact, iso). By
construction we have PB = C.MB.g and QB = C.NB.g, and we are done.

(⇐) We are given a reaction among link-epi primes (and thus correspondents
of BΣ,R-processes) PB → QB by a reaction rule (MB → NB, ϕB); in other
words, we know that for some link-mono C and parameter g, PB = C.MB.d
and QB = C.NB.g; and C must also be link-epi as PB is. We need to construct
a BΣ,R-derivation of a reaction, s.t., P → P ′ by (M → N,ϕ).

To verify the case, we may reverse most of the reasoning for ⇒-direction.
We note that in the construction above, the bigraphical correspondent to (x̃) O,
(/x̃ ⊗ id)OB, ranges over all link-epi primes.In turn, it is easy to verify (with
the help of the normal forms for bigraphs [Mil05]) that the C derived from O
ranges over all link-mono and -epi contexts with both inner and outer width
equal to 1 (i.e., of width 1 and with a single hole). Hence, we may reverse the
logic of the construction above, to see that PB ≡ (α((x̃) (O · M · G)))B, and
QB ≡ (α((x̃) (O ·N ·G)))B; and then conclude the case via Lemma 4.4.

(For the side-conditions, we need only remark that for any ϕ, ϕ(G) iff
ϕB(GB).)

5 An Example: The κ-calculus as a BΣ,R-calculus

As an illustration of the BΣ,R-calculus we show how we may capture (modulo
a modicum of encoding) the nondeterministic κ-calculus, a language of formal
proteins [DL04]. The setup of the κ-calculus has a striking resemblance to the
link graph of bigraphs; it is not surprising that we may capture it fairly easily. It
is, however, a first step towards our goal of studying extensions of the κ-calculus,
as well as serving as an illustration of the BΣ,R-presentation.

In the κ-calculus one instantiates a concrete model by choosing a signature,
signifying the proteins one works with, and giving a set of rewrite rules. We
describe a family of BΣ,R-calculi, κB, which faithfully captures any such κ-
model.

21

5.1 The κ-calculus

Below, we briefly and informally summarize the central concepts in the nonde-
terministic κ-calculus [DL04].

A κ-calculus description of a system consists of a set of solutions over a (κ-
calculus) signature, a collection of (formal) proteins, and a set of reaction rules.
Proteins have a name and a number of ordered sites, collectively referred to as
the interface of the protein. A site may have an internal state; it can either be
hidden, visible, or, bound. Rules provide a description of how agents interact.
The elementary interactions consist of binding or unbinding between two sites
of proteins, the modification of the state of a site, and the deletion or creation
of an agent.

The syntax of the κ-calculus relies on

• a countable set of protein names P, ranged over by uppercase letters
A,B,C, . . .;

• a countable set of names N, ranged over by x, y, z, . . .; and,

• ∫—a (κ-calculus) signature, a map which assigns to each A ∈ P an arity
signifying the number of sites of the protein A; that is, ∫(A ∈ P) = n ∈ N.

For each protein A, ∫(A) is the number of sites of A and the pair (A, i) is a site
of A.

Interfaces A κ interface is a partial map from N to N]{h, v}. We let ρ and
σ range over interfaces. A site (A, i) is

• visible, if ρ(i) = v;

• hidden, if ρ(i) = h; and

• bound, if ρ(i) ∈ N.

A protein A may be assigned an interface ρ, if ρ is defined on a subset of
∫(A). For instance, if ∫(A) = 3, then ρ = {1 7→ v, 2 7→ h, 3 7→ x} is a well-
defined interface for A. It says that site 1 is visible, that site 2 is hidden, and
that site 3 is bound to some name x. As interfaces are part of the syntax, it has
become tradition to write the interface ρ with syntactic sugar as ρ = 1+2+3x.

Importantly, interfaces need not give information for all of A’s sites; we say
that they may be partial. This is to allow interfaces to depict partial information
on A’s sites in reaction rules.

Syntax The syntax for κ-solutions is as follows:

S, T ::= 0 empty solution
| A(ρ) protein
| S, T group
| (x) (S) new name

The (x) S operator is a binder of the name x in S, as usual. Definitions for free
and bound names may be given inductively, much as in Definition 3.7.

22

Structural congruence and graph-likeness As BΣ,R-processes, κ-solutions
are quotiented by a structural congruence relation, ≡, which records that bound
names are α-convertible, that | is associative and commutative with 0 as the neu-
tral element; and, that the usual scoping laws for (x) holds; i.e., corresponding
to extrusion, reordering, and elision in Definition 3.8.

Graph-like solutions are those solutions, where

• free names occur at most twice, and

• binders bind either zero or two occurences of names.

A graph-like solutions is strongly graph-like, if all free names occur exactly twice.
One may define a translation from graph-like solutions to graphs whose

nodes have sites—providing a formal graph-based language for the κ-calculus.
As expected, structurally congruent solutions translate to the same graph.

At the top of Figure 2, we depict and write terms for two small κ-solutions
(ignore for now their translation into BΣ,R-process, at the bottom of the figure).
Note that name-sharing between bound sites induces so-called complexation-
links between sites.

Reaction rules There are two kinds of rules in the κ-calculus, monotonic and
anti-monotonic rules. They ensure that rules model biologically well-founded
reactions on the chosen level of granularity for the reactions in κ, such that
they divide into two clean classes: those that form new complexation links
(monotonic), and, those that break complexation links (anti-monotonic); and
also that synthesis and degradation (creation and deletion of proteins) is only
allowed for proteins with no complexation-links to other proteins. However, as
discussed in the paper [DL04], and in later versions of the κ-calculus [DFF+07,
DFFK07], the restrictions on monotonicity may also be loosened.

We shall not go into further detail here; suffice to say, that we may also
adopt and translate the schema for restriction for monotonic and anti-monotic
rules to the κB setting. The translation and correspondence we prove below is
not dependent on monotonicity, however, so in this treatment we shall not be
concerned much with monotonicity-restrictions.

For the remainder of this paper, it suffices to say that when L → R is a
monotonic reaction rule, then L and R are graph-like solutions on the following
forms:

L = A1(ρ1), · · · , An(ρn)
R = (x̃) A1(σ1), · · · , An(σn), An+1(σn+1), · · · , Am(σm),

for (possibly partial) interfaces ρ1, · · · , ρn, and full interfaces σ1, · · · , σm.
The newly created proteins An+1, · · · , Am must have full interfaces. For-

mally, this follows from the so-called κ growth relation. The growth-relation
also ensures, essentially that monotonic rules only add complexation-links and
proteins to solutions, while anti-monotonic rules only remove structure.

Anti-monotonic rules are defined by symmetry as reverses of monotonic rules.

23

Matching The matching of a monotonic reaction rule to solutions is defined
as follows, for S and T , two solutions.

We say that S, T matches L → R on the form above, written S, T � L → R,
iff for some injective renaming r (preserving hidden and unbound sites), and for
some partial interfaces ζ1, · · · , ζn we have that:

S = A1(r(ρ1) + ζ1), · · · , An(r(ρn) + ζn)
T = (r(x̃))A1(r(σ1) + ζ1), · · · , An(r(σn) + ζn), An+1(r(σn+1)), · · · , Am(r(σm)),

and, s.t., for all i, r(x̃) ∩ fn(ζi) = ∅.
In short, (monotonic) matching allows on L and R injective renaming on

names and extension of partial interfaces to full interfaces.

Reaction The reaction relation for the κ-calculus is defined via matching and
is closed under syntactic constructions and structural congruence.

The reaction relation is given via a set of rules that resembles Definition 3.16;
in fact, the simplicity of contextualization for the κ-reaction relation was a key
source of inspiration for the contextualization of BΣ,R-reaction.

We repeat the rules for deriving reactions in the κ-calculus below (eliding
only the details of monotonicity):

(rule)
S, T � L → R ∈ R

S → T
(new)

S → T
(x) (S) → (x) (T)

(group)
S → T

S, U → T,U
(struct)

S, T S ≡ S′ T ≡ T ′

S′ → T ′

5.2 Capturing the κ-calculus as a BΣ,R-calculus

In the following section, we start by defining a BΣ,R signature for κB that
matches a κ signature. We continue by defining a translation from κ-interfaces,
in Definition 5.2, and solutions, in Definition 5.3, to BΣ,R-processes. In Proposi-
tion 5.4, we state formally, that this translation respects and reflects structural
congruence. Definition 5.5 states that rules are simply translated pointwise, and
in Proposition 5.6 we formally state and verify the operational correspondence
between reaction in the κ-calculus and reaction in κB. Paving the way for ex-
panding and refining the model of proteins in κB, we finish by giving a little
characterization of the images of κ-solutions, in Definition 5.7, and verify it in
Lemma 5.8.

We shall model κ-proteins as atomic BΣ,R-function symbols and κ-calculus
names directly as BΣ,R-names. However, while the ports of BΣ,R-calculi serve
only to link names, the sites of proteins hold bits of state information. We have
to capture also, that κ rules allow us to express only partial interfaces, where
some sites of a protein may be left out.

We capture these features of κ-interfaces by “exploding” the protein-model
of the κ-calculus—making the protein-node model (only) the backbone of a
protein, its ports connecting it to sites modelled as separate nodes.

24

Consequentially, we inject a translation of κ-interfaces into our BΣ,R-signature
and add a few extra controls. We add three kinds of site nodes: 	p, a site in
unbound state connected to a protein-backbone via p; �p, a site in hidden state
connected to a protein-backbone via p; and, ⊕p,c, a site in bound state con-
nected to a protein-backbone via p and to another site via c. To sum up, the
first port of a site link sites to their (backbone) protein, while the second port,
if present, are for complexation links.10

Definition 5.1 (BΣ,R signature for κB). We consider the signature

Σ = {A : atomic(n) | A ∈ P, ∫(A) = n}]
	 : atomic(1)] � : atomic(1)] ⊕ : atomic(2).

5.2.1 Translating κ-solutions

We have already sketched above how we intend to translate κ-solutions to κB-
processes. In our model of κ, we push κ-interfaces to the level of first-class
citizens. So, in defining translation formally, we define first translation of κ-
interfaces to κB-processes. We shall use links to connect also a protein with
its (translated) interface, so we parameterize the translation of interfaces by a
another partial map, a backbone map, from N to (backbone) names N, which
is used to create these links (and is introduced in the translation of solutions,
below).

Definition 5.2 (translation of κ-interfaces). Given a backbone map β : N → N
and a κ-interface ρ of the form {(i 7→ x), (j 7→ h), (k 7→ v), . . .}11, we define [[ρ]]β ,
the translation of ρ under β, pointwise, translating

• (i 7→ x) as ⊕β(i),x,

• (j 7→ h) as �β(j),

• (k 7→ v) as 	β(k);

and composing translated parts with parallel bar, |.

We continue to give a fully compositional translation from κ-solutions to κB-
processes. The only slightly nontrivial part is the translation of proteins. We
make a set of fresh names for the backbones and wire up a translated interface
using these names. As we see, translation is homomorphic in the new- and
parallel-operators (and its unit 0); underlining that the level of encoding is very
light.

10We have some degree of freedom here, of course. We might have taken just two rather
than three kinds of sites, � : atomic(1) and ⊕ : atomic(2) and let (c)⊕p,c model an unbound
domain. We choose, however, to stay as close in spirit to the original presentation of the
κ-calculus as possible, i.e., to have no link at all, when the site is free.

11Strictly speaking, we must also require that β and ρ be defined on an equal subset of N.

25

3

4
2

1

2 1

3

1

2
4 3

4

A

B

A

(x)
(
A(1x + 2x + 3 + 4)

)
(xy)

(
A(1 + 2 + 3x + 4y), B(1 + 2 + 3y + 4x)

)

BA4

2

3

1
A

3
2

42

1

3

4

1

Figure 2: Examples: κ-terms as κB-processes.

Definition 5.3 (translation of κ-solutions). We define translation of κ-solutions
inductively over the structure of κ-solutions.

[[0]] = 0
[[A(ρ)]] = (b̃′)Ab1,...,bn

| [[ρ]]β
[[S, S]] = [[S]] | [[S]]

[[(x) (S)]] = (x) (S),

for A with arity n, fresh names b1, . . . , bn, and β : n → b̃′ = {i 7→ bi|ρ(i) defined}.

Why is b̃′ not just b1, . . . , bn? Because, we anticipate that we also need to
translate proteins in rules with partial interfaces—i.e., where ρ is only defined
on a subset of n. We therefore close only those backbone-links which have a
site-counterpart in the (translated) interface. (This also explains why we require
names b1, . . . , bn to be fresh; in translating rules we might meet other proteins
with partial interfaces.)12

Figure 2 shows two examples of κ proteins and depictions of their translation
into κB-processes. As the encoding is almost homomorphic, and each of the

12We assume that κ-solutions are valid, i.e., that interfaces are allowable for proteins. We
may adopt conditions stating such restrictions directly, but elide them here for brevity.

26

laws for structural congruence in the κ-calculus has a direct correspondent in
the BΣ,R-setting, it is simple to verify, that structural congruence among κB-
processes captures structural congruence in the κ-calculus.

Proposition 5.4 (static correspondence). S ≡ T (for κ-≡) if and only if [[S]] ≡
[[T]] (for BΣ,R-≡).

5.2.2 Translating Rules

We have already paved the way for translating κ-solutions with partial inter-
faces, so we may simply translate κ-rules pointwise. The translation and treat-
ment of κ-rules is not dependent on whether the rule is monotonic or anti-
monotonic, so (as noted above) we shall disregard monotonicity in this transla-
tion.

Definition 5.5 (translation of rules). Given any kind of κ-rule, L → R, the
corresponding κB rule is [[L → R]] = ([[L]] → [[R]], ∅).

5.2.3 Operational Correspondence between κB-reaction and κ-reaction

Finally, we turn to verifying that κB-reaction recaptures κ-reaction.
Our encoding is light, and the setup of the BΣ,R-calculi is inspired in part by

the formal semantics of the κ-calculus; hence, the verification of the operational
correspondence is not too hard. We sketch the proofs in some detail below.

Proposition 5.6 (operational correspondence).

1. For all κ-solutions S and T , if S → T by L → R then [[S]] → [[T]] by
[[L → R]].

2. If [[S]] = P → Q by r = [[L → R]], then there exists a solution T , s.t.,
[[T]] = Q, and S → T by L → R.

Proof. In both cases, we shall assume that L → R is a monotonic rule (the
anti-monotonic case is similar); then L and R are on the form

L = A1(ρ1), · · · , An(ρn)
R = (x̃) A1(σ1), · · · , An(σn), An+1(σn+1), · · · , Am(σm),

1.: We are given a κ-derivation of S → T stemming from a match on the
rule L → R. The κ-match is on the form

(rule)
S′, T ′ � L → R ∈ R

S′ → T ′

for

S′ = A1(r(ρ1) + ζ1), · · · , An(r(ρn) + ζn)
T ′ = (r(x̃))A1(r(σ1) + ζ1), · · · , An(r(σn) + ζn), An+1(r(σn+1)), · · · , Am(r(σm)),

27

where r is an injective renaming (preserving hidden and unbound sites), s.t., for
all i, r(x̃) ∩ fn(ζi) = ∅.

We build a BΣ,R-derivation corresponding to this match:

rule
([[L]], [[R]], ∅) ∈ R P ′ ≡ [[L]] Q′ ≡ [[R]]

subst
P ′ → Q′ α = r ↓ fn(P ′)

struct
P ′′ ≡ α(P ′) → α(Q′) ≡ Q′′

par
P ′′ → Q′′

P ′′ | [[ζ1]] | · · · | |[[ζn]] → Q′′ | [[ζ1]] | · · · | |[[ζn]]

The BΣ,R-rule step is simple, and both renaming and (due to the first-class
encoding of interfaces) interface extension is handled through contextual and
structural congruence rules. We first rename free names via subst and then (for
emphasis) bound names via struct; and then extending interfaces by adding
their translations via par.

The remainder of the contextual steps in the κ-derivation of the reaction,
we mimic directly with their immediate BΣ,R-counterparts, noting in particular
that, as we have the static correspondence, we can mimic also any structural
congruence-steps.

2.: Via the substitution characterization of matches in BΣ,R (Lemma 4.4),
we have that P = [[S]] and Q, are on the form

[[S]] ≡ (ỹ) (α[[L]] | C)
Q ≡ (ỹ) (α[[R]] | C) ,

where we use that [[L]] and [[R]] are ground, and that all controls in κB are
atomic.

We know also, that since S is a solution it has full interfaces; we can conclude
that C must be on the form

C ≡ [[ζ1]] | · · · | [[ζn]] | C ′,

where C ′ is the image of an open solution with complete interfaces, and s.t. each
ζi completes the interface of Ai, i.e., for all i ∈ n, Ai(ρi + ζi) and Ai(σi + ζi)
are proteins with full interfaces.

Letting α+ = α∪ idfn(C), we conclude with ease—as our compositional trans-
lation is particularly simple—that we have

[[S]] ≡ (ỹ) (α+ ([[A1(ρ1), · · · , An(ρn), B1(γ1), · · · , Bk(γk)]]))
Q ≡ (ỹ) (α+ ([[(x̃) A1(σ1), · · · , An(σn), An+1(σn+1), · · · , Am(σm),

B1(γ1), · · · , Bk(γk)]])) ,

introducing C ′ = B1(γ1), · · · , Bk(γk). The renaming we may equally apply on
κ-names; and, noting that the translation is homomorphic on name-closure, we
have found the T , s.t., Q = [[T]].

It is easy to verify, that S → T by L → R by building a κ-derivation.

28

5.2.4 Characterizing Images of the Translation

In our BΣ,R model, we have decoupled proteins and interfaces, or, biologically
speaking, protein-backbones and their sites. This decoupling is essentially the
only level of encoding in our capture of the κ-calculus. We may formally state
two well-formedness conditions on the links that close this coupling. We add
a third condition to say that bound sites link only to other bound sites. We
express the well-formedness conditions as clauses for each type of port in κB.

The characterization is presented essentially as a sorting [Deb08] on the
bigraphs underlying BΣ,R processes. We shall use the model for proteins and the
well-formedness conditions presented here, as the basis for further investigation
of a language built on bigraphs for modelling biology [DDK08].

Definition 5.7 (well-formedness conditions).

1. All ports of protein are either (i) linked one-to-one via a bound name to
either the first port of a site-nodes (i.e., with control 	, �, or ⊕), or (ii)
a distinct name.

2. All sites are linked one-to-one via a bound name by their first port to the
port of a protein.

3. The second port of all ⊕-nodes are linked (via an open or bound name)
to either another ⊕-node, or (for open processes) a name.

We may lift further requirements from the κ-calculus, notably graph-likenessfor
κ-solutions directly to κB, copying definitions essentially verbatim.

It is fairly easy to verify that well-formed κB-processes characterize exactly
the images of κ-solutions (with partial or complete interfaces).

Lemma 5.8 (well-formed processes correspond to solutions).

1. for all S, [[S]] is well-formed and unique up to structural congruence, and

2. if a κB-process P is well-formed then there exists a unique (up to structural
congruence) S (over the corresponding κ-signature), s.t., P = [[S]].

Proof. We sketch the reasoning.
1.: Easy to verify by induction on the structure of S from the translation in

Definition 5.3.
2. By the normal form (Proposition 3.9) for BΣ,R-processes, we know that

we may consider P as a sequence of protein-nodes and site nodes, under a set
of binders.

Well-formedness condition (2.) tells us that names used on the first port of
a site have exactly two occurences—they match up pairwise to a unique name
used by a port on a protein; and that name is bound. well-formedness condition
(1.) tells us in addition, that any name used on a port of a protein, which does
not have such a correspondent, is free and has only that one occurence.

29

In other words, grouping proteins, sites and binders according to that pair-
ing, we see that P consists a topmost binder (allowing the binding of complex-
ation links), and groupings of closed processes of the following form

(x̃)
(
A~x | 	y1 | · · · | 	yj | �u1 | · · · | �uk

| ⊕v1,w1 | · · · | ⊕vl,wl

)
,

where each yi, ui, and, vi are equal to exactly one name in x̃ (the set corre-
sponding to the distinct names ~x).

Such a closed grouping correspond to exactly one κ-protein with a (partial
or full) interface.

Well-formedness condition (3.) tells us simply that the names wi used at the
second port of ⊕-nodes are distinct from all names used on other types of ports,
but may have one (or more, if it is not graph-like) other occurences among
names used on the second port of ⊕-nodes.

Well-formedness condition (3.) ensures us that links among the second port
of ⊕-ports correspond one-to-one to κ-complexation links, as do their bound or
free state.

5.2.5 Concluding Remarks

In all, comparing the semantics of κ with that of κB, we may remark that
to allow for partial interfaces, we needed to lift sites to the level of first-class
citizens and disjoin them from protein backbones.

In return for this bit of added complexity, we get a more uniform treatment
of interface extension and renaming, and a simpler rule for matching. In BΣ,R,
the matching rule, rule, is comparatively simpler (in particular, for the atomic
controls of κB) than its κ-counterpart. This is because interface extension and
renaming is incorporated as part of the κ-matching rule; in κB, this is handled
as just another part of contextualization.

We may also note, that non-aliasing BΣ,R-reaction is actually necessary for
recapturing directly the injectivity of the renaming of names as produced by
the κ-matching rule. As noted in the introduction, when modelling biology,
controlling and testing connectedness is valuable.

6 Conclusion

In this paper, we have treated and motivated the extension of bigraphical reac-
tion rules to include testing of negative side-conditions, and, for defining these
sensibly, defined reaction under non-aliasing contexts.

We have introduced the family of BΣ,R-calculi, an independent presentation
of a subset of bigraphical calculi, and provided a simple operational semantics in
a structural style, which we have shown corresponds to a non-aliasing bigraphical
semantics. This contribution in itself, provides bigraphical calculi with a novel
self-contained syntactically founded semantics (the standard presentation being
firmly based on the categorical foundations of bigraphs [Mil06]).

30

Finally, to exemplify our contributions, we have shown that we may model
the nondeterministic κ-calculus as a BΣ,R-calculus. In doing so, we have paved
the way for further experimentation on languages based on bigraphs for studying
biological systems.

Related and Future Work In a sequel paper [DDK08], we shall build upon
the preliminary work presented here, and present a language encompassing both
domain-level protein-protein interaction, compartments and transport among
these. In that paper, we shall reap the benefit of having built a simple, self-
contained presentation of the subset of bigraphs that we need.

In the Introduction, we have already discussed the background and several
sources of inspiration for BΣ,R-calculi. We should also, however, comment on
other novel languages or models based on bigraphs.

In [BDE+06], Birkedal et al. evaluated the use of bigraphs for building, as
BRSs, so-called plato-graphical models of context-aware systems in the domain
of mobile ubiquitous systems. In [Els06], Elsborg continues this investigation.
The authors encode and analyse a MiniML-like calculus with references and use
this language to interact with direct representations of sensor networks. This
work focuses on context-aware systems, in particular the location aspect of
context, and the goal is to represent and analyze a minimalistic location-aware
model as a plato-graphical (BRS) model.

The CosmoBiz research project (Computer Supported Mobile Adaptive Busi-
ness Processes) at the IT University of Copenhagen has as aim to provide for-
malisations and implementations of business process languages for mobile and
adaptive business processes [HNB+07].

In [BGH+08a], Bundgaard et al. present a higher-order variant of WS-
BPEL [TC07], and shows how this language may be formalized in binding
bigraphs. In the companion tech report [BGH+08b] the language is also im-
plemented and simulated with the help of the BPL tool.

In this paper, we have focused on reaction and dynamic correspondences, not
contextual equivalences. As discussed in the introduction, we wish to start by fo-
cusing on finding good abstractions for modelling biological entitities and events.
In future work, we may wish, however, to investigate contextual equivalences.
In doing so, it is an obvious step to try to use the bigraphical framework for
bisimulations that are congruences via the derivation of minimal labels [Mil06].
(More recently, Bonchi et al. have studied an alternative approach to minimal
labels called a saturated semantics [BKM06].) However, as we have modified the
definition of the reaction relation to incorporate (negative) side-conditions and
require the context to be link-mono, it needs to be studied how to update the
framework, accordingly. In doing so, one may look to the experiences in deriving
labels for graph transformation systems that have rules with negative applica-
tion conditions (using the similar, so-called borrowed context approach [EK06])
by Rangel et al. [RKE08].

Such studies may also be a first step towards relating the bigraphical theory
for bisimulation congruences to the studies of meta-theoretical theorems con-

31

cerned with establishing congruential behavioral equivalences for syntactic rule
formats for structural operational semantics [MRG07].

Acknowledgements The authors thank Søren Debois, Mikkel Bundgaard,
Lars Birkedal, Vincent Danos, and Robin Milner, for many useful discussions
and suggestions during the development of this work. Some of this work was
developed while the first author was visiting Catuscia Palamidessi’s group at
Laboratory for Informatics at École Polytechnique, Paris, and the second author
was a research fellow in the same group.

References

[BDE+06] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas Hildebrandt,
and Henning Niss. Bigraphical models of context-aware systems. In
Luca Aceto and Anna Ingólfsdóttir, editors, FOSSACS ‘06: Pro-
ceedings of 9th International Conference on Foundations of Soft-
ware Science and Computation Structures, volume 3921 of LNCS,
pages 187–201. Springer-Verlag, March 2006.

[BDGM07] Lars Birkedal, Troels Christoffer Damgaard, Arne J. Glenstrup,
and Robin Milner. Matching of bigraphs. Electronic Notes in The-
oretical Computer Science, 175(4):3–19, 2007.

[BGH+08a] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt,
Espen Højsgaard, and Henning Niss. Formalizing higher-order mo-
bile embedded business processes with binding bigraphs. In Doug
Lea and Gianluigi Zavattaro, editors, Proceedings of the 10th inter-
national conference on Coordination Models and Languages (Coor-
dination’08), volume 5052 of Lecture Notes in Computer Science,
pages 83–99. Springer Verlag, 2008.

[BGH+08b] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt,
Espen Højsgaard, and Henning Niss. Formalizing WS-BPEL and
higher order mobile embedded business processes in the bigraphical
programming languages (BPL) Tool. Technical Report TR-2008-
103, IT University of Copenhagen, 2008.

[BH06] Mikkel Bundgaard and Thomas Hildebrandt. Bigraphical seman-
tics of higher-order mobile embedded resources with local names.
In Arend Rensink, Reiko Heckel, and Barbara König, editors, Pro-
ceedings of Graph Transformation for Verification and Concurrency
Workshop 2005, volume 154 of Electronic Notes in Theoretical
Computer Science, pages 7–29. Elsevier, 2006.

[BKM06] Filippo Bonchi, Barbara König, and Ugo Montanari. Saturated se-
mantics for reactive systems. In Proceedings of 21st IEEE Sympo-

32

sium on Logic in Computer Science (LICS’06), pages 69–80. IEEE
Computer Society, 2006.

[BPL07] The BPL Group. BPLweb—the BPL tool web demo, 2007. IT
University of Copenhagen, Denmark. Prototype.

[BS06] Mikkel Bundgaard and Vladimiro Sassone. Typed polyadic pi-
calculus in bigraphs. In Proceedings of the 8th ACM SIGPLAN
international conference on Principles and Practice of Declarative
Programming 2006, pages 1–12, 2006. Invited talk.

[Car04] Luca Cardelli. Brane calculi - interactions of biological mem-
branes. In Computational Methods in Systems Biology, pages 257–
278. Springer, 2004.

[DB06] Troels C. Damgaard and Lars Birkedal. Axiomatizing binding bi-
graphs. Nordic Journal of Computing, 13(1-2):58–77, 2006.

[DDK08] Troels C. Damgaard, Vincent Danos, and Jean Krivine. A lan-
guage for the cell. Technical Report TR-2008-116, IT University
of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen V,
December 2008.

[Deb06] Søren Debois. Stenning’s protocol in bigraphs. Unpublished
manuscript, September 2006.

[Deb08] Søren Debois. Sortings and Bigraphs. PhD thesis, IT University of
Copenhagen, 2008.

[DFF+07] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer,
and Jean Krivine. Rule-based modelling of cellular signalling. In
Lúıs Caires and Vasco Thudichum Vasconcelos, editors, CONCUR,
volume 4703 of LNCS, pages 17–41, 2007. Tutorial paper.

[DFFK07] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine.
Scalable modelling of biological pathways. In Z. Shao, editor, Pro-
ceedings of APLAS 2007, volume 4807, pages 139–157, 2007.

[DL04] Vincent Danos and Cosimo Laneve. Formal molecular biology.
Theor. Comput. Sci., 325(1):69–110, 2004.

[EK06] Hartmut Ehrig and Barbara König. Deriving bisimulation congru-
ences in the dpo approach to graph rewriting with borrowed con-
texts. Mathematical Structures in Computer Science, 16(6):1133–
1163, 2006.

[Els06] Ebbe Elsborg. Bigraphical location models. Technical Report 94,
IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300
Copenhagen V, September 2006.

33

[EPS73] Hartmut Ehrig, M. Pfender, and H. J. Schneider. Graph Gram-
mars: An Algebraic Approach. In IEEE Conf. on Automata and
Switching Theory, pages 167–180, Iowa City, 1973.

[GM07] Davide Grohmann and Marino Miculan. Reactive systems over di-
rected bigraphs. In Lúıs Caires and Vasco Thudichum Vasconcelos,
editors, Proceedings of the 18th International Conference on Con-
currency Theory (CONCUR’07), volume 4703 of Lecture Notes in
Computer Science, pages 380–394. Springer-Verlag, 2007.

[HNB+07] Thomas Hildebrandt, Henning Niss, Mikkel Bundgaard, Kjeld
Schmidt, and Thomas Jensen. Computer supported mobile adap-
tive business processes: Position paper on the cosmobiz research
project (2007-2010), 2007. Project position paper.

[JM04] Ole H. Jensen and Robin Milner. Bigraphs and mobile pro-
cesses (revised). Technical Report UCAM-CL-TR-580, University
of Cambridge, February 2004.

[KMT08] Jean Krivine, Robin Milner, and Angelo Troina. Stochastic bi-
graphs. In Porc. of MFPS’08, 24th Conference on the Mathemat-
ical Foundations of Programming Semantics, volume to appear of
ENTCS. Elsevier, 2008.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92
of Lecture Notes in Computer Science. Springer, 1980.

[Mil05] Robin Milner. Axioms for bigraphical structure. Mathematical
Structures in Computer Science, 15(6):1005–1032, 2005.

[Mil06] Robin Milner. Pure bigraphs: structure and dynamics. Information
and Computation, 204(1):60–122, 2006.

[Mil09] Robin Milner. The Space and Motion of Communicating Agents.
Cambridge University Press, 2009. Forthcoming.

[MRG07] Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso
Groote. Sos formats and meta-theory: 20 years after. Theor. Com-
put. Sci., 373(3):238–272, 2007.

[PQ05] Corrado Priami and Paola Quaglia. Beta binders for biological
interactions. In Computational Methods in Systems Biology, volume
3082, pages 20–33, 2005.

[PRSS01] Corrado Priami, Aviv Regev, William Silverman, and Ehud
Shapiro. Application of stochastic name-passing calculus to repre-
sentation and simulation of molecular processes. Infomation Pro-
cessing Letters, 80(1):25–31, 2001.

34

[REKE99] G. Rozenberg, H. Ehrig, H.-J. Kreowski, and G. Engels, editors.
Handbook on Graph Grammars and Computing by Graph Transfor-
mation Vol. 2 (Specifications and Programming). World Scientific,
Singapore, 1999.

[REKM99] G. Rozenberg, H. Ehrig, H.-J. Kreowski, and U. Montanari, editors.
Handbook on Graph Grammars and Computing by Graph Transfor-
mation Vol. 3 (Concurrency, Parallelism and Distribution). World
Scientific, Singapore, 1999.

[RKE08] Guilherme Rangel, Barbara König, and Hartmut Ehrig. Deriving
bisimulation congruences in the presence of negative application
conditions. In Roberto M. Amadio, editor, FoSSaCS, volume 4962
of Lecture Notes in Computer Science, pages 413–427. Springer,
2008.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. 1: Foundations. World
Scientific, Singapore, 1997.

[RPS+04] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca
Cardelli, and Ehud Shapiro. Bioambients: An abstraction for bio-
logical compartments. Theoretical Computer Science, 325:141–167,
2004.

[RSS01] Aviv Regev, William Silverman, and Ehud Shapiro. Representa-
tion and simulation of biochemical processes using the π-calculus
process algebra. In R. B. Altman, A. K. Dunker, L. Hunter, and
T. E. Klein, editors, Pacific Symposium on Biocomputing, vol-
ume 6, pages 459–470. World Scientific Press, 2001.

[TC07] OASIS WSBPEL Technical Committee. Web Services Busi-
ness Process Execution Language, version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, 2007.

[TeR03] TeReSe. Term Rewriting Systems. Number 55 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University
Press, 2003.

35

