
Type Systems for Bigraphs

Ebbe Elsborg
Thomas T. Hildebrandt
Davide Sangiorgi

IT University Technical Report Series
TR-2008-110

ISSN 1600–6100 October 2008

Copyright c© 2008, Ebbe Elsborg
Thomas T. Hildebrandt
Davide Sangiorgi

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 9788779491847

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web: www.itu.dk

Type Systems for Bigraphs⋆

Ebbe Elsborg1, Thomas T. Hildebrandt1, and Davide Sangiorgi2

1 IT University of Copenhagen (ITU)
2 Università di Bologna

Abstract We propose a novel and uniform approach to type systems for (pro-
cess) calculi, which roughly pushes the challenge of designing type systems
and proving properties about them to the meta-model ofbigraphs. Concretely,
we propose to define type systems for the term language for bigraphs, which
is based on a fixed set ofelementary bigraphsand operatorson these. An
essential elementary bigraph is anion, to which acontrol can be attached
modelling its kind (its ordered number of channels and whether it is a guard),
e.g. an input prefix ofπ-calculus. A model of a calculus is then a set ofcon-
trols and a set ofreaction rules, collectively abigraphical reactive system
(BRS). Possible advantages of developing bigraphical typesystems include: a
deeper understanding of a type system itself and its properties; transfer of the
type systems to the concrete family of calculi that the BRS models; and the
possibility of modularly adapting the type systems to extensions of the BRS
(with new controls). As proof of concept we present a model ofa π-calculus,
develop ani/o-type system with subtyping on this model, prove crucial prop-
erties (including subject reduction) for this type system,and transfer these
properties to the (typed)π-calculus.

1 Introduction

Type systems for calculi are important as they can: detect programming errors stati-
cally; and classify terms enabling extraction of information that is useful for reason-
ing rigorously about the behaviour and properties of programs, among other things.
Type systems are usually engineered to enjoy subject reduction. The problem is that
changing even small details of such a type system might ruin properties. Therefore,
to feel confident that a tweak of the type system does not ruin any properties one
really has to redo the proofs. This is often tedious. Many such type systems can be
considered to be ratherad hocso one would like a uniform way of proving properties
of a whole family of calculi, simultaneously.

In this paper we experiment with a novel approach to type systems for (process)
calculi, which roughly consists in pushing the problem of designing type systems and
proving properties about them (such as subject reduction) to the more abstract level
of bigraphs[9,8] by Milner and co-workers, a meta-model for (process) calculi. The
main advantages are: a meta-model can describe several concrete calculi, therefore
one can hope that a result for a meta-model can be transferredto all of these calculi;
and understanding type systems at the level of meta-models can help to achieve a
deeper understanding of the type systems themselves. The theory of bigraphs is rich
as its expressiveness has been demonstrated in several works in the literature; Petri
nets [14,13],π-calculus [7,9,8], CCS [16], Mobile Ambients [7], Homer [3], andλ-
calculus [17]. Importantly for our work, a sound and complete term language exists
for bigraphs [15,5].

⋆This work was funded in part by the Danish Research Agency (grants no.: 2059-03-0031
and 274-06-0415) and the ITU (the LaCoMoCo/BPL and CosmoBizprojects).

One models a calculus in bigraphs by encoding its terms as bigraphs and repre-
senting itsreductionsemantics by bigraphicalreaction rules. All bigraphs are ob-
tained by combiningelementary bigraphsvia the operatorsof categorical tensor
product and composition. An essential elementary bigraph is anion, to which acon-
trol can be attached modelling its kind (its ordered number of channels and whether
it is a guard), e.g. an input prefix ofπ-calculus. The semantics of a concrete calculus
is represented as reaction rules over asignatureof controls.

A major effort so far has consisted in using bigraphs to automatically derive la-
belled transition semantics and congruential bisimilarities for concrete calculi with
semantics defined by a reduction relation. In this paper we propose a novel use of
bigraphs – to derive type systems for the concrete calculi. Our approach can be de-
scribed in three phases: 1) Define a core BRS that can model thefamily of concrete
calculi one is interested in. 2) Developbigraphical type systems(BTSs) for this core
BRS and prove their properties (such as subject reduction).3) Transfer the type sys-
tems and their properties onto the concrete calculi of interest. Transferring the type
system rules onto a concrete calculusC follows almost directly from the encoding of
C’s terms into the BRS and from the typing rules of the BTS. Our approach requires a
result of operational correspondence between a concrete calculus and its bigraphical
model, which is the most basic and fundamental property to have when mapping a
calculus into bigraphs. Hence, we provide a point of origin for studying type systems
for (not in) bigraphs.

As proof of concept we study astrict (no summation),finite (no replication)
and synchronousπ-calculus, dubbed sfπ, along with ani/o-type system with sub-
typing for its bigraphical model. sfπ with i/o-types is well-suited for three reasons:
the relationship between sfπ and bigraphs has been well studied in the literature [7]
allowing us to focus on type systems for bigraphs; sfπ is simple but important be-
cause it maintains the essence of message-passing process calculi, and thei/o-type
system with subtyping is technically interesting without being very complex. This
constitutes a first study of non-trivial types for bigraphs.

Related work In [2] Debois et al. define asorting as a functor from asorted s-
category, wheresorts (think types) are assigned to interfaces (objects) as an ex-
tra component, into an unsorted s-category. A sorting refines which bigraphs (mor-
phisms) may be composed and thus guarantees a certain structure of the well-sorted
bigraphs. Hence, a sorting reduces the set of terms that are considered for reaction.
Sortings arenot defined inductively over bigraphs and give rise to differentguaran-
tees than traditional type systems in that they do not attempt to approximate dynamic
behaviour of the terms. Thus, it is unclear whether one can recover existing type sys-
tems by sortings (in the general case).

In [4] Bundgaard and Sassone develop polyadicπ-calculus with capability types
and subtyping in bigraphs by: defining and proving safe alink sorting– called ’sub-
sorting’ – which is crucial in securing the desiredi/o- and subtyping discipline; ex-
tending the theory of bigraphs by introducing controls on edges to retain the type in-
formation of restrictions. They inductively maptype derivationsof form Γ ⊢ P : ♦ to

2

sortedbigraphs by sending processesP to morphisms and typingsΓ to sorted objects
J. They also derive an LTS yielding a coinductive characterisation of a behavioural
congruence for the calculus. A large effort in that work wentinto the sorting and the
derivation of the LTS.

In [6] Igarashi and Kobayashi propose a generic type system (GTS) forπ-calculus
enjoying subject reduction and type soundness. They express typingsΓ as (abstract)
CCS-like processes and then check the properties onΓ. The GTS is parametrised
over a subtyping preorder stating when two types have the same behaviour. By
adding rules to the basic subtyping relation a type system instance for deadlock-
freedom, among others, is obtained. This approach differs from ours in that they
consider type systems forπ-calculus and not for a meta-model, but we too wish to
transfer general results to a family of calculi. In [12] König aims at generalising the
concept of type systems to graph rewriting and in particularthe concepts of type
safety, subject reduction and compositionality. By working at the more abstract level
of graphs rather than terms the author claims to be able to simplify the design of type
systems, however we believe, at the cost of making it more difficult to transfer back
and understand the type systems in terms of the concrete calculi.

In our approach we define type systems inductively on bigraphterms and can
thus hope to:directly recover existing type systems; and have a computer verify
whether a typed bigraph term is well-typed or not.

Contributions Our main contribution is conceptual: this work is a first attempt in
the novel direction ofusing bigraphs as a meta-model for type systemsthrough the
first study of non-trivial inductive types for bigraphs. There are two main technical
contributions: ani/o-type system (Tab. 2) for a core BRS capturing the essence of
message-passing calculi; and a proof of Subject Reduction (Thm. 2) for this type
system.

Outline In Sect. 2 we explain the necessary parts of bigraphs theory by example and
then we present a model of sfπ. On this foundation we develop ani/o-type system
for the model, prove important properties of it, and transfer these toi/o-typed sfπ, all
in the main Sect. 3. Finally, in Sect. 4, conclusions are drawn and directions for fu-
ture work outlined. This techincal report has the full proofs and omitted background
definitions of the TGC’08 paper.

2 Bigraphs

Bigraphs is a model of computation that emphasis bothlocality and connectivity
aiming at trustworthy (safe and reliable) computation in global ubiquitous com-
puters [20,1], in which highly dynamic topologies and heterogeneous devices are
prominent. Mobile locality is captured by aplace graphand mobile connectivity
by a link link graph, two largely orthogonal structures that combine into a bigraph.
The place graph is an ordered forest of trees representing nested locations of com-
putational nodes, and the link graph is a hypergraph representing interconnection

3

of these nodes. Dynamics are added to bigraphs by defining (parametric) reaction
rules. Consider Fig. 1. It depicts twoions, bigraph composition, and a reaction rule

send

ax

get

a

y

c
z ◦

k

z

=

c
k

send

0

get

1

x a

y _

0 1

x

y

a

Figure 1. The ionssend andget, bigraph composition, and the sfπ reaction rule.

involving the ions. The two ions, depicted with solid circles, model output prefix
and input prefix ofπ-calculus, respectively. Each ion consists of anodeassigned a
control determining its kind. In this case, both controls have two orderedports to
which links (channels) can be attached.send has its (free) ports linked tolocal outer
names a(the ’channel’ port) andx (the ’datum’ port), respectively.Global names
are like unrestricted names inπ-calculus, whereas local (think abstracted) names re-
side atregions/roots(dotted rectangle) orsites(greyed rectangles).get has abinding
port, which binds alocal inner name ywith lexical scope below this node in the
place graph, and thus resembles a variable of programming languages. Both ions are
contexts with a site (hole) into which another suitable bigraph can be “plugged”,
yielding another bigraph. This is known as verticalcomposition, b1 ◦ b0, and pro-
ceeds by plugging the roots ofb0 into the sites ofb1 (in order), and fusing together
the outer names ofb0 with the inner names ofb1, removing the names in the pro-
cess. The sites and inner names of a bigraphb are collectively called theinner face
or domain(dom(b)); similarly, the regions and outer names are called theouter face
or codomain(cod(b)). Then,b1 ◦b0 requirescod(b0) = dom(b1). The second col-
umn of Fig. 1 shows an example; givenb1 = c(z) : 〈1,({z}),{z}〉 → 〈1,(/0), /0〉 and
b0 = ({z})Kz : ε → 〈1,({z}),{z}〉 then b1 ◦ b0 : ε → 〈1,(/0), /0〉. The interface (or
face) components are: awidth; a vector of local name sets drawn from the global
name set; and a global name set. They are projected by functorwidth , functionloc,
and functionglob, respectively. Functionglobprojects all names of a face.

A notion that is not shown in Fig. 1 is anedge(think restricted name); inner
namesX and portsP can point to edgesE instead of outer namesY, via the so-called
link map,link : X⊎P→ E⊎Y. If the namex is closed(restricted) then it becomes
invisible to the context and any ports which were pointing tothis outer name will
now instead point to an edge. Edges have no name associated with them, just in the
term language to denote which points map to which edges. An edge is a “floating”
binder in that it has no lexical scope.

When representing a calculus in bigraphs one is usually interested in bigraph
termsthat aregroundandprime(also known asagents), i.e. bigraph terms that have
no sites, no inner names, and outer width 1. Regions (or sites) can be juxtaposed
(composed horizontally) by the binary operatortensor product⊗, if the operands
have disjoint name sets (both outer and inner). A derived operator is theprime prod-

4

uct |, which takes two regions as operands, but allows them to share outer names,
and also collapses the two regions into one, while acting as tensor on sites. The third
(basic) operation on binding bigraphs isabstraction(X)P on aprime P, which lo-
calises a subset of the global names ofP. A face of width 0 without names is denoted
by the unique objectε.

The reaction rule models communication in sfπ. The redexhas one region sig-
nifying that asend and aget must be collocated and connected to be able to com-
municate. Thereactumshows that the bigraph has performed an action, which has
depleted the input/output capability. The outer namea is idle in the reactum, i.e. not
pointed to by anything, and the inner namey points to the outer namex, explicitly
representing meta-level name substitution inπ-calculi.

In Def. 1 reaction rules are defined formally. It uses the notion ofsupport equiv-
alence, which for our purposes can be thought of as bigraph equality. Intuitively, a
contextD is activew.r.t a (ground) bigraphr if the sites ofD into whichr is plugged
are active, and sites are active if the path to the root in the place graph only has
(nodes with) active controls. Aninstantiationessentially maps sites of the reactum
to sites of the redex, including the possibly renamed local names of the reactum sites.
A discrete parameter dis a ground bigraph with no edges and a bijective link map.

Definition 1 (reaction rules for bigraphs, [9]) A ground (reaction) ruleis a pair
(r, r ′), where r and r′ are ground rules with the same outer face. Given a set of
ground rules, thereaction relation_ over agents is the least, closed under support
equivalence (≏), such that D◦ r _ D ◦ r ′ for each active D and each ground rule
(r, r ′).

A parametric (reaction) rulehas aredexR and areactumR′, and takes the form

(R : I → J,R′ : I ′ → J,ρ)

where the inner faces I and I′ are local with widths m and m′. The third component
ρ :: I → I ′ is an instantiation. For every X and discrete d: X⊗ I the parametric rule
generates the ground reaction rule

((idX ⊗R)◦d, (idX ⊗R′)◦ρ(d)) .

Reaction is defined overconcretebigraphs, i.e. bigraphs where the nodes and edges
have identity. However, we are interested inabstractbigraphs. Wheneverb0 ≏ b1

concretely we haveb0 = b1 abstractly. Notice that inner faces are local.
A signature is a set of controls each with: anarity mapfrom its numberf of free

ports to its numberb of binding ports; and anactivity mapdetermining whether it is
active(an evaluation context),passive(guard), oratomic(a term).

Bigraphs have an algebraic representation. All bigraphs can be generated from
sevenelementarybigraphs combined by (categorical) tensor product and composi-
tion. One can think of these elementary bigraphs and the operations on them as basic
building blocks (language concepts) for processes and operators on processes. The
faces of the bigraphs determine when tensor product, composition, and abstraction

5

are well-defined. Bigraphs areα-equivalence classes ofbigraph terms. The elemen-
tary bigraphs are depicted graphically in Fig. 2 and as syntactic terms with algebraic
faces in Tab. 1.

Notation 1 (Placing, linking, wiring, sets) For interfaces we often omit: names from
placings(node-free place graphs); widths fromlinkings (node-free linkgraphs); the
enclosing〈 and〉 when the width is zero. Awiring is a bigraph with zero width gen-
erated by composition and tensor of linkings. Curly brackets are often omitted for
singleton sets and names on ions. Sets (usually of names or types) are denoted by
capital letters such as X,Y,Z and S,T,U, ranged over by minuscule letters. We write
XY for the disjoint union⊎ of sets X and Y.

0 1

x

y

x1 · · · xn

x1 · · · xn

x1 · · · xn

K#»y (
#»

X)

x11· · ·x1k · · · xm1· · · xmh

y1 · · · yn

p
ynl· · ·yn1· · ·

m
ymk· · ·ym1

m-1
xmh· · ·xm1· · ·

0
x1i· · ·x11

x11 · · · x1i xm1 · · · xmh y11 · · · y1k yn1 · · · ynl

Figure 2. The seven elementary binding bigraphs, graphically.

Definition 2 (Flattening) Given a vector#»x of distinctnames we write{ #»x} for the
corresponding (one-to-one) set. Given a vector

#»

X = (X1, . . . ,Xn) of disjoint name

sets we define their disjoint union as{
#»

X}
def
=

Un
i=1Xi .

1 : 0→ 1 barren root
join : 2→ 1 join two sites
/x : x→ /0 close global outer namex

y/X : X → y link all names in global name setX to global namey
pXq : (X) → 〈X〉 globalise local outer name setX

K #»y (
#»

X) : ({
#»

X}) → 〈{#»y}〉 an ion with local name sets
#»

X and global names#»y

γm,n,(
#»

X ,
#»

Y) : 〈m+n,
#»

X
#»

Y ,{
#»

X}⊎{
#»

Y}〉 → 〈m+n,
#»

Y
#»

X ,{
#»

X}⊎{
#»

Y}〉

transposem with n regions or sites, keep local names

Table 1.The seven elementary binding bigraphs as terms.

6

Consider Fig. 2. First row: a barren root1 is an empty region. When plugging a
bigraph with two regions and no outer names intojoin, the two regions are merged
into one. Name closure/x acts as a non-lexical binder; it is put on top of a bigraph
with a global inner namex and closes (restricts) this name rendering it invisible to
the context.Substitutiony/X links a set of global inner namesX to a single global
outer namey by a hyperlink;y is “substituted for” anyx ∈ X; the widths are zero;
X is bound inwards; andy binds outwards. A special case isy//0 which introduces an
idle name. TheconcretionpXq bigraph globalises a set of local namesX, dually to
the abstraction operator. Second row: an ionK #»y (

#»

X) is a prime bigraph with a single
node of controlK with free ports linked severally to a vector#»y of distinct outer
names, and each binding port linked to all local inner names in name setXi a vector
#»

X of sets of distinct names. Ions are the essence of BRSs as theyusually model
the interesting entities of systems or calculi. Third row: atranspositionγm,n,(

#»

X ,
#»

Y)
transposes regions keeping their sites and local names. From here on we think of
bigraphs represented as terms.

2.1 A Bigraphical Model of sfπ

We consider sfπ. Following [7] we add an axiom to the usual structural congruence:
νx(π.P)≡ π.νxP, if x 6∈ (fn(π)∪bn(π)). This axiom naturally complements the sim-
ilar axiom for parallel composition and secures that structural congruence coincides
with graph isomorphism yielding a nice graphical representation of bigraphs. Equiv-
alences on processes remain unchanged even though more processes are related by
≡ with this axiom. This axiom is not important for our development. However, we
remark that to represent, e.g., a replicated input prefix in bigraphs one needs anout-
ward-binding control [7]. Processes that areα-convertible are identified.

We model sfπ with the BRS of [7] (a signatureΣsfπ and a set of reaction rules

Rsfπ) but name it ´BBGsfπ
def
= ´BBG(Σsfπ,Rsfπ). Prefixes (input and output) are

modelled by thepassivecontrolssend andget of Fig. 1, because prefixes are guards.
get has a binding port. The semantics is modelled by a single reaction rule, where
prime product models parallel composition, name closure models restriction, and an
insertion operator⊳ inserts a wiring into a bigraphb making compositionb◦ b′

well-defined, typically by “wiring through” (and then localising) outer names ofb′

that are not to be lexically bound byb.

Definition 3 (́BBGsfπ, [7])

Σsfπ
def
= { send : 0→ 2 (passive) , get : 1→ 1 (passive) }

Rsfπ
def
= (R,R′,ρ) =

(

sendax | geta(y) : 〈2,(/0,{y}), /0〉→ 〈1,({a,x}), /0〉 ,

(id1 | id1⊳x/y)⊳a : 〈2,(/0,{y}), /0〉→ 〈1,({a,x}), /0〉 ,

id〈2,(/0,{y}), /0〉
)

.

This (parametric) reaction rule islinear, because its instantiation is bijective, so no
parameters are replicated or discarded. It is parametric tomodel arbitrary subterms

7

under prefixes. In bigraphtermsthe namesa, x, andy are not meta-variables so we
stipulate thata 6= x 6= y, because the bigraph corresponding to the term is different
in the cases where some of these are equal. Ifa andx need to be identified for a
reaction, then the context does it. We name the morphisms (bigraphs) of ´BBGsfπ
process bigraphs.

Processes are mapped to bigraph terms by the compositional,semantic function
J·K of Def. 4. For technical reasons the inactive process is modelled by(X), an empty
ground local prime.

Definition 4 (Encodingsfπ in ´BBGsfπ, [7]) The functionJ·K(X) maps every process
P ofsfπ with fn(P) ⊆ X into the homset(ε,(X)) of´BBGsfπ as follows:

Jax.PK(X) = sendax⊳ idX ◦ JPK(X) JP | QK(X) = JPK(X) | JQK(X) J0K(X) = (X)

Ja(y).PK(X) = geta(y) ⊳ idX ◦ JPK(Xy) JνxPK(X) = /(x)⊳ idX ◦ JPK(Xx)

The translation ofP is indexed by a (local) name setX ⊇ fn(P) that is needed to
secure dynamic correspondence between sfπ and the model. This is because reduc-
tion in sfπ can discard a channel (name) after use, i.e. reduce the set offree names,
but outer faces (of agents) are preserved by bigraphical reaction rules so here the
name persists, although idle. (For an example see [9].)P will have an image for each
choice ofX, i.e. countably many bigraphs. Not unusually, the translation requires
thatbn(P)∩ fn(P) = /0 and unique binding names. The model enjoys structural and
dynamic correspondence theorems, here combined.

Theorem 1 (Correspondence, [7]).

1. The functionJ·K(X) is surjective onto the homset(ε,(X)) of´BBGsfπ ;
2. P≡ Q iff JPK(X) = JQK(X).
3. Given X⊇ fn(P), then P−→ P′ iff JPK(X) _ JP′K(X).

We are now ready to define a type system on´BBGsfπ.

3 A Bigraphical i/o-Type System

In this main section we develop a bigraphicali/o-type system and prove important
properties of it.

Definition 5 (Type environment) A type environment(or typing) is an unordered
finite assignment of types to names, ranged over byΓ and∆. Thesupportsupp(Γ)
is the set of names. When regarded as a finite function from names to types we write
Γ(x) for the type assigned to x byΓ. Theextensionof Γ with the assignment x:
T is denotedΓ,x : T when x6∈ supp(Γ). Thedisjoint unionΓ,∆ is defined when
supp(Γ)∩ supp(∆) = /0, and is (also) associative and commutative.Γ /0 denotes the
empty typing.

8

Definition 6 (Syntax of types and typings)

T ::= V
∣

∣L V ::= L
∣

∣• L ::= #V
∣

∣oV
∣

∣ iV Γ ::= Γ,x : V
∣

∣Γ,x : L
∣

∣Γ /0 .

A link is a name that may be used for communication. Thevaluesare the objects
(names) that can be communicated along links. Thelink types(L) are the types that
can be ascribed to links. Thevalue types(V) are the types that can be ascribed to
values (names). Link types are value types so that processescan exchange links,
allowing mobility. Links can either be used in inputiV, outputoV, or both #V (the
connectiontype). The inhabitants of unit type• are names. Names assigned type•
are “base values” that can only be passed around. There is no special unit value as
this would clutter the presentation.

In message-passing process calculi the channels (links) are the essential part be-
cause communication is the primitive notion studied. Therefore, in the present paper,
we only type links, not nodes. Tab. 2 presents thei/o-typing rules for ´BBGsfπ. The
idea is to syntactically define types for elementary bigraphs and the operators on
them following their structure inductively. Thei/o-type system guarantees that ions
(images of processes) use their links in accordance with their capabilities on them.
The subtyping preorder≤ can be thought of as inclusion between the sets of the
values of the types. So we would have, e.g., Int≤ Real. We writeΓ1 ≤ Γ0 whenever
supp(Γ1) = supp(Γ0) = X and∀x∈ X.Γ1(x) ≤ Γ0(x).

Definition 7 (Judgments) A bigraph type judgmentis of the form∆;Γ ⊢ b, where b
is a bigraph term. Aname type judgmentis of the formΓ ⊢ x : T.

Consider Tab. 2. Bigraphs are contexts and thus typed by two typings; a typing∆
of the inner names and oneΓ for the outer names. When assigning types it does
not matter whether a name is local or global, we just type the third component of
interfaces, projected byglob. The type system isstrongin the sense that the typings
carry no information about names that do not appear in the interfaces of the bigraph.
The reason for this will become clear later when we treat properties of the type
system. In the following we refer to the axioms that govern bigraphical term equality,
which are defined in [5,15].

Nameless elementary bigraphs, i.e. the barren root andjoin, are typed using
two empty typings. Transpositions allow subtyping becausethey partially coincide
with identities (by axioms (C7)γI ,ε = idI and (C8)γJ,I ◦ γI ,J = idI⊗J), which in turn
partially coincide with substitutions (by axioms (L1)x/x = idx and (L3)/y◦y= idε),
and substitutions must allow subtyping, see below. We writeγZ for γm,n,(

#»

X ,
#»

Y) when
we are merely interested in the names collectively.

A closure – name creation – can be given any link type. Actually, it is only useful
when it is a connection type (#V) because for two processes to communicate over
a link one needs to use the link for output and the other for input, simultaneously.
Bigraphical substitutionsy/X demand that allx ∈ X have the same typeT (denoted
by X : T), which is natural because substituting in ay for any x really identifies
thesex j , namely they arey from the viewpoint of the context. In harmony with the
i/o-subtyping discipline we must be able to assign toy a subtype of thex j so as to

9

Placings:
Γ /0;Γ /0 ⊢ 1 Γ /0;Γ /0 ⊢ join

Γ1 ≤ Γ0 supp(Γ j)
j=0,1 = Z

Γ0;Γ1 ⊢ γZ

Linkings:
x : L;Γ /0 ⊢ /x

Γ ⊢ y : T

X : T;Γ ⊢ y/X

Id & Conc. :

Γ1 ≤ Γ0
supp(Γ j)

j=0,1 = glob(I)

Γ0;Γ1 ⊢ idI

Γ1 ≤ Γ0
supp(Γ j)

j=0,1 = X

Γ0;Γ1 ⊢ pXq

Operators:
∆;Γ ⊢ b

∆;Γ ⊢ (X)b

∆0;Γ0 ⊢ b0 ∆1;Γ1 ⊢ b1

∆0,∆1;Γ0,Γ1 ⊢ b0⊗b1

Γ0;∆ ⊢ b0 ∆;Γ1 ⊢ b1

Γ0;Γ1 ⊢ b1 ◦b0

Ions: Γ ⊢ a : oT Γ′ ⊢ x : T
Γ /0;Γ,Γ′ ⊢ sendax

Γ ⊢ a : iS
y : S;Γ ⊢ geta(y)

Subtyping:
T ≤ T

S≤U U ≤ T
S≤ T #T ≤ iT #T ≤ oT

S≤ T
iS≤ iT

T ≤ S
oS≤ oT

T ≤ S S≤ T
#S≤ #T

Names:
S≤ T

x : S⊢ x : T

Table 2. i/o-typing rules for´BBGsfπ.

allow substitution of names with a possibly smaller (i.e. more general) capability. In
a sense this corresponds to the usual substitution lemma forπ-calculi.

Identities and concretions allow subtyping. Concretions merely globalise outer
names but are allowed to subtype. This enables a Narrowing lemma.

Localising names does not affect types so the rule for abstraction is straightfor-
ward. The rule for tensor product splits the typing in its twobranches according to the
names of each tensor component. The rule for composition demands the types of the
common interface to be identical, which is natural when considering that bigraphs
are really categorical morphisms between objects (interfaces).

The rules for ions are essential as they type the prefixes. Channels are forced to
be of output and input type, respectively. Notice the asymmetry between howx and
y are typed; the type ofy is fixed in the inner typing because it is a binder. Just like
the cases for the inner typings of closure and substitution.

The rule for names encompasses subsumption because the typings are strong
rendering obsolete the need to have two separate rules.

This type system differs from traditional type systems, e.g. thei/o-type system of
π-calculus (see e.g. [19]) in the following respects: 1) We type contexts, not terms,
and therefore we have to account for (categorical) composition. 2) Explicit substitu-

10

tion y/X is a syntactic term and hence needs to be typed. This fundamental difference
is important because it pervades the properties of the type system in that subtyping
of substitution in a sense represents a Substitution Lemma.3) The tensor product is
more fundamental than parallel product. 4) There is a distinction between local and
global names. An important insight is that a namex ∈ glob(dom(b)) andanother
x∈ glob(cod(b))) are really two different names if they are not linked inb.

The type system enjoys two crucial properties; subject reduction and type sound-
ness. These results rest upon the Main Lemma establishing that the bigraphical typ-
ing relation is closed under bigraphtermequality, which in turn requiresNarrowing
andWidening. The typing and subtyping relations enjoyInversion, i.e. can be read
“bottom-up”, because they are syntax-directed.

Lemma 1 (Narrowing). If ∆;Γ,x : T ⊢ b and S≤ T then∆;Γ,x : S⊢ b.

Lemma 2 (Widening). If ∆,x : S;Γ ⊢ b and S≤ T then∆,x : T;Γ ⊢ b.

Widening is unusual (for process calculi) in that it is defined on contexts. It is in a
sense the dual lemma to Narrowing as it allows widening of inner typings.

The congruence relation= of the Main Lemma is the involved, axiomatised bi-
graph equality on terms (see [5,15]).The Main Lemma states that if two bigraph
terms are equal then they can be typed in the same environments so the type sys-
tem is robust w.r.t. bigraph equality: term equality on bigraphs coincides with graph
isomorphism so this lemma allows us to think of types on the underlying graphs.
This lemma is (technically) crucial and not one usually found for type systems for
π-calculus.

Lemma 3 (Main Lemma).Suppose b0 = b1. Then∆;Γ ⊢ b0 if and only if∆;Γ ⊢ b1.

Cor. 1 of the Main Lemma tells us that the type system is robustw.r.t. decomposition
of the term as a graph, which is important for Subject Reduction.

Corollary 1 (Decompositionality) If ∆;Γ ⊢ b and b= b1 ◦ b0 then there exists a
typingΘ such that∆;Θ ⊢ b0 andΘ;Γ ⊢ b1.

Before stating and proving a subject reduction theorem we consider the grounded
rules generated by the parametric rule of Def. 3, because thetype derivations of this
rule’s redex and reactum are a key to understanding the proofof the subject reduction
theorem. The generated ground rules are of form(r, r ′):

(

(idX ⊗R)◦d , (idX ⊗R′)◦ρ(d)
)

def
=

(

(idX ⊗ (sendax | geta(y)))◦d , (idX ⊗ ((id1 | id1⊳x/y)⊳a))◦ρ(d)
)

def
=

(

(idX ⊗ ((join⊗ id(ax))◦ (σ◦ (sendax⊗ (τ◦ geta(y))))))◦d ,

(idX ⊗ ((join⊗ id(ax))◦ (((join⊗ id(x))◦ (id1⊗ (x)/(y)))⊗ (a))))◦ρ(d)
)

where{a,x}∩X = /0, τ = (a′)/(a), andσ = (a)/({a,a′})⊗ (x)/(x) w.l.o.g. We remark that
(x)/(y)

def
= (x)(x/y⊗ id1) ◦ pyq. Subject Reduction (Thm. 2) is the main theorem and

11

guarantees that typings are preserved over reaction. The core in the proof of the
theorem is an analysis of redex and reactum as the type derivations of the context,
and in this case also the parameters, are preserved by reaction. Hence, the theorem
is really a property of reaction rules. For a BRS with multiple (possibly overlapping)
reaction rules one would analyse the redex-reactum pair of each one and then simply
combine the results to obtain the theorem.

Theorem 2 (Subject Reduction).For process bigraphs b0 and b1, if Γ /0;∆ ⊢ b0 and
b0 _ b1 thenΓ /0;∆ ⊢ b1.

Proof. The proof is by analysis of the derivation ofb0 _ b1 by the sole reaction
rule. Becauseb0 _ b1, then by Def. 1 there exists an active contextD such that
b0 = D ◦ r andb1 ≏ D ◦ r ′. Assume a derivation ofΓ /0;∆ ⊢ b0, then also (∗) Γ /0;∆ ⊢
D ◦ r by Lemma 3. By Inversion we must have (among others) the following six
subderivations from (∗): (1′) Γ /0;Γ,y : S⊢ d, (3′) a : U ⊢ a : oT, (3′′) x : U ′ ⊢ x : T,
(4′) a : R⊢ a : iS, (5′) U ≤ R, and(8′) Γ′,a : W,x : W′;∆ ⊢ D. We also know that
W ≤U andW′ ≤U ′. By (3′), (5′) and(4′) we concludeT ≤ S (cf. [19]). W′ ≤U ′,
and by(3′′) we haveU ′ ≤ T ≤ S, soW′ ≤ S.

Now, consider the derivation to be built.b1 ≏ D ◦ r ′ implies thatb1 = D ◦ r ′

abstractly. By Lemma 3 it suffices to deriveΓ /0;∆ ⊢ D ◦ r ′. Reuse the derivation of
D. ρ = id〈2,(/0,{y}), /0〉 so ρ(d) = d. This means that we can also reuse(1′). We still
need to justify a derivation ofy : S;x : W′ ⊢ (x)/(y). This merely requires justification
of W′ ≤ Sbecause we may choose not to subtype in the other substitutions.W′ ≤ S
has already been established so we can build the desired derivation ofΓ /0;∆ ⊢ D◦ r ′.
�

We remark that the inner typings are preserved because the reaction rule is linear,
but that need not be the case in general, where the theorem could instead relate the
inner typings by something weaker than equality (since sites, including local inner
names, can be discarded or replicated and renamed).

Type Soundness (Prop. 1) states that a process bigraphb well-typed inΓ /0;Γ can
only perform input or output actions for whichΓ offers the appropriate capabilities.
Let _∗ be the reflexive, transitive closure of_ .

Proposition 1 (Type Soundness)Suppose that process bigraph b= JPK(X), Γ /0;Γ ⊢
b, and b_∗ b′. Then, for each non-idle a∈ glob(cod(b′)) it holds that:

1. If Γ ⊢ a : iS then a is either linked to the channel port of aget ion or linked to
the datum port of asend ion.

2. If Γ ⊢ a : oT then a is linked to asend ion.

Proof (Sketch).The proof is by ind. on the length of the reductionb _∗ b′. The base
case is by struct. ind. onP using Lemma 3, Cor. 1, and Lemma 1. The inductive case
uses Thm. 2.

Type Soundness gives guarantees about outer names, but not closed names because
edges have no type. To achieve a stronger type soundness property – such as “well-
typed processes do not reduce towrong” – one could introduce a tagged version of

12

the BRS in which each name is permanently tagged with the intendedi/o usage, like
in [18] for π-calculus. Or, we could follow [4] and type edges to possiblyobtain a
result of intermediate strength.

Idle names are merely the residue of reaction in bigraphs so adding or removing
them corresponds, in a precise way to be shown below, to Weakening and Strength-
ening of a type system inπ-calculus. Adding and removing idle names actually
changes the bigraph (a context) because the codomain changes. These different bi-
graphs should however correspond to the same source calculus term because they
only differ up to names that do not occur in the source term.

Lemma 4 (Weakening).If ∆;Γ ⊢ b and x6∈supp(Γ) then∆;Γ,x : T ⊢ b⊗ (x).

Lemma 5 (Strengthening).If ∆;Γ,x : T ⊢ b⊗ (x) then∆;Γ ⊢ b.

Even though these two properties on the surface appear different from those ofπ-
calculi they really do correspond to the usual properties oftyped sfπ.

With these important properties in hand it is time to transfer them to thei/o-
typed source calculus sfπ. The standard way to map an untyped process calculus
into bigraphs is to consider a trivial type system for the process calculus with just
a single type and map derivations of formΓ ⊢ P : ♦ (see e.g. [19]) to the (untyped)
bigraphJPK(X) exactly whenfn(P)⊆X = supp(Γ). The choiceX = supp(Γ) coerces
a connection between a process bigraph and its (outer) typing. Names insupp(Γ)\
fn(P) become idle names inJPK(X) by the translation, recalling thatJ0K(X) = (X).
This is made precise by Lemma 6.

Lemma 6. Suppose b= JPK(X) and Γ /0;Γ ⊢ b with fn(P) ⊆ X = supp(Γ). Then
JPKsupp(Γ) ⊗ (x) = JPK(supp(Γ,x:T)) for any T.

Using Lemma 6 we conclude:JPK(X) ⊗ (x) = JPK(supp(Γ))⊗ (x) = JPK(supp(Γ,x:T)) for
any typeT. Then, by Lemma 3 we have that∆;Γ,x : T ⊢ JPK(supp(Γ)) ⊗ (x) if and
only if ∆;Γ,x : T ⊢ JPK(supp(Γ,x:T)).

We can “read back” the typing rules over the term translation(to be made precise
shortly), and thus also the properties of the type system, including Weakening and
Strengthening by courtesy of Lemma 6. We read back typing rules as follows: the
rules for the inactive process and input prefix are straightforward; restriction is type
annotated in sfπ using its premise; parallel composition is derived from tensor and
composition; the case for output prefix has the twist that in sfπ the typings used
to type the two channels should be the same; and split the rulefor names into a
rule for names and one for subsumption. Recall that typings in typed sfπ are not
strong. Hence, we recover exactly the fragment of the well-known Pierce-Sangiorgi
i/o-type system for theπ-calculus [18,19]. Prop. 2 precisely relates the bigraphical
type derivations with the ones for sfπ.

Proposition 2 (Transfer of Type Derivations) Γ⊢P : ♦ if and only ifΓ /0;Γ⊢ JPK(X)

whenfn(P) ⊆ X = supp(Γ).

Proof (Sketch).The proof is by struct. induction onP using Lemmas 6 and 3.

13

The proof is naturally by structural induction onP because we follow the translation
of terms when transferring type derivations. We remark thatto extend a BRS to
accommodate a new source calculus operator one encodes it, and for a new process
construct (e.g. a prefix) one adds an ion to the BRS, encodes the extended source
calculus in the extended BRS and finally one gives a typing rule for this new ion. In
conclusion: all of the bigraphical properties are transferable.

4 Conclusion

We have demonstrated a novel and uniform approach for developing type systems
for (process) calculi, through bigraphs. Type systems are defined inductively over the
structure of elementary bigraphs and their operators, as opposed to using a sorting
[4]. Thus, a computer may possibly verify that a typed term iswell-typed. Con-
cretely, we have illustrated the approach by developing a sound i/o-type system en-
joying a general form of Weakening and Strengthening for a bigraphical model of
a coreπ-calculus, and we then transferred the type system and its properties to the
π-calculus. The development of thei/o-type system for bigraphs differs significantly
from i/o-typedπ-calculus: bigraphs are contexts with richer structure than ordinary
process calculus terms, which is reflected in the axioms governing bigraphical term
equality, leading to technical intricacies in the Main Lemma used in Subject Re-
duction; Weakening and Strengthening of typedπ-calculi corresponds to adding and
removing idle names of bigraph terms, respectively.

We have tackled the case ofi/o-types for theπ-calculus because, being non-trivial
and well-studied, this type system seemed to be an ideal testfor our programme. In
the future we would like to consider more sophisticated typesystems. Here, some of
the potential advantages of bigraphs (in particular, theirmodularity, the possibility of
transferring the type results to a family of concrete calculi, and the insights gained on
the type systems themselves) could be particularly valuable. A good example of this
might be type systems for deadlock-freedom and lock-freedom, such as Kobayashi
and co-workers’ [11,10]. These type systems yield fundamental behavioural guaran-
tees on processes such as absence of deadlock. However, one may argue that they
are not fully understood yet, as a number of variations have appeared, with different
expressive power. Also, they seem very sensitive to the grammar of the underlying
process language, so transferring them to a different formalism may be troublesome.
Formulating these types at the more abstract level of bigraphs could shed light into
their design and facilitate their application.

We would like also to: consider different process languages, for instance with
primitives for distribution such as Mobile Ambients or Homer; a deeper investigation
of the relation between our work and sortings; generalise our approach to capture
several interesting type systems simultaneously; to automatically derive an LTS for
the BRS and then lift Subject Reduction to that semantics, tohelp bridge prior efforts
in bigraphs concerning in expressiveness and derivation ofLTSs with our approach;
and support tools for type inference and type checking.

14

Acknowledgments The first author wishes to thank Mikkel N. Bundgaard, Søren
Debois and Troels C. Damgaard for useful technical discussions. We thank the anony-
mous referees for suggestions on improving this paper’s presentation.

References

1. Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas T. Hildebrandt, and Henning Niss.
Bigraphical Models of Context-aware Systems. InProceedings of FoSSaCS’06, volume
3921 ofLNCS, pages 187–201. Springer, 2006.

2. Lars Birkedal, Søren Debois, and Thomas T. Hildebrandt. On the Construction of Sorted
Reactive Systems. InProceedings of CONCUR’08, LNCS, pages 218–232. Springer,
2008.

3. Mikkel N. Bundgaard and Thomas T. Hildebrandt. Bigraphical Semantics of Higher-
Order Mobile Embedded Resources with Local Names. InProceedings of GT-VC’05,
volume 154 ofENTCS, pages 7–29. Elsevier, 2006.

4. Mikkel N. Bundgaard and Vladimiro Sassone. Typed polyadic pi-calculus in bigraphs.
In Proceedings of PPDP’06, pages 1–12. ACM Press, 2006.

5. Troels C. Damgaard and Lars Birkedal. Axiomatizing Binding Bigraphs.Nordic Journal
of Computing, 13(1-2):58–77, 2006.

6. Atsushi Igarashi and Naoki Kobayashi. A generic type system for the Pi-calculus.TCS,
311(1-3):121–163, 2004.

7. Ole Høgh Jensen.Mobile Processes in Bigraphs (Draft). PhD thesis, King’s College,
University of Cambridge, 2007. Submitted.

8. Ole Høgh Jensen and Robin Milner. Bigraphs and Transitions. In Proceedings of
POPL’03, pages 38–49. ACM Press, 2003.

9. Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical
Report UCAM-CL-TR-580, University of Cambridge, 2004.

10. Naoki Kobayashi. A type system for lock-free processes.Inf. & Comp., 177:122–159,
2002.

11. Naoki Kobayashi. A new type system for deadlock-free processes. InProceedings of
CONCUR’06, volume 4137 ofLNCS, pages 233–247. Springer, 2006.

12. Barbara König. A General Framework for Types in Graph Rewriting. Acta Inf.,
42(4):349–388, Dec. 2005. Special issue: Types in concurrency, Part II.

13. James J. Leifer and Robin Milner. Transition systems, link graphs, and Petri nets.MSCS,
16(6):989–1047, Dec. 2006.

14. Robin Milner. Bigraphs for Petri Nets. InLectures on Concurrency and Petri Nets:
Advances in Petri Nets, volume 3098 ofLNCS, pages 686–701. Springer, 2004.

15. Robin Milner. Axioms for bigraphical structure.MSCS, 15(6):1005–1032, Dec. 2005.
16. Robin Milner. Pure Bigraphs: Structure and dynamics.Inf. & Comp., 204(1), Jan. 2006.
17. Robin Milner. Local Bigraphs and Confluence: Two Conjectures. ENTCS, 175(3), June

2007.
18. Benjamin C. Pierce and Davide Sangiorgi. Typing and Subtyping for Mobile processes.

MSCS, 6(5):409–453, 1996.
19. Davide Sangiorgi and David Walker.The Pi-calculus: a Theory of Mobile Processes.

Cambridge University Press, 2001.
20. Mark Weiser. Hot Topics – Ubiquitous Computing.IEEE Computer, 26(10):71–72, Oct.

1993.

15

A Bigraphs

This appendix contains the relevant definitions of [9,16,7].

Definition 8 (pure signature) A (pure) signatureK is a set whose elements are
called controls. For each control K it provides a finite ordinal ar(K), an arity; it
also determines which controls areatomic, and which of the non-atomic controls
are active. Controls which are not active (including the atomic controls) are called
passive.

Presuppose a countably infinite setχ of global names.

Definition 9 (concrete pure bigraph) A (concrete) pure bigraphover the signature
K takes the form G= (V,E,ctrl ,GP,GL) : I → J where I= 〈m,X〉 and J= 〈n,Y〉
are its innerandouter faces, each combining awidth (a finite ordinal) with a finite
set of global names drawn fromχ. Its first two components V and E are finite sets
of nodesandedgesrespectively. The third component ctrl: V → K , a control map,
assigns a control to each node. The remaining two are: GP = (V,ctrl , prnt) : m→ n,
GL = (V,E,ctrl , link) : X →Y.

Definition 10 (prime interface) An interfaceI = 〈m,X〉 consists of a finite ordinal
m called awidth, a finite set X called aname set. An interface isprimeif it has width
1.

Definition 11 (prime bigraph) A primebigraph P: m→ 〈X〉 has no inner names
and a prime outer face.

Definition 12 (place graph) A place graphA = (V,ctrl , prnt) : m→ n has aninner
width m and anouter widthn, both finite ordinals; a finite set V of nodes with a
control map ctrl: V → K ; and aparent mapprnt : m⊎V →V ⊎n. The parent map
is acyclic, i.e. prntk(v) 6= v for all k > 0 and v∈V. Anatomicnode – i.e. one whose
control is atomic – may not be a parent. We write w>A w′, or just w> w′, to mean
w = prntk(w′) for some k> 0.

The widths m and n index thesitesand rootsof A respectively. The sites and
nodes – i.e. the domain of prnt – are calledplaces.

Definition 13 (precategory of place graphs)The precategory of place graphs´PLG

has finite ordinals as objects and place graphs as arrows. Thecomposition A1◦A0 :
m0 → m2 of two place graphs Ai = (Vi ,ctrl i , prnti) : mi → mi+1 (i = 0,1) is defined

when the two node sets are disjoint; then A1◦A0
def
= (V,ctrl , prnt) where V=V0⊎V1,

ctrl = ctrl0 ⊎ ctrl1, and prnt= (IdV0 ⊎ prnt1) ◦ (prnt0 ⊎ IdV1). The identity place

graph at m isidm
def
= (/0, /0K , Idm) : m→ m.

Definition 14 (barren,sibling,active,passive)A node or root isbarrenit is has no
children. Two places aresiblingsif they have the same parent. A site s of A isactive
if ctrl (v) is active whenever v> s; otherwise s ispassive. If s is active (resp. passive)
in A, we also say that A isactive(resp.passive) at s.

16

Definition 15 (tensor product,́ PLG) The tensor product⊗ in ´PLG is defined as
follows: On objects, we take m⊗n = m+n. For two place graphs Ai : mi → ni (i =
0,1) we take A0⊗A1 : m0+m1 → n0+n1 to be defined when A0 and A1 have disjoint
node sets; for the parent map, we first adjust the sites and roots of A1 by adding them
to m0 and n0 respectively, then take the union of the two parent maps.

Definition 16 (hard place graphs) A hardplace graph is one in which no root or
non-atomic node is barren. They form a sub-precategory denoted býPLGh.

Definition 17 (link graph) A link graphA= (V,E,ctrl , link) : X →Y has finite sets
X of inner names, Y of (outer) names, V of nodesand E of edges. It also has a
function ctrl : V → K called thecontrol map, and a function link: X ⊎P→ E⊎Y

called thelink map, where P
def
= ∑v∈V ar(ctrl(v)) is the set ofportsof A.

We shall call the inner names X and ports P thepointsof A, and the edges E and
outer names Y itslinks.

Definition 18 (idle,open,closed,peer,lean)a link is idle if it has no preimage under
thelink map. An (outer) name is anopenlink, an edge is aclosedlink. A point (i.e. an
inner name or port) isopenif its link is open, otherwiseclosed. Two distinct points
are peersif they are in the same link. A link graph isleanif it has no idle edges.

Definition 19 (precategory of link graphs) The precategorýL IG has name sets as
objects and link graphs as arrows. The composition A1 ◦A0 : X0 → X2 of two link
graphs Ai = (Vi ,Ei ,ctrl i , linki) : Xi → Xi+1 (i = 0,1) is defined when their node sets

and edge sets are disjoint; then A1◦A0
def
= (V,E,ctrl , link) where V=V0⊎V1,ctrl =

ctrl0⊎ ctrl1,E = E0⊎E1 and link= (IdE0 ⊎ link1) ◦ (link0⊎ IdP1). The identity link
graph at X isidX = (/0, /0, /0K , IdX) : X → X.

Definition 20 (tensor product,́ L IG) The tensor product⊗ in ´L IG is defined as
follows: On objects, X⊗Y is simply the union of sets required to be disjoint. For two
link graphs Ai : Xi →Yi (i = 0,1) we take A0⊗A1 : X0⊗X1 →Y0⊗Y1 to be defined
when the interface products are defined and when A0 and A1 have disjoint node sets
and edge sets; then we take the union of their link maps.

Definition 21 (parallel product) The parallel product‖ in ´L IG is defined as fol-

lows: On objects, X‖ Y
def
= X∪Y. On link graphs Ai : Xi →Yi (i = 0,1) we define

A0 ‖ A1 : X0⊗X1 →Y0 ‖Y1 whenever X0 and X1 are disjoint, by taking the union of
link maps.

A place graph can be combined with a link graph iff they have the same node set and
control map.

Definition 22 (precategory of pure concrete bigraphs)The precategorýBIG(K)
of pure concrete bigraphs over a signatureK has pairs I= 〈m,X〉 as objects (interfaces)
and bigraphs G= (V,E,ctrlG,GP,GL) : I → J as arrows (contexts). We call I thein-
ner faceof G, and I theouter face. If H : J → K is another bigraph with node set

17

disjoint from V, then their composition is defined directly in terms of the composi-
tions of the constituents as follows:

H ◦G
def
= 〈HP ◦GP,HL ◦GL〉 : I → K.

The identities are〈idm, idX〉 : I → I, where I= 〈m,X〉.
The subprecategory´BIGh consists ofhardbigraphs, those with place graphs in

´PLGh.

Definition 23 (tensor product,́ BIG) Thetensor productof two bigraph interfaces

is defined by〈m,X〉⊗〈n,Y〉
def
= 〈m+n,X∪Y〉 when X and Y are disjoint. Thetensor

productof two bigraphs Gi : Ii → Ji (i = 0,1) is defined by

G0⊗G1
def
= 〈GP

0 ⊗GP

1 ,GL

0 ⊗GL

1〉 : I0⊗ I1 → J0 | J1

when the interfaces exist and the node sets are disjoint. This combination is well-
formed, since its constituents share the same node set.

Definition 24 (parallel product, ´BIG) Theparallel productof two bigraphs is de-

fined on interfaces by〈m,X〉 | 〈n,Y〉
def
= 〈m+n,X∪Y〉, and on bigraphs by

G0 | G1
def
= 〈GP

0 ⊗GP
1,GL

0 ‖ GL
1〉 : Io⊗ I1 → J0 | J1

when the interfaces exist and the node sets are disjoint.

It is easy to verify that‖ is associative, with unitε.

Proposition 3 (alternative parallel product,´BIG) Let G0 ‖ G1 be defined. Then

G0 ‖ G1 = σ(G0⊗ τG1) ,

where the substitutionsσ and τ are defined as follows: If zi(i ∈ n) are the names
shared between G0 and G1, and wi are fresh names in bijection with the zi , then
τ(zi) = wi andσ(wi) = σ(zi) = zi(i ∈ n).

Definition 25 (prime product, ´BIG) Theprime productof two interfaces is given
by

〈m,X〉 | 〈n,Y〉
def
= 〈1,X∪Y〉.

For two prime bigraphs
#»

P :
#»

I →
#»

J , if I0⊗ I1 defined and n is the sum of the widths
of J0 and J1, we define theirprime productby

P0 | P1
def
= mergen◦ (P0 ‖ P1) : I0⊗ I1 → J0 | J1 .

Again | is associative, with unit 1 when applied to primes. Refer to [9] for the defi-
nition of ≏.

18

Definition 26 (instantiation) An instantiationρ from (width) m to (width) n, which
we writeρ :: m→ n, is determined by functionρ : n → m. For any X this function
defines the map

ρ : Gr〈m,X〉 → Gr〈n,X〉

as follows. Decompose g: 〈m,X〉 into g= w(d0⊗ ·· ·⊗dm−1), with w : Y → X and
each di prime and discrete. Then define

ρ(g)
def
= w(e0 ‖ · · · ‖ en−1),

where ej ≏ dρ(j) for j ∈ n. This map is well-defined (up to support translation), by
Propositions 9.16 and 9.17.

Note that the names ofe0 ‖ · · · ‖ en−1 may be fewer thanY, becauseρ may not be
surjective. But by our convention the outer names ofρ(g) are determined by the
outer names ofw, i.e.X.

Definition 27 (binding signature) A binding signatureK is like a pure signature,
except that the arity of a control K: h→ k now consists of a pair of finite ordinals:
thebinding arityh and thefree arityk, determining the number ofbindingandnon-
bindingports of any K-node. If K is atomic then h= 0.

Definition 28 (binding interface) Abinding interfaceI = 〈m, loc,X〉, where the width
m is as before, X is a finite set of names, and loc: X → m⊎{⊥} is a locality map
associating some of the names X with a site in m. If loc(x) = s∈ m then x islocated
at s, orlocal (to s); If loc(x) = ⊥ then x isglobal.

We call IU = 〈m,X〉 the pure interfaceunderlyingI.

Definition 29 (binding bigraphs) A (concrete) binding bigraphG : I → J consists
of anunderlyingpure bigraph Gu : Iu → Ju with extra structure as follows. Declare
its bindersto be the binding ports of its nodes together with the local names of its
outer face J. Then G must satisfy the following:

SCOPE RULE: If p is a binder located at a node or root w, then every peer p′

of p must be located at a place w′ (a site or node) such that w′ <Gu w.

In the precategorýBBG(K) of (concrete) binding bigraphs overK , composition
and identities are defined as for the underlying pure bigraphs; they are easily found
to respect the scope rule. the forgetful functor

U :´BBG(K) →´BIG(K)

sends each I to Iu and each G to Gu. The analogous definition holds also for hard
binding bigraphśBBGh(K).

19

Definition 30 (tensor product,́ BBG) The tensor product of interfaces I= 〈m,
#»

X ,X〉
and J= 〈n,

#»

Y ,Y〉, where X and Y are disjoint, is

I ⊗J = 〈m+n,
#»

X
#»

Y ,X⊎Y〉.

The tensor product G: I → J of two binding Gi : Ii → Ji(i = 0,1) with disjoint sup-
ports is defined when I= I0⊗ I1 and J= J0⊗J1 are defined, and then Gu = Gu

0⊗Gu
1.

ThusU preserves tensor product.

Definition 31 (parallel product, ´BBG) Extending the previous definition, the par-
allel product of two interfaces Ji = 〈ni ,

#»

X i ,Yi〉(i = 0,1) keeps their local names dis-
joint but may share their global names:

J0 ‖ J1
def
= 〈n0 +n1,

#»

X0
#»

X1,Y0∪Y1〉 .

We define a parallel product on binding bigraphs by the equation G0 ‖ G1 = σ(G0⊗
τG1).

Definition 32 (prime product, ´BBG) Extending the previous definition, the prime
product of two prime interfaces is

〈(X′),X〉 | 〈(Y′),Y〉
def
= 〈(X′⊎Y′),X∪Y〉 .

The expression of the prime product of two prime binding bigraphs in terms of their
parallel product is just as before.

Definition 33 (instantiation,´BBG) We replace instantiationsρ :: m→ n for pure
bigraphs by instantiationsρ :: I → J for binding bigraphs, where I= 〈m,

#»

X〉 and
J = 〈n,

#»

Y〉 are local. The instantiation consists again of an underlying functionρ :
n→m, and also provides bijective local substitutionsρ j : (Xρ(j))→ (Yj) for all j ∈ n.
These ensure disjoint local names for each copy of a parameter factor. For any Z,
this allows the map

ρ : Gr(I ⊗Z) → Gr(J⊗Z)

to be defined as follows (in terms of DNF as before): Decomposeg : I ⊗ Z into
g = w(d0 ⊗ ·· · ⊗ dm1) with w : W → Z and each di prime and discrete. Then let
ej ≏ ρ j ◦dρ(j) for each j∈ n, and define

ρ(g)
def
= w(e0 ‖ · · · ‖ en−1) .

Definition 34 (bigraphical reactive system)A bigraphical reactive system (BRS)
over signatureK consists of́BBG(K) equipped with a set́REACTS of reaction
rules closed under support equivalence (≏). We denote it býBBG(K ,́ REACTS).

Definition 35 (Insertion, [7]) Given a wiringω : X →Y and a local prime A: X′ →
Y′ the insertionof ω into A is defined iff X and X′ are disjoint. The result, written
A⊳ω : XX′→Y∪Y′, has the nodes and parent map of A and its link map is the union
of those of A andω. Insertion binds tighter than prime product and composition.

20

Definition 36 (s-category)Ans-categoryC is a strict symmetric monoidal precate-
gory which has:
– for each arrow f , a finite set| f | called itssupport, such that|idI |= /0. For f : I → J
and g: J → K the composition g f: I → K is defined iff|g| ∩ | f | = /0 and dom(g) =
cod(f); then|g f | = |g| ⊎ | f |. Similarly, for f : H → I and g: J → K with H⊗J and
I ⊗K defined, the tensor product f⊗g : H ⊗ J → I ⊗K is defined iff| f | ∩ |g| = /0;
then| f ⊗g|= | f ||g|.
– for any arrow f : I → J and any injective mapρ whose domain includes| f |, an
arrow f : I → J called asupport translationof f such that

1. ρ � idI = idI

2. ρ � (g f) = (ρ � g)(ρ � f)
3. ρ � (f ⊗g) = ρ � f ⊗ρ � g
4. Id| f | � f = f
5. (ρ1◦ρ0) � f = ρ1 � (ρ0 � f)
6. ρ � f = (ρ↾| f |) � f
7. |ρ↾ f | = ρ(| f | .

Each equation is required to hold only when both sides are defined.

We continue on the next page with the axioms for binding bigraphs.

21

The axioms for binding bigraphs in Def. 37 are from [5], but with explicit compo-
sition.A,B,C,G range over bigraphs,H, I ,J,K range over interfaces,ε is the empty

interface〈0,(), /0〉, x,y range over names,X,Y,Z range over name sets,pXqZ def
=

(Z)pZ⊎Xq : 〈1,(Z⊎X),Z⊎X〉 → 〈1,(Z),Z⊎X〉, P ranges over primes,K #»

(y)(
#»

X)

over ions,α ranges over renamings (multiple bijective substitutions), σ ranges over
substitutions, andσloc ranges over local substitutions.

Definition 37 (Axioms for binding bigraphs)

Categorical axioms
(C1) A◦ idI = A = idJ ◦A (A : I → J)
(C2) A◦ (B◦C) = (A◦B)◦C
(C3) A⊗ idε = A = idε ⊗A
(C4) A⊗ (B⊗C) = (A⊗B)⊗C
(C5) idI ⊗ idJ = idI⊗J

(C6) (A1⊗B1)◦ (A0⊗B0) = (A1◦A0)⊗ (B1◦B0)
(C7) γI ,ε = idI

(C8) γJ,I ◦ γI ,J = idI⊗J

(C9) γI ,K ◦ (A⊗B) = (B⊗A)◦ γH,J (A : H → I ,B : J → K)
(C10) γI⊗J,K ◦ (A⊗B) = (γI ,K ⊗ idJ)◦ (idI ⊗ γJ,K)
Link axioms
(L1) x/x = idx

(L2) /y◦ y/x = /x
(L3) /y◦ y = idε
(L4) (z/(Y⊎y))◦ (idY ⊗ y/X) = z/(Y⊎X)

Place axioms
(P1) join◦ (1⊗ id1) = id1

(P2) join◦ (join⊗ id1) = join◦ (id1⊗ join)
(P3) join◦ γ1,1,(/0, /0) = join
Binding axioms
(B1) (/0)P = P
(B2) (Y)pYq = id(Y)

(B3) (pXqZ⊗ idY)(X)P = P (P : I → 〈1,(Z),Z⊎X⊎Y〉)
(B4) (((Y)P)⊗ idX)G = (Y)(P⊗ idX)G
(B5) (X⊎Y)P = (X)((Y)P)
Ion axioms
(N1) (id1⊗α)◦K #»y (

#»

X) = Kα(#»y)(
#»

X)

(N2) K #»y (
#»

X) ◦σloc = K #»y ((σloc)−1(
#»

X))

22

B π-calculus

This appendix contains standardπ-calculus definitions and ani/o-type system, for
easy reference.

Definition 38 (Binding) In each of a(x).P andνxP, the displayed occurrence of x
is bindingwith scopeP. An occurrence of a name in a process isboundit it is, or it
lies within the scope of, a binding occurrence of the name. Anoccurrence of a name
in a process isfree it it is not bound.

Definition 39 (Substitution) A substitutionis a function on names that is the iden-
tity except on a finite set.

Notation 2 (Substitution on names)Useσ to range over substitutions, and write
σx for σ applied to x. Thesupportof σ, supp(σ), is {x | σx 6= x}, and theco-support
of σ, cosupp(σ), is{σx | x∈ supp(σ)}. Writen(σ) for the set ofnamesof σ, which is
supp(σ)∪cosupp(σ). Write{y1,...,yn/x1,...,xn} for the substitutionσ such thatσxi = yi

for each i∈ {1, . . . ,n} andσx = x for x 6∈ {x1, . . . ,xn}. If X is a set of names, write
σX for {σx | x∈ X}.

Definition 40 (α-convertibility)

1. If the name x does not occur in the process P, then{x/y}P is the process obtained
by replacing each free occurrence of y in P by x.

2. Achange of bound namesin a process P is the replacement of a subterm a(x).Q
of P by a(y).{y/x}Q, or the replacement of a subtermνxQ of P byνy{y/x}Q,
where in each case y does not occur in Q.

3. Processes P and Q areα-convertible, P=α Q, if Q can be obtained from P by a
finite number of changes of bound names.

Convention 1 When considering a collection of processes and substitutions, it is
assumed that the bound names of the processes are chosen to bedifferent from their
free names and from the names of the substitutions.

Definition 41 (Substitution on prefixes) The effect of applying a substitutionσ to
a prefixπ is to replace each occurrence of each name x inπ byσx.

Definition 42 (Substitution on processes)The processσP, obtained by applyingσ
to P is defined as follows, avoiding capture of names by binders:

σ(π.P)
def
= σπ.σP

σ(P | Q)
def
= σP | σQ

σ(νxP)
def
= νx(σP)

σ0 def
= 0 .

23

Notation 3 (Operator precedence)When writing processes as linear expressions
parentheses are used to resolve ambiguity, and observe the conventions that prefixing
and restriction bind more tightly than parallel composition. Further, substitutions
bind more tightly than process operators. Sometimes parentheses are inserted merely
to aid reading.

Definition 43 (Process context)A process contextis a process term in which ex-
actly one process subterm has been left out leaving a “hole” represented with no-
tation [·]. For a context C write C[P] for the process resulting from “plugging” the
process P into the hole of C, where the hole in C must occur in a position such that
C[P] is well-formed for an arbitrary process term P.

Definition 44 (Process congruence)An equivalence relationR on processes is a
process congruenceif (P,Q) ∈ R implies(C[P],C[Q]) ∈R for every process context
C.

Processes:
Γ ⊢ 0 : ♦

Γ,x : L ⊢ P : ♦

Γ ⊢ (νx : L)P : ♦

Γ ⊢ P : ♦ Γ ⊢ Q : ♦

Γ ⊢ P | Q : ♦

Γ ⊢ a : iS Γ,y : S⊢ P : ♦

Γ ⊢ a(y).P : ♦
Γ ⊢ a : oT Γ ⊢ x : T Γ ⊢ P : ♦

Γ ⊢ ax.P : ♦

Subtyping:
T ≤ T

S≤ S′ S′ ≤ T
S≤ T #T ≤ iT #T ≤ oT

S≤ T
iS≤ iT

T ≤ S
oS≤ oT

T ≤ S S≤ T
#S≤ #T

Names:
Γ,x : T ⊢ x : T

Γ ⊢ x : S S≤ T
Γ ⊢ x : T

Table 3. i/o-type rules for sfπ.

24

C Full proofs

This appendix contains the full proofs.

Lemma 1 (Narrowing). If ∆;Γ,x : T ⊢ b and S≤ T then∆;Γ,x : S⊢ b.

Proof. The proof is by induction on the height of the derivation of∆;Γ,x : T ⊢ b.

– The cases for1, join, and/x are vacuously true.
– The cases for transpositions, identities, and concretionshold by Inversion and

transitivity of the subtyping relation≤.
– The case for substitutions: Assume a derivation ofX : T ′;Γ,x : T ⊢ y/X with

premiseΓ,x : T ⊢ y : T ′ by Inversion. Because typings are strong we must have
Γ = Γ /0 andy = x. Thus, we have a derivation ofy : T ⊢ y : T ′. Clearly,T ≤ T ′.
By transitivity of subtyping and the assumptionS≤ T we obtainS≤ T ′. Hence,
by the the rule for names (subsumption) we can derivey : S⊢ y : T ′, which is
required to deriveX : T ′;Γ,x : S⊢ y/X.

– The case for abstraction follows immediately from Inversion and the induction
hypothesis.

– The case for output,sendaz: Either x = a or x = z but not both. Casex = a:
Assume a derivation ofΓ /0;a : T,Γ ⊢ sendaz with premises (1)a : T ⊢ a : oT ′ and
(2)Γ⊢ x : T ′ by Inversion. From (1) we know thatT ≤ oT ′. Then, the assumption
S≤ T and transitivity of subtyping yieldS≤ oT ′. Then, by subsumption we
derive (1’)a : S⊢ a : oT ′. Using (1’) and (2) we deriveΓ /0;a : S,Γ′ ⊢ sendaz as
required. The case forx = z is analogous to the case wherex = a.

– The case for input: The proof is analogous to the proof for output wherex = a.
– The case for tensor product: Assume a derivation of∆0,∆1;Γ0,Γ1 ⊢ b0⊗b1 with

premises∆0;Γ0 ⊢ b0 and∆1;Γ1 ⊢ b1 by Inversion. Eitherx ∈ supp(Γ0) or x ∈
supp(Γ1) but not both. In either case thedecideratafollows from the induction
hypothesis on∆i ;Γi ⊢ bi .

– The case for composition: Assume a derivation ofΓ0;Γ1 ⊢ b1◦b0 with premises
(1) Γ0;∆ ⊢ b0 and (2)∆;Γ1 ⊢ b1 by Inversion. We have thatx∈ supp(Γ1) so the
decideratafollows by induction hypothesis on (2). �

Lemma 2 (Widening). If ∆,x : S;Γ ⊢ b and S≤ T then∆,x : T;Γ ⊢ b.

Proof. The proof is by induction on the height of the derivation of∆,x : S;Γ ⊢ b.

– The cases for1, join, and output hold vacuously.
– The cases for transpositions, identities, and concretionshold by transitivity of

subtyping.
– The case for closure is by axiom.
– The case for substitutions: Assume a derivation ofX : S;Γ ⊢ y/X with premise

Γ ⊢ y : Sby Inversion. Clearly,Γ(y)≤ S, and becauseS≤ T we obtainΓ(y)≤ T
by transitivity of subtyping, which derivesX : T;Γ ⊢ y/X by subsumption. Hence,
we can deriveX : T;Γ ⊢ y/X as required.

25

– The cases for abstraction, tensor, and composition are by Inversion and then one
application of the induction hypothesis.

– The case for input: Assume a derivation ofy : S;Γ ⊢ geta(y) with premiseΓ ⊢ a :
iSby Inversion.S≤ T derivesiS≤ iT by covariance of subtyping on input types.
Clearly,Γ(a) ≤ iS, and becauseiS≤ iT we obtainΓ(a) ≤ iT by transitivity of
subtyping. We can thus deriveΓ ⊢ a : iT and then concludey : T;Γ ⊢ geta(y) as
required. �

Lemma 3 (Main Lemma).Suppose b0 = b1. Then∆;Γ ⊢ b0 if and only if∆;Γ ⊢ b1.

Proof. The proof is by induction on the height of the derivation ofb0 = b1 and has
a case for each axiom. The proof consists of 60 cases; there isone case for each
direction of each axiom, casing on whether the ion issend or get, and checks for
reflexivity, symmetry, transitivity, and congruence. Inversion is used frequently in
a straightforward manner so we omit explicit mention of it. We proceed by case
analysis.

– caseA◦ idI = A for A : I → J.
“⇒”: Assume a derivation of∆;Γ ⊢ A◦ idI with premises (1)∆;Θ ⊢ idI and (2)
Θ;Γ⊢A. From (1) we know thatΘ≤ ∆ so by Widening on (2) we obtain∆;Γ⊢A
as required.
“⇐”: Assume a derivation of (1)∆;Γ ⊢ A. Clearly, we may directly derive (2)
∆;∆ ⊢ idI by the rule for identities. Now we can build the required derivation of
∆;Γ ⊢ A◦ idI by the rule for composition using (2) and (1).

– caseA = idJ ◦A for A : I → J.
“⇒”: Assume a derivation of (1)∆;Γ ⊢ A. Clearly, we may directly derive (2)
Γ;Γ ⊢ idJ by the rule for identities. Now we can build the required derivation of
∆;Γ ⊢ idJ ◦A by the rule for composition using (1) and (2).
“⇐”: Assume a derivation of∆;Γ ⊢ idJ ◦A with premises (1)∆;Θ ⊢ A and (2)
Θ;Γ ⊢ idJ. From (2) we know thatΓ ≤ Θ so by Narrowing on (1) we obtain
∆;Γ ⊢ A.

– caseA◦ (B◦C) = (A◦B)◦C.
“⇔”: Clearly, because exactly the same subderivations are needed in both deriva-
tions, and the disjoint union on typings is associative.

– caseA⊗ idε = A.
“⇒”: Reuse the subderivationΓ;∆ ⊢ A.
“⇐”: Reuse the subderivationΓ;∆ ⊢ A, andΓ /0;Γ /0 ⊢ idε is by axiom.

– caseA = idε ⊗A.
Analogous to the previous case.

– caseA⊗ (B⊗C) = (A⊗B)⊗C.
Clearly, because exactly the same subderivations are needed in both derivations,
and the disjoint union on typings is associative.

– caseidI ⊗ idJ = idI⊗J.
“⇒”: Assume a derivation of∆0,∆1;Γ0,Γ1 ⊢ idI ⊗ idJ with premises
(1) ∆0;Γ0 ⊢ idI and (2)∆1;Γ1 ⊢ idJ, wheresupp(∆0) = supp(Γ0) = glob(I) and

26

Γ0 ≤ ∆0, andsupp(∆1) = supp(Γ1) = glob(J) andΓ1 ≤ ∆1. We need to es-
tablish (A)supp(∆0,∆1) = supp(Γ0,Γ1) = glob(I ⊗J) and (B)Γ0,Γ1 ≤ ∆0,∆1.
We know thatsupp(∆0) = glob(I) andsupp(∆1) = glob(J) so we obtain that
supp(∆0,∆1) = glob(I ⊗J). Likewise forΓ0 andΓ1 w.r.t J so (A) is established.
We know thatΓk ≤ ∆k (for k = 0,1) so clearlyΓ0,Γ1 ≤ ∆0,∆1, which establishes
(B). We can now derive∆0,∆1;Γ0,Γ1 ⊢ idI⊗J as required.
“⇐”: Assume a derivation of∆;Γ ⊢ idI⊗J with premises (1)supp(∆) = glob(I ⊗
J), (2) supp(Γ) = glob(I ⊗ J), and (3)Γ ≤ ∆ by Inversion. Clearly,∆ and
Γ can be split into parts∆0,∆1 andΓ0,Γ1 such thatsupp(Θ0) = glob(I) and
supp(Θ1) = glob(J) (for Θ ∈ {∆,Γ}). It is also obvious thatΓ0 ≤ ∆0 andΓ1 ≤
∆1. Hence, we can derive∆0;Γ0 ⊢ idI and ∆1;Γ1 ⊢ idJ, and thus also∆;Γ ⊢
idI ⊗ idJ as required.

– case(A1⊗B1)◦ (A0◦B0) = (A1◦A0)⊗ (B1◦B0).
“⇔”: Clearly, because exactly the same subderivations are needed in both deriva-
tions, albeit slightly rearranged.

– caseγI ,ε = idI .

Recall thatγI ,ε
def
= γm,0,(

#»

X B,())⊗ idXF ⊗ id /0
def
= γm,0,(

#»

X B,()) ⊗ idXF for

I = 〈m,
#»

XB,{
#»

XB}⊎XF〉 w.l.o.g.
“⇒”: Assume a derivation of∆0,∆1;Γ0,Γ1 ⊢ γm,0,(

#»

X B,()) ⊗ idXF with premises
∆0;Γ0 ⊢ γm,0,(

#»

X B,()) and ∆1;Γ1 ⊢ idXF . From these premises we clearly have

supp(∆0,∆1) = supp(Γ0,Γ1) = {
»

XB} ⊎XF = glob(I), and also(Γ0,Γ1)(i) ≤
(∆0,∆1)(i) for any i ∈ glob(I). Thus, a derivation of∆0,∆1;Γ0,Γ1 ⊢ idI can be
built.
“⇐”: Assume a derivation ofΓ0;Γ1 ⊢ idI with premisessupp(Γ j) = glob(I) (for
j = 0,1) andΓ1 ≤ Γ0. glob(I) = {

»

XB}⊎XF by assumption. Clearly,Γ j can be
split into typingsΓ j for {

#»

XB} andΓ′
j for XF . Therefore, the rule for tensor can

be used to build the required derivation ofΓ0,Γ′
0;Γ1,Γ′

1 ⊢ γm,0,(
#»

X B,())⊗ idXF .
– γJ,I ◦ γI ,J = idI⊗J.

Recall thatγJ,I
def
= γn,m,(

#»

Z B,
#»

X B) ⊗ idZF ⊗ idXF andγI ,J
def
= γm,n,(

#»

X B,
#»

Z B) ⊗ idXF ⊗

idZF for I = 〈m,
#»

Xb,{
#»

XB}⊎XF〉 andJ = 〈n,
#»

Zb,{
#»

ZB}⊎ZF〉 w.l.o.g.
“⇒”: Clearly, γJ,I ◦ γI ,J is typable in someΓ j (for j = 0,1) assigning types to
exactly the names ofI and J, disjointly, with Γ1 ≤ Γ0. Thus, a derivation of
Γ0;Γ1 ⊢ idI⊗J can be built.
“⇐”: Reverse the argument.

– caseγI ,J ◦ (A⊗B) = (B⊗A)◦ γH,J for A : H → I , B : J → K.
“⇒”: Assume a derivation ofΓ0;Γ1 ⊢ γI ,J◦(A⊗B), wheresupp(Γ0)= glob(H)⊎
glob(J) andsupp(Γ1) = glob(I)⊎glob(K). Exactly the same subderivations are
needed to build a derivation of(B⊗A)◦ γH,J, albeit slightly rearranged.
“⇐”: The argument is analogous.

– caseγI⊗J,K = (γI ,K ⊗ idJ)◦ (idI ⊗ γJ,K).
Essentially, this case holds because exactly the same namesare typed on both
sides, albeit somewhat rearranged.

27

Recall thatγI⊗J,K
def
= γ(I⊗J)B,KB

⊗ id(I⊗J)F
⊗ idKF , where the subscriptsB andF

signify the set of bound/local names and the set of free namesof an interface,
respectively.
For interfacesI , let IF denote the free (i.e.glob(I)\ loc(I)) andIB the bound (i.e.
loc(I)) names.
“⇒”: Assume a derivation ofΓ;Γ′ ⊢ γ(I⊗J)B,KB

⊗ id(I⊗J)F
⊗ idKF with subderiva-

tions (1)Γ1;Γ′
1 ⊢ γ(I⊗J)B,KB

, (2) Γ2;Γ′
2 ⊢ id(I⊗J)B

, and (3)Γ3;Γ′
3 ⊢ idKF , where

Γ = Γ1,Γ2,Γ3 andΓ′ = Γ′
1,Γ′

2,Γ′
3, supp(Γ1). Notice thatsupp(Γ1) = (I ⊗J)B⊎

KB, supp(Γ2) = (I ⊗J)F , andsupp(Γ3) = KF .

Recall thatγJ,K
def
= γJB,KB ⊗ idJF ⊗ idKF andγI ,K

def
= γIB,KB ⊗ idIF ⊗ idKF .

We need to build a derivation ofΓ;Γ′ ⊢ (γI ,K ⊗ idJ) ◦ (idI ⊗ γJ,K). This requires
two subderivations: (A)Γ;Γ′′ ⊢ idI ⊗ γJ,K and (B)Γ;Γ′′ ⊢ γI ,K ⊗ idJ. Both (A)
and (B) require two subderivations. (A1)ΓI ;Γ′′

I ⊢ idI and (A2)ΓJ⊗K ;Γ′′
J⊗K ⊢

γJ,K , whereΓI denotesΓ ↾ glob(I) for any typingΓ and interfaceI . The case
for (B) is analogous. So, we must find a suitingΓ′′. Pick Γ′′ = Γ′′

I ,Γ′′
J⊗K =

ΓI ,ΓJ⊗K =
(

(Γ1 ↾ IB),Γ2 ↾ IF
)

,
(

(Γ1 ↾ (JB⊎ JK)),(Γ2 ↾JF),Γ3
)

. All that remains
is to check (i)Γ′′

I ≤ ΓI andsupp(ΓI) = supp(Γ′′
I) = glob(I), (ii) Γ′′

J⊗K ≤ ΓJ⊗K

andsupp(ΓJ⊗K) = supp(Γ′′
J⊗K) = glob(J)⊎glob(K), and (iii) ΓI ,ΓJ⊗K = Γ and

Γ′′
I ,Γ′′

J⊗K = Γ′′. (i) follows from the fact that(Γ1↾ IB),Γ2↾ IF = ΓI = Γ′′
I . (ii) fol-

lows from the fact that(Γ1↾(JB⊎KB)),(Γ2↾JF),Γ3 = ΓJ⊗K = Γ′′
J⊗K . (iii) follows

from our choice ofΓ′′ = Γ.
“⇐”: Obviously, we can make the same appropriate splits of typings.

– casex/x = idx.
“⇒:” Assume a derivation ofx : T;Γ ⊢ x/x with premise (*)Γ ⊢ x : T. (*) implies
(1) supp(Γ) = {x} and (2)Γ(x) ≤ T. Also, clearly (3)supp(x : T) = {x}. Thus,
we can from (1), (2), and (3) build the desired derivation ofx : T;Γ ⊢ idx.
“⇐”: Assume a derivation ofΓ0;Γ1 ⊢ idx with premisessupp(Γi) = {x} (for
i = 0,1) and (*)Γ1(x) ≤ Γ0(x). (*) implies thatΓ1 ⊢ x : Γ0(x), which allows us
to concludeΓ0;Γ1 ⊢ x/x as required.

– case/y◦ y/x = /x.
“⇒”: Assume a derivation ofx : L;Γ /0 ⊢ /y◦ y/x with premisesx : L;y : L′ ⊢ y/x

andy : L′;Γ /0 ⊢ /y, for some link typesL andL′ such thatL′ ≤ L. By axiom,
x : L;Γ /0 ⊢ /x.
“⇐”: Assume a derivation ofx : L;Γ /0 ⊢ /x. Build derivations ofx : L;y : L ⊢
y/x andy : L;Γ /0 ⊢ /y by axioms. From these two subderivations we construct a
derivation ofx : L;Γ /0 ⊢ /y◦ y/x.

– case/y◦ y= idε.
Recall thaty is shorthand fory//0.
“⇒:” Assume a derivation ofΓ /0;Γ /0 ⊢ /y◦ y with premisesΓ /0;y : L ⊢ y//0 and
y : L;Γ /0 ⊢ /y. As required,Γ /0;Γ /0 ⊢ idε is trivially derivable.
“⇐”: Assume a derivation ofΓ /0;Γ /0 ⊢ idε. To build a derivation ofΓ /0;Γ /0 ⊢ /y◦y
two subderivations are needed:Γ /0;y//0 ⊢ y : L andy : L;Γ /0 ⊢ /y, for some link
typeL. They are both trivially derivable.

– casez/(Y⊎{y})◦ (idY ⊗ y/X) = z/(Y⊎X).

28

“⇒”: Assume a derivation ofΓ0,X : T;Γz ⊢ z/(Y⊎{y}) ◦ (idY ⊗ y/X) with three
subderivations: (1)Γ0;Γ1 ⊢ idY, (2) X : T;Γy ⊢ y/X, and (3)Γ1,Γy;Γz ⊢ z/(Y⊎{y}),
with the following premises: (1A)supp(Γ j) = Y (for j = 0,1), (1B) Γ1 ≤ Γ0,
(2A) Γy ⊢ y : T, and (3A)Γz ⊢ z : (Γ1,Γy)(Y⊎{y}).
We need to establish (*)Γz⊢ z: (Γ0,X : T)(Y⊎X) to derive the required conclu-
sionΓ0,X : T;Γz ⊢ z/(Y⊎X). Establishing (*) is obviously equivalent to showing
(*1) Γz ⊢ z : Γ0(Y) and (*2)Γz ⊢ z : T, because(X : T)(X) = T.
From (1A) we know thatsupp(Γ0) = Y sosupp(Γ0,X : T) = Y⊎X. From (3A)
we haveΓz ⊢ z : Γ1(Y), in particular, soΓz(z) ≤ Γ1(Y) ≤ Γ0(Y), by (1B). Thus,
by transitivity of subtypingΓz(z) ≤ Γ0(Y) and we can derive (*1) by subsump-
tion.
For (*2) we must establish thatΓz(z)≤ T. From (3A) we know thatΓz⊢ z: Γy(y)
soΓz(z)≤Γy(y). From (2A) we know thatΓy(y)≤T. Combining these two facts
and transitivity of subtyping we obtainΓz(z) ≤ T. Hence, we can derive (*2) by
subsumption.
Finally, we derive thedeciderataby (*1) and (*2) and the rule for substitutions.
“⇐”: Assume a derivation of(Y⊎X) : T;Γ ⊢ z/(Y⊎X) with premise (*)Γ ⊢ z : T.
We need to show(Y⊎X) : T;Γ ⊢ z/(Y⊎{y})◦ (idY ⊗ y/X). Thus, to use the rule for
composition we must establish two premises: (1)(Y⊎X) : T;∆ ⊢ idY ⊗ y/X and
(2) ∆;Γ ⊢ z/(Y⊎{y}), for some suitable∆. We pick∆ = Y : T,y : T. Then, (2) is
derivable if we can establishΓ ⊢ z : T, but this follows from (*). Hence, only (1)
remains. We can use the rule for tensor with premises (1A)Y : T;Y : T ⊢ idY and

(1B) X : T;y : T ⊢ y/X, becauseY : T,X : T
def
= (Y⊎X) : T. (1A) is trivial by the

rule for identities and (1B) trivial by the rule for substitutions.
– casejoin◦ (1⊗ id1) = id1.

“⇔”: Clearly, Γ /0;Γ /0 types both sides by axioms.
– casejoin◦ (join⊗ id1) = join◦ (id1⊗ join).

“⇔”: Clearly, Γ /0;Γ /0 types both sides by axioms.
– casejoin◦ γ1,1,(

#»/0 ,
#»/0) = join.

“⇔”: Clearly, Γ /0;Γ /0 types both sides by axioms.
– case(/0)P = P.

“⇒”: Assume a derivation of∆;Γ ⊢ (/0)P with premise∆;Γ ⊢ P. Reuse the
premise on the right-hand side.
“⇐”: Reuse the assumed derivation of∆;Γ ⊢ P as premise in the rule for ab-
straction.

– case(Y)pYq = id(Y).

Recall thatid(Y)
def
= (Y)/(Y)

def
= (Y)

(

((
Nn

i=1 yi/yi)⊗ id1)◦pYq
)

forY = {y1, . . . ,yn}.
“⇒”: Assume a derivation ofΓ0;Γ1 ⊢ (Y)pYq with premise (*)Γ0;Γ1 ⊢ pYq.
To build a derivation we essentially need two subderivations: (1) Γ0;Γ1 ⊢ pYq
and (2)Γ1;Γ1 ⊢

Nn
i=1 yi/yi , where (1) is simply by (*). (2) follows fromn sub-

derivations of formΓ1↾yi ;Γ1 ↾yi ⊢ yi/yi (whereΓ1↾yi restrictsΓ1 to yi), because
Γ1↾yi ⊢ y : (Γ1 ↾yi)(yi) is by axiom and reflexivity of subtyping.
“⇐”: Assume a derivation ofΓ0;Γ1 ⊢ id(Y) with premises (1)Γ0;Γ2 ⊢ pYq and
(2) Γ1 ↾ yi ⊢ yi : (Γ2 ↾ yi)(yi), for someΓ2 such thatΓ0;Γ2 ⊢ pYq andΓ2;Γ1 ⊢

29

Nn
i=1 yi/yi . Then, (1) implies thatΓ2 ≤ Γ0 and (2) implies thatΓ1 ≤ Γ2, soΓ1 ≤

Γ0 by transitivity of subtyping. Hence, we can deriveΓ0;Γ1 ⊢ pYq and thus
Γ0;Γ1 ⊢ (Y)pYq as required.

– case(pXqZ⊗ idY)◦ (X)P= P for P : I → 〈1,Z,Z⊎X⊎Y〉.

Recall thatpXqZ def
= (Z)pZ⊎Xq : 〈1,Z⊎X,Z⊎X〉 → 〈1,Z,Z⊎X〉.

“⇒”: Assume a derivation of∆;Γ⊢ (((Z)pZ⊎Xq)⊗ idY)◦(X)P with subderiva-
tions (1)∆;Γ′ ⊢ P, (2) Γ0;Γ1 ⊢ pZ⊎Xq, and (3)Γ2;Γ3 ⊢ idY, with Γ = Γ1,Γ2

andΓ′ = Γ0,Γ2. (2) impliesΓ1 ≤ Γ0 and (3) impliesΓ3 ≤ Γ2, so together they
imply Γ = Γ1,Γ3 ≤ Γ0,Γ2 = Γ′. We have∆;Γ′ ⊢ P from (1), and becauseΓ ≤ Γ′

we obtain∆;Γ ⊢ P by Narrowing.
“⇐”: Assume a derivation (*)∆;Γ ⊢ P. We can easily build the desired deriva-
tion of ∆;Γ ⊢ (((Z)pZ⊎Xq)⊗ idY) ◦ (X)P as follows: We need the same sub-
derivations as were assumed in the previous case, but by picking Γ0 = Γ1 and
Γ2 = Γ3 we clearly have subderivations (2) and (3) from above by trivial uses of
the rule for concretions and identities, respectively. Thus, we can deriveΓ;Γ ⊢
(Z)pZ⊎Xq⊗ idY. Finally, we can reuse (*) and by the rule for composition we
obtain thedeciderata.

– case(((Y)P)⊗ idX)◦G = ((Y)(P⊗ idX))◦G.
“⇔”: Clearly, because the subderivations are the same on both sides albeit slightly
rearranged, and only the rules for abstraction, tensor and composition are used
to build the required derivations.

– case(X⊎Y)P = (X)((Y)P).
“⇔”: Clearly, because the names are the same on both sides, and the rule for
abstraction merely propagates information.

– case(id1⊗α)◦K #»y (
#»

X) = Kα(#»y)(
#»

X). Two cases: EitherK is send or get.

• K #»y (
#»

X) = sendaz. We haveα def
= a′/a⊗ z′/z for some namesa′, z wherea′ 6∈

{z′,z} andz′ 6∈ {a′,a} becauseα is a renaming, i.e. a bijective substitution.
(a 6= zby definition.)
“⇒”: Assume a derivation ofΓ /0;Γ ⊢ (id1 ⊗ α) ◦ sendaz with subderiva-
tions (A) Γ /0;Θ ⊢ sendaz and (B)Θ;Γ ⊢ id1⊗α with supp(Θ) = {a,z} and
supp(Γ) = {a′,z′}. (A) has premises (A1)Θa ⊢ a : oT and (A2)Θz ⊢ z : T,
whereΘa denotesΘ↾{a}and so forth. (B) has premises (B1)Γa′ ⊢ a′ : Θa(a)

and (B2)Γz′ ⊢ z′ : Θz(z).
Build the desired derivation ofΓ /0;Γ⊢ senda′z′ with premises (i)Γa′ ⊢ a′ : oT
and (ii) Γz′ ⊢ z′ : T. (i) is justified as follows: By (B1),Γa′(a′) ≤ Θa(a). So,
by Narrowing on (A1) we obtainΓa′ ⊢ a′ : oT, bearing in mind that (*)
x : S⊢ x : Ti f f y : S⊢ y : T. (ii) is justified in an analogously.
“⇐”: Find Θ = Θa,Θz with Θa(a) = Γa′(a′) andΘz(z) = Γz′(z′), yielding
(B1) and (B2). Then, (A1) follows easily from (i) and (A2 from(ii), because
of (*).

• K #»y (
#»

X) = geta(z). We haveα def
= ′a/a for somea′ 6= zw.l.o.g.

“⇒”: Assume a derivation ofz : S;Γ ⊢ (id1 ⊗ a′/a) ◦ geta(z) with premises
(1) a : U ⊢ a : iS and (2)Γ ⊢ a′ : U , for some typesS andU . (2) implies

30

that Γ(a′) ≤ U so we may apply Narrowing to (1) and obtainΓ ⊢ a′ : iS,
becausea : U ⊢ a : iS iff a′ : U ⊢ a′ : iS). Then we can build a derivation of
z : S;Γ ⊢ geta′(z), as required.
“⇐”: Analogous to the “⇐” direction of thesend case.

– caseK #»y (
#»

X) ◦σloc = K #»y ((σloc)−1(
#»

X)). Two cases. EitherK is send or get.
• K #»y (

#»

X) = sendax. This case holds both ways trivially becausesend has no
local names.

• K #»y (
#»

X) = geta(z). We haveσloc = (z)/(Z) for some name setZ. Recall that

(z)/(Z)
def
= (z)

(

(z/Z⊗ id1)◦ pZq
)

.
“⇒:” Assume a derivation ofZ : T;Γ ⊢ geta(z) ◦ (z)

(

(z/Z⊗ id1)◦ pZq
)

with
premises (1)S≤ T and (2)Γ ⊢ a : iS. Building a derivation ofZ : T;Γ ⊢
geta(Z) requiresΓ ⊢ a : iT, which in turn requires (A)Γ ⊢ a : iS and (B)
iS≤ iT. (A) follows from (2) and (B) from (1) by the subtyping rule ofinput
types.
“⇐”: The same premises are needed.

– caseb = b (reflexivity).
Show that∆;Γ ⊢ b if and only if ∆;Γ ⊢ b, but this is immediate.

– caseb = b′ =⇒ b′ = b (symmetry).

Read the statement as a rule:b = b′

b′ = b
.

Assume:b0 = b1. Show:∆;Γ ⊢ b0 if and only if ∆;Γ ⊢ b1. We are proceeding
by induction on the derivation ofb0 = b1 and the last rule used was the rule
for symmetry, so we must have hadb1 = b0. Now, by induction hypothesis on
b1 = b0 we obtain∆;Γ ⊢ b1 if and only if ∆;Γ ⊢ b0. Because “iff” is symmetric
we have thedesiderata.

– caseb = b′& b′ = b′′ =⇒ b = b′′ (transitivity).

Read the statement as a rule:b = b′ b′ = b′′

b = b′′
.

Assume:b0 = b1. Show:∆;Γ ⊢ b0 if and only if ∆;Γ ⊢ b1. We have must have
hadb0 = b2 andb2 = b1 for someb2. By induction hypothesis: (1)∆;Γ ⊢ b0 if
and only if∆;Γ ⊢ b2, and (2)∆;Γ ⊢ b2 if and only if ∆;Γ ⊢ b1. Because “iff” is
transitive we obtain∆;Γ ⊢ b0 if and only if ∆;Γ ⊢ b1, as required.

– caseb = b′ =⇒ C◦b = C◦b′ (congruence).

Read the statement as a rule: b = b′

C◦b = C◦b′
.

Assume:C◦b = C◦b′. Show:∆;Γ ⊢ C◦b if and only if ∆;Γ ⊢C◦b′. We must
have hadb = b′. By induction hypothesis onb = b′ we obtain∆;Θ ⊢ b if and
only if Γ;Θ ⊢ b′, for someΘ. Typings ofC◦b andC◦b′ must have ended with
the composition rule. Thus, we just need to argue that we havea derivation of
Θ;Γ⊢C if and only if Θ;Γ⊢C, but this is immediate (because “iff” is reflexive).
�

Corollary 1 If ∆;Γ ⊢ b and b= b1◦b0 then there exists a typingΘ such that∆;Θ ⊢
b0 andΘ;Γ ⊢ b1.

31

Proof. The Main Lemma yielsΓ;∆ ⊢ b1 ◦b0. By Inversion there existsΘ such that
∆;Γ ⊢ b0 andΘ;Γ ⊢ b1. �

Theorem 2 (Subject Reduction).For process bigraphs b0 and b1, if Γ /0;∆ ⊢ b0 and
b0 _ b1 thenΓ /0;∆ ⊢ b1.

Proof. The proof is by analysis of the derivation ofb0 _ b1 by the sole reaction
rule. When reading this proof the reader is recommended to look at the proof trees
following the following two paragraphs of the proof.

Becauseb0 _ b1, then by Def. 1 there exists an active contextD such thatb0 =
D ◦ r andb1 ≏ D ◦ r ′. Assume a derivation ofΓ /0;∆ ⊢ b0, then also (∗) Γ /0;∆ ⊢ D ◦ r
by Lemma 3. By Inversion we must have (among others) the following six sub-
derivations from (∗): (1′) Γ /0;Γ,y : S⊢ d, (3′) a : U ⊢ a : oT, (3′′) x : U ′ ⊢ x : T,
(4′) a : R⊢ a : iS, (5′) U ≤ R, and(8′) Γ′,a : W,x : W′;∆ ⊢ D. We also know that
W ≤U andW′ ≤U ′. By (3′), (5′) and(4′) we concludeT ≤ S (cf. [19]). W′ ≤U ′,
and by(3′′) we haveU ′ ≤ T ≤ S, soW′ ≤ S.

Now, consider the derivation to be built.b1 ≏ D ◦ r ′ implies thatb1 = D ◦ r ′

abstractly. By Lemma 3 it suffices to deriveΓ /0;∆ ⊢ D ◦ r ′. Reuse the derivation of
D. ρ = id〈2,(/0,{y}), /0〉 so ρ(d) = d. This means that we can also reuse(1′). We still
need to justify a derivation ofy : S;x : W′ ⊢ (x)/(y). This merely requires justification
of W′ ≤ Sbecause we may choose not to subtype in the other substitutions.W′ ≤ S
has already been established so we can build the desired derivation ofΓ /0;∆ ⊢ D◦ r ′.

Let A , B signify thatA is defined asB.

Left-hand side: Recall thatr = (idX ⊗R)◦d. Define:

– r , α◦d
– σ , a/a,a′⊗ x/x

– τ , a′/a

– α , idX ⊗ ((join⊗ id(ax))◦ (σ◦ (sendax⊗ (τ◦ geta(y)))))

– β , (join⊗ id(ax))◦ (σ◦ (sendax⊗ (τ◦ geta(y))))

– γ , σ◦ (sendax⊗ (τ◦ geta(y)))

– δ , sendax⊗ (τ◦ geta(y))

– ε , τ◦ geta(y)

(1)

(2)

(3)

(4) (5)

y : S;a : U ′ ⊢ ε
y : S;a′ : U,a : U,x : U ′ ⊢ δ

(6)

y : S;a : V,x : V ′ ⊢ γ
(7)

y : S;a : W,x : W′ ⊢ β
Γ,y : S;Γ′,a : W,x : W′ ⊢ α

Γ /0;Γ′,a : W,x : W′ ⊢ r
(8)

Γ /0;∆ ⊢ D◦ r

32

With the following subderivations(1)-(8).

(1) :
(1′)

Γ /0;Γ,y : S⊢ d
(2) :

(2′)

Γ′(X) ≤ Γ(X)

Γ;Γ′ ⊢ idX

Remark:Γ′(X) ≤ Γ(X) holds wheneverΓ′(xi) ≤ Γ(xi) for all xi ∈ X.

(3) :

(3′)
a : U ⊢ a : oT

(3′′)

x : U ′ ⊢ x : T

Γ /0;a : U,x : U ′ ⊢ sendax
(4) :

(4′)
a : R⊢ a : iS

y : S;a : R⊢ geta(y)

(5) :

(5′)
U ≤ R

a : R;a′ : U ⊢ τ
(6) :

(6′)
V ≤U

a : U,a′ : U ;a : V ⊢ a/a,a′

(6′′)

V ′ ≤U ′

x : U ′;x : V ′ ⊢ x/x

a′ : U,a : U,x : U ′;a : V,x : V ′ ⊢ σ

(7) :
(7′)

a : V,x : V ′;a : W,x : W′ ⊢ join⊗ id(ax)
(8) :

(8′)

Γ′,a : W,x : W′;∆ ⊢ D

Remark:(7′) is a straightforward subderivation where subtyping ofW ≤V andW′ ≤
V ′ may occur.

Right-hand side: Recall thatr ′ = (idX ⊗R′)◦d′, whered′ = ρ(d). Define:

– φ , join⊗ id(ax)

– ψ , join⊗ id(x)

Recall thatR′ def
= φ◦ ((ψ◦ (id1⊗ (x)/(y)))⊗ (a)).

(i)

(2)

(ii)

(iii)

y : S;x : W′ ⊢ (x)/(y)

y : S;x : W′ ⊢ id1⊗ (x)/(y)
(iv)

y : S;x : W′ ⊢ ψ◦ (id1⊗ (x)/(y))
(v)

y : S;a : W,x : W′ ⊢ (ψ◦ (id1⊗ (x)/(y)))⊗ (a)
(vi)

y : S;a : W,x : W′ ⊢ φ◦ ((ψ◦ (id1⊗ (x)/(y)))⊗ (a))

Γ,y : S;Γ′,a : W,x : W′ ⊢ idX ⊗R′

Γ /0;Γ′,a : W,x : W′ ⊢ r ′
(8)

Γ /0;∆ ⊢ D◦ r ′

With the following subderivations(i)-(vi).

(i) :
(1′)

Γ /0;Γ,y : S⊢ ρ(d)
(ii) :

Γ /0;Γ /0 ⊢ id1

33

(iii) :
y : S;y : S⊢ pyq

(iii ′)

W′ ≤ S
y : S;x : W′ ⊢ x/y

Γ /0;Γ /0 ⊢ id1

y : S;x : W′ ⊢ x/y⊗ id1

y : S;x : W′ ⊢ (x/y⊗ id1)◦ pyq

Remark: In(iii), (x)/(y)
def
= (x)((x/y⊗ id1)◦ pyq).

(iv) :
(iv ′)

x : W′;x : W′ ⊢ ψ
(v) :

Γ /0;a : W ⊢ a//0

Γ /0;a : W ⊢ (a)(a//0)

Remarks: In the subderivation(iv ′) we choose not to subtype. In derivation(v),

(a)
def
= (a)(a//0), and any type may be chosen fora – pickW.

(vi) :
(vi′)

a : W,x : W′;a : W,x : W′ ⊢ φ

Remark: In the subderivation(vi′) we choose not to subtype. �

Proposition 1 (Type Soundness)Suppose that process bigraph b= JPK(X), Γ /0;Γ ⊢
b, and b_∗ b′. Then, for each non-idle a∈ glob(cod(b′)) it holds that:

1. If Γ ⊢ a : iS then a is either linked to the channel port of aget ion or linked to
the datum port of asend ion.

2. If Γ ⊢ a : oT then a is linked to asend ion.

Proof. The proof is by ind. on the lengthn of the reductionb _∗ b′. The base case is
by structural induction onP using Cor. 1. The inductive case uses Subject Reduction.

– n = 0. We haveb = b′. EitherΓ(a) = iSor Γ(a) = oT.
AssumeΓ(a) = iS. Clearlya can be linked to aget ion, but not to asend ion
because a premise of thesend rule requiresa to have a type of formoT, which
contradicts the assumption. The other possibility could bethata is linked to the
datum channel of asend ion, saysendax, because linksx of input type can be
communicated, as long asΓ ⊢ a : oiSandΓ ⊢ x : iS for someΓ, SandT.
AssumeΓ(a) = oT. Clearlya must be linked to asend ion because the premise
of the get rule requiresa to have a type of formiS, which contradicts the as-
sumption. Again,a can either be linked to a channel port ofsend or the datum
port if it is to be communicated.

– n > 0. Assume the induction hypothesis forb _ nbn and show it forb _ n+1b′.
Thus,bn exhibits the property. Show thatbn+1 does too. By Subject Reduction
we know thatΓ /0;bn ⊢ Γ and taking another step with_ 1 establishesΓ /0;bn+1 ⊢
Γ. The outer typing being preserved we just need arguments as for n = 0 to
establish the desiderata. �

34

Lemma 4 (Weakening).If ∆;Γ ⊢ b and x6∈supp(Γ) then∆;Γ,x : T ⊢ b⊗ (x).

Proof. The proof is by induction on the height of the derivation of∆;Γ ⊢ b. Recall

that(x)
def
= (x)(x//0) and can thus be typed by using the rule for abstraction and then

the rule for substitutions.
All cases follow the same pattern, where the desired derivation is constructed as

follows:

"by assumption"
∆;Γ ⊢ b

Γ /0;x : T ⊢ x//0

Γ /0;x : T ⊢ (x)

∆;Γ ⊢ b⊗ (x)

The case for closure/x holds by the insight that an outer namex is different from an
inner namex if they are not linked. �

Lemma 5 (Strengthening).If ∆;Γ,x : T ⊢ b⊗ (x) then∆;Γ ⊢ b.

Proof. The proof is by induction on the height of the derivation of∆;Γ,x : T ⊢ b⊗

(x). Recall that(x)
def
= (x)(x//0) and can thus be typed by using the rule for abstraction

and then the rule for substitutions.
All cases follow the same pattern, where the assumed derivation has form:

(∗)

∆;Γ ⊢ b
Γ /0;x : T ⊢ (x)

∆;Γ,x : T ⊢ b⊗ (x)

The desired derivation is simply constructed by reusing (*). �

Lemma 6. Suppose b= JPK(X) and Γ /0;Γ ⊢ b with fn(P) ⊆ X = supp(Γ). Then
JPKsupp(Γ) ⊗ (x) = JPK(supp(Γ,x:T)) for any T.

Proof. The proof is by structural induction onP. Let LHS mean “left-hand side” and
RHS “right-hand side”. We sometimes writeXy for X⊎{y}, for instance.

– caseP= 0. LHS:J0Ksupp(Γ)⊗(x)
def
= (X)⊗(x)= (X⊎{x}). RHS:J0Ksupp(Γ,x:T) =

(X⊎{x}).
– caseP = νzQ.

LHS: JνzQK(X) ⊗ (x)
def
= /(z)⊳ idX ◦ JQK(Xz)⊗ (x).

RHS:JνzQK(supp(Γ,x:T))
def
= /(z)⊳ idXx◦ JQK(Xxz). We know thatx is idle in JQK

so we may further rewrite to/(z)⊳ idX ◦ JQKXz⊗ (x).
– caseP = az.Q.

LHS: Jaz.QK(X) ⊗ (x)
def
= sendaz⊳ idX ◦ JQK(X) ⊗ (x).

RHS: Jaz.QK(supp(Γ,x:T))
def
= sendaz⊳ idXx◦ JQK(Xx) = sendaz⊳ idXx◦ JQK(X) ⊗

(x) becausex is idle in JQK.

35

– caseP = a(y).Q.

LHS: Ja(y).QK(X) ⊗ (x)
def
= geta(y) ⊳ idX ◦ JQK(X)⊗ (x).

RHS:Ja(y).QK(supp(Γ,x:T))
def
= geta(y) ⊳ idXx◦JQK(Xx)⊗(x)= geta(y) ⊳ idX ◦JQK(X)⊗

(x) becausex idle in JQK.
– caseP = Q | Q′.

LHS: JQ | Q′K(X) ⊗ (x)
def
= (JQK(X) | JQ

′K(X))⊗ (x).

RHS: JQ | Q′K(supp(Γ,x:T))
def
= JQK(supp(Γ,x:T)) | JQ′K(supp(Γ,x:T))

def
= JQK(Xx) |

JQ′K(Xx) = JQK(X) | JQ
′K(X) ⊗ (x) becausex is idle in JQK andJQ′K. �

Proposition 2 (Transfer of Type Derivations) Γ⊢P : ♦ if and only ifΓ /0;Γ⊢ JPK(X)

whenfn(P) ⊆ X = supp(Γ).

Proof. The proof is by struct. induction onP using Lemmas 6 and 3.

– caseP = 0.
“⇒”: AssumeΓ ⊢ 0 : ♦. Recall:(X)

def
= (X)(X//0)

def
= (X)(

Nn
i=1xi /0). So, we

need to establishΓ ↾ xi ⊢ xi//0 (for i = 1..n), but they are all trivial by the rule
for substitution, and then use the rule for abstraction to build Γ /0;Γ ⊢ (X), as
required.
“⇐”: AssumeΓ /0;Γ ⊢ (X). Build Γ ⊢ 0 : ♦ by axiom.

– caseP = (νx : L)Q.
“⇒”: AssumeΓ ⊢ (νx : L)Q : ♦ with premise (*)Γ,x : L ⊢ Q. Observe that

J(νx : L)QK(X)
def
= /(x)⊳ idX ◦ JQK(Xx) = (X)

(

(/x⊗ idX)◦ pXxq ◦ JQK(Xx)
)

. By
the Main Lemma it is enough to show a derivation for this last term. We need to
establish four premises: (1)Γ /0;Γ,x : L ⊢ JQK(Xx), (2) Γ,x : L;Γ,x : L ⊢ pXxq, (3)
x : L;Γ /0 ⊢ /x, and (4)Γ;Γ ⊢ idX . (1) follows by induction hypothesis on (*) and
(2)-(4) from axioms.
“⇐”: Simply by induction hypothesis.

– caseP = ax.Q.
“⇒”: AssumeΓ ⊢ ax.Q : ♦ with premises (1)Γ ⊢ a : oT, (2) Γ ⊢ x : T, and (3)

Γ⊢Q : ♦. Observe thatJax.QK(X)
def
= sendax⊳ idX ◦JQK(X) = (X)(sendax⊗ idX⊗

id1) ◦ JQK(X) = (X)(sendax⊗ idX ⊗ id1 ◦ pXq ◦ JQK(X)). By the Main Lemma it
is enough to show a derivation for this last term. We need to establish three
premises: (i)Γ /0;Γ ⊢ JQK(X), (ii) Γ↾{a} ⊢ a : oT, and (iii) Γ↾{x} ⊢ x : T. (i) is by
induction hypothesis on (3), (ii) is follows from (1), and (iii) follows from (2).
“⇐”: Reverse the argument on premises.

– caseP = a(y).Q.
“⇒”: AssumeΓ ⊢ a(y).Q : ♦ with premises (1)Γ ⊢ a : iSand (2)Γ,y : S⊢ Q : ♦.

We haveJa(y).QK(X)
def
= geta(y) ⊳ idX ◦ JQK(Xy). We need to establish (i) and (ii)

Γ /0;Γ,y : S⊢ JQK(Xy) to build Γ /0;Γ ⊢ geta(y) ⊳ idX ◦ JQK(Xy). (i) follows from (1)
and (ii) follows by induction hypothesis on (2).
“⇐”: By induction hypothesis and the fact that (1) follows from(i).

36

– caseP = Q | Q′.
“⇒”: AssumeΓ ⊢ Q | Q′ : ♦ with premises (1)Γ ⊢ Q : ♦ and (2)Γ ⊢ Q′ : ♦. We

haveJQ | Q′K(X)
def
= σ◦ (JQK(X)⊗τ◦ JQ′K(X)), for suitable substitutionsσ andτ.

Now, let W = fn(Q)∩ fn(Q′). Then, if Z = fn(Q) \W thenτ = Z/Z⊗ F/W and
Y = Z⊎F . To build Γ /0;Γ ⊢ σ ◦ (JQK(X) ⊗ τ ◦ JQ′K(X)) we must establish three
premises: (i)Γ /0;Γ ↾ Q ⊢ JQK(fn(Q)), (ii) Γ /0;Γ ↾ Q′ ⊢ JQ′K(fn(Q′)), (iii) Γ ↾ Q′;Γ ↾
Y ⊢ τ, and (iv)(Γ↾Q),(Γ↾Y);Γ ⊢ σ. By induction hypothesis on (1) and (2) we
obtainΓ /0;Γ ⊢ JQK(X) andΓ /0;Γ ⊢ JQ′K(X). Then, by Lemma 6 and Strengthening
we obtainΓ /0;Γ↾ fn(Q) ⊢ JQK(X) andΓ /0;Γ↾ fn(Q′) ⊢ JQ′K(X), becauseX \ fn(Q)
is idle in JQK and likewise forQ′. (iii) and (iv) follow trivially from the rule for
substitutions, where we choose not to subtype.
“⇐”: AssumeΓ /0;Γ ⊢ σ◦(JQK(X)⊗τ◦JQ′K(X)) with the following four premises
(i) Γ /0;Γ↾fn(Q)⊢ JQK(fn(Q)), (ii) Γ /0;Γ↾fn(Q′)⊢ JQ′K(fn(Q′)), (iii) Γ↾fn(Q′);Γ↾Y⊢
τ, and (iv)(Γ↾ fn(Q)),(Γ↾Y);Γ ⊢ σ. (i) and (ii) imply (1) and (2), respectively,
by the induction hypothesis, Lemma 6, and Weakening.τ andσ are immaterial
because when using Weakening we pick the “right” types. Thus, we have estab-
lishedΓ ⊢ Q : ♦ andΓ ⊢ Q′ : ♦ so by the rule for parallel composition we obtain
Γ ⊢ Q | Q′ : ♦, as required. �

37

