
On Encoding the π-calculus in Higher-Order

Calculi

Mikkel Bundgaard, Jens Chr. Godskesen, and

Thomas Hildebrandt

IT University Technical Report Series TR-2008-106

ISSN 1600–6100 March 2008

Copyright c© 2008, Mikkel Bundgaard, Jens Chr. Godskesen, and

Thomas Hildebrandt

IT University of Copenhagen

All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-165-6

Copies may be obtained by contacting:

IT University of Copenhagen

Rued Langgaards Vej 7

DK-2300 Copenhagen S

Denmark

Telephone: +45 72 18 50 00

Telefax: +45 72 18 50 01

Web www.itu.dk

On Encoding the π-calculus in Higher-Order

Calculi

Mikkel Bundgaard and Thomas Hildebrandt

{mikkelbu, hilde}itu.dk

The Programming, Logic, and Semantics group

IT University of Copenhagen

Jens Chr. Godskesen

jcg@itu.dk

The Computational Logic and Algorithms group

IT University of Copenhagen

Abstract

The connection between first-order calculi and higher-order calculi
have been examined in many setting within the area of process calculi. In
this paper we examine two existing encodings of the π-calculus in higher-
order calculi: the encoding in HOπ-calculus by Sangiorgi and Walker and
the encoding in Plain CHOCS by Thomsen. We propose a new encod-
ing of the synchronous π-calculus in the calculus of Higher-Order Mo-
bile Embedded Resources (Homer) inspired by the aforementioned en-
codings. Homer is a pure higher-order calculus with mobile processes in
nested locations, defined as a simple, conservative extension of the core
process-passing subset of Thomsen’s Plain CHOCS. Our encoding demon-
strates that non-linear higher-order process-passing together with mobile
resources in, possibly local, named locations are sufficient to express π-
calculus name-passing.

Introduction

The π-calculus [MPW92, Mil99] is, by most people, considered the classic pro-
cess calculus for modelling mobile systems. Its most prominent features, com-
pared to its predecessor CCS, are the communication of names as expressed by
the reduction rule

n(m) . P | n〈o〉 . Q →π {o/m}P | Q ,

where the name o is communicated along the name n, and the creation of local
names with static scope. Combined these concepts provide the π-calculus with

1

most of its expressive power1. Notably, by representing the location of a process
by its links, the ability to dynamically change the communication links between
processes makes it possible to model mobile computing processes.

This account of mobility has been very successful for a decade, but it has its
limitations. Recently, a number of calculi have been proposed, e.g. the Ambient
calculus [CG00] and the Seal calculus [CZN02], with an explicit representation of
mobile computing resources in nested locations which is not easy to model in the
π-calculus. Many of the proposed calculi include the name-passing capability of
the π-calculus as well, which increases the complexity of the calculi. A natural
question is if name-passing can be expressed using mobile computing resources
in nested locations alone.

In this paper we present an encoding of the synchronous π-calculus, and thus
name-passing, in a pure higher-order calculus with nested locations, obtained as
a simple, conservative extension of the core process-passing subset of Thomsen’s
Plain CHOCS [Tho93]. Thomsen demonstrated that the π-calculus could be
encoded in Plain CHOCS by making crucial use of explicit name substitution
to encode the dynamic linking. The calculus used in the present paper is the
calculus of Higher-Order Mobile Embedded Resources (Homer) introduced in
[HGB04] and presented using type annotations as in [BH06, GH05, BHG07].
The Homer calculus does not have explicit name substitution, thus the encoding
of [Tho93] cannot be directly applied in Homer, but the encoding presented in
this paper has essentially the same structure as the encoding of Thomsen.

Homer introduce mobile computing resources in, possibly local, named lo-
cations, and our encoding demonstrates that this, together with higher-order
process-passing is sufficient to express π-calculus name-passing without relying
on explicit name substitution. Instead the encoding presented in this paper
depends on the ability to represent abstractions and applications in Homer.
The encoding uses a continuation-passing style to give an elegant encoding of
synchronous communication.

To briefly recall, mobility of processes in Plain CHOCS is introduced by
replacing the name-passing of the π-calculus with process-passing. We will rep-
resent this kind of interaction with the prefixes n〈q〉 (send) and n(x) (receive),
respectively. Here x is a process variable for which the received process is sub-
stituted, as expressed formally by the reaction rule

n〈q〉 . p1 ‖ n(x) . p2 ց p1 ‖ p2[q/x] . (1)

As usual, there may be any number of occurrences of x in p2 meaning that
processes may both be discarded and copied, making Plain CHOCS a non-linear
higher-order calculus. However, as also remarked by Thomsen, the process q
cannot start computing before it is moved, and once it has started computing,
it cannot be moved again. This is known as code mobility or weak mobility,
as opposed to process mobility or strong mobility, where processes may move
during their computation.

1In [San96] Sangiorgi examines the expressivity of πI, a subcalculus of the π-calculus in
which only private names may be communicated, and he comes to the conclusion that the
expressive power of πI is close to that of the full π-calculus.

2

In Homer strongly mobile computing resources in nested named locations
are introduced by allowing an additional kind of interaction, given by two new
complementary prefixes n[q] (resource) and n(x) (take). The process n[q].p1 de-
notes a resource q residing at the location (or address) n which may be moved or
taken by the complementary prefix, n(x).p2. Just as for the previous interaction
the synchronisation is expressed by the reaction

n[q] . p1 ‖ n(x) . p2 ց p1 ‖ p2[q/x] . (2)

There are two important differences between the two types of interactions, First,
in n[q], but not in n〈q〉, the resource q may perform internal computations, i.e.

q ց q′ implies n[q] . p1 ց n[q′] . p1 .

The encoding presented in the this paper, however, do not utilise that resources
may perform internal computations. Secondly, the resource q in n[q] is able
to interact with processes outside its location by allowing resources to be sent
down to and taken up from q. In other words, the state of q may be modified by
processes outside the location n. We introduce this kind of interaction, as in the
Mobile Resources (MR) calculus [GHS02], by allowing sequences as addresses
in the downward prefixes take and send. For instance, using the sequence n1n2

in the address of the take prefix, a resource q may be taken from the address n2

in a resource running at address n1, as in

n1[n2[q] . q′ ‖ q′′] . p1 ‖ n1n2(x) . p2 ց n1[q
′ ‖ q′′] . p1 ‖ p2[q/x] . (3)

Dually, using the sequence n1n2 in the send prefix, a resource q may be sent to
address n2 in a resource running at address n1 by

n1n2〈q〉 . p1 ‖ n1[n2(x) . p′2 ‖ p′′2] . p2 ց p1 ‖ n1[p
′
2[q/x] ‖ p′′2] . p2 . (4)

We allow sequences of names in addresses of the receive and resource prefixes
as well. This permits the physical nested structure of the address space to be
different from the abstract structure

n1n2〈q〉 . p1 ‖ n1n2(x) . p2 ց p1 ‖ p2[q/x] .

To summarise, the two dual kinds of process movement allow us to express
mobile resources in a nested location structure that may be moved (and copied)
locally or upwards, and to send passive resources that may be received (and
copied) by a local process or a sub-resource.

The interaction presented above is the only kind of interaction we need for
the results presented in this paper. The only other feature is that of local names
as found in the π-calculus and Plain CHOCS. We let (n)p denote a process p in
which the name n is local.

To handle the problems of local names and non-linear process passing we
add type annotations, a set of names, to resource and send prefixes as in
[BH06, GH05, BHG07], written n[r : ñ] and n〈r : ñ〉. We use the type an-
notations instead of the free name operator used in [HGB04]. Intuitively, the

3

type annotation ñ in n[r : ñ] says that we consider the process r to have ñ as
the set of allocated names, assuming that ñ ⊇ fn(r). We will make this formal
using a type system. Besides the type annotations we only consider relations
relating processes with the same type.

Related Work

In previous works, we presented an encoding of the π-calculus in Homer [BHG05,
BHG06] utilising an intermediate π-calculus with explicit substitutions, which
used a global environment to record all substitutions. Like the current encod-
ing, the encoding depended on our ability to represent names as processes, but
contrary to the current encoding we used indirection to encode the dynamic
name-binding. We obtained indirection by placing the encoding of a name in a
placeholder location. Concretely, we used an additional set of names N ′ which
are in a one-to-one mapping with N , the set of names in the π-calculus. Hence
the names in N ′ only occur in the encoding and are responsible for the ad-
dresses of placeholder locations. We kept the encoding of a name n (or more
precisely, its image under the substitution) as a resource at the address n′. For
instance to represent that the name m was substituted for the name n we used
the location n′ to hold the encoding of m, n′[JmK]. In this way we encoded
the dynamic name-binding of the π-calculus, as we accessed the encoding of the
name n through the location n′ and therefore received JmK, mimicking that the
name m was substituted for the name n.

The encoding presented in this paper is more direct, in the sense that we do
not use an intermediate π-calculus that records the substitutions, instead we use
the ability to represent abstractions and applications in Homer, and we perform
the substitution in the encoding, mimicking the actual synchronisation.

Zimmer presented in [Zim04] an encoding of the synchronous π-calculus into
a restricted Ambient calculus containing only the mobility primitives and the
hierarchical structure of the ambients, and therefore neither communication nor
name substitution. To this end Zimmer designed an intermediate calculus πesc

(π-calculus with Explicit Substitutions and Channels).
The connection between first-order and higher-order calculi has been ex-

amined in several contexts, most notably in [San92], where Sangiorgi shows
how higher-order π-calculus, containing higher-order communication primitives,
can be represented in first-order π-calculus. However the representability of π-
calculus in higher-order π-calculus is not examined in [San92]. In Section 2.2 we
present the encoding of π-calculus in HOπ by Sangiorgi and Walker presented
in [SW01].

Sangiorgi notes in [San96] that the expressive power of Plain CHOCS (with-
out relabelling) is comparable to that of CCS. The addition of locations, active
process passing, and address paths to obtain the Homer calculus, thus adds
expressive power to the calculus, since we are able to encode the synchronous
π-calculus. We leave it for future investigation to examine the expressive power
of Homer in more detail.

In [CM03] Carbone and Maffeis examines the expressive power of a π-calculus

4

with polyadic synchronisation, which is a generalisation of the communication
mechanism of the π-calculus that allows channel names to be composite, like
the addresses in Homer. For instance they allow reactions like the following

x · y(z) . P | x · y〈w〉 . Q →π {w/z}P | Q ,

where x · y is a vector of the names x and y. They show that the expressive
power of a π-calculus with polyadic synchronisation depends on the degree of
synchronisation. Compared to addresses in Homer they have no notion of loca-
tions as primitive in the calculi, and hence they do not allow for the possibility
to break up an address in components, one part matching the location hierarchy
and on part matching the actual prefix, as illustrated in (3) and (4) above. They
show that the degree of synchronisation of a language increases its expressive
power by means of a separation result in the style of Palamidessi’s result for
mixed choice.

Outline

In Section 1 we present the syntax and reaction semantics of the monadic syn-
chronous π-calculus. We present the encodings of Thomsen [Tho93] and of San-
giorgi and Walker in Section 2. In Section 3 we present the syntax and reaction
semantics of Homer. We present the encoding and some examples in Section 4,
and we prove the operational correspondence between π-calculus processes and
their encoding in Homer.

1 The Pi-calculus

We begin by presenting the monadic synchronous π-calculus without summa-
tions. We present its syntax, structural congruence relation, and the reaction
relation. For a much more thorough introduction to and description of the
π-calculus, see e.g. [MPW92, Mil99, SW01].

We will in this paper only consider a π-calculus without replication in order
to make the presentation of the encoding and, in particular, the proof of the
encoding succinct. But since we can encode general recursion in Homer and
thereby replication, we can also encode the replication operator. Even though
some of the process constructors of HOπ, Plain CHOCS, and Homer will con-
flict with the constructors of the π-calculus, we will nonetheless use the same
symbols, since any ambiguity can easily be resolved from the context. We let N
denote an infinite set of names and let m, n range over N . The set Pπ of process
expressions is then defined by the grammar in Table 1.

We consider π-calculus terms up to α-conversion, let Pπ/α denote the set
of α-equivalence classes of Pπ, and define structural congruence ≡π in the π-
calculus as the least congruence on Pπ/α satisfying the rules in Table 2.

We define the reaction relation →π in terms of evaluation contexts

Eπ ::= (−)
∣

∣ Eπ | P
∣

∣ P | Eπ

∣

∣ (νn)Eπ , for P ∈ Pπ.

5

P, Q ::= 0 inactive process
∣

∣ P | Q parallel composition
∣

∣ (νn)P restriction
∣

∣ n〈m〉 . P output m along n
∣

∣ n(m) . P receive along n and bind it to m

Table 1: The π-calculus

E1. P | 0 ≡π P E2. (νn)0 ≡π 0

E3. P | Q ≡π Q | P E4. (νn)(νm)P ≡π (νm)(νn)P

E5. (P | P ′) | P ′′ ≡π P | (P ′ | P ′′)

E6. (νn)P | Q ≡π (νn)(P | Q), if n 6∈ fn(Q)

Table 2: Structural congruence

The reaction relation →π is then the least binary relation over Pπ/α satisfying
the following rule and closed under all evaluation contexts Eπ and structural
congruence.

(React)
n(m) . P | n〈m′〉 . Q →π {m′/m}P | Q

As usual, we let {n/m}P denote the process P with all free occurrences of m
replaced by n, using α-conversion to avoid that n becomes bound in P .

2 Existing Encodings

In this section we briefly review the encodings of Thomsen and of Sangiorgi and
Walker. We will not present the formal semantics of neither Plain CHOCS nor
HOπ and refer the reader to [Tho93] and [SW01], respectively.

2.1 Thomsen’s Encoding

Thomsen demonstrated that the recursion and the name-passing of the π-
calculus can be encoded in Plain CHOCS [Tho93] by passing wires instead of
names. An a-wire representing the π-calculus name a is defined as

i? . a?x . c!x . nil + o? . c?x . a!x . nil ,

6

where i and o are used to indicate whether the wire is used for input or output,
and c is used as an auxiliary forwarder. It is assumed that the names i, o, and
c are distinct names not used in the encoded processes. We will let awire denote
the process representing a a-wire in the encoding.

Thomsen used an encoding scheme in two levels:

• a structurally defined encoding, J K1, translating free names and names
bound by an input prefix into process variables, and names bound by
restriction into wires, and

• on top-level, J K2, an instantiation of the process variables, representing
free π-calculus names, with wires.

The most complex part of the structurally defined encoding is the encoding
of prefixes defined as

Jx(y) . P K1 =
(

x[c 7→ c′][i 7→ i′][o 7→ o′] | i′! . c′?y . JP K1
)

\c′\i′\o′

Jx〈y〉 . P K1 =
(

x[c 7→ c′][i 7→ i′][o 7→ o′] | o′! . c′!y . JP K1
)

\c′\i′\o′ ,

where (x[c 7→ c′][i 7→ i′][o 7→ o′] | . . .)\c′\i′\o′ uses an explicit substitution
[c 7→ c′][i 7→ i′][o 7→ o′] to localise the wire substituted for x. This localisation
is essential for the encoding, since the main problem of encoding a first-order
calculi, like the π-calculus, is dynamic linking (the name substitution). The
encoding presented in Section 4 differs from the encoding by Thomsen, since
Homer does not include the explicit name substitution of Plain CHOCS. Instead
we obtain dynamic linking from the possibility to represent abstractions and
applications in Homer. Furthermore, Homer does not include external choice,
but we can encode this using local, named locations.

For the encoding of restriction, (νx)P , Thomsen encode the process under
the restriction, substitute a fresh wire awire for the restricted name, and then
use restriction of Plain CHOCS to restrict the wire

J(νx)P K1 = (JP K1[a
wire/x]) \ a , where a 6∈ fn(P).

The encoding is a homomorphism on the remaining constructs: the inactive
process, τ -prefix, choice, and parallel composition.

As mentioned above, on top-level Thomsen instantiate the process variables,
representing free names of the π-calculus process, with wires.

JP K2 = (. . . (JP K1[a
wire
1 /x1]) . . .)[awire

n /xn] ,

where fv (JP K1) = {x1, . . . , xn} and a1, . . . , an are allocated by some 1− 1 map-
ping between V (the set of variables of Plain CHOCS) and N , usually established
by the 1 − 1 mapping between fn(P) and fv (JP K1).

Example 2.1. Consider the π-calculus process

a〈b〉 . b(d) . d〈d〉 | a(x) . x〈c〉

7

which is structurally translated into the following Plain CHOCS process

(

a[c 7→ c′][i 7→ i′][o 7→ o′] | o′! . c′!b . Jb(d) . d〈d〉K1
)

\c′\i′\o′ |
(

a[c 7→ c′][i 7→ i′][o 7→ o′] | i′! . c′?x . Jx〈c〉K1
)

\c′\i′\o′

and with the following top-level instantiation

[awire/a][bwire/b][cwire/c] .

So we end up with a Plain CHOCS process, which can make the following
reactions, letting →C denote the reaction relation in Plain CHOCS

(

i′? . a?x . c′!x + o′? . c′?x . a!x | o′! . c′!bwire . Jb(d) . d〈d〉K1[bwire/b]
)

\c′\i′\o′ |
(

i′? . a?x . c′!x + o′? . c′?x . a!x | i′! . c′?x . Jx〈c〉K1[cwire/c]
)

\c′\i′\o′ →C
2

(

a!bwire | Jb(d) . d〈d〉K1[bwire/b]
)

|
(

a?x . c′!x | c′?x . Jx〈c〉K1[cwire/c]
)

\c′ →C
2

Jb(d) . d〈d〉K1[bwire/b] | Jx〈c〉K1[cwire/c][bwire/x] →C
3

(

b?x . c′!x | c′?d . Jd〈d〉K1
)

\c′ | b!cwire →C
2 Jd〈d〉K1[cwire/d] .

Thomsen conjectures that strong ground bisimilar processes are translated
to Plain CHOCS processes that are related by a suitable formulation of weak
higher order applicative bisimulation. Thomsen also notes that for the opposite
direction the implication does not hold, since the translation may introduce
non-determinism that did not appear in the original process.

2.2 Sangiorgi and Walker’s Encoding

In section 13.3 of [SW01] Sangiorgi and Walker give an encoding of the asyn-
chronous localised π-calculus (ALπ) in the asynchronous higher-order π-calculus
(AHOπ). Localised means that only output-capabilities of names can be com-
municated. Both ALπ and AHOπ are typed and the encoding depends on the
typing of the ALπ process. For clarity we have omitted most of the types in
this presentation.

Intuitively the encoding works by sending an abstraction instead of a name.
For instance, consider the example where a process sends a name b to some
receiving process p, which can then only use b to send along. This is encoded
by sending an abstraction (z) . b〈z〉 which, when applied to a value v, sends v
along b.

Example 2.2. Consider the ALπ-process

a〈b〉 | a(x) . x〈c〉 .

The process is translated into the following AHOπ-process

a〈(y) . b〈y〉〉 | a(x) . x⌊(z) . c〈z〉⌋ ,

8

where x⌊(z) . c〈z〉⌋ is the application between the abstraction, to be substituted
for x, and the value (z) . c〈z〉. This process can then react twice to become the
encoding of the ALπ-process b〈c〉

a〈(y) . b〈y〉〉 | a(x).x⌊(z) . c〈z〉⌋ →HOπ ((y) . b〈y〉)⌊(z) . c〈z〉⌋ →HOπ b〈(z) . c〈z〉〉.

In the translation Sangiorgi and Walker — among other — uses the type
information to distinguish free names (and names bound by restriction) from
names bound by input prefix. Below we present the most interesting parts of
the encoding: the encoding of values (i.e. the entities to be communicated) and
the encoding of processes2.

Translation of values

JvKΓ =

{

(z) . v〈z〉 if Γ(v) ∼type #T , for some T

(z) . v⌊z : JT K⌋ if Γ(v) ∼type oT

Translation of processes (only the cases for input and output)

Jx(y) . P KΓ = x(y) . JP KΓ,y:T if Γ(x) ∼type #T

Jx〈v〉KΓ =

{

x〈JvKΓ〉 if Γ(x) ∼type #T , for some T

x⌊JvKΓ : JT K⌋ if Γ(x) ∼type oT

In both the translations we utilise the type information. Free names (and
names bound by restriction) will have a connection type, written #T , meaning
that we can send names of type T along the name. On the other hand names
bound by input prefix will only have the output capability type, written oT .

In the translation of values we have two cases, depending on the name is
bound by input prefix or not. In both cases we translate the value into an
abstraction, and if the name is bound by input prefix we furthermore use an
application to handle the name-binding as described above. In the translation
of processes we again use the type information. For the input prefix we note
that we can only input along a name which is not bound by input prefix. For
the output prefix we have two cases: if the name is not bound by input prefix
we just use the name and translate the value; if the name is bound by input
prefix we need to introduce an application, as described above.

The ability to send a process to a resource in a local, named location in
Homer is closely related to the ability to apply an abstraction to a process in
HOπ. That is, applying a process P to an abstraction A, i.e. A⌊P ⌋ in HOπ, can
be represented in Homer by

(n)(n[m(x) . A] ‖ nm〈P 〉) .

In the expression we restrict the name n, and place the process m(x) . A inside
a location named n. The process can input along the name m and bind the

2We have simplified the translation a bit and ignored e.g. unit types.

9

received process to x in the process A. In parallel we have a process which can
send P along the composite name nm. So P will end up being substituted for
x in A. The localisation of the name n ensures that the only communication
with the process inside the location n is performed by the process nm〈P 〉. But
note that the restriction of n do not (necessarily) bind any names in process
residing inside the location n. So the process residing inside location n could
have been received from another process, and we still could have localised the
communication. Thus obtaining the same effect as a using an abstraction and
application, but with added functionality that our applications can have con-
tinuations as apposed to traditional applications in i.e. the π-calculus. We can
represent the explicit name substitution of Plain CHOCS in a similar manner
by using a local, named location. From the representation of abstractions and
applications we can in a straightforward manner translate the encoding from
ALπ to AHOπ to an encoding from ALπ to Homer.

It is noted in [SW01] that the encoding can be extended to the synchronous
π-calculus, but that it increases the complexity due to the lack of continuations
of applications. The extension to synchronous communication as well as a vari-
ant, where we only allow for the communication of input-capabilities (and thus
treat dynamic binding), are left as so-called “more difficult” exercises. This is
exactly the difficult parts of encoding of the π-calculus into a higher-order cal-
culus like Homer. Note that a translation of the full π-calculus, thus combining
the original encoding and the two exercises, is not addressed in [SW01].

2.3 Comparing the Encodings

Common for all encodings of the first-order π-calculus into a higher-order cal-
culus is the representation of a name using a process (or using a parametrised
process, i.e. an abstraction), as the only form of communication is the com-
munication of a process (or abstraction). In most cases the translation is a
homomorphism on several of the constructs (i.e. the inactive process, parallel
composition etc.), and the complexity of the translation is in encoding of the
prefixes. In Plain CHOCS the complexity is due to the usage of wires represent-
ing names, and in AHOπ the complexity is due to the usage of type information
in the translation to handle whether a name is bound by an input prefix.

The two encodings presented in this section also differ in other aspects. In the
encoding in Plain CHOCS we use explicit name substitutions and restrictions
compared to the abstractions and applications in AHOπ to localise communica-
tion between the encoding of a prefix and the processes representing the names
used in the prefix.

A obvious difference between the two encodings is that Thomsen gives an
encoding of the full π-calculus whereas Sangiorgi and Walker only consider a
subset. On the other hand, Sangiorgi and Walker prove that their encoding
is fully abstract with respect to barbed bisimulation and sound with respect
to barbed congruence, whereas Thomsen only conjectures that strong ground
bisimilar processes are translated to Plain CHOCS processes that are related by
a suitable formulation of weak higher order applicative bisimulation

10

Processes:
p, q, r ::= 0 inactive process

| π . p action prefixing

| p ‖ q parallel composition

| (n)p let n be local in p

| x process variable

Prefixes:
π ::= δ(x) receive a resource at δ and bind it to x

| δ(x) take computing resource from δ and bind it to x

| δ〈r : ñ〉 send a passive resource r having type ñ to δ

| δ[r : ñ] computing resource r at location δ having type ñ

Table 3: Higher-Order Mobile Embedded Resources

3 Homer

In this section we present the calculus of Higher-Order Mobile Embedded Re-
sources (Homer), a non-linear, pure higher-order process calculi with local names
and named, nested locations. As explained in the introduction Homer contains
explicitly typed locations (and send prefixes). The type annotation is a set of
names that include the free names of the process residing in the location (or send
prefix) to handle the problems of scope extension as described in [BH06, GH05].
Furthermore, we will only consider relations that relate processes with the same
top-level type.

3.1 Syntax and notation

We assume an infinite set of names N ranged over by m and n, and let ñ
range over finite sets of names. We let γ range over (possibly empty) sequences
of names, and let δ range over non-empty sequences of names referred to as
addresses, also we let φ ::= δ | δ. We assume an infinite set of process variables
V ranged over by x and y, and let x̃ range over finite sets of variables. The set
P of process expressions is then defined by the grammar in Table 3.

The processes constructors are the usual process constructors from higher-
order concurrent process calculi. As usual, we let the restriction operator (n)
bind the name n and the prefixes φ(x) bind the variable x. Note that the
restriction operator also can bind the names that occur in a type annotation.

The prefix δ(x) represents the possibility to receive a passive resource sent
from a local processes or a processes in a parent-location, whereas the prefix δ(x)
represents the possibility to take an active resource from a local location or a sub-

11

⊢ 0 : ñ

⊢ p : ñ1 ⊢ q : ñ2

⊢ p ‖ q : ñ1 ∪ ñ2

⊢ x : ñ

⊢ p : ñn

⊢ (n)p : ñ

⊢ p : ñ

⊢ φ(x) . p : ñ ∪ fn(φ)

⊢ r : m̃ ⊢ p : ñ

⊢ φ[〈r : m̃〉] . p : m̃ ∪ ñ ∪ fn(φ)

Table 4: Typing rules for Homer

location. The prefixes δ〈r : ñ〉 and δ[r : ñ] are responsible for sending a passive
resource r locally (or down) to the address δ and providing an active resource
r locally (or up) on the location δ, respectively. In both cases we explicitly
annotate the prefix with a set containing the free names of the resource. The
prefixes δ〈r : ñ〉 and δ(x) are the usual prefixes of Plain CHOCS [Tho93], except
for the type annotation and that we allow sequences of names as addresses
instead of only a name. The prefixes δ[r : ñ] and δ(x) are responsible for adding
active process mobility to the calculus.

We define the free names and free variables as usual, with the exception
of the free names of the prefixes φ[〈r : ñ〉], which we define as fn(φ[〈r : ñ〉]) =
fn(φ) ∪ ñ, so the type annotation of a send or a location prefix determines the
free names of the resource in the prefix, under the assumption that the type
annotation contains the free names of the resource. We will ensure this using
a simple type system (see Definition 3.2). The sets bn(p) and bv (p) of bound
names and bound variables are defined according as usual.

We define capture-free substitution in usual manner, though with the proper
update of type annotations.

Definition 3.1 (substitutions). We define the process p[q : ñ/x] to be p with
all free occurrences of x replaced by q of type ñ, where we have changed the
annotations of all sub-terms φ[〈r : m̃〉] in p to φ[〈r : m̃ ∪ ñ〉], if and only if r
contains a free occurrence of x, and if necessary α-converting p such that no
free names and variables in q are bound.

Definition 3.2 (well-typed process). We define the valid typing judgements of
the form ⊢ p : ñ inductive by the rules in Table 4.

From now on we will only consider well-typed processes. Note that a process
p is well-typed with respect to a finite set of names ñ, written ⊢ p : ñ, if and
only if the free names of p are included in the set ñ, and for every sub-term
φ[〈r : m̃〉] in p we have that r can be typed with the type m̃. We will say that
the type annotations in a process are valid if for all sub-terms φ[〈r : m̃〉] it is the
case that m̃ ⊇ fn(r).

12

We say that a process with no free variables is closed and let Pc denote the
set of closed processes. We write p ≡α q, if p and q are α-convertible (with
respect to both names and variables), we let P/α (and Pc/α) denote the set of
α-equivalence classes of (closed) process expressions, and we consider processes
up to α-equivalence.

We omit trailing 0s, and hence write π instead of π . 0. We let prefixing
and restriction be right associative and bind stronger than parallel composition,
hence writing e.g. π . p ‖ (n)q ‖ r instead of (π . p) ‖ ((n)q) ‖ r. For a set
of names ñ = {n1, . . . , nk} we let (ñ)p denote (n1) · · · (nk)p. We write m̃ñ for
m̃ ∪ ñ, always implicitly assuming m̃ ∩ ñ = ∅.

3.2 Reaction Semantics

We provide Homer with a reaction semantics defined in the Chemical Abstract
Machine [BB90] style using structural congruence, evaluation contexts, and re-
action rules.

Definition 3.3 (contexts and congruence). A context C is defined by taking
the grammar defined in Table 3 and augmenting the production of process ex-
pressions to also contain a special symbol called a hole

C ::= . . . | (−)ñ

and by requiring that the hole only occur once in the term. We annotate the hole
with a type, meaning we can only place a process of type ñ into the hole (−)ñ.
We write C(p) for the insertion of p into the hole of the context C, assuming that
the hole in C is annotated with the type ñ and we have ⊢ p : ñ. We extend fn()
to contexts by fn(C) = fn(C(0)), and we extend fv () accordingly. For typing
contexts, we add the following rule to the typing rules of Table 4.

⊢ (−)ñ : ñ

A binary relation R on well-typed processes is called well-typed if and only
if it only relates processes p and q with the same type ñ, written ⊢ p R q : ñ.
We will only consider well-typed relations in this paper. A relation R is called
a congruence if and only if it is a well-typed equivalence relation and it satisfies
that ⊢ p R q : ñ implies ⊢ C(p) R C(q) : ñ′ for all contexts C, where the hole is
annotated with the type ñ and the type of the context is ñ′.

Structural congruence ≡ is defined as the least congruence on well-typed
processes relating ⊢ p ≡ q : ñ, if p ≡ q can be derived using the rules in Table 5
and ⊢ p : ñ and ⊢ q : ñ, as structural congruence does not affect the typing of
a process. The first row of the equations express that (P, ‖,0) is a commutative
monoid, the next two rows enforce the rules of scope of name restriction.

As Homer permits reactions arbitrarily deep in the location hierarchy and
also permits reactions between a process and an arbitrarily deeply nested sub-
resource, we define in Definition 3.4 the concepts of evaluation and path con-
texts.

13

p ‖ 0 ≡ p (p ‖ p′) ‖ p′′ ≡ p ‖ (p′ ‖ p′′) p ‖ q ≡ q ‖ p

(n)p ‖ q ≡ (n)(p ‖ q), if n 6∈ fn(q) (n)(m)p ≡ (m)(n)p

(n)p ≡ p, if n 6∈ fn(p)

Table 5: Structural congruence

Definition 3.4 (evaluation contexts and path contexts). An evaluation context
E is a context with no free variables and whose hole is not guarded by a prefix,
nor does it occur as the object of a send prefix. We define evaluation contexts
by the following grammar

E ::= (−) | E ‖ p | (n)E | δ[E : ñ] . p, for p ∈ Pc .

We define a family of path contexts Cñ
γ , indexed by a path address γ ∈ N ∗ and

a set of names ñ, inductively in ñ and γ

C∅
ǫ ::= (−)

Cñm̃
δγ ::= δ[(ñ)(Cm̃

γ ‖ p) : ñ′] . q,

whenever p, q ∈ Pc and ñ ∩ γ = ∅.

Note that the evaluation context δ[E : ñ].p enables internal reactions of active
resources, and that for a path context Cñ

γ , the path address γ indicates the path
under which the context’s hole is found, and the set of names ñ indicates the
bound names of the hole. The side condition in the definition of path contexts
ensures that none of the names in the path address of the hole are bound.
The bound names (ñ) in the definition of path contexts are needed since the
structural congruence does not permit vertical scope extension, as explained in
[HGB04] or [BH06].

We handle the vertical scope extension and the update of type annotations
of a location using an open operator, defined on path contexts.

Definition 3.5 (open operator on path contexts). We define an open operator
on path contexts m̃ ⊙ Cñ

γ inductively by:

m̃ ⊙ C∅
ǫ = C∅

ǫ

m̃ ⊙ Cñ1ñ2

δγ = δ[(ñ1 \ m̃)(m̃ ⊙ Cñ2

γ ‖ p) : m̃′ ∪ m̃] . q ,

if Cñ1ñ2

δγ = δ[(ñ1)(C
ñ2

γ ‖ p) : m̃′] . q and m̃ ∩ ñ1ñ2 ∩ fn(Cñ1ñ2

δγ) = ∅.

Intuitively, the open operator in m̃ ⊙ Cñ
γ removes the names m̃ from the

bound names of the hole and adds them to the type annotations of the locations
that are part of the address path. When applied in the reaction rule, the latter

14

(send) ⊢ γδ〈r : ñ〉 . q ‖ Cm̃
γ (δ(x) . p) ց q ‖ ñ ⊙ Cm̃

γ (p[r : ñ/x]) : ñ′ ,
if m̃ ∩ (δ ∪ ñ) = ∅

(take) ⊢ Cm̃
γ (δ[r : ñ] . q) ‖ γδ(x) . p ց (ñ ∩ m̃)

(

ñ ⊙ Cm̃
γ (q) ‖ p[r : ñ/x]

)

: ñ′ ,
if m̃ ∩ (δ ∪ fn(p)) = ∅

Table 6: Reaction rules for Homer

condition of the open operator can always be met by α-conversion, the condition
ensures us that we can extend the scope by using the open operator and place
the restriction at top level, without any name captures.

As for the structural congruence, we define the reaction relation for Homer,
written ց, as the least well-typed binary relation between well-typed processes
satisfying the rules in Table 6 and closed under all evaluation contexts E and
structural congruence. The rules are essentially the reaction rules of [HGB04]
altered to use type annotations instead of the free name constructor.

The (send) rule expresses how a passive resource r is sent (down) to the (sub)
location γ, where it is received at the address δ where it is substituted for x in
p, possibly in several copies, updating the type annotations as necessary. The
side conditions ensure the location path is not bound in the context and that no
free names of r get bound during movement. Note that the open operator only
extends the type annotations of the locations constituting the location path and
does not lift any restrictions, since m̃ ∩ ñ = ∅.

The (take) rule captures that a computing resource r is taken from the (sub)
location γ, where it is running at the address δ, and is substituted for x in p,
possibly in several copies. Again, the side conditions ensure that the location
path is not bound in the context and that no free names are bound, when we
lift the restriction. In this rule it is possible that the open operator both lifts
restrictions and extends the type annotations of the locations.

The types ensure that no names can disappear from the free names of a
location, a send prefix or from top-level during reaction. However, note that
locations or send prefixes in the process that receives the moved resource r can
get their type annotation extended by the type of r that do not already appear
in their annotation.

4 The Encoding

Inspired by the encoding in section 13.3 of [SW01] by Sangiorgi and Walker and
the encoding of Thomsen in [Tho93] we present an encoding of the π-calculus in
the calculus of Homer. Our encoding crucially depends on the fact that we can
send a process representing an abstraction. In the application of an abstraction
to a process we use the full non-linearity of Homer. As illustrated in Section 2.2

15

we can encode an abstraction as a process wanting to receive on a name, for
clarity we chose the name abs

J(x)P K1 = abs(x) . JP K1 .

Note that since we encode the application of an abstraction to a value using a
local location we need an auxiliary reaction to retrieve the result from the locale
location. So the representation of the π-calculus application (x)Q⌊P ⌋ will be
represented in the following manner3 (assuming that n is fresh for JP K1 and
JQK1).

(n)
(

n[abs(x) . JQK1] ‖ nabs〈JP K1〉 . n(z) . z
)

and after two reactions (and garbage collection of the idle restriction of n) we
obtain

JQK1[JP K1/x] .

Contrary to Thomsen’s encoding in Plain CHOCS we do not need external
choice to encode that a name can be used both for input and for output. In-
stead, we use nested locations, and the choice between the two branches can be
represented by a parallel composition of two locations (containing the possibility
for send and receiving along the name, respectively) and a process responsible
for choosing the resource in one of the locations. It should be noted, however,
that by using nested locations we need to explicitly garbage collect the rest of
the name. We encode a π-calculus name n as a mobile resource JnK that can
perform two tasks: sending and receiving along the name n.

Sendn = v(x) . c(y) . n〈x : ∅〉 . y

Receiven = c(x) . n(y) . (a)(a[x : ∅] ‖ aabs〈y : ∅〉 . a(z) . z)

JnK = s[Sendn : {v, c, n}] ‖ r[Receiven : {c, n, b, s}]

The Sendn process can be seen as taking two parameters on the locations v
and c, respectively. On location v it takes the encoding of the name JmK to
send, and on location c the encoding of the continuation JP K1, resulting in a
process of the following form n〈JmK : ñ〉 . JP K1. Receiven expects to receive a
process representing an abstraction J(x)P ′K1 along c and after performing the
synchronisation on n, corresponding to the actual π-calculus synchronisation,
it sends down the received process to the abstraction. In parallel these two
processes can interact as follows

n〈JmK〉 . JP K1 ‖ n(y) . (a)(a[J(x)P ′K1] ‖ aabs〈y〉 . a(z) . z) ց

JP K1 ‖ (a)(a[J(x)P ′K1] ‖ aabs〈JmK〉 . a(z) . z) ց

JP K1 ‖ (a)(a[JP ′K1[JmK/x]] ‖ a(z) . z) ց

JP K1 ‖ JP ′K1[JmK/x] .

For the input and output prefixes we use the same simple pattern.

Jn〈m〉 . P K1 = (a)(a[n′ : ∅] ‖ asv〈m′ : ∅〉 . asc〈JP K1 : ∅〉 . as(z) . a(z′) . z)

Jn(x) . P K1 = (a)(a[n′ : ∅] ‖ arc〈J(x)P K1 : ∅〉 . ar(z) . a(z′) . z)

3We will ignore the type annotations in the following examples to increase readability.

16

In both cases we use the free variable n′ residing at the location a, this variable
will on top-level be replaced by the process JnK. We abuse notation and use
the notation n′ to emphasise that n′ is a process variable and not a name. We
assume that there exists a one-to-one mapping between the variables n′ in Homer
and the names n in the π-calculus. For the output prefix we also use the free
variable m′ which together with the encoding of the continuation are sent down
to the Sendn part of JnK. For the input prefix we send down an abstraction,
J(x)P K1, to the Receiven part of JnK. Both cases conclude by retrieving their
respective part of JnK and discarding the rest of the location a.

The encoding of the remaining process expressions is a homomorphism for
most of the constructs of the π-calculus.

J0K1 = 0

JP | QK1 = JP K1 ‖ JQK1

J(νn)P K1 = (n)(JP K1[JnK : ñ/n′])

For the encoding of restriction we restrict the corresponding name in Homer,
substitute the process JnK for the free variable n′, and let ñ = {s, v, c, n, r, abs}.

At top-level we substitute the encoding of a name for the free variable rep-
resenting the name. For a π-calculus-process P with free names {n1, . . . nm},
the encoding of P , JP K1, will have the set {n′

1, . . . n
′
m} as free variables. So for

the free variable n′ we substitute in the process JnK, hence giving the following
encoding at top-level, denoted J K2,

JP K2 = JP K1[Jn1K : ñ1/n′
1, . . . , JnmK : ñm/n′

m] ,

where we let ñi = {s, v, c, ni, r, abs}.
We can now mimic π-calculus reactions using multiple reactions in Homer.

Note that we both need some auxiliary reactions before the reaction correspond-
ing to the actual reaction in the π-calculus to “activate” the input and output
prefixes, and we need some auxiliary reactions after to perform the name binding
(as part of the input prefix).

Example 4.1. Consider the following reaction n〈m〉 | n(x) . x〈x〉 →π m〈m〉 in
the π-calculus. First we translate the process P = n〈m〉 | n(x) . x〈x〉

JP K1 = (a)
(

a[n′] ‖ asv〈m′〉 . asc〈J0K1〉 . as(z) . a(z′) . z
)

‖

(a)
(

a[n′] ‖ arc〈J(x)x〈x〉K1〉 . ar(z) . a(z′) . z
)

,

and then we apply the top-level substitution [JnK/n′, JmK/m′]

JP K1[JnK/n′, JmK/m′] ց∗

n〈JmK〉 ‖ n(y) . (a)
(

a[J(x)x〈x〉K1] ‖ aabs〈y〉 . a(z) . z
)

ց

(a)
(

a[abs(x) . Jx〈x〉K1] ‖ aabs〈JmK〉 . a(z) . z
)

ց∗

Jx〈x〉K1[JmK/x′] = Jm〈m〉K1[JmK/m′] .

The Homer reaction (over the name n and communicating the process JmK)
in the second row above corresponds to the reaction (again over the name n

17

and communicating the name m) in the π-calculus. To state the proof of the
dynamic correspondence, in the following section, we will use the special symbol
ցπ to denote this reaction. Note that this is the only Homer reaction in the
encoding where a synchronisation occurs between a send- and a receive-prefix
both of length one (and both residing on top-level).

The encoding highlights several implicit observations. The only difference
between free and restricted names in the encoding is the obvious restrictions (in
Homer) of the restricted names, otherwise the two kinds of entities behave the
same. Thomsen’s encoding depends on explicit name substitutions to restrict
some of the names of a received process, indirectly making the restriction opera-
tor a dynamic operator which captures some of the names of a received process.
In a similar manner Sangiorgi and Walkers’s encoding depends on the ability
to communicate abstractions. We can encode this by the usage of local, nested
locations, where we localise the location in which we place the received process.
We can then communicate with the process by the usage of address paths.

In several places the encoding depends upon strongly mobile resources. We
use strongly mobile resources when we localise communication (as describe
above) where we place resources in local addresses and let them compute, be-
fore taking them up again. To encode the synchronous communication we only
use code mobility by utilising a continuation-passing style where we pass the
residual of a prefix as a continuation to the process responsible for performing
the prefix.

4.1 Proof of the Correspondence

In this section we prove the correspondence between π-calculus processes and
their encoding as Homer processes. First we prove that the encoding respects
and reflects structural congruence. To this end we need to relate structural
congruence with the two levels of the translation.

Lemma 4.2. JP K1 ≡ JQK1 if and only if JP K2 ≡ JQK2.

Proposition 4.3 (Static Correspondence). P ≡π Q if and only if JP K2 ≡ JQK2.

To establish that the encoding preserves the reactions of the π-calculus we
need that we can characterise reactions in the π-calculus up-to structural con-
gruence.

Lemma 4.4. P →π P ′ if and only if P ≡π (νñ)(n(m) . Q | n〈o〉 . Q′ | Q′′) and
P ′ ≡π (νñ)({o/m}Q | Q′ | Q′′) for some names ñ, m, n, and o.

We also need a substitution lemma relating the translation and substitutions.

Lemma 4.5. For a π-calculus process P we have JP K1[n
′/m′] = J{n/m}P K1.

Proposition 4.6. If P →π P ′ then JP K2 ց7 ցπ ց2 JP ′K2.

18

Proof (Sketch). Assuming P →π P ′ we know from Lemma 4.4 that P and P ′

are of the following forms:

P ≡π (νñ)(n(m) . Q | n〈o〉 . Q′ | Q′′)
P ′ ≡π (νñ)({o/m}Q | Q′ | Q′′) ,

for some names ñ, m, n, and o. It is straightforward to prove that

J(νñ)(n(m) . Q | n〈o〉 . Q′ | Q′′)K2 ց7 ցπ ց2 J(νñ)({o/m}Q | Q′ | Q′′)K2 .

using Lemma 4.5 and some simple reasoning about substitutions. The result
follows by Proposition 4.3 and since both reaction relations are closed under
structural congruence.

Proposition 4.7. If JP K2 ց7 ցπ ց2 JP ′K2 then P →π P ′.

Proof (Sketch). As a first observation we note that in the sequence ց7 ցπ ց2

the first seven reactions can only have been responsible for “activating”an input
and an output prefix, respectively, as otherwise we would not be able to do a ցπ

reaction. In the same manner, the last two reactions can have only have been
the reactions responsible for the name-binding of the input prefix as otherwise
we would not end up in a Homer process which is in the image of the translation.
Again, we need Lemma 4.5 and some simple reasoning about substitutions.

Combining the above results we obtain the dynamic correspondence between
π-calculus processes and their encoding as Homer processes.

Theorem 4.8 (Dynamic Correspondence).

P →π P ′ if and only if JP K2 ց7 ցπ ց2 JP ′K2 .

5 Conclusions and Future Work

In this paper we have examined two existing encodings of the first-order π-
calculus into a higher-order calculus: HOπ and Plain CHOCS, respectively. We
have furthermore presented a direct encoding of π-calculus name-passing and
name-substitution in the calculus Homer, using process-passing, mobile com-
puting resources, named nested locations and local names. The encoding is
direct, in the sense that it does not utilise an intermediate π-calculus with ex-
plicit substitutions as the prior encoding in Homer did (see [BHG05, BHG06]).
Instead we use that we can represent abstractions and applications and ex-
ternal choice succinctly in Homer by using local, named locations and active
process passing. The encoding in Homer owes a lot to the existing encodings
by Thomsen [Tho93] and by Sangiorgi and Walker [SW01], but the encoding
also show that active process-passing, named nested locations, and local names
gives Homer great expressive power. Following the ideas of our previous encod-
ing in [BHG05, BHG06] we have used a continuation passing style to give an
elegant encoding of synchronous communication.

19

Several interesting questions arise from the work done in this paper. First
and foremost, a logical next step would be to see if it is possible to encode a
version of Homer extended with name-passing in Homer. It is not clear at this
point, how to make an encoding like this, or if it is possible at all. Second, it
would be interesting to examine the expressive power of Homer in more detail.
The hierarchy presented in [Gor06b] could be a promising starting point. Also
we plan to examine whether the lengths of the addresses in Homer affects its
expressive power, as it is the case in the π-calculus with polyadic synchronisa-
tion [CM03]. I.e. whether Homer where addresses are of length “at most k” is
more expressive than Homer where addresses are of length “at most k − 1”. For
small k the results are obvious, but for larger k the results are unclear. Third,
we plan to examine a fully compositional encoding of an untyped π-calculus in
a higher-order process calculus such as Homer. The encoding in [Tho93] is done
in two levels, as the encoding in the present paper. The encoding in [SW01] is
fully compositional, however it only covers a subset of the full π-calculus and
furthermore it depends crucially on the typing of the π-calculus process being
encoded.

In a different direction it could be interesting to examine the question of
what constitutes a ‘good’ encoding. This area has largely been unexplored in
the literature. In [Pal03] Palamidessi proposes uniform encodings to examine
the expressive power of synchronous and asynchronous π-calculus. An encoding
is uniform if it is compositional and preserve some “reasonable” semantics. Fur-
thermore, she require that the encoding of parallel composition is a homomor-
phism, and that the encoding commutes with (name) substitutions. In [Gor06a]
Gorla uses a similar condition on encodings to study the expressive power of
eight different asynchronous communication primitives.

References

[BB90] Gérard Berry and Gérard Boudol. The chemical abstract machine.
In Proceedings of the 17th ACM SIGPLAN–SIGACT Symposium
on Principles of Programming Languages (POPL’90), pages 81–94.
ACM Press, 1990.

[BH06] Mikkel Bundgaard and Thomas Hildebrandt. Bigraphical seman-
tics of higher-order mobile embedded resources with local names. In
Arend Rensink, Reiko Heckel, and Barbara König, editors, Proceed-
ings of the Graph Transformation for Verification and Concurrency
workshop (GT-VC’05), volume 154 of Electronic Notes in Theoretical
Computer Science, pages 7–29. Elsevier, 2006.

[BHG05] Mikkel Bundgaard, Thomas Hildebrandt, and Jens Chr. Godskesen.
A CPS encoding of name-passing in higher-order mobile embedded
resources. In Jos Baeten and Flavio Corradini, editors, Proceedings
of the 11th International Workshop on Expressiveness in Concur-

20

rency (EXPRESS’04), volume 128 of Electronic Notes in Theoretical
Computer Science, pages 131–150. Elsevier, 2005.

[BHG06] Mikkel Bundgaard, Thomas Hildebrandt, and Jens Chr. Godskesen.
A CPS encoding of name-passing in higher-order mobile embedded
resources. Theoretical Computer Science, 356(3):422–439, 2006.

[BHG07] Mikkel Bundgaard, Thomas Hildebrandt, and Jens Chr. Godskesen.
Modelling the security of smart cards by hard and soft types for
higher-order mobile embedded resources. In Daniele Gorla and Catus-
cia Palamidessi, editors, Proceedings of the 5th International Work-
shop on Security Issues in Concurrency (SecCo’07), volume 194 of
Electronic Notes in Theoretical Computer Science, pages 23–38. El-
sevier, 2007.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical
Computer Science, 240(1):177–213, 2000.

[CM03] Marco Carbone and Sergio Maffeis. On the expressive power of
polyadic synchronisation in π-calculus. Nordic Journal of Computing,
10(2):70–98, 2003.

[CZN02] Giuseppe Castagna and Francesco Zappa Nardelli. The Seal calcu-
lus revisited: Contextual equivalence and bisimilarity. In Manindra
Agrawal and Anil Seth, editors, Proceedings of the 22nd Conference
on the Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’02), volume 2556 of Lecture Notes in Computer
Science, pages 85–96. Springer Verlag, 2002.

[GH05] Jens Chr. Godskesen and Thomas Hildebrandt. Extending Howe’s
method to early bisimulations for typed mobile embedded resources
with local names. In Proceedings of the 25th Conference on the Foun-
dations of Software Technology and Theoretical Computer Science
(FSTTCS’05), volume 3821 of Lecture Notes in Computer Science,
pages 140–151. Springer Verlag, 2005.

[GHS02] Jens Christian Godskesen, Thomas Hildebrandt, and Vladimiro Sas-
sone. A calculus of mobile resources. In Lubos Brim, Petr Jan-
car, Mojmı́r Kret́ınský, and Antońın Kucera, editors, Proceedings of
the 13th International Conference on Concurrency Theory (CON-
CUR’02), volume 2421 of Lecture Notes in Computer Science, pages
272–287. Springer Verlag, 2002.

[Gor06a] Daniele Gorla. On the relative expressive power of asynchronous com-
munication primitives. In Proceedings of the 9th International Con-
ference of Foundations of Software Science and Computation Struc-
tures (FOSSACS’06), volume 3921 of Lecture Notes in Computer Sci-
ence, pages 47–62. Springer Verlag, 2006.

21

[Gor06b] Daniele Gorla. On the relative expressive power of calculi for mobility.
Technical Report 09/2006, University of Rome “La Sapienza”, 2006.

[HGB04] Thomas Hildebrandt, Jens Chr. Godskesen, and Mikkel Bundgaard.
Bisimulation congruences for Homer — a calculus of higher order
mobile embedded resources. Technical Report TR-2004-52, IT Uni-
versity of Copenhagen, 2004.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-calculus.
Cambridge University Press, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, parts I and II. Journal of Information and Com-
putation, 100:1–40 and 41–77, 1992.

[Pal03] Catuscia Palamidessi. Comparing the expressive power of the syn-
chronous and asynchronous π-calculi. Journal of Mathematical Struc-
tures in Computer Science, 13(5):685–719, 2003.

[San92] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-
Order and Higher-Order Paradigms. PhD thesis, Department of
Computer Science, University of Edinburgh, 1992.

[San96] Davide Sangiorgi. Pi-calculus, internal mobility, and agent-passing
calculi. Theoretical Computer Science, 167(1–2):235–274, 1996.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: a Theory of
Mobile Processes. Cambridge University Press, 2001.

[Tho93] Bent Thomsen. Plain CHOCS: A second generation calculus for
higher order processes. Acta Informatica, 30(1):1–59, 1993.

[Zim04] Pascal Zimmer. On the expressiveness of pure mobile ambients. Jour-
nal of Mathematical Structures in Computer Science, 13(5):721–770,
2004.

22

