
Preliminary Proceedings
15th International Workshop on
Expressiveness in Concurrency

EXPRESS’08
Toronto, Canada
23 August 2008

Daniele Gorla (Università di Roma “La Sapienza”)
Thomas Hildebrandt (IT University of Copenhagen)
editors

IT University Technical Report Series TR-2008-108

ISSN 1600–6100 August 2008

Copyright c© 2008, Daniele Gorla (Università di Roma “La Sapienza”)
Thomas Hildebrandt (IT University of Copenhagen)
editors

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-181-6

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Contents

Preface ii

Program Committee iii

Subreferees iii

Michele Bugliesi and Riccardo Focardi (joint Express/SecCo invited talk)
Security Abstractions and Adversarial Models in Distributed Communications 1

Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman,
and Andrzej Wasowski
EXPTIME-complete Decision Problems for Modal and Mixed Specifications 3

Jos C. M. Baeten, Pieter J. L. Cuijpers, and Paul J. A. van Tilburg
A Basic Parallel Process as a Parallel Pushdown Automaton . 17

Roberto M. Amadio
On convergence-sensitive bisimulation and the embedding of CCS in timed CCS 30

Sibylle Fröschle
Adding Branching to the Strand Space Model . 42

Gianluigi Zavattaro
Expressiveness Issues in Calculi for Biochemistry . 58

Jens Chr. Godskesen
A Calculus for Mobile Ad-hoc Networks with Static Location Binding 60

Filippo Bonchi, Fabio Gadducci, and Giacoma V. Monreale
Labeled transitions for mobile ambients (as synthesized via a graphical encoding) 75

Mikkel Bundgaard, Jens Chr. Godskesen, Bjørn Haagensen, and Hans Hüttel
Decidable Fragments of a Higher Order Calculus with Locations . 92

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto Zunino
Hard life with weak binders . 107

i

Preface

The EXPRESS workshops aim at bringing together researchers interested in the relations between
various formal systems, particularly in the field of Concurrency. More specifically, they focus on
the comparison between programming concepts (such as concurrent, functional, imperative, logic
and object-oriented programming) and between mathematical models of computation (such as
process algebras, Petri nets, event structures, modal logics, rewrite systems etc.) on the basis of
their relative expressive power.

The EXPRESS workshops were originally held as meetings of the HCM project EXPRESS,
which was active with the same focus from January 1994 till December 1997. The first three
workshops were held respectively in Amsterdam (1994, chaired by Frits Vaandrager), Tarquinia
(1995, chaired by Rocco De Nicola), and Dagstuhl (1996, co-chaired by Ursula Goltz and Rocco
De Nicola). EXPRESS’97, which took place in Santa Margherita Ligure and was co-chaired by
Catuscia Palamidessi and Joachim Parrow, was organized as a conference with a call for papers and
a significant attendance from outside the project. EXPRESS’98, co-chaired by Ilaria Castellani
and Catuscia Palamidessi, was held as a satellite workshop of the CONCUR’98 conference in
Nice. Every year since then, EXPRESS has been a satellite workshop of the CONCUR conference.
EXPRESS’99, co-chaired by Ilaria Castellani and Björn Victor, was hosted by the CONCUR’99
conference in Eindhoven. The EXPRESS’00 workshop, co-chaired by Luca Aceto and Björn Victor,
was held as a satellite workshop of CONCUR 2000, Pennsylvania State University, USA. The
EXPRESS’01 workshop, co-chaired by Luca Aceto and Prakash Panangaden, was held at BRICS,
Aalborg University as a satellite of CONCUR’01. The EXPRESS’02 workshop, co-chaired by Uwe
Nestmann and Prakash Panangaden, was held at Brno University as a satellite of CONCUR’02.
The EXPRESS’03 workshop, co-chaired by Flavio Corradini and Uwe Nestmann, was co-located
with CONCUR ’03, Marseille, France. The EXPRESS ’04 workshop, co-chaired by Jos Baeten
and Flavio Corradini, was co-located with CONCUR ’04, London, Great Britain. The EXPRESS
’05 workshop, co-chaired by Jos Baeten and Iain Phillips, was co-located with CONCUR ’05, San
Francisco, USA. The EXPRESS ’06 workshop, co-chaired by Roberto Amadio and Iain Phillips,
was co-located with CONCUR ’06, Bonn, Germany. The EXPRESS ’07 workshop, co-chaired by
Roberto Amadio and Thomas Hildebrandt, was co-located with CONCUR ’07, Lissabon, Portugal.

This year EXPRESS is co-located with CONCUR ’08, held in Toronto. In response to the call
for papers, we received one short paper and 12 full papers. The program committee selected 8 of
the full papers for presentation at the workshop. In addition, the workshop contains two invited
presentations, by Michele Bugliesi (invited jointly with the SECCO workshop) and Gianluigi Za-
vattaro. The selected full papers and abstracts for the invited talks appear in these preliminary
proceedings. We would like to thank the authors of the submitted papers, the invited speakers, the
members of the program committee, and their subreferees for their contribution to both the meet-
ing and this volume. Also we thank the CONCUR organising committee for hosting EXPRESS ’08,
and Richard Trefler for the local organization of the workshops and arranging the printing of these
preliminary proceedings, which were compiled by Espen Højsgaard. The final proceedings will
become available electronically at Elsevier’s web site http://www.elsevier.com/locate/entcs.

The editors

Thomas Hildebrandt (IT University of Copenhagen)
Daniele Gorla (Università di Roma “La Sapienza”)

ii

EXPRESS 2008 Program Committee

Julian Bradfield, Edinburgh
Daniele Gorla (co-chair), Rome
Thomas Hildebrandt (co-chair), Copenhagen
Anna Ingólfsdóttir, Reykjavik
Alan Jeffrey, Bell-Labs, USA
Bas Luttik, Eindhoven

Sergio Maffeis, London
Gethin Norman, Oxford
Peter Selinger, Dalhousie
Frank Valencia, Paris
Daniele Varacca, Paris

EXPRESS 2008 Subreferees

Luca Aceto
Jesus Aranda
Silvio Capobianco
Marco Carbone
Pierre-Malo Denilou
Ton van Deursen
Murdoch Gabbay

Carlos Olarte
David Parker
Jorge Perez
Jon Sneyers
Martin Sulzmann
Emilio Tuosto

iii

EXPRESS 2008 Preliminary Version

Security Abstractions and Adversarial Models
in Distributed Communications

(Abstract)

Michele Bugliesi 1 and Riccardo Focardi 2

Dipartimento di Informatica
Università Ca’ Foscari di Venezia

Security in distributed systems is notoriously hard to achieve due to the vari-
ety of tools and techniques available to an attacker interfering with/eavesdropping
on/interrupting the communication links among the remote system components.
The inherent difficulty in achieving the desired level of security creates a tension
between two conflicting requirements in the design and specification of such system.
One the one side, one must be very precise, and formal, in the specification of the
security measures adopted to protect against the threats to which such systems are
exposed. At the same time, however, one must be able to abstract away from such
details and focus instead on the functional properties expected of the system.

In the literature on process calculi, this tension has generated a range of ap-
proaches to the specification of distributed system solutions, with two extremes: at
one end, we find specification that draw on low-level cryptographic primitives as
in the spi or applied-pi calculi, while on the other end lie specifications based on
the pi-calculus, which assume very abstract, and hard-to-implement, mechanisms
to secure communications by hiding them on private channels. A more recent line
of research follows a different approach, aimed at identifying security primitives
adequate as high-level programming abstractions, and at the same time well-suited
for security analysis and verification in adversarial settings.

Following this more recent trend, we investigate a process calculus that that tries
to strike a new balance between the formal simplicity deriving from high-level ab-
stractions and the flexibility and expressive power required for the specification and
implementation of realistic network applications. The calculus is based on security
abstractions that support concise, high-level programming idioms for distributed
security-sensitive applications, and at the same time are powerful enough to ex-

1 Email: bugliesi@dsi.unive.it
2 Email: focardi@dsi.unive.it

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Bugliesi, Focardi

press a full-fledged adversarial setting. Drawing on this calculus, we will look at
reasoning methods for security based on the long-established practice by which secu-
rity properties are defined in terms of behavioral equivalences, and develop powerful
up-to techniques to provide simple co-inductive proofs. We then contrast various
adversarial models corresponding to different attacker’s capabilities, compare their
relative expressive power and study the relative strength of the corresponding be-
havioral equivalences for security.

This is a continuation of our initial work in [1].

References

[1] Bugliesi, M. and R. Focardi, Language based secure communication, in: 21st IEEE Computer Security
Foundation Symposium (2008), pp. 3–16.

2

EXPRESS 2008 Preliminary Version

EXPTIME-complete Decision Problems for
Modal and Mixed Specifications 1

Adam Antonik and Michael Huth2,3

Department of Computing, Imperial College London, United Kingdom

Kim G. Larsen and Ulrik Nyman4,5

Department of Computer Science, Aalborg University, Denmark

Andrzej Wąsowski6

IT University of Copenhagen, Denmark

Abstract

Modal and mixed transition systems are formalisms allowing mixing of over- and under-approximation in
a single specification. We show EXPTIME-completeness of three fundamental decision problems for such
specifications: whether a set of modal or mixed specifications has a common implementation, whether a
sole mixed specification has an implementation, and whether all implementations of one mixed specification
are implementations of another mixed or modal one. These results are obtained by a chain of reductions
starting with the acceptance problem for linearly bounded alternating Turing machines.

1 Introduction

Behavioral models capture actual, desired or required system behavior and can
so serve as documentation, specification or as the basis of analysis and validation
activities. Formal behavioral models — of which we mention process algebras, Petri
nets and labelled transition systems — bring a high degree of rigor and dependability
to validation and verification activities.

1 Huth and Antonik were partially supported by the UK EPSRC projects Efficient Specification Pattern
Library for Model Validation EP/D50595X/1 and Complete and Efficient Checks for Branching-Time
Abstractions EP/E028985/1. Wąsowski was partially funded by CISS—Center for Embedded Software
Systems, Aalborg University
2 aa1001@doc.imperial.ac.uk
3 mrh@doc.imperial.ac.uk
4 kgl@cs.aau.dk
5 ulrik@cs.aau.dk
6 wasowski@itu.dk

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

aa1001@doc.imperial.ac.uk
mrh@doc.imperial.ac.uk
kgl@cs.aau.dk
ulrik@cs.aau.dk
wasowski@itu.dk

Antonik et al.

Often one has to deal with more than one behavioral model at a time. For
example, in requirement elaboration one may have several versions of a model, in
component-based design one may have models that each focus on a different aspect
of the system, and in formal verification one may have a system model accompanied
by models that represent either desired features or genuinely faulty behavior. In
each of these cases the modeller may want to have assurance that this collection of
models is consistent. If versions of models are inconsistent with each other, this may
reveal important implementation trade-offs. If all aspect models are inconsistent,
their combination is not implementable. If a system model is inconsistent with all
members of a given set of fault models, the system will not exhibit any of these
flaws. Finally if a system model is consistent with a set of feature models, then the
system will be able to actually implement all these features.

A related concept is the consistency of a single behavioral model. If models serve
as specifications, their inconsistency suggests that the specification cannot be imple-
mented. Conversely, a consistent model boosts our confidence of implementability
and may even allow code-generation of such an implementation.

The stepwise-refinement paradigm proposes to write specifications as models and
to then repeatedly refine such models until an implementation has been realized. In
a thorough interpretation, refinement is decreasing the set of possible implementa-
tions: only implementations that were possible before the refinement step are still
possible thereafter, but not necessarily all of them anymore.

This paper is devoted to studying the exact computational complexity of these
three decision problems; whether finitely many models are consistent, whether a
single model is consistent, and whether one model thoroughly refines another. The
actual models we study are mixed specifications — stateful models with allowed and
required transitions, well recognized as a formal foundation for system specification
and abstraction alike [24,18,25,5,22,23,8,9,21,20]. We show that

• deciding whether finitely many modal or mixed specifications are consistent is
EXPTIME-complete in the sum of the sizes of these specifications

• deciding whether one mixed specification is consistent is EXPTIME-complete in
the size of that specification

• deciding whether one mixed specification thoroughly refines another mixed spec-
ification is EXPTIME-complete in the sum of their sizes.

Interestingly, checking the consistency of 100 mixed specifications with a few
states each can be dramatically more complex than checking the consistency of a
few mixed specifications with 100 states each. This is in striking contrast to the
situation when all mixed specifications are fully refined (have identical required and
allowed behaviors). In that case, consistency checks reduce to pairwise bisimilarity
checks, which can be performed in polynomial time.

Our complexity results motivate future research that aims to either approximate
these three decision problems soundly and efficiently, or that identifies sub-classes
of specifications for which these decision problems are less complex.

We proceed by introducing the necessary background on alternating Turing ma-
chines, specifications, and their decision problems in Section 2. In Section 3 state-of-
the-art bounds for these problems are reported. The new EXPTIME-completeness

4

Antonik et al.

results are given in Section 4. Section 5 reflects on a remaining open complexity gap
for a special kind of mixed specifications, modal ones. We conclude in Section 6.

Related work
We refer to our recent overview [2] for a full account of related work. The

present paper primarily improves on the results of [3], which are discussed in detail
in Section 3. The relation of this work to generalized model checking [4] is detailed
in Section 5.

In [13] a superpolynomial algorithm is given, which establishes common imple-
mentation for k > 1 modal specifications. The algorithm is exponential in k, but
polynomial if k is fixed. It computes a common implementation if one exists. These
upper bounds follow also from the polynomial algorithm for consistency checking
of a conjunction of disjunctive modal transition systems, as studied in [25].

In [14] Hussain and Huth present an example of two modal specifications that
have a common implementation but no greatest common implementation.

Fischbein et al. [10] use modal specifications for behavioral conformance checking
of products against specifications of product families. They propose a new thorough
refinement whose implementations are defined through a generalization of branching
bisimulation. The thorough refinement obtained in this manner is finer than weak
refinement, and argued to be more suitable for conformance checking.

2 Background

Let us begin with a definition of the decision problem used in the main proof
of this paper. An Alternating Turing Machine [6], or an ATM, is a tuple T =
(Q,Γ, δ, q0,mode), where Q is a non-empty finite set of control states, Γ is an al-
phabet of tape symbols, null 6∈ Γ is a special symbol denoting empty cell contents,
δ : Q× (Γ∪ {null})→ P(Q× Γ× {l, r}) is a transition relation, q0 ∈ Q is the initial
control state, and mode : Q→ {Univ,Exst} is a labeling of control states as respec-
tively universal or existential. Universal and existential states with no successors
are called accepting and rejecting states (respectively). Each ATM T has an infinite
tape of cells with a leftmost cell. Each cell can store one symbol from Γ. A head
points to a single cell at a time, which can then be read or written to. The head
can then move to the left or right: (q′, a′, r) ∈ δ(q, a), e.g., says “if the head cell (say
c) reads a at control state q, then a successor state can be q′, in which case cell c
now contains a′ and the head is moved to the cell on the right of c.” The state of
the tape is an infinite word over Γ ∪ {null}.

Figure 1 presents an example of an ATM T over a binary alphabet Γ = {0, 1}
where arrows q (a,a′,d)−−−−−→ q′ denote (q′, a′, d) ∈ δ(q, a). The initial control state e is an
existential one, and both ui control states are universal.

Configurations of an ATM T are triples 〈q, i, τ〉 where q ∈ Q is the current control
state, the head is on the ith cell from the left, and τ ∈ (Γ∪null)ω is the current tape
state. For input w ∈ Γ∗, the initial configuration is 〈q0, 1, wnullω〉. The recursive
and parallel execution of all applicable 7 transitions δ from initial configuration

7 Transitions (, , , , l) are not applicable in configurations 〈 , 1, 〉 as the head cannot move over the left

5

Antonik et al.

e u1 u2(1, 1, r) (1, 1, r)

(1, 1, r)

(0, 0, r)

(0, 1, l)

(0, 0, r)

δ(e, 0) = {(e, 0, r)}

δ(e, 1) = {(e, 1, r), (u1, 1, r)}

δ(u1, 0) = {(u1, 1, l), (u1, 0, r)}

δ(u1, 1) = {(u2, 1, r)}

δ(u2, 0) = δ(u2, 1) = {}

Fig. 1. The transition relation of an ATM as a labelled graph and a function.

〈q0, 1, wnullω〉 yields a computation tree T〈T,w〉. We say that T accepts input w iff
the tree T〈T,w〉 accepts, where the latter is a recursive definition:

• T〈T,w〉 with root 〈q, i, τ〉 and mode(q) = Exst accepts iff there is a successor
〈q′, i′, τ ′〉 of 〈q, i, τ〉 in T〈T,w〉 such that the sub-tree with root 〈q′, i′, τ ′〉 accepts

• T〈T,w〉 with root 〈q, i, τ〉 and mode(q) = Univ accepts iff for all successors 〈q′, i′, τ ′〉
of 〈q, i, τ〉 in T〈T,w〉 the sub-tree with root 〈q′, i′, τ ′〉 accepts (in particular, this is
the case if there are no such successors)

The ATM of Figure 1 accepts the regular language (0+1)∗10∗1(0+1)∗. Observe
that u2 is the only accepting state. Intuitively the part of T rooted in e accepts
the prefix (0 + 1)∗1 — the semantics of existential states is locally that of states in
non-deterministic Turing machines. The part of T rooted in u1 consumes a series
of 0 symbols until 1 is reached, which leads to acceptance. The suffix of the input
word after the last 1 is ignored. Note that the computation forks in u1 whenever a
0 is seen. However, the top branch would reach the earlier 1 eventually and accept.

An ATM T is linearly bounded iff for all words w ∈ Γ∗ accepted by T , the
accepting part of the computation tree only contains configurations 〈q, i, vnullω〉,
where the length of v ∈ Γ∗ is no greater than the length of w. That is to say,
by choosing exactly one accepting successor for each existential configuration in
T〈T,w〉, and by removing all the remaining successors and configurations unreachable
from the root, one can create a smaller tree that only contains configurations with
〈q, i, vnullω〉 where |v| ≤ |w|. We refer to such pruned computation trees simply as
“computations”.

Our notion of “linear boundedness” follows [17] in limiting the tape size to the
size of the input. This limitation does not change the hardness of the acceptance
problem (see below). In addition we assume that linearly bounded ATMs have
no infinite computations since any linearly bounded ATM can be transformed into
another linearly bounded ATM, which accepts the same language, but also counts
the number of computation steps used, rejecting any computation whose number of
steps exceeds the number of possible configurations. 8

Let ATMLB = {〈T,w〉 | w ∈ Γ∗ accepted by linearly bounded ATM T}. The
problem of deciding if for an arbitrary linearly bounded ATM T and an input w
the pair 〈T,w〉 is in ATMLB is EXPTIME-complete [6].

Let us now define the basic models of interest in our study [18,8,7]:

Definition 2.1 For a finite alphabet of actions Σ, a mixed specification M is a

boundary of the tape.
8 This is possible because ASPACE = EXPTIME [28, Thm. 10.18].

6

Antonik et al.

s0

s1 s2 s3

s4

π
π

π

π
π

M :

t0

t1 t2

t3

π
π

π

N :

Fig. 2. Mixed ((M, s0)) and modal ((N, t0)) specifications with I(M, s0)=I(N, t0) but not (N, t0)≺(M, s0).

triple (S,R2, R�), where S is a finite set of states and R2, R� ⊆ S × Σ× S are the
set of must- and may- transitions relations (respectively). A modal specification
is a mixed specification satisfying R2 ⊆ R�; all its must-transitions are also may-
transitions. A pointed mixed (respectively modal) specification (M, s) is a mixed
(modal) specification M with a designated initial state s ∈ S. The size |M | of a
mixed (modal) specification M is defined as |S |+ |R2 ∪R� |.

Refinement [18,8,7], called “modal refinement” in [21], is a co-inductive rela-
tionship between two mixed specifications that verifies that one such specification
is more abstract than the other. This generalizes the co-inductive notion of bisim-
ulation [26] to mixed specifications:

Definition 2.2 A mixed specification (N, t0) = ((SN , R2

N , R
�
N), t0) refines another

mixed specification (M, s0)=((SM , R2

M , R
�
M), s0) over the same alphabet Σ, written

(M, s0)≺(N, t0), iff there is a relation Q ⊆ SM×SN containing (s0, t0) and whenever
(s, t) ∈ Q then

(i) for all (s, a, s′) ∈ R2

M there exists some (t, a, t′) ∈ R2

N with (s′, t′) ∈ Q
(ii) for all (t, a, t′) ∈ R�N there exists some (s, a, s′) ∈ R�M with (s′, t′) ∈ Q

Deciding whether one finite-state mixed specification refines another one is in P.
For mixed specification (N, t0) and modal specification (M, s0) in Figure 2 we have
(M, s0)≺(N, t0), given by Q = {(s0, t0), (s1, t1), (s2, t2), (s3, t2), (s4, t3)}. Note that
throughout figures, solid arrows denote R2-transitions, and dashed arrows denote
R�-transitions. But we do not have (N, t0)≺(M, s0). To see this, assume that there
is a relation Q with (t0, s0) ∈ Q satisfying the properties in Definition 2.2. Then
from (s0, π, s2) ∈ R�M we infer that there must be some x with (t0, π, x) ∈ R�N
and (x, s2) ∈ Q. In particular, x can only be t1 or t2. If x is t1, then since
(s2, π, s4) ∈ R�M and (t1, s2) ∈ Q there has to be some R�N transition out of t1,
which is not the case. If x is t2, then (t2, π, t3) ∈ R2

N and (t2, s2) ∈ Q imply that
there is some R2

M transition out of s2, which is not the case. In conclusion, there
cannot be such a Q and so (N, t0) 6≺(M, s0).

Labeled transition systems over an alphabet Σ are pairs (S,R) where S is a non-
empty set of states and R ⊆ S×Σ×S is a transition relation. We identify labelled
transition systems (S,R) with modal specifications (S,R,R). The set of implemen-
tations I(M, s) of a mixed specification (M, s) are all pointed labelled transition
systems (T, t) refining (M, s). Note that I(M, s) may be empty in general, but is
guaranteed to be non-empty if M is a modal specification.

7

Antonik et al.

Definition 2.3 Let (N, t) and (M, s) be pointed mixed specifications. As in [21] we
define thorough refinement (M, s)≺th(N, t) to be the predicate I(N, t) ⊆ I(M, s).

Refinement approximates this notion: (M, s)≺(N, t) implies (M, s)≺th(N, t)
since refinement is transitive. The converse is known to be false [16,29,27]; Fig-
ure 2 provides a counterexample.

We shall now formally define the decision problems informally stated above:

Common implementation (CI): given k > 1 modal or mixed specifications (Mi, si),
is the set

⋂k
i=1 I(Mi, si) non-empty?

Consistency (C): Is I(M, s) non-empty for a modal or mixed specification (M, s)?

Thorough refinement (TR): Does a mixed specification (N, t) thoroughly refine a
mixed specification (M, s), i.e., do we have I(N, t) ⊆ I(M, s)?

As far as these decision problems are concerned, the restriction to finite imple-
mentations, which follows from restricting our definitions to finite specifications,
causes no loss of generality, as already explained in [3]. A mixed specification
(M, s) is consistent in the infinite sense iff its characteristic modal mu-calculus
formula Ψ(M,s) [15] is satisfiable. Appealing to the small model theorem for mu-
calculus, Ψ(M,s) is satisfiable iff it is satisfiable over finite-state implementations.
We can reason in a similar manner about common implementation, which justifies
the restriction to finite-state specifications and implementations.

Throughout this paper we work with Karp reductions, many-one reductions
computable by deterministic Turing machines in polynomial time. This choice is
justified since we reduce problems that are EXPTIME-complete.

3 Current Bounds

In [3], the three decision problems CI, C, and TR were studied for mixed and modal
specifications. The results of [3] are summarized in Table 1. Two reductions were
given in [3] that we appeal to here:

• a reduction of CI for modal specifications to C for mixed specifications
• a reduction of C for mixed specifications to TR for mixed specifications.

EXPTIME-hardness of CI for modal specifications would thus render EXPTIME-
completeness of the decision problems CI, C, and TR for mixed specifications. We

Table 1
A summary given in [3] of the results provided in [3].

Modal specifications Mixed specifications

Common impl. PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

Consistency trivial PSPACE-hard, EXPTIME

Thorough ref. PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

turn to this EXPTIME-hardness proof in the next section.

8

Antonik et al.

p〈1,0〉 p〈1,1〉
(0, 1, 1,)

(1, 1, 0,)
(0, 1, 0,)

Σ− {(, 1, ,)}
(1, 1, 1,)

Σ− {(, 1, ,)}

Fig. 3. Specification M1 of the first tape cell in our running example, assuming w1 = 0.

4 EXPTIME-Completeness Results

Theorem 4.1 Let {(Ml, sl)}l∈{1...k} be a finite family of modal specifications over
the same action alphabet Σ. Deciding whether there exists an implementation (I, i)
such that (Ml, sl)≺(I, i) for all l = 1 . . . k is EXPTIME-hard.

We prove Theorem 4.1 by demonstrating a PTIME reduction from ATMLB.
Given an ATM T and an input word w of length n we synthesize a collection of
(pointed) modal specifications MT

w = {Mi | 1 ≤ i ≤ n} ∪ {Mhead,Mctrl,Mexist}
whose sum of sizes is polynomial in n and in the size of T , such that T accepts w
iff there exists an (pointed) implementation I refining all members of MT

w.
Specifications Mi, Mhead, Mctrl, and Mexist model tape cell i, the current head

position, the finite control of T , and acceptance (respectively). Common implemen-
tations of these specifications model action synchronization to agree on what symbol
is read from the tape, what is the head position, what is the symbol written to the
tape, in what direction the head moves, and what are the transitions taken by the
finite control, and whether a computation is accepting. The achieved effect is that a
common refinement of these specifications corresponds to an accepting computation
of T on input w. More precisely, any common implementations will correspond to
different unfoldings of the structure of the finite control into a computation tree
based on the content of the tape cells and the tape head position.

We now describe the specifications in MT
w both formally and through our run-

ning example in Figure 1. All specifications in MT
w have the same alphabet 9

Σ = {π,∃} ∪ (Γ× {1..n} × Γ× {l, r})

where ∃ and π are fresh symbols whose transitions encode logical constraints like
disjunction and conjunction. All other actions are of the form (a1, i, a2, d) and
denote that the machine’s head is over the ith cell of the tape, which contains the
a1 symbol, and that it shall be moved one cell in the direction d after writing a2 in
the current cell. The alphabet for our running example is

{π,∃} ∪ ({0, 1} × {1..n} × {0, 1} × {l, r}) .

Encoding Tape Cells.
For each tape cell i, specification Mi represents the possible contents of cell i.

It has |Γ| states {p〈i,a〉}a∈Γ and initial state p〈i,wi〉, representing the initial contents

9 A stricter and more complex reduction to CI of modal specifications over a binary alphabet is possible
by encoding actions in binary form.

9

Antonik et al.

p1 p2 p3 p4
(, 1, , r)

(, 2, , l)

(, 2, , r)

(, 3, , l)

(, 3, , r)

(, 4, , l)
{π,∃} {π,∃} {π,∃} {π,∃}

Fig. 4. Example of the head specification Mhead assuming |w| = 4.

of the ith cell. There are no must-transitions:

R2 = ∅

The may-transition relation connects any two states:

for all symbols a1, a2 in Γ we have (p〈i,a1〉, (a1, i, a2,), p〈i,a2〉) ∈ R�

Changes in cells other than i are also consistent with Mi:

for all a ∈ Γ if i 6=j, 1≤j≤ n, then (p〈i,a〉, (, j, ,), p〈i,a〉) ∈ R�

Finally the π and ∃ actions may be used freely as they do not affect the contents
of the cell:

(p〈i,a〉, π, p〈i,a〉) ∈ R� and (p〈i,a〉,∃, p〈i,a〉) ∈ R� for any a∈Γ

There are no more may-transitions in Mi.
Figure 3 presents a specification M1 for the leftmost cell of an ATM over a

binary alphabet. In figures we visualize multiple transitions with the same source
and target as single arrows labeled with sets of actions. Several labels placed by the
same arrow denote a union of sets. Wildcards (the ’ ’ symbol) are used to generate
sets of actions that match the pattern in the usual sense.

Encoding The Head.
Specification Mhead, which tracks the current head position, has n states labeled

p1 to pn — one for each possible position. Initially, the head occupies the leftmost
cell, so p1 is the initial state of Mhead. There are no must-transitions:

R2 = ∅

May-transitions are consistent with any position changes based on the direction
encoded in observed actions. More precisely,

for every position 1≤ i<n we have (pi, (, i, , r), pi+1) ∈ R�

for every 1<i≤n we have (pi, (, i, , l), pi−1) ∈ R�

The π and ∃ transitions may again be taken freely, but in this case without moving
the machine’s head:

(pi, π, pi) ∈ R� and (pi, ∃, pi) ∈ R� for each 1 ≤ i ≤ n

There are no more may-transitions in Mhead. Note that the head of T is only
allowed to move between the first and nth cell in any computation. Figure 4 shows
specification Mhead for our running example.

10

Antonik et al.

Encoding The Finite Control.
Specifications Mctrl and Mexist model the finite control of the ATM T . Specifica-

tion Mexist is indepenendent of the ATM T . It is defined in Figure 5. It ensures that
a π-transition is taken after every ∃-transition. Specification Mctrl mimics the finite
control of T almost directly. Each control state qs ∈ Q is identified with a state in
Mctrl of the same name. Additional internal states of Mctrl encode existential and
universal branching:

for each qs a state qs∃ with two ∃-transitions (qs,∃, qs∃) ∈ R� ∩R2 is added

Dependent on mode(qs), additional states and transitions are created:

• If mode(qs)=Exst: for each 1≤ i≤n, aold∈Γ, and for each transition (qt, anew, d)∈
δ(qs, aold) add a may π-transition from qs∃ to a new intermediate state uniquely
named 〈qsaoldianewdqt〉, and add a must-transition labeled (aold, i, anew, d) from
that intermediate state to qt. Formally:

(qs∃, π, 〈qsaoldianewdqt〉) ∈ R�

(〈qsaoldianewdqt〉, (aold, i, anew, d), qt) ∈ R�∩R2 .

Figure 6 shows this encoding for the state e of our running example.

• If mode(qs)=Univ: for each 1≤ i≤n, aold∈Γ, and for each transition (qt, anew, d)∈
δ(qs, aold) add a may π-transition from qs∃ to an intermediate state named 〈qsaoldi〉,
and add a must-transition labeled (aold, i, anew, d) from the intermediate state
〈qsaoldi〉 to qt. Formally:

(qs∃, π, 〈qsaoldi〉) ∈ R� , (〈qsaoldi〉, (aold, i, anew, d), qt) ∈ R�∩R2 .

The initial state of Mctrl is its state named q0, where q0 is the initial state of T .
Figure 7 demonstrates the encoding of the state u1 of the ATM in Figure 1. The
complete specification Mctrl for our running example is shown in Figure 8.

Notice how the two specifications Mctrl and Mexist cooperate to enforce the
nature of alternation. For example, for an existential state, Mctrl forces every im-
plementation to have an ∃-transition, which may be followed by a π-transition.
Simultaneously Mexist allows an ∃-transition but requires a π-transition. Effectively
at least one of the π branches from Mctrl must be implemented (which is an encoding
of a disjunction).

The complete family of modal specifications MT
w contains all the specifications

described above:

MT
w = {Mi | 1 ≤ i ≤ n} ∪ {Mhead,Mctrl,Mexist}

Since the sum of their sizes is bounded by a polynomial in n and in the size of T ,
it remains to prove the following lemma:

Lemma 4.2 For each linearly bounded ATM T and an input w, T accepts w iff the
set of modal specifications MT

w has a common implementation.

11

Antonik et al.

The proof of Lemma 4.2 will appear in the final version of the paper. We mention
here some points of interest. From an accepting computation tree T〈T,w〉 one can
construct a specification N by structural induction on T〈T,w〉. This N effectively
adds to T〈T,w〉 some new states and labeled transitions so that the computation
encoded in T〈T,w〉 then interlocks with the action synchronization of specifications
in MT

w. Since N is of the form (S,R,R) it suffices to show that N is a common
refinement of all members in MT

w. This is a lengthy but routine argument.
For the converse, a common implementation ofMT

w is cycle-free by our assump-
tion that T never repeats a configuration. So that pointed common implementation
is a DAG and we use structural induction on that DAG to synthesize an accepting
computation tree of T for input w. This makes use of the fact that the head of T
never reaches a cell that was not initialized by input w.

Further results.
Theorem 4.1 states EXPTIME-hardness of CI for modal specifications. To-

gether with the upperbound given in [3] we conclude that this bound is tight: CI is
EXPTIME-complete. Moreover, by applying the reduction of CI for modal specifi-
cations to C for mixed specifications [3] we conclude that C for mixed specifications
is EXPTIME-complete. Furthermore by appealing to the reduction of C for mixed
specifications to TR for mixed specifications [3], we obtain that TR for mixed spec-
ifications is EXPTIME-complete as well.

Corollary 4.3 The complexities shown in Table 2 are correct.

5 Discussion

One complexity gap remains in Table 2, that for thorough refinement of modal spec-
ifications. Despite having made an extensive effort we can presently show neither
EXPTIME-hardness nor membership in PSPACE for this problem.

In this context, it is useful to state that thorough refinement can be reduced
to certain validity checks. First, as observed in [3], mixed and modal specifications
(M, s) have characteristic formulæ Ψ(M,s) [15] in the modal µ-calculus such that
pointed labeled transition systems (L, l) are implementations of (M, s) iff (L, l)
satisfies Ψ(M,s). This was already observed in [19] for such formulæ written in
vectorized form. So the thorough refinement problem of whether (M, s)≺th(N, t)
reduces to a validity check of ¬Ψ(N,t) ∨Ψ(M,s). This raises the question of whether
the validity problem for formulae given in the vectorized form of [19] is in PSPACE
or whether it is EXPTIME-hard; that problem is known to be in EXPTIME (see

Table 2
Tabular summary of the results provided in this paper (in bold).

Modal specifications Mixed specifications

Common impl. EXPTIME-complete EXPTIME-complete

Consistency trivial [24] EXPTIME-complete

Thorough ref. PSPACE-hard, EXPTIME [3] EXPTIME-complete

12

Antonik et al.

for example [3]).
Second, we can reduce thorough refinement to a universal version of gener-

alized model checking [4]. In loc. cit. Bruns and Godefroid consider judgments
GMC(M, s, ϕ) which are true iff there exists an implementation of (M, s) satisfy-
ing ϕ. They remark that this generalizes both model checking (when (M, s) is an
implementation) and satisfiability checking (when (M, s) is such that all labeled
transition systems refine it). This existential judgment has a universal dual (see
e.g. [1]), VAL(M, s, ϕ) which is true iff all implementations of (M, s) satisfy ϕ, thus
generalizing model checking and validity checking. The former judgment is useful
for finding counter-examples, the latter one for verification; e.g. both uses can be
seen in the CEGAR technique for program verification of [11]. Since (M, s)≺th(N, t)
directly reduces to VAL(N, t,Ψ(M,s)), it would be of interest to understand the ex-
act complexity of VAL(N, t, ϕ) for modal specifications (N, t) when ϕ ranges over
characteristic formulæ Ψ(M,s) in vectorized form.

We remark that by translations and completeness results presented in [12] it
follows that all complexity bounds presented here carry over to partial Kripke struc-
tures and Kripke modal transition systems.

6 Conclusion

We have discussed three fundamental decision problems for modal and mixed spec-
ifications: common implementation, consistency, and thorough refinement. For
modal specifications, consistency is trivially true, while thorough refinement was
previously shown to be PSPACE-hard and in EXPTIME [3]. For the remaining
decision problems we have shown here that they are all EXPTIME-complete in the
sum of the sizes of mixed or modal specifications.

We have appealed to known reductions between some of these problems [3] and,
crucially, to a new reduction of input acceptance for linearly bounded alternating
Turing machines to the existence of a common implementation for modal specifi-
cations – sketched in this extended abstract. The exact complexity of thorough
refinement for modal specifications is subject to further investigation.

References

[1] Antonik, A. and M. Huth, On the complexity of semantic self-minimization, in: Proc. AVOCS 2007,
to appear in ENTCS.

[2] Antonik, A., M. Huth, K. G. Larsen, U. Nyman and A. Wąsowski, 20 years of modal and mixed
specifications, Bulletin of EATCS (2008), available at http://processalgebra.blogspot.com/2008/
05/concurrency-column-for-beatcs-june-2008.html.

[3] Antonik, A., M. Huth, K. G. Larsen, U. Nyman and A. Wąsowski, Complexity of decision problems for
mixed and modal specifications, in: FoSSaCS’08, Lecture Notes in Computer Science 4962 (2008).

[4] Bruns, G. and P. Godefroid, Generalized model checking: Reasoning about partial state spaces, in:
C. Palamidessi, editor, CONCUR, Lecture Notes in Computer Science 1877 (2000), pp. 168–182.

[5] Cerans, K., J. C. Godskesen and K. G. Larsen, Timed modal specification - theory and tools, in: CAV
’93: Proceedings of the 5th International Conference on Computer Aided Verification (1993), pp. 253–
267.

[6] Chandra, A. K., D. Kozen and L. J. Stockmeyer, Alternation, J. ACM 28 (1981), pp. 114–133.

13

http://processalgebra.blogspot.com/2008/05/concurrency-column-for-beatcs-june-2008.html
http://processalgebra.blogspot.com/2008/05/concurrency-column-for-beatcs-june-2008.html

Antonik et al.

[7] Clarke, E. M., O. Grumberg and D. E. Long, Model checking and abstraction, ACM Trans. Program.
Lang. Syst. 16 (1994), pp. 1512–1542.

[8] Dams, D., “Abstract Interpretation and Partition Refinement for Model Checking,” Ph.D. thesis,
Eindhoven University of Technology (1996).

[9] Dams, D., R. Gerth and O. Grumberg, Abstract interpretation of reactive systems, ACM Trans.
Program. Lang. Syst. 19 (1997), pp. 253–291.

[10] Fischbein, D., S. Uchitel and V. Braberman, A foundation for behavioural conformance in software
product line architectures, in: ROSATEA ’06 Proceedings (2006), pp. 39–48.

[11] Godefroid, P. and M. Huth, Model checking vs. generalized model checking: Semantic minimizations
for temporal logics, in: LICS (2005), pp. 158–167.

[12] Godefroid, P. and R. Jagadeesan, On the expressiveness of 3-valued models, in: L. D. Zuck, P. C. Attie,
A. Cortesi and S. Mukhopadhyay, editors, VMCAI, Lecture Notes in Computer Science 2575 (2003),
pp. 206–222.

[13] Hussain, A. and M. Huth, On model checking multiple hybrid views, Technical report, Department of
Computer Science, University of Cyprus (2004), TR-2004-6.
URL http://pubs.doc.ic.ac.uk/hybrid-logic-multiple-views/

[14] Hussain, A. and M. Huth, Automata games for multiple-model checking, Electr. Notes Theor. Comput.
Sci. 155 (2006), pp. 401–421.

[15] Huth, M., Labelled transition systems as a Stone space, Logical Methods in Computer Science 1 (2005),
pp. 1–28.
URL http://pubs.doc.ic.ac.uk/labelled-systems-metrics-Stone/

[16] Hüttel, H., “Operational and Denotational Properties of Modal Process Logic,” Master’s thesis,
Computer Science Department. Aalborg University (1988).

[17] Laroussinie, F. and J. Sproston, State explosion in almost-sure probabilistic reachability, Inf. Process.
Lett. 102 (2007), pp. 236–241.

[18] Larsen, K. G., Modal specifications., in: J. Sifakis, editor, Automatic Verification Methods for Finite
State Systems, Lecture Notes in Computer Science 407 (1989), pp. 232–246.

[19] Larsen, K. G., Modal specifications., in: J. Sifakis, editor, Automatic Verification Methods for Finite
State Systems, Lecture Notes in Computer Science 407 (1989), pp. 232–246.

[20] Larsen, K. G., U. Nyman and A. Wąsowski, Modal I/O automata for interface and product line theories.,
in: R. D. Nicola, editor, ESOP, Lecture Notes in Computer Science 4421 (2007), pp. 64–79.

[21] Larsen, K. G., U. Nyman and A. Wąsowski, On modal refinement and consistency, in: L. Caires and
V. T. Vasconcelos, editors, CONCUR, Lecture Notes in Computer Science 4703 (2007), pp. 105–119.

[22] Larsen, K. G., B. Steffen and C. Weise, A constraint oriented proof methodology based on modal
transition systems, in: Tools and Algorithms for Construction and Analysis of Systems, 1995, pp.
17–40.
URL citeseer.ist.psu.edu/article/larsen95constraint.html

[23] Larsen, K. G., B. Steffen and C. Weise, Fischer’s protocol revisited: a simple proof using modal
constraints, Lecture Notes in Computer Science 1066 (1996), pp. 604–615.
URL citeseer.ist.psu.edu/larsen96fischers.html

[24] Larsen, K. G. and B. Thomsen, A modal process logic, in: Third Annual IEEE Symposium on Logic in
Computer Science (LICS) (1988).

[25] Larsen, K. G. and L. Xinxin, Equation solving using modal transition systems, in: Fifth Annual IEEE
Symposium on Logics in Computer Science (LICS), 4–7 June 1990, Philadelphia, PA, USA, 1990, pp.
108–117.

[26] Park, D., Concurrency and automata on infinite sequences, in: Proceedings of the 5th GI-Conference
on Theoretical Computer Science (1981), pp. 167–183.

[27] Schmidt, H. and H. Fecher, Comparing disjunctive modal transition systems with a one-selecting
variant, Submitted for publication (2007).
URL http://www.informatik.uni-kiel.de/~hf/papers/Fecher07CDMTSO-Sub.pdf

[28] Sipser, M., “Introduction to the Theory of Computation,” International Thomson Publishing, 1996.

[29] Xinxin, L., “Specification and Decomposition in Concurrency,” Ph.D. thesis, Department of
Mathematics and Comnputer Science, Aalborg University (1992).

14

http://pubs.doc.ic.ac.uk/hybrid-logic-multiple-views/
http://pubs.doc.ic.ac.uk/labelled-systems-metrics-Stone/
citeseer.ist.psu.edu/article/larsen95constraint.html
citeseer.ist.psu.edu/larsen96fischers.html
http://www.informatik.uni-kiel.de/~hf/papers/Fecher07CDMTSO-Sub.pdf

Antonik et al.

x1 x2

x3

∃

π

(
,
,
,

)

Fig. 5. Specification Mexist enforces a π-transition after each ∃-transition.

u1
e

e∃

〈e010re〉

〈e020re〉

〈e030re〉

〈e040re〉

〈e111re〉

〈e121re〉

〈e131re〉

〈e141re〉

〈e111ru1〉

〈e121ru1〉

〈e131ru1〉

〈e141ru1〉

∃

π

π

π

π

π

π

π

π

π

π

π

π

(1
,1

,1
,r)

(1
,2

,1
,r)

(1,3,1,r)

(1,4,1,r)

(0,1,0,r)

(0,2,0,r)
(0,3,0,r)
(0,4,0,r)

(1,1,1,r)

(1,2,1,r)

(1,3,1,r)

(1
,4

,1
,r
)

Fig. 6. Encoding for the existential state of the running example, assuming |w| = 4.

u1 u1∃

〈u101〉

〈u102〉

〈u103〉

〈u104〉

〈u111〉

〈u112〉

〈u113〉

〈u114〉

u2

∃

π

π

π

π

(0
,1
,0
,r)(0

,1
,1

,l)

(0,1,0,r)

(0,1,1,l)

(0,1,0,r)

(0,1,1,l)

(0,1,0,r)

(0,1,1,l)

π

π

π

π

(1,1,1,r)

(1,2,1,r)

(1,3,1,r)

(1
,4

,1
,r
)

Fig. 7. Encoding for the universal state u1 of the running example, assuming |w| = 4.

15

Antonik et al.

u
1

e
e ∃

〈e
01

0r
e〉

〈e
02

0r
e〉

〈e
03

0r
e〉 〈e
04

0r
e〉

〈e
11

1r
e〉

〈e
12

1r
e〉

〈e
13

1r
e〉

〈e
14

1r
e〉

〈e
11

1r
u

1
〉

〈e
12

1r
u

1
〉

〈e
13

1r
u

1
〉

〈e
14

1r
u

1
〉

∃

π π π π π π π π

π π π π

(1
,1

,1
,r
)

(1
,2

,1
,r
)

(1
,3

,1
,r
)

(1
,4

,1
,r
)

(0
,1

,0
,r
)

(0
,2

,0
,r
)

(0
,3

,0
,r
)

(0
,4

,0
,r
)

(1
,1

,1
,r)

(1
,2

,1
,r
)

(1
,3

,1
,r
)

(1
,4

,1
,r)

u
1
∃

〈u
1
01
〉 〈u
1
02
〉

〈u
1
03
〉

〈u
1
04
〉

〈u
1
11
〉

〈u
1
12
〉

〈u
1
13
〉

〈u
1
14
〉

u
2

∃

π

π π

π

(0
,1
,0
,r
)

(0
,1

,1
,l)

(0
,1

,0
,r
)

(0
,1

,1
,l
)

(0
,1

,0
,r
)

(0
,1

,1
,l
)

(0
,1

,0
,r
)

(0
,1
,1
,l)

π π π π

(1
,1

,1
,r)

(1
,2

,1
,r
)

(1
,3

,1
,r
)

(1
,4

,1
,r)

u
2
∃

〈u
2
01
〉

〈u
2
02
〉

〈u
2
03
〉

〈u
2
04
〉

〈u
2
11
〉

〈u
2
12
〉

〈u
2
13
〉

〈u
2
14
〉

∃

π π π π π π π π

Fig. 8. The entire specification Mctrl for the example of Figure 1 assuming |w| = 4.

16

EXPRESS 2008 Preliminary Version

A Basic Parallel Process as a Parallel
Pushdown Automaton

J.C.M. Baeten1 P.J.L. Cuijpers1 P.J.A. van Tilburg1

Division of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We investigate the set of basic parallel processes, recursively defined by action prefix, interleaving, 0 and 1.
Different from literature, we use the constants 0 and 1 standing for unsuccessful and successful termination
in order to stay closer to the analogies in automata theory.
We prove that any basic parallel process is rooted branching bisimulation equivalent to a regular process
communicating with a bag (also called a parallel pushdown automaton) and therefore we can regard the
bag as the prototypical basic parallel process.
This result is closely related to the fact that any context-free process is either rooted branching bisimulation
equivalent or contrasimulation equivalent to a regular process communicating with a stack, a result that is
the analogy in process theory of the language theory result that any context-free language is the language
of a pushdown automaton.

Keywords: automata theory, process algebra, basic parallel process, parallel pushdown automaton

1 Introduction

In this paper, we study the class of basic parallel processes. This class was in-
troduced in [7] as the class of all processes that have a finite guarded recursive
specification over the small process algebraic language with 0, action prefix, choice
and parallel composition without communication (just interleaving). More work
about this class can be found in e.g. [8,11]. Some results correspond to analogous
results in formal language theory, such as the fact that every basic parallel language
can be presented as a parallel pushdown automaton (a pushdown automaton not
with a stack but with a bag, a multiset of variables).

However, there is an important difference between automata theory on the one
hand and process algebra (CCS style) on the other hand that has been mostly
neglected so far. In an automaton, for instance a non-deterministic finite automaton,
any subset of the set of states can be marked as final, and for the definition of the
language of an automaton only sequences that lead from the initial state to a final

1 Email: {j.c.m.baeten,p.j.l.cuijpers,p.j.a.v.tilburg}@tue.nl.

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Baeten et al.

state count. In this sense, successful termination in an automaton is observable. In
process algebra CCS style, the only observables are executions of actions, with 0
being the process characterized by allowing no actions at all. Sequential composition
can be defined, nevertheless, by having special ’tick’ actions that by synchronization
turn into internal actions. In process algebra ACP style, observables are action
executions and action executions leading to termination. Sequential composition
then becomes a basic operator. In both the CCS and ACP approaches, however,
termination occurring in a choice context (a terminating state with an outgoing
edge) cannot be presented accurately. This can be achieved with the introduction
of the 1 process (characterizing a process that can only terminate), resulting in a full
analogy with automata theory. Using this analogy, we can say that a regular process
is the bisimulation equivalence class of a non-deterministic finite automaton, and
the set of regular processes is exactly the set of processes given by a finite guarded
recursive specification over 0,1, action prefix and choice.

We investigated the set of context-free processes (defined with 1) in [4]. There,
the addition of 1 makes an essential difference: a process can be defined that has
unbounded branching, something that cannot be done without 1. Furthermore, we
established in [4] under what conditions a context-free process can be presented as
a pushdown automaton. In this paper, we investigate a similar result for the class
of basic parallel processes. For basic parallel processes, the added expressivity is
less spectacular (a corollary of our main theorem is that basic parallel processes
have bounded branching, even those including 1), but still, without 1 a bag process
expressed as a basic parallel process cannot be tested for being empty. In general,
adding 1 makes that the theory becomes more challenging, and in our opinion also
more interesting.

Another difference between automata theory and process theory is that pro-
cess theory allows us to make communication explicit and abstract from it modulo
branching bisimulation. In a setting with explicit communication, a pushdown au-
tomaton can be seen as a regular process communicating with a stack. Since every
context-free process can be realized in this way, and the stack is a context-free
process itself, we can look upon the stack as the prototypical context-free process.
Similarly, we show in this paper that every basic parallel process can be presented
as a regular process communicating with a bag, a multiset of data elements. Since
the bag is a basic parallel process itself, it can be seen as the prototypical basic
parallel process.

Thus, the result of [11] that every basic parallel process can be given by means
of a parallel pushdown automaton is given here in an extended setting, with the
process 1 and with explicit communication.

2 Regular Processes

Before we introduce the basic parallel processes, we first consider the notion of a
regular process and its relation to regular languages in automata theory. We start
with the definition of the notion of transition system from process theory. A finite
transition system can be thought of as a non-deterministic finite automaton. In
order to have a complete analogy, the transition systems we study have a subset of

18

Baeten et al.

states marked as final states.

Definition 2.1 (Transition system) A transition system M is a quintuple
(S,A,→, ↑, ↓) where:

(i) S is a set of states,

(ii) A is an alphabet,

(iii) → ⊆ S ×A× S is the set of transitions or steps,

(iv) ↑ ∈ S is the initial state,

(v) ↓ ⊆ S is a set of final states.

For (s, a, t) ∈ → we write s a−→ t. For s ∈ ↓ we write s↓. A finite transition system
or non-deterministic finite automaton is a transition system of which the sets S
and A are finite.

In accordance with automata theory, where a regular language is a language equiva-
lence class of a non-deterministic finite automaton, we define a regular process to be
a bisimulation equivalence class of a finite transition system. Contrary to automata
theory, it is well-known that not every regular process has a deterministic finite
transition system (i.e. a transition system for which the relation → is functional).
The set of deterministic regular processes is a proper subset of the set of regular
processes.

Next, consider the automata theoretic characterization of a regular language by
means of a right-linear grammar. In process theory, a grammar is called a recursive
specification: it is a set of recursive equations over a set of variables. A right-linear
grammar then coincides with a recursive specification over a finite set of variables in
the Minimal Algebra MA. (We use standard process algebra notation as propagated
by [2,3].)

Definition 2.2 The signature of Minimal Algebra MA is as follows:

(i) There is a constant 0; this denotes inaction, a deadlock state; other names are
δ or stop.

(ii) There is a constant 1; this denotes termination, a final state; other names are
ε, skip or the empty process.

(iii) For each element of the alphabet A there is a unary operator a. called action
prefix; a term a.x will execute the elementary action a and then proceed as x.

(iv) There is a binary operator + called alternative composition; a term x+ y will
either execute x or execute y, a choice will be made between the alternatives.

The constants 0 and 1 are needed to denote transition systems with a single state
and no transitions. The constant 0 denotes a single state that is not a final state,
while 1 denotes a single state that is also a final state.

Definition 2.3 Let V be a set of variables. A recursive specification over V with
initial variable S ∈ V is a set of equations of the form X = tX , exactly one for
each X ∈ V, where each right-hand side tX is a term over some signature, possibly
containing elements of V. A recursive specification is called finite, if V is finite.

19

Baeten et al.

We find that a finite recursive specification over MA can be seen as a right-linear
grammar. Now each finite transition system corresponds directly to a finite recursive
specification over MA, using a variable for every state. To go from a term over MA
to a transition system, we use structural operational semantics [1], with rules given
in Table 1.

1↓ a.x
a−→ x

x
a−→ x′

x+ y
a−→ x′

y
a−→ y′

x+ y
a−→ y′

x↓
x+ y↓

y↓
x+ y↓

tX
a−→ x X = tX

X
a−→ x

tX↓ X = tX
X↓

Table 1
Operational rules for MA and recursion (a ∈ A, X ∈ V).

3 Basic Parallel Processes

The class of basic parallel processes introduced by Christensen in [7] contains pro-
cesses that can interleave actions of parallel components. In [4], we established that
context-free processes can be given by recursive specifications over the Sequential
Algebra SA, which extends MA with the sequential composition operator · . In
this paper, we give parallel processes, a superset of the basic parallel processes, by
recursive specifications over the Communication Algebra CA, which extends MA
with the parallel composition operator ‖ .

Now, consider the notion of a parallel pushdown automaton. A parallel push-
down automaton is a finite automaton, but at every step it can insert a number
of elements into a bag by communicating along port i, or it can remove a single
item from the bag by communicating along port o, and take this information into
account in determining its next move. Thus, making the interaction explicit, a par-
allel pushdown automaton is a regular process communicating with a bag. In order
to model the interaction between the regular process and the bag, again we use
the Communication Algebra CA. We use a particular communication function, that
will only synchronize actions !cd and ?cd (for the same channel c ∈ {i, o} and data
element d ∈ D). The result of such a synchronization is denoted ?!cd. Furthermore,
CA contains the encapsulation operator ∂∗(), which blocks actions !id, ?id, !od and
?od, and the abstraction operator τ∗() which turns all ?!id and ?!od actions into the
internal action τ . For CA, we extend the operational rules of MA (see Table 1) with
operational rules in Table 2.

Consider the following specification:

P = 1 + P ‖ a.1.

Our first observation is that, by means of the operational rules, we derive an infi-

20

Baeten et al.

x
a−→ x′

x ‖ y a−→ x′ ‖ y
y

a−→ y′

x ‖ y a−→ x ‖ y′
x↓ y↓
x ‖ y↓

x
?cd−→ x′ y

!cd−→ y′

x ‖ y ?!cd−→ x′ ‖ y′
x

!cd−→ x′ y
?cd−→ y′

x ‖ y ?!cd−→ x′ ‖ y′

x
a−→ x′ a 6∈ {!cd, ?cd}
∂∗(x) a−→ ∂∗(x′)

x↓
∂∗(x)↓

x
?!cd−→ x′

τ∗(x) τ−→ τ∗(x′)

x
a−→ x′ a 6= ?!cd

τ∗(x) a−→ τ∗(x′)

x↓
τ∗(x)↓

Table 2
Operational rules for CA (a ∈ A, c ∈ {i, o}).

nite transition system, which moreover is infinitely branching. All the states of this
transition system are different in bisimulation semantics, and so this is in fact an
infinitely branching process. Our second observation is that this recursive specifica-
tion has infinitely many different (non-bisimilar) solutions in the transition system
model. This is because the equation is unguarded, the right-hand side contains a
variable that is not in the scope of an action-prefix operator, and also cannot be
brought into such a form. So, if there are multiple solutions to a recursive specifica-
tion, we have multiple processes that correspond to this specification. This causes
additional difficulties.

These two observations are the reason to restrict to guarded recursive specifi-
cations only. It is well-known that a guarded recursive specification has a unique
solution in the transition system model (see [6,5]), and we show later on that this
solution is also finitely branching. This restriction leads to our following definition
of the basic parallel processes, a subclass of the parallel processes given by recursive
specifications over CA.

Definition 3.1 A basic parallel process is the bisimulation equivalence class of
the transition system generated by a finite guarded recursive specification over the
Communication Algebra CA such that the process only interleaves actions and syn-
chronizes termination, but does not allow for communication to happen. That is,
only the operational rules on the top line in Table 2 are used.

In this paper, we use equational reasoning to manipulate recursive specifications.
Our finite axiomatization of transition systems of CA modulo rooted branching
bisimulation [9] uses the auxiliary operators T and | [6,10]. See Table 3.
See [3] for an explanation of the axioms.

Besides these axioms we use the Cluster Fair Abstraction Rule for (rooted)
branching bisimulation CFARb, introduced in [5,12]. For a guarded recursive spec-
ification E and the set of abstractions I ⊆ A we want to abstract from, a subset C
of the variables V is called a cluster of I in E if for all X ∈ C, the equation of X

21

Baeten et al.

x ‖ y = x T y + y T x+ x | y

0 T x = 0

1 T x = 0

a.x T y = a.(x ‖ y)

(x+ y) T z = x T z + y T z
0 | x = 0

(x+ y) | z = x | z + y | z
1 | 1 = 1

a.x | 1 = 0

!cd.x | ?cd.y = ?!cd.(x ‖ y)

a.x | b.y = 0 if {a, b} 6= {!cd, ?cd}

∂∗(0) = 0

∂∗(1) = 1

∂∗(!cd.x) = ∂∗(?cd.x) = 0

∂∗(a.x) = a.∂∗(x) if a 6∈ {!cd, ?cd}
∂∗(x+ y) = ∂∗(x) + ∂∗(y)

a.(τ.(x+ y) + x) = a.(x+ y)

x | y = y | x
x ‖ 1 = x

1 | x+ 1 = 1

(x ‖ y) ‖ z = x ‖ (y ‖ z)
(x | y) | z = x | (y | z)
(x T y) T z = x T (y ‖ z)
(x | y) T z = x | (y T z)
x T τ.y = x T y
x | τ.y = 0

τ∗(0) = 0

τ∗(1) = 1

τ∗(?!cd.x) = τ.τ∗(x)

τ∗(a.x) = a.τ∗(x) if a 6= ?!cd

τ∗(x+ y) = τ∗(x) + τ∗(y)

Table 3
Equational theory of CA (a ∈ A ∪ {τ}, c ∈ {i, o}).

in E is of the form
X =

∑
1≤k≤m

ik.Xk +
∑

1≤j≤n
Yj ,

where i1, . . . , im ∈ I ∪ {τ}, X1, . . . , Xm ∈ C, and Y1, . . . , Yn ∈ V − C. We call the
set of variables {Y1, . . . , Yn} the exits of X, denoted with U(X), and use U(C) to
refer to the exit set of the cluster C. The cluster C is called conservative if every
exit from U(C) is reachable from every variable in the cluster by doing a number
of steps from I ∪ {τ}. Now, CFARb is the following rule:

E guarded X ∈ C I ⊆ A
C is a finite conservative cluster of I in E

τ.τI(X) = τ.
∑

Y ∈U(C)

τI(Y)
.

Furthermore, we often use the aforementioned principle that guarded recursive spec-
ifications have unique solutions [5].

The given equational theory is sound and ground-complete for the model of
transition systems modulo rooted branching bisimulation [9,3]. This is the preferred
model we use, but all our reasoning in the following takes place in the equational
theory, so is model-independent provided the models preserve validity of the axioms,
unique solutions for guarded recursive specifications and CFARb.

Using the axioms, any guarded recursive specification can be brought into
Greibach normal form [7]:

X =
∑
i∈IX

ai.ξi (+ 1).

In this form, every right-hand side of every equation consists of a number of sum-
mands, indexed by a finite set IX (the empty sum is 0), each of which is 1, or of
the form ai.ξi, where ξi is the parallel composition of a number of variables (the
empty multiset is 1). For a recursive specification in Greibach normal form, every
state of the transition system is given by a multiset of variables just like in [11].

22

Baeten et al.

Note that we can take the index sets associated with the variables to be disjoint.
As an example, we consider the important basic parallel process bag. Suppose D is
a finite data set, then we define the following actions in A, for each d ∈ D:

• ?id: insert (push) d into the bag over the input channel i;
• !od: remove d from the bag over the output channel o.

Now the recursive specification is as follows:

B = 1 +
∑
d∈D

?id.(B ‖ !od.1).

In order to see that the above process indeed defines a bag, define processes Bµ,
denoting the bag with contents µ ∈ D∗, as follows: the first equation for the empty
bag, the second for any nonempty bag, with isolated element d and rest bag µ

(denoted with {d}] µ, but abbreviated with the notation dµ from here on):

B∅ = B,

Bdµ = !od.1 ‖ Bµ.

We obtain the following specification for the bag in Greibach normal form:

B∅ = 1 +
∑
d∈D

?id.Bd,

Bdµ = !od.Bµ +
∑
e∈D

?ie.Bedµ.

Finally, we define the forgetful bag, which can terminate even if it is not empty, as
follows:

B = 1 +
∑
d∈D

?id.
(
B ‖ (!od.1 + 1)

)
.

Note that while the bag is given by a recursive specification of CA, it is a basic
parallel process, since no communication is possible between !od and ?id for any
d ∈ D.

4 Parallel Pushdown Automata

The main goal of this paper is to prove that every basic parallel process is equal
to a regular process communicating with a bag. Thus, if P is any basic parallel
process, then we want to find a regular process Q such that

P = τ∗(∂∗(Q ‖ B)),

where B is a (partially) forgetful bag process specified below.
Without loss of generality, we assume in this section that P is given in Greibach

normal form. The data set D we use for our solution is the set of variables V of
P . We call a variable transparent if its equation has a 1-summand. We denote the
set of transparent variables of P with V+1. Furthermore, we define the conditional
process 1ξ as 1 if all variables in set or multiset ξ are transparent and as 0 otherwise.

23

Baeten et al.

Now, we prove the main theorem by first stating the specification of our solution,
then proving necessary lemmas related to this specification before finally giving the
main proof.

Theorem 4.1 For every basic parallel process P there exists a process Q given by
a finite guarded recursive specification over MA such that P = τ∗(∂∗(Q ‖ B∅)) =
[Q ‖ B∅]∗ 2 where B is the (partially) forgetful bag.

Proof Let E be a finite recursive specification of P in Greibach normal form.
Now, let F be a recursive specification that defines a parallel pushdown automaton.
This specification contains the following equations for every variable X ∈ V of the
specification E:

X̂ =
∑
i∈IX

ai.Push(ξi) + 1X ,

with Push(ξ) recursively defined as

Push(∅) = Ctrl,
Push(Xξ′) = !iX.Push(ξ).

where X is a variable that is in the original multiset ξ and ξ′ is the multiset that is
left over when X has been removed.

Additionally, let F contain the following equations of a partially forgetful bag
and a (regular) finite control:

B = 1 +
∑
V ∈V
V 6∈V+1

?iV.(!oV.1 ‖ B) +
∑
V ∈V
V ∈V+1

?iV.(!oV.1 + 1 ‖ B),

Ctrl =
∑
V ∈V

?oV.(V̂ + !iV.Ctrl).

The specification of each X̂ in F mimics the behavior of each X in E by per-
forming the same actions ai and subsequently inserting each variable of the parallel
composition ξi in the (partially) forgetful bag B. Once this is done, the process Ctrl
arbitrarily removes a variable V from the bag (which is the multiset of variables
that can be executed in parallel at this moment) and executes V̂ . Note that Ctrl
doesn’t make a choice because it can choose to reinsert the variable V and remove
another one.

We interpret the multisets in Greibach normal forms as parallel compositions.
In Greibach normal form, every state in P is labeled with a parallel composition
of variables ξ. Substituting the Greibach normal form for the variables X1, . . . , Xn

2 From here on, [p]∗ is used as a shorthand notation for τ∗(∂∗(p)).

24

Baeten et al.

gives us the following derivation:

ξ = X1 ‖ . . . ‖ Xn

= X1 T (X2 ‖ . . . ‖ Xn) + . . .

+Xn T (X1 ‖ . . . ‖ Xn−1) + (X1 | X2 | . . . | Xn)

=
∑
i∈IX1

ai.(ξi ‖ X2 ‖ . . . ‖ Xn) + . . .

+
∑
i∈IXn

ai.(ξi ‖ X1 ‖ . . . ‖ Xn−1) + 1{X1,...,Xn}

=
∑
V ∈ξ

∑
i∈IV

ai.(ξiξ − {V }) + 1ξ.

Introducing a fresh variable P (ξ) for each possible multiset ξ, we obtain the following
equivalent infinite recursive specification.

P (ξ) =
∑
V ∈ξ

∑
i∈IV

ai.P (ξiξ − {V }) + 1ξ.

Now that we have an indication of the relationship between the process P and
suitable contents of the bag B, we propose the following equation:

P (ξ) =
∑
V ∈ξ

[
V̂ T Bξ−{V }

]
∗

+ 1 | Bξ. (1)

Equation 1 expresses the relationship between a state in a basic parallel process,
given by a parallel composition of variables, and our regular process communicating
with a bag. Given that X is the initial variable of E, we can instantiate the general
case and use the definition of B and the axioms of Table 3 to show that

P (X) =
[
X̂ T B∅

]
∗

+ 1 | BX

=
[
X̂ T B +B T X̂

]
∗

+ 1 | (!oX.1 + 1X | B∅)

=
[
X̂ T B +B T X̂

]
∗

+ 1X | B∅

=
[
X̂ T B +B T X̂

]
∗

+ X̂ | B∅

=
[
X̂ ‖ B

]
∗

.

So, we define Q = X̂ and we show that P = [X̂ ‖ B∅]∗. This means that we have
to prove equation 1 for any multiset of variables ξ.

But first we prove a lemma and corollary relating the definition of the conditional
process to communication with the partially forgetful bag.

Lemma 4.2 For all sets or multisets of variables ξ it holds that 1 | Bξ = 1ξ.

Proof By induction over the contents of ξ.

(i) If ξ = ∅, then 1 | B∅ = 1 | B = 1 = 1∅.

25

Baeten et al.

(ii) If ξ = Xξ′, then
(a) if X ∈ V+1, then 1 | BXξ′ = 1 | (!oX.1 + 1 ‖ Bξ′) = 1 | !oX.1 + 1 | Bξ′ =

1 | Bξ′ . Because, by induction hypothesis, 1 | Bξ′ = 1ξ′ , we have that
1 | Bξ = 1ξ′ given that X ∈ V+1 and therefore 1 | Bξ = 1ξ.

(b) if X 6∈ V+1, then 1 | BXξ′ = 1 | (!oX.1 ‖ Bξ′) = 1 | !oX.1 | Bξ′ = 0 = 1ξ
because ξ contains the non-transparent variable X. 2

Corollary 4.3 For all sets or multisets of variables ξ and every variable X it holds
that 1X | Bξ−{X} = 1ξ.

Proof By Lemma 4.2, we have that 1X | Bξ−{X} = 1 | BX | Bξ−{X}. By the
definition of B, it follows that BX | Bξ−{X} = Bξ. Therefore, again by Lemma 4.2,
1X | Bξ−{X} = 1 | Bξ = 1ξ. 2

Now we prove the following lemma, which is crucial for the main proof. This
lemma expresses that if the finite control is at a point where it can choose a variable
from the bag, it does not make the actual choice. The choice is determined by the
first action that is performed by a candidate variable. It also shows that when this
has happened, this particular variable has also been removed from the bag.

Lemma 4.4 For any non-empty multiset ξ contained in a bag, it holds that
τ. [Ctrl ‖ Bξ]∗ = τ.

∑
V ∈V

[
V̂ ‖ Bξ−{V }

]
∗
.

Proof We use the following definitions: C = ∂∗(Ctrl ‖ Bξ), YV = ∂∗(V̂ ‖ Bξ−{V }),
and XV = ?!iV.C + YV for all V ∈ V. Let us now consider C:

C = ∂∗(
∑
V ∈V

?oV.(!iV.Ctrl + V̂) ‖ B)

=
∑
V ∈V

?!oV.∂∗((!iV.Ctrl + V̂) ‖ Bξ−{V })

=
∑
V ∈V

?!oV.∂∗(!iV.Ctrl T Bξ−{V } + V̂ T Bξ−{V } + V̂ | Bξ−{V })

=
∑
V ∈V

?!oV.
(
?!iV.∂∗(Ctrl ‖ Bξ) + ∂∗(V̂ ‖ Bξ−{V })

)
=
∑
V ∈V

?!oV.(?!iV.C + YV)

=
∑
V ∈V

?!oV.XV .

If we apply the CFARb rule on the specification containing C =
∑

V ∈V ?!oV.XV +0
and XV = ?!iV.C + YV for each V ∈ V, which forms a cluster of {?!id, ?!od} in this
specification, we obtain: τ.τ∗(C) = τ.

∑
V ∈V τ∗(YV). Hence,

τ. [Ctrl ‖ Bξ]∗ = τ.τ∗(C) = τ.
∑
V ∈V

τ∗(YV) = τ.
∑
V ∈V

[
V̂ ‖ Bξ−{V }

]
∗

.

2

Now that all prerequisites are in place, we can deal with the main proof which

26

Baeten et al.

requires us to prove the following statement:

P (ξ) ?=
∑
V ∈ξ

[
V̂ T Bξ−{V }

]
∗

+ 1 | Bξ

First, apply the definition of V̂ and get rid of the left merges.

=
∑
V ∈ξ

∑
i∈IV

ai.
[
Push(ξi) ‖ Bξ−{V }

]
∗ + 1 | Bξ

Perform |ξi| pushes by repeatedly applying the definition of Push(ξ).

=
∑
V ∈ξ

∑
i∈IV

ai.τ
|ξi|.
[
Ctrl ‖ Bξiξ−{V }

]
∗ + 1 | Bξ

Remove all but one τ -step that follows ai or introduce one τ -step if ξi is empty and
apply Lemma 4.4 on τ.

[
Ctrl ‖ Bξiξ−{V }

]
∗.

=
∑
V ∈ξ

∑
i∈IV

ai.τ.
∑

W∈ξiξ−{V }

[
Ŵ ‖ Bξiξ−{V,W}

]
∗

+ 1 | Bξ

Remove the τ -step and perform expansion on the merge operator and remove
the summand

[
Bξiξ−{V } T Ŵ

]
∗

since its left-hand side cannot perform any non-
encapsulated action.

=
∑
V ∈ξ

∑
i∈IV

ai.
(∑
W∈ξiξ−{V }

([
Ŵ T Bξiξ−{V,W}

]
∗

+ Ŵ | Bξiξ−{V,W}
))

+ 1 | Bξ

Now, consider the summand Ŵ | Bξiξ−{V,W}. Since Ŵ cannot perform any action,
only the summand 1W remains of the specification of Ŵ .

=
∑
V ∈ξ

∑
i∈IV

ai.
(∑
W∈ξiξ−{V }

([
Ŵ T Bξiξ−{V,W}

]
∗

+ 1W | Bξiξ−{V,W}
))

+ 1 | Bξ

Because 1W | Bξiξ−{V,W} = 1ξiξ−{V } by Corollary 4.3 and 1ξiξ−{V } does not depend
on W , we can move it outside of the summation.

=
∑
V ∈ξ

∑
i∈IV

ai.
(∑
W∈ξiξ−{V }

[
Ŵ T Bξiξ−{V,W}

]
∗

+ 1ξiξ−{V }
)

+ 1 | Bξ

Use the definition of P (ξiξ − {V }) and apply Lemma 4.2 on 1 | Bξ.

=
∑
V ∈ξ

∑
i∈IV

ai.P (ξiξ − {V }) + 1ξ.

This concludes our proof that there exists a recursive specification over CA that, in
parallel with a partially forgetful bag, is equivalent to a basic parallel process P .2

27

Baeten et al.

A corollary of this theorem strengthens the result found in [8], that basic parallel
processes have finite branching. In fact, the branching is bounded (i.e. there is a
fixed maximum branching for all reachable states).

Corollary 4.5 Every basic parallel process has bounded branching.

Proof By Theorem 4.1 there exists a regular process Q (given by a finite guarded
recursive specification over MA) for every basic parallel process P such that
P = [Q ‖ B∅]∗. Because Q is regular, it is boundedly branching. The process B is
also boundedly branching. Because the parallel composition leads to the Cartesian
product of both boundedly branching components plus the result of communica-
tion [5], P is also boundedly branching. 2

5 Concluding Remarks

We have proved that every basic parallel process is rooted branching bisimilar to a
regular process communicating with a bag. A regular process communicating with
a bag can be seen as a parallel pushdown automaton, and so this result extends
the result of [11] by adding the process 1 and making the internal communication
explicit. As a result, we can see the bag as the prototypical basic parallel process. As
a corollary, we established that every basic parallel process has bounded branching.

This is in contrast to the situation with context-free processes. We saw in [4]
that context-free processes can show unbounded branching. For a context-free pro-
cess with unbounded branching, we cannot show it is rooted branching bisimilar
to a regular process communicating with a stack. We could only show this in con-
trasimulation. Here, for basic parallel processes, the situation is simpler, and we
can establish the full result in rooted branching bisimulation.

The reverse direction, to see if any regular process communicating with a bag
is actually a basic parallel process is open as far as we know. Of course, in order
to achieve this result, we should allow τ -steps in the definition of basic parallel
process, but that is no problem as long as we make sure we retain guardedness.
Note that [11] shows the reverse direction is not true in the absence of 1, but here,
with 1, it might still be true.

iIn addition, it is open whether the result of [8] that bisimulation equivalence is
decidable for basic parallel processes is still valid with the addition of 1.

An interesting extension of basic parallel processes is allowing communication in
the definition of processes. Probably, expressive power will increase, but we do not
know examples of processes that can be defined with the addition of communication
but not without communication.

Finally, note that the addition of 1 allows termination exactly when a bag is
empty. This check on emptiness is not possible without 1. This is different from
the situation with a stack, where a check on empty is also possible in an ACP-style
language.

Having looked at stacks and bags, it is interesting to look at queues next. Thus,
it is interesting to see which set of processes can be realized as a regular process
communicating with a queue.

28

Baeten et al.

Acknowledgments

The research of Van Tilburg was supported by the project “Models of Computation:
Automata and Processes” (nr. 612.000.630) of the Netherlands Organization for
Scientific Research (NWO).

References

[1] Aceto, L., W. Fokkink and C. Verhoef, Structural operational semantics, in: J. Bergstra, A. Ponse and
S. Smolka, editors, Handbook of Process Algebra, North-Holland, 2001 pp. 197–292.

[2] Baeten, J., T. Basten and M. Reniers, “Process Algebra: Equational Theories of Communicating
Processes,” Cambridge University Press, 2008.

[3] Baeten, J. and M. Bravetti, A ground-complete axiomatization of finite state processes in process
algebra, in: M. Abadi and L. de Alfaro, editors, Proceedings of CONCUR 2005, number 3653 in LNCS
(2005), pp. 246–262.

[4] Baeten, J., P. Cuijpers and P. v. Tilburg, A context-free process as a pushdown automaton, in:
Proceedings of CONCUR 2008, LNCS (2008), to appear.

[5] Baeten, J. and W. Weijland, “Process Algebra,” Cambridge University Press, 1990.

[6] Bergstra, J. and J. Klop, Process algebra for synchronous communication, Information and Control 60
(1984), pp. 109–137.

[7] Christensen, S., “Decidability and decomposition in process algebras,” Ph.D. thesis, University of
Edinburgh (1993).

[8] Christensen, S., Y. Hirshfeld and F. Moller, Bisimulation equivalence is decidable for basic parallel
processes, in: E. Best, editor, Proceedings of CONCUR 1993, number 715 in LNCS (1993), pp. 143–
157.

[9] Glabbeek, R. v. and W. Weijland, Branching time and abstraction in bisimulation semantics, Journal
of the ACM 43 (1996), pp. 555–600.

[10] Moller, F., The importance of the left merge operator in process algebras, in: M. Paterson, editor,
Proceedings of ICALP’90, number 443 in LNCS (1990), pp. 752–764.

[11] Moller, F., Infinite results, in: U. Montanari and V. Sassone, editors, Proceedings of CONCUR ’96,
number 1119 in LNCS (1996), pp. 195–216.

[12] Vaandrager, F., Verification of two communication protocols by means of process algebra, Technical
Report CS-R8608, CWI, Amsterdam (1986).

29

EXPRESS 2008 Preliminary Version

On convergence-sensitive bisimulation and the
embedding of CCS in timed CCS

Roberto M. Amadio 1,2

Université Paris Diderot

Abstract

We propose a notion of convergence-sensitive bisimulation as a suitable semantic framework for a fully
abstract embedding of untimed processes into timed ones.

Keywords: Bisimulation, convergence, timed CCS.

1 Introduction

A first motivation for this work is to build a notion of convergence-sensitive bisimu-
lation from first principles, specifically from the notions of internal reduction and of
(static) context. A second motivation is to understand how asynchronous/untimed
behaviours can be embedded fully abstractly into synchronous/timed ones. Because
the notion of convergence is very much connected to the notion of time, it seems
that a convergence-sensitive bisimulation should find a natural application in a
synchronous/timed context. Thus, in a nutshell, we are looking for an ‘intuitive’ se-
mantic framework that spans both untimed/asynchronous and timed/synchronous
models.

For the sake of simplicity we will place our discussion in the well-known frame-
work of (timed) CCS. We assume the reader is familiar with CCS [10]. Timed CCS
(TCCS) is a ‘timed’ version of CCS whose basic principle is that time passes ex-
actly when no internal computation is possible. This notion of ‘time’ is inspired by
early work on the Esterel synchronous language [3], and it has been formalised in
various dialects of CCS [14,12,6]. Here we shall follow the formalisation in [6].

As in CCS, one models the internal computation with an action τ while the pas-
sage of (discrete) time is represented by an action tick that implicitly synchronizes

1 PPS, UMR-7126. Work partially supported by ANR-06-SETI-010-02.
2 Email: amadio@pps.jussieu.fr

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:amadio@pps.jussieu.fr

Amadio

a.P
a−→ P

P
a−→ P ′ Q

a−→ Q′

(P | Q)
τ−→ (P ′ | Q′)

P
α−→ P ′

(P | Q)
α−→ (P ′ | Q)

P
α−→ P ′

P +Q
α−→ P ′

A(a) = P

A(b)
τ−→ [b/a]P

P
α−→ P ′

P . Q
α−→ P ′

0
tick−−→ 0 a.P

tick−−→ a.P

P 6 τ−→ ·
P . Q

tick−−→ Q

(P1 | P2) 6 τ−→ ·
Pi

tick−−→ Qi i = 1, 2

(P1 | P2)
tick−−→ (Q1 | Q2)

Pi
tick−−→ Qi i = 1, 2

P1 + P2
tick−−→ Q1 +Q2

P
µ−→ Q a, a 6= µ

νa P
µ−→ νa Q

Table 1
Labelled transition system

all the processes and moves the computation to the next instant. 3

In this framework, the basic principle we mentioned is formalised as follows:

P
tick−−→ · iff P 6 τ−→ ·

where we write P
µ−→ · if P can perform an action µ. TCCS is designed so that if

P is a process built with the usual CCS operators and P cannot perform τ actions
then P tick−−→ P . In other terms, CCS processes are time insensitive. To compensate
for this property, one introduces a new binary operator P .Q, called else next, that
tries to run P in the current instant and, if it fails, runs Q in the following instant.

We denote with α, β, . . . the usual CCS actions which are composed of either
an internal action τ or of a communication action a. There are countably many
communication actions a, each one having a co-action a. We denote with µ, µ′, . . .

either an action α or the distinct action tick.
The TCCS processes P,Q, . . . are specified by the following grammar

P ::= 0 || a.P || P + P || P | P || νa P || A(a) || P . P .

We denote with fn(P) the names free in P . We adopt the usual convention that
for each thread identifier A there is a unique defining equation A(b) = P where the
parameters b include the names in fn(P). The related labelled transition system is
specified in table 1.

Say that a process is a CCS process if it does not contain the else next operator.
The reader can easily verify that:

3 There seems to be no standard terminology for this action. It is called ε in [14], χ in [12], σ in [6], and
sometimes ‘next’ in ‘synchronous’ languages à la Esterel [2].

31

Amadio

(1) P
tick−−→ · if and only if P 6 τ−→ ·.

(2) If P tick−−→ Qi for i = 1, 2 then Q1 = Q2. One says that the passage of time is
deterministic.

(3) If P is a CCS process and P
tick−−→ Q then P = Q. Hence CCS processes are

closed under labelled transitions.
It will be convenient to write τ.P for νa (a.P | a.0) where a /∈ fn(P), tick.P for

0 . P , and Ω for the diverging process τ.τ.

Remark 1.1 (1) In the labelled transition system in table 1, the definition of the
tick action relies on the τ action and the latter relies on the communication actions
a, a′, There is a well known method to give a direct definition of the τ action
that does not refer to the communication actions. Namely, one defines (internal)
reduction rules such as (a.P +Q | a.P ′ +Q′)→ (P | P ′) which are applied modulo
a suitable structural equivalence.

(2) The labelled transition system in table 1 relies on negative conditions of the
shape P 6 τ−→. These conditions can be replaced by a condition ∃L P ↓ L, where L
is a finite set of communication actions. This predicate can be defined as follows:

0 ↓ ∅ a.P ↓ {a}
Pi ↓ Li, i = 1, 2

(P1 + P2) ↓ L1 ∪ L2

P ↓ L
P . Q ↓ L

P ↓ L
(νa P) ↓ L\{a, a}

Pi ↓ Li, i = 1, 2 L1 ∩ L2 = ∅
(P1 | P2) ↓ L1 ∪ L2

1.1 Signals and a deterministic fragment

As already mentioned, the TCCS model has been inspired by the notion of time
available in the Esterel model [4] and its relatives such as SL [5]. These models
rely on signals as the basic communication mechanism. Unlike a channel, a signal
persists within the instant and disappears at the end of instant. It turns out that
a signal can be defined recursively in TCCS as:

emit(a) = a.emit(a) . 0

The ‘present’ statement of SL that either reads a signal and continues the compu-
tation in the current instant or reacts to the absence of the signal in the following
instant can be coded as follows:

present a do P else Q = a.P . Q

Modulo these encodings, the resulting fragment of TCCS is specified as follows:

P ::= 0 || emit(a) || present a do P else P || (P | P) || νa P || A(a) .

Notice that, unlike in (T)CCS, communication actions have an input or output
polarity. The most important property of this fragment is that its processes are
deterministic [5,1].

32

Amadio

1.2 The usual labelled bisimulation

As usual, one can define a notion of weak transition as follows:

µ⇒=

 (τ−→)∗ if µ = τ

(τ−→)∗◦ µ−→ ◦(τ−→)∗ otherwise

where the notation X∗ stands for the reflexive and transitive closure of a binary
relation X. When focusing just on internal reduction, we shall write → for τ−→ and
⇒ for τ⇒. We write P → · if ∃P ′ (P → P ′), otherwise we say that P has converged
and write P ↓. We write P ⇓ if ∃Q (P ⇒ Q and Q ↓). Thus P ⇓ means that P
may converge, i.e., there is a reduction sequence to a process that has converged.
Because P ↓ iff P

tick−−→ ·, we have that P ⇓ iff P
tick⇒ ·.

With respect to the notion of weak transition, one can define the usual notion
of bisimulation as the largest symmetric relation R such that if (P,Q) ∈ R and
P

µ⇒ P ′ then for some Q′, Q
µ⇒ Q′ and (P ′, Q′) ∈ R. We denote with ≈u the

largest labelled bisimulation (u for usual). When looking at CCS processes, one
may focus on CCS actions (thus excluding the tick action). We denote with ≈uccs
the resulting labelled bisimulation.

1.3 CCS vs. TCCS

As we already noticed, TCCS has been designed so that CCS can be regarded as a
transition closed subset of TCCS. A natural question is whether two CCS processes
which are equivalent with respect to an untimed environment are still equivalent in
a timed one. For instance, Milner [9] discusses a similar question when comparing
CCS to SCCS. 4

1.3.1 Testing semantics
In the context of TCCS and of a testing semantics, the question has been answered
negatively by Hennessy and Regan [6]. For instance, they notice that the processes
P = a.(b+ c.b) + a.(d+ c.d) and Q = a.(b+ c.d) + a.(d+ c.b) are ‘untimed’ testing
equivalent but ‘timed’ testing inequivalent. The relevant test is the one that checks
that if an action b cannot follow an action a in the current instant then an action b
will happen in the following instant just after an action c (process P will not pass
this test while process Q does). This remark motivated the authors to develop a
notion of ‘timed’ testing semantics.

1.3.2 Bisimulation semantics
What is the situation with the usual labelled bisimulation semantics recalled in
section 1.2? Things are fine for reactive processes which are defined as follows.

Definition 1.2 A process P is reactive if whenever P
µ1⇒ · · · µn⇒ Q, for n ≥ 0, we

have the property that all sequences of τ reductions starting from Q terminate.

4 The notion of instant in SCCS is quite different from the one considered in TCCS/Esterel. In the
former one declares explicitly what each thread does at each instant while in the latter the duration of an
instant is the result of an arbitrarily complex interaction among the different threads.

33

Amadio

Proposition 1.3 Suppose P,Q are CCS reactive processes. Then P ≈u Q if and
only if P ≈uccs Q.

Proof. Clearly, ≈u is a CCS bisimulation, hence P ≈u Q implies P ≈uccs Q.
To show the converse, we prove that ≈uccs is a timed bisimulation. So suppose
P ≈uccs Q and P

tick⇒ P ′. This means P τ⇒ P1
tick−−→ P1

τ⇒ P ′. Then for some Q1,
Q

τ⇒ Q1 and P1 ≈uccs Q1. Further, because Q1 is reactive there is a Q2 such that
Q1

τ⇒ Q2 and Q2 ↓. By definition of bisimulation and the fact that P1 ↓, we have
that P1 ≈uccs Q2. So for some Q′, Q2

τ⇒ Q′ and P ′ ≈uccs Q′. Thus we have shown
that there is a Q′ such that Q tick⇒ Q′ and P ′ ≈uccs Q′. 2

Proposition 1.3 fails when we look at non-reactive processes. For instance, 0
and Ω are regarded as untimed equivalent but they are obviously timed inequivalent
since the second process does not allow time to pass. This example suggests that
if we want to extend proposition 1.3 to non-reactive processes, then the notion of
bisimulation has to be convergence sensitive.

One possibility could be to adopt the usual bisimulation ≈u on CCS processes.
We already noticed that if P is a CCS process and P

tick−−→ Q then P = Q. Thus
in the bisimulation game between CCS processes, the condition ‘P tick⇒ P ′ implies
Q

tick⇒ Q′’ can be replaced by ‘P ⇓ implies Q ⇓’. The resulting equivalence on
CCS processes is not new, for instance it appears in [8] as the so called stable weak
bisimulation. One may notice that this equivalence has reasonably good congruence
properties.

Proposition 1.4 Suppose P1 ≈u P2 and Q1 ≈u Q2. Then

(1) (P1 | R) ≈u (P2 | R).

(2) If P1, P2 ↓ then P1 . Q1 ≈u P2 . Q2.

Proof. First note that we can work with an asymmetric definition of bisimulation
where a strong transition is matched by a weak one.

(1) We just check the condition for the tick action. Suppose (P1 | R) tick−−→ (P ′1 | R′).
This entails P1

tick−−→ P ′1 and R
tick−−→ R′. Then P2

τ⇒ P ′′2 , P ′′2 ↓, and P1 ≈u P ′′1 . Also

P ′′2
tick⇒ P ′2 and P ′1 ≈u P ′′2 . Finally, we have that (P ′′2 | R) ↓ because if they could

synchronise on a name a then so could (P1 | R).

(2) There are two cases to consider. If P1 . Q1
tick−−→ Q1 then P2 . Q2

tick−−→ Q2. If
P1 . Q1

a−→ P ′1 because P1
a−→ P ′1 then P2

a⇒ P ′2 and P ′1 ≈u P ′2. 2

Remark 1.5 The else next operator suffers from the same compositionality prob-
lems as the sum operator. For instance, 0 ≈u τ.0 but 0 . Q = tick.Q while
τ.0 . Q ≈u 0. As for the sum operator, one may remark that in practice we are in-
terested in a guarded form of the else next operator. Namely, the else next operator
is only introduced as an alternative to communication actions (the present operator
discussed in section 1.1 is such an example). Proposition 1.4(2) entails that in this
form, the else next operator preserves bisimulation equivalence.

34

Amadio

1.3.3 An alternative path
The reader might have noticed that on CCS processes ≈u refines ≈uccs by adding
may convergence as an observable along with the usual labelled transitions. This
is actually the case of all convergence/divergence sensitive bisimulations we are
aware of (see, e.g., [15,8]). The question we wish to investigate is what happens if
we just take may convergence as an observable without assuming the observability
of the labelled transitions? The question can be motivated by both pragmatic and
mathematical considerations. On the pragmatic side, one may argue that the normal
operation of a timed/synchronous program is to receive inputs at the beginning of
each instant and to produce outputs at the end of each instant. Thus, unless the
instant terminates, no observation is possible. For instance, the process (a | Ω)
could be regarded as equivalent to Ω, while they are distinguished by the usual
bisimulation ≈u on the ground that the labelled transition a is supposed to be
directly observable.

On the mathematical side, it has been remarked by many authors that the notion
of labelled transition system is not necessarily compelling. Specifically, one would
like to define a notion of bisimulation without an a priori commitment to a notion
of label. To cope with this problem, a well-known approach started in [11] and elab-
orated in [7] is to look at ‘internal’ reductions and at a basic notion of ‘barb’ and
then to close under contexts thus producing a notion of ‘contextual’ bisimulation.
However, even the notion ‘barb’ is not always easy to define and justify (an attempt
based on the concept of bi-orthogonality is described in [13]). It seems to us that a
natural approach which applies to a wide variety of formalisms is to regard conver-
gence (may-termination) as the ‘intrinsic’ basic observable automatically provided
by the internal reduction relation.

1.3.4 Contribution
Following these preliminary considerations, we are now in a position to describe our
contribution.

(i) We introduce a notion of contextual bisimulation for (T)CCS whose basic ob-
servable (or barb) on CCS processes is the may-termination predicate (section
2).

(ii) We provide various characterisations of this equivalence culminating in one
based on a suitable ‘convergence-sensitive’ labelled bisimulation (section 3).

(iii) We derive from this characterisation that (section 4):
(a) the embedding of CCS in TCCS is fully abstract (even for non-reactive

processes).
(b) the proposed equivalence coincides with the usual one on reactive processes.
(c) on non-reactive processes it identifies more processes than the usual timed

labelled bisimulation ≈u while it is incomparable with the usual untimed
CCS bisimulation ≈uccs.

The development will take place in the context of so called weak bisimulation
[10] which is more interesting and challenging than strong bisimulation.

35

Amadio

2 Convergence sensitive bisimulation

We denote with C,D, . . . one hole static contexts specified by the following grammar:

C ::= [] || C | P || νaC

We require that the notion of bisimulation we consider is preserved by the static
contexts in the sense of [7].

Definition 2.1 [bisimulation] A symmetric relation R on processes is a bisimula-
tion if PRQ implies:

cxt for any static context C, C[P]RC[Q].

red P
µ⇒ P ′, µ ∈ {τ, tick} implies ∃Q′ (Q

µ⇒ Q′ and P ′RQ′).

We denote with ≈ the largest bisimulation.

Remark 2.2 (1) In view of remark 1.1(1), the definition 2.1 of bisimulation does
not assume the labels a, a′, . . . which correspond to the communication actions. Not
only the labels are not considerd in the bisimulation game, but they are not even
required in the definition of the τ action. This means that the definition can be
directly transferred to more complex process calculi where the definition of the
communication actions is at best unclear.

(2) For CCS processes, if P tick−−→ Q then P = Q. It follows that in the definition
above, the condition [red] when µ = tick can be replaced by P ⇓ implies Q ⇓. This
is obviously false for processes including the else next operator; in this case one
needs the tick action to observe the behaviour of processes after the first instant,
e.g., to distinguish tick.a from tick.b.

In view of the previous remark, the definition of bisimulation is specialised to
CCS processes by simply restricting the condition [cxt] to CCS static contexts. We
denote with ≈ccs the resulting largest bisimulation.

Next we remark that the observability of a particular kind of ‘barb’ or ‘commit-
ment’ is entailed by the observation of convergence.

Definition 2.3 We say that P commits on a, and write P ⇓a, if P ⇒ P ′, P ′ ↓,
and P ′

a−→ ·. 5

Proposition 2.4 If P ≈ Q and P ⇓a then Q ⇓a.

Proof. Suppose P ⇓a and P ≈ Q. Then P ⇒ P ′, P ′ ↓, and P ′
a−→ ·. By definition

of bisimulation, Q ⇒ Q′′ and P ′ ≈ Q′′. Moreover, Q′′ ⇒ Q′, Q′ ↓, Q′ ≈ P ′ ≈ Q′′.
To show that Q′ a−→ ·, consider the context C = ([] | a.Ω). Then we have C[P ′] 6⇓,
while C[Q′] ⇓ if and only if Q′ 6 a−→ ·. 2

Another interesting notion is that of contextual convergence.

Definition 2.5 We say that a process P is contextual convergent, and write P ⇓C ,
if ∃C (C[P] ⇓).

5 Note that in this definition the process ‘commits’ on action a only when it has converged.

36

Amadio

Clearly, P ⇓ implies P ⇓C but the converse fails taking, for instance, (a+b) | a.Ω.
Contextual convergence, can be characterised as follows.

Proposition 2.6 The following conditions are equivalent:

(1) P
α1−→ · · · αn−−→ P ′ and P ′ ↓.

(2) There is a CCS process Q such that (P | Q) ⇓.

(3) P ⇓C .

Proof. (1 ⇒ 2) Suppose P0
α1−→ P1 · · ·

αn−−→ Pn and Pn ↓. We build the process Q
in (2) by induction on n. If n = 0 we can take Q = 0. Otherwise, suppose n > 0.
By inductive hypothesis, there is Q1 such that (P1 | Q1) ⇓. We proceed by case
analysis on the first action α1. If α1 = τ take Q = Q1 and if α1 = a take Q = a.Q1.

(2⇒ 3) Taking the static context C = [] | Q.

(3 ⇒ 1) First, check by induction on a static context C that P τ−→ · implies
C[P] τ−→ ·. Hence C[P] ↓ implies P ↓. Second, show that C[P] α−→ Q implies that

Q = C ′[P ′] where C ′ is a static context and either P = P ′ or P α′
−→ P ′. Third,

suppose C[P] τ−→ Q1 · · ·
τ−→ Qn with Qn ↓. Show by induction on n that P can make

a series of labelled transitions and reach a process which has converged. 2

Remark 2.7 As shown by the characterisation above, the notion of contextual
convergence is unchanged if we restrict our attention to contexts composed of CCS
processes.

We notice that a bisimulation never identifies a process which is contextual con-
vergent with one which is not while identifying all processes which are not contextual
convergent.

Proposition 2.8 (1) If P ≈ Q and P ⇓C then Q ⇓C .

(2) If P 6⇓C and Q 6⇓C then P ≈ Q.

Proof. (1) If P ⇓C then for some context C, C[P] ⇓. By condition [cxt], we have
that C[P] ≈ C[Q] and by condition [red] we derive that C[Q] ⇓. Hence Q ⇓C .

(2) We notice that the relation S = {(P,Q) | P,Q 6⇓C} is a bisimulation. Indeed:
(i) if P 6⇓C then C[P] 6⇓C , (ii) if P ⇒ P ′ and P 6⇓C then P ′ 6⇓C , and (iii) if P 6⇓C
then P 6tick⇒ ·. 2

3 Characterisation

We characterise the (contextual and convergence sensitive) bisimulation introduced
in definition 2.1 by means of a labelled bisimulation. The latter is obtained from
the former by replacing condition [cxt] with a suitable condition [lab] on labelled
transitions as defined in table 1.

Definition 3.1 [labelled bisimulation] A symmetric relation R on processes is a
labelled bisimulation if PRQ implies:

37

Amadio

lab if P ⇓C and P
a⇒ P ′ then Q

α⇒ Q′ and P ′RQ′ where α ∈ {a, τ} and α = a if
P ′ ⇓C .

red if P
µ⇒ P ′, µ ∈ {τ, tick} then ∃Q′ (Q

µ⇒ Q′ and P ′RQ′).

We denote with ≈` the largest labelled bisimulation.

Remark 3.2 (1) By remark 2.2, on CCS processes the condition [red] when µ =
tick is equivalent to P ⇓ implies Q ⇓. By remark 2.7, the notion of contextual
convergence is unaffected if we restrict our attention to CCS processes. This means
that, by definition, the (timed) labelled bisimulation restricted to CCS processes is
the same as the labelled bisimulation on (untimed) CCS processes.

(2) The predicate of contextual convergence ⇓C plays an important role in the
condition [lab]. To see why, suppose we replace it with the predicate ⇓ and assume
we denote with ≈`⇓ the resulting largest bisimulation. The following example shows
that ≈`⇓ is not preserved by parallel composition. Consider

P1 = a.(b+ c) P2 = a.b+ a.c Q = a.(d+ Ω)

Then (P1 | Q) ≈`⇓ (P2 | Q) because both processes fail to converge. On the other
hand, (P1 | Q) | d 6≈`⇓ (P2 | Q) | d because the first may converge to (b + c) which
cannot be matched by the second process.

(3) One may consider an asymmetric and equivalent definition of labelled bisim-
ulation where strong transitions are matched by weak transitions. To check the
equivalence, it is useful to note that P 6⇓C and P

α−→ P ′ implies P ′ 6⇓C .

We provide a rather standard proof that bisimulation and labelled bisimulation
coincide.

Proposition 3.3 If P ≈ Q then P ≈` Q.

Proof. We show that the bisimulation ≈ is a labelled bisimulation. We denote with
P ⊕Q the internal choice between P and Q which is definable, e.g., as τ.P + τ.Q.
Suppose P ⇓C and P

a⇒ P ′. We consider a context C = [] | T where T =
a.((b⊕0)⊕c) and b, c are fresh names (not occurring in P,Q). We know C[P] ≈ C[Q]
and C[P]⇒ (P ′ | (b⊕0)). Thus C[Q]⇒ (Q′ | T ′) where either Q a⇒ Q′ and T a⇒ T ′

or Q⇒ Q′ and T = T ′.

• Suppose P ′ 6⇓C . Then (P ′ | (b ⊕ 0)) 6⇓C and, by proposition 2.8, (Q′ | T ′) 6⇓C .
The latter implies that Q′ 6⇓C . By contradiction, suppose Q′ ⇓C , that is (Q′ | R) ⇓.
Then (Q′ | T ′) | R | T ′ ⇓ (contradiction!) where we take T ′ = a if T ′ = T and
T ′ = 0 otherwise. Hence, P ′ ≈ Q′ as required.

• Suppose P ′ ⇓C . If Q a⇒ Q′ and T
a⇒ T ′ then we show that it must be that

T ′ = (b⊕0). This is because if P ′ ⇓C then P ′ | (b⊕0) ⇓C which in turn implies that
for some R (not containing the names b or c), (P ′ | (b⊕ 0) | R) ⇓b. By proposition
2.4, we must have Q′′ = (Q′ | T ′) | R ⇓b. Thus T ′ cannot be 0 and it cannot be
(b ⊕ 0) ⊕ c, for otherwise Q′′ ⇓c which cannot be matched by (P ′ | (b ⊕ 0) | R).
Further, we have P ′ | (b ⊕ 0) τ−→ P ′ | 0 (= P ′). So (Q′ | (b ⊕ 0)) τ⇒ (Q′ | T ′′) and
P ′ ≈ (Q′ | T ′′). The latter entails that T ′′ = 0.

38

Amadio

On the other hand, we show that Q τ⇒ Q′ and T = T ′ is impossible. Reasoning
as above, we have (P ′ | (b ⊕ 0) | R) ⇓b. But then if (Q′ | T) | R ⇓b we shall also
have (Q′ | T) | R ⇓c. 2

The following lemma relates contextual convergence and commitment to labelled
bisimulation (cf. the similar propositions 2.8 and 2.4).

Lemma 3.4 (1) If P ≈` Q and P ⇓C then Q ⇓C .

(2) If P 6⇓C and Q 6⇓C then P ≈` Q.

(3) If P ≈` Q and P ⇓a then Q ⇓a.

Proof. (1) By proposition 2.6, if P ⇓C then P
α1−→ · · · αn−−→ P ′ and P ′ ↓. By

definition of labelled bisimulation we should have Q α1⇒ · · · αn⇒ Q′ and P ′ ≈` Q′.
Then P ′

tick⇒ · entails Q′ tick⇒ , and therefore Q ⇓C .

(2) By proposition 2.8, P,Q 6⇓C implies P ≈ Q, and by proposition 3.3 we conclude
that P ≈` Q.

(3) The statement is reduced to check that P ≈` Q, P,Q ↓, and P
a−→ P ′ implies

Q
a−→ Q′. By definition of ≈`, we know that Q α⇒ Q′, P ′ ≈` Q′, α ∈ {a, τ}, and

α = a if P ′ ⇓C . Now α = τ leads to a contradiction: if α = τ then Q = Q′, hence
P ′ ⇓C , and therefore α = a. 2

Proposition 3.5 If P ≈` Q then P ≈ Q.

Proof. We show that labelled bisimulation is preserved by static contexts. In
view of remark 3.2(3), we shall work with an asymmetric definition of bisimulation.
With respect to this definition, we show that the following relations are labelled
bisimulations:

{(νa P, νa Q) | P ≈` Q}∪ ≈` , {(P | R,Q | R) | P ≈` Q}∪ ≈` .

The case for restriction is a routine verification so we focus on parallel composition.
Suppose (P | R)

µ−→ ·. We proceed by case analysis.

• (P | R) α−→ (P | R′) because R α−→ R′. Then (Q | R) α−→ (Q | R′).

• (P | R) tick−−→ (P ′ | R′) because P tick−−→ P ′ and R
tick−−→ R′. Then Q

τ⇒ Q1
tick−−→

Q2
τ⇒ Q′, P ≈` Q1, and P ′ ≈` Q′. By proposition 3.4(3), we derive that (Q1 |

R) tick−−→ (Q2 | R′) and thus conclude that (Q | R) tick⇒ (Q′ | R′).

• Suppose (P | R) ⇓C and (P | R) a−→ (P ′ | R) because P a−→ P ′. Then P ⇓C and
therefore Q α⇒ Q′, α ∈ {a, τ}, and P ′ ≈` Q′. If P ′ ⇓C then α = a and if P ′ 6⇓C then
Q′ 6⇓C hence (P ′ | R) ≈` (Q′ | R) by lemma 3.4.

• Suppose (P | R) τ−→ (P ′ | R) because P τ−→ P ′. Then Q
τ⇒ Q′ and P ′ ≈` Q′.

• Suppose (P | R) τ−→ (P ′ | R′) because P a−→ P ′ and R
a−→ R′. If P, P ′ ⇓C then

Q
a⇒ Q′ and P ′ ≈` Q′. If P ⇓C and P ′ 6⇓C then Q

α⇒ Q′, α ∈ {a, τ}, and P ′ ≈` Q′.
But then (P ′ | R), (Q′ | R) 6⇓C , and we apply lemma 3.4. If P 6⇓C then Q 6⇓C and

39

Amadio

therefore (Q | R) 6⇓C , and we apply again lemma 3.4. 2

As a first application of the characterisation we check that bisimulation is pre-
served be the else next operator in the sense of proposition 1.4(2).

Corollary 3.6 Suppose P1 ≈ P2, P1, P2 ↓, and Q1 ≈ Q2. Then P1 . Q1 ≈ P2 . Q2.

Proof. There are two cases to consider. If P1 .Q1
tick−−→ Q1 then P2 .Q2

tick−−→ Q2. If
P1 . Q1

a−→ P ′1 because P1
a−→ P ′1 then P2

α⇒ P ′2, P ′1 ≈` P ′2, and α ∈ {τ, a}. We note
that it must be that α = a. Indeed, if α = τ then since P2 ↓ we must have P ′2 = P2

and P ′1 ⇓C . The latter forces α = a which is a contradiction. 2

4 Embedding CCS in TCCS

In this section we collect some easy corollaries of the characterisation. First,
we remark that two CCS processes are bisimilar when observed in an
untimed/asynchronous environment if and only if they are bisimilar in a
timed/synchronous environment.

Proposition 4.1 Suppose P,Q are CCS processes. Then P ≈ Q if and only if
P ≈ccs Q.

Proof. By propositions 3.3 and 3.5 we know that ≈=≈`. By remark 3.2(1), the
labelled bisimulation on untimed processes coincides with the restriction to CCS
processes of the timed labelled bisimulation. 2

Second we compare the notion of convergence-sensitive bisimulation we have
introduced with the usual one we have recalled in the section 1.2. It turns out that
all the notions collapse on reactive processes.

Proposition 4.2 Suppose P,Q are reactive processes. Then P ≈ Q if and only if
P ≈u Q.

Proof. We know that ≈=≈`. Reactive processes are closed under labelled tran-
sitions and on reactive processes the conditions that define labelled bisimulation
coincide with the ones for the usual bisimulation. 2

The situation on non-reactive processes is summarised as follows where all im-
plications are strict.

Proposition 4.3 Suppose P,Q are processes.

(1) If P ≈u Q then P ≈ Q.

(2) If moreover P and Q are CCS processes then P ≈u Q implies both P ≈uccs Q
and P ≈ Q.

Proof. (1) The clauses in the definition of ≈u imply directly those in the definition
of the labelled bisimulation that characterises ≈ (definition 3.1). To see that the
converse fails note that (a | Ω) ≈ Ω while (a | Ω) 6≈u Ω.

40

Amadio

(2) Use (1) and the fact that the clauses in the definition of ≈u imply directly those
in the definition of ≈uccs. To see that the converse fails use the counter-example in
(1) and the fact that 0 ≈uccs Ω while 0 6≈uccs Ω. 2

5 Conclusion

We have presented a natural notion of contextual and convergence sensitive bisim-
ulation and we have shown that it can be characterised by a variant of the usual
notion of labelled bisimulation relying on the concept of contextual convergence.
As a direct corollary of this characterisation we have shown that (untimed) CCS
processes are embedded fully abstractly into timed ones.

The notion of bisimulation we have introduced just requires the notions of re-
duction and static context as opposed to previous approaches that additionally
assume the notion of ‘labelled’ transition or the notion of ‘barb’. It would be in-
teresting to apply the proposed approach to other contexts where the notion of
equivalence is unclear. Another related question is to see what happens if one
additionally observes must-convergence (strong normalisation). Note that such a
‘must-convergence’ bisimulation is finer than the one considered here as it distin-
guishes A = τ.A+ τ.0 from 0.

References

[1] R. Amadio. The SL synchronous language, revisited. Journal of Logic and Algebraic Programming,
70:121-150, 2007.

[2] R. Amadio. A synchronous π-calculus. Information and Computation, 205(9):1470–1490, 2007.

[3] G. Berry, L. Cosserat. The Esterel synchronous programming language and its mathematical semantics.
INRIA technical report 842, Sophia-Antipolis, 1988.

[4] G. Berry and G. Gonthier. The Esterel synchronous programming language. Science of computer
programming, 19(2):87–152, 1992.

[5] F. Boussinot and R. De Simone. The SL synchronous language. IEEE Trans. on Software Engineering,
22(4):256–266, 1996.

[6] M. Hennessy, T. Regan. A process algebra of timed systems. Information and Computation, 117(2):221-
239, 1995.

[7] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer Science,
151(2):437-486, 1995.

[8] M. Lohrey, P. D’Argenio, and H. Hermanns: Axiomatising Divergence. In Proc. ICALP, SLNCS
2380:585-596, 2002.

[9] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25(3):267–310, 1983.

[10] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[11] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. ICALP, SLNCS 623:685–695, 1992.

[12] X. Nicolin, J. Sifakis. The algebra of timed processes (ATP): theory and application. Information and
Computation, 114(1):131-178, 1994.

[13] J. Rathke, V. Sassone and P. Sobocinski. Semantic barbs and biorthogonality. In Proc. FoSSaCS 2007,
SLNCS 4423:302-316, 2007.

[14] W. Yi. A calculus of real time systems. PhD thesis. Chalmers University, 1991.

[15] D. Walker. Bisimulation and divergence. Information and Computation, 85:202-241, 1990.

41

EXPRESS 2008 Preliminary Version

Adding Branching to the Strand Space Model

Sibylle Fröschle1

Department für Informatik
Universität Oldenburg
Oldenburg, Germany

Abstract

The strand space model is one of the most successful and widely used formalisms for analysing security
protocols. This might seem surprising given that the model is not able to reflect choice points in a protocol
execution: the key concept in the strand space model is that of a bundle, which models exactly one possible
execution of a security protocol. Inspired by the branching processes of Petri nets, we show that branching
can be introduced into the strand space model in a very natural way: bundles can be generalized to
branching bundles, which are able to capture several conflicting protocol executions. Our investigations of
the theory of branching bundles will motivate the concept of symbolic branching bundles, and culminate in
the result that every protocol has a strand space semantics in terms of a largest symbolic branching bundle.
We hope our results provide a strong theoretical basis for comparing models and providing process calculi
semantics in security protocol analysis. Altogether our work is related but different to a series of works by
Crazzolara and Winskel. Throughout we will profit from a close relationship of the strand space model to
event structures, which has already been pointed out by these authors.

Keywords: Models for security protocol analysis, strand spaces, event structures, branching processes

1 Introduction

The strand space model [5] is one of the most successful and widely used formalisms

for analysing security protocols. For example, it has been employed to verify security

properties by hand, to give formal semantics to protocol logics, and as the underlying

model of model-checking tools (c.f. [7]). In spite of this success two points of criticism

have been brought against it: one is that, in contrast to models based on multiset

rewriting, it is an ad hoc model rather than rooted in a rich theory. The second is

that it is not able to reflect aspects of branching such as choice points in a protocol

execution. To explain the latter we recall that the central concept of the strand

space model is that of the bundle. A bundle models exactly one snapshot of a

protocol execution: a set of strands represents the sessions that have occurred so

far while a relation between the send and receive events of the strands describes

how messages have flowed between them.

1 Email: froeschle@informatik.uni-oldenburg.de

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:froeschle@informatik.uni-oldenburg.de

Fröschle

Both points of criticism have been countered by results of Crazzolara and Winksel

[2,1,3]. On the one hand, they have shown that the strand space model is closely re-

lated to event-based models for concurrency such as event structures. On the other

hand, aiming to obtain compositional event-based semantics for protocol languages,

they have shown how the strand space model can be extended by a notion of conflict

[3]. Their notion of conflict is introduced at the level of strand spaces, which are

conceptually a level lower than bundles: a strand space fixes all the sessions that

are to be considered in the protocol analysis; it is the space from which bundles are

‘carved out’.

In this paper our thesis is that branching can be introduced into the strand

space model very directly at the conceptual level of bundles. The idea is to general-

ize bundles to branching bundles in the same way as in Petri net theory branching

processes generalize Petri net processes. Petri net branching processes [4] are in-

troduced as a formalization of an initial part of a run of a Petri net, which can

include conflicting choices. They come with a very satisfying theory: the branching

processes of a Petri net form a complete lattice (modulo isomorphism) with respect

to a natural notion of approximation. The largest element of this lattice captures

all possible behaviour of the Petri net, and is called its unfolding.

In this paper we wish to investigate whether protocols have as satisfying a theory

of branching bundles. If every protocol P had indeed a largest branching bundle,

this branching bundle would capture all possible behaviour of P , and would thus

provide a natural strand space semantics. This could provide a strong theoretical

basis for comparing models and providing semantics for protocol languages. Our

contributions are as follows:

(1) We show that bundles can indeed be generalized to branching bundles in a

very natural way. Branching bundles are able to capture several conflicting protocol

executions.

(2) We investigate the theory of branching bundles. We find that every branching

bundle can be viewed as a labelled prime event structure. This will motivate a

notion of computation state for branching bundles in terms of sub-bundles, and a

transition relation between them. Following the approach of [4] we will investigate

whether the branching bundles of a protocol form a complete lattice with respect to

a natural notion of approximation. We will however obtain a negative result: the

branching bundles of a protocol do not even form a complete partial order.

(3) By analysing this negative result we will, however, be led to a notion of sym-

bolic branching bundle. We will obtain that the symbolic branching bundles of a

protocol indeed form a complete lattice (modulo isomorphism). Thus, every proto-

col can be given a strand space semantics in terms of a largest symbolic branching

bundle. We will motivate that this semantics is suitable for most situations in

security protocol analysis.

In the following section we will introduce the strand space model using variations

on the original definition of [2] and [6]. The remainder of the paper is structured

according to the above contributions. All proofs can be found in the full version of

the paper.

43

Fröschle

2 The Strand Space Model

Graph Terminology

A labelled (directed) graph is a tuple (E,K,L, l) where E is the set of nodes, which

in our context will depict events, K ⊆ E×E is the set of edges, L is the set of labels,

and l : E → L is a labelling function that assigns a label to every node. When L is

clear from the context we will often keep it implicit for notational simplicity.

A labelled graph (E,K,L, l) is totally ordered if there is a total ordering e1e2 . . .

of the elements of E such that (ei, ej) ∈ K if and only if j = i+1. A labelled graph

(E,K,L, l) is a labelled tree if K is acyclic and there is no backwards branching, i.e.,

if (e′, e) ∈ K and (e′′, e) ∈ K then e′ = e′′. A branch of a tree is a possibly empty,

finite or infinite sequence e1e2 . . . of elements of E such that (ei, ei+1) ∈ K for all

indices i. A labelled bi-graph is a tuple (E,⇒,→, L, l) such that both (E,⇒, L, l)

and (E,→, L, l) are labelled graphs.

Message Algebra

In the following we assume that messages are modelled by a message algebra. The

results we present here are independent of the actual structure of this algebra. We

only assume a set of messages Mesg , a set of atomic messages AMesg, from which

Mesg is built up from, and a binary relation ⊑ on Mesg that says when one message

is contained in another. Messages and atomic messages may contain variables. A

message is ground if it does not contain any variables. We denote the set of ground

messages by GMesg .

Actions, Roles, and Protocols

In a protocol execution, principals can either send or receive messages. If a message

is sent then it can contain data that have just been freshly generated such as nonces.

This gives rise to the following set of actions:

Act = { + fresh N in M | M ∈ Mesg & N ⊆ AMesg & ∀N ∈ N , N ⊑ M}

∪ { − M | M ∈ Mesg}.

In an action of the form ‘+ fresh N in M ’, ‘+’ indicates that message M is thought

to be sent while N specifies which elements of M are thought to be freshly generated.

We assume that only atomic messages can be freshly generated. In an action of the

form ‘− M ’, ‘−’ indicates that message M is thought to be received. Given an

action A ∈ Act of either of the two forms we use mesg(A) to depict M , sign(A) to

depict ‘+’, or ‘−’ respectively. If sign(A) = + we will further use fresh(A) to depict

N . A ground action is an action that does not contain any variables. We denote

the set of ground actions by GAct . In the context of a labelled graph with label set

GAct we will carry over the previous concepts for actions to the events of the graph

in the obvious way. A trace is a finite sequence of ground actions.

A role defines the actions a principal can perform in a protocol session. Formally,

a role is a finite sequence of actions R = A1 . . . An such that

R1 for all i ∈ [1, n], for all N ∈ fresh(Ai)

(a) N is a variable, and

44

Fröschle

(b) Ai is the first action that contains N : ∀j < i, N 6⊑ mesg(Aj).

Axiom (R1) makes sure that we cannot specify a constant to be freshly generated,

and that variables that represent data to be freshly generated at some action cannot

occur in previous actions.

A protocol is a finite set of roles P = {Ri}i∈r where r ∈ IN.

Intruder Model

The power of the Intruder is typically modelled by two ingredients: the set of

messages initially known to the Intruder such as all public keys and his own private

key; and a set of Intruder roles, which specify the Intruder’s basic elements of attack

such as decrypting a message with a key that he has already obtained. (Intruder

roles are originally called parametric Intruder traces [5].) Similarly to protocol roles,

Intruder roles are essentially sequences of signed messages, where ‘+’ denotes output

and ‘−’ denotes input.

The results here are independent of the actual format of the Intruder roles.

We only assume that an Intruder theory is given as a pair I = (KI ,RI) where

KI ⊆ GMesg is the set of initial Intruder knowledge and R is the set of Intruder

roles, and that each Intruder role is a finite sequence of actions of the following

form:

IAct = { + M | M ∈ Mesg} ∪ { − M | M ∈ Mesg}

∪ { + M of I -Knowledge | M ∈ Mesg}.

We redefine the set of actions Act defined in the previous paragraph to include

actions of this form: Act := Act ∪ IAct .

Strands, Strand Spaces, and Bundles

We now come to the core notions of the strand space model: strands and bundles.

We define these concepts relative to a fixed protocol P .

A strand represents an instantiation of a protocol or Intruder role or of a prefix

thereof. (We admit prefixes to be able to model incomplete protocol or Intruder

sessions, a situation that naturally arises in a snaphot of a protocol execution.)

Formally, a strand of P is a totally ordered labelled graph s = (E,⇒,GAct , l) such

that there is a prefix R of a role of P or RI and a ground substitution σ so that,

assuming

• E = {e1, . . . , en} with e1 ⇒ . . . ⇒ en, and

• R = A1 . . . Am,

we have

S1 l(e1) . . . l(en) = A1σ . . . Amσ,

S2 ∀i ∈ [1, n], if sign(ei) = + and n ∈ fresh(ei) then for all j < i, n 6⊑ mesg(ej),

S3 ∀e ∈ E, if l(e) is of the form ‘+ m of I -Knowledge ’ then m ∈ KI .

Observe how the axioms ensure that s can indeed be understood as an instantiation

of R via σ. We call E the set of events of s, denoted by events(s). If an event e has

sign ‘+’, we call it a send event, and if it has sign ‘−’, a receive event respectively.

45

Fröschle

We say message m originates on event ei if ei is a send event, m ⊑ mesg(ei), and

for all j < i, m 6⊑ mesg(ej). Note that Axiom (S2) ensures that when an atomic

message is freshly generated at an event then it originates on that event. We call

l(e1) . . . l(en) the trace of strand s. We say two strands are disjoint if their sets of

events are disjoint.

A snapshot of a protocol execution consists of the set of (complete and incom-

plete) protocol and Intruder sessions that have been executed so far plus information

on how the messages flow between the sessions. This leads us to the concept of strand

space. 2 A strand space of P is a pair B = (S,→) where S is a set of pairwise disjoint

strands of P , and →⊆ E×E is a relation on the events of S, E =
⋃

s∈S events(s).

The single-arrow relation is thought to represent the flow of messages. It is clear

that we can equivalently regard B as a labelled bi-graph (E,⇒,→,GAct , l), a view

we will often adopt. We call E the set of events of B, denoted by events(B).

A strand space can contain situations that are counter-intuitive such as a receive

event leading to a send event. A snapshot of a protocol execution is modelled by a

bundle. Formally, a bundle of P is a strand space B = (E,⇒,→,GAct , l) of P such

that the following axioms are satisfied:

B1 if e1 → e2 then sign(e1) = +, sign(e2) = −, and mesg(e1) = mesg(e2),

B2 if e1 → e2 then there is no other e′1 such that e′1 → e2,

B3 ∀e ∈ E, if sign(e) = − then there is e′ ∈ E such that e′ → e,

B4 the relation (→ ∪ ⇒) is acyclic,

B5 ∀e ∈ E, {e′ | e′ (→ ∪ ⇒)∗ e} is finite,

B6 ∀e ∈ E, if sign(e) = + and n ∈ fresh(e) we have: n is uniquely originating on

e: there is no event e′ with e′ 6= e such that n originates on e′.

Axiom (B1) ensures that messages flow from send events to receive events. Ax-

iom (B2) enforces that an event can receive its message from at most one event.

Axiom (B3) guarantees that each receive event is matched up with a send event.

Axiom (B4) ensures that the reflexive and transitive closure of → ∪ ⇒ is a partial

order, which, as we will explain below, captures causality. Axiom (B5) ensures that

every event depends on only finitely many previous events. It is necessary in our

setting since we allow bundles to contain infinitely many events. Axiom (B6) en-

sures that if an atomic message is specified to be freshly generated on some event

then on any other strand it has to be received before it can be sent.

We denote the relation → ∪ ⇒ by ≺1. ≺1 expresses immediate causality : If

e → e′ then e is an immediate cause of e′ due to the message flow causality between

received messages and sent messages. If e ⇒ e′ then e is an immediate cause of e′

due to the execution order causality within a protocol session. The reflexive and

transitive closure of ≺1, denoted by �, is a partial order, which captures causality.

For every event e of a bundle there is at most one event e′ such that e′ ⇒ e,

and at most one event e′′ such that e′′ → e. If the first exists define ⇒-pred(e) = e′

otherwise define ⇒-pred(e) = nil . If the latter exists define →-pred(e) = e′′, and

→-pred (e) = nil otherwise. Naturally we assume nil 6∈ E.

2 This notion slightly varies from the standard notion of strand space related to in the introduction.

46

Fröschle

• +{a, na}Kb

•−{na, n1}Ka
• −{na, n2}Ka

•+{n1}Kb
• +{n2}Kb

A → B : {A,NA}KB

B → A : {NA, NB}KA

A → B : {NB}KB

• + Client Hello

• - Server Hello

• - Certificate

•- Certificate Request • - Server Hello Done

•- Server Hello Done • + Client Key Exchange

•+ Certificate

(a) (b)

Fig. 1. Sources of branching within a session

3 Branching Bundles

We now define our concept of branching bundles. As motivated in the introduction

branching bundles should be capable of representing several conflicting protocol

executions. To obtain them as a natural generalization of bundles, we will define

them as bi-graphs of events labelled by actions of GAct . In contrast to bundles

we will allow them to contain events that represent conflicting points in a protocol

execution. We can distinguish between three situations when two events e1 and e2

of a protocol execution should naturally be considered to be in conflict with each

other:

(i) e1 and e2 belong to different futures of the same session;

(ii) one of e1 and e2, say e1, is a send event that sends as part of its message

a freshly generated atomic message n, while the other event, e2, contradicts

unique origination of n: e2 sends n as part of its message but n has never been

received earlier in the session of e2.

(iii) e1 and e2 are causally dependent on two events that are in conflict according

to (i) or (ii).

The first situation motivates that a concept of branching bundles must be based

on a concept of branching strands. So let us analyse in turn what sources of branch-

ing there are within a session. When does a session split into different futures?

(i) The receive actions of a protocol specification typically contain variables to be

bound to parts of the incoming message. A session with such a receive action

will have different futures depending on the received message. (The different

futures will, however, be equivalent modulo the value that is bound to the

respective input variable.) This situation is depicted in Figure 1(a).

(ii) The protocol specification may contain choice points. For example, the course

of the SSL/TLS handshake protocol depends on which method for establishing

the pre-master-secret is negotiated at the start, and on whether client authen-

47

Fröschle

tication is requested by the Server or not. Typically the choice between several

options of a protocol will be resolved by received input. On the other hand, to

abstract away from detail, we may allow protocols to contain nondeterministic

choice. The first situation is depicted in Figure 1(b).

There is yet another source of branching if we take a purely observational view.

Say Eavesdropper Eve observes the first two actions of a session, but she cannot tell

to which role these actions belong to: according to their format the actions could

form an initial part of an instance of role A or of role B. Then in one future of

Eve the observed session may evolve into an instance of role A, whereas in another

future of Eve it will evolve into an instance of role B.

(iii) An observed session may have different futures due to ambiguity in the protocol

specification.

To include (iii) as a source of branching is a design decision and may seem

counter-intuitive at first. To include it seems, however, in the spirit of the strand

space model: it is consistent with the fact that if there is ambiguity in the protocol

specification then a strand may be interpreted as an instance of several roles. To

resolve this type of ambiguity one would need to keep a role identifier at each strand,

which would make the model less abstract and technically cumbersome. As we will

now see our decision to include (iii) leads to a very simple formalization of branching

strand. In the following, let P be a protocol.

Definition 3.1 A branching strand of P , abbreviated b-strand of P , is a labelled

tree s = (E,⇒,GAct , l) such that all branches of s are strands of P . (Note that

this implies that branching strands are trees of finite depth.)

By definition every strand is a b-strand, and every b-strand whose events are

totally ordered is a strand. We carry over all the concepts defined for strands in

Section 2 in the obvious way. The notation ⇒-pred (e) naturally also carries over.

Having defined a notion of b-strands we obtain b-strand spaces in the obvious

way. A b-strand space of P is a pair B = (S,→) where S is a set of disjoint b-

strands of P , and → ⊆ E ×E is a relation on the events of S, E =
⋃

s∈S events(s).

Analogously to strand spaces, we will often view B as a labelled bi-graph (E,⇒, →,

GAct , l). The three situations of conflict pinpointed in the beginning of the section

give rise to a binary conflict relation on the events of a b-strand space.

Definition 3.2 Let B = (E,⇒,→,GAct , l) be a b-strand space of P . Two distinct

events e1, e2 ∈ E are in immediate conflict, written e1#1e2, if

(i) ⇒-pred (e1) = ⇒-pred (e2), or

(ii) sign(e1) = +, and there is n ∈ fresh(e1) such that n originates on e2, or

(iii) the symmetric condition holds.

Two events e1, e2 ∈ E are in conflict, written e1#Be2, if there exist distinct events

e′1, e′2 ∈ E such that e′1#1e
′
2 and e′i (⇒ ∪ →)∗ ei for i = 1, 2. For e ∈ E, we say e is

in self-conflict if e#Be.

To be able to interpret a b-strand space as a branching protocol execution we

need to impose axioms. Naturally we will adopt Axioms (B1) to (B5) of the def-

48

Fröschle

inition of bundles. However, Axiom (B6) will be dropped: the axiom on unique

origination is clearly not needed when events are allowed to be in conflict. On the

other hand, in the presence of conflict a new axiom will be required: we need to

make sure that events are never in conflict with any of the events they are causally

dependent on. Formally, this gives rise to the following definition.

Definition 3.3 A branching bundle of P , abbreviated b-bundle of P , is a b-strand

space B of P such that Axioms (B1) to (B5) as well as the following axiom hold:

BB No event of B is in self-conflict.

Analogously to bundles, due to Axiom (B4), we can associate a causality relation

�B with each b-bundle B; we carry over all concepts related to �B from bundles

to b-bundles. Due to Axiom (BB), for every b-bundle B, #B is irreflexive as well

as symmetric; this is what one would expect of a binary conflict relation.

Finally, we show that bundles are exactly those b-bundles where no events are

in conflict. This illustrates that b-bundles are indeed the generalization of bundles

we have been looking for.

Proposition 3.4 For every b-strand space B of P , B is a bundle of P if and only

if B is a b-bundle with #B = ∅.

4 Towards a Theory of Branching Bundles

We now investigate whether b-bundles have as satisfying a theory as Petri net

branching processes. In Section 4.2 we examine the relationship of b-bundles to

event structures. In Section 4.3 we explore whether the b-bundles of a protocol

approximate (modulo isomorphism) a largest b-bundle. In preparation, we intro-

duce a notion of sub-b-bundle in Section 4.1, which is analogous to that of Petri net

sub-b-processes [4].

In the following, we work as usual relative to a fixed protocol P . Given a b-

bundle B of P we will implicitly assume B = (E,⇒,→,GAct , l). We carry this

convention over to b-bundles B1, B2, and B′ in the obvious way; e.g., we assume

B1 = (E1,⇒1,→1,GAct , l1).

B-bundles come with a notion of isomorphism induced by the standard notion

for labelled bi-graphs. As usual the relation ‘isomorphic’ is an equivalence relation.

Next to isomorphism a notion of homomorphism for b-bundles will be central. A

homomorphism h from b-bundle B1 to b-bundle B2 formalizes the fact that B1

can be folded onto a part of B2. Given an event e of a b-bundle B, we define

⇓ e = {e′ ∈ E | e′ (⇒)∗ e}.

Definition 4.1 Let B1 and B2 be two b-bundles of P . A homomorphism from B1

to B2 is a mapping h from E1 to E2 such that

(i) for every e ∈ E1, l1(e) = l2(h(e)),

(ii) for every e ∈ E1, the restriction of h to ⇓1 e is a bijection between ⇓1 e and

⇓2 h(e), and

(iii) for every e, e′ ∈ E1, if e →1 e′ then h(e) →2 h(e′).

49

Fröschle

It is easy to show that the composition of two homomorphisms is a homomor-

phism. If a homomorphism is bijective then the converse of (iii) is also true (using

the fact that B1 and B2 are b-bundles). Thus, an isomorphism is a bijective homo-

morphism.

4.1 Sub-b-bundles

We introduce a natural notion of sub-b-bundle, which formalizes when a b-bundle

is an initial part of another b-bundle.

Definition 4.2 Let B and B′ be two b-bundles of P . B′ is a sub-b-bundle of B if

E′ ⊆ E and the identity on E′ is a homomorphism from B′ to B. If B′ is a bundle

we also say that B′ is a sub-bundle of B.

In other words, B′ is a sub-b-bundle of B if, E′ ⊆ E, and for every e ∈ E′,

(1) l′(e) = l(e), (2) ⇒′ -pred(e) = ⇒ -pred(e), and (3) →′ -pred(e) = → -pred(e)

(using the fact that B and B′ are b-bundles). This shows that B′ really is an initial

part of B.

We provide a characterization of the sub-b-bundles and sub-bundles of a b-

bundle B in terms of downwards-closed subsets of E. This will further illustrate

the concept of sub-b-bundle but will also be needed in the next section. A subset

E′ of E is downwards-closed if, for all e1, e2 ∈ E, if e1 �B e2 and e2 ∈ E′ then

e1 ∈ E′. If B′ is a sub-b-bundle of B then E′ is clearly downwards-closed. This

follows from the observation of the previous paragraph. On the other hand, every

downwards-closed set of events determines a sub-b-bundle in a natural way.

Definition 4.3 Let B be a b-bundle, and let E′ be a downwards-closed subset of

E. The sub-b-bundle associated with E′, denoted by sbb(E′) is defined as (E′,⇒′,

→′,GAct , l′), where ⇒′, →′, and l′ are obtained as the restriction of ⇒, →, and l

respectively, to the events in E′.

It is immediate that sbb(E′) is indeed a b-bundle. It is clearly a sub-b-bundle

by definition. We are now ready to state the characterization.

Proposition 4.4 Let B be a b-bundle.

(i) A b-bundle B′ is a sub-b-bundle of B if and only if B′ = sbb(E′) for some

downwards-closed subset E′ of E.

(ii) A bundle B′ is a sub-bundle of B if and only if B′ = sbb(E′) for some

downwards-closed and conflict-free subset E′ of E.

4.2 Branching Bundles and Event Structures

A (labelled prime) event structure is a tuple (E,≤,#, L, l) consisting of a set E of

events, which are partially ordered by ≤, the causal dependency relation, a binary,

symmetric and irreflexive relation # ⊆ E×E, the conflict relation, a set L of labels,

and a labelling function l : E → L, which assigns a label to each event. Further,

the following conditions must be satisfied for all e, e′, e′′ ∈ E:

E1 e↓ = {e′ | e′ ≤ e} is finite,

50

Fröschle

E2 if e#e′ and e′ ≤ e′′ then e#e′′.

Axiom (E1) means we only consider discrete processes where an event occurrence

depends on finitely many previous events. Axiom (E2) makes sure that each event

inherits conflict from the events it is causally dependent on.

Event structures come equipped with a notion of computation state, called con-

figuration, and a transition relation between configurations. A configuration of an

event structure (E,≤,#, L, l) is a set X ⊆ E, which is

(i) downwards-closed: ∀e, e′ ∈ E : e′ ≤ e & e ∈ X ⇒ e′ ∈ X, and

(ii) conflict-free: ∀e, e′ ∈ X : ¬(e#e′).

For two configurations X, X ′ and an event e we write X
l(e)
−→ X ′ when e /∈ X and

X ′ = X ∪ {e}. In this way every event structure gives rise to a labelled transition

system.

We shall now see that b-bundles are closely related to event structures. The

following is straightforward:

(i) Every b-bundle B of P can be viewed as an event structure. This event struc-

ture gives a more abstract representation of B in that it abstracts away from

the distribution of events over b-strands.

Proposition 4.5 Let B = (E,⇒,→,GAct , l) be a b-bundle of P . Then

bb2ev(B) := (E,�B ,#B ,GAct , l) is an event structure.

Just as the configurations of an event structure define its computation states,

the sub-bundles of a b-bundle can be considered to define the reachable states of

that part of the protocol execution described by the b-bundle. From Section 4.1 we

know that the sub-bundles of a b-bundle can be captured in terms of conflict-free

and downwards-closed subsets of events. Hence, we obtain:

(ii) There is a one-to-one correspondence between the sub-bundles of B and the

configurations of bb2ev(B), given by:

Proposition 4.6 Let B be a b-bundle of P .

(i) If B′ is a sub-bundle of B then E′ (the set of events of B′) is a configuration

of bb2ev(B).

(ii) If E′ is a configuration of bb2ev(B) then sbb(E′) is a sub-bundle of B′.

We can define a transition relation between the sub-bundles of a b-bundle anal-

ogously to how this is done for event structures: given a b-bundle B, for two sub-

bundles B′, B′′ of B, and an event e ∈ E, we write B′ l(e)
−→ B′′ when e 6∈ E′ and

E′′ = E′ ∪ {e}. Altogether, we have:

(iii) Every b-bundle B induces a labelled transition system, where the states are

given by the sub-bundles of B and the transition relation describes how a sub-

bundle can evolve into a new one by executing an action. The induced labelled

transition system is isomorphic to that induced by bb2ev(B).

51

Fröschle

4.3 Approximation

Every b-bundle of a protocol P captures an initial part of the behaviour of P .

We now wish to investigate whether the b-bundles of P consistently approximate,

modulo isomorphism, a largest b-bundle. If every protocol P had indeed a largest

b-bundle, this b-bundle would capture all possible behaviour of P , and would thus

provide a natural strand space semantics for protocols. Furthermore, in view of the

results of the previous section this strand space semantics would come with a notion

of computation state in terms of bundles, and a transition relation between them.

The induced labelled transition system would give the corresponding interleaving

semantics of the protocol, while the protocol would also have an abstract partial

order semantics in terms of the induced labelled event structure.

First, we need to define a natural notion of approximation for b-bundles. Intu-

itively, one b-bundle approximates another when it is, up to isomorphism, an initial

part of the other. This can be formalized as follows.

Definition 4.7 Let B1, B2 be two b-bundles of P . B1 approximates B2, written

B1 ≤ B2, if there exists an injective homomorphism from B1 to B2.

The following observation justifies the naturalness of this definition:

Proposition 4.8 Let B1, B2 be two b-bundles of P . B1 ≤ B2 if and only if B1 is

isomorphic to a sub-b-bundle of B2.

Naturally, approximation is preserved by isomorphism. Thus, ≤ can be extended

to isomorphism classes of b-bundles. Let IBB(P) denote the set of isomorphism

classes of b-bundles of P . As one would expect ≤ is a partial order on IBB(P).

Proposition 4.9 (IBB(P),≤) is a partial order.

To establish that the b-bundles of P consistently approximate a largest b-bundle

we would further like to obtain that (IBB(P),≤) is a complete lattice. However,

we will now demonstrate that this does not hold. Indeed we have:

Proposition 4.10 (IBB(P),≤) is neither a lattice nor a complete partial order.

Proof. To prove this result we will exhibit two b-bundles that have upper bounds

but no least upper bound. The b-bundles (which are also bundles) are presented in

Figure 2.

Bundle A contains one instance of trace +m1 +m2 and one instance of trace

−m1 −m2, with the send and receive events matched up in the obvious way. Bundle

B contains two instances of trace +m1 +m2 and one instance of trace −m1 −m2,

with the receive events of the latter matched up to send events of different strands.

Observe that A and B are incomparable: B can clearly not be injectively folded

onto A; while there cannot be a homomorphism from A to B because there is no

strand in B with two outgoing message-flow arrows.

By a similar argument it is clear that any upper bound of A and B must contain

at least two instances of trace +m1 +m2 and two instances of trace −m1 −m2. If

two b-bundles contain the same number of events and are comparable with respect

to ≤ then there will be a bijective homomorphism between them, and hence an

52

Fröschle

• +m1

• +m2

• −m1

• −m2

• +m1

• +m2

• −m1

• −m2

• +m1

• +m2

A B

• +m1

• +m2

• −m1

• −m2

• +m1

• +m2

• −m1

• −m2

• +m1

• +m2

• −m1

• −m2

• +m1

• +m2

• −m1

• −m2

U V

Fig. 2. m1 and m2 are ground messages, +m1 stands short for + fresh ∅ in m1, and similarly for +m2. It
is clear that there is a protocol P such that A to V are b-bundles of P .

isomorphism. Thus, any upper bound of A and B which contains only eight events

is, up to isomorphism, a minimal upper bound of A and B.

Consider b-bundles U and V of Figure 2. It is easy to check that both of them

are upper bounds of A and B. Further, both of them have only eight events, and

thus, up to isomorphism, they must be minimal upper bounds. On the other hand,

U and V are not isomorphic: e.g., U has an event labelled by +m1 with two outgoing

message-flow arcs while V does not. 2

Since (IBB(P),≤) is not even a complete partial order, ≤ cannot be interpreted

as a notion of approximation in the information-ordering sense: a b-bundle that

is higher in the order does not extend the information of the elements below in a

consistent way. It also indicates that a largest b-bundle might simply not exist.

Thus, the theory of branching bundles does not turn out to be very satisfying.

Analysing the above counter-example will, however, lead us to a satisfying theory

of symbolic b-bundles.

Remark 4.11 Those readers who are familiar with the strand space model may

wonder whether a counter-example could still be obtained if the →-relation in bun-

dles was disallowed to be forwards-branching (and the Intruder must duplicate mes-

sages explicitly). Note that for b-bundles forwards-branching would still be natural,

53

Fröschle

• +fresh a in m1

• +m2

• −m2

• +m3

• −m3

• +a

• −m2

• +m3

• +m2

#

Fig. 3. Assume a 6⊑ m2 & a 6⊑ m3.

and a more involved counter-example could be constructed.

5 Symbolic Branching Bundles

Let us take another look at the bundles of Figure 2. One could argue that A and

B represent the same information with respect to the Intruder’s viewpoint. On

the one hand, at both, A and B, the information the Intruder has gained so far is

essentially the same:

the input to a strand with trace −m1 −m2 can be obtained from the send events

of a strand with trace +m1 +m2, where instances of the latter trace do not require

any input.

On the other hand, the information the Intruder may gain in the future is also

essentially the same at both, A and B:

for example, to simulate a future of B by a future of A, if the Intruder employs

one of the two +m1-events of B as send input to a future strand, he can use the

one +m1-event of A in exactly the same way. Furthermore, if in a future of B

each of the two +m1 +m2 strands is extended by an action such that the actions

are different but non-conflicting, then in A a new strand with trace +m1 +m2 can

be spawned, so as to obtain two non-conflicting strands with analogous traces.

This is why, on second look, it is not surprising that b-bundles do not form an

information ordering: there are many inconsistent ways of representing the same

information. On the positive side, this also suggests that we may still obtain an

information ordering if we work with a notion of symbolic b-bundle.

How could a notion of symbolic b-bundle look like? We would expect that in

a symbolic b-bundle all branches that represent essentially the same information

are ‘glued together’, thereby folding a space of b-strands together into a space of

symbolic b-strands. A space of symbolic b-strands is a b-strand space whose b-

strands are considered symbolically. This means we need to relax our notion of

conflict. Since a b-strand may now represent several, possibly parallel, sessions, two

events that have the same ⇒-predecessor are not necessarily in conflict any more:

54

Fröschle

as long as there is no conflict due to unique origination we could have instantiated

parallel sessions.

Definition 5.1 Let B = (E,⇒,→,GAct , l) be a b-strand space of P . Whenever

we wish to consider the b-strands of B symbolically then we call B a symbolic b-

strand space, and redefine the conflict relation #B by deleting clause (i) from the

definition of immediate conflict in Def. 3.2.

Next we need to clarify: when do two branches of a b-bundle represent essentially

the same information? One condition is, naturally, that their trace must be the

same. However, Figure 3 motivates that we need to adopt a second condition. It

illustrates that two strands that have the same trace but different pasts can have

different futures: the +m3-event of the strand on the right-hand side can be used as

input to the −m3-event of the lowest strand. However, this is not possible for the

+m3-event of the strand on the left-hand side, since this would lead to a self-conflict

of the +a-event due to violation of unique origination. Thus, we only wish to ‘glue

together’ branches when they have the same trace and the same past. In more

detail: if two branches b and b′ have the same trace and for all positions i of the

trace, the ith event of b has the same →-predecessor as the ith event of b′ then b

and b′ are to be identified. We can capture this condition more succinctly in terms

of events: if two events have the same label and the same predecessors then they

are to be identified. Altogether, this leads to the following definition of symbolic

b-bundle.

Definition 5.2 A symbolic b-bundle B of P is a symbolic b-strand space such that

Axioms (B1) to (B5) and (BB) of the definition of b-bundle hold (the latter with

respect to the redefined conflict relation). In addition we impose the following

axiom:

SBB for every e1, e2 ∈ E, if

(a) l(e1) = l(e2), and

(b) ⇒-pred (e1) = ⇒-pred (e2), and

(c) →-pred (e1) = →-pred (e2)

then e1 = e2.

Axiom (SBB) is analogous to, and inspired by, a requirement for Petri net

branching processes (Definition 7 of [4]). We also derive a notion of symbolic bundle.

Naturally, they are based on symbolic b-strands.

Definition 5.3 A symbolic bundle is a conflict-free symbolic b-bundle (where the

conflict relation is as redefined above).

We will now demonstrate that every b-bundle B of P can indeed be folded onto

a symbolic b-bundle. By induction on the causal depth of events we successively

identify those events that satisfy conditions (a) to (c) of the definition of symbolic

b-bundle. Formally, we define an equivalence relation ∼ on E ∪{nil} inductively as

follows:

(i) nil ∼ nil ,

55

Fröschle

(ii) e1 ∼ e2 if

(a) l(e1) = l(e2),

(b) ⇒-pred (e1) ∼ ⇒-pred(e2), and

(c) →-pred (e1) ∼ →-pred(e2).

It is easy to check that ∼ is indeed an equivalence relation. Denote the equiv-

alence class of event e by [e]∼. Given a b-bundle B, the folding of B, denoted by

fold(B), is defined to be the tuple (Ef ,⇒f ,→f ,GAct , lf) where

• Ef = {[e]∼ | e ∈ E},

• ∀f1, f2 ∈ Ef , f1 ⇒f f2 if and only if e1 ⇒B e2 for some e1 ∈ f1, e2 ∈ f2,

• ∀f1, f2 ∈ Ef , f1 →f f2 if and only if e1 →B e2 for some e1 ∈ f1, e2 ∈ f2,

• ∀f ∈ Ef , l(f) = a if and only if l(e) = a for some (or equivalently all) e ∈ f .

Proposition 5.4 Let B be a b-bundle of P .

(i) fold(B) is a symbolic b-bundle of P .

(ii) If B is a bundle then fold(B) is a symbolic bundle.

(iii) fold is a surjective homomorphism from B to fold(B).

On the other hand, every symbolic b-bundle can be transformed into a b-bundle

by disentangling non-conflicting strands that are glued together. In particular,

every symbolic bundle can be transformed into a bundle. (These connections will

be formalized in the full version of the paper.)

The transformations give rise to the following observation, which shows how

reachability problems on bundles can be reduced to reachability problems on sym-

bolic bundles.

Proposition 5.5 Assume a protocol P and a finite set of strands S of P . There

is a bundle B of P with S ⊆ strands(B) if and only if the events of S are conflict-

free and there is a symbolic bundle B′ of P with traces(S) ⊆ traces(B′). (We use

strands(B), traces(S), and traces(B′) with the obvious meaning.)

This shows that it should be adequate to work with symbolic bundles in most

situations. Most verification problems for security protocols can be expressed as

reachability problems: check whether a situation that represents an attack can be

reached. In the strand space model this can be formalized as follows:

Given: A protocol P , and a finite set of strands S.

Decide: Is there a finite bundle B such that S ⊆ strands(B)?

6 A Theory of Symbolic Branching Bundles

It is straightforward to carry over all concepts and positive results of Section 4 to

symbolic b-bundles. In particular, we have a partial order ≤ on ISBB(P), the set

of isomorphism classes of symbolic b-bundles of P . However, now we indeed obtain:

Theorem 6.1 (ISBB(P),≤) is a complete lattice.

Due to Axiom (SBB) the theorem can be proved analogously to Engelfriet’s

56

Fröschle

result on Petri net branching processes [4]. The proof will be provided in the full

version of the paper.

Theorem 6.1 guarantees the existence of a unique maximal element in ISBB(P),

which captures all possible behaviour of P in a symbolic fashion. We call it the

symbolic unfolding of P . Thus, every protocol has a strand space semantics in terms

of its symbolic unfolding. Further, by the results of Section 4.2 this semantics comes

with a notion of computation state in terms of symbolic sub-bundles, a transition

relation, and close relations to event structures.

It remains to be investigated whether restricting our attention to the symbolic

unfolding is indeed suitable in most situations of security protocol analysis. We

will also examine whether it can help with the state space explosion problem in

model-checking tools. On the theoretical side, the relationship between symbolic

b-bundles and b-bundles can be further formalized using category theory.

Acknowledgement: I thank the anonymous referees for their valuable comments.

References

[1] Crazzolara, F. and G. Winskel, Events in security protocols, in: ACM Conference on Computer and
Communications Security, 2001, pp. 96–105.

[2] Crazzolara, F. and G. Winskel, Petri nets in cryptographic protocols, in: IEEE IPDPS-01, 2001, p. 149.

[3] Crazzolara, F. and G. Winskel, Composing strand spaces, in: FST TCS 2002, Lecture Notes in Computer
Science 2556, 2002, pp. 97–108.

[4] Engelfriet, J., Branching processes of Petri nets, Acta Inf. 28 (1991), pp. 575–591.

[5] Fábrega, F. J. T., J. C. Herzog and J. D. Guttman, Strand spaces: Why is a security protocol correct?,
in: Symposium on Security and Privacy (1998).

[6] Fröschle, S., The insecurity problem: Tackling unbounded data, in: CSF 2007 (2007), pp. 370–384.

[7] MITRE, The strand space method web page, http://www.mitre.org/tech/strands/.

57

EXPRESS 2008 Preliminary Version

Expressiveness Issues in
Calculi for Biochemistry

Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura Anteo Zamboni 7, I-40127 Bologna, Italy.

E-mail: zavattar@cs.unibo.it

Abstract

We explore the computational power of biochemistry with respect to basic chemistry, identifying complex-
ation as the basic mechanism that distinguishes the former from the latter. We use two process algebras,
the Chemical Ground Form (CGF) which is equivalent to basic chemistry, and the Biochemical Ground
Form (BGF) which is a minimalistic extension of CGF with primitives for complexation. We characterize
an expressiveness gap: CGF can only approximate Turing powerful formalisms while BGF supports a finite
precise encoding of Random Access Machines, a well-known Turing powerful formalism.

1 Process Calculi for (Bio)Chemistry

In [1] a process calculus, called Chemical Ground Form (CGF), was proposed for
the compositional description of chemical systems, and proved to be both stochas-
tically and continuously equivalent to chemical kinetics. Chemical kinetics is the
traditional model used to represent basic chemical systems in terms of monomolec-
ular and bimolecular reactions between molecules belonging to a predefined set of
species. Biochemistry is obviously based on chemistry, and in principle one can
always express the behavior of a biochemical system by a collection of chemical re-
actions. But there is a major practical problem with that approach: the collection
of reactions for virtually all biochemical systems is an infinite one. For example,
just to express the chemical reactions involved in linear polymerization, we need to
have a different chemical species for each length n of polymer Pn, with reactions to
grow the polymer: Pn + M → Pn+1. While each polymer is finite, the set of pos-
sible polymerization reactions is infinite. Nature adopts a more modular solution:
the act of joining two molecules is called complexation, and polymers are made by
iteratively complexing monomers. Each monomer obeys a finite simple set of rules
that leads to the formation of polymers of any length. A formalization of basic
complexation mechanisms was proposed in [1], where association and dissociation
actions model the complexations and decomplexation between two molecules. In [2]

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:zavattar@cs.unibo.it

Zavattaro

a new calculus, called Biochemical Ground Form (BGF) was defined simply adding
association and dissociation to CGF.

In [2,4] the computational power of basic chemistry and basic biochemistry was
studied exploiting the process calculi CGF and BGF as their formalizations, re-
spectively. In [2] an interesting expressiveness gap was proved between CGF and
BGF: CGF is not Turing complete while BGF supports a finite precise encoding of
Random Access Machines, a well-known Turing powerful formalism. Even if CGF
is not Turing complete, in [4] it is shown that Random Access Machines can be at
least approximated with an error probability smaller than any arbitrary precision.
This interesting result about basic chemistry, discussed in [3], has important conse-
quences as proved in [4]: in basic chemistry the existential termination problem is
decidable while universal termination turns out to be undecidable.

References

[1] Cardelli, L., On Process Rate Semantics, Theoretical Computer Science in press (2008), available at
http://dx.doi.org/10.1016/j.tcs.2007.11.012.

[2] Cardelli, L. and G. Zavattaro, On the Computational Power of Biochemistry, in: Proc. of 3rd
International Conference on Algebraic Biology (AB’08), LNCS to appear, 2008.

[3] Soloveichik, D., M. Cook, E. Winfree and J. Bruck, Computation with Finite Stochastic Chemical
Reaction Networks, Natural Computing in press (2008), available at http://dx.doi.org/10.1007/s11047-
008-9067-y.

[4] Zavattaro, G. and L. Cardelli, Termination Problems in Chemical Kinetics, in: Proc. of 19th
International Conference on Concurrency Theory (CONCUR’08), LNCS to appear, 2008.

59

EXPRESS 2008 Preliminary Version

A Calculus for Mobile Ad-hoc Networks with
Static Location Binding

Jens Chr. Godskesen 1

IT University of Copenhagen

Abstract

We present a process calculus for mobile ad hoc networks which is a natural continuation of our earlier
work on the process calculus CMAN [6]. Essential to the new calculus is the novel restricted treatment
of node mobility imposed by hiding of location names using a static binding operator, and we introduce
the more general notion of unidirectional links instead of bidirectional links. We define a natural weak
reduction semantics and a reduction congruence and prove our weak contextual bisimulation equivalence to
be a sound and complete co-inductive characterization of the reduction congruence.
The two changes to the calculus in [6] yields a much simpler bisimulation semantics, and importantly and
in contrast to [6] we manage to provide a non-contextual weak bisimulation congruence facilitating ease of
proofs and being strictly contained in the contextual bisimulation.

1 Introduction

The widespread use of communicating mobile devices makes mobile and wireless
networks become more and more important. The area of application is broad,
spanning from ambient intelligence over mobile ad hoc, sensor, and mesh networks,
to cellular networks for mobile telephony.

The communication primitive for wireless networks is message broadcast. How-
ever in contrast to wired local area networks where broadcasted messages reach
every node in the network, for wireless networks broadcast is local because mes-
sages will only reach the nodes within the communication range of the emitting
node. Put differently, in wired networks broadcast scope is transitive and bidirec-
tional in that if nodes l and m can communicate directly and if m and n can do so
also, then in turn l and n can communicate directly whereas this is not necessarily
the case for wireless networks.

Our work is devoted to a particular kind of wireless networks, i.e. Mobile Ad Hoc
Networks (MANETs). MANETs are self organizing without centralized control, and
they do not contain a pre-deployed infrastructure for routing messages. A MANET

1 Supported by grant no. 272-05-0258 from the Danish Research Agency.
2 Email: jcg@itu.dk

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:jcg@itu.dk

Godskesen

may be formed when a collection of nodes join together and agree on how to route
messages for each other over possibly multiple hops.

In this paper we present a process calculus for MANETs which is a natural con-
tinuation and refinement of our earlier work on the calculus CMAN [6]. Essential to
the new calculus is the restricted treatment of node mobility imposed by hiding of
location names using a static binding operator, this yields a much simpler labelled
transition system and bisimulation semantics. To our knowledge no other calculus
for MANETs hides nodes and restricts mobility through a calculus operator. Also,
we introduce the more general notion of unidirectional links instead of bidirectional
links; e.g. because some nodes have larger transmission range than others. We de-
fine a natural weak reduction semantics, radically different from the one in [6], and
we define a reduction congruence and prove our weak contextual bisimulation equiv-
alence to be a sound and complete co-inductive characterization of the reduction
congruence. Most importantly, and in contrast to [6], we conveniently manage to
devise a non-contextual weak bisimulation congruence that is a considerably advan-
tage in many proofs. The non-contextual bisimulation is strictly contained in our
reduction congruence.

1.1 Related Work

Despite the widespread use of broadcasting technology it turns out that process
calculi for broadcasting systems are not as well-studied as the more common
point-to-point calculi like e.g. CCS [9], or in a mobile setting for instance the π-
calculus [11,10] and the Ambient Calculus [3]. Moreover, in [4] it is demonstrated
that that it is impossible to encode broadcast communication using point-to-point
communication uniformly in the π-calculus.

The first study of calculi for broadcasting systems was CBS [15]. Later broad-
casting was introduced in a mobile setting in bπ [5], MBS [16], and HOBS [14].
However, they all let broadcast be transitive and hence are not well suited for local
wireless broadcast. More recently local wireless broadcast has been studied in CBS#
[13], an extension of CBS. The neighborhood relation between nodes is dealt with
letting the semantics be parameterized and quantified over a set of configurations
(graphs).

The ω-calculus [17] is an extension of the π-calculus. It is interesting in that the
neighborhood relation is modeled by annotating the processes with the groups to
which they belong. A group is a set of nodes that lie within each others communi-
cation range. Local wireless broadcast has also been studied in CMN [7], here the
neighborhood relation is taken care of by a metric function that tells if two physical
locations are close enough to communicate. 3

As mentioned above, in [6] we developed CMAN where also the neighborhood
relation is explicitly part of the syntax because a node is annotated by the nodes
to which it is connected. However, a bit unnaturally, and like in the ω-calculus,
communication between nodes is carried out on bidirectional links. Further we
assumed, as in CBS#, CMN, and the ω-calculus, that nodes may move and connect

3 The calculus CWS [8] also studies wireless broadcast but at a much lower level of abstraction, in particular
they take the phenomenon of interference into account.

61

Godskesen

arbitrarily, but to be realistic it is easy to envisage that two particular mobile nodes
in a MANET can never meet due to physical obstacles (walls, buildings, etc.).
Even though we apply many changes to CMAN in this paper the analysis of a
cryptographic routing protocol for MANETs carried out in [6] is still valid for our
new calculus.

1.2 Motivation

Our goal in this paper is to develop a process calculus for MANETs where commu-
nication links are not assumed to be bidirectional, and moreover we want primitives
that restrict the otherwise unrestricted mobility of nodes.

A node, bpcσl , in our new calculus is modeled as a process p located at some
logical location (or identity) l and connected to other nodes at locations σ. Nodes
composed in parallel constitute a network, say

bpcml ‖ bqcnm ‖ brcn ,(1)

where the node at location l, bpcml , is connected to the node at location m, bqcnm,
which in turn is connected to the node at location n, brcn.

Mobility is defined by a simple reduction, say that the node at location n in (1)
autonomously moves and becomes connected to the node at location l,

bpcml ‖ bqcnm ‖ brcn ↘ bpcml ‖ bqcnm ‖ brcln .(2)

Dually, nodes may arbitrarily disconnect, for instance m disconnects from n in

bpcml ‖ bqcnm ‖ brcln ↘ bpcml ‖ bqcm ‖ brcln .(3)

A process 〈t〉.p can broadcast t and in so doing become p, and a process (x).q
can receive a broadcasted message t becoming q{t/x}, i.e. q with all free occurrences
of x replaced by t. Local synchronous broadcast is defined by a network broadcast
reduction labelled by the location of the node containing the emitting process, say

b〈n〉.pcmkl ‖ b(x).qcm ‖ b(x).rck ↘ l bpcmkl ‖ bq{n/x}cm ‖ br{n/x}ck ,(4)

where 〈n〉.p broadcasts n to all nodes to which the node at l is connected.
In CMAN one may choose to hide locations in order to let broadcasting be unob-

servable, the hiding is carried out by a scope extensible binder, νl. For instance, the
hidden node νl.b〈n〉.pcl, may connect to other nodes by first extruding its location
name (through structural congruence, assuming l is fresh),

νl.b〈n〉.pcl ‖ b(x).qcm ≡ νl.(b〈n〉.pcl ‖ b(x).qcm)↘ νl.(b〈n〉.pcml ‖ b(x).qcm) ,

and subsequently send its messages to its new neighbor,

νl.(b〈n〉.pcml ‖ b(x).qcm)↘ νl.(bpcml ‖ bq{n/x}cm) ,

the latter carried out as an unlabelled and hence unobservable reduction. As a
novelty, in this paper we instead introduce a static binder for location names, de-
noted by \l, whose scope cannot be extended and we abolish the scope extensible
binder mentioned above. Not only will such a binding outside its scope conceal all
broadcasting events carried out at l, but also connectivity involving the node at l

62

Godskesen

is restricted within the scope of the binder. For instance, in

P ‖ brck , where P = (b〈n〉.pcml ‖ b(x).qcm) \ l(5)

the location name l is bound and inaccessible to the node at k, so the two nodes
cannot connect and hence not directly receive messages from each other. The hidden
node in (5) may broadcast to m as demonstrated by

P ↘ (bpcml ‖ bq{n/x}cm) \ l ,(6)

but then the broadcast is carried out as an unobservable unlabelled reduction.

1.3 Structure

The paper is organized as follows: Our new calculus is presented in the next section
and in Section 3 we define a reduction semantics and a reduction congruence. In
Section 4 we define bisimulation equivalences, one being a contextual co-inductive
characterization of the reduction congruence, and one being a non-contextual con-
gruence strictly contained in reduction congruence.

We illustrate the application of the calculus on a simple cryptographic message
passing protocol where node mobility is restricted, this example could not have been
modeled and analyzed in our previous work [6]. Finally, we end by a conclusion.

2 The Calculus

In this section we outline our calculus defining first terms, then processes, and finally
networks.

2.1 Terms

Assume an infinite set of names N ranged over by n, an infinite set of variables X
ranged over by x, and two disjoint finite sets, F and G, of constructor and destructor
symbols ranged over by f and g respectively. Then the set of terms is defined by
the grammar below where f is a constructor symbol with arity k. We let T denote
the set of all terms with no variables.

s, t ::= n | x | f(t1, . . . , tk)

2.2 Processes

We assume a set of process variables Z ranged over by z. The set of processes is
defined by the grammar

p, q ::= 0 | 〈t〉.p | (x).p | if (t = s) then p else q | let x = t in p |

let x = g(t1, . . . , ti) in p else q | νn.p | z | rec z.p

The processes 0, νn.p, if (t = s) then p else q, let x = t in p, and rec z.p are
standard. 4 The process 〈t〉.p may broadcast t and in so doing become p, and (x).p

4 We assume all free occurrences of z in p to be either input or output prefixed.

63

Godskesen

binds x in p and may receive a term t and replace all free occurrences of x in p by t.
Often we write 〈t〉 for 〈t〉.p when p is 0. The process let x = g(t1, . . . , tk) in p else q
also binds x in p, if the destructor application g(t1, . . . , tk) evaluates to a term t

then x is bound to t in p, otherwise the process becomes q.
We let p{t/x} denote p where x is substituted by t. Likewise, p{q/z} denotes p

where z is substituted by q. The set of free names in p is denoted by fn(p), and its
free variables are denoted by fv(p). A process p is closed if fv(p) = ∅. P denotes
the set of all closed processes and we identify processes up to α-equivalence.

2.3 Networks

Assume a finite set of location names L ranged over by l and k. We assume N ∩L =
∅. We let σ range over sets of location names, and we let ε denote the empty set.
The set of networks is defined by the grammar

P,Q ::= 0 | bpcσl | νn.P | P \ σ | P ‖ Q

The network 0 denotes the empty network. bpcσl is a node at location l containing
the process p and connected to all nodes in σ. νn.P is the network P with a new
name n bound by νn, P \σ denotes a network with locations in σ bound and hidden,
and finally P ‖ Q is the parallel composition of the two networks P and Q. We let
the new name operator have higher precedence than the hiding operator which in
turn has higher precedence than the left associative parallel composition. We write
bpcl instead of bpcεl . When ñ = {n1, . . . , ni} we write ñn for ñ ∪ {n} and we write
νñ instead of νn1 . . . νni. We write σl instead of σ ∪ {l}, l for {l}, and σσ′ for the
union of disjoint sets σ and σ′.

The sets of free names, locations, and variables in P , denoted by fn(P), fl(P),
and fv(P) respectively, are defined as expected. We let P{t/x} denote P where
all free occurrences of x in P are substituted by t. We let Pl⊕k denote network P

where k is added to the connections at the (free) location l, taking care that k is not
bound in P (using α-conversion if needed), formally we define: (bpcσl)l⊕k = bpcσkl ,
(bpcσm)l⊕k = bpcσm, if l 6= m, (νn.P)l⊕k = νn.(Pl⊕k), (P ‖ Q)l⊕k = Pl⊕k ‖ Ql⊕k, and
(P \σ)l⊕k = (Pl⊕k)\σ if l, k 6∈ σ. We let Pl⊕σ be the obvious generalization of Pl⊕k.

We say that a network P is well-formed if each node in P is not connected to
itself and if each location in P is unique. In the sequel we consider only the set
of well-formed networks and we identify networks up to α-equivalence. The set of
well-formed and variable closed networks is denoted by N.

3 Reduction Semantics

In this section we provide our calculus with a natural reduction semantics; interest-
ingly and due to the static location binder, the semantics is quite different compared
to the one for CMAN.

As in the seminal work on barbed bisimulation [12], and as in [6], we strive
to have as simple as possible reduction semantics and to allow an external global
observer to have minimal observability, in our case: reductions ↘ l when the node
at the free location l broadcasts, and reductions ↘ for connections, disconnections,

64

Godskesen

let x = t in p ≡P p{t/x} if (t = t) then p else q ≡P p

if (t = s) then p else q ≡P q , if t 6= s rec z.p ≡P p{rec z.p/z}

let x = g(t1, . . . , ti) in p else q ≡P p{t/x} , if g(t1, . . . , ti) = t

let x = g(t1, . . . , ti) in p else q ≡P q , if g(t1, . . . , ti) not defined

Table 1
Structural congruence, processes.

P ‖ 0 ≡ P P ‖ Q ≡ Q ‖ P (P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

bpcσl ≡ bqc
σ
l , if p ≡P q bνn.pcσl ≡ νn.bpc

σ
l (νn.P) \ σ ≡ νn.(P \ σ)

νn.0 ≡ 0 νn.νn′.P ≡ νn′.νn.P νn.P ‖ Q ≡ νn.(P ‖ Q) , if n 6∈ fn(Q)

Table 2
Structural congruence, networks.

and broadcast from hidden nodes. In particular an observer cannot identify the
broadcasted message and the receivers of the message. Indistinguishability under
these observations gives rise to a natural equivalence which in turn induces a natural
congruence over networks, i.e. the equivalence in all contexts closed under structural
congruence.

3.1 Reductions

As usual, a binary relation R on P is a congruence if p R q implies c(p) R c(q)
for any variable closing process context c. Structural congruence on P, ≡P, is the
least congruence and equivalence relation that is closed under α-conversion and the
rules in Table 1. We write C(P) for the insertion of P in the hole of a network
context C whenever C(P) is well-formed and variable closed. A relation R on N is
a congruence if P R P ′ implies C(P) R C(Q) for all C(P). 5 Structural congruence
on N, ≡, is the least congruence and equivalence relation that is closed under α-
conversion and the rules in Table 2. The rules are standard except that new names
can be extruded from nodes and pass the scope of statically bound location names.

To assist in the definition of the reduction rules we introduce a family of ab-
stractions ranged over by Aσ and defined by:

Aε ::= 0 Al ::= b0cσl | b〈t〉.pcσl | b(x).pcσl Aσσ′ ::= Aσ ‖ Aσ′

Aσ ::= Aσ ‖ P | νn.Aσ | Aσ \ σ′ , if σ ∩ σ′ = ∅

In Aσ all locations in σ are free and hence may receive messages. Given an abstrac-
tion Aσ we define Aσ ◦t, i.e. a network being the application of a term t on locations
σ in Aσ, inductively by the rules in Table 3.

We define ↘ l,t ⊆ N×N as the least relation closed under ≡ and satisfying the
rules in Table 4. Intuitively, P ↘ l,t P

′ means that the node at (the free) location l

5 Notice that any congruence, R, has the property that P R Q implies fl(P) = fl(Q) due to the well-
formedness criteria.

65

Godskesen

b0cσl ◦ t = b0cσl b〈t′〉.pcσl ◦ t = b〈t′〉.pcσl b(x).pcσl ◦ t = bp{t/x}cσl

(Aσ ‖ P) ◦ t = (Aσ ◦ t) ‖ P (νn.Aσ) ◦ t = νn.(Aσ ◦ t) , if n 6∈ fn(t)

(Aσ \ σ′) ◦ t = (Aσ ◦ t) \ σ′ (Aσ ‖ Aσ′) ◦ t = (Aσ ◦ t) ‖ (Aσ′ ◦ t)

Table 3
Abstraction application.

(emp)
b〈t〉.pcl ↘ l,t bpcl

(hde1)
P ↘ l,t P

′

P \ σ ↘ l,t P
′ \ σ

l 6∈ σ

(brd)
P ↘ l,t P

′

Pl⊕σ ‖ Aσ ↘ l,t P
′
l⊕σ ‖ (Aσ ◦ t)

(cls)
P ↘ l,t P

′

P ↘ l P
′

(hde2)
P ↘ l P

′

P \ σ ↘ l P
′ \ σ

l 6∈ σ (hde3)
P ↘ l P

′

P \ σ ↘ P ′ \ σ
l ∈ σ

(con)
bpcσl ↘ bpc

σk
l

(dis)
bpcσkl ↘ bpc

σ
l

Table 4
Reduction rules.

has completed broadcasting t to all nodes to which it is connected. A reduction due
to rule (emp) describes that a node may broadcast to the empty set of receivers,
whereas rule (brd) allows auxiliary nodes σ to be connected to a node l and let
the nodes in σ synchronously receive t, whenever l has otherwise completed its
broadcast of t. As an example, since b〈n〉.pcl ↘ l,n bpcl we obtain

b〈n〉.pcml ‖ b(x).qcm ↘ l,n bpcml ‖ bq{n/x}cm ,(7)

from (brd), and from (7) and rule (brd) we get

b〈n〉.pcmkl ‖ b(x).qcm ‖ b(x).rck ↘ l,n bpcmkl ‖ bq{n/x}cm ‖ br{n/x}ck .(8)

Rule (hde1) in Table 4 allows free locations to broadcast a term.
We define ↘ l ⊆ N×N as the least relation closed under ≡, new name, parallel

composition, and satisfying the rules in Table 4. Intuitively, P ↘ l P
′ means that

the node at location l has completed broadcasting some message as indicated by
rule (cls). Rule (hde2) allows broadcast from free locations. As an example, the
reduction (4) in the Introduction is inferred from (8) and rule (cls), and from (4)
we may further infer

νn.b〈n〉.pcmkl ‖ b(x).qcm ‖ b(x).rck ↘ l νn.(bpcmkl ‖ bq{n/x}cm ‖ br{n/x}ck) ,

which does not belong to the reductions in ↘ l,n.
Finally, we define ↘ ⊆ N×N as the least relation closed under ≡, new name,

parallel composition, and location hiding, and satisfying the rules in Table 4. P ↘
P ′ is either the result of a hidden broadcast, i.e. rule (hde3), or a connection or
disconnection as defined by the rules (con) and (dis) respectively. For instance, the
reduction (6) in the Introduction is inferred from (7) and rule (hde3), and (2) and
(3) are inferred from (con) and (dis) respectively.

66

Godskesen

3.2 Reduction Congruence

Next we introduce a natural weak congruence in which reductions ↘ l are our only
observables. Let ↘∗ be the reflexive and transitive closure of ↘. We say that a
binary relation R on N is weakly reduction-closed if whenever P R Q then P ↘ l P

′

(P ↘ P ′) implies the existence of some Q′ such that Q ↘∗↘ l↘∗ Q′ (Q ↘∗ Q′)
and P ′ R Q′.

Definition 3.1 A symmetric relation R on N is a weak reduction congruence if it
is weakly reduction-closed and a congruence.

Let ∼= be the largest weak reduction congruence. As an example, P ∼= Q if
fl(P) = fl(Q) and if neither P nor Q can ever broadcast since no context can
distinguish them apart, in particular 0 ∼= P if fl(P) = ∅.

4 Bisimulation Semantics

In this section we first provide a labelled transition system; interestingly the net-
work semantics turns out much simpler than the one for CMAN. Next, we give the
definition of a weak bisimulation, ≈, a sound and complete co-inductive character-
ization of ∼=. Also this definition is quite different from the corresponding weak
bisimulation for CMAN, but it is still contextual. Therefore, as a novelty compared
to [6], we define a non-contextual weak bisimulation that is strictly contained in ≈,
and we demonstrate its convenience in our examples.

4.1 Labeled Transition System Semantics

We begin with the process semantics and continue with semantics for networks.

4.1.1 Process Semantics

(out)
〈t〉.p 〈t〉−→ p

(open)
p
νñ〈t〉−→ p′

νn.p
νñn〈t〉−→ p′

n ∈ fn(t) \ ñ

(in1)
(x).p

(t)−→ p{t/x}
(in2)

〈t′〉.p (t)−→ 〈t′〉.p
(in3)

0
(t)−→ 0

(new)
p

λ−→ p′

νn.p
λ−→ νn.p′

n 6∈ fn(λ) ∪ bn(λ)

Table 5
Transition Rules, Processes.

Let the set of process actions, AP, where t ∈ T , be defined by:

λ ::= (t) | νñ〈t〉

The action (t) describes that t is received by a process and the action νñ〈t〉 denotes
the emission of the term t with names in ñ bound. If ñ = ∅ we write 〈t〉 instead of
ν∅〈t〉. We let fn(λ) (bn(λ)) denote the free (bound) names in λ.

67

Godskesen

The processes semantics is defined by (P,AP,→) where→ ⊆ P×AP×P is the
least relation defined by the rules in Table 5 and closed by ≡P. The rules (out) and
(in1) are immediate, and (in2) and (in3) state that processes may lose messages.
The rule (new) is standard and the rule (open) takes care of extrusion of new names.

4.1.2 Networks Semantics
The set of network actions A ranged over by α is defined by:

α ::= lσνñ〈t〉 | σ(t) | β β ::= l | τ

where t ∈ T . The action lσνñ〈t〉 means that the node at location l broadcasts t to
nodes in σ where the names in ñ are bound. σ(t) means that t is received by the
nodes in σ. l denotes that the broadcast session for the node at l has completed. As
usual τ denotes an internal computation. We let bn(α) (fn(α)) denote the bound
(free) names in α, and we let fl(α) denote the free locations in α.

(brd)
p
νñ〈t〉−→ p′

bpcσl
lσνñ〈t〉−→ bp′cσl

(rec1)
p

(t)−→ p′

bpcσl
l(t)−→ bp′cσl

(rec2)
P

ε(t)−→ P

(rec3)
P
σ(t)−→ P ′ Q

σ′(t)−→ Q′

P ‖ Q σσ′(t)−→ P ′ ‖ Q′
(opn)

P
lσνñ〈t〉−→ P ′

νn.P
lσνñn〈t〉−→ P ′

n ∈ fn(t) \ ñ

(syn)
P
lσσ′νñ〈t〉−→ P ′ Q

σ′(t)−→ Q′

P ‖ Q lσνñ〈t〉−→ P ′ ‖ Q′
ñ ∩ fn(Q) = σ ∩ fl(Q) = ∅

(cls)
P
lενñ〈t〉−→ P ′

P
l−→ νñ.P ′

(new)
P

α−→ P ′

νn.P
α−→ νn.P ′

n 6∈ fn(α) ∪ bn(α)

(hde1)
P

α−→ P ′

P \ σ α−→ P ′ \ σ
fl(α) ∩ σ = ∅ (hde2)

P
l−→ P ′

P \ σ τ−→ P ′ \ σ
l ∈ σ

(con)
bpcσl

τ−→ bpcσkl
(dis)

bpcσkl
τ−→ bpcσl

(par)
P

β−→ P ′

P ‖ Q β−→ P ′ ‖ Q
fl(β) ∩ fl(Q) = ∅

Table 6
Transition Rules, Networks.

The semantics for networks is defined by (N,A,→) where → ⊆ N × A ×N is
the least relation satisfying the rules in Table 6, omitting the symmetric counter
parts of rules (syn) and (par). The rules (new), (hde1), and (par) are as expected.
The rule (con) deals with connectivity, and so does (dis). As an example, consider
the network

P = νn.(Q \m) ‖ b(x).pck , Q = b〈n〉.qcl ‖ R , R = b(x).rcm ‖ b(x).r′cm′ .

Using rules (con), (par), (hde1), and (new) we may get

P
τ−→ νn.(Ql⊕k \m) ‖ b(x).pck = Pl⊕k

68

Godskesen

The rule (brd) states that a node may broadcast to all those nodes to which it is
currently connected, (rec1) defines when a single node can receive a message, and
(rec3) defines when multiple nodes can receive a message. Not all nodes in a parallel

compostion are required to receive because of (rec2), for instance R
m′(t)−→ b(x).rcm ‖

br′{t/x}cm′ . The rule (syn) defines synchronization of broadcasting enforcing no
name clash. For instance, assuming n 6∈ fn(r) ∪ fn(r′),

Ql⊕{m,m′}
lε〈n〉−→ bqcmm′l ‖ (br{n/x}cm ‖ br′{n/x}cm′) ,

so due to (cls), which closes a broadcast session, we get

Ql⊕{m,m′}
l−→ bqcmm′l ‖ (br{n/x}cm ‖ br′{n/x}cm′) .

Observe that Ql⊕m 6
lm〈n〉−→ because m ∈ fl(R), and notice also that rule (rec2) will

Cεl,ε ◦ t = Cεl,ε Cl,σ((−) \ σ′) ◦ t = (Cl,σ ◦ t)((−) \ σ′)

Cl,σ((−) ‖ Aσ′) ◦ t = (Cl,σ ◦ t)((−) ‖ Aσ′ ◦ t)

Table 7
Network context application, Cl,σ .

allow locations m and m′ to be bypassed in Q l−→ bqcl ‖ R. The rule (hde2) conceals
the emitter of the broadcasted message, so e.g.

Ql⊕{m,m′} \ l
τ−→ (bqcm,m

′

l ‖ (br{n/x}cm ‖ br′{n/x}cm′)) \ l .

Observe that Ql⊕k \k 6
lk〈n〉−→ because of (hde2). The rule (opn) takes care of extrusion

of bound (term) names, hence

Pl⊕k
l−→ νn.((bqckl ‖ R) \m ‖ bp{n/x}ck) .

4.1.3 Correspondence
The correspondence between the transition semantics and structural equivalence is
demonstrated by the lemma below.

Lemma 4.1 If P α−→ P ′ and P ≡ Q then there exists Q′ such that Q α−→ Q′ and
P ′ ≡ Q′.

and the correspondence between the transition and the reduction semantics is
demonstrated by Lemma 4.2 and 4.3.

Lemma 4.2 P
l−→≡ P ′ iff P ↘ l P

′.

Lemma 4.3 P
τ−→≡ P ′ iff P ↘ P ′.

69

Godskesen

4.2 Weak Contextual Bisimulation

Based on the network semantics given in the preceding section below we define
our weak contextual bisimulation. First we introduce a subset of network contexts
ranged over by Cσ

′
l,σ and defined by the grammar

Cεl,ε ::= (−)

Cσ
′′

l,σσ′ ::= Cσ
′′

l,σ ((−) ‖ Aσ′) , if l 6∈ fl(Aσ′)

Cσ
′σ′′

l,σ ::= Cσ
′

l,σ((−) \ σ′′) , if σl ∩ σ′′ = ε

Notice that σ′ binds free locations of P in Cσ
′

l,σ(P). We write Cl,σ instead of Cσ
′

l,σ

if σ′ is not important. Given Cl,σ we write Cl,σ ◦ t for the network context being
the application of t on all locations σ in Cl,σ as defined in Table 7. We write
Cl,σ ◦ (ñ, t, P) for νñ.((Cl,σ ◦ t)(P)) assuming that ñ does not overlap with the free
names in Cl,σ.

Intuitively, for all Cl,σ(P), if l ∈ fl(P) then the node at location l in P may
broadcast messages to all nodes in Cl,σ with locations in σ as demonstrated by the
Lemma below:

Lemma 4.4 For all Cl,σ(P), if P
lσνñ〈t〉−→ P ′ then Cl,σ(P) l−→ Cl,σ ◦ (ñ, t, P ′).

(−) ‖ Cl,σ′ (b〈t〉.pcσσ′
l) ◦ t = (−) ‖ (Cl,σ′ ◦ t)(bpcσσ′

l)

〈t〉Dl,σσ′ ((−) ‖ Aσ′) ◦ t = (Dl,σσ′ ◦ t)((−) ‖ (Aσ′ ◦ t))

〈t〉Dl,σ((−) \ σ′) ◦ t = (Dl,σ ◦ t)((−) \ σ′)

Table 8
Network context application, 〈t〉Dl,σ .

Also we define a set of network contexts ranged over by 〈t〉Dl,σ and defined by
the grammar:

〈t〉Dl,σ ::= (−) ‖ Cσ′′l,σ′(b〈t〉.pcσσ
′

l) , if σ ∩ (σ′′ ∪ fl(Cσ
′′

l,σ′)) = ε

〈t〉Dl,σ ::= 〈t〉Dl,σσ′((−) ‖ Aσ′)

〈t〉Dl,σ ::= 〈t〉Dl,σ((−) \ σ′) , if σl ∩ σ′ = ε

Moreover, for a context 〈t〉Dl,σ we write Dl,σ ◦ t for the context defined by the rules
in Table 8. To clarify, for any 〈t〉Dl,σ(P) if σ ⊆ fl(P) then all nodes at locations
σ in P may receive t broadcasted by the node at location l in 〈t〉Dl,σ as illustrated
by:

Lemma 4.5 For all 〈t〉Dl,σ(P), if P
σ(t)−→ P ′ then 〈t〉Dl,σ(P) l−→ (Dl,σ ◦ t)(P ′).

70

Godskesen

4.2.1 Weak Contextual Bisimulation
Making use of the two types of contexts outlined above we next define weak contex-
tual bisimulation. As usual we let τ=⇒ be the reflexive and transitive closure of τ−→
and we define l=⇒ by τ=⇒ l−→ τ=⇒.

Definition 4.6 A symmetric relation R on N is a weak contextual bisimulation if
P R Q implies

if P τ−→ P ′ then ∃Q′. Q τ=⇒ Q′ and P ′ R Q′

if P
lσνñ〈t〉−→ P ′ then ∀Cl,σ(Q). ∃Q′. Cl,σ(Q) l=⇒ Q′ and Cl,σ ◦ (ñ, t, P ′) R Q′

if P
σ(t)−→ P ′ then ∀〈t〉Dl,σ(Q). ∃Q′.〈t〉Dl,σ(Q) l=⇒ Q′ and (Dl,σ ◦ t)(P ′) R Q′

We let ≈ denote the largest weak contextual bisimulaiton.

Theorem 4.7 ≈ is an equivalence relation and a congruence.

Example 4.8 It is obvious that b〈t〉.〈s〉cl 6≈ b〈s〉.〈t〉cl if t 6= s. However, similar to
what is shown in [7] the order of infinite broadcast sequences may be interchanged,
i.e. whenever C binds l then

C(brec z.〈t〉.〈s〉.zcl) ≈ C(brec z.〈s〉.〈t〉.zcl)(9)

Intuitively, the reason why (9) holds is that receivers may disconnect from l before
a term is broadcasted and connect again in order to receive next.

The first clause in Definition 4.6 is standard. The second clause says that when-
ever node l in P is able to broadcast to nodes σ in the environment, then when
Q is placed in any such environment l in Q must complete a broadcast, but we do
not know the receiving nodes. Dually, the third clause states that whenever nodes
σ in P synchronously may receive a broadcasted message from the environment
then when Q is placed in any such environment the emitting node must complete a
broadcast, but again we may not know the actual receiving nodes. The giving up
of knowing the broadcast receivers in the matching part of the two latter clauses in
Definition 4.6 is related to the fact that in the observables of our reduction seman-
tics we only know the broadcasting node, but we have no means of telling which
nodes actually received the broadcasted message.

A major and non-trivial result of this paper is that weak bisimulation is a sound
and complete characterization of reduction congruence.

Theorem 4.9 ≈ = ∼=.

4.3 Weak Non-Contextual Bisimulation

Because weak contextual bisimulation uses quantification over all contexts it may be
hard to show equivalence between two networks, hence we provide a standard non-
contextual weak bisimulation letting γ be a network action defined by the grammar:

γ ::= lσνñ〈t〉 | σ(t) | τ

71

Godskesen

Definition 4.10 A symmetric relation R on N is a weak bisimulation if P R Q

implies

if P
γ−→ P ′ then ∃Q′. Q γ

=⇒ Q′ and P ′ R Q′

The largest weak bisimulation, ≈̇ , is an equivalence relation and a congruence,
and

Theorem 4.11 ≈̇ ⊂ ≈.

Notice that in contrast to weak contextual bisimulation in a weak bisimulation
a matching network must output exactly the same term and also let exactly the
same nodes synchronously receive a term. For instance, if f and g are two unary
constructors with no destructors then bνn.νm.〈n〉.〈m〉cl and bνn.〈g(n)〉.〈f(n)〉cl are
weak contextual bisimilar because for both two unrelated values are broadcasted
that are different from any value any context can build, but clearly the two nodes
are not weak bisimilar.

Weak bisimulation abstracts from connectivity in that Pl⊕k≈̇ P because
Pl⊕k

τ=⇒ P and P
τ=⇒ Pl⊕k. This property is a characteristic of MANETs in

that connection to any reachable node may be obtained and also it turns out useful
in many proofs. The adequacy of weak bisimulation is further illustrated by Ex-
ample 4.12 below which would have been quite hard to show in case of just weak
contextual bisimulation. The example illustrates the use of the new feature with
restricted mobility and could not have been modelled by the calculus in [6].

p
def
= νn.〈enc(pair(msg, n), key)〉.p′ r

def
= (x).〈x〉.r

p′
def
= (x).let x′ = dec(x, key) in if (x′ = n) then p else p′ else p′

q
def
= (x).let x′ = dec(x, key) in let x′′ = snd(x′) in 〈enc(x′′, key)〉.q else q

Table 9
A simple cryptographic message passing protocol.

Example 4.12 Suppose a node, bpcl0 , that repetitively sends a message, msg , to
a node, bqcl1 . The message msg is re-broadcasted by p only when the reception
of the previous msg has been acknowledged. A simple example with only one
intermediary node, brcl2 , that can communicate with both l0 and l1, and where l0
and l1 are outside reach of each other, so they must communicate via l2, may be
defined by:

P = ν key .(bpcl0 ‖ (brcl2 ‖ bqcl1) \ l1) \ l2
where key is a secret symmetric key shared between p and q. Notice that only q

can return the encrypted acknowledge expected by p. Further, let pair(x, y) be a
constructor for pairs and let snd be the destructor returning the second element of
a pair. Also, let enc(x, y) be a constructor denoting the symmetric encryption of
a message x by the key y and let dec be the corresponding decryption destructor
defined by: dec(enc(x, y), y) = x. We define p, q, and r in Table 9 using equations
instead of recursion. Despite the risk of having a copy of msg forward broadcasted
by each of two intermediary nodes one may show that one or two intermediary nodes

72

Godskesen

will not make any observational difference, i.e. P ≈̇ Q where

Q = ν key .(bpcl0 ‖ (brcl2 ‖ brcl3 ‖ bqcl1) \ l1) \ {l2, l3}

5 Conclusion

The main contribution of this paper is the refinement of CMAN [6] to allow for
restricted node mobility through the novel introduction of a static location binder,
and also we imposed the more realistic use of unidirectional instead of bidirectional
links. Importantly the refinement gives rise to a much simpler labelled transition
system and bisimulation semantics than in [6]. Moreover, we have developed a nat-
ural reduction semantics and congruence, ∼=, for which the largest weak contextual
bisimulation, ≈, is a co-inductive sound and complete characterization. Most signifi-
cantly and in contrast to [6] we manage to define a non-contextual weak bisimulation
where the largest bisimulation, ≈̇ , is strictly contained in ≈ and which turned out
adequate in the proofs of our examples.

Several further developments of our calculus are immediate: For instance the
process language could easily be extended with concurrency, and one may consider
extending the language with active substitutions as in [1] in order to have a less
contextual characterization of ∼=. Moreover, instead of just restricting mobility of
nodes we could enforce explicit mobility models as described in [2]. Also, we plan to
investigate other equivalences, in particular we want to consider equivalences where
the observer is mobile and has only a limited and not a global view of the whole
network, and we want to investigate equivalences suitable to help reason about
MANETs, and in particular routing and secure routing.

References

[1] Abadi, M. and C. Fournet, Mobile vales, new names, and secure communication, in: H. R. Nielson,
editor, 28th ACM Symposium on Principles of Programming Languages (2001), pp. 104–115.

[2] Camp, T., J. Boleng and V. Davies, A survey of mobility models for ad hoc network research,
Wireless Comm. & Mobile Comp.: Special issue on Mobile Ad Hoc Networking: Research, Trends
and Applications 2 (2002), pp. 483–502.
URL citeseer.ist.psu.edu/camp02survey.html

[3] Cardelli, L. and A. Gordon, Mobile ambients, in: Foundations of Software Science and Computation
Structures: First International Conference, FOSSACS ’98 (1998).
URL citeseer.ist.psu.edu/cardelli98mobile.html

[4] Ene, C. and T. Muntean, Expressiveness of point-to-point versus broadcast communications, in:
Fundamentals of Comp. Theory, 1999, pp. 258–268.
URL citeseer.ist.psu.edu/ene99expressiveness.html

[5] Ene, C. and T. Muntean, A broadcast-based calculus for communicating systems, in: 6th International
Workshop on formal Methods for Parallel Programming: Theory and Applications, San Francisco, 2001.

[6] Godskesen, J., A calculus for mobile ad hoc networks, in: Proceedings of the 9th International
Conference, COORDINATION 2007, LNCS 4467 (2007), pp. 132–150.

[7] Merro, M., An observational theory for mobile ad hoc networks, Electron. Notes Theor. Comput. Sci.
173 (2007), pp. 275–293.

[8] Mezzetti, N. and D. Sangiorgi, Towards a calculus for wireless systems., Electr. Notes Theor. Comput.
Sci. 158 (2006), pp. 331–353.

[9] Milner, R., “Communication and Concurrency,” Series in Computer Science, Prentice–Hall
International, 1989.

73

citeseer.ist.psu.edu/camp02survey.html
citeseer.ist.psu.edu/cardelli98mobile.html
citeseer.ist.psu.edu/ene99expressiveness.html

Godskesen

[10] Milner, R., “Communicating and Mobile Systems: the π-Calculus,” Cambridge University Press, 1999.

[11] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, part I/II, Journal of Information
and Computation 100 (1992), pp. 1–77.

[12] Milner, R. and D. Sangiorgi, Barbed bisimulation, in: Proceedings ICALP ’92, Lecture Notes in
Computer Science 623 (1992), pp. 685–695.
URL citeseer.ist.psu.edu/milner92barbed.html

[13] Nanz, S. and C. Hankin, A framework for security analysis of mobile wireless networks, Theoretical
Computer Science 367 (2006), pp. 203–227.

[14] Ostrovsky, K., K. V. S. Prasad and W. Taha, Towards a primitive higher order calculus of broadcasting
systems, in: PPDP ’02: Proceedings of the 4th ACM SIGPLAN international conference on Principles
and practice of declarative programming (2002), pp. 2–13.

[15] Prasad, K. V. S., A calculus of broadcasting systems, Sci. Comput. Program. 25 (1995), pp. 285–327.

[16] Prasad, K. V. S., A prospectus for mobile broadcasting systems, Electr. Notes Theor. Comput. Sci. 162
(2006), pp. 295–300.

[17] Singh, A., C. Ramakrishnan and S. Smolka, A process calculus for mobile ad hoc networks,
www.lmc.cs.sunysb.edu/˜cram/Papers/SRS OmegaCalc2006/.

74

citeseer.ist.psu.edu/milner92barbed.html

EXPRESS 2008 Preliminary Version

Labeled transitions for mobile ambients
(as synthesized via a graphical encoding)

Filippo Bonchi, Fabio Gadducci, Giacoma Valentina Monreale

Abstract

The paper presents a case study on the synthesis of labeled transition systems (LTSs) for process calculi,
choosing as testbed Cardelli and Gordon’s Mobile Ambients (MAs). The proposal is based on a graphical
encoding: each process is mapped into a graph equipped with suitable interfaces, such that the denotation
is fully abstract with respect to the usual structural congruence. Graphs with interfaces are amenable to
the synthesis mechanism proposed by Ehrig and König and based on borrowed contexts (BCs), an instance
of relative pushouts, introduced by Leifer and Milner. The BC mechanism allows the effective construction
of a LTS that has graphs with interfaces as both states and labels, and such that the associated bisimilarity
is automatically a congruence. Our paper focuses on the analysis of a LTS over (processes as) graphs with
interfaces, as distilled by exploiting the graphical encoding of MAs. In particular, we use the LTS on graphs
to recover a suitable LTS directly defined over the structure of MAs processes.

1 Introduction

Among recently introduced process calculi, mobile ambients [8] (MAs) possibly
represents the most fruitful proposal so far. The analogy between ambients and
network domains, explicitly addressed since the beginning, and between ambients
and molecular environments, often exploited in system biology [23], made MAs a
centerpiece in recent applications and development of the process calculi paradigm.

It is then baffling that the calculus has been so resilient to the introduction of an
observational semantics, based on a labeled transition system (LTS). Indeed, after
Milner’s treatment of π-calculus [20], it is now customary to present the semantics of
a calculus with a reduction semantics, modulo a congruence equating those processes
which intuitively represent the same distributed system. As for the case of MAs,
the set of rules defining the original reduction semantics is rather complex. Indeed,
the system evolution stating the exporting of a process P out of an ambient named
n is represented by the rule

m[n[out m.P |Q]|R]→ n[P |Q]|m[R]

1 Research partially supported by the IST 2004-16004 SEnSOria.

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Bonchi, Gadducci, Monreale

The rule needs to carry around the presence of processes Q and R, which denote
the context into which the actual instance of the rule has to be mapped into. In
general terms, the need of such a rich contextual information makes more difficult
to obtain a satisfying observational semantics. After the initial attempt by Cardelli
and Gordon [16], and an early proposal by Ferrari, Montanari and Tuosto [12]
exploiting a graphical encoding of processes, we are aware of the work by Merro
and Zappa-Nardelli [18] and, quite recently, by Rathke and Sobociński [25].

A series of papers recently addressed the need of synthesising a LTS out of the
reduction semantics of e.g. a calculus. The most successful technique so far has
been proposed by Leifer and Milner with the so-called relative pushout (RPO) [17],
which captures in an abstract setting the intuitive notion of minimal context into
which a process has to be inserted, in order for allowing a reduction to occur.

However, proving that a calculus satisfies the requirements needed for applying
the RPOs technique is often quite a daunting task, due to the intricacies of the
structural congruence. A way out of the empasse is represented by looking for
graphical encodings of processes, such that process congruence is turned into graph
isomorphism. Graphs are amenable to the RPOs trappings, and once the processes
of a calculus have been encoded as graphs, a suitable LTS can be distilled. Indeed,
the main source of examples concerning RPOs have been bigraphs [21], a graphical
formalism introduced by Milner for specifying concurrent and distributed systems.

It is noteworthy that, should the reduction relation over graphs be defined using
the double pushout (DPO) approach [1], these graphs are amenable to the borrowed
context (BC) technique, developed by Ehrig and König, which offers an algorithmic
solution for calculating the minimal contexts enabling a graph transformation rule

So, the approach pursued in this and other papers [4,14,15] is straightforward:
for a given calculus, a graphical encoding (over standard graphs) is found such that
process congruence is preserved, and the reduction semantics is captured by a set
of graph transformation rules, specified using the DPO approach. A LTS for the
calculus is thus immediately distilled. Indeed, this is the way which allowed to derive
the unique successful application so far of the RPO technique to the set of recursive
processes of a calculus, still recovering the standard bisimulation congruence, even
if for admittedly one of simplest calculus available, namely, Milner’s CCS [19].

This paper exploits a graphical encoding for MAs [13] to distill a LTS on (pro-
cesses encoded as) graphs, and a set of inference rules on the processes of the MAs
calculus. We compare these rules with alternative proposals, discovering many sim-
ilarities (thus confirming the hints provided by the ingenuity of the researchers), yet
with a few substantial differences, as articulated in the concluding section. Since we
are interested in LTS defined over processes, we provide a comparison with the only
two works presenting a LTS on MAs processes, namely, those proposed in [18,25].

This paper is organized as follows. Section 2 briefly recalls the MAs calculus.
In Section 3 we introduce (typed hyper-)graphs and their extension with interfaces,
while Section 4 presents DPO rewriting on graphs with interfaces as well as the BC
technique for distilling a LTS. Then, in Section 5 we recall a graphical encoding for
MAs processes that has been introduced in [13]. A graph transformation system for
MAs that simulates process reduction is defined in Section 6. Section 7 presents a
LTS for graphs representing MAs processes, obtained by means of the BC synthesis

76

Bonchi, Gadducci, Monreale

mechanism. Section 8 introduces a LTS defined over processes of the MAs calculus
and obtained from the LTS over graphs. Finally, Section 9 concludes the paper.

An extended version of this paper is available as [5].

2 Mobile Ambients

This section shortly recalls the finite, communication-free fragment of mobile am-
bients [8], its structural equivalence and the associated reduction semantics.

Table 1 shows the syntax of the calculus. We assume a set N of names ranged
over by m,n, u, Besides the standard constructors, we included a set of process
variables X = {X,Y, . . .}, and a set of name variables V = {x, y, . . .}. Intuitively,
an extended process such as x[P]|X represents an underspecified process, where
either the process X or the name of the ambient x[−] can be further instantiated.
These are needed for the presentation of the LTS in Section 8.

P ::= 0, n[P],M.P, (νn)P, P1|P2, X, x[P] M ::= in n, out n, open n

Table 1
(Extended) Syntax of mobile ambients.

We use the standard definitions for the set of free names of a process P , denoted
by fn(P), and for α-convertibility, with respect to the restriction operators (νn).
We let P,Q,R, . . . range over the set P of pure processes, i.e., such that neither
process nor name variable is contained. While Pε, Qε, Rε, . . . range over the set Pε
of well-formed processes, i.e., such that no process or ambient variable occurs twice.

We also consider a family of substitutions, which may replace a process/name
variable with a pure process/name, respectively. Substitutions avoid name capture:
for a pure process P , the expression (νn)(νm)(X|x[0]){m/x,n[P] /X} corresponds to
the pure process (νp)(νq)(n[P]|m[0]), for names p, q 6∈ {m} ∪ fnn[P].

The semantics of the calculus is given by means of a reduction relation and a
structural congruence, denoted by ≡, which is the least equivalence on pure pro-
cesses that satisfies the equations and the rules shown in Table 2. The congruence
relates processes which intuitively specify the same system, up-to a syntactical rear-
rangement of its components, and it is then used to define the operational semantics.

The reduction relation, denoted by →, describes the evolution of processes over
time: P → Q means that P reduces to Q, that is, P can execute a computational
step and it is transformed into Q. Table 3 shows the reduction rules.

The reduction relation is closed with respect to structural congruence. Note
that our chosen congruence slightly differs from the standard one, since we drop the
axiom (νn)0 ≡ 0, and we add (νn)M.P ≡M.(νn)P , allowing a restriction to enter
a capability. The reduction semantics does not substantially change. Indeed, the
equality induced by the latter axiom holds in the observational equivalence proposed
by Merro and Zappa Nardelli [18]. In particular, two processes that are structurally
congruent according to the axiom Cong-Res-Act are reduction barbed congruent.

77

Bonchi, Gadducci, Monreale

P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

(νn)(νm)P ≡ (νm)(νn)P (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P)

P ≡ Q⇒ n[P] ≡ n[Q] (νn)m[P] ≡ m[(νn)P] if n 6= m

P ≡ Q⇒M.P ≡M.Q P |0 ≡ P

P ≡ Q⇒ (νn)P ≡ (νn)Q (νn)M.P ≡M.(νn)P if n /∈ fn(M)

P ≡ Q⇒ P |R ≡ Q|R (νn)P ≡ (νm)(P{m/n}) if m /∈ fn(P)

Table 2
Structural congruence on pure processes.

n[in m.P |Q]|m[R]→ m[n[P |Q]|R] P → Q⇒ (νn)P → (νn)Q

m[n[out m.P |Q]|R]→ n[P |Q]|m[R] P → Q⇒ n[P]→ n[Q]

open n.P |n[Q]→ P |Q P → Q⇒ P |R→ Q|R

Table 3
Reduction relation on pure processes.

3 Graphs and Their Extension with Interfaces

We recall a few definitions concerning (typed hyper-)graphs, and their extension
with interfaces, referring to [9] for a more detailed introduction.

Definition 3.1 (graphs) A (hyper-)graph is a four-tuple 〈V,E, s, t〉 where V , E
are the sets of nodes and edges and s, t : E → V ∗ are the source and target functions.
A graph morphism is a pair of functions 〈fV , fE〉 preserving source and target.

The corresponding category is denoted by Graph. However, we often consider
typed graphs [10], i.e., graphs labeled over a structure that is itself a graph.

Definition 3.2 (typed graphs) Let T be a graph. A typed graph G over T is
a graph |G|, together with a graph morphism tG : |G| → T . A T-typed graph
morphism is a graph morphism f : |G1| → |G2| preserving the typing.

The category of graphs typed over T is denoted T -Graph.

Definition 3.3 (graphs with interfaces) Let J,K be typed graphs. A graph
with input interface J and output interface K is a triple G = 〈j,G, k〉, for G a
typed graph and j : J → G, k : K → G the input and output morphisms.

Let G and H be graphs with the same interfaces. An interface graph morphism
f : G ⇒ H is a typed graph morphism f : G → H between the underlying graphs
that preserves the input and output morphisms.

We let J
j−→ G

k← K denote a graph with interfaces J and K. 2 If the interfaces
J , K are discrete, i.e., they contain only nodes, we represent them by sets; if K is
the empty set, we often denote a graph with interfaces as a graph morphism J → G.

2 With an abuse of terminology, we sometimes refer to the image of the input and output morphisms as
inputs and outputs, respectively. Thus, in the following we often refer implicitly to a graph with interfaces
as the representative of its isomorphism class, still using the same symbols to denote it and its components.

78

Bonchi, Gadducci, Monreale

In order to define a process encoding, some (binary) operators on graphs with
discrete interfaces should be defined. Since we rely on the encoding presented in [13],
we refer the reader there for details, and to [5, Appendix A] for a quick survey.

4 On Graphs with Interfaces and Borrowed Contexts

This section introduces the double-pushout (DPO) approach to the rewriting of
graphs with interfaces and its extension with borrowed contexts (BCs).

Definition 4.1 (graph production) A T -typed graph production is a span L
l

�
I

r−→ R with l mono in T -Graph. A T -typed graph transformation system (GTS)
G is a pair 〈P, π〉 where P is a set of production names and π assigns each production
name to a T -typed production.

Definition 4.2 (derivation of graphs with interfaces)
Let J → G and J → H be two graphs with interfaces. Given
a production p : L � I −→ R, a match of p in G is a mono
m : L � G. A direct derivation from J → G to J → H via p
and m is a diagram as depicted in the right, where (1) and (2)
are pushouts and the bottom triangles commute. In this case
we write J → G =⇒ J → H.

L��
m
��

(1)

I
r //ooloo

��

��
(2)

R

��

G C //oooo H

J

``@@@@@ k
OO >>}}}}}

The morphism k : J → C which makes the left triangle commute is unique,
whenever it exists. If such a morphism does not exist, then the rewriting step is
not feasible. Moreover, note that the standard DPO derivations can be seen as a
special instance of these, obtained considering as interface J the empty graph.

In these derivations, the left-hand side L of a production must occur completely
in G. In a borrowed context (BC) derivation the graph L might occur partially in
G, since the latter may interact with the environment through J in order to exactly
match L. Those BCs are the “smallest” extra contexts needed to obtain the image
of L in G. The mechanism was introduced in [11] in order to derive a LTS from
direct derivations, using BCs as labels. The following definition is lifted from [24],
extended by including morphisms that are not necessarily mono.

Definition 4.3 (rewriting with borrowed contexts) Given a production p :

L
l

� I
r−→ R, a graph with interfaces J → G and a mono d : D � L, we say

that J → G reduces to K → H with transition label J � F � K via p and d

if there are graphs G+, C and additional morphisms such that the diagram below
commutes and the squares are either pushouts (PO) or pullbacks (PB). In this case
we write J → G

J�F�K−−−−−→ K → H, also called rewriting step with borrowed context.

D

PO

��

��

// //L

PO

��

��

I

PO

oooo //
��

��

R��

��

G

PO

// //G+

PB

Coooo //H

J

OO

// //F

OO

K

OO

oooo

>>

Consider the diagram above. The upper left-hand square merges the left-hand
side L and the graph G to be rewritten according to a partial match G � D � L.

79

Bonchi, Gadducci, Monreale

The resulting graph G+ contains a total match of L and can be rewritten as in the
standard DPO approach, producing the two remaining squares in the upper row.
The pushout in the lower row gives the borrowed context F which is missing in
order to obtain a total match of L, along with a morphism J � F indicating how
F should be pasted to G. Finally, the interface for the resulting graph H is obtained
by “intersecting” the borrowed context F and the graph C via a pullback.

Note that two pushout complements that are needed in Definition 4.3, namely
C and F , may not exist. In this case, the rewriting step is not feasible.

5 Graphical Encoding for Processes

This section shortly recalls a graphical encoding for MAs processes. After the
description a type graph (TM , depicted in Figure 1), the encoding is defined by
means of suitable operators on typed graphs with interfaces. This corresponds to
a variant of the usual construction of the tree for a term of an algebra: names are
interpreted as variables, so they are mapped to graph leaves and can be shared.

amb

�� ��
•

==

◦ �

aa

~~

// go

act

PP NNOO

Fig. 1. The type graph TM (for act ∈ {in, out, open}).

Intuitively, a node of type ◦ represents an ambient name, while a graph that has
as roots a pair of nodes 〈�, •〉 represents a process. More precisely, the node of type
� represents the activating point for reductions of the process represented by the
graph. We need two different types of node to model processes by graphs, because
each graph has to model both syntactical dependences between the operators of the
process and their activation dependences.

Each edge of the type graph, except the go edge, simulates an operator of MAs.
Note that the act edge represents three edges, namely in, out and open. These edges
simulate the capabilities of the calculus, while the amb edge simulates the ambient
operator, and there are no edges to simulate the restriction operator and the parallel
composition. Finally, the go edge is a syntactical device for detecting the “entry”
point for the computation. We need it later to simulate MAs reduction semantics.
It allows to avoid the occurrence of a reduction underneath a act operator.

We remark that choosing a graph typed over TM means to consider graphs where
each node (edge) is labeled by a node (edge) of that type graph, and the incoming
and outcoming tentacles are preserved. We refer the reader to [13] for the formal
presentation of the encoding, or to [5, Appendix B] for a short recollection.

For our purposes it then suffices to say that the encoding JP KgoΓ of a pure process
P , where Γ is a set of names such that fn(P) ⊆ Γ, is a graph with interfaces
({a, p} ∪ Γ, ∅), for a, p 6∈ N . Our encoding is sound and complete with respect to
the structural congruence ≡, as stated by the proposition below.

80

Bonchi, Gadducci, Monreale

go

�

�a // �

<<

""
//

%%

amb //

• // in

>>

//

•

◦ ◦

•p // •

@@

// amb

22ffffffffffffff // • // out

>>

//

•

◦m

SS

�

Fig. 2. Graph encoding for the process (νn)(n[in m.0]|m[out m.0]).

Proposition 5.1 Let P,Q be pure processes and let Γ be a set of names, such that
fn(P) ∪ fn(Q) ⊆ Γ. Then, P ≡ Q if and only if JP KgoΓ = JQKgoΓ .

Example 5.2 Consider the pure process P = (νn)(n[in m.0]|m[out m.0]). It is
a very simple process, which represents a restricted ambient n that can enter an
ambient m. Figures 2 depicts the graph encoding for the process above. The
leftmost edges, both labeled amb, have the same roots, into which the nodes of the
interface a and p are mapped. Those two edges represent the topmost operators of
the two parallel components of the process. The edge in represents the operator
in m that is inside the restricted ambient n, while the edge out represents the
operator out m that is inside the ambient m. These two last edges are linked to the
same root node � of their parent ambients. Intuitively, this means that they can be
involved in a reduction step, too, since the only edge labeled go is linked to that
same node. Note that the ambient name m is in the interface since it is free in P ,
instead the name n, which is bound, does not belong to the interface.

6 Graph Transformation for Mobile Ambients

This section presents a graph transformation system (GTS) that models the reduc-
tion semantics of the MAs calculus.

Figure 3 presents the rules of the GTS Ramb, which simulates the reduction
semantics → introduced in Section 2. The GTS Ramb contains just three rules,
namely pin, pout and popen. They simulate the three axioms of the reductions re-
lation. The action of the three rules is described by the node identifiers. These
identifiers are of course arbitrary: they correspond to the actual elements of the set
of nodes and are just used to characterize the span of functions.

It seems noteworthy that three rules 3 suffice for recasting the reduction seman-
tics of mobile ambients. That is possible for two reasons. First, the closure of
reduction with respect to contexts is obtained by the fact that graph morphisms
allow the embedding of a graph within a larger one. Second, no distinct instance of
the rules is needed, since graph isomorphism takes care of the closure with respect
to structural congruence, and interfaces of the renaming of free names.

Our encoding is sound and complete with respect to the reduction relation →,
as stated by the theorem below.

3 Actually, five: since we consider mono matches, we need to assume an instance for the rules pin and pout,
where the nodes labeled n and m may actually be coalesced

81

Bonchi, Gadducci, Monreale

go

�3a

�1a

<<

//

""

amb //

•2p // in

??

//

•3p

◦n ◦m

•1p

??

// amb

;;

// •4p

go

�3a

�1a

<<

•2p •3p

◦n ◦m

•1p •4p

go

�1a3a

<<

""

// amb //

•
2p
3p

◦n ◦m

•1p // amb

<<

// •4p

@@

Lin Iin Rin

go

�4a

�1a

<<

 ��
// amb //

::

•2p // amb //

•3p // out

>>

//

•4p

•1p

>>

◦n ◦m

go

�4a

�1a

<<

•2p •3p •4p

•1p ◦n ◦m

go

�1a4a

<<

// amb //

::

•2p amb //

•
3p
4p

•1p

?? ??

◦n ◦m

Lout Iout Rout

go

�1a

""

//

""

amb //

!!
•2p

◦n

•1p

__

// open

==

//

!!
•3p

�3a

go

�1a

""

•2p

◦n

•1p •3p

�3a

go

�1a3a

!!

◦n

1p•
2p
3p

Lopen Iopen Ropen

Fig. 3. The rewriting rules pin, pout and popen.

Theorem 6.1 (reductions vs. rewrites) Let P be a pure process, and let Γ be a
set of names, such that fn(P) ⊆ Γ. If P → Q, then Ramb entails a direct derivation
JP KgoΓ =⇒ JQKgoΓ . Vive versa, if Ramb entails a direct derivation JP KgoΓ =⇒ G, then
there exists a pure process Q, such that P → Q and G = JQKgoΓ .

The correspondence holds since a rule is applied only if there is a match that
covers a subgraph with the go operator on the top. This allows the occurrence of
reductions inside activated ambients, but not inside capabilities.

7 The Synthesized Transition System

In this section we apply the BC synthesis mechanism to Ramb in order to obtain
a LTS for graphs representing MAs processes. We first show some examples of
rewriting steps with BCs, then we use some pruning techniques (proposed in [4]) in
order to obtain a simpler presentation of the derived LTS. This presentation is then
used in the next section in order to define a LTS directly over MAs.

82

Bonchi, Gadducci, Monreale

7.1 Examples of borrowed transitions

This section shows the application of the BC synthesis mechanism to the graphical
encoding of a process. Let us consider the graph J � G = JP Kgo{m}, where P =
(νn)(n[in m.0]|m[out m.0]). In the following we discuss the possible transitions with
source J � G that are induced by the rule pin : Lin � Iin → Rin of Ramb. Since
for each pair of monos G � D � Lin a labeled transition might exist, we proceed
by showing the transitions generated by such pairs.

First of all, take as D the left-hand side Lin and note that there is only one
map into the graph G. (The transition generated by this choice is depicted in [5,
Figure 8].) The graph G+ is the same as G. Now C and H are constructed as in a
standard DPO rewriting step. When taking D as the whole left-hand side, J � G

needs no context for the reaction and thus the label of this transition is the identity
context, i.e., two isomorphisms into the discrete graphs with three nodes {p, a,m}.
Intuitively, this corresponds to an internal transition over processes, labeled with τ .

Now we take as D the subgraph of Lin representing an ambient with a capability
in inside it. Note that also in this case there is only one possible map into the graph
G. (The resulting transition is shown in [5, Figure 9]. The graph G+ is the graph G
in parallel with the graph representing an ambient m, thus intuitively it represents
the process (νn)(n[in m.0]|m[out m.0]|m[X]) for some process variable X. The
graph J � G, in order to reach the graph G+, has to borrow from the environment
the context J � F � K that represents the syntactic context −|m[X]. Note that
in the resulting interface K there is a process node •4p pointing to the process node
of F occurring inside the ambient m. This process node in K represents the process
variable X (as further detailed in [5, Appendix E]). The graphs C and H are then
constructed as in the standard DPO approach. Intuitively, K → H represents the
process m[out m.0]|m[n[0]|X], where X is the same process variable occurring in the
label J � F � K. This can be understood by observing that the process node •4p
of K points both to a node of H and to a node of F . Summarizing, this transition
moves the ambient n into an ambient m that is provided by the environment.

Another possible D is the subgraph of Lin consisting of the ambient depicted in
the lower part of Lin. In this case, there are two possible maps into the graph G:
the map into the subgraph of G representing the ambient m, and the map into the
subgraph of G representing the restricted ambient n.

In the first case, we obtain the transition (shown in [5, Figure 10]) where the
graph G+ is the graph G in parallel with the graph representing a fresh ambient
name w having inside a capability in m . Intuitively, it represents the extended pro-
cess (νn)(n[in m.0]|m[out m.0]|w[in m.X2|X1]) for some process variables X1, X2.
In order to reach G+, the graph J � G has to borrow from the environment the
context J � F � K representing the syntactic context −|w[in m.X2|X1]. As
in the above case X1 and X2 are process variables, since in the interface K there
are two suitable process nodes •2p and •3p . The graphs C and H are obtained by
a standard DPO derivation. The graph K → H represents the extended process
(νn)(n[in m.0]|m[out m.0|w[X2|X1]]). Summarizing, this transition represents an
ambient w from the environment entering inside the ambient m of the process P .

83

Bonchi, Gadducci, Monreale

JD

��

��

(1)

//FD

��

D // //
��

(2)

��

PO

L

PO

��

��

I

PO

��

��

oooo //R��

��

G

PO

// //G+

PB

Coooo //H

J

OO

// //F

OO

Koooo

OO >>

Fig. 4. The BC construction together with commuting squares (1) (the initial pushout of D � L) and (2).

In the second case no transition is possible. Indeed the graph G+ is the whole
graph G in parallel with a fresh ambient w having inside a capability in n, but the
pushout complement of J � G � G+ does not exist, because n is restricted and
thus it does not belong to the interface J . Intuitively, this means that no ambient
from the environment can enter inside a restricted sibling ambient n.

In order to perform a complete analysis, we should consider all the pairs of
monos G � D � Lin: we can avoid to check the others pairs not considered above
by exploiting the pruning techniques presented in the next subsection.

7.2 Reducing the borrowing

In order to know all the possible transitions originating from a graph with interfaces
J � G, all the subgraphs D’s of Lin, Lout and Lopen should be analyzed. To shorten
this long and tedious procedure, we use the two pruning techniques presented in [4].

The first one is based on the observation that those items of a left-hand side L
that are not in D have to be glued to G through J . Let us consider a node n of D
corresponding to a node n′ in L, such that n′ is the source or the target of some
edge e that does not occur in D. Since the edge e is in L but not in D, it must be
added to G through J , and thus n, called boundary node, must be also in J .

The notion of boundary nodes is formally captured by the categorical notion of
initial pushout (as defined e.g. in [5, Appendix C]). Since our category has initial
pushouts, the previous discussion is formalized by the lemma below.

Lemma 7.1 ([4]) A graph with interfaces J → G can perform a BC rewriting step
in Ramb if and only if there exist

• a mono D � L (where L is the left hand side of some production in Ramb),
• a mono D � G,
• a morphism JD → J (where JD is the initial pushout of D � L) such that square

(2) in Figure 4 commutes.

This corollary allows to heavily prune the space of possible D’s. As for graphs
corresponding to the encoding of processes, we can exclude all those D’s having a
continuation process node (any node depicted by • that is not the root) as boundary
node, observing that the only process node in the interface J is the root node.

84

Bonchi, Gadducci, Monreale

A further pruning —partially based on proof techniques presented in [11]— is
performed by excluding all those D’s which generate a BC transition that is not
relevant for the bisimilarity. In general terms, we may exclude all the D’s that
contain only nodes, since those D’s can be embedded in every graph (with the same
interface) generating the same transitions. Moreover, concerning our case study,
those transitions generated by a D having the root node without the edge labeled
go are also not relevant. In fact, a graph can perform a BC transition using such a D
if and only if it can perform a transition using the same D with a go edge outgoing
from the root. Note indeed that the resulting states of these two transitions only
differ for the number of go edges attached to the root: the state resulting after the
first transition has two go’s, the state resulting after the second transition only one.
These states are bisimilar, since the number of go’s does not change the behavior.

The pruning techniques above allow us to consider a restricted set of partial
matches D, namely, the ones shown in Figure 5 and in [5, Figures E.1, E.2, E.3].

7.3 Minimal transitions

In Section 7.2 we restricted the space of possible D’s. However, reasoning on the
synthesized LTS is still hard (this is usually the case when working with derived
LTSs, as pointed out in [2] and [3], where the authors state that an SOS presentation
of the synthesized LTS would be desirable). In order to simplify this reasoning, we
introduce a set of minimal transitions that allow us to derive all and only the
transitions of the (pruned) synthesized LTS.

Inspired by Lemma 7.1, providing necessary and sufficient conditions for per-
forming a transition, we consider the graphs JD → D for all those D’s that have
not been pruned in Section 7.2 and JD containing only the boundary nodes of D.

The minimal transitions have the following shape

D

PO

��

��

// //L

PO

��

��

I

PO

oooo //
��

��

R��

��

D

PO

// //L

PB

Ioooo //R

JD

OO

// //FD

OO

KD

OO

oooo

==

where the leftmost square in the lower row is an initial pushout.
Figure 5 concisely represents such a transition, showing the starting graph D,

the label JD � FD � KD, and the resulting graph R. All the transitions that are
originated from a graph J � G (representing a process) can be characterized by
exploiting these minimal transitions. By Lemma 7.1, we can state that J � G can
perform a BC rewriting step in Ramb if and only if there exist a mono D � G, for
some D of the minimal transitions, and a morphism JD → J such that square (2)
in Figure 4 commutes.

The label of the rewriting step can be obtained from the label of the minimal
transition. First of all note that the interface J contains all the nodes of JD (as
suggested by the morphism JD → J) and all the name nodes ◦ representing the
free names of the modeled process (as expected by our encoding). Then the graph

85

Bonchi, Gadducci, Monreale

D � JD � FD � KD→ R

go

�1a

##

""

◦n

•1p // open

>>

//

•3p

�3a

�1a

◦n

•1p

�1a // amb //

•2p

◦n

•1p

?? �1a •2p

◦n

•1p

go

�1a3a

""

◦n

1p•
2p
3p

Dopen1 � JDopen1
� FDopen1

� KDopen1
→ Ropen

go

�1a

##

// amb //

•2p

◦n

•1p

@@
�1a

◦n

•1p

�1a

""

◦n

•1p // open

>>

//

!!
•3p

�3a

�1a

◦n

•1p •3p

�3a

go

�1a3a

""

◦n

1p•
2p
3p

Dopen2 � JDopen2
� FDopen2

� KDopen2
→ Ropen

go

�1a

##

//

""

amb //

•2p

◦n

•1p

@@

// open

>>

//

•3p

�3a

go

�1a3a

""

◦n

1p•
2p
3p

Dopen3 � ∅ � ∅ � ∅ → Ropen

Fig. 5. The minimal transitions generated by the rule popen.

F only contains the whole graph FD and all the nodes of J (indeed, as shown in [4,
Proposition 2.5], F can be obtained as the pushout of JD → FD and JD → J).
Moreover, it is easy to prove that K is a discrete graph containing all and only the
nodes of F , or more concretely, K consists of the nodes of J and KD.

Finally, the resulting graph H is obtained by replacing in the graph G the
subgraph D with R (as shown in Proposition 2.5 of [4], it can be computed in a
DPO step of D � D∩ I → R, where D∩ I is the pullbacks of D � L and I � L).

8 A New LTS for Mobile Ambients

This section presents a LTS directly defined over MAs processes. The inference
rules describing this LTS are obtained from the transitions of the LTS on graphs
presented in Section 7.3. The labels of the transitions are unary contexts, i.e., terms
of the extended syntax with a hole −. The formal definition of our LTS is presented
in Figures 6 and 7.

8.1 The labeled rules on processes...

The rules in Figure 6 represent the τ -actions modeling internal computations. Note
that the labels of the transitions are contexts composed of just a hole −, while the
resulting states are processes over MAs standard syntax. The rule InTau enables
an ambient n to enter a sibling ambient m. The rule OutTau enables an ambient n

86

Bonchi, Gadducci, Monreale

to get out of its parent ambient m. Finally, the rule OpenTau models the opening
of an ambient n. These three rules exactly derive the same transition relation of the
reduction relation over MAs, thus they could be replaced with the rules in Table 3.

The rules in Figure 7 model the interactions of a process with its environment.
Note that both labels and resulting states contain process and name variables.
We define a LTS for processes over the standard syntax of mobile ambients by
instantiating all the variables of the labels and of the resulting states. Formally, we
say that P l−→ Q (for l and Q pure processes) if and only if P lε−→ Qε and there exists
a substitution σ such that Qεσ ≡ Q and lεσ ≡ l.

The rule Open models the opening of an ambient provided by the environment.
In particular, it enables a process P with a capability open n.P1 at top level, for
n ∈ fn(P), to interact with a context providing an ambient n that contains inside
it some process X1. The resulting state is the process over the extended syntax
(νA)(P1|X1|P2), where X1 represents a process provided by the environment. Note
that the instantiation of the process variable X1 with a process containing a free
name that belongs to the bound names in A is possible only α-converting the result-
ing process (νA)(P1|X1|P2) into a process that does not contain that name among
its bound names at top level.

The rule CoOpen instead models an environment that opens an ambient of the
process. The rule InAmb enables an ambient of the process to migrate into a sibling
ambient provided by the environment, while in the rule In both the ambients are
provided by the environment. In the rule CoIn an ambient provided by the envi-
ronment enters an ambient of the process. The rule OutAmb models an ambient
of the process exiting from an ambient provided by the environment, while in the
rule Out both ambients are provided by the environment.

Our LTS does not conform to the so-called SOS style: indeed, the premises
of the inference rules are just constraints over the structure of the process. This
depends on fact that the rules of our LTS are obtained from the borrowed minimal
transitions. Each rule corresponds to one minimal transition presented in Section
7.3 and it is obtained as described below.

(InTau)
P≡(νA) C[n[in m.P1|P2]|m[P3]]

P
−−→(νA) C[m[n[P1|P2]|P3]]

(OutTau)
P≡(νA) C[m[n[out m.P1|P2]|P3]]

P
−−→(νA) C[m[P3]|n[P1|P2]]

(OpenTau)
P≡(νA) C[n[P1]|open n.P2]

P
−−→(νA) C[P1|P2]

Fig. 6. The internal transitions (for C[−] context containing only ambients and parallel operators).

8.2 ...from the borrowed rules on graphs

Observe that a graph J � G representing a process P can perform a BC rewriting
step in Ramb if and only if there exist a mono D � G, for some D of a minimal
transition, and a morphism JD → J , such that square (2) in Figure 4 commutes.
Moreover, the label and the resulting graph of the borrowed transition for G are
obtained from the label and the resulting state of the minimal transition of D,

87

Bonchi, Gadducci, Monreale

(In) (OutAmb)
P≡(νA)(in m.P1|P2) m6∈A

P
x[−|X1]|m[X2]
−−−−−−−→(νA)m[x[P1|P2|X1]|X2]

P≡(νA)(n[out m.P1|P2]|P3) m 6∈A

P
m[−|X1]
−−−−→(νA)(m[P3|X1]|n[P1|P2])

(InAmb) (Open)
P≡(νA)(n[in m.P1|P2]|P3) m 6∈A

P
−|m[X1]
−−−−→(νA)(m[n[P1|P2]|X1]|P3)

P≡(νA)(open n.P1|P2) n 6∈A

P
−|n[X1]
−−−→(νA)(P1|P2|X1)

(CoIn) (CoOpen)
P≡(νA)(m[P1]|P2) m 6∈A

P
−|x[in m.X1|X2]
−−−−−−−−→(νA)(m[x[X1|X2]|P1]|P2)

P≡(νA)(n[P1]|P2) n 6∈A

P
−|open n.X1−−−−−−→(νA)(P1|X1|P2)

(Out)
P≡(νA)(out m.P1|P2) m 6∈A

P
m[x[−|X1]|X2]
−−−−−−−→(νA)(m[X2]|x[P1|P2|X1])

Fig. 7. The environmental transitions.

respectively. Therefore, for each minimal transition we obtain an inference rule: the
conditions in the premise correspond to the necessary and sufficient conditions for
performing a transition from a graph G, while the label and the resulting process
are obtained from the label and the resulting state of the borrowed transition,
respectively. Since the labels of the LTS over graphs obtained by the BC mechanism
represent minimal graph contexts enabling a graph production, then also the labels
of our LTS over processes represent minimal process contexts enabling a reduction.

As the main example, in this section we closely look at the correspondence
between the rule Open and the first minimal transition in Figure 5.

Consider a graph J � G representing the encoding for a process P . If there
exist a mono Dopen1 � G and a morphism JDopen1

→ J , such that the square (2)
in Figure 4 commutes, the graph J � G can perform a BC rewriting step in Ramb
with label J � F � K, where J , F and K respectively consist of JDopen1

, FDopen1

and KDopen1
together with the free names of P . Now, note that Dopen1 can be

embedded in G and a morphism JDopen1
→ J (such that the square (2) in Figure 4

commutes) may exist if and only if P ≡ (νA)(open n.P1|P2). Moreover, since the
interface J contains all the nodes of JDopen1

, we conclude that n must belong to J ,
that is, n must be a free name of P . This represents the premise of the rule Open.

Starting from the label J � F � K of the BC transition we now obtain the
label of the process transition. By observing the shape of F , which contains all the
items of FDopen1

, we can say that the process context is composed of the ambient n.
Moreover, the context F is glued to G through J , which contains the free names of P
and the nodes of JDopen1

, i.e., the name n and the nodes representing the roots of the
graph G (which models P). Since these two nodes represent the roots of the graph
F (which models ambient n), we conclude that the label of the process transition
is a context with the ambient n in parallel with a hole representing process P .

The graph K represents the interface of both graphs F and H. It contains all the
nodes of KDopen1

, i.e., the roots of F and the roots of the process inside the ambient
n. The nodes of the interface K represent the “handles” of F and H for interacting
with an environment. Therefore, the process node of K that is not the root of F
can be thought of as a process variable inside the ambient n in the label of the
transition. Therefore, we conclude that the label of the transition with source the

88

Bonchi, Gadducci, Monreale

process P can be represented as the minimal context −|n[X1], where − is a hole and
X1 is a process variable. The resulting process (νA)(P1|X1|P2) exactly corresponds
to the state H from the BC transition. Indeed, in the interface K of the graph
K → H also the node modeling the process variable X1 occurs, which represents a
process provided by the environment. In order to have a deeper intuition about the
correspondence between process variables and graphs, the reader is referred to [5,
Appendix E]. The derivation of the rule Out is shown in [5, Appendix D].

9 Conclusions, related and future work

In this paper we exploit the graphical encoding for MAs, proposed in [13], to distill a
LTS on (processes encoded as) graphs. We then use this LTS in order to infer a LTS
directly defined on the processes of the MAs calculus. For the sake of simplicity, we
considered a graphical encoding for MAs without communication primitives, as well
as without recursive expressions. A graphical encoding for the whole calculus could
be obtained by tackling both communication primitives and recursive processes
along the lines of the solution in [4]. Once the graphical encoding for the whole
calculus has been defined, the technique presented in this paper could be applied in
order to obtain a LTS for the whole MAs calculus.

In spite of the great interest received by MAs, there are relatively few works con-
cerning a labeled characterization of the calculus. After early attempts by Cardelli
and Gordon [16] and (via a gfraphical encoding) Ferrari, Montanari and Tuosto [12],
the only papers addressing this issue that we are aware of are [18] by Merro and
Zappa-Nardelli, [25] by Rathke and Sobociński. The LTS of the former work is
restricted to systems, i.e., those processes obtained by the parallel composition of
ambients. For this reason, our rules In, Open and Out have not a counterpart in
[18]. Instead, the rules InAmb, CoIn and OutAmb exactly correspond to the rules
(Enter), (Co-Enter), (Exit) in Table 6 of [18]. Moreover, our rule CoOpen roughly
corresponds to their (Open). Indeed the former inserts a process into the context
−|open n.X1, while the latter into k[−|open n.X1|X2] (again, this difference is due
to the fact that the LTS of [18] is restricted to systems).

It is important to note that, differently from our LTS, the labels of the rules
(Enter) and (Exit) contain the name of the migrating ambient n. This requires
defining two extra rules (Enter Shh) and (Exit Shh) for the case when n is restricted.

Analogously to our work, Rathke and Sobociński employ a general systematic
procedure for deriving LTSs that they have previously introduced in [22]. The
detailed comparison is left as future work, but we conjecture that the two LTSs
exactly correspond. Indeed, the seven axioms in Figure 6 of [25] are in one to one
correspondence with our seven rules in Figure 7. The main difference concerns
the derivation procedures that have been employed and the presentations of the
resulting LTSs. Theirs is presented in a SOS style (as a result of their procedure),
while ours relies on the structural congruence (as a result of the BC mechanism
applied to the graphical encoding). Their style carries more information than ours,
since it describes the behaviour of each syntactic operator, but our presentation
seems more intuitive, since it employs fewer compact rules (10 instead of their 27).

89

Bonchi, Gadducci, Monreale

Beside the presentation of a succinct LTS for mobile ambients, our work is
a relevant case study for the theory of reactive systems [17]. As already pointed
out in the introduction, BC rewriting and bigraphical reactive systems [21] are both
instances of this theory. This paper, together with [4], shows that the BCs approach
is quite effective in deriving LTS for process calculi.

In particular, this work confirms the advantage of BCs over graphs with inter-
faces with respect to bigraphs. In bigraphs, all the reduction rules must be ground
(i.e., they can not contain process variables). As a result, also the labels and the
arriving states of the derived transitions must be ground. Instead, rewriting with
BCs allows to employ few non ground rules (as shown in this paper) and thus the
resulting transitions have labels and arriving states containing (process and name)
variables. This feature was not relevant for calculi such as CCS and π, because the
variables in the labels always occur “outside” of the arriving state and thus can be

forgotten. As an example, consider the CCS transition a.b
−|ā.Y−−→ b|Y derived from

the (non ground) reduction rule a.X|ā.Y −→ X|Y . The behaviour of the process
b|Y is trivially equivalent to b: their interaction is basically restricted to processes
offering a b̄ action, and we can thus avoid to consider Y . Instead, in the case of mo-
bile ambients, the ability of considering non ground states is fundamental, because
process variables may occur nested inside ambients in arriving states.

The relevance of this work for the theory of reactive systems is not limited to
the above observations. The first author has shown in [3] that in reactive systems
the bisimilarity on the derived LTS is usually too strict, while saturated bisimilarity
(i.e., the bisimilarity over the LTS having all contexts as labels and not just the
minimal ones) is often more adequate. This is the case of Logic Programming, open
π-calculus [6] and Petri nets [7]. The present work provides a further successful
test of the above claim. Indeed, it is easy to see that (the standard notion of)
bisimilarity over our LTS is too strict, because it allows to observe the ability of
an ambient to migrate, while it should be unobservable, as pointed out in [18].
For this reason, Rathke and Sobociński added two extra-rules to their LTS, while
Merro and Zappa Nardelli chose an asymmetric definition of bisimilarity. The latter
solution recalls us the semi-saturated bisimulation [6]. Instead of requiring that two
bisimilar processes must perform transitions with the same label, the definition of
semi-saturated bisimulation requires that

if P
C[−]−→ P1 then C[Q] reduces to Q1 and P1 R Q1.

It is worth noting that second and third points of Definition 3.2 in [18] has exactly
this shape (the labels ∗.entern and ∗.exitn correspond to our contexts −|n[X1]
and n[−|X1]). We leave as future work to exploit this intuition and to check if
(semi-)saturated bisimulation on our LTS corresponds to the behavioral equivalence
proposed by Merro and Zappa Nardelli.

References

[1] Baldan, P., A. Corradini, H. Ehrig, M. Löwe, U. Montanari and F. Rossi, Concurrent semantics of
algebraic graph transformation, in: H. Ehrig, H.-J. Kreowski, U. Montanari and G. Rozenberg, editors,
Concurrency, Parallelism, and Distribution, Handbook of Graph Grammars and Computing by Graph
Transformation 3, World Scientific, 1999 pp. 107–187.

90

Bonchi, Gadducci, Monreale

[2] Baldan, P., H. Ehrig and B. König, Composition and decomposition of DPO transformations with
borrowed context, in: A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro and G. Rozemberg, editors,
Graph Transformation, Lect. Notes in Comp. Sci. 4178 (2006), pp. 153–167.

[3] Bonchi, F., “Abstract Semantics by Observable Contexts,” Ph.D. thesis, Department of Informatics,
University of Pisa (2008).

[4] Bonchi, F., F. Gadducci and B. König, Process bisimulation via a graphical encoding, in: A. Corradini,
H. Ehrig, U. Montanari, L. Ribeiro and G. Rozemberg, editors, Graph Transformation, Lect. Notes in
Comp. Sci. 4178 (2006), pp. 168–183.

[5] Bonchi, F., F. Gadducci and G. V. Monreale, Labeled transitions for mobile ambients, Technical Report
TR-08-20, Dipartimento di Informatica, Università di Pisa (2008).

[6] Bonchi, F., B. König and U. Montanari, Saturated semantics for reactive systems, in: Logic in Computer
Science (2006), pp. 69–80.

[7] Bonchi, F. and U. Montanari, Coalgebraic models for reactive systems, in: L. Caires and V. Vasconcelos,
editors, Concurrency Theory, Lect. Notes in Comp. Sci. 4703 (2007), pp. 364–379.

[8] Cardelli, L. and A. Gordon, Mobile ambients, Theor. Comp. Sci. 240 (2000), pp. 177–213.

[9] Corradini, A. and F. Gadducci, An algebraic presentation of term graphs, via gs-monoidal categories,
Applied Categorical Structures 7 (1999), pp. 299–331.

[10] Corradini, A., U. Montanari and F. Rossi, Graph processes, Fundamenta Informaticae 26 (1996),
pp. 241–265.

[11] Ehrig, H. and B. König, Deriving bisimulation congruences in the DPO approach to graph rewriting
with borrowed contexts, Mathematical Structures in Computer Science 16 (2006), pp. 1133–1163.

[12] Ferrari, G., U. Montanari and E. Tuosto, A lts semantics of ambients via graph synchronization with
mobility, in: A. Restivo, S. Ronchi Della Rocca and L. Roversi, editors, Italian Conference on Theoretical
Computer Science, Lect. Notes in Comp. Sci. 2202 (2001), pp. 1–16.

[13] Gadducci, F. and G. V. Monreale, A decentralized implementation of mobile ambients, in: R. Heckel
and G. Taentzer, editors, Graph Transformation, Lect. Notes in Comp. Sci. forthcoming (2008).

[14] Gadducci, F. and U. Montanari, A concurrent graph semantics for mobile ambients, in: S. Brookes and
M. Mislove, editors, Mathematical Foundations of Programming Semantics, Electr. Notes in Theor.
Comp. Sci. 45 (2001).

[15] Gadducci, F. and U. Montanari, Observing reductions in nominal calculi via a graphical encoding of
processes, in: A. Middeldorp, V. van Oostrom, F. van Raamsdonk and R. de Vrijer, editors, Processes,
terms and cycles (Klop Festschrift), Lect. Notes in Comp. Sci. 3838 (2005), pp. 106–126.

[16] Gordon, A. D. and L. Cardelli, Equational properties of mobile ambients, Mathematical Structures in
Computer Science 13 (2003), pp. 371–408.

[17] Leifer, J. and R. Milner, Deriving bisimulation congruences for reactive systems, in: C. Palamidessi,
editor, Concurrency Theory, Lect. Notes in Comp. Sci. 1877 (2000), pp. 243–258.

[18] Merro, M. and F. Zappa Nardelli, Behavioral theory for mobile ambients, Journal of the ACM 52
(2005), pp. 961–1023.

[19] Milner, R., “Communication and Concurrency,” Prentice Hall, 1989.

[20] Milner, R., “Communicating and Mobile Systems: the π-Calculus,” Cambridge University Press, 1999.

[21] Milner, R., Pure bigraphs: Structure and dynamics, Information and Computation 204 (2006), pp. 60–
122.

[22] Rathke, J. and P. Sobociński, Deconstructing behavioural theories of mobility, in: G. Ausiello,
J. Karhumäki, G. Mauri and L. Ong, editors, Theoretical Computer Science, Lect. Notes in Comp.
Sci. forthcoming (2008).

[23] Regev, A., E. Panina, W. Silverman, L. Cardelli and E. Shapiro, Bioambients: an abstraction for
biological compartments, Theor. Comp. Sci. 325 (2004), pp. 141–167.

[24] Sobociński, P., “Deriving bisimulation congruences from reduction systems,” Ph.D. thesis, BRICS,
Department of Computer Science, University of Aarhus (2004).

[25] Sobociński, P. and J. Rathke, Deriving structural labelled transitions for mobile ambients, in: F. van
Breugel and M. Chechik, editors, Concurrency Theory, Lect. Notes in Comp. Sci. forthcoming (2008).

91

EXPRESS 2008 Preliminary Version

Decidable Fragments of a Higher Order

Calculus with Locations

Mikkel Bundgaard1 Jens Chr. Godskesen2

Email: {mikkelbu, jcg}@itu.dk

The Programming, Logic, and Semantics group
IT University of Copenhagen

Bjørn Haagensen Hans Hüttel

Email: {bh, hans}@cs.aau.dk

Department of Computer Science
Aalborg University

Abstract

Homer is a higher order process calculus with locations. In this paper we study Homer in the setting of the
semantic finite control property, which is a finite reachability criterion that implies decidability of barbed
bisimilarity. We show that strong and weak barbed bisimilarity are undecidable for Homer. We then identify
and compare two distinct subcalculi of Homer that both satisfy the semantic finite control property. One
subcalculus is obtained by using a type system bounding the size of process terms. The other subcalculus
is obtained by considering the image of the encoding of the finite control π-calculus in Homer.

Keywords: Decidability, higher order process passing, locations, semantic finite control

1 Introduction

The calculus Homer [5] is a higher order process calculus with nested location hier-

archies and active process mobility. Its syntax and semantics are inspired by calculi

such as Plain CHOCS [13] and the higher order π-calculus [11]. Similar to these

calculi we have the ability to send a passive resource r (along the name a),

a〈r〉.p | a(x).q −−−→ p | q{r/x} .

Active process mobility and nested location hierarchies are introduced in the cal-

culus by the location prefix, a〈r〉.p, where r is an active resource computing at the

1 Supported by grant no. 274-06-0415 and 2059-03-0031 from the Danish Research Council for Technology
and Production and the IT University of Copenhagen (the CosmoBiz and BPL projects).
2 Supported by grant no. 272-05-0258 from the Danish Research Agency.

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Bundgaard, Godskesen, Haagensen, and Hüttel

location a. A process can take an active resource and bind it to a process variable

using the complementary prefix a(x).q according to the following reduction rule

a〈r〉.p | a(x).q −−−→ p | q{r/x} .

We can communicate with processes residing in locations by allowing sequences of

names in the prefixes. E.g. we can take the resource r from the location b inside

the location a using the composite address ab

a〈b〈r〉 | p′〉.p | ab(x).q −−−→ a〈p′〉.p | q{r/x} .

In a similar manner we can send a passive resource to a receiver residing in a

sublocation.

a〈b(x).p′ | p′′〉.p | ab〈r〉.q −−−→ a〈p′{r/x} | p′′〉.p | q .

Homer can encode persistent locations [5], mobility as in the Seal calculus [6],

and name passing as in the π-calculus [1,2], thus exemplifying some of its expressive

power. The extent to which higher order communication adds to the expressiveness

of the first order π-calculus has been studied in [12], where it is shown that one

can encode the higher order π-calculus, HOπ, in the first order π-calculus. In

the context of calculi with locations, the work on ambient calculi in [8] is related,

albeit with a different perspective, as the subject of [8] is operators versus minimal

Turing-complete fragments.

Intuitively, a finite control calculus is calculus where the control structure is

finite. I.e. starting in any state, the number of states reachable via internal reduction

steps is finite. In [3] the authors examine a finite control fragment of the ambient

calculus. Similar to one of the approaches examined in this paper the finite control

fragment is obtained by the usage of a type system instead of, as usual, relying on

syntactic restrictions. Recent work in [7] considers a higher order calculus with few

operators where it, perhaps surprisingly, holds that the calculus is Turing-complete

but that barbed congruence is decidable.

The purpose of this work is to investigate decidability of barbed bisimilarity in

Homer with all operators. Results of this type are useful as a basis for model- and

equivalence-checking. Apart from the results mentioned above, few results of this

type exist in the context of higher order calculi with locations, and the question

is non-trivial since Homer can encode Turing machines. This paper shows that

in a full higher order calculus with locations, finite control [4] is a complicated

issue. In the context of CCS and the π-calculus [12] it has been shown that finite

control can be obtained simply by prohibiting the use of the operator for parallel

composition in recursive definitions [4]. The solution is not equally simple in higher

order calculi such as Homer and HOπ. There are several reasons for this. Firstly

there is no explicit recursion or replication operator in Homer since recursion is a

derived operator [6]. Moreover process-variables may be instantiated to arbitrary

processes. But most important is the observation that even without using parallel

composition in recursion, one can define a process with infinitely many non-barbed

bisimilar reducts. We can construct such a process in Homer by using that process

variables can occur at sublocations as in a(x).a〈n〈x〉〉, where an extra level of nesting

is added to the process received on channel a.

93

Bundgaard, Godskesen, Haagensen, and Hüttel

In order to find a decidable characterisation of a subcalculus of Homer for which

barbed bisimilarity is decidable we explore two different approaches. The first ap-

proach is to use a type system which bounds the size of processes in terms of the

number of parallel components, sequential length, and nesting of locations. The

resulting subcalculus of Homer is called HFCΓ. The resulting calculus is too re-

strictive and does not allow for infinite reductions. Therefore a recursion operator

is added. Since processes in HFCΓ can not acquire new free names, this ensures

us that there are only finitely many different α-equivalence classes reachable from

any process. The second approach is to consider an encoding of the π-calculus into

Homer [1,2]. We apply it to the finite control π-calculus, FCπ, and consider the

image of the encoding as a subcalculus of Homer, HFC π. It is shown that the finite

control property is preserved by the encoding. HFC π as well as HFCΓ are subcalculi

of Homer, and the finiteness results for HFC π and HFCΓ imply that the inclusions

are strict. Moreover we prove that there are HFCΓprocesses which do not have

equivalent counterparts in HFC π. First, the translation from FCπ to HFC π results

in processes which are not well typed in HFCΓ. Second, any process in HFCΓ with

location nesting greater than some constant k does not have a counterpart in HFC π.

2 The Calculus Homer

The syntax and semantics of Homer as presented by Bundgaard et. al. in [1] are

given as follows. Let N be an infinite set of names and let N ∗ denote the set of

all sequences of names formed by using names from N , let N+ ⊂ N ∗ denote the

set of non-empty sequences of names, and let ñ range over finite sets of names. Let

a, b, n,m, . . . range over N , γ over N ∗ and δ over N+. Let V be an infinite set

of process variables ranged over by x, y, z, Finally let U be a set of recursion

variables ranged over by X and Y . The set of Homer processes is given by the

following grammar.

p ::= 0 | rec X.p | p | p′ | (n)p | π.p | x | X

π ::= δ(x) | δ(x) | δ〈p〉 | δ〈p〉

The primitives for the inactive process, recursion, parallel composition, and restric-

tion have the same meaning as in other higher order process calculi. There are

two prefixes representing a resource at a location δ, where δ is a sequence of names

enabling addressing at sub-locations as described in the introduction. The active

δ〈p〉, and the passive δ〈p〉 prefix. The process p can perform internal reactions in

δ〈p〉, and the context can communicate with p, this is not the case for p in δ〈p〉. In

Homer names are bound by restriction, (n)p, and process variables are bound by

δ(x).p or δ(x).p, and recursion variables are bound as in rec X.p. For a process p

the set of free and bound names and variables are defined accordingly and denoted

fn(p),bn(p), fv(p) and bv(p).

Let ≡α denote α-equivalence both with respect to names and variables. If

fv(p) = ∅, then p is called a closed process. Let P denote the set of processes

given by the grammar (up to α-equivalence) and let p, q, r, . . . range over P. Fur-

thermore let Pc ⊂ P denote the set of closed processes ranged over by the same

meta variables as P. Contexts are defined as process terms with a single hole.

94

Bundgaard, Godskesen, Haagensen, and Hüttel

Definition 2.1 (Contexts) Homer contexts C and evaluation contexts E are

given by the following grammars:

C ::= (−) | rec X.C | C | p | (n)C | π.C | δ〈C 〉.p | δ〈C 〉.p

E ::= (−) | E | p | (n)E | δ〈E 〉.p′

Definition 2.2 (Well-formedness and linearity) Let p ∈ Pc. Then p is linear

if for every sub-process δ(x).q or δ(x).q of p, x occurs at most once in q. A process p

is well-formed if it is linear and for every occurrence of recX.p′ in p, all occurrences

of X in p′ are guarded.

In the following Homerwf denotes the variant of Homer obtained by only using

well-formed processes. Structural congruence is the least equivalence relation on

≡⊆ P ×P which is closed under application of process contexts and which satisfies

the following axioms.

p |0 ≡ p p | q ≡ q | p p | (q | r) ≡ (p | q) | r

(n)0 ≡ 0 (n)p | q ≡ (n)(p | q), where n /∈ fn(q) (n)(m)r ≡ (m)(n)r

recX.X ≡ 0 rec X.p ≡ p{recX.p/X}

As usual we also identify processes up to α-conversion. In order to handle addressing

at sublocations the reduction rules are given using so-called path indexed contexts,

C m̃
γ , where γ is the path to the hole, and m̃ the names bound in the hole.

Definition 2.3 (Path-indexed contexts) Let p, q ∈ Pc and δ ∈ N+ and γ ∈
N ∗. Then inductively define path-indexed contexts by

C
∅
ǫ

def
= (−) C

ñm̃
δγ

def
= δ〈(ñ)C m̃

γ | p)〉.q, where ñ ∩ γ = ∅ .

Vertical scope extrusion is defined using an open operator on path contexts.

C ∅
ǫ \ õ

def
= C ∅

ǫ C ñm̃
δγ \ õ

def
= δ〈(ñ \ õ)C m̃

γ \ õ | p〉.q,

if C ñm̃
δγ = δ〈(ñ)C m̃

γ | p〉.q and (m̃ ∪ ñ) ∩ fn(C m̃ñ
δγ) = ∅ .

When a resource is moved from a location it may be necessary to extend the scope

of a name vertical through the location boundary using the open operator.

Definition 2.4 (Reduction relation) The reduction relation is the least binary

relation on Pc which is closed under structural congruence and evaluation contexts

and which satisfies the following axioms.

(Send) γδ〈p〉.p′ |C m̃
γ (δ(x).q) −−−→ p′ |C m̃

γ (q{p/x}), where m̃ ∩ (fn(p) ∪ δ) = ∅

(Take) C m̃
γ (δ〈p〉.p′) | γδ(x).q −−−→ (m̃ ∩ ñ)

(

(C m̃
γ \ ñ)(p′) | q{p/x}

)

where ñ = fn(p), m̃ ∩ (δ ∪ fn(q)) = ∅

95

Bundgaard, Godskesen, Haagensen, and Hüttel

Note that in the (Take)-rule the names bound in the hole are vertically extruded

if and only if they are actually free in p. For example in

a〈(n)(b〈r〉 | p)〉 | ab(y). rec X.(y |X) ,

the scope of n is extruded (through the location boundary of a) iff n is free in r,

so each copy of r will share the name n. Otherwise r leaves the scope of n. A

detailed discussion of this choice is presented in [6]. The rest of the side conditions

in Definition 2.3 and Definition 2.4 are standard and prevent free names from being

captured. Let −−−→∗ denote the transitive and reflexive closure of −−−→.

Definition 2.5 (Strong and weak barbs) Define:

• p ↓ n if p ≡ (ã)(n〈q〉.q′ | q′′), where n /∈ ã.

• p ⇓ n if there is p′ such that p −−−→∗ p′ and p′ ↓ n.

Definition 2.6 (Strong and weak barbed bisimilarity) A binary symmetric

relation R ⊆ Pc × Pc is called a strong barbed bisimulation if whenever (p, q) ∈ R
the following holds:

(i) If p ↓ n then q ↓ n (ii) If p −−−→ p′ then q −−−→ q′ and (p′, q′) ∈ R .

Processes p and q are called strong barbed bisimilar, denoted p ∼ q, if there is a

strong barbed bisimulation R such that (p, q) ∈ R.

Weak barbed bisimilarity is obtained by replacing (i) and (ii) with:

(i) If p ↓ n then q ⇓ n (ii) If p −−−→ p′ then q −−−→∗ q′ and (p′, q′) ∈ R .

Processes p and q are weakly bisimilar, denoted p ≈ q, if there is a weak bisimulation

such that (p, q) ∈ R.

For rec-free well-formed processes the following finiteness property can be proven

by observing that all reductions strictly reduce the size of processes. The corre-

sponding result does not hold for full Homer.

Lemma 2.7 If p is a linear term built from the grammar without resorting to the

rec X.p construction, then {p′ | p −−−→∗ p′}/≡ is finite.

Strong, respectively weak, barbed bisimilarity are too coarse for many purposes,

specifically in most cases only the congruence versions coincide with strong and

weak bisimilarity. Indeed this is the case for Homer [6]. The coarsest equivalence

is reduction bisimilarity, ∼r. This holds since reduction bisimilarity only requires

equivalent processes to match on τ -actions, whereas they, contrary to barbed bisim-

ilarity, need not have equivalent barbs, i.e. observable actions. It is indeed necessary

that ∼r is decidable for the congruences to be decidable. This is seen since decid-

ability of reduction bisimilarity can be reduced to deciding barbed congruence, ∼c.

For any processes p and q let,

p ∼r q if and only if (ñ)p ∼c (m̃)q, where ñ = fn(p) and m̃ = fn(q) .

Therefore, even though our decidability results only applies to the non-congruence

versions, they must indeed hold in any formalism for which the congruences are

96

Bundgaard, Godskesen, Haagensen, and Hüttel

decidable. For the positive results in this paper we will use the following finite

control property.

Definition 2.8 (Semantic finite control (SFC)) Let A be a process calculus

and ≎ be some decidable equivalence such that ≎⊆≈,∼. Then A is called semantic

finite control up to ≎ if the set {p′ | p −−−→∗ p′}/≎ is finite.

Proposition 2.9 If A is SFC up to ≎, then ≈ and ∼ are decidable.

As an indication of the expressiveness of SFC calculi, the next result shows that the

traces of processes from calculi satisfying the SFC property are simple in structure.

Definition 2.10 (Barbed Trace) Let A be a process calculus and let p ∈ A be a

process. α = a1 · · · ak is a barbed trace of p ending in p′ if there exists

p −−−→∗↓ a1 −−−→−−−→∗↓ a2 · · · −−−→−−−→∗ p′ ↓ ak .

We let p
α
−−−→

∗
p′ denote such a reduction sequence. The set of barbed traces generated

by p is denoted BTrace(p).

Lemma 2.11 (Pumping Lemma) Let A be a process calculus which is SFC up

to ≎ and assume ≎ respects barbed traces, and let p ∈ A. Then there is a number

n such that if α ∈ BTrace(p) and |α| ≥ n, then there are α1, α2, and α3 such that

α = α1α2α3 and for each i ∈ N the following holds. (i) α1α
i
2α3 ∈ BTrace(P), (ii)

|α2| > 0.

Proof. Let n = |{p′ | p −−−→∗ p′}/≎| + 1 and α a string, with |α| = n′ and n′ ≥ n.

Then there must exist a sequence of transitions visiting at least n′ states. Thus

some state must repeat. Denote the first of occurrence of this state pj and the

second pk. Then p
α1−−−→

∗
pj −−−→

α2−−−→
∗

pk −−−→
α3−−−→

∗
p′, for some p′. By the pigeonhole

principle one can now prove that α1α
i
2α3 ∈ BTrace(p) for all i ∈ N. 2

Corollary 2.12 Let A be a process calculus which is SFC up to ≎ and assume that

≎ respects barbed traces. Then there is no p ∈ A and names a and b such that

{aibi} = BTrace(p) for all i ∈ N.

In the following sections we first present some undecidability results, then we char-

acterise SFC processes in two different ways: first using a type system which bounds

the size of processes, and second using an encoding of the (finite control) π-calculus

into Homer.

3 Undecidability Results

In [1,2] it is shown that Homer can encode the π-calculus. From that result it follows

that Homer is Turing-complete. Although Turing-completeness usually implies that

semantic properties of processes are undecidable, the recent paper [7] shows that

undecidability of barbed congruence does not follow from the ability to encode

Minsky machines in a termination preserving manner.

Definition 3.1 A ≈-property S is a set of ≈-equivalence classes. S is non-trivial

if there exists a C1 ∈ S and C2 6∈ S.

97

Bundgaard, Godskesen, Haagensen, and Hüttel

Theorem 3.2 If S is a non-trivial ≈-property, then LS = {p | ∃.C ∈ S. p ∈ C} is

undecidable.

Proof. Reduction from the halting problem for Turing machines. Since S is

non-trivial, there exist equivalence classes C1 ∈ S and C2 6∈ S. We choose

a process p1 ∈ C1. Further, we assume wlog that p2 ∈ C2, where p2 =

(νa)(rec X.a(z).X | recY.a〈0〉.Y) . Given a Turing machine M and an input x we

can construct a Homer process pM,x whose only free name is w and such that w

is only used to signal termination and such that pM,x ⇓ w iff M halts on input x.

Now construct the process p0 = (νw)(pM,x | w.p1). Then we have that p0 ∈ C1 if

M halts on x and that p0 ∈ C2 if M does not halt on x. 2

Corollary 3.3 ≈ is undecidable.

The proof of Theorem 3.2 remains valid also for barbed congruence and even for

reduction bisimilarity. Consequently Corollary 3.3 also remains true for both equiv-

alences. The analogous result for strong barbed bisimilarity is obtained by an en-

coding of the λ-calculus in Homer, inspired by the encoding in Plain CHOCS [13].

Assuming that a and i 6∈ fn(JMK) ∪ fn(JNK).

JxK
def
= x Jλx.MK

def
= i(x). JMK JMNK

def
= (a)

(

a〈JMK〉 | ai〈JNK〉.a(x).x
)

.

This encoding, while only being correct up to weak equivalence, is termination

preserving, and moreover we know exactly how many steps the encoding needs to

perform in order to simulate a reduction in a λ-term. Therefore

(i)(JMK) ∼ recX.(a)(a | a.X) iff M diverges ,

which is a reduction of the divergence problem for the λ-calculus.

4 The Calculus HFC Γ

In this section we present the typed subcalculus HFCΓ of Homerwf . In the results

that follow whenever a process is typed, the process is first transformed to a folded

form which is now defined.

Definition 4.1 (Folding) Let X ∈ fv(p) and define the binary relation fold, >,

on process terms by the axioms

p{rec X.p/X} > rec X.p p |0 > p 0 | p > p (n)p > p if n /∈ fn(p)

(n)(p | q) > (n)p | q if n /∈ fn(q) (n)(p | q) > p | (n)q if n /∈ fn(p)

and closure under the process contexts. p is said to be on folded form if p 6>.

Let >∗ denote the transitive closure of >. It is easy to see that any process is

either on folded form, or can be brought on folded form. Moreover the relation >

is convergent and a sub-relation of ≡. Therefore we can assume that all processes

are on folded form for the remaining part of this section. The basic purpose of the

type system is to ensure that the size of a typeable process is bounded. Types are

98

Bundgaard, Godskesen, Haagensen, and Hüttel

triples of natural numbers. In a type (d,w, s), d, w, and s are upper bounds for

the depth of nested locations, width, i.e. the number of parallel components, and

length of the prefix sequences.

Definition 4.2 (Types) Types are triples (d,w, s) of non-negative natural num-

bers, N, ranged over by S, T,

We write (d,w, s) ≤ (d′, w′, s′) if d ≤ d′, w ≤ w′, and s ≤ s′.

Definition 4.3 (Type environments) A type environment is a finite partial

function Γ : N ∪ V →֒ N × N × N.

Type environments can be regarded as finite sets of type assignments a : T , where

a ∈ N ∪ V and T ∈ N × N × N and an environment is written {a1 : T1, . . . , an : Tn}
where ai 6= aj when i 6= j. Type environments can be extended. This is written

Γ ∪ {a : T}, and is only defined if a is not defined in Γ. Below we let ϕ range over

δ and δ. There are two type judgement relations for HFCΓ.

Definition 4.4 The type relation for names, ⊢n, is given by the following rules

(TName) Γ ∪ {a : (d,w, s)} ⊢n a : (d,w, s)

(TSeqName)
Γ ⊢n δ : (d,w, s) Γ ⊢n a : (d′, w′, s′)

Γ ⊢n δa : (d′, w′, s′)
, if (d,w, s) ≤ (d′, w′, s′)

The type relation for processes on folded form, ⊢, is given by the following rules

(TProcVar) Γ ∪ {x : (d,w, s)} ⊢ x : (d,w, s)

(TRecVar) Γ ∪ {X : (d,w, s)} ⊢ X : (d,w, s)

(TNil) Γ ⊢ 0 : (0, 1, 0)

(TNew)
Γ ∪ {n : (d′, w,′ s′)} ⊢ p : (d,w, s)

Γ ⊢ (n)p : (d,w, s)

(TPar)
Γ ⊢ p : (d,w, s) Γ ⊢ q : (d′, w′, s′)

Γ ⊢ p | q : (max{d, d′}, w + w′,max{s, s′})

(TTake|TIn)
Γ ∪ {x : (d,w, s)} ⊢ p : (d′, w′, s′) Γ ⊢n ϕ : (d′′, w′′, s′′)

Γ ⊢ ϕ(x).p : (d′, w′, 1 + s′)
, if d ≥ d′′

(TSend|TOut)

Γ ⊢n ϕ : (d′′, w′′, s′′)
Γ ⊢ p : (d′, w′, s′) Γ ⊢ q : (d,w, s)

Γ ⊢ ϕ〈p〉.q : (max{d′ + 1, d}, w′ + w,max{s′, s + 1})
, if d′ ≤ d′′

(TRec)
Γ ∪ {X : (d′, w′, s′)} ⊢ p : (d,w, s)

Γ ⊢ recX.p : (d′, w′, s′)
, if d ≤ d′, w ≤ w′

99

Bundgaard, Godskesen, Haagensen, and Hüttel

The rules are fairly self explanatory. It is important that processes are on folded

form when they are typed. Otherwise the type would not be well-defined since one

can use ≡ to unfold recursion and to add 0-processes. The (TRec) rule enforces,

through its side conditions, that the recursion variable cannot be placed freely in p.

Specifically in recX.p, if the recursion variable occurs free in p, then there cannot

be any occurrences of | in p. This is similar to the finite control condition in FCπ.

There are no restrictions on the sequence component of the types.

Definition 4.5 (Well-typedness) A process p is well-typed in Γ if there is some

(d,w, s) such that Γ ⊢ p : (d,w, s). A process p is well typed if there is some Γ such

that p is well typed in Γ.

In the following, the notation is overloaded so ⊢ denotes ⊢ as well as ⊢n relying

on the context to make it clear which one is meant. With this type system we can

show that the number of different well-typed processes reachable starting from any

well-typed process is finite up to ≡.

Theorem 4.6 (Subject reduction) If Γ ⊢ p : (d,w, s), then there is some k such

that for all p −−−→ p′, Γ ⊢ p′ : (d′, w′, s′) for some d′, w′, and s′ such that d′ ≤ d,

w′ ≤ w, and s′ ≤ k.

It is necessary to allow for the type of the third component to grow due to unfolding

of recursion. But the size of the third component can be uniformly bounded in one

step reductions as well as reductions of length greater than one.

Corollary 4.7 If Γ ⊢ p : (d,w, s) then if p −−−→∗ p′ for some p′, then there is

(d′, w′, k) such that Γ ⊢ p′ : (d′, w′, s′) and d′ ≤ d,w′ ≤ w, and s′ ≤ k.

Lemma 4.8 Let p −−−→∗ p′. Then fn(p′) ⊆ fn(p).

Proposition 4.9 Let A ⊂ N be a finite set of names. Then for all natural numbers

d′, w′, s′, there are only finitely many α non-equivalent processes p such that

• p is on folded form

• Γ ⊢ p : (d,w, s), where d ≤ d′, w ≤ w′, and s ≤ s′.

• fn(p) ∪ bn(p) ⊆ A

Proposition 4.10 The set of reachable configurations is finite

|{p′ | Γ ⊢ p : (d,w, s), and p −−−→∗ p′, and Γ ⊢ p′ : (d′, w′, s′)}| < ∞ .

A process on folded form may be thought of as a representative of an ≡-

equivalence class. Proposition 4.10 then says that there are only finitely many

reachable processes up to ≡.

Lemma 4.11 Assume Γ ⊢ p : T . Then p ↓n and p ⇓n are decidable.

Theorem 4.12 Strong and weak barbed bisimilarity are decidable for HFCΓ.

We now show that within the current setting the types bounding the depth,

width, and length of prefix sequences are necessary to obtain finite control. In the

following let HFC−d
Γ , HFC−w

Γ , and HFC−s
Γ denote subcalculi of Homerwf defined in

the same way as HFCΓ, but with the type-system slightly modified by removing the

i’th component of the types and adapting the rules accordingly. The corresponding

100

Bundgaard, Godskesen, Haagensen, and Hüttel

typing judgements are Γ−d ⊢ p, Γ−w ⊢ p, and Γ−s ⊢ p respectively.

Proposition 4.13 Strong/weak barbed bisimilarity are undecidable for HFC−d
Γ .

Proof. [Sketch] The proposition is proven by showing that HFC−d
Γ can encode Min-

sky machines [10]. A Minsky machine consists of a set of instructions {L1, . . . Lk}
where the instructions operates on two counters c1 and c2. For all instructions Li

that loop, we add a replica L′
i of Li to the instruction set and encode the modi-

fied instruction set, {L1, . . . Lk, L
′
i . . . , L′

j}. This does not change the semantics of

M . Each instruction Li is either Inc(cj , n), which increments the value of counter

cj and jumps to the next instruction n, or Dec(cj , n,m) which jumps to instruc-

tion n if cj = 0, otherwise the counter cj is decremented by 1 followed by a jump

to instruction m. A program counter (PC) keeps track of the currently executing

instruction. Execution starts with the first instruction and halts if the PC gets

assigned a value outside the range 1, . . . , k. The semantics of a Minsky machine is a

transition system over configurations (i, c1, c2), where i is the PC and ci, the values

of the counters generated by the rules.

(Inc:)
i = Inc(cj , n) c′j = cj + 1 c′j−1 = cj−1

(i, c1, c2) −−−→ (n, c′1, c
′
2)

(Dec-1:)
i = Dec(cj , n,m) cj = 0

(i, c1, c2) −−−→ (m, c1, c2)

(Dec-2:)
i = Dec(cj , k) cj 6= 0 c′j = cj − 1 c′j−1 = cj−1

(i, c1, c2) −−−→ (i + 1, c′1, c
′
2)

In the following we write a〈0〉.0 as a and omit trailing occurrences of 0 in e.g.

δ〈p〉.0. Numbers are encoded as J0K = z and Jn + 1K = n〈JnK〉. In the encoding we

use two special register locations, r1 and r2 from which the values of the counters

c1 and c2 are read and saved. Instructions are encoded as follows.

JInc(ci, n)K = rec X.lm.Add(ci, n), where Add(ci, n) = ri(x).ri〈n〈x〉〉.ln.X .

For the encoding of Dec(ci, n,m) we split the encoding into several parts.

Get(ci) = rec Y.lm.Get1(ci), where Get1(ci) = ri(x).a〈x〉.b.Y

Zero(n) = recX ′.az(y).ri〈z〈y〉〉.ln.b.X ′ NonZero(m) = recY ′.an(y).ri〈y〉.l0.b.Y
′

Now the encoding of the if-then-else instruction is given as follows

JDec(ci, n,m)K = (a, b)(Get(ci) | Zero(n) | NonZero(m)) .

Let m be the number of indices in the modified instruction set. The full encoding is

defined by encoding the instructions in parallel with the encoding of the counters.

∏

i∈{1,...,m}r{k}

JLiK | r1〈Jc1K〉 | r2〈Jc2K〉

2

101

Bundgaard, Godskesen, Haagensen, and Hüttel

For HFC−w
Γ and HFC−s

Γ we have the weaker result.

Lemma 4.14 The calculi HFC−w
Γ and HFC−s

Γ are not finite control.

Proof. The two cases are established by providing counter-examples.

Case HFC−w
Γ : a〈(n)n〈0〉.0〉.0 | recX.a(x).a〈x〉.X | rec Y.a(x).a〈n〈0〉 |x〉.Y

Case HFC−s
Γ : a〈(n)n〈0〉.0〉.0 | rec X.a(x).a〈x〉.X | rec Y.a(x).a〈(n′)n′〈0〉.x〉.Y 2

Recalling the comments in Sec. 2, Theorem 4.12 is, in our setting, an upper

bound on the expressivity of a calculus for which strong and weak barbed congruence

can be decidable. We believe this is also the case for HFC−w
Γ and HFC−s

Γ , but have

not been able to improve on the result of Lemma 4.14.

5 The Calculus HFC π

Contrast to Homer, the π-calculus is a first order calculus without a primitive notion

of locations. The syntax and main reduction rule is reminiscent of Homer. However,

whereas processes are passed over named channels in Homer, only names can be

passed in the π-calculus. We briefly present the π-calculus and recommend [12,9]

for details.

P ::= 0 | P |Q | (νn)P | recX.P | X | n〈m〉.P | n(m).P

The finite control segment is obtained by imposing the following simple restrictions

on the recursion operator, rec X.P . First all occurrences of X in P must occur under

a prefix, n〈m〉 or n(m). Secondly there should be no parallel compositions in P .

These two conditions are sufficient for obtaining finite control in the π-calculus [4].

Process contexts and evaluation contexts can be defined by disregarding all cases

mentioning locations, denoting processes by capital instead of lower case letters,

and writing (νn) for (n) in Definition 2.1. Structural congruence ≡π is obtained in

a similar manner. The semantics of the finite control π-calculus is given as the least

binary relation −−−→π over π-calculus terms closed under evaluation contexts and ≡π

and satisfying the following axiom

(React)
n(m).P |n〈m′〉.Q −−−→π P{m′/m} |Q

.

Definition 5.1 (Strong and weak barbed bisimilarity) We define strong

and weak barbs as usual:

• Assuming that n /∈ ã we have P ↓π n if P ≡ (νã)(n〈m〉.Q |Q′) and P ↓π n if

P ≡ (νã)(n(m).Q |Q′).

• P ⇓π n if there is P ′ such that P −−−→∗
π P ′ and P ′ ↓π n.

A binary symmetric relation R over the set of π-calculus terms is called a strong

barbed bisimulation if whenever (P,Q) ∈ R the following holds:

(i) If P ↓π n then Q ↓π n (ii) If P −−−→π P ′ then Q −−−→π Q′ and (P ′, Q′) ∈ R .

102

Bundgaard, Godskesen, Haagensen, and Hüttel

Processes P and Q are called strong barbed bisimilar, denoted P ∼π Q, if there is

a strong barbed bisimulation R such that (P,Q) ∈ R. Weak barbed bisimulation,

denoted ≈π, is defined by modifying (i) and (ii) in the same way as in Definition 2.6.

Next follows a brief account of the encoding of the π-calculus in Homer from [2]

applied to FCπ. The full encoding, J·K2, is defined in terms of an encoding of names,

J·K, and an encoding of processes, J·K1. A π-calculus name n is encoded as a mobile

resource JnK that performs two tasks; sending and receiving.

Sendn
def
= v(x).c(y).n〈x〉.y

Receiven
def
= c(x).n(y).(a)

(

a〈x〉 | ab〈y〉.a(z).z
)

JnK
def
= s〈Sendn〉 | r〈Receiven〉

Sendn expects the encoding of the name to be communicated on v, and the contin-

uation of the prefix on c. Receiven expects the encoding of the continuation and is

then ready to synchronise with the resulting Sendn prefix. The significant cases of

the encoding are input, output, and restriction.

Jn〈m〉.P K1
def
= (a)

(

a〈n′〉 | asv〈m′〉.asv〈JP K1〉.as(z).a(z′).z
)

Jn(x).P K1
def
= (a)

(

a〈n′〉 | arc〈b(x). JP K1〉.ar(z).a(z′).z
)

J(νn)P K1
def
= (n)

(

JP K1 {JnK /n′}
)

Note that the names n′ and m′ are free process variables which will be replaced by

JnK and JmK on top-level in the encoding. The encoding of n〈m〉.P sends JmK to the

Sendn process followed by the encoding of P . The Sendn-process is now located in

a and ready to send JmK on n after which it becomes JP K1. This Sendn process is

now fetched from a and placed on top-level ready to communicate with Receiven.

The encoding of an input n(x).P sends the encoding of the continuation prefixed

with an input on which it can receive the JmK which was sent by Sendn. The actual

π-calculus communication can now be executed before the result is finally fetched

from a and placed at the top level. The a(z′) in both encodings garbage collects

the unused part of the encoding of a name. It is assumed that there is a one-to-

one mapping between π-calculus names n and process variables n′. The encoding is

homomorphic on 0, | , and rec X.P . The full encoding of a π-calculus process P with

free names n1, . . . , nm is JP K2
def
= JP K1 {Jn1K /n′

1, . . . JnmK /n′
m}, where n′

1, . . . n
′
m are

names in bijection with n1, . . . , nm.

Example 5.2 The encoding of P = n〈m〉 |n(x).x〈x〉 −−−→π m〈m〉.

JP K2 =
[

(a)
(

a〈n′〉 | asv〈m′〉.asv〈J0K1〉.as(z).a(z′).z
)

|

(a)
(

a〈n′〉 | arc〈b(x). Jx〈x〉K1〉.ar(z).a(z′).z
)

]

{JnK /n′, JmK /m′}

= (a)
(

a〈JnK〉 | asv〈JmK〉.asv〈J0K1〉.as(z).a(z′).z
)

|

(a)
(

a〈JnK〉 | arc〈b(x). Jx〈x〉K1〉.ar(z).a(z′).z
)

103

Bundgaard, Godskesen, Haagensen, and Hüttel

Thus we have the reductions

JP K2 −−−→∗n〈JmK〉 |n(y).(a)
(

a〈b(x). Jx〈x〉K1〉 | ab〈y〉.a(z).z
)

−−−→∗(a)
(

a〈b(x). Jx〈x〉K1〉 | ab〈JmK〉.a(z).z
)

−−−→∗ Jx〈x〉K1 {JmK /x} = Jm〈m〉K2

Theorem 5.3 (Dynamic correspondence [2]) P −−−→π P ′ iff JP K2 −−−→10 JP ′K2.

Thus if there are only finitely many reducts in the π-calculus, this must be reflected

in the encoded process.

Corollary 5.4 |{P ′ | P −−−→∗
π P ′}| < ∞ implies |{JP ′′K | JP K −−−→∗ JP ′′K}|/≡ < ∞.

The next proposition generalises the preceding lemma to arbitrary reductions in the

encoded process.

Proposition 5.5 |{P ′ | P −−−→∗
π P ′}| < ∞ implies |{c | JP K −−−→∗ c}|/≡ < ∞.

Corollary 5.6 If P is a FCπ-process. Then P ↓π n and P ⇓π n are decidable.

Let HFC π denote the subset of Homer-processes obtained as the taking the encoding

of all FCπ processes together with their reducts.

Theorem 5.7 HFC π is SFC up to to ≡.

Although Theorem 5.7 only gives us SFC up to ≡, a stronger statement can be

obtained by using the labelled transition semantics without ≡ instead [5].

6 Comparing Homer, Homerwf , HFC Γ, and HFC π

In this section we show that Homer, HFCΓ, and HFC π are different calculi with

respect to weak bisimilarity. Let A,B ∈ {Homer,Homerwf ,HFC Γ,HFC π}. We

compare the calculi according to the following criteria.

A / B if for all p ∈ A there exists q ∈ B such that p ≈ q

A ≈ B if A / B and B / A. A 6≈ B if A 6/ B and B 6/ A .

Proposition 6.1 (i) HFCΓ / Homerwf and (ii) Homerwf 6/ HFCΓ

Proof. (i) holds since any HFCΓ process is also a Homerwf -process. (ii) holds

since one can easily construct a Homerwf -process which has an infinite sequence of

reductions going through mutually non-equivalent states. This is not possible in

HFCΓ due to Proposition 4.10. 2

In a similar manner we get.

Proposition 6.2 (i) HFC π / Homer and (ii) Homer 6/ HFC π

The next question to be answered is whether HFCΓ is equivalent to HFC π. First

observe that membership in the two calculi is indeed a decidable problem.

Proposition 6.3 Let p ∈ Homer. Then the following are decidable. (i) p ∈ HFCΓ

and (ii) p ∈ HFC π

104

Bundgaard, Godskesen, Haagensen, and Hüttel

Homer

HFCπ

HFCΓ

FCHomer
Homerwf

Fig. 1. Relationship between Homer, FCHomer, Homerwf , HFCΓ, and HFCπ.

Proposition 6.4 We have HFCΓ 6/ HFC π.

Letting FCHomer denote the full subcalculus of Homer where barbed bisimilarity

is decidable we depict the calculi and inclusions with respect to ≈ in Figure 1. In

Figure 1 the inclusion of HFCΓ in Homerwf and the inclusion of HFC π in Homer

are strict with respect to ≈. Moreover we conjecture that that HFC π 6/ HFCΓ.

Obviously they have a non-empty intersection since e.g. the 0-process is typeable

as well as the encoding of 0. We also note that HFCΓ and HFC π are not closed

with respect to ≈. This can be seen since 0 is both an encoding of a π-calculus

process, and a typeable process.

7 Conclusion

This paper deals with decidability of barbed bisimilarity in a higher order process

calculus with locations called Homer. The problem seems much more complicated

than for CCS and the π-calculus. Two subcalculi of Homer are characterised where

bisimilarity is decidable in both of those calculi. To fix a point of reference we

defined semantic finite control up to a decidable relation ≎. Semantic finite control

then implies decidability of any relation containing ≎. However since Homer is

Turing-complete most semantic properties are undecidable. In particular barbs and

hence barbed bisimilarity.

These results lead us to pursue alternative characterisations. One is to define a

type system which bounds the size of processes. The typed calculus is a subcalculus

of Homer which is semantic finite control. The other characterisation draws on

results from the finite control π-calculus and a relatively recent published encoding

of the π-calculus into Homer. Combining these results we again obtain a subcalculus

of Homer which is semantic finite control.

In regards to future work the most pressing issue is whether our results extends

to congruences. In Homer, early context bisimilarity characterises barbed congru-

ence. We have not, so far, succeeded in extending the present results to barbed

congruence, or equivalently early context bisimilarity. The reason for this is that in

the presence of higher order communication the early (labelled) context bisimilar-

105

Bundgaard, Godskesen, Haagensen, and Hüttel

ity relation does not get rid of the universal quantification over contexts. However

recent work in [7] shows that in a certain case it is possible to derive a quantifi-

cation free characterisation of barbed congruence. Whether the same approach is

applicable in our setting would be interesting to know.

We have shown that HFCΓ 6/ HFC π and that Homer is strictly more expressive

than both of these calculi. It is also clear that at the syntactic level, there are

processes in HFC π which are not in HFCΓ, e.g. processes which are the encoding

of π-calculus processes for which an input bound name occurs free more than once

behind the prefix. We conjecture that also HFCπ 6/ HFCΓ. However we note

that if the conjecture does not holds, then it is indeed possible that HFC π could be

embedded in HFCΓ. Thus showing that despite the rather strict conditions imposed

by the type-system, HFCΓ would be at least as expressive as the finite control π-

calculus. Finally HFC π is at least as expressive as the finite control π-calculus. It

would be of interest to know more about the expressive power of HFCΓ and HFC π.

Also of interest is to find some more general notion of what decidable procedures

could characterise semantic finite control. A natural extension of such work would

then be to study the relationship between various notions of semantic finite control.

References

[1] Bundgaard, M., T. Hildebrandt and J. C. Godskesen, A CPS encoding of name-passing in higher-order
mobile embedded resources, Theoretical Computer Science 356 (2006), pp. 422–439.

[2] Bundgaard, M., T. Hildebrandt and J. C. Godskesen, On encoding the π-calculus in higher-order calculi,
Technical Report TR-2008-106, IT University of Copenhagen (2008).

[3] Charatonik, W., A. D. Gordon and J.-M. Talbot, Finite-control mobile ambients, in: Proceedings of
ESOP’02, LNCS 2305 (2002), pp. 295–313.

[4] Dam, M., On the decidability of process equivalences for the π-calculus, Theoretical Computer Science
183 (1997), pp. 215–228.

[5] Godskesen, J. C. and T. Hildebrandt, Extending Howe’s method to early bisimulations for typed mobile
embedded resources with local names, in: Proceedings of FSTTCS’05, LNCS 3821 (2005), pp. 140–151.

[6] Hildebrandt, T., J. C. Godskesen and M. Bundgaard, Bisimulation congruences for Homer — a calculus
of higher order mobile embedded resources, Technical Report TR-2004-52, IT University of Copenhagen
(2004).

[7] Lanese, I., J. A. Pérez, D. Sangiorgi and A. Schmitt, On the expressiveness and decidability of higher-
order process calculi, in: Proceedings of LICS’08 (2008), pp. 145–155.

[8] Maffeis, S. and I. Phillips, On the computational strength of pure ambient calculi, Theoretical Computer
Science 330 (2005), pp. 501–551.

[9] Milner, R., “Communicating and Mobile Systems: the π-calculus,” Cambridge University Press, 1999.

[10] Minsky, M., “Computation: Finite and infinite machines,” Prentice-Hall, 1967.

[11] Sangiorgi, D., “Expressing mobility in Process Algebras: First-Order and Higher-Order Paradigms,”
Ph.D. thesis, University of Edinburgh, Dept. of Computer Science (1993).

[12] Sangiorgi, D. and D. Walker, “The π-Calculus: a Theory of Mobile Processes,” Cambridge University
Press, 2001.

[13] Thomsen, B., Plain CHOCS: A second generation calculus for higher order processes, Acta Informatica
30 (1993), pp. 1–59.

106

EXPRESS 2008 Preliminary Version

Hard life with weak binders

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy

Roberto Zunino
Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

Abstract

We introduce weak binders, a lightweight construct to deal with fresh names in nominal calculi. Weak binders
do not define the scope of names as precisely as the standard ν-binders, yet they enjoy strong semantic
properties. We provide them with a denotational semantics, an equational theory, and a trace inclusion
preorder. Furthermore, we present a trace-preserving mapping between weak binders and ν-binders.

Keywords: Nominal calculi, variable binding, alpha-conversion, freshness

1 Introduction

Over the last few years naming has been envisaged as a suitable abstraction for
capturing and handling a variety of computational concepts, like distributed objects,
cryptographic keys, session identifiers. Also, the dynamicity issues usually arising
in distributed computing (e.g., network reconfiguration, module versioning) may be
usefully explained in terms of naming disciplines such as fresh name generation,
binding and scoping rules. The π-calculus [12,18] is probably the most illustrative
example of nominal calculi, in which many of the concepts outlined above have been
formally modelled and explained. Nominal calculi manipulate names via explicit
binders that define their scope. The standard example is the π-calculus restriction
operator νn. A ν-binder also declares that a fresh name has to be created. A broad
variety of formal theories [8,9,20,17,13,14,4] developed in the last few years shows
the intrinsic difficulties of handling naming and freshness.

This paper aims at contributing to this line of research. Our motivating starting
point is to understand what is the actual gain in using ν-binders to deal with fresh
names. Indeed, the equational theory of ν-binders allows for freely moving them

? This research has been partially supported by EU-FETPI Global Computing Project IST-2005-16004
sensoria (Software Engineering for Service-Oriented Overlay Computers)

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Bartoletti, Degano, Ferrari, Zunino

almost anywhere in a process (except escaping from a recursion). So, one might
wonder whether ν-binders can be omitted in a process, and replaced by a more
primitive construct, e.g. an atomic action to be interpreted as a gensym() that
explicitly creates a fresh name.

We introduce a nominal calculus with weak binders, a construct for generating
fresh names as an atomic action, without explicit ν-binders. Our calculus slightly
extends Bergstra and Klop’s Basic Process Algebras [3], by allowing parametrized
atomic actions α(r), that abstract from dispatching the action α to the object r.
Objects can be freshly created through the special action new(n), our “weak binder”.

We study under which conditions a weakly bound process can be treated co-
herently with a process with ν-binders. For instance, in the weakly bound process
p = new(n) · α(n) + new(m) · α(m) there is no confusion between the scopes of the
“bound” names n and m, and so p is equivalent to the “strongly bound” process
P = νn.νm.(new(n) ·α(n)+new(m) ·α(m)). We shall then say that p is well-bound,
and that P is its bindification. This transformation makes precise the scopes of
names in weakly bound processes, by inserting the ν-binders at the right points.
This is not always possible, however, e.g. in the process new(n) · (ε+ new(n)) ·α(n)
there is an inherent ambiguity, because we cannot tell whether the action α has to
be done on the object created by the first or by the second new. When bindification
is possible, we prove that the semantics of the weakly bound and of the bindified
processes are trace equivalent.

A further contribution is a trace inclusion preorder - for weakly bound processes:
when p - q, the traces of p are included in those of q. We compare this preorder
with a trace inclusion preorder for strongly bound processes. Preorders of processes
are a relevant and non-trivial aspect of subtyping/subeffecting for type and effect
systems [1]. Also, thay can be udes to study the compliance of contracts with
implementations and subcontract relations in calculi for Web services [5,6].

We envisage the impact of our approach as follows. Our main result is the formal
definition of a methodology for handling the freshness of names without resorting
to explicit binders. The overall outcome of our semantical investigation consists in
the full characterization of weak binders. We have proved that weak binders still
enjoy interesting semantic properties, comparably to what can be obtained through
ν-binders. We have exploited weak binders to develop the static machinery (a type
and effect system and a model checker) of a linguistic framework for resource usage
control [1]. As a downside, we have found that weak binders, having a weaker
structure than ν-binders, may make the life hard when going into the proofs.

The paper is organized as follows. We first introduce a calculus with explicit
ν-binders, we give its operational and denotational semantics, and we show them
fully abstract. We then remove ν-binders, and define a denotational semantics
and an equational theory of weakly bound processes. Then, we define the bindify
transformation, and we state its correctness: the bindification of a weakly bound
process p is trace equivalent to p. After that, we compare the equational theories
and the trace inclusion preorders of strongly bound and weakly bound processes. We
conclude by reporting our experience about using weak binders, and by discussing
some related work. Because of space limitations, here we shall omit the proofs of
our statements. All the proofs are available in the companion technical report [2].

108

Bartoletti, Degano, Ferrari, Zunino

2 Strongly bound processes

We now introduce a process calculus with name binders, building upon Basic Process
Algebras (BPAs, [3]). Our calculus shares with BPAs the primitives for sequential
composition, for non-deterministic choice, and for recursion (though with a slightly
different syntax). Quite differently from BPAs, our atomic actions (called events)
have a parameter, which indicates the resource upon which the action is performed.
Resources r, r′, . . . ∈ Res are system objects that can either be already available in
the environment or be created at run-time. Resources can be accessed through a
given finite set of actions α, α′,new, . . . ∈ Act. The special action new represents the
creation of a fresh resource: this means that for each dynamically created resource
r, the event new(r) must precede any other α(r). 1 An event α(r) ∈ Ev abstracts
from accessing the resource r through the action α. We also have events the target
of which is a name n, n′, . . . ∈ Nam, to be bound by an outer ν. Since the name
binders are explicit in this calculus, we call its processes strongly bound, whose
abstract syntax is given in Def. 2.1.

Definition 2.1 Syntax of strongly bound processes

P,Q ::= ε empty process
h variable
α(ρ) event (ρ ∈ Res ∪ Nam)
νn.P resource binding
P ·Q sequential composition
P +Q choice
µh.P recursion

In a recursion µh.P , the free occurrences of h in P are bound by µ. In the
construct νn. P , the ν acts as a binder for the free occurrences of the name n in
P . The intended meaning is to keep track of the binding between n and a freshly
created resource. A process is closed when it has no free names and variables.

The behaviour of a strongly bound process is described by the set of sequential
traces (typically denoted by η, η′, . . . ∈ Ev∗) of its events. As usual, ε denotes
the empty trace, and εη = η = ηε. The trace semantics JP Kop of a closed, strongly
bound process P , is a function from finite set of resources to sets of traces (Def. 2.2).
We first introduce an auxiliary labelled transition relation P,R a−→ P ′,R′ (where
a ∈ Ev ∪ {ε} and R,R′ ⊂ Res). The set R in configurations accumulates the
resources created at run-time, so that no resource can be created twice, e.g.

(νn.new(n)) · (νn.new(n)), ∅ ε−−−−→ new(r0) · (νn.new(n)), {r0}
new(r0)−−−−−→ νn.new(n), {r0}
/−−−−→ new(r0), {r0}

1 We conjecture this is a decidable property, e.g. suitably adapting the techniques of [10] should enable us
to identify and discard those P that produce ill-formed traces where an α(r) comes before a new(r).

109

Bartoletti, Degano, Ferrari, Zunino

The labelled transition relation is then exploited in the definition of JP Kop, which
contains two kinds of traces. First, we include in JP Kop all the traces for terminating
executions, i.e. those leading to ε. Then, we add all the prefixes of all executions,
and mark these truncated traces with a trailing ! symbol. Here, we just let ! be a
distinguished event not in Ev. Including these η! prefixes in JP Kop is useful, since
they allow us to observe non-terminating computations.

Definition 2.2 Trace semantics of strongly bound processes

α(r), R α(r)−−→ ε, R∪ {r} νn. P, R ε−→ P{r/n}, R∪ {r} if r 6∈ R

ε · P, R ε−→ P, R P ·Q, R a−→ P ′ ·Q, R′ if P, R a−→ P ′, R′

P +Q, R ε−→ P, R P +Q, R ε−→ Q, R µh. P, R ε−→ P{µh. P/h}, R

The trace semantics JP Kop(R) is then defined as

JP Kop(R) = { η | P, R η−→ ε, R′ } ∪ { η! | P, R η−→ P ′, R′ }

Example 2.3 Consider the following strongly bound processes:

P0 = µh. α(r) · h P1 = µh. h · α(r) P2 = µh. νn. (ε+ α(n) · h)

Then, JP0Kop(∅) = α(r)∗!, i.e. P0 generates traces with an arbitrary, finite number
of α(r). Note that all the traces of P0 are non-terminating (as indicated by the !)
since there is no way to exit from the recursion. Instead, JP1Kop(∅) = {!}, i.e. P1

loops forever, without generating any events. The semantics of JP2Kop(∅) consists
of all the traces of the form α(r1) · · ·α(rk) or α(r1) · · ·α(rk)!, for all k ≥ 0 and
pairwise distinct resources ri. 2

The denotational semantics JP Ksθ of a strongly bound process P is given below
(Def. 2.5) as a function Y in a cpo Ds, which we define now. We first let D0 be
{X ⊆ Ev∗∪Ev∗! | ! ∈ X }, that is the cpo of sets X of traces such that ! ∈ X. Then
we let Dh be the cpo Pfin(Res) ⇀ D0 (where ⇀ denotes partiality). Finally, Ds is
the cpo (Nam→ Res)→ Dh Intuitively, JP Ksθ(χ)(R) contains all the possible traces
of P . The first argument χ ∈ Nam→ Res records the bindings between names and
resources. The second argument R ∈ Pfin(Res) is a finite set of resources which
indicates those already used, so to make them unavailable for future creations. As
usual, the parameter θ binds the free variables of P (in our case, to values in Dh).

Before giving the semantics, it is convenient to introduce some auxiliary defini-
tions that help in composing traces sequentially (see Def. 2.4 below).

The operator � ensures that all the events after a ! are discarded. For instance,
the process P = (µh. h) · α(r) will never fire the event α(r), because of the infinite
loop that precedes the event. The composition of the semantics of the first com-
ponent µh. h is { !}, while the semantics of α(r) is { ! , α(r), α(r) !}. Combining the
two semantics results in { !} � { ! , α(r), α(r) !} = { !}.

The operator � takes two semantics and combines their traces sequentially.
While doing that, it records the resources created, so to avoid that a resource is

110

Bartoletti, Degano, Ferrari, Zunino

generated twice. For instance, let P = (νn.new(n)) · (νn′.new(n′)). The traces of
the right-hand side νn′.new(n′) must not generate the same resources used in the
left-hand side νn.new(n), e.g. new(r0)new(r0) is not a possible trace of P .

The definition of � exploits the auxiliary operator R, that computes the set of
resources occurring in a trace η. Also, ↓∈ R(η) indicates that η is terminating, i.e.
it does not contain any !s.

Definition 2.4 Let X ∈ D0, and x ∈ Ev ∪ { !}. We define x�X and η �X as:

x�X =

{
{x η | η ∈ X } if x 6= !
{x} if x = !

(a1 · · · an)�X = a1 � · · · � an �X

Given Y0, Y1 ∈ Ds, their composition Y0 � Y1 is:

Y0 � Y1 = λχ,R.
⋃
{ η0 � Y1(χ)(R∪ R(η0)) | η0 ∈ Y0(χ)(R) }

where R(η) is defined inductively as follows:

R(ε) = {↓} R(η α(r)) = R(η) ∪ {r} if ! 6∈ η R(η !η′) = R(η) \ {↓}

Definition 2.5 Denotational semantics of strongly bound processes

JεKsθ = λχ,R. { ! , ε} JhKsθ = λχ,R. θ(h)(R)

Jα(ρ)Ksθ = λχ,R.

{
{ ! , α(ρ), α(ρ) !} if ρ = r

{ ! , α(χ(n)), α(χ(n)) !} if ρ = n
JP ·QKsθ = JP Ksθ � JQKsθ

Jνn. P Ksθ = λχ,R.
⋃
r 6∈R JP K

s
θ(χ{r/n})(R∪ {r}) JP +QKsθ = JP Ksθ t JQKsθ

Jµh.P Ksθ = λχ,R.
⋃
i≥0

(
λZ. λR̄. JP Ksθ{Z/h}(χ)(R̄)

)i(λR.{ !}) (R)

The semantics of an event α(r) comprises the possible “truncations” of {α(r)},
i.e. ! , α(r) ! and α(r) (notice that ! is always included in the semantics of all P ,
coherently with the definition of the trace semantics). The semantics of α(n) is
similar, but it looks in χ for the resource associated with n. The semantics of
νn. P joins the semantics of P , where the parameters R and χ are updated to
record the binding of n with r, for all the resources r not yet used in R. The
semantics of P · Q combines the semantics of P and Q with the operator �. The
semantics of P + Q is the least upper bound of the semantics of P and Q. The
semantics of a recursion µh. P is the least upper bound of f i(λR.{ !}), where f(Z) =
λR̄. JP Ksθ{Z/h}(χ)(R̄). Since f is continuous and λR.{ !} is the bottom element of
the cpo Dh, then f i(λR.{ !}) is an ω-chain, and its least upper bound is the least
fixed point of f .

The following theorem states that the denotational semantics of strongly bound
processes is fully abstract with respect to their operational semantics.

Theorem 2.6 (Full abstraction) Let R be a finite sets of resources, and let ∅ be
the empty mapping. Then, for all closed strongly bound processes P :

JP Kop(R) = JP Ks∅(∅)(R)

111

Bartoletti, Degano, Ferrari, Zunino

3 Weakly bound processes

In strongly bound processes, the ν-binders precisely define the scope of names.
However, classical equational theories [11] for these processes usually allow binders
to be floated out, towards the top-level, e.g. in P0 + νn. P1 = νn. P0 + P1, under
the usual conditions. Indeed, the binder can always be brought outside a context,
provided that 1) no recursion boundary is crossed, i.e. in µh. νn.P the binder cannot
be moved outside, and 2) no name in the context is captured. Because of this, it
is often convenient to define a normal form for processes, where all the binders are
placed at their top-most position, i.e. at the top-level or just under a recursion.
These are standard and well-known facts about process algebras.

One might wonder what information is actually carried by the presence of the
ν-binders. From an operational point of view, we can see them as the points where
resources are created. In our setting, this information is also carried by the new
events. Therefore, it is interesting to study whether, under this assumption, we can
neglect placing binders in our processes, and let the new events to define, at least
in some loose way, the scope of names.

To this purpose, we now introduce weakly bound processes, which have no
ν-binders (Def. 3.1). For instance, let p = new(n) ·α(n)+ new(m) ·α′(m). Here, the
event new(n) binds the name n, while new(m) binds m. We shall later on define a
semantics of weakly bound processes such that p is equivalent to the strongly bound
process (νn.new(n) · α(n)) + (νm.new(m) · α′(m)), as the intuition suggests.

While weakly bound processes may make our reasoning more agile, we must not
neglect that, unlike in the strongly bound case, weakly bound processes are possible
where names have no clear scope. E.g., in new(n) · (new(n) + ε) ·α(n) it is not clear
what binds the last occurrence of n. Roughly, these troublesome processes are those
that can be derived from a strongly bound process by neglecting to α-convert some
name while enlarging the scope of a ν-binder, yielding to unwanted name captures.
We shall return to this point in Sect. 4.

Definition 3.1 Syntax of weakly bound processes

p, q ::= ε empty process
h variable
α(ρ) event (ρ ∈ Res ∪ Nam)
new(n) resource creation
p · q sequential composition
p+ q choice
µh.p recursion

Free names in weakly bound processes have to be dealt with quite peculiarly,
because of the absence of ν-binders. Consider e.g. p = p′ · α(n). To tell whether
n is free in p we have to inspect p′. For example if p′ = new(n), we shall consider
n as non-free; instead, if p′ = ε, the name n is obviously free. Given p′, we define
which names are bound by p′, so to extend the scope of the names of p′ when it
occurs at the left of another process, as in p′ · p′′. Non-determinism complicates

112

Bartoletti, Degano, Ferrari, Zunino

matters: it might happen than a process p′ binds a name to a resource only in
some, but not all, of its execution, e.g. p′ = new(n) + ε. So, we define two sets
of names, the must-bound names bn2(p) and the may-bound names bn�(p), for the
names that are bound in every execution of p, and the names that are bound in
some execution of p, respectively (see Def. 3.2). So, if p′ = new(n) + ε, we have
bn2(p′) = ∅ and bn�(p′) = {n}. Note that the sets bn2(p′) and bn�(p′) can be seen
as static approximations for the actual run-time bindings created by the process p′.
Of course, bn2(p) ⊆ bn�(p). Note that no “weak” binding can escape a recursion,
as real ν-binders cannot cross recursive contexts. So, in (µh.new(n) · h + ε) · α(n)
the last n is free, and is unrelated to the new(n) event under the µh. Therefore, the
bound names (both must and may) of a recursion are empty.

Definition 3.2 Must-bound names bn2(p) and may-bound names bn�(p)

bn2(ε) = bn2(h) = ∅ bn2(α(ρ)) =

{
{n} if α = new and ρ = n

∅ otherwise

bn2(p · q) = bn2(p) ∪ bn2(q) bn2(p+ q) = bn2(p) ∩ bn2(q) bn2(µh. p) = ∅

bn�(p) =

{
bn2(p) if p = ε, h, α(ρ), µh. p′

bn�(p′) ∪ bn�(p′′) if p = p′ + p′′ or p = p′ · p′′

We can now define the free names fn(p) of a weakly bound process p. This is
mostly standard, except that must-bound names are checked to single out captured
names. The choice of using must-bound names instead of may-bound names is done
so that, e.g. in p = (new(n) + ε) · α(n) we consider n as free. This has the nice
property that, whenever fn(p) = ∅, in no execution of p we will attempt to fire an
event α(n) without a proper binding for n.

Definition 3.3 Free names fn(p)

fn(h) = ∅ fn(α(ρ)) =

{
{n} if ρ = n and α 6= new
∅ otherwise

fn(µh. p) = fn(p)

fn(ε) = ∅ fn(p · q) = fn(p) ∪ (fn(q) \ bn2(p)) fn(p+ q) = fn(p) ∪ fn(q)

We now define a denotational semantics of weakly bound processes. Unlike
in the case of strongly bound processes, where the result of the semantics was a
set of event traces, here we also need to keep track of the bindings generated by
the new events. We shall then use sets of pairs (η, χ) instead of sets of traces η.
Note that this difference – the extra χ – between the semantic domains for the
strongly/weakly bound processes is exactly the same difference between the classic
domains for programming languages with static/dynamic scoping.

As we did with strongly bound processes in Def. 2.4, we introduce the auxiliary
operators � and � to handle sequential composition.

113

Bartoletti, Degano, Ferrari, Zunino

The operator � merges two pairs (η, χ), so ensuring that all the events after a !
are discarded, as well as the bindings created after the !. For example, (η!, χ) �
(η′, χ′) = (η!, χ), discarding both η′ and χ′. Here we also use two cpos, D1 and
Dw, to play the role of D0 and Ds used for strongly bound processes. We let D1

be the cpo of sets X of pairs (η′, χ′) such that there exists a pair in X with η′ = !.
Formally, D1 is the cpo {X ⊆ (Ev∗ ∪ Ev∗ !)× (Nam→ Res) | ∃χ′. (! , χ′) ∈ X }.

Definition 3.4 Let a ∈ Ev ∪ { !}, X ∈ D1, (η, χ), (η′, χ′) ∈ X. We define � as:

(a, χ)� (η′, χ′) =

{
(a, χ) if a = !
(aη′, χ′) otherwise

(η, χ)� (η′, χ′) = (a1, χ)� · · · � (ak, χ)� (η′, χ′) if η = a1 · · · ak
(η, χ)�X = { (η, χ)� (η̄, χ̄) | (η̄, χ̄) ∈ X }

The operator � takes two semantics Y0 and Y1 and combines their traces se-
quentially. In Y0 � Y1 the bindings (i.e. the χ) generated by Y0 are passed to Y1, so
that e.g. new(n) · α(n) works as expected.

Definition 3.5 Let Dw = (Nam→ Res)→ Pfin(Res) ⇀ D1 be the cpo of functions
from functions from names to resources, to the finite subsets of Res to D1 (where
⇀ denotes partiality). Given Y0, Y1 ∈ Dw, their composition Y0 � Y1 is:

Y0 � Y1 = λχ,R.
⋃
{ (η0, χ0)� Y1(χ0)(R∪ R(η0)) | (η0, χ0) ∈ Y0(χ)(R) }

The denotational semantics JpKwθ of a weakly bound process p is defined as a
function Y ∈ Dw, where we assume that Y (χ)(R) is defined only if R ⊇ ran(χ).
The parameter θ is a mapping from the free variables h of p to Dh.

Definition 3.6 Denotational semantics of weakly bound processes

Below, we let setχI = { (η, χ) | η ∈ I }.

JεKwθ = λχ,R. setχ{ ! , ε} JhKwθ = λχ,R. setχθ(h)(R)

Jα(ρ)Kwθ = λχ,R.

setχ{ ! , α(ρ), α(ρ) !} if ρ = r

setχ{ ! , α(χ(n)), α(χ(n)) !} if ρ = n ∈ dom(χ)

{(! , χ)} ∪
⋃
r 6∈R setχ{r/n}{α(r), α(r) !} if ρ = n 6∈ dom(χ)

and α = new

Jp · qKwθ = JpKwθ � JqKwθ Jp+ qKwθ = JpKwθ t JqKwθ

Jµh.pKwθ = λχ,R. setχ
⋃
i≥0

(
λZ.λR̄. fst(JpKwθ{Z/h}(χ|dom(χ)\bn�(p))(R̄))

)i(λR.{ !}) (R)

The semantics above is similar to the one for strongly bound processes, so we
just comment on the differences. First, each trace η has now been bundled with
its generated bindings χ. Related to this, now the new(n) event creates the actual
binding, which augments the χ at hand. Note that we assume the operators ∪ and
t to be undefined when one of the arguments is undefined. This must hold also

114

Bartoletti, Degano, Ferrari, Zunino

for � and �, so making e.g. the semantics of (new(n) + ε) · α(n) undefined when
n 6∈ dom(χ), since in one branch α(n) is evaluated without a proper binding for n.

The semantics of recursion variables h is peculiar. First, note that we chose the
semantics parameter θ so that θ(h) is an element of Dh and not of Dw. This is
because, when recursion is involved, the bindings of names must not be propagated:
this is strictly related to the fact that ν-binders cannot cross a recursive context in
strongly bound processes. For example, in the strongly bound process µh. νn. P ·h·P ′
there is no way for the resource bound to n to be “passed” to the inner “call” to
h; similarly, if the inner “call” generates a binding, it cannot be “returned” so to
interfere with P ′. Of course, this would change if we allowed a more complex form of
recursion where h can take a resource as an argument. Returning to the semantics
of h, since θ(h) ∈ Dh needs no χ, then it suffices to pass it an R, and then augment
the returned set of traces with χ. This is accomplished by the setχ function.

The semantics of the recursion µh. p is quite similar to the one for strongly bound
processes. For the reasons explained above, we compute a fixed point over Dh and
not Dw. This means that we have to adapt the semantics of p, which is in Dw, to a
function in Dh. More concretely, we just need to provide χ to JpKw and ignore the
χ returned by it. The latter is done by a trivial left projection, the fst in the actual
formula. The χ we pass, instead, is the top-level χ – the one provided to the whole
recursive process – after the bindings which affect bn�(p) have been filtered out.
This filtering is needed to prevent name confusion e.g. in new(n) · (µh.new(n) · p),
where the outer n is unrelated to the inner one. Aside from this, the fixed point is
computed exactly as for the strongly bound processes, exploiting the continuity of
f(Z) = λR̄. fst(JpKwθ{Z/h}(χ

′)(R̄)).

4 Bindifying weakly bound processes

To make precise the scope of names in weakly bound processes, we shall translate
them into strongly bound processes, through the transformation bindify (Def. 4.3).
This transformation will insert the ν-binders at the right points, provided that the
introduced scopes of names do not interfere dangerously. We shall call well-bound
those weakly bound processes that can be safely translated into strongly bound
ones. To help the intuition, we shall first give some examples.

Example 4.1 Consider the weakly bound processes:

p1 = new(n) · new(n) · α(n) p2 = α(n) · new(n) p3 = new(n) + α(n)

p4 = (ε+ new(n)) · α(n) p5 = µh.new(n).h p6 = new(n) · (µh. (ε+ new(n) · h)) · α(n)

The processes p1, p2, p3, p4 are not well-bound. If p1 were such, its bindification
would either be νn.new(n)·(νn.new(n))·α(n) – where α is performed on the resource
generated by the outer ν-binder – or νn.new(n) · (νn.new(n) ·α(n)) – where α acts
on the resource of the inner binder. Because of this possible ambiguity, we treat p1

as not well-bound. The process p2 is not well-bound, too, because it would produce
an ill-formed trace α(r)new(r) where the event α(r) is fired before the event new(r)
that signals the creation of r. Similarly, the process p3 is not well-bound, because its
bindification would give rise to the ill-formed trace α(r). The process p4 is not well-
bound, because choosing the branch ε would lead to a similar situation. Observe

115

Bartoletti, Degano, Ferrari, Zunino

that the denotation of p1 contains the non-sense trace new(r)new(r)α(r), while the
semantics of p2, p3 and p4 are undefined, because � and t are strict. Finally, the
process p5 is well-bound: it loops over new(n), generating a fresh resource at each
iteration. Also, p6 is well-bound, because the µ-binder clearly separates the scope
of the outer new(n) from that of the inner one. 2

The following definition formalizes when a process is well-bound. The empty
process, variables and events are well-bound. A recursion is well-bound when its
body is such. A choice p + q is well-bound when both p and q are well-bound.
Additionally, we require that the may-bound names of p are disjoint from the free
names of q, and viceversa (e.g. new(n)+α(n) is not well-bound). A sequence p · q is
well-bound when both p and q are well-bound, and furthermore (i) the may-bound
names of q are disjoint from the names of p (e.g. α(n) · new(n) and new(n) · new(n)
are not well-bound), and (ii) the free names of q are either must-bound in p, or they
are not may-bound in p (e.g. (ε+ new(n)) · α(n) is not well-bound).

Definition 4.2 Well-bound processes

A weakly bound process p is well-bound when wb(p), defined inductively as:

wb(ε) = wb(h) = wb(α(ρ)) = true wb(µh. p) if wb(p)

wb(p+ q) if wb(p),wb(q), bn�(p) ∩ fn(q) = bn�(q) ∩ fn(p) = ∅

wb(p · q) if wb(p),wb(q), bn�(q) ∩ (bn�(p) ∪ fn(p)) = (bn�(p) \ bn2(p)) ∩ fn(q) = ∅

We now introduce the bindify transformation, which is defined on well-bound
processes only. The may-bound names are lifted to the leftmost position of the
bindified process, and they are placed within the scope of a ν-binder. In the case
of a recursion µh. p, the may-bound names of p are lifted to the leftmost position
within the recursion, i.e. they do not escape the scope of the µh.

Definition 4.3 Bindification

If wb(p), the bindification bindify(p) of p is a strongly bound process, defined as:

bindify(p) = ν bn�(p). β(p)

where the auxiliary operator β is defined inductively as follows:

β(ε) = ε β(α(ρ)) = α(ρ) β(p+ q) = β(p) + β(q)

β(h) = h β(µh. p) = µh. bindify(p) β(p · q) = β(p) · β(q)

Example 4.4 Recall from Sect. 1 the process p = new(n) · α(n) + new(m) · α(m).
It is easy to check that p is well-bound, and that its may-bound names are:

bn�(p) = bn�(new(n) · α(n)) ∪ bn�(new(m) · α(m)) = {n,m}

Then the bindification of p is the strongly bound process:

bindify(p) = νn.νm.(new(n) · α(n) + new(m) · α(m))

116

Bartoletti, Degano, Ferrari, Zunino

Example 4.5 Recall the process p5 = new(n) · (µh. (ε + new(n) · h)) · α(n) from
Ex. 4.1. It is easy to check that p5 is well-bound. Its may-bound names are:

bn�(p5) = bn�(new(n)) ∪ bn�(µh. (ε+ new(n) · h)) ∪ bn�(α(n)) = {n} ∪ ∅ = {n}

The bindification of p5 is then computed as follows:

bindify(p5) = νn. β
(
new(n) · (µh. (ε+ new(n) · h)) · α(n)

)
= νn.

(
β(new(n)) · µh. bindify(ε+ new(n) · h) · β(α(n))

)
= νn.new(n) · (µh. νn. β(ε+ new(n) · h)) · α(n)
= νn.new(n) · (µh. νn. (ε+ new(n) · h)) · α(n)

We now state the correctness of bindification (Theorem 4.6). The “strong” seman-
tics of bindify(p) contains exactly the traces of the “weak” semantics of p.

Theorem 4.6 For all closed, weakly bound processes p such that wb(p), JpKw∅ (∅)(∅)
is defined, and:

Jbindify(p)Ks∅(∅)(∅) = fst(JpKw∅ (∅)(∅))

5 Equational theories and trace inclusion

In this section we provide strongly bound and weakly bound processes with an
equational theory and a trace inclusion preorder. We shall state their correctness,
i.e. the equational theory preserves the set of traces, while the preorder preserves
their inclusion. Finally, we shall highlight some differences between the two calculi.

We first give in Def. 5.1 an equational theory of strongly bound processes.

Definition 5.1 An equational theory of strongly bound processes

The relation = over strongly bound processes is the least congruence including
α-conversion of names and variables such that:

P + P = P (P + P ′) + P ′′ = P + (P ′ + P ′′) P + P ′ = P ′ + P

(P · P ′) · P ′′ = P · (P ′ · P ′′) ε · P = P = P · ε

(P + P ′) · P ′′ = P · P ′′ + P ′ · P ′′ P · (P ′ + P ′′) = P · P ′ + P · P ′′

µh.µh′.P = µh′.µh.P µh.P = P{µh. P/h} νn.ε = ε

νn.νn′.P = νn′.νn.P νn.(P + P ′) = (νn.P) + P ′ if n 6∈ fn(P ′)

νn.(P · P ′) = P · (νn.P ′) if n 6∈ fn(P) νn.(P · P ′) = (νn.P) · P ′ if n 6∈ fn(P ′)

The operation + is associative, commutative and idempotent; · is associative,
has identity ε, and distributes over +. The binders µ and ν allow for α-conversion of
bound names and variables, and can be rearranged. A µh can be introduced/eliminated
when h does not occur free. A νn can be extruded when it does not bind a free
occurrence of n. A µh. P can be folded/unfolded as usual.

117

Bartoletti, Degano, Ferrari, Zunino

As expected, the equational theory above is not complete, e.g. JP Ks = JP ′Ks does
not imply P = P ′. E.g., µh. α(r) ·h cannot be equated to µh. α(r) ·α(r) ·h, yet they
have the same traces α(r)∗ ! . However, the equational theory is sound w.r.t. our
semantics, as established by the first item Theorem 5.3 below.

We then define a preorder P � Q betweeen strongly bound processes. The
preorder � includes equivalence, and it is closed under contexts. Also, a strongly
bound process P can be arbitrarily “weakened” to P +Q.

Definition 5.2 A trace inclusion preorder of strongly bound processes

The relation � over strongly bound processes is the least precongruence such that:

P � Q if P = Q P � P +Q

The following theorem states that the equational theory = and the preorder �
agree with the semantics of strongly bound processes.

Theorem 5.3 For all closed, strongly bound processes P and Q:

• if P = Q, then JP Ks∅ = JQKs∅.
• if P � Q then JP Ks∅(χ)(R) ⊆ JQKs∅(χ)(R), for all R and χ.

We now consider how to express an equational theory and a trace inclusion
preorder for weak binders, in the same spirit of Def. 5.1 and Def. 5.2. In spite of
their weaker structure, weakly bound processes still share many semantic-preserving
equational properties with strongly bound processes, as summarized in Def. 5.4.
Notably, the equations involving + and · are identical with respect to Def. 5.1.
The recursions µh can be rearranged, as before. Of course, here we do not have
ν-binders, so the α-conversion of bound names can not be done, in general. As an
important exception, we know that bound names inside a recursion can not escape,
so their scope is completely known. In this case, we allow for α-conversion. Note
that unfolding recursions is not allowed, otherwise we would have µh.new(n) · h ≈
new(n)·(µh.new(n)·h) ≈ new(n)·new(n)·(µh.new(n)·h), so causing name confusion
— indeed, the first two processes are well-bound, while the last one is not. As with
strong binders, the equational theory below is not complete, yet it is sound w.r.t. the
J−Kw semantics, as established by the first item of Theorem 5.7.

Definition 5.4 An equational theory of weakly bound processes

The relation ≈ over weakly bound processes is the least congruence including
α-conversion of variables such that:

p+ p ≈ p (p+ p′) + p′′ ≈ p+ (p′ + p′′) p+ p′ ≈ p′ + p ε · p ≈ p ≈ p · ε

(p · p′) · p′′ ≈ p · (p′ · p′′) (p+ p′) · p′′ ≈ p · p′′ + p′ · p′′ p · (p′ + p′′) ≈ p · p′ + p · p′′

µh.µh′.p ≈ µh′.µh.p µh.p ≈ µh.(p{m/n}) if n ∈ bn�(p) and m 6∈ p

118

Bartoletti, Degano, Ferrari, Zunino

Example 5.5 The equational theories shown above offer an opportunity to com-
pare strong ν-binders with weak new binders. Consider the following equation:
new(n) · p + new(n) · q ≈ new(n) · (p + q). This is a trivial fact, since it di-
rectly follows from the distributive law. Its equivalent for strongly bound processes,
(νn. P)+(νn.Q) = νn. (P +Q), appears instead to be non trivial. Indeed, although
Def. 5.1 comprises all the classic equations for ν-binders, the mentioned equation
can not be derived from them, since we can not identify the two binders. Yet, in
most process algebras, we expect the equation to be sound w.r.t. any reasonable
process equivalence relation. So, in this case weak binders offer a simpler view.

We shall now introduce a preorder p -N q on weakly bound processes. Here,
we use a set of names N as an index to the preorder relation. This index is needed
to avoid name confusion, as we shall see below. When p -N q holds, then the
semantics of p is included in that of q (second item of Theorem. 5.7).

Definition 5.6 A trace inclusion preorder of weakly bound processes

The relation -N over weakly bound processes is the least preorder such that:

p -∅ q if p ≈ q p -∅ p+ q p -N∪N ′ p′′ if p -N p′ and p′ -N ′ p′′

C(p) -N C(q) if p -N q and N ∩ (bn�(C) ∪ fn(C)) = ∅

pσ{µh. p/h} -ran(σ) µh. p if ran(σ) ∩ fn(p) = ∅

where C = p · • | • · p | p + • | • + p is a context, σ : Nam→Nam is an injective
function with dom(σ) = bn�(p), and pσ{µh. p/h} is capture-avoiding.

The preorder -N includes ≈-equivalence (Def. 5.4). A process p can be arbi-
trarily “weakened” to p + q. The relation is closed under contexts, provided that
the names in N are disjoint from those in the context. Note that, because of this
side condition, -N is not a precongruence, unlike � for strongly bound processes.
Folding/unfolding is possible, but in a weaker form than in Def. 5.1. To avoid name
confusion and preserve well-boundness, the unfolded names must be fresh. For in-
stance, if p = µh.new(n) · α(n) · h, then we shall have new(n′) · α(n′) · p -{n′} p.
The name n′ in -{n′} is needed to avoid name clashes. For instance, it prevents
from using the previous unfolding in the context C = • · α′(n′), since the extruded
new(n′) would bind the name n′ in α′(n′), as checked by the context rule above.
The side condition on the rule for folding/unfolding is needed to ensure that all
the processes smaller (w.r.t. -) than a well-bound process are well-bound (Theo-
rem 5.8). Omitting the disjointness condition between fn(p) and the range of the
substitution σ would lead to situations like α(n′) · new(n′) -{n′} µh. α(n′) · new(n),
where the right-hand side is well-bound, while the left-hand side is not. Substitu-
tions of names must be coherent with bindification, i.e. they must not affect names
that would be put under a ν-binder by β(−), e.g. (new(n) · µh.new(n)){m/n} =
new(m) · µh.new(n). Similarly, substitutions can trigger α-conversions to avoid
name captures, e.g. (µh.new(m) · α(n)){m/n} = µh.new(m′) · α(m).

We now formally state that our syntactic preorder agrees with the semantics

119

Bartoletti, Degano, Ferrari, Zunino

of weakly bound processes, as it yields trace inclusion. Note that trace inclusion
requires the two semantics to be defined. Otherwise we have new(n) · µh. α(n) -∅
new(n) · µh. (new(n) + ε) · α(n): when the branch ε is chosen in the right-hand
side, we find χ′(n) = χ|dom(χ)\{n}(n), so α(n) cannot be evaluated, and the whole
semantics is undefined (while the semantics of the left-hand side is always defined).
Note however that is q is well-bound, then also p is such (Theorem 5.8), and so by
Theorem 4.6 both the semantics are defined.
Theorem 5.7 For all closed, weakly bound processes p and q:

• if p ≈ q, then JpKw∅ = JqKw∅ .
• if p -N q and, then fst(JpKw∅ (χ)(R)) ⊆ fst(JqKw∅ (χ)(R)), for all R and χ such

that dom(χ) ∩N = ∅ and both the semantics are defined.

The projection fst in the statement above is necessary. Consider e.g. p =
new(n) -{n} µh. new(m) = q. Here, the semantics of p and q agree on the η

components, i.e. the truncations of new(r) with r 6∈ R, but p will augment χ with
the new binding {r/n}, unlike q which does not affect χ.

The next theorem guarantees that bindify is well-defined, i.e. it maps≈-equivalent
weakly bound processes to =-equivalent strongly bound processes. Moreover, pro-
cesses smaller (w.r.t. -N) than well-bound processes are well-bound.

Theorem 5.8 For all weakly bound processes p and q:

• if p ≈ q, then wb(p) if and only if wb(q).
• if p ≈ q and wb(p), then bindify(p) = bindify(q).
• if p -N q and wb(q), then wb(p).

6 Conclusions

We have investigated weak binders – a construct for fresh name generation – as
an alternative for ν-binders in nominal calculi. Weak binders allow for a looser
reasoning, while still admitting a trace-preserving translation into strong binders.
However, this comes at a cost: often, useful properties, e.g. trace inclusion (Th. 5.7),
require more side conditions to be checked for ensuring sanity. Also, α-conversion
of names can only be applied inside µ-binders. This is possible through the last rule
of the equational theory in Def. 5.4. An alternative would be to always consider
weakly bound processes modulo α-conversion within the µ-binders, at the cost of
making some proofs (e.g. those that do not depend on ≈) more complex. A further
downside of weak binders is that compositionality is reduced, since e.g. wb(p) and
wb(q) do not automatically imply wb(p · q) which – if needed – must be established
by exploiting further assumptions on the names of p and q. Future work would
address the use of weak binders in other process calculi. Indeed, we expect that
weak binders enjoy stronger properties in calculi without sequential composition
(e.g. CCS [11]). Moreover, studying some relaxed variants of well-boundness could
improve the applicability of weak binders.

In our experiments with weak binders, we also found they sometimes lead to
intricate proofs, since particular care must be exercised with corner cases. For in-
stance, handling recursion in an operational semantics for weakly bound processes

120

Bartoletti, Degano, Ferrari, Zunino

seems to be quite complex. Indeed, näıve unfolding causes name confusion, so one
has to resort to either renaming all bound names so that they are indeed globally
fresh, or to record the “call frames” (entering/leaving the body of a recursion) in
a stack. Since we need to keep track of this, run-time configurations become more
complex, and we found our operational semantics (not presented in this paper) to
be too inconvenient to be used in proofs. Even when using the denotational seman-
tics (Def. 3.6), we felt that writing inductive statements for weak binders required
more trial-and-error steps, w.r.t. strong binders. However, in some occasions weak
binders may become a more agile tool. For instance, they can be exploited to im-
plement a type and effect inference algorithm for a calculus with side effects and
explicit name binders (like [1]), on top of an existing algorithm for a calculus without
binders. Each time a ν-binder is encountered, a fresh name is generated, similarly
to fresh type variables in Hindley-Milner type inference. After solving the obtained
type and effect constraints through unification, the resulting effect is bindified. Of
course, this is not always possible, e.g. when the effect is not well-bound. Possible
counter-measures consist in suitably extending let-polymorphism to ν-binders.

Related work. A number of formal techniques have been developed to handle bind-
ing and freshness of names. The permutation model of sets introduced by Fraenkel-
Mostowski has led to an elegant and powerful mathematical theory of naming [8].
The key observation of this approach is that α-conversion, binding and freshness can
be defined through name permutations (or swappings). For instance, the freshness
axiom for a name of a computational entity (i.e. an object, a process, a context,
etc.) is expressed by saying that the fresh name does not belong to the support of
the computational entity. Notably, in the permutation model the support of com-
putational entities is finite. This mathematical theory has been used to model early
and late semantics of the π-calculus [9]. Also, it has driven the design of a func-
tional language, FreshML [20], which includes primitive mechanisms for handling
fresh bindable names. In FreshML freshness is managed by a gensym() primitive
to dynamically generate names, and a primitive for permuting names. Our notion
of weakly bound processes exploits the gensym() primitive without resorting to
α-conversion. Indeed, the bindify trasformation singles out the names in the finite
support of a weakly bound process. A monadic denotational semantics for FreshML
has been used to handle freshness through a continuation monad on FM-sets [19].
This semantics allows for translating the usual domain-theoretic results in the con-
text of FM-sets, and to use them to prove freshness-related properties. There is
also a cost associated to α-converting names [7,15] which could be reduced e.g. by
compiling strong binders into weak binders.

The λν-calculus presented in [16] extends the pure λ-calculus with names. In
contrast to λ-bound variables, nothing can be substituted for a name, yet names can
be tested for equality. Reduction in λν is confluent, and it allows for deterministic
evaluation. Furthermore, all the observational equivalences that hold in the pure λ-
calculus still hold in λν. This has the practical consequence that all the equational
techniques for transforming and verifying pure functional programs are also appli-
cable to programs with local names. Nominal techniques have been implicitly used
for reasoning about the semantics of functional languages with local state in [17],
to prove when two functional programs are equivalent in every evaluation context.

121

Bartoletti, Degano, Ferrari, Zunino

Binding and freshness of names have been a main concern in process calculi.
History-Dependent automata [13,14] provide an automata-based model where states
are equipped with name permutations to manage freshness and garbage collections
of names. They automatically manage the creation and deallocation of names, while
allowing for a compact representation of the system behaviour, by collapsing the
states that only differ for the renaming of local names. The π-calculus is extended
in [4] with an operational model where names are localized to their owners; each
sequential process has its logical space on names and a local manager generates
fresh names whenever necessary.

References

[1] Bartoletti, M., P. Degano, G. L. Ferrari and R. Zunino, Types and effects for resource usage analysis,
in: Foundations of Software Science and Computation Structures (FOSSACS), 2007.

[2] Bartoletti, M., P. Degano, G. L. Ferrari and R. Zunino, Hard life with weak binders, Technical Report
TR-08-13, Dip. Informatica, Univ. Pisa (2008).

[3] Bergstra, J. A. and J. W. Klop, Algebra of communicating processes with abstraction, Theoretical
Computer Science 37 (1985), pp. 77–121.

[4] Bodei, C., P. Degano and C. Priami, Names of the π calculus agents handled locally, Theoretical
Computer Science 253 (2001), pp. 155–184.

[5] Bravetti, M. and G. Zavattaro, Towards a unifying theory for choreography conformance and contract
compliance, in: Software Composition, 2007.

[6] Castagna, G., N. Gesbert and L. Padovani, A theory of contracts for web services, in: ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), 2008.

[7] Fernández, M., I. Mackie and F.-R. Sinot, Closed reduction: explicit substitutions without α-conversion,
Math. Structures Comput. Sci. 15 (2005), pp. 343–381.

[8] Gabbay, M. and A. M. Pitts, A new approach to abstract syntax with variable binding, Formal Asp.
Comput. 13 (2002), pp. 341–363.

[9] Gabbay, M. J., The pi-calculus in FM, in: F. Kamareddine, editor, Thirty-five years of Automath,
Applied Logic Series 28, Kluwer, 2003 pp. 247–269.

[10] Igarashi, A. and N. Kobayashi, Type reconstruction for linear -calculus with i/o subtyping, Inf. Comput.
161 (2000), pp. 1–44.

[11] Milner, R., “Communication and concurrency,” Prentice-Hall, Inc., 1989.

[12] Milner, R., J. Parrow and D. Walker, A Calculus of Mobile Processes, I and II, Information and
Computation 100 (1992), pp. 1–40,41–77.

[13] Montanari, U. and M. Pistore, An introduction to history dependent automata, Electr. Notes Theor.
Comput. Sci. 10 (1997).

[14] Montanari, U. and M. Pistore, Structured coalgebras and minimal hd-automata for the π-calculus,
Theor. Comput. Sci. 340 (2005), pp. 539–576.

[15] Norrish, M. and R. Vestergaard, Proof pearl: De bruijn terms really do work, in: TPHOLs, 2007, pp.
207–222.

[16] Odersky, M., A functional theory of local names, in: ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 1994.

[17] Pitts, A. M. and I. D. B. Stark, Operational reasoning for functions with local state, Higher order
operational techniques in semantics (1998), pp. 227–274.

[18] Sangiorgi, D. and D. Walker, “The π-Calculus: a Theory of Mobile Processes,” Cambridge University
Press, 2002.

[19] Shinwell, M. R. and A. M. Pitts, On a monadic semantics for freshness, Theoretical Computer Science
342 (2005), pp. 28–55.

[20] Shinwell, M. R., A. M. Pitts and M. Gabbay, FreshML: programming with binders made simple, in:
International Conference on Functional Programming (ICFP), 2003.

122

