Type Systems for Bigraphs

Ebbe Elsborg
Thomas T. Hildebrandt
Davide Sangiorgi

IT University Technical Report Series

=
=

The IT University

of Copenhagen

TR-2008-110

ISSN 1600-6100

October 2008

Copyright (© 2008, Ebbe Elsborg
Thomas T. Hildebrandt
Davide Sangiorgi

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600-6100

ISBN 9788779491847

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax; +4572 185001
Web: www. i tu. dk

Type Systems for Bigraphs

Ebbe Elsborg§ Thomas T. Hildebrandtand Davide Sangiorgi

11T University of Copenhagen (ITU)
2 Universita di Bologna

Abstract We propose a novel and uniform approach to type systemstor (p
cess) calculi, which roughly pushes the challenge of désigtype systems
and proving properties about them to the meta-modblgrphs Concretely,
we propose to define type systems for the term language foadig, which
is based on a fixed set @lementary bigraphsind operatorson these. An
essential elementary bigraph is &m, to which acontrol can be attached
modelling its kind (its ordered number of channels and wettis a guard),
e.g. an input prefix oft-calculus. A model of a calculus is then a setcoh-
trols and a set ofeaction rules collectively abigraphical reactive system
(BRS). Possible advantages of developing bigraphical $ypeems include: a
deeper understanding of a type system itself and its priegettansfer of the
type systems to the concrete family of calculi that the BRSleg) and the
possibility of modularly adapting the type systems to estems of the BRS
(with new controls). As proof of concept we present a model rcalculus,
develop ari/o-type system with subtyping on this model, prove crucialppro
erties (including subject reduction) for this type systemngd transfer these
properties to the (typed}calculus.

1 Introduction

Type systems for calculi are important as they can: det@gramming errors stati-
cally; and classify terms enabling extraction of informatthat is useful for reason-
ing rigorously about the behaviour and properties of progregamong other things.
Type systems are usually engineered to enjoy subject riedudthe problem is that
changing even small details of such a type system might mdpgsties. Therefore,
to feel confident that a tweak of the type system does not nwynpeoperties one
really has to redo the proofs. This is often tedious. Manyhgype systems can be
considered to be rathad hocso one would like a uniform way of proving properties
of a whole family of calculi, simultaneously.

In this paper we experiment with a novel approach to typeesystfor (process)
calculi, which roughly consists in pushing the problem cfigaing type systems and
proving properties about them (such as subject reductiotijet more abstract level
of bigraphg[9,8] by Milner and co-workers, a meta-model for (procesduali. The
main advantages are: a meta-model can describe severabtmnalculi, therefore
one can hope that a result for a meta-model can be transteredicbf these calculi;
and understanding type systems at the level of meta-modal&elp to achieve a
deeper understanding of the type systems themselves. &beytbf bigraphs is rich
as its expressiveness has been demonstrated in several iwdhle literature; Petri
nets [14,13]y-calculus [7,9,8], CCS [16], Mobile Ambients [7], Homer [3ndA-
calculus [17]. Importantly for our work, a sound and com@liglrm language exists
for bigraphs [15,5].

*This work was funded in part by the Danish Research Agen@nfgmo.: 2059-03-0031
and 274-06-0415) and the ITU (the LaCoMoCo/BPL and CosmgBifects).

One models a calculus in bigraphs by encoding its terms aafiig and repre-
senting itsreductionsemantics by bigraphicataction rules All bigraphs are ob-
tained by combiningelementary bigraphsia the operatorsof categorical tensor
product and composition. An essential elementary bigrajaimion, to which acon-
trol can be attached modelling its kind (its ordered number ohobi and whether
itis a guard), e.g. an input prefix ofcalculus. The semantics of a concrete calculus
is represented as reaction rules oveignatureof controls.

A major effort so far has consisted in using bigraphs to aatozally derive la-
belled transition semantics and congruential bisimilesifor concrete calculi with
semantics defined by a reduction relation. In this paper wegse a novel use of
bigraphs — to derive type systems for the concrete calcuii.approach can be de-
scribed in three phases: 1) Define a core BRS that can modrtiily of concrete
calculi one is interested in. 2) Develbgraphical type systen{(8TSs) for this core
BRS and prove their properties (such as subject reduc®yiyansfer the type sys-
tems and their properties onto the concrete calculi of @giefTransferring the type
system rules onto a concrete calcullfllows almost directly from the encoding of
C's terms into the BRS and from the typing rules of the BTS. Qupraach requires a
result of operational correspondence between a concrietdusand its bigraphical
model, which is the most basic and fundamental property ¥& &hen mapping a
calculus into bigraphs. Hence, we provide a point of originstudying type systems
for (notin) bigraphs.

As proof of concept we study strict (no summation)finite (no replication)
and synchronous-calculus, dubbed sf along with ani/o-type system with sub-
typing for its bigraphical model. sfwith i/o-types is well-suited for three reasons:
the relationship betweentsind bigraphs has been well studied in the literature [7]
allowing us to focus on type systems for bigraphst isf simple but important be-
cause it maintains the essence of message-passing pratad§ and the/o-type
system with subtyping is technically interesting withoeiry very complex. This
constitutes a first study of non-trivial types for bigraphs.

Related work In [2] Debois et al. define aorting as a functor from aorted s-
category wheresorts (think types) are assigned to interfaces (objects) as an ex-
tra component, into an unsorted s-category. A sorting refirt@ich bigraphs (mor-
phisms) may be composed and thus guarantees a certairustratthe well-sorted
bigraphs. Hence, a sorting reduces the set of terms thabasidered for reaction.
Sortings areot defined inductively over bigraphs and give rise to differguaran-
tees than traditional type systems in that they do not attéorgpproximate dynamic
behaviour of the terms. Thus, it is unclear whether one caover existing type sys-
tems by sortings (in the general case).

In [4] Bundgaard and Sassone develop polyad@alculus with capability types
and subtyping in bigraphs by: defining and proving salfalasorting— called 'sub-
sorting’ — which is crucial in securing the desiréa and subtyping discipline; ex-
tending the theory of bigraphs by introducing controls ogesito retain the type in-
formation of restrictions. They inductively maype derivation®fform-P: { to

sortedbigraphs by sending proces$e® morphisms and typingsto sorted objects
J. They also derive an LTS yielding a coinductive characétias of a behavioural
congruence for the calculus. A large effort in that work wietd the sorting and the
derivation of the LTS.

In [6] Igarashi and Kobayashi propose a generic type sys&h$j forre-calculus
enjoying subject reduction and type soundness. They expypmgsl as (abstract)
CCs-like processes and then check the propertieB.orhe GTS is parametrised
over a subtyping preorder stating when two types have thee dawhaviour. By
adding rules to the basic subtyping relation a type systestainte for deadlock-
freedom, among others, is obtained. This approach diffens fours in that they
consider type systems forcalculus and not for a meta-model, but we too wish to
transfer general results to a family of calculi. In [12] Kgrdims at generalising the
concept of type systems to graph rewriting and in partictiiarconcepts of type
safety, subject reduction and compositionality. By wogkétt the more abstract level
of graphs rather than terms the author claims to be able toli§jnthe design of type
systems, however we believe, at the cost of making it mofedif to transfer back
and understand the type systems in terms of the concretdicalc

In our approach we define type systems inductively on bigtapis and can
thus hope todirectly recover existing type systems; and have a computer verify
whether a typed bigraph term is well-typed or not.

Contributions Our main contribution is conceptual: this work is a first atfe in

the novel direction ofising bigraphs as a meta-model for type systémsugh the

first study of non-trivial inductive types for bigraphs. Taare two main technical
contributions: ari/o-type system (Tab. 2) for a core BRS capturing the essence of
message-passing calculi; and a proof of Subject Reduclibm(2) for this type
system.

Outline In Sect. 2 we explain the necessary parts of bigraphs thgoexdmple and
then we present a model ofrsfOn this foundation we develop afo-type system
for the model, prove important properties of it, and tran#iese td/o-typed sft, all

in the main Sect. 3. Finally, in Sect. 4, conclusions are drand directions for fu-
ture work outlined. This techincal report has the full pahd omitted background
definitions of the TGC'08 paper.

2 Bigraphs

Bigraphs is a model of computation that emphasis Hotlality and connectivity
aiming at trustworthy (safe and reliable) computation inbgll ubiquitous com-
puters [20,1], in which highly dynamic topologies and hetgmeous devices are
prominent. Mobile locality is captured by @ace graphand mobile connectivity
by a linklink graph, two largely orthogonal structures that combine into a dyid.
The place graph is an ordered forest of trees representistgdhéocations of com-
putational nodes, and the link graph is a hypergraph reptiesginterconnection

of these nodes. Dynamics are added to bigraphs by definimgr(jgdric) reaction
rules. Consider Fig. 1. It depicts twons bigraph composition, and a reaction rule

Figure 1. The ionssend andget, bigraph composition, and thersfeaction rule.

involving the ions. The two ions, depicted with solid cislenodel output prefix
and input prefix offecalculus, respectively. Each ion consists afaleassigned a
control determining its kind. In this case, both controls have twdeoedports to
whichlinks (channels) can be attachednd has its {re€) ports linked tdocal outer
names athe 'channel’ port) and (the 'datum’ port), respectivel\Global names
are like unrestricted namesincalculus, whereas local (think abstracted) names re-
side atregiongroots(dotted rectangle) aites(greyed rectanglesget has abinding
port, which binds alocal inner name ywith lexical scope below this node in the
place graph, and thus resembles a variable of programmmggéges. Both ions are
contexts with a site (hole) into which another suitable &jr can be “plugged”,
yielding another bigraph. This is known as verticamposition b; o bg, and pro-
ceeds by plugging the roots b into the sites ob; (in order), and fusing together
the outer names dfp with the inner names df;, removing the names in the pro-
cess. The sites and inner names of a bigtaphe collectively called thaner face
or domain(dom(b)); similarly, the regions and outer names are callecbilter face
or codomain(cod(b)). Then,b; o by requirescod(bg) = dom(b;). The second col-
umn of Fig. 1 shows an example; given= c, : (1,({z}),{z}) — (1,(0),0) and
bo = ({z})Kz: e — (1,({z}),{z}) thenbiobp : € — (1,(0),0). The interface (or
face components are: width; a vector of local name sets drawn from the global
name set; and a global name set. They are projected by funizithr, functionloc,
and functionglob, respectively. Functioglob projects all names of a face.

A notion that is not shown in Fig. 1 is aedge(think restricted name); inner
namesX and ports can point to edgek instead of outer namés via the so-called
link map,link : X&WP — EWY. If the namex is closed(restricted) then it becomes
invisible to the context and any ports which were pointindghis outer name will
now instead point to an edge. Edges have no nhame associdtethem, just in the
term language to denote which points map to which edges. ge &da “floating”
binder in that it has no lexical scope.

When representing a calculus in bigraphs one is usuallyasted in bigraph
termsthat aregroundandprime (also known asgents, i.e. bigraph terms that have
no sites, no inner names, and outer width 1. Regions (or) gites be juxtaposed
(composed horizontally) by the binary operatensor product, if the operands
have disjoint name sets (both outer and inner). A derivedaipeis theprime prod-

uct |, which takes two regions as operands, but allows them testster names,
and also collapses the two regions into one, while actingrasor on sites. The third
(basic) operation on binding bigraphsabstraction(X)P on aprime P, which lo-
calises a subset of the global name®oh face of width 0 without names is denoted
by the unique objeat.

The reaction rule models communication imsThe redexhas one region sig-
nifying that asend and aget must be collocated and connected to be able to com-
municate. Theeactumshows that the bigraph has performed an action, which has
depleted the input/output capability. The outer nanieidle in the reactum, i.e. not
pointed to by anything, and the inner nampoints to the outer name explicitly
representing meta-level name substitutiomeioalculi.

In Def. 1 reaction rules are defined formally. It uses thearotif support equiv-
alence which for our purposes can be thought of as bigraph equétityitively, a
contextD is activew.r.t a (ground) bigraphif the sites ofD into whichr is plugged
are active, and sites are active if the path to the root in theepgraph only has
(nodes with) active controls. Aimstantiationessentially maps sites of the reactum
to sites of the redex, including the possibly renamed loaai@s of the reactum sites.

A discrete parameter ¢ a ground bigraph with no edges and a bijective link map.

Definition 1 (reaction rules for bigraphs, [9]) A ground (reaction) rulés a pair
(r,r'), where r and t are ground rules with the same outer face. Given a set of
ground rules, theeaction relation— over agents is the least, closed under support
equivalence <), such that D>r — D or’ for each active D and each ground rule
(r,r").

A parametric (reaction) ruleas aredexR and areactunR, and takes the form
(R:1 = JR:I'=Jp)

where the inner faces | and are local with widths m and mThe third component
p:: 1 —I"is aninstantiation. For every X and discrete ¥ ® | the parametric rule
generates the ground reaction rule

((idx ®R)od, (idx@R)op(d)).

Reaction is defined oveoncretebigraphs, i.e. bigraphs where the nodes and edges
have identity. However, we are interestedainstractbigraphs. Whenevdy, = by
concretely we havig = by abstractly. Notice that inner faces are local.

A signature is a set of controls each with:anity mapfrom its numberf of free
ports to its numbeb of binding ports; and aactivity mapdetermining whether it is
active(an evaluation contextpassivglguard), oratomic(a term).

Bigraphs have an algebraic representation. All bigraphsbeagenerated from
sevenelementanpigraphs combined by (categorical) tensor product and csimp
tion. One can think of these elementary bigraphs and theatipas on them as basic
building blocks (language concepts) for processes andatgrsron processes. The
faces of the bigraphs determine when tensor product, cotigpgsand abstraction

are well-defined. Bigraphs aceequivalence classes bigraph termsThe elemen-
tary bigraphs are depicted graphically in Fig. 2 and as syicteerms with algebraic
faces in Tab. 1.

Notation 1 (Placing, linking, wiring, sets) For interfaces we often omit: names from
placings(node-free place graphs); widths frainkings (node-free linkgraphs); the
enclosing{ and) when the width is zero. Wiring is a bigraph with zero width gen-
erated by composition and tensor of linkings. Curly braslet often omitted for
singleton sets and names on ions. Sets (usually of namepeg)tgre denoted by
capital letters such as X,Z and ST,U, ranged over by minuscule letters. We write
XY for the disjoint uniom of sets X and Y .

Figure 2. The seven elementary binding bigraphs, graphically.

Definition 2 (Flattening) Given a vectoiX of d|st|nctnames we writd X } for the

corresponding (one-to-one) set. Given a Ve (X1,...,X%n) of disjoint name
def

sets we define their disjoint union &%} < (41, X; .
1:0—-1 barren root
join : 2—1 join two sites
/X 1 Xx—0 close global outer name
YX @ X—y link all names in global name sitto global namey
mX7 (X) (X) globalise local outer name %t
Ky (X} — ({7}) an ion with local name sets and global nameg
Ymn(X,¥) m+n, XY {X3e{¥}) > m+nYX {X}w{¥})

transposen with n regions or sites, keep local names

Table 1. The seven elementary binding bigraphs as terms.

Consider Fig. 2. First row: a barren robtis an empty region. When plugging a
bigraph with two regions and no outer names ijam, the two regions are merged
into one. Name closurgx acts as a non-lexical binder; it is put on top of a bigraph
with a global inner nama and closes (restricts) this name rendering it invisible to
the contextSubstitutiory/x links a set of global inner name&to a single global
outer namey by a hyperlink;y is “substituted for” anyx € X; the widths are zero;

X is bound inwards; angbinds outwards. A special casevis which introduces an
idle name. Theoncretion” X bigraph globalises a set of local nan¥ésdually to
the abstraction operator. Second row: ank) is a prime bigraph with a single
node of controlK with free ports linked severally to a vectgt of distinct outer
names, and each binding port linked to all local inner namesime sek; a vector

X of sets of distinct names. lons are the essence of BRSs asiseyly model
the interesting entities of systems or calculi. Third rowranspositiony, , ¢ v,
transposes regions keeping their sites and local names keoe on we think of
bigraphs represented as terms.

2.1 A Bigraphical Model of sfrt

We consider gt. Following [7] we add an axiom to the usual structural comgae:
VX (TLP) = TLvx R, if X ¢ (fn (1) Ubn(TT)). This axiom naturally complements the sim-
ilar axiom for parallel composition and secures that strtadtcongruence coincides
with graph isomorphism yielding a nice graphical repreagéom of bigraphs. Equiv-
alences on processes remain unchanged even though moessgsare related by
= with this axiom. This axiom is not important for our developm. However, we
remark that to represent, e.g., a replicated input prefixgraiphs one needs aut-
ward-binding control [7]. Processes that areconvertible are identified.

We model sftwith the BRS of [7] (a signaturggs; and a set of reaction rules

Refrp but name it " BGgfyy def "‘BBG(Zgf Rgfyy)- Prefixes (input and output) are
modelled by theassivecontrolssend andget of Fig. 1, because prefixes are guards.
get has a binding port. The semantics is modelled by a singldicgaaile, where
prime product models parallel composition, name closurdetsrestriction, and an
insertion operator< inserts a wiring into a bigraph making compositiorbo bY
well-defined, typically by “wiring through” (and then lodsihg) outer names df’
that are not to be lexically bound oy

Definition 3 (BBG ¢, [7])

Zsf def {send:0— 2 (passive, get:1— 1 (passivg }

Refrr = (RR,p) = (sendax | getagy : (2.(0,{y}),0) — (1, ({ax}),0)
(id1 | id1 <¥/y) <@: (2,(0,{y}),0) — (1,({a,x}),0),
idi2,(0,4y)).0)) -

This (parametric) reaction rule imear, because its instantiation is bijective, so no
parameters are replicated or discarded. It is parametriwatbel arbitrary subterms

under prefixes. In bigraptermsthe names, x, andy are not meta-variables so we
stipulate that # x # y, because the bigraph corresponding to the term is different
in the cases where some of these are equa.dhdx need to be identified for a
reaction, then the context does it. We name the morphisngsaftits) of "BGgf
process bigraphs

Processes are mapped to bigraph terms by the composits@nadntic function
[-] of Def. 4. For technical reasons the inactive process is fieatley (X), an empty
ground local prime.

Definition 4 (Encoding sfrtin "BBGgf, [7]) The functiorf-]x) maps every process
P of sfrtwith fn(P) C X into the homse(, (X)) of BBGg; as follows:

[axP]x) = sendax<tidx o [P]x) [P |Qlx) = [Plx) | [Qlx) [Olx) = (X)

[a(y)-Plx) = getay) Qidx o [Plxy) [VXP]x) = /(X) <idx o [P](xx

The translation oP is indexed by a (local) name s¥tD fn(P) that is needed to
secure dynamic correspondence betwearasid the model. This is because reduc-
tion in sfrtcan discard a channel (name) after use, i.e. reduce the geeafames,

but outer faces (of agents) are preserved by bigraphicatiomarules so here the
name persists, although idle. (For an example seefPajijl have an image for each
choice ofX, i.e. countably many bigraphs. Not unusually, the traishatequires
thatbn(P) Nfn(P) = 0 and unique binding names. The model enjoys structural and
dynamic correspondence theorems, here combined.

Theorem 1 (Correspondence, [7]).

1. The functiorf-]x) is surjective onto the homsg, (X)) of BBGgs ;

3. Given XD fn(P), then P— P’ iff [[Pﬂ(x) —> [[P/]](X)

We are now ready to define a type system aGB.

3 A Bigraphical i/o-Type System

In this main section we develop a bigraphi@altype system and prove important
properties of it.

Definition 5 (Type environment) A type environmen(or typing) is an unordered
finite assignment of types to names, ranged over BpdA. Thesupportsupfl)
is the set of names. When regarded as a finite function froneaaotypes we write
I'(x) for the type assigned to x Hy. Theextensionof ' with the assignment x
T is denoted™,x : T when x¢ supfl'). Thedisjoint unionl",A is defined when
supfdlN) NsupfA) = 0, and is (also) associative and commutativg.denotes the

empty typing.

Definition 6 (Syntax of types and typings)
Tu=V|L Vi=Lle Lu=#|oV|V Tu=Tx:V|[x:L|le.

A link is a name that may be used for communication. Vakeiesare the objects
(names) that can be communicated along links. lifiletypes(L) are the types that
can be ascribed to links. Thalue typegV) are the types that can be ascribed to
values (names). Link types are value types so that processesxchange links,
allowing mobility. Links can either be used in inpt, outputoV, or both #/ (the
connectiortype). The inhabitants of unit typeare names. Names assigned tgpe
are “base values” that can only be passed around. There igeniat unit value as
this would clutter the presentation.

In message-passing process calculi the channels (linksharessential part be-
cause communication is the primitive notion studied. Tfares in the present paper,
we only type links, not nodes. Tab. 2 presentsitbeyping rules for ' B3Ggfp. The
idea is to syntactically define types for elementary bigsaphd the operators on
them following their structure inductively. Th®-type system guarantees that ions
(images of processes) use their links in accordance with ¢apabilities on them.
The subtyping preordex can be thought of as inclusion between the sets of the
values of the types. So we would have, e.g.driReal. We writd 1 < I'o whenever
suppl1) =supflo) = X andvx € X.I'1(x) < o(x).

Definition 7 (Judgments) A bigraph type judgmens of the formA; " - b, where b
is a bigraph term. Axame type judgmeris of the forml™ - x: T.

Consider Tab. 2. Bigraphs are contexts and thus typed by\piods; a typingh

of the inner names and orefor the outer names. When assigning types it does
not matter whether a name is local or global, we just type livel component of
interfaces, projected bylob. The type system istrongin the sense that the typings
carry no information about names that do not appear in tieefantes of the bigraph.
The reason for this will become clear later when we treat @rigs of the type
system. In the following we refer to the axioms that govegréphical term equality,
which are defined in [5,15].

Nameless elementary bigraphs, i.e. the barren rootjaimd are typed using
two empty typings. Transpositions allow subtyping becatsg partially coincide
with identities (by axioms (C7A) ¢ = id; and (C8)yj, o yi 3 = idigy), which in turn
partially coincide with substitutions (by axioms (L) = idx and (L3)/yoy = idg),
and substitutions must allow subtyping, see below. We wtitior Y, (X, 9) when
we are merely interested in the names collectively.

A closure — hame creation — can be given any link type. Agpuitlis only useful
when it is a connection type \ because for two processes to communicate over
a link one needs to use the link for output and the other foutingimultaneously.
Bigraphical substitutiong’x demand that alk € X have the same typ€ (denoted
by X : T), which is natural because substituting iry or any x really identifies
thesex;, namely they arg from the viewpoint of the context. In harmony with the
i/lo-subtyping discipline we must be able to assigry @ subtype of the; so as to

M <Tlo suppr)i=0l=2z

Placings: —
acings FoTor 1 Fo:ToF join FoT1Fyz
Linkings: rey:T
x:L;iFpk /X X:T;TFy/x
M <ro M <ro
suppl) i=01 = gloh(I supgr)i=0l=x
1d & Conc - palj) =9 (I) par)
ro;rl [Id| ro; r]_ X7
ATHDb DNo;Tokbg AT Fby Fo;AFby A;l1Fby
Operators:
P ATF(X)b DoAqlo 1k boaby FoiT1 - b1obo
| . M-a:olf IMkEx:T M-a:is
ons:
Fo;T, T F senday y: ST getyy)
Subtypin SsU U=T
yping T<T S<T HT <iT #T <oT
S<T T<S T<S S<T
iIS<iT oS<oT HS<H#T
Names Sgi-r
X:SEX:T

Table 2.i/o-typing rules for’BGggyr.

allow substitution of names with a possibly smaller (i.e rengeneral) capability. In
a sense this corresponds to the usual substitution lemnradalculi.

Identities and concretions allow subtyping. Concretioresety globalise outer
names but are allowed to subtype. This enables a Narrowinignée

Localising names does not affect types so the rule for attfdrais straightfor-
ward. The rule for tensor product splits the typing in its twvanches according to the
names of each tensor component. The rule for compositiomddgthe types of the
common interface to be identical, which is natural when @ering that bigraphs
are really categorical morphisms between objects (integfp

The rules for ions are essential as they type the prefixeqitaare forced to
be of output and input type, respectively. Notice the asyimyrieetween how and
y are typed; the type of is fixed in the inner typing because it is a binder. Just like
the cases for the inner typings of closure and substitution.

The rule for names encompasses subsumption because thgsygie strong
rendering obsolete the need to have two separate rules.

This type system differs from traditional type systems, thgi/o-type system of
T-calculus (see e.g. [19]) in the following respects: 1) Weetgontexts, not terms,
and therefore we have to account for (categorical) comiposi2) Explicit substitu-

10

tiony/x is a syntactic term and hence needs to be typed. This fundahaéfference
is important because it pervades the properties of the tygters in that subtyping
of substitution in a sense represents a Substitution Ler8jriEhe tensor product is
more fundamental than parallel product. 4) There is a distin between local and
global names. An important insight is that a naxe glob(domb)) andanother
x € glob(cod(b))) are really two different names if they are not linkedin

The type system enjoys two crucial properties; subjectetoinand type sound-
ness. These results rest upon the Main Lemma establishanghi bigraphical typ-
ing relation is closed under bigrapérmequality, which in turn requireNarrowing
andWidening The typing and subtyping relations enjbwersion i.e. can be read
“bottom-up”, because they are syntax-directed.

Lemma 1 (Narrowing).If A;T,x: T+Fband S<T thenA;TI",x: Sk b.
Lemma 2 (Widening).If A,x: S;F'-band S<T thenA,x: T;IFb.

Widening is unusual (for process calculi) in that it is defire contexts. It is in a
sense the dual lemma to Narrowing as it allows widening oéiniypings.

The congruence relatioa of the Main Lemma is the involved, axiomatised bi-
graph equality on terms (see [5,15]).The Main Lemma stdtasif two bigraph
terms are equal then they can be typed in the same enviroarserthe type sys-
tem is robust w.r.t. bigraph equality: term equality on bjgis coincides with graph
isomorphism so this lemma allows us to think of types on theeulying graphs.
This lemma is (technically) crucial and not one usually fddior type systems for
T-calculus.

Lemma 3 (Main Lemma). Suppose = bsi. ThenA;T + by if and only ifA; T+ bs.

Cor. 1 of the Main Lemma tells us that the type system is rolwudt decomposition
of the term as a graph, which is important for Subject Reducti

Corollary 1 (Decompositionality) If A;I = b and b= b; o by then there exists a
typing© such that\; © - by andO; T - by.

Before stating and proving a subject reduction theorem wisider the grounded
rules generated by the parametric rule of Def. 3, becaustypreederivations of this
rule’s redex and reactum are a key to understanding the pfdoloé subject reduction
theorem. The generated ground rules are of farmi):

((idx ®R)od, (idx ® R) op(d))
((idx ® (senday | getay)))od, (idx @ ((id1 | id1 <1%/y) <)) o p(d))

=

def
)

(idx @ ((join ®id(ax)) © (0 0 (sendax ® (To getyy)))))) od

(idx ® ((join @ id(ax) o (((join®id(x)) o (id1 @ /() @ (@)))) o p(d))

where{a,x} N X =0, T = (@)/(a), ando = (@/({aa}) ® X)/(x) w.l.0.g. We remark that

X/ (y) def (X)(*y®id1) o"y". Subject Reduction (Thm. 2) is the main theorem and

11

guarantees that typings are preserved over reaction. Tieeirtdhe proof of the
theorem is an analysis of redex and reactum as the type tlenisaf the context,
and in this case also the parameters, are preserved byoreddgnce, the theorem
is really a property of reaction rules. For a BRS with muéifpossibly overlapping)
reaction rules one would analyse the redex-reactum paaaf ene and then simply
combine the results to obtain the theorem.

Theorem 2 (Subject Reduction)For process bigraphsgand by, if F'g; A+ bp and
bg — by thenlg; A+ by.

Proof. The proof is by analysis of the derivation b — by by the sole reaction
rule. Becausdoy — b1, then by Def. 1 there exists an active contBxsuch that
bo=Dor andb; = Dor’. Assume a derivation dfg;A F by, then also £) Mg;A -
Dor by Lemma 3. By Inversion we must have (among others) theatig six
subderivations from«): (1) Fp;[,y:SHd, (3)a:UFa:oT, (3")x:U'Fx:T,
(4)a:RFa:iS (5)U <R and(8) M a: W,x: W;A+ D. We also know that
W <U andW’ <U’.By (3), (5) and(4’) we concludel < S(cf. [19]).W <U’,
and by(3”) we havel’ <T < S soW < S

Now, consider the derivation to be builty = Dor’ implies thatb; = Dor’
abstractly. By Lemma 3 it suffices to deriVg;A - D or’. Reuse the derivation of
D. p =idi2 (0,4y}),0) SOP(d) = d. This means that we can also reyd§. We siill
need to justify a derivation of : S;x: W’ I (¥)/(y). This merely requires justification
of W < Sbecause we may choose not to subtype in the other substglit < S
has already been established so we can build the desireiti@niofg;A-Dor’.
([

We remark that the inner typings are preserved because dotar rule is linear,
but that need not be the case in general, where the theordohiogtead relate the
inner typings by something weaker than equality (sincessitecluding local inner
names, can be discarded or replicated and renamed).

Type Soundness (Prop. 1) states that a process bipreyei-typed inl"y; " can
only perform input or output actions for whidhoffers the appropriate capabilities.
Let —* be the reflexive, transitive closure e .

Proposition 1 (Type Soundness)Suppose that process bigrapkP] x), Fo; T
b, and b—* b'’. Then, for each non-idle a glob(cod(b")) it holds that:

1. If T +a:iS then ais either linked to the channel port ofex ion or linked to
the datum port of @end ion.
2. Ifr'+a:oT then ais linked to aend ion.

Proof (Sketch)The proofis by ind. on the length of the reduction+* b’. The base
case is by struct. ind. dAusing Lemma 3, Cor. 1, and Lemma 1. The inductive case
uses Thm. 2.

Type Soundness gives guarantees about outer names, blbsed cames because
edges have no type. To achieve a stronger type soundnesstyresuch as “well-
typed processes do not reducesmng’ — one could introduce a tagged version of

12

the BRS in which each name is permanently tagged with thedetgi/o usage, like
in [18] for T-calculus. Or, we could follow [4] and type edges to possitityain a
result of intermediate strength.

Idle names are merely the residue of reaction in bigraphsldmg or removing
them corresponds, in a precise way to be shown below, to Waakeand Strength-
ening of a type system im-calculus. Adding and removing idle names actually
changes the bigraph (a context) because the codomain chartgese different bi-
graphs should however correspond to the same source cakeuha because they
only differ up to names that do not occur in the source term.

Lemma 4 (Weakening).If A;T b and xZsupdll) thenA;T,x: T Fb® (X).
Lemma5 (Strengthening).If A;,x: T Fb® (x) thenA;T + b.

Even though these two properties on the surface appearatiffeom those oft
calculi they really do correspond to the usual propertigypéd sft

With these important properties in hand it is time to transfem to thei/o-
typed source calculussf The standard way to map an untyped process calculus
into bigraphs is to consider a trivial type system for thegess calculus with just
a single type and map derivations of fofm- P: { (see e.g. [19]) to the (untyped)
bigraph[P] x exactly wherfn(P) C X = supg["). The choiceX = supg[") coerces
a connection between a process bigraph and its (outer)gypiames irsupgl") \
fn(P) become idle names ifP]x) by the translation, recalling thd0]x, = (X).
This is made precise by Lemma 6.

Lemma 6. Suppose b= [P]x) and l'g;[" F b with fn(P) C X = supgl"). Then
[[PHSUPQF) ® (x) =[P] (supdl xT)) forany T.

Using Lemma 6 we concludgP] x) ® (X) = [Pl supgr)) ® (X) = [Pl supgr x1)) for
any typeT. Then, by Lemma 3 we have thatl',x: T = [P[(sypgr)) ® (x) if and
only if A7, x: T F [Pl (supgr xT))-

We can “read back” the typing rules over the term translatiotve made precise
shortly), and thus also the properties of the type systeahyding Weakening and
Strengthening by courtesy of Lemma 6. We read back typinesrak follows: the
rules for the inactive process and input prefix are straightérd; restriction is type
annotated in sf using its premise; parallel composition is derived fromstemand
composition; the case for output prefix has the twist thatfmtke typings used
to type the two channels should be the same; and split thefouleames into a
rule for names and one for subsumption. Recall that typingyped sft are not
strong. Hence, we recover exactly the fragment of the wedivkn Pierce-Sangiorgi
i/o-type system for thetcalculus [18,19]. Prop. 2 precisely relates the bigraghic
type derivations with the ones forrsf

Proposition 2 (Transfer of Type Derivations) I' = P: ¢ if and only ifCg; I = [P] x)
whenfn(P) C X = supgrl).

Proof (Sketch)The proof is by struct. induction ddusing Lemmas 6 and 3.

13

The proof is naturally by structural induction &because we follow the translation
of terms when transferring type derivations. We remark thagxtend a BRS to
accommodate a new source calculus operator one encoded fiyraa new process
construct (e.g. a prefix) one adds an ion to the BRS, encoéesxtiended source
calculus in the extended BRS and finally one gives a typing fiar this new ion. In
conclusion: all of the bigraphical properties are traresiés.

4 Conclusion

We have demonstrated a novel and uniform approach for dewgjdype systems
for (process) calculi, through bigraphs. Type systems efiaeld inductively over the
structure of elementary bigraphs and their operators, pesga to using a sorting
[4]. Thus, a computer may possibly verify that a typed termvedl-typed. Con-
cretely, we have illustrated the approach by developingaaddo-type system en-
joying a general form of Weakening and Strengthening forgaaghical model of
a corertr-calculus, and we then transferred the type system andaisepties to the
T-calculus. The development of tile-type system for bigraphs differs significantly
from i/o-typedtt-calculus: bigraphs are contexts with richer structure thiinary
process calculus terms, which is reflected in the axiomsmawvg bigraphical term
equality, leading to technical intricacies in the Main Lemnomsed in Subject Re-
duction; Weakening and Strengthening of typedalculi corresponds to adding and
removing idle names of bigraph terms, respectively.

We have tackled the caseitd-types for thatcalculus because, being non-trivial
and well-studied, this type system seemed to be an idedbtestr programme. In
the future we would like to consider more sophisticated ystems. Here, some of
the potential advantages of bigraphs (in particular, tmeidularity, the possibility of
transferring the type results to a family of concrete cajeuid the insights gained on
the type systems themselves) could be particularly vatuabfjood example of this
might be type systems for deadlock-freedom and lock-freedmich as Kobayashi
and co-workers’ [11,10]. These type systems yield fundaaei&ehavioural guaran-
tees on processes such as absence of deadlock. Howeveragrargoe that they
are not fully understood yet, as a number of variations hapeared, with different
expressive power. Also, they seem very sensitive to the igranof the underlying
process language, so transferring them to a different fiismanay be troublesome.
Formulating these types at the more abstract level of biggapuld shed light into
their design and facilitate their application.

We would like also to: consider different process languafmsinstance with
primitives for distribution such as Mobile Ambients or Homa deeper investigation
of the relation between our work and sortings; generaligeapproach to capture
several interesting type systems simultaneously; to aatically derive an LTS for
the BRS and then lift Subject Reduction to that semantidselp bridge prior efforts
in bigraphs concerning in expressiveness and derivatiai 8§ with our approach;
and support tools for type inference and type checking.

14

Acknowledgments The first author wishes to thank Mikkel N. Bundgaard, Sgren
Debois and Troels C. Damgaard for useful technical disonssWe thank the anony-
mous referees for suggestions on improving this papersgotation.

References

1. Lars Birkedal, Sgren Debois, Ebbe Elsborg, Thomas T.dbilandt, and Henning Niss.
Bigraphical Models of Context-aware Systems.Pioceedings of FoSSaCS 0élume
3921 ofLNCS pages 187-201. Springer, 2006.

2. Lars Birkedal, Sgren Debois, and Thomas T. Hildebrandtth@ Construction of Sorted
Reactive Systems. IRroceedings of CONCUR’Q&NCS, pages 218-232. Springer,
2008.

3. Mikkel N. Bundgaard and Thomas T. Hildebrandt. Bigraphi8emantics of Higher-
Order Mobile Embedded Resources with Local NamesProceedings of GT-VC'Q5
volume 154 ofENTCS pages 7-29. Elsevier, 2006.

4. Mikkel N. Bundgaard and Vladimiro Sassone. Typed polyaadicalculus in bigraphs.
In Proceedings of PPDP’Qfpages 1-12. ACM Press, 2006.

5. Troels C. Damgaard and Lars Birkedal. Axiomatizing BingdBigraphs.Nordic Journal
of Computing 13(1-2):58-77, 2006.

6. Atsushi Igarashi and Naoki Kobayashi. A generic typeaysfor the Pi-calculusTCS
311(1-3):121-163, 2004.

7. Ole Hagh JensenMobile Processes in Bigraphs (DraftfPhD thesis, King’s College,
University of Cambridge, 2007. Submitted.

8. Ole Hggh Jensen and Robin Milner. Bigraphs and Transition Proceedings of
POPL'03 pages 38-49. ACM Press, 2003.

9. Ole Hggh Jensen and Robin Milner. Bigraphs and mobilegases (revised). Technical
Report UCAM-CL-TR-580, University of Cambridge, 2004.

10. Naoki Kobayashi. A type system for lock-free procesda§. & Comp, 177:122-159,
2002.

11. Naoki Kobayashi. A new type system for deadlock-freecpsses. IrProceedings of
CONCUR’06 volume 4137 oLNCS pages 233-247. Springer, 2006.

12. Barbara Koénig. A General Framework for Types in Graph iRew. Acta Inf,
42(4):349-388, Dec. 2005. Special issue: Types in conaoyrdart I1.

13. James J. Leifer and Robin Milner. Transition systemg,diraphs, and Petri netsISCS
16(6):989—-1047, Dec. 2006.

14. Robin Milner. Bigraphs for Petri Nets. lnectures on Concurrency and Petri Nets:
Advances in Petri Netsvolume 3098 oL NCS pages 686—701. Springer, 2004.

15. Robin Milner. Axioms for bigraphical structur®SC$ 15(6):1005-1032, Dec. 2005.

16. Robin Milner. Pure Bigraphs: Structure and dynaming.& Comp, 204(1), Jan. 2006.

17. Robin Milner. Local Bigraphs and Confluence: Two Conjees. ENTCS 175(3), June
2007.

18. Benjamin C. Pierce and Davide Sangiorgi. Typing and vy for Mobile processes.
MSCS 6(5):409-453, 1996.

19. Davide Sangiorgi and David WalkeThe Pi-calculus: a Theory of Mobile Processes
Cambridge University Press, 2001.

20. Mark Weiser. Hot Topics — Ubiquitous ComputinGEE Computer26(10):71-72, Oct.
1993.

15

A Bigraphs
This appendix contains the relevant definitions of [9,16,7]

Definition 8 (pure signature) A (pure) signatureX is a set whose elements are
called controls For each control K it provides a finite ordinal &), an arity; it
also determines which controls astomic and which of the non-atomic controls
are active Controls which are not active (including the atomic cotdjare called
passive

Presuppose a countably infinite gedf global names.

Definition 9 (concrete pure bigraph) A (concrete) pure bigrapbver the signature
K takes the form G= (V,E,ctrl,G? ,G') : 1 — J where |= (m,X) and J= (n,Y)

are itsinnerand outer faceseach combining avidth (a finite ordinal) with a finite
set of global names drawn frop Its first two components V and E are finite sets
of nodesand edgegespectively. The third component ctW — %, a control map
assigns a control to each node. The remaining two afre=GV, ctrl, prnt) : m— n,

G- = (V,E,ctrl,link) : X =Y.

Definition 10 (prime interface) Aninterfacel = (m,X) consists of a finite ordinal
m called awidth, a finite set X called aame setAn interface igrimeif it has width
1

Definition 11 (prime bigraph) A prime bigraph P: m — (X) has no inner names
and a prime outer face.

Definition 12 (place graph) A place graptA = (V,ctrl, prnt) : m— n has aninner
width m and anouter widthn, both finite ordinals; a finite set V of nodes with a
control map ctrl: V — X; and aparent magprnt : mwV — V wn. The parent map
is acyclig i.e. prnf(v) # v for all k > 0 and ve V. Anatomicnode — i.e. one whose
control is atomic — may not be a parent. We writesww, or just w> w, to mean
w = prntk(w') for some k> 0.

The widths m and n index ttstesand rootsof A respectively. The sites and
nodes — i.e. the domain of prnt — are callpldces

Definition 13 (precategory of place graphs)The precategory of place grapfs.G
has finite ordinals as objects and place graphs as arrows.comeposition Ao Ag :
my — my of two place graphs A= (Vi,ctrli, prnt) : mi — mi11 (i =0,1) is defined
when the two node sets are disjoint; therpAg def (V,ctrl, prnt) where V=\VowV1,
ctrl = ctrlpwctrly, and prnt= (Idy, W prnt) o (prntowldy,). The identity place
graph at misidm def (0,04,1dm) : m—m.

Definition 14 (barren,sibling,active,passive)A node or root isbarrenit is has no
children. Two places arsiblingsif they have the same parent. A site s of Adsive

if ctrl (v) is active whenever ¥ s; otherwise s ipassivelf s is active (resp. passive)
in A, we also say that A iactive(resp.passivg ats.

16

Definition 15 (tensor product,PLG) Thetensor produc® in "PLG is defined as
follows: On objects, we take @an = m+ n. For two place graphs Am — n; (i =
0,1) we take A® A1 : Mp+m; — np+ Ny to be defined whenyfand A have disjoint
node sets; for the parent map, we first adjust the sites antd mfody by adding them
to mp and ny respectively, then take the union of the two parent maps.

Definition 16 (hard place graphs) A hardplace graph is one in which no root or
non-atomic node is barren. They form a sub-precategory tehioy PLG),.

Definition 17 (link graph) Alink graphA= (V,E,ctrl,link) : X — Y has finite sets
X of inner namesY of (outer) namesV of nodesand E of edges|t also has a
function ctrl: V — K called thecontrol map and a function link XwP — EwY

called thelink map, where pLf Svev ar(ctrl(v)) is the set ofportsof A.
We shall call the inner names X and ports P gaéntsof A, and the edges E and
outer names'Y itbnks.

Definition 18 (idle,open,closed,peer,leana link isidle if it has no preimage under
thelink map. An (outer) name is apenlink, an edge is @&losedink. A point (i.e. an
inner name or port) i®penif its link is open, otherwiselosed Two distinct points
are peerdf they are in the same link. A link graphlsanif it has no idle edges.

Definition 19 (precategory of link graphs) The precategory_1G has name sets as
objects and link graphs as arrows. The compositiar Ag : Xo — Xz of two link
graphs A= (V;, Ei, ctrli, link;) : X — Xi11 (i = 0,1) is defined when their node sets
and edge sets are disjoint; then #Ag def (V,E,ctrl,link) where V=\Vo WV, ctrl =
ctrlowectrly, E = EgwE; and link= (ldg, Wlinky) o (linkg W Idp,). The identity link
graph at X isidx = (0,0,04,ldx) : X — X.

Definition 20 (tensor product,’Li1G) Thetensor product? in 'LIG is defined as
follows: On objects, XY is simply the union of sets required to be disjoint. For two
link graphs A: X — Y; (i=0,1) we take A® A1 : Xo ® X1 — Yo®Y; to be defined
when the interface products are defined and wheamd A have disjoint node sets
and edge sets; then we take the union of their link maps.

Definition 21 (parallel product) The parallel product| in'LiG is defined as fol-
lows: On objects, X Y % xUY. onlink graphs A: X; —Y; (i = 0,1) we define
Ao || Az Xo® X1 — Yo || Ya whenever Xand X are disjoint, by taking the union of

link maps.

A place graph can be combined with a link graph iff they hawestime node set and
control map.

Definition 22 (precategory of pure concrete bigraphs)The precategoriBIG (X))
of pure concrete bigraphs over a signat'ghas pairs I= (m, X) as objectsifterface}
and bigraphs G= (V,E, ctrlg,G",G") : I — J as arrows ¢ontext3. We call | thein-
ner faceof G, and | theouter facelf H : J — K is another bigraph with node set

17

disjoint from V, then their composition is defined directiytérms of the composi-
tions of the constituents as follows:
HoG % (HPoGP H oGl 1 — K.
The identities aréidm,idx) : 1 — I, where I= (m, X).
The subprecategof1G,, consists othardbigraphs, those with place graphs in
‘PLG}.

Definition 23 (tensor product,’BiG) Thetensor producof two bigraph interfaces
is defined bym, X) ® (n,Y) def {(m+n,XUY)when X andY are disjoint. Thensor
productof two bigraphs G: I — J; (i = 0,1) is defined by

Go® Gy & (Gh @G, Gk GY) 1 lo® Iy — Jo | 31
when the interfaces exist and the node sets are disjoint ddmnbination is well-
formed, since its constituents share the same node set.

Definition 24 (parallel product, 'BiG) Theparallel producbf two bigraphs is de-

fined on interfaces bym, X) | (n,Y) et (m+n,XUY), and on bigraphs by

def
Go|GL & (GEaGE,G5 |G ol — Jo | d

when the interfaces exist and the node sets are disjoint.

It is easy to verify thaf| is associative, with uni.

Proposition 3 (alternative parallel product, BiIG) Let & || G1 be defined. Then
Go || G1=0(Gy®1G1),

where the substitutions and 1 are defined as follows: Ifi@@ € n) are the names
shared between gand G, and w are fresh names in bijection with the zthen
(z) =w ando(wi) = o(z) = z(i e n).

Definition 25 (prime product, ‘BiG) Theprime producbf two interfaces is given
by

def

(M, X) [(n,Y) = (1,XUY).
For two prime bigraphsl_D) : T — T, iflo® 11 defined and n is the sum of the widths
of Jy and J, we define theiprime producby
Po | Py dZEf merge o (Po H Pl) lo®11— Jo | Ji.

Again | is associative, with unit 1 when applied to primes. RefeQfd¢r the defi-
nition of =.

18

Definition 26 (instantiation) Aninstantiationp from (width) m to (width) n, which
we writep :: m — n, is determined by functiop: n — m. For any X this function
defines the map

p: Gr(m X) — Gr(n,X)

as follows. Decompose:gdm, X) into g=w(do® - - - ® dm_1), with w: Y — X and
each ¢ prime and discrete. Then define

0(0) E we |- [en 1),

where g = dg(j) for j € n. This map is well-defined (up to support translation), by
Propositions 9.16 and 9.17.

Note that the names &b || - -- || en—1 may be fewer thalY, because may not be
surjective. But by our convention the outer name9(@d) are determined by the
outer names o, i.e. X.

Definition 27 (binding signature) A binding signatureX is like a pure signature,
except that the arity of a control Kh — k now consists of a pair of finite ordinals:
thebinding arityh and thefree arityk, determining the number dfindingandnon-
bindingports of any K-node. If K is atomic then=h0.

Definition 28 (binding interface) Abinding interface = (m,loc, X), where the width
m is as before, X is a finite set of names, and:l¥c— mw {_L} is alocality map
associating some of the names X with a site in m. Ifdpe- s € m then x idocated
at s, orlocal (to s); If loc(x) = L then x isglobal

We call ¥ = (m, X) the pure interfacainderlyingl.

Definition 29 (binding bigraphs) A (concrete) binding bigrap& : | — J consists
of anunderlyingpure bigraph @ : I — JY with extra structure as follows. Declare
its bindersto be the binding ports of its nodes together with the locahea of its
outer face J. Then G must satisfy the following:

ScoPE RULE If p is a binder located at a node or root w, then every peer p
of p must be located at a placé ¢a site or node) such that'wgu w.

In the precategoryBBG(X) of (concrete) binding bigraphs ovek, composition
and identities are defined as for the underlying pure bigsthey are easily found
to respect the scope rule. the forgetful functor

U:'BBG(K) —'BIG(X)
sends each | toland each G to & The analogous definition holds also for hard

binding bigraph$BBGh(X).

19

Definition 32 (tensor product,BBG) The tensor product of interfacesd (m, Y,X)
and J=(n,Y,Y), where X and Y are disjoint, is

l®d=(m+nXY,XwY).

The tensor product Gl — J of two binding G: I; — Ji(i = 0,1) with disjoint sup-
ports is defined when= lp® 11 and J= Jo® J; are defined, and then'G= Gj® G}.
ThusU preserves tensor product.

Definition 31 (parallel product,'BBG) Extending the previous definition, the par-
allel product of two interfaces & (n;, Xi,Yi)(i = 0,1) keeps their local names dis-
joint but may share their global names:

def =2 =
B[E (no+n, XoX1,YoUYs) .

We define a parallel product on binding bigraphs by the equey || G1 = 0(Go ®
TGl).

Definition 32 (prime product, BBG) Extending the previous definition, the prime
product of two prime interfaces is

(X)) [{Y)Y) (XY XUY)
The expression of the prime product of two prime bindingdgpds in terms of their
parallel product is just as before.

Definition 33 (instantiation,'BBG) We replace instantiationg :: m — n for pure
bigraphs by instantiationg :: | — J for binding bigraphs, where £ (m, Y) and
J={(n, \7> are local. The instantiation consists again of an undegyfanctionp :
n— m, and also provides bijective local substitutigns (X5(;)) — (Y;) forall j € n.
These ensure disjoint local names for each copy of a pararfettor. For any Z,
this allows the map

p:Grl®z) - Grde2z)

to be defined as follows (in terms of DNF as before): Decomgosk® Z into
g=wWdy® - ® dm) with w: W — Z and each dprime and discrete. Then let
€ = pj odgj) for each je n, and define
def

p(9) = w(eo ||l &n1) -
Definition 34 (bigraphical reactive system) A bigraphical reactive system (BRS)
over signatureX. consists ofBBG(X) equipped with a SéREACTS of reaction
rules closed under support equivaleneg (We denote it bYBBG (K, REACTS).

Definition 35 (Insertion, [7]) Given a wiringw: X — Y and a local prime AX' —

Y’ theinsertionof w into A is defined iff X and Xare disjoint. The result, written
A<w: XX — YUY, has the nodes and parent map of A and its link map is the union
of those of A andb. Insertion binds tighter than prime product and compositio

20

Definition 36 (s-category) Ans-categorC is a strict symmetric monoidal precate-
gory which has:

—for each arrow f, a finite séff | called itssupportsuch thatid;|=0. For f : 1 —J
and g: J — K the composition gf | — K is defined iffig|n|f| = 0 and donfg) =
cod(f); then|gf| = |g|w|f]|. Similarly, for f:H — 1 and g: J — K with H® J and

| ® K defined, the tensor productsfg: H®J — | @ K is defined iff f| N |g| = ©;
then|f @ g| = [f][g].

— for any arrow f: | — J and any injective map whose domain includegg|, an
arrow f : 1 — J called asupport translatioof f such that

.p-id|:id|
.p-(@f)=(p-9)(p-f)
.p-(feg=p-fop-g
. (propo) - f=p1-(po-f)
- p-f=(pl[f])-f

- et fl=p(f].

Each equation is required to hold only when both sides aranddfi

~NOoO O~ WN P

We continue on the next page with the axioms for binding libsa

21

The axioms for binding bigraphs in Def. 37 are from [5], buthwéxplicit compo-
sition. A, B,C, G range over bigraphs$],|,J,K range over interfaces,is the empty

interface (0, (), 0), x,y range over names,Y,Z range over name setsSX™
(Z)"ZWw X7 : (1,(ZWX),ZWX) — (1,(Z),ZyX), P ranges over primesKTy)(Y

z def

)

over ions, 0 ranges over renamings (multiple bijective substitutiposlanges over
substitutions, and'°® ranges over local substitutions.

Definition 37 (Axioms for binding bigraphs)

Categorical axioms

(C1) Aoid; = A
(C2) Ao (BoC) =
(C3) ARide = A
(C4) A®(BxC)
(C5) id ®idy =
(C6) (A1®B1) o (Ag® Bo)
(C7) Yie
(C8) Y310V,
(C9) Yiko(A®B)
(C10) Yigoko(A®B) =
Link axioms

(L1)

(L2) /yoy/x
(L3) /yoy
(L4) (Z/(Ywy)) o (idy ®Y/X)
Place axioms

(P1) joino (1®idi)
(P2) joino (join ®id1)
(P3) joinoys 1 00 =
Binding axioms

(B1) ()P =
(B2) (Y)ry™
(B3) ("X ®idy)(X)P
(B4) (((Y)P)®idx)G
(B5) XwY)P =
lon axioms

(N1) (idi®a)oKyg) =
(N2) Kyx© 0'¢ =

x/x =

—idjoA

(AoB)oC

—ide @A
(A®B)©C

idiga

(A10Ag) ® (B10Bp)
id

idl@d

(B&A)oYH,J

(Al =)

(A:H—1,B:J—K)

(Vik ®idy)o (idi @Yik)

idy
/X
ide

= Z/(YwX)

= idq

joino (id1 ® join)
join

P

P

(Y)(P®idx)G
(X)((Y)P)

Ka(v)(%)
Ky ((otoe)-2(%))

22

(P:1 —=(1,(2),ZuXWY))

B Ttrcalculus

This appendix contains standametalculus definitions and ao-type system, for
easy reference.

Definition 38 (Binding) In each of &x).P andvxP, the displayed occurrence of x
is bindingwith scopeP. An occurrence of a name in a procesb®@indit it is, or it
lies within the scope of, a binding occurrence of the nameo@urrence of a name
in a process idreeit it is not bound.

Definition 39 (Substitution) A substitutionis a function on names that is the iden-
tity except on a finite set.

Notation 2 (Substitution on names)Use g to range over substitutions, and write
ox for o applied to x. Thesupporof g, supgo), is {x | ox # x}, and theco-support
of g, cosuppo), is{ox | xe supgo)}. Writen(a) for the set ohame®f o, which is
supfa)Ucosupgo). Write {y1.-¥n/x,...x } for the substitutioro such thabx =;

for each i€ {1,...,n} andox = x for x¢ {x1,...,%}. If X is a set of names, write
oX for {ox| x e X}.

Definition 40 (a-convertibility)

1. Ifthe name x does not occur in the process P, #@n P is the process obtained
by replacing each free occurrence of y in P by x.

2. Achange of bound namésa process P is the replacement of a subteix) &
of P by ay).{¥/x}Q, or the replacement of a subtenn Q of P byvy{y/x}Q,
where in each case y does not occur in Q.

3. Processes P and Q aceconvertible P=4 Q, if Q can be obtained from P by a
finite number of changes of bound names.

Convention 1 When considering a collection of processes and substitsifith is
assumed that the bound names of the processes are chosediffet@nt from their
free names and from the names of the substitutions.

Definition 41 (Substitution on prefixes) The effect of applying a substitutianto
a prefixttis to replace each occurrence of each name r by ox.

Definition 42 (Substitution on processes)The processP, obtained by applying
to P is defined as follows, avoiding capture of names by beder

=3
Ilg
o

omn.oP
"oP | oQ
f vx(oP)
0.

o(TLP)
o(P[Q)
o(vxP)
o0

o o
e lle

=3
Ilg

Notation 3 (Operator precedence)When writing processes as linear expressions
parentheses are used to resolve ambiguity, and observettventions that prefixing
and restriction bind more tightly than parallel compositia~urther, substitutions
bind more tightly than process operators. Sometimes phesets are inserted merely
to aid reading.

Definition 43 (Process context)A process contexs a process term in which ex-
actly one process subterm has been left out leaving a “hotggresented with no-
tation [-]. For a context C write (P] for the process resulting from “plugging” the
process P into the hole of C, where the hole in C must occur iasitipn such that

C[P] is well-formed for an arbitrary process term P.

Definition 44 (Process congruenceAn equivalence relatiorR on processes is a
process congruende(P,Q) € R implies(C[P],C[Q]) € R_for every process context
C.

MxX:LEP:O r-pP:0 rEQ: 0
Processes :
r=0:¢ M= (wx:L)P: o rN-P|Q:o
MN-a:iS ry:SkEP: % MlM-a:of TEX:T THP:O
r-aly).P: ¢ M-axP: ¢
Subtypin S<S S<T
YPng - o S<T HT <iT #T < oT
S<T TS T<S ST
iIS<iT oS<oT HS < H#T
Names Ne=x:S S<T
MXxX:TEX:T Mre=x:T

Table 3.i/o-type rules for sit

24

C Full proofs

This appendix contains the full proofs.
Lemma 1 (Narrowing).If A;T,x: T +Fband S<T thenA;TI",x: Sk b.
Proof. The proof is by induction on the height of the derivatiomoF ,x: T I b.

— The cases fot, join, and/x are vacuously true.

— The cases for transpositions, identities, and concretioid by Inversion and
transitivity of the subtyping relatiost.

— The case for substitutions: Assume a derivatiorXaf T';",x : T I y/x with
premisel,x: T Fy: T’ by Inversion. Because typings are strong we must have
I =g andy = x. Thus, we have a derivation gf. T -y : T'. Clearly, T < T".
By transitivity of subtyping and the assumptiSs T we obtainS< T'. Hence,
by the the rule for names (subsumption) we can deyiv&l y: T’, which is
required to deriveX : T’; T, x: Sk y/x.

— The case for abstraction follows immediately from Invensémd the induction
hypothesis.

— The case for outputendy,: Eitherx = a or x = z but not both. Casa = a:
Assume a derivation dfg;a: T, - sendy, with premises (1a: T +a:oT’ and
(2)T Fx: T’ by Inversion. From (1) we know that< oT’. Then, the assumption
S< T and transitivity of subtyping yiel® < oT’. Then, by subsumption we
derive (1)a: Sk a: oT’. Using (1’) and (2) we derivEg;a: S’ - send,z as
required. The case for= zis analogous to the case where: a.

— The case for input: The proof is analogous to the proof fopoutvherex = a.

— The case for tensor product: Assume a derivatiohgfs; o, M1 F bo® by with
premised\o; o - bg andAs; 1 - by by Inversion. Eithex € supflg) or x €
supfl1) but not both. In either case tliecideratafollows from the induction
hypothesis om;; i F b;.

— The case for composition: Assume a derivatiof @fi 1 - by o bp with premises
(1) To;A+bp and (2)A;T'1 - by by Inversion. We have thate supfl'1) so the
decideratafollows by induction hypothesis on (2). O

Lemma 2 (Widening).If A)x:S;IF'-band S<T thenA,x: T;I Fb.
Proof. The proof is by induction on the height of the derivatiol\ok : S;I" - b.

— The cases fot, join, and output hold vacuously.

— The cases for transpositions, identities, and concretioid by transitivity of
subtyping.

— The case for closure is by axiom.

— The case for substitutions: Assume a derivatiorXafS; " F ¥/x with premise
I - y:Shy Inversion. Clearhyf (y) < S and becaus8< T we obtainl (y) <T
by transitivity of subtyping, which derives: T; T Fy/x by subsumption. Hence,
we can deriveX : T;T F y/x as required.

25

— The cases for abstraction, tensor, and composition aredeydion and then one
application of the induction hypothesis.

— The case for input: Assume a derivationyofS T - get,y) with premisel” - a:
iSby InversionS< T derivesS<iT by covariance of subtyping on input types.
Clearly,I'(a) < iS, and becaus& < iT we obtainl(a) <iT by transitivity of
subtyping. We can thus deriVet- a: iT and then concludg: T;I" - getyy) as
required. O

Lemma 3 (Main Lemma). Suppose = bs. ThenA;T F by if and only ifA; T - by.

Proof. The proof is by induction on the height of the derivatiorbpf= b; and has

a case for each axiom. The proof consists of 60 cases; themeicase for each
direction of each axiom, casing on whether the ioreisd or get, and checks for
reflexivity, symmetry, transitivity, and congruence. Irsien is used frequently in
a straightforward manner so we omit explicit mention of ite \Woceed by case
analysis.

— caseAoid| =AforA:l —J.
“=": Assume a derivation of\;" - Aoid; with premises (1)\;© | id; and (2)
O;T F A. From (1) we know tha® < A so by Widening on (2) we obtaifs, [- A
as required.
“<". Assume a derivation of (1\; I = A. Clearly, we may directly derive (2)
A; At id) by the rule for identities. Now we can build the required datibn of
A;T + Aoid; by the rule for composition using (2) and (1).

— caseA=idjoAforA:l — J.
“=": Assume a derivation of (1);I" - A. Clearly, we may directly derive (2)
;T Fidy by the rule for identities. Now we can build the required datibn of
A;T +idyo A by the rule for composition using (1) and (2).
“«<": Assume a derivation of;I" F idj o A with premises (1); 0O F A and (2)
O;l - idy. From (2) we know thaf’ < ® so by Narrowing on (1) we obtain
AT A

— caseAo (BoC) = (AoB)oC.
“<": Clearly, because exactly the same subderivations amauba both deriva-
tions, and the disjoint union on typings is associative.

— caseARids = A.
“=": Reuse the subderivatidn A+ A.
“«<": Reuse the subderivatidin A+ A, andl ¢; g | idg is by axiom.

— caseA=id: ®A.
Analogous to the previous case.

— caseA® (B®C)=(A®B)®C.
Clearly, because exactly the same subderivations are déebteth derivations,
and the disjoint union on typings is associative.

— cased| ®idy =id|gJ.
“=": Assume a derivation af\g,A1;o, M1 F id| ® idj with premises
(1) Ao; ToFidy and (2)A1;T 1 Fidy, wheresupfdAg) = supfllo) = glob(l) and

26

Mo < Ag, andsuppAy) = supfl1) = glob(J) andlM; < A;. We need to es-
tablish (A)supf2o,A1) = supilo,M1) =glob(l ®J) and (B)[o, 1 < Ag,As.
We know thatsupfAg) = glob(l) andsupgA;) = glob(J) so we obtain that
supffo,A1) = glob(l ®J). Likewise forl g andlM 1 w.r.t J so (A) is established.
We know thaf x < Ak (for k= 0,1) so clearlyl o, "1 < Ap, A1, which establishes
(B). We can now derivég,A1;To, M1 Fidi w3 as required.
“«<": Assume a derivation oh; " F id| 5 with premises (13upfdA) = glob(l ®
J), (2) supdl) = glob(l ® J), and (3)' < A by Inversion. ClearlyA and
I" can be split into partdg, A1 and g, such thatsupd®o) = glob(l) and
supf®1) = glob(J) (for ® € {A,T'}). Itis also obvious thafy < Ag andlMy <
A1. Hence, we can derivAg; Mg - id; andAq; 1 F idj, and thus als&\;T" +
id| ® idy as required.
case(A1 ®Bi1) o (AgoBg) = (Ao Ag) ® (B1oBp).
“<": Clearly, because exactly the same subderivations amatsa both deriva-
tions, albeit slightly rearranged.
caseyl ¢ = id;.

def . . def .
Recallthatyi e = VYo (x5,0) @idx @ido = Yo (x5, () @ 1dx: for
I =(m,).(>B,{).(>B}&JXF> w.l.0.g.
“=": Assume a derivation 0fo,A1;0,M1 = Vi (%5 () @ idx: With premises
Bo;To F Vi (X,) @Nd A1 T - idx.. From these premises we clearly have
SUpHA0, A1) = supfTo,T1) = {Xa} W Xe = glob(l), and also(T"o,1)(i) <
(Ao, A1)(i) for anyi € glob(l). Thus, a derivation of\g,A1; o, 1 F idj can be
built.
“<«=": Assume a derivation df o; I 1 I- id; with premisesuppT ;) = glob(l) (for
j=0,1) andlN; <To. glob(l) = {)?E} wXr by assumption. Clearly;; can be
split into typingsI; for {)73} andr’; for Xg. Therefore, the rule for tensor can
be used to build the required derivationl@f, I't; 1,y F Yo (g, () @ idxe -
Va1 oVig = idiga.
Recall thaty; def Yom(Zs,Xg) ®idze ®idx: andy g def Yimn,(Xe, Zg) @ idxe ©
idz- forl = (m, Yb,{YB} WXr) andJ = (n, fb,{ZB} WwZg) w.l.o.g.
“=": Clearly, yy) oy j is typable in somé’j (for j = 0,1) assigning types to
exactly the names df and J, disjointly, with '; < . Thus, a derivation of
;1 Fidiwy can be built.
“«<": Reverse the argument.
caseyi o (A®B)= (BeA)oyysforA:H —1,B:J —K.
“=": Assume a derivation dfo; 1 F yi yo (A® B), wheresupfl'g) = glob(H) W
glob(J) andsupgl'1) = glob(l) wglob(K). Exactly the same subderivations are
needed to build a derivation B ® A) o y4 j, albeit slightly rearranged.
“«<": The argument is analogous.
caseyizik = (Yik ®idy) o (id @ Yyik)-
Essentially, this case holds because exactly the same remad&gped on both
sides, albeit somewhat rearranged.

27

Recall thatyi gk def Yi®d)e.ke @ id(1eJ): ®idke, where the subscripB andF
signify the set of bound/local names and the set of free narhes interface,
respectively.
For interface$, letlr denote the free (i.@lob(l) \ loc(l)) andlg the bound (i.e.
loc(l)) names.
“=": Assume a derivation of ;"' - Y153 ks ® id(123) @ idke with subderiva-
tions (1)F1;T) - Yicajeke: (2) T2:T5 Fidgg)g, and (3)M3;T5 - idk,, where
M=rq,Mp,Mzandl’ =1,I5,T5, supfl1). Notice thasupfl:) = (1 ®J)gW
Kg, supfl2) = (I ® J)g, andsuppls) = K.
Recall thaty; k def Yis.Kg @ 1dg ®idke andy k gef Vig.Kg @ idl ® idke.
We need to build a derivation 6, F (yi k ®idy) o (id] ® y3k). This requires
two subderivations: (AJ;I" +idi ® ysx and (B)I;T” F v k @ id;. Both (A)
and (B) require two subderivations. (AL);I{ - id; and (A2) T jek; Mgk F
Vik, Wherel'; denoted™ [glob(l) for any typingl” and interfacd. The case
for (B) is analogous. So, we must find a suitifg. Pick " = '] =
M,MNigk = ((Fl “B), M “F), ((Fl F(JB wl)), (F2 [Jr), F3). All that remains
is to check (i)F{ < Iy andsupgl) =supfly) = glob(l), (i) Mgk < Mek
andsupfl ek) = supfljyk) = glob(J) wglob(K), and (iii) [, ek =T and
\',Tek =T". (i) follows from the fact thatl1 [Ig), M2 [Ir =} =T (ii) fol-

lows from the fact thatl"; [(Jg&Kg)), (T2 [JF), M3 =gk = M4k (iii) follows
from our choice of " =T.
“<": Obviously, we can make the same appropriate splits ofiypi

— case¥/x = id.
“=" Assume a derivation of : T;I" - X/x with premise (*)I - x: T. (*) implies
(1) suppln) = {x} and (2)r (x) < T. Also, clearly (3)supfx: T) = {x}. Thus,
we can from (1), (2), and (3) build the desired derivatiom of ;" I- idy.
“<": Assume a derivation of o; "1 I idyx with premisessupfTli) = {x} (for
i =0,1) and (*)1(X) < Fo(x). (*) implies thatl1 - x: [g(x), which allows us
to concludd o; 1 F %/x as required.

— case/yoY/x=/x.
“=": Assume a derivation ok: L;[¢ F /yoy/x with premises<: L;y: L’ F ¥/x
andy: L';lg I /y, for some link typed andL’ such that’ < L. By axiom,
X: Lok /X
“«<": Assume a derivation ok : L;I"p - /x. Build derivations ofx: L;y: L
y/xandy: L;lpF /y by axioms. From these two subderivations we construct a
derivation ofx: ;g F /yoy/x.

— case/yoy=id.
Recall thaty is shorthand fov/e.
“=:" Assume a derivation oF p; g I /yoy with premised ¢;y : L - y/o and
y:L;lok /y. As required[g; o+ ide is trivially derivable.
“«<": Assume a derivation df p; ¢ - ide. To build a derivation of o; g - /yoy
two subderivations are needdds;y/o-y: L andy: L;lp+ /y, for some link
typelL. They are both trivially derivable.

— case/(Yu{y}) o (idy ®Y/X) = Z/(Ywx).

28

“=": Assume a derivation of o, X : T; % F Z/(vw{y}) o (idy ® ¥/x) with three
subderivations: (1 o; 1 Fidy, (2) X : T; Y Fy/x, and (3) 1, [Y; T2 2/ (vw{y}),
with the following premises: (1Ayupflj) =Y (for j =0,1), (1B)[1 < T,
RA)TYERy:T,and BAZEz: (T1,MY)(YW{y}).

We need to establish (T)*I- z: (I'o, X : T)(Y W X) to derive the required conclu-
sionlo, X : T; %+ z/(vwx). Establishing (*) is obviously equivalent to showing
(*1) 2k z:To(Y)and (*2)F?-z: T, becausgX : T)(X) =T.

From (1A) we know thasupflo) =Y sosupflo, X : T) =Y wX. From (3A)
we havel 2+ z: T1(Y), in particular, sd%(z) <T1(Y) <To(Y), by (1B). Thus,
by transitivity of subtypind %(z) < 'p(Y) and we can derive (*1) by subsump-
tion.

For (*2) we must establish thaf(z) < T. From (3A) we know thaf?t- z: T'¥(y)
sol%(z) <T¥(y). From (2A) we know thaf¥(y) < T. Combining these two facts
and transitivity of subtyping we obtalff(z) < T. Hence, we can derive (*2) by
subsumption.

Finally, we derive theleciderataby (*1) and (*2) and the rule for substitutions.
“«<": Assume a derivation ofY W X) : T; " z/(vux) with premise (*)F Fz: T.
We need to showY wX) : T;T F Z/(yw{y}) o (idy ®¥/Xx). Thus, to use the rule for
composition we must establish two premises:([p X) : T; A+ idy ® ¥/x and
(2) ;T F Z/(vw{y}), for some suitabléd. We pickA=Y : T,y: T. Then, (2) is
derivable if we can establidht-z: T, but this follows from (*). Hence, only (1)
remains. We can use the rule for tensor with premises Y1A);Y : T - idy and
(AB)X:T;y:THEY/X, because : T, X: T def (YwX):T. (1A)is trivial by the
rule for identities and (1B) trivial by the rule for substitins.

casejoino (1®idy) = ids.

“s": Clearly, g; g types both sides by axioms.

casejoino (join®id1) = joino (id1 ® join).

“s": Clearly, p; g types both sides by axioms.

casejoinoy, ; (g g) = join.

“&" Clearly, ['g; T types both sides by axioms.

case(0)P=P.

“=" Assume a derivation of\;I" - (0)P with premiseA;I" - P. Reuse the
premise on the right-hand side.

“«<": Reuse the assumed derivation&fl - P as premise in the rule for ab-
straction.

caseg(Y) Y =idy).

Recall thatdy) %' v)/cv) &' (Y) (QPy%/m) @id1)o™Y) forY = {y1,...,¥n}.

“=": Assume a derivation of ;"1 F (Y)Y with premise (*)[o;l1 F"Y™.
To build a derivation we essentially need two subderivati§h) Mo; 1 - "Y™
and (2)F1;T 1 - @1 %/yi, where (1) is simply by (*). (2) follows fronm sub-
derivations of fornT 1 [yi; 1 [yi F %/yi (wherel 1 'y; restrictsl'1 toy;), because
F1lyiFy: (F1lyi) (%) is by axiom and reflexivity of subtyping.

“<=": Assume a derivation off o; 1 I id(y) with premises (1) ;2 - "Y™ and
@) TalyiFyi:(T21v)(vi), for somelz such that o;F2 - "Y andlMz; Iy -

29

Qi1 Yi/yi. Then, (1) implies thaf, < g and (2) implies thaf; <, solM <
o by transitivity of subtyping. Hence, we can derivg;l"1 - "Y™ and thus
lo;M1F (Y)"Y ™ as required.

— case("X ¥ ®idy)o(X)P=PforP:1 — (1,Z,ZuXuY).
Recall that X 2 &' (2)7zwX7: (1L,ZWX,ZWX) — (1,Z,ZX).
“=": Assume a derivation a&; I - (((Z)"ZWX") ®idy) o (X)P with subderiva-
tions ()A; T FP, (2 To; T F"ZwX™, and (3)[;M3 idy, with T =T,
andl =To,lM2. (2) impliesl 'y < g and (3) implied 3 < I',, so together they
imply M =T1,l3<Tg,l2=T".We have;; [’ - P from (1), and becaude< T’
we obtainA; T F P by Narrowing.
“«<" Assume a derivation (*\; T - P. We can easily build the desired deriva-
tion of A;T F (((2)"Zw X ™) ®idy) o (X)P as follows: We need the same sub-
derivations as were assumed in the previous case, but bingi€l = '; and
I, = '3 we clearly have subderivations (2) and (3) from above byarivses of
the rule for concretions and identities, respectively. §iwe can derivé;l" -
(2)"Zw X ®idy. Finally, we can reuse (*) and by the rule for composition we
obtain thedeciderata

— case(((Y)P)®idx) oG = ((Y)(P®idx))oG.
“<": Clearly, because the subderivations are the same on i@ albeit slightly
rearranged, and only the rules for abstraction, tensor amgposition are used
to build the required derivations.

— case(XWY)P = (X)((Y)P).
“&" Clearly, because the names are the same on both sideshamdlé for
abstraction merely propagates information.

— casg(id1 ® o) o Ky) = Ky (3)(x)- TWo cases: EitheK is send or get.

° Ky(y) = sendaz. We haven def d/a®7/z for some named’, zwherea’ ¢

{Z,z} andZ ¢ {&,a} because is a renaming, i.e. a bijective substitution.
(a# z by definition.)
“=": Assume a derivation of p;I - (id1 ® O) o senda; with subderiva-
tions (A) Ip; © I sendaz and (B)O; T +idy ® o with suppg®) = {a,z} and
suppln) ={&,Z}. (A) has premises (A1 a: oT and (A2)0*+z: T,
where©? denote® | {a} and so forth. (B) has premises (B I & : ©3(a)
and (B2)rZ 7 : ©4(2).
Build the desired derivation ¢%y; I" - send» with premises (if & -a : oT
and (ii)F? - Z : T. (i) is justified as follows: By (B1)[? (') < ®*(a). So,
by Narrowing on (A1) we obtaif® - & : oT, bearing in mind that (*)
X:SkEx:Tiffy:Sky:T.(ii) is justified in an analogously.
“<" Find © = ©2,0% with @2(a) = ¥ (a) and®%(z) = ['Z(Z), yielding
(B1) and (B2). Then, (A1) follows easily from (i) and (A2 frofii), because
of (*).

o Ky(x) = getay- We haven def 'a/a for somea’ # zw.l.0.g.
“="1 Assume a derivation of: ST I (id1 ® @/a) o gety(; With premises
() a:Uka:iSand (2)r +a : U, for some typess andU. (2) implies

30

that(a’) <U so we may apply Narrowing to (1) and obtdir+ a’ : iS,
becausa: U a:iSiff a :U & :iS). Then we can build a derivation of
z: ST I gety(y), as required.
“«<": Analogous to the £=” direction of thesend case.
— caseKyx, ogloc — KV((.0'°°)’1(7>>' Two cases. Eitht.ah(. is send or get.

o Ky(x) = sendax. This case holds both ways trivially becaused has no
local names.

o Ky(x) = getay- We haved'® = (2/(z) for some name se. Recall that

@/ € 2)(@Fz0id1)om27).
“=:" Assume a derivation oZ : T;T - get,(; o (2) ((#z®id1) 0 "Z™) with
premises (15< T and (2)[I a: iS Building a derivation ofZ : T;I' -
gety(z) requiresl” Fa:iT, which in turn requires (AJ +a:iSand (B)
iIS<iT. (A) follows from (2) and (B) from (1) by the subtyping rule iofout
types.
“«<": The same premises are needed.
— caseb = b (reflexivity).
Show thath; T = bif and only if A; T = b, but this is immediate.
— caseb=Db' = b/ = b (symmetry).
Read the statement as a rqueE,:i—t;;.
Assumebp = bi. Show:A;T F by if and only if A;T - b;. We are proceeding
by induction on the derivation dfp = b; and the last rule used was the rule
for symmetry, so we must have hag= bg. Now, by induction hypothesis on
by = bp we obtainA; T - by if and only if A; T - bp. Because “iff” is symmetric
we have thelesiderata
— caseb=b& b =b" = b="D" (transitivity).
Ic.b — b/ b/ — b//
e b=b"
Assume:bg = by. Show:A;T F by if and only if A;T F b;. We have must have
hadbg = by andby = by for someb,. By induction hypothesis: (1);T F by if
and only ifA;T F by, and (2)A;T F by if and only if A; T - by. Because “iff” is
transitive we obtaid\; " - by if and only if A; T + by, as required.
— caseb=b" = Cob=Cob/ (congruence).
. b=V
Cob=Col/
AssumeCob=Cob'. Show:A;I - Cobif and only if A;T - Cob’. We must
have had = b’. By induction hypothesis obh = b’ we obtainA;© b if and
only if I';© F b, for some®. Typings ofC o b andC o b’ must have ended with
the composition rule. Thus, we just need to argue that we halerivation of
O;I+Cifand only if ©;I - C, but this is immediate (because “iff” is reflexive).
]

Read the statement as a ru

Read the statementas ar

Corollary 1 If A;T = b and b= by o bg then there exists a typing such that\; © -
bg and@©;I F b;.

31

Proof. The Main Lemma yiel$;A - by o bg. By Inversion there exist® such that
A;T +bgandO;l b;. O

Theorem 2 (Subject Reduction)For process bigraphsgand by, if Fg; A+ bp and
bg — by thenlg; A+ by.

Proof. The proof is by analysis of the derivation b — by by the sole reaction
rule. When reading this proof the reader is recommendedato db the proof trees
following the following two paragraphs of the proof.

Becausdyy — by, then by Def. 1 there exists an active cont®duch thaby =
Dor andb; = Dor’. Assume a derivation dfg; A - bo, then also€) Fg;A- Dor
by Lemma 3. By Inversion we must have (among others) thevatig six sub-
derivations from £): (1) Fp;,y: Skd, (3)a:Uta:oT, (3") x:U'Fx:T,
(4)a:RFa:iS (5) U <R and(8) M a:W,x:W;A+ D. We also know that
W <U andW’ <U’.By (3), (5) and(4’) we concludel < S(cf. [19]).W <U’,
and by(3”) we havel’ <T < S soW < S

Now, consider the derivation to be builly = D or’ implies thatb; = Dor’
abstractly. By Lemma 3 it suffices to derifig; A+ D or’. Reuse the derivation of
D. p = idp2 (0,4y}),0) SOP(d) = d. This means that we can also reydf. We siill
need to justify a derivation of : S;x : W' = (X/(y). This merely requires justification
of W < Sbecause we may choose not to subtype in the other substguit) < S
has already been established so we can build the desiregti@miofg;A- Dor’.

Let A £ B signify thatA is defined a8.

Left-hand side: Recall that = (idx ® R) o d. Define:

r£aod

= a/aa ® X/x

-12 a,/a

a2 idx® ((join® id(ax) © (00 (sendax® (To getyy)))))
B2 (join® id(ax) © (00 (sendax® (Togetyy))))

— Y2 0o (sendax® (To getay)))

— 8= sendax® (To getyy))

- € éTogetaO,)
(4) (5
(3) y:Sa:U'k¢ ©)
y:Sa:U,a:Ux:U'Fd @
y:Sa:V,x:V'ky
2 y:Sa:Wx:WEB
Q) ry:Sra:Wx:Wka ®)
Fo;M,a:W,x: W Fr
lMg;AEDor

32

With the following subderivationgl)-(8).

@
o T =IX)
W ryisra @ T e

RemarkT’(X) < T(X) holds whenevel’(x;) < T (x) for all x; € X.

(3) L 4)
(3); _aUraol x:U'kx:T (4. __a:RFa:is
' Mog;a:U,x: U’ senday " y:Sa:REgetyy)
(6")
(5) S— _—L_J / x: U’ x: Vi
] U<R) a:U,a :U;a:Vtaaa
(5) . e n/ . (6) / . . . /. . . /
a:Ra:Ukrt a:U,a:Ux:U%a:V,x:V'-ao
. (7) . (8)
(7): (8):

a:V,x:Via:W,x: W' join ®id ay Ma:W,x:W;AFD

Remark:(7') is a straightforward subderivation where subtyping\of£ V andW’ <
V/ may occur.

Right-hand side: Recall that’ = (idx ® R') od’, whered’ = p(d). Define:
- @£ join®id sy
- l.IJ £ join X Id(x)

Recall thaR &' go (Yo (idi © /() © ().

(iii)

(i) yiSx: W X/
y:Sx: W idi @ X/(y)
y:SX:W o (id @ ®¥/(y)

y:Sa:W,x: W' (Wo (idi® ®/(y)) @ (a)

(iv)

v)
(vi)

) y:Sa:W,x:W'F@o ((Wo(idi ® ¥/y)) © ()

(i) ry:SMa:Wx:Wkidx®R

Fo;T,a: W, x:W -’

(8)

Fg;A-Dor’

With the following subderivation§)-(vi).

Fo;T,y: Sk p(d) " T Tpkidy

(i):

33

(iii")

W <S
YIS XWXy
y:SxX: W HXy®idg

Mg;Mpkidy

y:Sy:SkHTy?

(i) y:Sx:WE (¥y®idg) oy

def

Remark: In(iii), ®/(y) = (X)((¥y®id1)o"y").

Mp;a:WHa/p
MNo;a: Wt (a)(2/0)

(iv')
X:Wix:W g

(iv) :

(v):

Remarks: In the subderivatiafiv') we choose not to subtype. In derivati¢w),
(@) def (a)(#/0), and any type may be chosen fo+ pickW.

(vi")

(vi):
a:Wx:Wi;a:W,x:W'F o

Remark: In the subderivatidivi’) we choose not to subtype. O

Proposition 1 (Type Soundness)Suppose that process bigrapkP] x), Fo; T
b, and b—* b'. Then, for each non-idle a glob(cod(b)) it holds that:

1. If T +a:iS then ais either linked to the channel port ofex ion or linked to
the datum port of @aend ion.
2. IfF'+a:oT then ais linked to aend ion.

Proof. The proofis by ind. on the lengthof the reductiorb —* b/. The base case is
by structural induction o using Cor. 1. The inductive case uses Subject Reduction.

— n=0.We haveb =b'. Eitherl'(a) =iSorl'(a) = oT.

Assumel (a) = iS. Clearlya can be linked to get ion, but not to asend ion
because a premise of thend rule requiresa to have a type of formreT, which
contradicts the assumption. The other possibility coulthiag¢a is linked to the
datum channel of aend ion, saysenday, because linkg of input type can be
communicated, as long &8 a: oiSandrl’ - x: iSfor somel’, SandT.
Assume (a) = oT. Clearlya must be linked to aend ion because the premise
of the get rule requiresa to have a type of forniS, which contradicts the as-
sumption. Againa can either be linked to a channel portsefid or the datum
port if it is to be communicated.

— n> 0. Assume the induction hypothesis for+ "b" and show it foro — "1/
Thus,b" exhibits the property. Show thhf*! does too. By Subject Reduction
we know thaf o; b" - I and taking another step with» 1 establishe§ y; b™*1 -

. The outer typing being preserved we just need argumenteras-£ O to
establish the desiderata. d

34

Lemma 4 (Weakening).If A;T b and xZsupdll) thenA;T,x: T Fb® (X).

Proof. The proof is by induction on the height of the derivationpf + b. Recall
that(x) def (x)(¥/0) and can thus be typed by using the rule for abstraction and the
the rule for substitutions.

All cases follow the same pattern, where the desired désivéd constructed as
follows:

" o Fo;x: THXo
y assumption —
ATED Fo;x:TH(X)
AT HFb®(x)
The case for closurgx holds by the insight that an outer namis different from an
inner name if they are not linked. O

Lemma5 (Strengthening).If A;,x: T Fb® (x) thenA;T + b.

Proof. The proof is by induction on the height of the derivatiomof ,x: T Fb®

(x). Recall tha(x) def (x)(*/0) and can thus be typed by using the rule for abstraction

and then the rule for substitutions.
All cases follow the same pattern, where the assumed dierivaas form:

(+)
ATHD
AT x:THEb®(X)

Mo x:TH(X)

The desired derivation is simply constructed by reusing (*) d

Lemma 6. Suppose b= [P]x) and I'p;[" F b with fn(P) C X = supgl’). Then
[[PHSUPQF) ® (x) = [P] (supdl xT)) forany T.

Proof. The proof is by structural induction dh Let LHS mean “left-hand side” and
RHS “right-hand side”. We sometimes wriXgy for X & {y}, for instance.

~ caseP = 0. LHS: [0]supr) @ (x) £ (X)® (X) = (X {x}). RHS:[0]supir) =

(X {x}).
— caseP =vzQ
LHS: [vzQlx) @ (x) £ /(2) <idx o [Qlxz ® (¥).
RHS: [Vvz Q] (supgr xT)) gef /(2) <idxxo [Q] (xxz - We know thaiis idle in [Q]
so we may further rewrite tf(z) <tidx o [Q]xz® (X).
— caseP =azQ.
de

LHS: [azQ]x) ® (X) %7 sendaz<tidx o [Q] x) @ (X).

RHS: HaZQﬂ(SupQF,X:T)) d:ef sendgz<lidxx o [[QH(XX) = senday<lidxxo [[Qﬂ(x) X
(x) becauseis idle in [Q].

35

— caseP =a(y).Q.
LHS: [a(y).Qlx) @ (x) &' getyy, <idx o [Qx) @ (X)-

RHS: [[a(Y)-Q]](supqr,x:T)) def gety(y) < idxxo [[Q]](Xx) ®(X) = gety(y) < idx o [Q] X)®
(x) becauseidle in [Q].

— caseP=Q| Q.
LHS: [Q| Qlx ® () = ([Qx) | [Qx) © ().

def def
RHS: [[Q | Qlﬂ(suppr,x:T)) = [[Q]](supqr,x:T)) | [[Q,]](supqr,x:T)) = [[QH(XX) |

[Qlixx = [Qlx) | [Qx)® () becauseis idle in [Q] and[Q']. 0

Proposition 2 (Transfer of Type Derivations) I' = P: ¢ if and only ifCg; " = [P])
whenfn(P) C X = supgrl).

Proof. The proof is by struct. induction ddusing Lemmas 6 and 3.

— caseP =0.
“=". Assumerl + 0: ¢. Recall:(X) gef (X)(%/0) def X)(®L1x0). So, we
need to establish | x; - x/o (for i = 1..n), but they are all trivial by the rule
for substitution, and then use the rule for abstraction titdbity; " - (X), as
required.
“<" Assumel ;I F (X). Build ' - 0: $ by axiom.

— caseP = (vx:L)Q.
“=" Assumel F (vx:L)Q: ¢ with premise (*)[,x: LF Q. Observe that
[wx: L)Qlx) = /(%) <viex © [Qlixg = (X)((/x@idx) o ™Xx"0 [Q xx)- BY
the Main Lemma it is enough to show a derivation for this lastt We need to
establish four premises: (Lp; I, x: L F [Qfxx, (2) T, x: LiT,x: L "XX", (3)
x:L;Fpk /% and (4)r;I Fidx. (1) follows by induction hypothesis on (*) and
(2)-(4) from axioms.
“«<": Simply by induction hypothesis.

— caseP =axQ.
“=". Assumel axQ: ¢ with premises (1] Fa:oT, (2)T - x: T, and (3)
I Q: . Observe thaax Q] x) L' sendax<tidx o [Q]x) = (X)(sendax@idx ®
id1) o [Qx) = (X)(sendax ® idx ® id1 0 "X 0 [Q]x))- By the Main Lemma it
is enough to show a derivation for this last term. We need tabésh three
premises: (iY o;T - [Q]x), (i) [[{a} Fa:oT,and (iii) [[{x} = x:T. (i) is by
induction hypothesis on (3), (ii) is follows from (1), and)follows from (2).
“«<": Reverse the argument on premises.

— caseP =a(y).Q.
“=": Assumel I a(y).Q: ¢ with premises (1) -a:iSand (2)r,y: SFQ: 0.
We havela(y).Q]x) &' getyy, <idx o [Q]xy- We need to establish (i) and (i)
Fo;T,y: Sk [Q]xy) to buildg; T - getyy) <idx o [Q]xy)- (i) follows from (1)
and (ii) follows by induction hypothesis on (2).
“<": By induction hypothesis and the fact that (1) follows frdin

36

— caseP=Q| Q.
“=": Assumel F Q| Q' : ¢ with premises (1) - Q: ¢ and 2)r Q' : . We
have[Q| Qx) % 5o ([QIx) ®T1o[Q]x)), for suitable substitutions andt.
Now, letW = fn(Q) N fn(Q'). Then, ifZ = fn(Q) \W thent = Z/z® F/w and
Y =ZwF. To buildFg;T - 0o ([Qx) ® 1o [Q]x)) we must establish three
premises: (W o;T [Q F [Q)tn(q)), (1) To:T [Q F [Q iy, (i) TTQLT [
Y F 1, and (iv)(T' [Q), (I Y);l F a. By induction hypothesis on (1) and (2) we
obtainle; I F [Q]x) andle; I - [Q']x). Then, by Lemma 6 and Strengthening
we obtainTo;T" [fn(Q) - [Q]x) andlo;T" [fn(Q') F [Q]x), becaus& \ fn(Q)
is idle in [Q] and likewise forQ'. (iii) and (iv) follow trivially from the rule for
substitutions, where we choose not to subtype.
“ <" Assumerl o; T - 00 ([Q]x) ®@To [Q]x)) with the following four premises
() o T 1fn(Q) - [Qlfn(q), (1) Fo; T In(Q) = [Qn(q)), (i) T Ifn(Q);T Y =
T, and (iv) (I [fn(Q)), (T 1Y);T F o. (i) and (ii) imply (1) and (2), respectively,
by the induction hypothesis, Lemma 6, and Weakerirando are immaterial
because when using Weakening we pick the “right” types. Tiveshave estab-
lishedl - Q: ¢ andl' - @ : { so by the rule for parallel composition we obtain
r-Q|Q:¢,asrequired. O

37

