.-ﬁ
=

The IT University

of Copenhagen

Constraint Optimization for
Highly Constrained Logistic Problems

Maria Kinga Mochnacs
Meang Akira Tanaka
Anders Nyborg

Rune Mgller Jensen

IT University Technical Report Series TR-2007-2008-104

ISSN 1600-6100 September 2007

Copyright (© 2007, Maria Kinga Mochnacs
Meang Akira Tanaka
Anders Nyborg
Rune Mgller Jensen

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600-6100

ISBN 978-87-7949-163-2

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +4572 18 50 01
Web www, it u. dk

Abstract

This report investigates whether propagators combined bvéitnch and bound al-
gorithm are suitable for solving the storage area stowagigl@m within reasonable
time. The approach has not been attempted before and exgregsshow that the
implementation was not capable of solving the storage ameage problem effi-
ciently. Nevertheless, the reportincorporates a detaitedlysis of the problem, acts
as a valuable basis for comparing the quality of alternaperoaches and reveals
the properties of the solution space.

Contents

1 Introduction 1

2 Background 3

2.1 Constraint satisfaction problems 3
2.2 Searchalgorithms 5

2.3 Constraint optimizationproblems 6
23.1 BranchandBound 7

2.3.2 Model of a constraint optimization problem 8

3 The Storage Area Stowage Problem 11
3.1 Background 11
3.2 Formal definitionof SASP o 6 1

4 Evaluating CSP representations of SASP 25
4.1 Pruningoperations e 5 2
4.2 Container-model 27
4.3 Slot-model. 29
4.4 Cell-model 30
4.5 Conclusion 32

5 CSP representation of SASP 35
5.1 Variables 35
52 Domains e 35

5.3 Additional constraints and pruning operations 37

5.4 Propagators e 38

5.5 Earlyterminationcriteria 42

5.6 Correctness of propagators 42

Estimation 47

6.1 OverstowageBounding 7 4

6.2 EmptystackBounding. 05

6.3 WastedspaceBounding oo 4 5

6.4 ReeferBounding 55

Implementation 57

7.1 Fundamentalconcepts 7 5

7.2 Representingdata 7 6

7.3 Algorithm e 68

7.4 Search 68
7.4.1 Single solutionsearch 69
7.4.2 DepthFirstBranchandBound 72

Experiments 77

8.1 Testcomponents 77
8.1.1 Testdata 77
8.1.2 Search. e 78
8.1.3 Measurementscriteria oo 81

8.2 Propagatorimprovementso 81
8.2.1 Searching forasingle solution 82
8.2.2 Traversal ofthesearchspace 83.

8.3 Estimators e 85
8.3.1 Traversalofthesearchspace 85.

8.4 LazyEstimation. 86
8.4.1 Traversalofthesearchspace 86.

8.5 Approximation 91
8.5.1 Traversalofthesearchspace Q1.

8.6 Variableordering 39

8.6.1 Searching forasingle solution 93

8.7 Profiling 95
8.8 Solutiondiscoveries 98
8.8.1 Traversalofthesearchspace Q8.
8.9 Conclusiononexperiment 101
Conclusion 103
Program organization 109
Informal description 115
Pseudo code 119
C.1 Evaluation 119
C.1.1 Overstowage Evaluation 911
C.1.2 Wastedspace Evaluation Q12
C.2 Estimation e 121
C.2.1 Overstowage Estimation 112
C.2.2 Wastedspace Estimation 4 12
C.3 Domain management function 127
C.4 Propagatorsexamples 128
C.41 UnIQUENESS i i e e 128
C.4.2 IMO-1 e 128

Vi

Chapter 1

Introduction

Containerized transport in vessels traveling overseafiedthin rapid growth. As the trade
increases, pressure is put on shipping companies to lowerdst of their transportation
services. For that reason, there is an interest in the indémst developing algorithms,
which can help placing containers efficiently aboard a Vessspecting safety require-
ments and optimizing logistic criteria. Viewed from an agauic perspective the problem
has some interesting properties, as it contains subprahhiich have been proven to be
NP-hard [1].

Placing containers on a vessel can be regarded as a comriahptoblem. The size of the
combinatorial space can be roughly estimated as a permtatiplacing a unique con-
tainer for each slot available. Since a bay may accommogete 200 20-foot containers,
the combinatorial space is immense, making it a very hardoooatorial problem.

One typical approach used within the field of operationsaeseis to solve the problem
by using integer programming. However nonlinear constsaiannot be modeled properly
by the usage of integer programming. Consequently altemapproaches have to be
considered.

In this report, an in depth study is given of the storage ateaage problem, which is
a constraint optimization problem, consisting of arragganset of containers below deck
within a bay of a vessel. The safety requirements and lagisiieria are divided into hard
and soft constraints respectively. A weight has been defioedach soft constraint to
identify the importance of fulfilling each logistic criteri Due to the ability of modeling
nonlinear constraints in a simple fashion, functions kn@smpropagators has been cho-
sen to represent the constraints within the problem Theerhakiyorithm for solving the
problem is branch and bound, described by [2] as: "the masiheonly known algorithm
for solving constraint optimization problems”. The aldbm and choice of representation
was selected based on the fact that no research within tieofielontainerized transport
overseas exists, relying on this combination to solve theage area stowage problem. The
goal is that the research provided in this report will seiva érst step, in uncovering some

of the strengths and weaknesses by using a Constraint&gaitsf Problem(CSP)-model
and branch and bound for solving the storage area stowabéepro

The issues which, this report would like to address is as\!

Can backtrack combined with a CSP-Model find a solution
within reasonable time for the storage area stowage problem

Can branch and bound combined with a CSP-Model find an optsoiation
within reasonable time for the storage area stowage problem

Several task had to be formulated in order to answer the abeues. The first tasks, is to
get a thorough understanding by formulating a mathematncadel of the problem. The
second task is to find a suitable CSP-Model by considerirfgréifit candidate models,
evaluate each of these, and select the most suitable cémdidee third tasks is to conduct
experiments on the developed implementation and analgzeetults.

Document outline

In chapter 2, the theoretical background of the report ialdished. Based on the the-
ory and an informal problem description, the problem is falized into a mathematical

model in chapter 3. Three candidate CSP-Models are suggessed on an analysis of the
formalized model in chapter 4. Chapter 5 formalize the ch@38P-Modeland the formal-

ization of the estimators are presented in chapter 6. Imgheation of the CSP-Modeland
search algorithms are represented in chapter 7. Based amplamentation, experiments
are performed to cover different aspects of the search spatenplementation in chapter
8. Chapter 9 concludes the report with some suggestion dof eamabe done in future.

Chapter 2

Background

This chapter provides a brief explanation of different ¢oaiat processing concepts used
in the report.

2.1 Constraint satisfaction problems

Constraint satisfaction problemsr CSPs, are mathematical problems that typically in-
volve finding out how to assign a discrete set of variablesugdrtain constraints. Many
solutions may actually satisfy the constraints of the peobl

For many hard constraint satisfaction problems, no algorihas been discovered to solve
the problem efficiently yet and some have been proved to bbN®- Solving these combi-
natorial problems is done by searching in the solution spabih is typically exponential
in the size of the problem. A systematic search of the seg@atesensures that all candidate
solutions are considered and the optimal one is found witlaicey.

A constraint networks a model of a CSP that consists of a finite set of variablesjta et

of domains, and a finite set of constraintsvériableis a value holder for an entity of the
problem. Each variable has its owlomainthat lists the possible values the variable can
take. Aconstraintis a relation defined on a subset of variables that representdtaneous
legal assignments of the variables. A constraint can beifsgexplicitly by the list of
satisfying tuples, or implicitly by a formula that charatizes the constraint.

An instantiationis the assignment of some subset of variables with some ¥adoethe
domain of each variable. When all variables are assignedingtantiation is said to be
complete Otherwise the instantiation is said to partial. An instantiation ionsistentif

it satisfies all of the constraints, whose scopes have nataritiated variables.

A valid solutionof the constraint network is a consistent complete insaéioti of all of its
variables. An unsatisfiable problem does not have any saolsiti

Constraint propagation

Searching for solutions can be viewed as traversing a segate, where the task is to
reach a state, where all variables have been assigned vagabvalue from their domain.

Moving from one state to another state in the search spadeesrassigning or unassign-
ing variables. The search space of the problem can be coablgdarger than the solution

space, potentially containing many inconsistent instdiatns in respect to the given prob-
lem. Consequently, searching for solutions can be venfiareft. An approach is to

tighten the search space by formulating an equivalent bué mexplicit model.

In general, the more explicit the model is, the more regtdthe search space will be, mak-
ing search more effective. When any consistent instaatiaif a subset of variables can be
extended to a consistent instantiation of all the varighites model is said to bglobally
consistent Having a model, which is globally consistent, makes itightdiorward to find
solutions, since any value chosen for any variable will l&ad solution. However com-
puting a globally consistent model is intractable for sigfitly large problems. Instead,
transforming a model into an approximation of a global cstesit model may be preferable
due to the lower computation cost.

Constraint propagatioris the process of transforming a model into a tighter one. The
tightening process can be done during the search itselffeyring new knowledge using
local consistency enforcing algorithrttsat perform a bounded amount of constraint infer-
ence during each iteration, such as arc or path consist@rlogal consistency property is
defined regardless of the domains or constraints of the C&ftgm.

Another approach to do constraint propagatioruiges iteration Rules iteration tightens

a model by iteratively applying reduction rules. r@duction ruleor a propagatoris a
decreasing function that rules out domain values, whichwat appear in a solution. A
propagator depends on one or momgut variables and changes the domain of one or more
outputvariables. The assignment of an input variabiggersthe propagator. Propagators
can be seen as an actual implementation of the constraensstiives. When assigning
one variable a specific value, the set of propagators remalves from the domain of the
uninstantiated variables enforcing consistency with Iy instantiated variable.

A one-to-one relationship does not necessarily exists gniosm set of constraints and the
set of propagators. The problems nature may imply that iages to construct several
propagators that jointly implement a specific constrainthéw’V a combination of several
propagators together implement a given constraint, thpawgators that the combination
consists of is said toontain the constraint

Example 2.1 One of the constraints within the storage area stowage @bk that a 20-

foot container cannot be stacked on top of a 40-foot contai@ee approach is to divide
the constraints into two propagators: One, which ensured tto 40-foot containers can
be placed below a 20-foot container and one, which ensusgsit 20-foot container can

4

be placed on top of a 40-foot.

For details of rules iteration and how a propagation engiaksy refer to [3].

2.2 Search algorithms

The goal of a search algorithm is to find solutions to the CSf®nclude that the problem is
unsatisfiable. Traversing the search space can be baseifevartistrategies, each strategy
resulting in a family of search algorithms. The search farthis report considers is the
backtrack search family.

Backtrack search algorithms belong to the family of syst&rsearch and, as a conse-
quence, are guaranteed to be complete. The completendssrnise@d by viewing the search
space as a tree, where each node in the tree is an instambétcsingle variable and each
branch is a possible assignment for that particular vagiabhe depth of the tree is deter-
mined by the number of variables and consequently the piatims,the root to a leaf node
in the tree, are complete instantiations. The startingtpaihere all backtrack algorithms
originate from, is the naive backtrack algorithm, which tenthought of as an algorithm
which performs a depth first traversal of the tree, until aisoh is found. If some variable
along the path towards the leaf node results in an incomsiptatial instantiation, a back-
track occurs.Backtrackingis the process, where the assignment of a previously askigne
variable is reconsidered. Traversing the tree is clearfyoagntial in time in the worst
case and is not practical for too large problems. Therefoamy variations of the naive
backtrack algorithm, which tries to improve search timeehlaeen suggested.

This report considers two members of the backtrack familgrwiard checking and Dy-
namic Variable Forward Checking (DVFC). The motivation &mwoosing forward check-
ing, is that the problem contains properties, which makestgorithm suitable for finding
optimal solutions efficiently along a static variable ordenre DVFC has been chosen based
on previous experience of being an algorithm, which could &rsolution fast, since being
based on the forward checking approach of pruning, enshegstie branching factor of
the next variable to be instantiated is at a minimum [4].

Current variableis the variable, which the search algorithm currently ismating to find
an assignment for. The nodes of the search tree represerurtieat variable of a specific
stage in the search.

Candidate valuas any possible value an uninstantiated variable can bgrassito. In
respect to the search tree the branches of a node are candidias.

Current instantiations the assignments that has been done until so far in thelse@ine
path from the root of the search tree down to current varietlee current instantiation.

Future variabless the set of variables which still has to be assigned, exotuthe current

5

variable. The set of nodes along any path from the curreidaris the future variables.

Forward Checking

Forward checking is a simple improvement to naive backirack The principle is to
prune domain values from future variables, that are inaest with the currently instan-
tiation. Given a CSP-Model, where the constraints are sgpried with propagators, for-
ward checking is achieved in a straightforward way: Whenawveariable is assigned, all
propagators that specify the variable as input are appliats guarantees that the current
instantiation is consistent with any assignment of someréuvariable. Forward checking
is superior compared to naive backtracking, in that it eestinat thrashing is avoided at an
earlier stage of a given instantiation.

DVFC

DVFC is a heuristic based on the forward checking strategy tkes into account the
benefits of variable orderings, which produces a small sespace. DVFC determines
the variable ordering dynamically, during search. It ielb@ the fail-first heuristic, by se-
lecting the variable, which is most likely to restrict theasgh space as early as possible.
By considering the variables that most likely restrict tbarsh space as early as possible,
DVFC strengthens the benefits of forward-checking look diigebeing able to detect dead
ends as soon as possible considering the amount inferericeth@r factors being equal,
the variable with the smallest number of viable values iitsent domain, will have the
fewest subtrees rooted at those values, and therefore tlgestrsearch space below it.

For a thorough presentation of backtrack variations anid stendard implementation refer
to [2].

2.3 Constraint optimization problems

For some problems, candidate solutions must be rankedrrstef quality to some given
criteria. In this case, constraint problems aptimization problemsr COPs. The quality
is described by anbjectiveor costfunction and the goal is to find a solution with as high
quality as possible, in other words a solution with an optiaigective function value. In
case the objective function has to be minimized, a mininopaproblem is considered,
otherwise a maximization problem is considered.

A CSP-Model augmented with a cost function provides a fraorkwo model a COP. Typ-
ically, the cost function is a weighted sum of several costjgonents. Acost component

is a problem-dependent real value function defined on a sobsariables. The cost com-
ponents are also referred to saft constraintswhile the constraints of the problem are
referred to avard constraints

An optimal solutionfor a minimization problem is any valid solution which has thwest
cost amongst all valid solutions.

For a detailed description of COP see [2].

2.3.1 Branch and Bound

Any backtracking algorithm can easily be modified in ordefital an optimal solution
of a COP: Rather than stopping with the first solution, thedes continued throughout
the entire search space. Whenever a solution is found, adeaits cost and maintain the
current best cost solution. Given that the solution spaegpsnential this is intractable for
sufficiently large problems. A straightforward improveristo exploit the cost function.
In case of a minimization problem, when the sum of cost coreptsover the instantiated
variables is already higher than the best solution foundagatlie partial solution can be
pruned away.

The above idea is the foundation of a popular search algotfitihh constraint optimization,
namelybranch and bound Branch and bound estimates the completion cost of a partial
solution to prune potential solutions away. The algorith@mintains the cost of the best
solution found so far. In case of a minimization problem ®@ost is an upper bountd

for the cost of the optimal solution. Additionally, whenewevariable is instantiated, a
bounding evaluation functiori computes a lower bound on the cost of any complete
solution that extends the current partial instantiationcasel. > U, the partial solution
cannot improve the current best cost and therefore thelseéwog the current patch can
be discontinued. In cask < U, the search continues along the current path, since there
is a possibility to improve the current best cost. The atbaniterminates, when the first
variable has no values left. The bounding evaluation fomcsums over two parts: the cost
of the current partial instantiation and an estimated cbste optimal completion of the
current instantiation to a complete instantiation.

In order to ensure that all solutions, which improve the loest are discovered, it is re-
quired that the estimated cost is an underestimate of optiomapletion cost. On the other
hand, in case the estimate is too weak, branch and boundxpilbie unnecessary solu-
tions. The goal is to have an estimate as close as possilile tiest completion cost.

For some problems, finding the optimal solution is not fdasimd one may settle for less
by computing arapproximationof the optimal solution. The principle for computing an
approximation of the optimal solution is to allow the estiioa part to overestimate by a
constant. Consequently, some solutions will be skippediamdearch space is reduced.

The cost of the first found solution has an impact on the peréoice of branch and bound.
The closer the cost is to the optimal cost, the more soluaoapruned away during search,
and the sooner the search finishesdi®ing heuristicis a heuristic to find a good initial
solution.

For details of branch and bound refer to [2].

2.3.2 Model of a constraint optimization problem

This section formally presents the model this report useshi® given problem. It starts
by defining the notions of domain mappeandpropagator and concludes with theSP-
ModelrespectivelfCOP-Modeland a set of general notations.

Definition 2.1 (Domain mapper) Let P be a CSP, lefX = {z1, x5, ..., x,} be the set of
variables forP and letd; be the initial domain for each; € X.

A domain mapper is a total function that specifies for eacledde =; € X a set of domain
valuesD(z;) C 2%.

A domain mappeD; is strongerthan a domain mappép,, writtenD; T Ds, if Dy (x;) C
DQ(.TZ)V.Z’Z e X.

Definition 2.2 (Domain mapper consistent with an assignmetLetD be a domain map-
per and let(x;, v) denote the assignment of an arbitrary valuto a variablez;.

A domain mapper consistent with the assignmientv) is a domain mappeD,,, ., € D

such that the assignmefit;, v) can be extended consistently by any future assignment of
any other variabler;. In caser; cannot extend consistently;, v) thenD, . (z;) = O

Do () = D C D(x;) if (x;,v) is consistent withz;, u) for anyu € D
R N0 otherwise

Thestrongestdomain mapper consistent with the assignmentv) is:
Dzkwij € {D(xj7v> . VD<1']',U> E D: (D<Ij,v> 7£ D(xj7v> = D<$jﬂ)> E D(J)j,l)))}

Definition 2.3 (Propagator)
A propagatois a triple (P, Zp, Op) consisting of:

1. a set of one input variables> C X. An assignmenfz;, v) of an arbitrary valuev
to an input variabler; € Zp triggersthe domain decreasing functign

2. aset of output variable®» C X. The domain of an output variable may be pruned
when theP is triggered.

3. adomain decreasing functign

{v} if z; € Zp and (x;, v) triggeredP
P(D)(x:) = § Dy, (x) if 2, € Op and(z;, v) triggeredP
D(x;) otherwise

Definition 2.4 (CSP-Model of a constraint satisfaction protem) Let P be a CSP.
A CSP-Modelr for P is a triple (X, D, C), consisting of:

1. afinite set of variableX = {xy,z5,...,2,}
2. the initial variable domain®(z;) = d;

3. a finite set of constraintS = {ry,...,r,} where each constraint; is explicitly
specified as a set of propagators.

The definition of the COP-Model extends the definition of tfgPEModel:

Definition 2.5 (COP-Model of a constraint optimization problem) Let P* be a COP.
A COP-ModelRr* for P* is defined as a paifR,) where:

1. R is the CSP-Model of the constraint satisfaction problem

2. F'isthe cost function that measures the quality of a soluiiarnth regards to a finite
set of cost componen{s’, F», ..., F;} and afinite set of weightdVy, Ws, ... W}

Definition 2.6 (Bounding evaluation function) Let P* be a COP and letR, F') be the
COP-Model ofP*.
A bounding evaluation functiofifor a partial instantiationa, is defined as:

l

fla@,) = Z W (gj(ap) + hj(ap))

j=1

where

gj(@,) = F;(d,) is the true cost compone#t restricted to the partial instantiatiod,
and

h;(a,) is the estimated completion cost@finto a complete, but not necessarily valid
instantiation.

The following table summarizes the notations used througtis report.

General notations

X variable set

D domain mapper

prame propagator identified by maame

Lpname input variable set op™*"¢

Opname output variable set gP™*™*

a current instantiation

S scope ofi

s, (@) projection ofd onS; C S

a, partial instantiation of the first variables

S, scope ofz,

(Ap, apis .-y an) complete instantiation extended fraty

Eume cost component identified byreame

W ame unit weight for the cost componeft, ;..

Gname (@) true cost ofi,, restricted to the cost componeéfit,,,..

Poname (@) estimated completion cost af, restricted to the cost componei,,.
R ame (@) optimal completion cost af,, restricted to the cost componehf,,.

f(a,) . bounding evaluation function fai, i.e. estimated completion cost @f
optimal completion cost af,

A variablez belongsto an instantiatiord if it is in the scope of the instantiation. This is
denoted as € S.

A domain valuev belonggo an instantiatiow, if a variable within the scope of the instan-
tiation is assigned to it. This is denotedwas 7s(a).

10

Chapter 3

The Storage Area Stowage Problem

The motivation for this chapter is to present a formalizatid the storage area stowage
problem. The formalization is based on an informal problesaatiption, which can be
found in the appendix B. The chapter begins with providingdgaound information about
various notions within the problem domain. After the backgrd information the informal
description is translated into a mathematical model.

3.1 Background

As goods are often manufactured far away from the consummedods will have to be

transported to the consumer. One way of doing this is by aoertized transportation over

sea, where vessels sail along preplanned routes. The pngplaoutes makes it simple
to decide, how containers can be transported from one adistnto another. Each route
forms a cycle and at each stop on the route, the vessel mapdiclontainers or load

additional containers destined for future ports. Themsfoessels arriving at any port will

usually have containers onboard. The containers arriiiagpart may come inland e.g. by
train or truck or by seaway e.g. other vessels. By connectinfjiple routes together, it

is possible to transport containers from one location tdtarowithout the establishment
of a direct route. Each container will have a load port andsaldirge port, which are the
ports, where the container is loaded onto the vessel andawheicontainer are destined to
respectively.

In order to accommodate various goods, containers come amgerof sizes. The sizes
are divided into standard measurements for containersyderdo alleviate planning of
container placement aboard a vessel. For consistency leowéns report only focuses
on containers with the measurements denoted 20-foot arfdotQwhich are the most
commonly used containers.

The stowage part of a vessel is divided into bays, dividiregghip in cross sections from

11

AY 12 1 Fiing i W 10 9 £ 7 3 H 4 i 2 1 HawchNo.
i £ i

10 B8 06 04 02 (0 DI 03 05 07 09 ? 3 ‘x “i ECO S T I w04 40 Bay Na.

o L"T-‘ I‘“ Sl = x 3735 3331 29 27 2523 24019 (715 13 Ul (007 0503 01 20 BayNa.

B6

Lt

el

B

TIER
14
12
{13}
i 1l 1t
s —— = —
i - —— f=—
M — il It =
" =
= —F
2 1l H ——
= | J—J—
10 0 D6 M4 02 Ol 03 05 67 09 Starboard

STACK

Figure 3.1:An overview of the layout of a ship. [7]

the stern to the bow. Containers are placed within each bayessel according to a plan,
referred to as the stowage plan. The containers are plattest below deck or above deck
that is, inside the vessel or out in the open respectivelyldter retrieval it is necessary to
determine the exact location of a container. Several schexists in order to establish the
position of each stowed container. The scheme, this reptruse, is based on dividing
the bays into slots fitting either one 40-foot container av 2@-foot containers. The slots
within a bay is structured as a matrix, where each columrfésned to as a stack and each
row is referred to as a tier. Due to the shape of the vessele sdrtne slots in the matrix
are not allowed to hold any containers. Tiers are counted fre bottom of the matrix and
up and stacks are counted from left to right. In order to idigtivo 20-foot container in a
slot, a slot is further divided into two cells. As a consequesof stacking 20-foot container
the term cell stack is introduced as cells in either one sideeostack or the other side of
the stack.

12

Port / / Starboard
4
3) ; Cell W in slot s5
% 5 15 — 4 i
Under Deck 3 ;
/ _______ Cell T in Slot sy
1
i] i 5 i 3 i 4 i 5 W 6 i 7 i
Stack Under Deck
Stern

Figure 3.2:An overview of the cell layout of a bay below deck.

Different height of containers may cause the actual locadiothe container to not match
the positioning system. However in order to ease identiioadf neighboring slots, this
report will regard the neighboring slots as the slots, wlach immediately adjacent to it
according to the positioning system.

Standard container

N)

High cube container

Figure 3.3:Models the positioning system for two neighbor stacks. Theksto
the left has been filled with standard containers, while theksto the right have been
filled with high cube containers. The dotted lines repreiemactual position of each
container according to the positioning system.

Containers stowed above deck and below deck are physiegigrated by hatches on the
deck of the ship. In order to sail safely, a number of safegcautions are given as rules
for stowage of containers. As these rules vary from abovebatalv deck, this report will
focus only on containers stored below deck. The safety reménts are described in the
following:

Due to the physical shape of the ship, a height and a weigtiatésn is put on the contain-
ers stowed in each stack. A maximum allowed height ensuedgiie containers stowed

13

below deck fits below the hatches on the deck. The maximurwadaveight of a stack en-
sures that the stress put on the hull of the ship by the stomet@iners is within acceptable
limits.

As the vessels travels overseas, the movement of the cergainust be restricted. This
is ensured by locking mechanisms attached to each cornercohtainer. Locking the
containers in this manner restricts the placement of 20dowtainers such that they cannot
be stowed on top of a 40-foot container.

Besides the physical properties of containers, goods hayeepies, which affect how con-
tainers can be arranged. Other properties, which will atfee arrangement of containers
are the IMO level of a container and temperature requiresnent

In order to be able to reduce damages from accidents, censaiith hazardous goods such
as fireworks, needs to be placed at a safe distance from athéicers with hazardous
goods. The IMO level is a description of how close containgh wertain goods can be

placed next to each other. This mechanism simplifies theinegents for specialized

knowledge of handling hazardous goods.

Perishable goods such as fruit or meat needs to remain asastanmt and low temperature
in order to avoid decomposition. Therefore these types otigavill need to be placed in
containers with temperature controlling devices. Cormtarof this kind are referred to as
reefers. Power is necessary to make the temperature dorgrdévice running, and there-
fore container can only be placed at designated areas witbrmsupplying capabilities.

Given that containers may be placed according to the regeinés above, many different
stowage plans may still be possible. Selecting one of theantgrary if no preference

has been defined. However, each valid stowage plan possesedifqualities and may
be preferred depending on defined objectives. One of thectogs usually defined by

any company is profit maximization. For container transgah this can in principle be

achieved either by increase the fee on transportation arcied the cost of transporting
containers. Due to the competition increasing the fee iaiadys a viable solution. Con-
sequently companies are forced to look at the cost instdagl olbjectives for reducing the
cost are defined as objectives for the storage area stowalglepr and are mainly centered
around arranging containers. The objectives are to mimrthe following: Overstows,

usage of stacks, wasted space and usage of reefer slots.

Cranes are necessary to unload or load containers and thefdosding or unloading
a container is calculated by a fee. An objective follows @itainers, which are to be
unloaded in the current port, is to be placed on top of eaatk staorder to avoid unnec-
essary container movement. Containers destined for fpionts that are stacked on top of
containers which are to be unloaded at the current portfesresl to as overstow contain-
ers. An overstow is inferred for each container stacked profanother container with a
smaller discharge port number.

14

As more containers are stowed within the same bay at fututts,pbis of interest to keep
as many stacks within a bay empty as possible. This will in fanovide freedom when
stacking future containers to maximize optimization ciée

The stowage of containers needs to be as compact as possiitéer to transport as many
containers as possible. If an arrangement of containerglaced, such that there is some
space, which cannot be replaced by a container then that spaonsidered wasted.

Reefers can only be placed in designated areas, where psweing supplied. Placing
non-reefer container in reefer slots may prevent a reefetaater to be loaded onboard
for some future port. Consequently as few reefer slots shbelused to place non-reefer
containers.

This section ends with a summary of the requirements fora§®Area Stowage Problem:

Physical requirements
Gravitation Each container has to be supported either bigdttem
of the deck or by containers.

Max Height The total cellstack height cannot exceed the
maximum cellstack height.

Max Weight The total weight cannot exceed the maximum weight

No 20-foot On Top No 20-foot container can be on top of a 4Q-6omtainer.

Safety requirements
IMO Each container are assigned an IMO level, and the rules
is that two IMO-2 container have to be separated by a
stack with no IMO-2.
Each IMO-1 container cannot be adjacent to other container
which is either IMO-1 or IMO-2.

Support requirements
Reefer Each reefer has to be near a power supplying unit.

15

Objectives
Overstow Each overstow will be penalized.

Empty Stack Each empty stack will be rewarded.
Wasted Space The amount of wasted space is penalized.

Reefer slot Each reefer slot which is occupied by a non-reefe
container is penalized.

3.2 Formal definition of SASP

In the following, the requirements specified in the problegfirdtion are translated into a
formal definition of Storage Area Stowage Problem.

A slotis defined as the 40-foot stowage unit of a container vessigjuely identified by its
bay, tier and stack position.

A stackdenotes the slots of the same bay that have the same statibpobi each bay,
stacks are counted from larboard to starboard, starting vit

Stack related notations = (sc, tc;, h;, w;)

sc :number of stacks

tc; € IN : number of tiers of stack

h; € R* . height limit in foot of stackj
w; € RT . weight limit in kg of stackj
J=A{1,...,sc} : indexed set of stacks

A storage areadenote lower-deck slots having belonging to the same bagsé€juently,
each slot of a storage area is uniquely identified by its 2edisional position consisting of
the tier position: counted bottom-up and its stack positipoounted from left to right.

Since a slot may hold two 20-foot containers it is necessadydtinguish their positioning
relative to the slotitself. &ellis defined as the part of a slot needed for a 20-foot container.
The sides of a slot having place for two containers are refetw as the bow-side cell and
the stern-side cell respectively. A slot, which can accomiate a single 20-foot container,

is either placed on the bow-side or the stern-side deperuinige ships physical structure.
W denotes the bow-side of a cell! denotes the stern-side of a cell. Lietdenote set of
cells possible for a slot.

16

Slot related notations = {S,r; ;, t2%, ¢/%, L; ;}

Gt
Sij :]: slot at stackj and tier:

ri; € B . trueif s, ; is areefer

t2% € B . true if s;; can hold 20-foot containers
tf“; e B . true if s, ; can hold 40-foot containers
L={W,T} . set of sides of a slot

Li; CL . set of cells that can be taken by 20-foot

containers it?) is true or by 40-foot
containers it}) is true

S={s;; :1<j<scN1<i<tc;} : indexed setofslots

C" is the set otontainers already on boarbefore arriving to port, and remain on board
after the vessel leaves pdrt

C' is the set otontainers to be loadeithto the storage area at pdrt

C' denotes the entire set of containers, which will be onbdadhip when departing from
portlie.C =C° U C.

P is the number of ports on the route the vessel sails.

Properties of containerc C

dp. € {1,..., P} : discharge port number of container
we. € RT . weight in kg of container

h. € {8.5,9.5} . height in feet of container

imo. € {0,1,2} . IMO-level of container

l. € {20, 40} . length in feet of container

r. € B . true if containerc is a reefer

Besides the properties defined above, on board containecghstheir load port and their
stowage position in the vessel.

Additional properties of a containerc C°
Ip. € {1,..., P} : load port number of container
p. € S x 2F . on board position of container

For conveniencey denotes the collection of container related properties:

Y= (dpm We, hm imoc; lm Te, lpca pc)

17

An assignmenbr astowage plarns an arrangement of containers within the vessel.
A% CY — S x 2L defined byA°(c) = p. is the stowage plan for containers on board.

Al . C' — S x 2% is the stowage plan for containers to be loaded at port

Definition 3.1 (Assignment) An assignment of containersdnis a total functiond : C' —
S x 2F

[A%) ifceC?
Ale) = { Al(e) ifceC?

The projections on slot and cell for a containere:
Ag : C — Sis the projection ofA on S.
Ay . C — 2l is the projection ofd on 2%,

Definition 3.2 (Storage Area Stowage Problem(SASP)The storage area stowage prob-
lem is a 5-tupl€C?, C*t, o, 3, 7).

Example 3.1 Consider the stowage area shown in Figure 3.7, consistiagsofgle stack
and a container on board.

Co

Figure 3.4:Stowage area with one stack.

Stack properties are = (sc = 1,tc; = 5, hy = 43, w; = 14000)
The set of slots i$ = {8171, 51,2, 51,3, 51,4, 8175}
Slot properties are:

Bty ti L "

s15 | true false {W} false
S14 | true true {W,T} false
s13 | true true {W,T} true
s12 | true false {W,T} true
s11 | true false {W,T} true

The set of containers on board &Y = {¢,}
The set of containers to be loaded®: = {c,, ¢y, c3, ¢4}

18

Container properties are:

Y | dpe, le, Tei lpe, pe we, he, imo,
c | 2 20 true O (s11,W) 14000 85 0
|2 20 true - - 1400 85 0
c | 3 40 false - - 2800 85 0
c3 | 4 20 true - - 1400 85 0
cy | 2 20 false - - 1400 85 0

The assignment for containers on boardic,) = p,,

The SASP of this configuration {£°, C*, a, 3, v, A°)

Before enumerating the constraints and objectives of thBlpm, some additional sets are
constructed, that will ease the writing.

Container sets

C,={ceC : .=z} : containers of length € {20, 40}
Cmoz={ceC : imo. =z} . containers having IMO level € {0, 1, 2}
Cij={ceC :3i.1<i<tc;NAs(c)=s;;} : containers assigned to stagk
Cl={ceC:ceCjnleAL)} . containers assigned to sitlef stack;
Ci;j={ceC : Ag(c) = si;} . containers assigned g,

Cor={ceC : —r.} . non reefer containers

Slot and Cell Sets

SO = {si1,j, Siv1,, Sij—1, Sij+1} . slots that cannot stow an IMO-1 container
in case slot; ; holds an IMO-1 container
SMO2 — {51 0 1<k <tc;1}U . slots that cannot stow an IMO-2 container
{skj+1 : 1 <k <tcj1}U in case slot; ; holds an IMO-2 container
{sp; 1 1<k <iVi<k<te)
S ={A(c):c € Cy} . cells storing non-reefer containers

Cell coverage

T:; = Ucecm Ap(c) : cells covered by containers assigned;tp

0ij & Lij ="T;; . 0;, true if slot s; ; is fully occupied

oy & W eT; . o) true if the bow side of slot; ; is occupied
o, T eT, . o] true if the stern side of slot, ; is occupied

Example 3.2 if a 40-foot container has been placedsat thenT; ; = {W, T}

19

Constraints

CT1 All containers are assigned to a cell of a slot
Vee C.Ag(c) =5, = Ar(c) C L;

CT2 A cell can hold at most 1 container
Ve, € C.c#c NAg(e) = Ag(c) = Ap(c) N Ap(c) =0

CT3 A 40-foot container must cover both sides of a slot
Ve € 040 . |AL(C)| =2

CT4 A 20-foot container is allowed to cover one cell in a slot
Ve € Cgo . |AL(C)| =1

CT5 Assigned slots above tier 1 must form stacks (gravity caurstiy
Vsi,j €S. 0i.j /\j >1= 0;—1,5
CT6 20-foot containers cannot be stacked on top of any 40-fautiadoer

Ve € Cyg Ve € Cop . As(can) = sij = As(cao) # Siv1j

CT7 The height of each cell stack is within its limits
VjeJvliel. ZceCJl. he < h;

CT8 The weight of each stack is within its limits
Vi€ J. Yeec, we S wj

CT9 Reefer containers must be placed in reefer slots
Vee C.re NAg(c) =s;; =1

CT10 IMO rules are satsified for each container

Ve € Cimo-1 U Civo-2 V¢ € Civo- - Ag(c) = s = As(CI) ¢ SZ!!\;'O'l
Ve, ¢ € Cimo-z - Ag(c) = Sij = Ag(c) ¢ SZ'-Z'O'Z

20

Objectives

OE1l

OE2

Minimize overstows

There is a cost penalty of one unit for each container in &siaerstowing another
container below it in the stack. The unit weightis,,.

There is arverstowbetween any two distinct containers in case they belongeo th
same cellstack and the discharge port of the container gt@véhe lower tier is
higher than the discharge port of the container stowed dtititeer tier.

The binary relation< on S x S defines whether two slots belong to the same stack
and whether the first slot is located below the second slot:

Sij; =< S i Si<i A j :j/

ov : C x C — IB defines if there is an overstow between two containers:

ov(c,c) e c#¢ Ndp. < dpy A Ag(c) < Ag(c)NAL(e) N Ap(c) #0
Definition 3.3 (Overstow cost) F,,,(A) = |{(c,¢) € C x C : ov(c,¢)}]

Minimize the space wasted in a stack
The cost penalty is the length of wasted space. The unit wesdh,,.

A stack consists of two cellstacks that do not necessariy ltlae same number of
containers stacked into them. Therefore the two cellstaeksgrow to different
heights. Thevasted spacef the stack is defined as the sum of the wasted space of
its two cellstacks. There is no wasted space in a cellstatheie is enough space
space to fit a standard container, otherwise the wasted spé#uoe space left in the
cellstack.

fs:J x L — IR defines the available space on sid# stack;:

fs(jv l) = hj - Z hc

cEC’Jl-
ws : J x L — IR defines the wasted space on sidé stack:

0 if fs(jv l) Z hst

us(j,1) :{ Fs(i. D) if fs(5,1) < ha

Definition 3.4 (Wasted space costf,s(A) = > . ;(ws(j, T) + ws(j, W))

21

Standard container Wasted space
el

High cube container

Figure 3.5: Skewed positioning system
Due to a skewed positioning of containers in the right staested space is introduced
in the top in which no containers can be placed.

OE3 Avoid loading non-reefers into reefer slots

The cost penalty is one unit for each non-reefer containarneefer slot. The unit
weight isWV,.

Definition 3.5 (Reefer cost) F;.(A) = [{(si;, 1) € S™ : 7}

OE4 Avoid starting new stacks

The cost penalty is one unit per new stack used. The unit wesgh, ..
Definition 3.6 (Empty stack cost) F.,(A) = |{j € J : |C}| > 0}]

Definition 3.7 (Cost of an assignment)The cost of a solution is the weighted sum of the
costs defined for objective®E1) - (OE4):

F(A) = WovFov(A) + stFws<A) + WTFT<A) + WesFes(A>

Definition 3.8 (Valid Solution of the SASP) A valid solution of SASP is an assignment
of containers to be loaded in portA' : C* — S x 2F, such that the total assignment of
containersA : C' — S x 2 satisfies constraint€)T1)-(CT10).

Definition 3.9 (Solution space)The solution space fof ASP is the setA! of all valid
solutions.

Al = {All . AVis a valid solution of SASP}

22

Definition 3.10 (Optimal Solution of the SASP) An optimal solutionA™ of SASP is a
valid solutionA! that minimizes the cost functidn(A).

AY = argmin F(A)
AVeat

Example 3.3 Consider SASP defined in Example 3.1:

Al(Cl) = (81,17 {W})

Al(Cz) = (81,3, {VV, T}) Co
Al(Cg) = 8172, {T}) C3 Cy
A1(04> = |S51,2, {W}) Co | C1

51,2, {W})
8173, {W, T}) Co
8171, {T}) C1 Cy
s12:{7T'}) co | c3

N
—_
TN TN TN N
®)
)
— N
|
NN NN

Figure 3.7:An optimal solution with cos950.

23

24

Chapter 4

Evaluating CSP representations of SASP

Many variations exist on how to represent the Storage Area&je Problem as a con-
straint satisfaction problem. Three possibilities haverbeonsidered on how to model
SASP as a CSP - naméelZontainer as variables and slot as domain valuesSlot as
variables and container as domain valueafid"Cell as variables and container halves
as domain values” These suggestions will be referred tocamtainer-modelslot-model
andcell-modelrespectively. A presentation for each model is given withriaftdescrip-
tion, followed by how domain values are pruned then pros amt @re outlined. After
the presentation, a scoreboard follows with a conclusiowlath model was chosen. In
this chapter the initial step of how to translate the comstsanto propagators is shown by
identifying the pruning operations.

4.1 Pruning operations

Before outlining each model, the pruning operations, whihrequired to satisfy the con-
straints in SASP, are presented. The necessary pruningtopes have been identified
by analyzing each constraint and extracting the operatiegsired. Table 4.1 shows the
pruning operations identified. Table 4.2 illustrates, hasteconstraint is covered by some
pruning operations. As the table shows, no pruning coulchberried fromCT1, so this
constraint must be implemented by other means.

PG1- Uniqueness
Each container to be loaded are used from the same pool, whpiles placed containers
cannot be considered for another slot. Each cell can onlysbd ance.

PG2- Gravity

When placing a container sufficiently high in a stack, it guieed that some containers are
placed underneath it, in order to avoid it from falling to th&ttom of the ship. The term
support is introduced to state that a container is requineatder to ensure that a placed

25

ID Name Constraint Pruning

PGl Uniqueness CT1 N/A

PG2 Gravity CT2 PG1

PG3 Reefer CT3 PG8

PG4 Pick IMO-1 container CT4 PG1

PG5 Pick IMO-2 container CT5 PG2

PG6 Pick 20-foot container CT6 PG6, PG7
PG7 Pick 40-foot container CT7 PG9

PG8 Cover 40-foot container CT8 PG10
PG9 Height CT9 PG3
PG10 Weight CT10 PG4, PG5

Table 4.1: Pruning operations Table 4.2: Pruning coverage

container stays at its position.

PG3- Reefer
A reefer container cannot be in a non-reefer slot. Howewecgest is given by the problem
which slots have reefer capability this pruning can occuorgo the search.

PG4 - Pick IMO-1 container
According to the IMO constraint, neighboring slots is ndévakd to accommodate IMO-1
container once an IMO-1 have been placed in a given slot.

PG5 - Pick IMO-2 container

According to the IMO constraint, slots in the current andgheioring stacks is not allowed
to accommodate IMO-2 containers, once a given slot in a oustack is assigned with
an IMO-2 container. Furthermore, neighboring slots to tivergslot may not contain an
IMO-1 container as well.

PG6- Pick 20-foot container

It should not be possible to place any 20-foot container gndba 40-foot container.
Therefore in the case when a 20-foot container has beendohecé0-foot container can be
considered for any slots below it.

PG7 - Pick 40-foot container

A constraint states that it should not be possible to plage2@dfoot container on top of
a 40-foot container. Therefore, in the case where a 40-foatainer has been placed, no
20-foot container can be considered for any slots above it.

PG8 - Cover 40-foot container
A 40-foot container must cover an entire slot.

PG9- Height
In the problem definition, a height limitation constrainsHaeen given. Since all stacks
are divided into slots and only two different container Inesgavailable, pruning will not

26

occur until one empty slot in a given stack remains. For thé&son, no pruning will occur
based on the height constraint. An alternative mechanissds® ensure that the height
limitation is respected.

PG10- Weight

The weight constraint states that each stack cannot exteeekight limitw,;. The re-
maining weight, is the weight that can be added to sfadlefore exceeding,; no matter

if some containers have been placed or not. The remainingoauof slots, will be the
number of slots, where nothing has been placed yet and theimamg available containers
are the containers, which still needs to be placed withirbthe In the general case it will
be that either all remaining available containers can beeplavithin stackj; or somen
lightest containers can be placed before exceeding theimargaveight. Ifn is less than
the number remaining empty slots, then it can be inferretidhly »n slots can be filled up
with then lightest containers before exceeding the weight limitatibherefore the rest of
the slots cannot be assigned to any container. Since gralgtyequires that containers are
supported, the bottom available slots have to be filled aadiiper available slots can be
left with nothing.

4.2 Container-model

Variables: Container
Domain values: Slot

Approach: The idea behind this model is to have containers represestedriables and
then consider, which slot each container should be assigne8ince this is the task of
SASP this representation seems to be a natural choice fi@as@nuting the CSP-model.

Pruning:

PG1 Slot s; ; can be pruned away as a candidate value, when it has beercéwiéred
by containers. When the assigned container covering thésséo40-foot container,
s; ; can be removed immediately. Assigning a 20-foot contanegplires thas, ; is
checked for whether it has been fully covered before beinggua away.

PG2 When placing containers it has to be ensured that there amegbncontainers to
support it. When the number of containers needed to suppor ®ther container is
the same as the number of available containers to be pldwdstots, which do not
have any placed containers above the picked slot, can begmway as candidate
values from all the available containers to be placed.

PG3 Each reefer container can only be placed in a reefer slotewamon-reefer container
can be placed in either a reefer or a non-reefer slot.

27

PG4 Picking some slot; ; for an IMO-1 container prunes any slot according to the IMO
constraint for any IMO-1 container.

PG5 Picking some slo; ; for an IMO-2 container prunes any slot according to the IMO
constraint for any IMO-1 and IMO-2 container.

PG6 Picking some slog; ; for a 20-foot container prunes any slot in stgckelow tier:
as candidate values for any 40-foot containers.

PG7 Picking some slos; ; for a 40-foot container prunes any slot in stgcébove tier:
as candidate values for any 20-foot containers.

PG8 40-foot container has the same dimension as a slot, it igfiver ensured by the
model that a 40-foot container fully covers a slot.

PG9 As described previously this pruning operation will not loesidered.

PG10 When only then lightest containers can fit in a stagk All available containers,
which are not among the lightest containers needs to get slots pruned away. The
slots, which are required to be pruned away, are those tbescimPG10in section
4.1.

Advantages:

e Since the search goes through all containers, it is enswréddeomodel that every
container will be assigned.

e Reefers can be pruned prior to search

e Do not need to prune anything f&/G8.
Disadvantages:

e The gravity constraint is difficult to ensure, since this rloctlies on forcing some
containers to pick specific cells.

e Placed container may potentially affect where all othettamers can be placed.
For instance placing an IMO-1 container will affect wheretther IMO-1 containers
can be placed.

e The number of variables, which will be affected B¢ 10are all unassigned vari-
ables.

The following model takes the reverse of the previous apprdey looking at the stowage
area and examines what can be fitted into each slot. Since thenot be more contain-
ers than slots available, some slots are assigned but Igftyenf\n air value has been
introduced to denote that a slot remains empty.

28

4.3 Slot-model

Variables: Slot
Domain values: Containers

Approach: This model uses the slots as variables and containers asiroalaes. In
example, for each slot, one can chose which container itldlemeommodate. Since a slot
can accommodate a 40-foot container and some containerbena@-foot long, placing
two 20-foot containers within a slot poses an issue. Oneagapris to construct pairs of
20-foot containers, which will result ifCy|* of such combinations. In addition, one 20-
foot containers may be placed in a slot alone, leaving hatfiefslot empty. Furthermore,
special slots exists, which can only hold a single 20-fooitamer.

Pruning:

PG1 When a containet has been used, it needs to be pruned away as a possibility from
all other unassigned slots.dfs a 20-foot container, then all domain values, in which
c appears, has to be pruned away as a candidate value as well.

PG2 When a container is placed in a slot, all slots underneatannot select the intro-
duced air value for assignment. That is, when a 40-foot coettas placed in slot
si j, the air value is pruned away from the domain of any variabtmned in the
same stack beneath;.

PG3 Each reefer container can only be placed in a reefer slotevamy non-reefer con-
tainer can be placed in either a reefer or a non-reefer cell.

PG4 Picking some IMO-1 container for slet; prunes any IMO-1 container as candidate
value for slots according to the IMO constraint.

PG5 Picking some IMO-2 container for slef; prunes any IMO-1 and IMO-2 containers
as possible candidate values according to the IMO constrain

PG6 Picking some 20-foot container for slgt; prunes any 40-foot container as candidate
value for slots in stack below tier:.

PG7 Picking some 40-foot container for slot; prunes any 20-foot containers as candi-
date value for slots in stackabove tieri.

PG8 40-foot container has the same dimension as a slot, it iefihier ensured by the
model that a 40-foot container fully covers a slot.

PG9 As described previously this pruning will not be considered

29

PG10 Each stacki will only be able to accommodate thelightest containers before ex-
ceeding the weight limitation. All other containers to baqad can be pruned away
as candidate values from any slotsgjinFurthermore if the number of slots available
in the stack exceeds it can be inferred that all but the lowestslots will have to
accommodate air, since any containers above tier 1 needssogdported.

Advantages:

e The search can be done such that the slots are filled in a bati@pproach, thereby
respecting the gravity constraint.

e Reefers can be pruned prior to search.
e Simple to reason about containers placed in a stack.
e Do not need to prune anything f&/G8.

e The number of variables, which will be affected B¢ 10, are limited to only one
stack when using this model, as opposed to the containeelnwtlere all variables
are affected.

Disadvantages:

e Since any slot initially can pick air as a candidate valud,allbbcontainers may be
placed within the stowage area. This has to be ensured byduntmg additional
propagator.

e Implacable IMO-1/IMO-2 containers are potentially diseosd late.

4.4 Cell-model

Variables: Cells
Domain values: Containers

Approach: The drawback of using the slot-model, is the number of dormalones. To
address this issue, the following model is introduced, Wiaigoids the combination of 20-
foot containers by using cells as variables. By having @dlsariables one can fit exactly
a 20-foot container. However, 40-foot containers will notafithin a cell. This issue can
be handled by splitting 40-foot containers into matchintyés For convenience, when a
container half is mentioned in this section, it refers tah@®0-foot container or a 40-foot
half container.

Pruning:

30

PG1 Picking containert for slots; ; prunesc from any other slot.

PG2 When a container is placed in a cell, all cells underneathntmot select the intro-
duced air value for assignment. That is, when a 40-foot coettas placed in slot
si j, the air value is pruned away from the domain of any variabtmned in the
same stack beneath,;.

PG3 Each reefer container can only be placed in a reefer cellevamon-reefer container
can be placed in either a reefer or a non-reefer cell.

PG4 Picking some IMO-1 container cdlln slots; ; prunes any IMO-1 container in slots
according to the IMO constraint.

PG5 Picking some IMO-2 container cdliin slot s; ; prunes any IMO-1 and IMO-2 con-
tainer in slots according to the IMO constraint.

PG6 Picking some 20-foot container for céih slots; ; prunes away any 40-foot contain-
ers in cells below tiet in stack; and on the same side as ckell

PG7 Picking some 40-foot container for célin slot s; ; prunes away any 20-foot contain-
ers in cells below tiet in stack;j and on the same side as ckll

PG8 40-foot container needs to be cut in half to fit a cell, themefensuring that the two
halves are placed next to each other is required. This cantbeved by pruning all
domain values except the other half from the domain of thghimr cell.

PG9 As described previously this pruning will not be considered

PG10 Each stackj will only be able to accommodate thelightest containers before ex-
ceeding the weight limitation. The containers to be placaa, be pruned away as
candidate values from any cells jnwhich only can accommodate air.

Advantages:

e The search can be done such that each stack is filled bottothengby respecting
the gravity constraint in a natural way.

e Maintaining 20-foot container pairs is not needed, whigduhs in a narrower search
tree than the slot-model, due to smaller domains.

e Non-reefer cells can have their initial domains pruned tly select the non-reefer
container halves.

e The number of variables, which will be affected B¢ 10, are limited to only one
stack when using this model, as opposed to the containeelnwtiere all variables
are affected.

31

e Simple to reason about containers placed in a stack.

e Do not need to prune anything f&/G8.
Disadvantages:

e Number of variable is doubled, compared to the slot-modeickvresults in a deeper
search tree.

e Additional constraints needs to be added:

— 40-foot container half has to be placed next to its other. half

— 20-foot containers cannot be placed next to 40-foot coatdialves.

4.5 Conclusion

The variable and domain sizes are summarized in table 4 8urAisg that there are suffi-
cient slots for the containers, the table shows that thengetlel has the most variables and
thus results in the deepest search tree. The containertwidbteave the lowest number
of variables and therefore have the shallowest search free.domain sizes shows that
slot-model has the largest domain size and therefore atsodas the widest search tree.
The cell-model result in the narrowest search tree due tddhsain size.

| Container-mode| Slot-model | Cell-model
Variables| [C] 5] |S]|L]
Domains| |S| |Caol + |Caol® + 2|Cl | |C]

Table 4.3:space complexities for the given elements in the futureiegipbn

Table 4.4 shows how many variables are affected when prurasgd on a constraint is
bay, which has the most tiers. As the table shows, the cartanodel will depend on the
number of containers when pruning. For the other two modesatmnount of pruning is

mainly dependent on the stack size. Since it is expectedthleatumber of slots which

appears in a stack is significantly less than the number dfagwars, it is expected that
either the slot-model or the cell-model is affecting lessalales than the container-model.
The number of domain values in the slot-model is signifigahtgher than in the cell-

model. Based on the above observation, the model chosea celikmodel.

32

Container-mode| Slot-model| Cell-model
PG1- Uniqueness |C |S] |S]|L|
PG2- Gravity |C| |tc| |tc|
PG3- Reefer - - -
PG4 - Pick IMO-1 container | |C| 4 9
PG5- Pick IMO-2 container | |C| 3tc] 3| L||te|
PG6 - Pick 20-foot container | |C/| |tc| |L||tc|
PG?7 - Pick 40-foot container | |C| |tc| |L||tc|
PG8 - Cover 40-foot container - - 1
PG9- Height - - -
PG10- Weight |C| |tc| |tc|

Table 4.4:Shows the maximum number of affected variables when peifayuif-

ferent pruning operations in the three different models.

33

34

Chapter 5

CSP representation of SASP

Based on the analysis for selecting a proper represen@itiSASP, the CSP-Model needs
to be detailed further. This chapter presents the CSP-Modefms of variables, domains
and propagators. It is shown how pruning operations cardnsfiormed into propagators.

5.1 Variables

Each variable in the CSP model corresponds to a cell as defindg SASP. The set of
variables is:
X = {a!

2

D85 € SNALe Lm’}

Table 5.1: Model specific variable sets
X397 ={a; ;€ X : s;;€ 5507} variables that cannot stow an IMO level
when an IMO levek has been placed i) ;
Xf={al , e X\S: L¢D(z,} : allunassigned variables, which cannot
accommodate air

For convenience, a neighboring operation is defined on thefseells L, to denote the
other side of a cell within a slot:

W=T,T=W.

5.2 Domains

Since variables are cells, a variable cannot be assignetltd@ot container. Consequently,
40-foot containers are divided into two halves, each halhma@ing the properties of the

35

original 40-foot container. To identify the two halves thadke up an original 40-foot con-
tainer, the halves are given the same unique identifier.isntlodel, thecontainerterm is
used both for 20-foot containers and 40-foot containerdghA 40-foot container half is
marked similarly to a cell, as being bow or stern.

Model specific container sets

Cll={c",c" :ceCy} . 40-foot container halves

CH ={reCll ceCy : —r.} . non-reefer 40-foot halves and 20-foot containers
CH={reCll,ceCy :r.} . reefer 40-foot halves and 20-foot containers
Clo,={c*e€ Cl ce Oy : imo. =z} : 40-foot halves and 20-foot containers with IMO-

The neighboring operation on the set of cells still holdsafTik, the corresponding half of
a 40-foot halfc* is .

In case the bay has more cells than containers, some of tsexdktremain empty. Letl
denote the domain value that indicates that a cell is lefttgnihe "air” term is used as a
synonym forL. The properties for. are:

h, =0, w, =0,1, =0, imo, =0, r;, = false, Ilp, =0anddp, = 0.

The domain of a variable consists of the containers the aellaccommodate. Some slots
can stow a single 20-foot container. Therefore 40-foot@imetrs are excluded from the do-
main of the cells belonging to these slots. Reefer contaio@n only be placed into reefer
slots and therefore reefer containers are excluded frorddh®&in of non-reefer cells.

Let D(z! ;) be the initial domain for each variahl .

(cH U {1} Dt A ATy
cinchyuy{L C St AN
40 nr 2,] .7 2]
C20 U {J‘} . tZZS N _‘t?g- A\ Ti,j
(Cy N CHY U {L} A AT
D(z};) =< Ci U Cy U {L} DAL A
CHUCyy)NCHEYU{L}Y : t2AtOA—w;
40 nr 2,] 2,] 5]
{c} : Jee Oy . Ad(c) = sij ANl e AY(c)
{} Cl=AA3r e Cl AV) = s N1 € AYc)
. 20 40
L @ . _‘tl,] /\ _\tl,j

Example 5.1 Consider the SASP defined in Example 3.1.
The set of variables is:

_ W T W T W T W T W
X = {xl,lvx1,17x1,27x1,27x1,37x1,37x1,47x1,47x1,5}

36

The set of 20-foot containers is:
Cop = {Co, C1, C3, 04}
The set of 40-foot container halves is:
Cio={a, 2}

The initial domains are :

1) = {co}

1) =1{c, 3,60, L}
1) = {c1,¢3,¢4, L}

x{Q) {c1,¢3,¢4, L}
Y= {c1, Y, el es,eq, L}
) ={c1, ey ek eseq, L}
) = {02 7027047J-}
5) ={cs, L}

5.3 Additional constraints and pruning operations
Besides the constraints given in SASP, this model introgltivee additional constraints:

CT11 The two halves of a 40-foot container must be placed in theesslat

CT12 A cell that accommodates a 20-foot container excludes tksibpitity of its neighbor
cell to accommodate a 40-foot half

Vi

i HGX aii=chceCyphal;=d=c¢Cy

CT13 Allowing each container only to appear once

Vi

i HGX), #x ANl =chal,=d =c#d

In addition the following pruning operation is defined:

37

Constraint Pruning

CT11 PGS8
CT12 PG11
CT13 PG1

Table 5.2: Pruning coverage for
additional constraints

PG11- Placing a 20-foot container excludes any 40-foot containe
By definition a slot can typically accommodate either twof@6t containers or a single
40-foot container. Placing a 20-foot container excludgs4ifoot container to be placed

in that slot.

5.4 Propagators

As defined in section 2.1 propagators remove values in comfiib constraints. Table 5.3
presents the propagators derived by analyzing the prurpegations described in section

4.1.
ID Name Pruning Propagators
PR1 Unigueness PG1 PR1
PR2 Gravity PG2 PR2 PR3
PR3 Air PG3 N/A
PR4 IMO-1 PG4 PR4
PR5 IMO-2 PG5 PR5
PR6 No 20-foot container ontop PG6 PR7
PR7 No 40-foot container below PG7 PR6
PR8 Correct halves PGS8 PR8
PR9 Overfitting PG9 N/A
PR10 Forced air due to space PG10 PR11
PR11 Forced air due to weight PG11 PR9

Table 5.3:Propagators

Table 5.4:Coverage

PR1 Uniquenessa container cannot be assigned to more than one variablina¢ a

" [{neD(x):n# xij} e X\ {xﬁj
PiD)) = { D(x}, ;) otherwise
Ipu = {xﬁ]

Opu = X'\ {xﬁ]

38

PR2 Grauvity: the cells below a cell that stows a container cannot be tefitg
. } . .
’ iy An€D(xy,) rai; #F L=n# L} ifk<i
P(D) ;) = { D(x} ;) otherwise
ng = {xid}

OPg = {.I'LJ k< ’L}

PR3 Air: the cells above a cell that is empty cannot stow a container
" Ly {neD(,) al;=L=n=1} ifk>q
P(D)(wk;) = { D(x}, ;) otherwise
I’Pa — {xi’]

Opa = {.flf;f’] .]{f > ’l}

PR4 IMO-1: a cell stowing an IMO-1 container restricts the stowageM®}1 containers
according to the IMO constraint

PIMOL(D) (1) = {n €D(z) : imo,; =1=n¢ Cimoa} forallz e Xj¥O1
D(x) otherwise
Ipuvlo-l = {[L’é’j

OleO-l = lelel

PR5 IMO-2: a cell stowing an IMO-2 container restricts the stowageM®}1 and IMO-2
containers according to the IMO constraint

{neD(x):imoy =2=n¢Cfo,t forallaze XMt
PMO2(D)(x) = {neD(x): imo, =2=n¢C o, foralze XMO?
D(x) | otherwise
I’]DlMO-Z - {l’ij}
Opivmo2 = Xz!f\j/-lo'l U XZ!!\](IO-Z

PR6 No 20-foot container on topthe cells above a cell stowing a 40-foot half cannot stow
20-foot containers.
PAO20(D) (41) = {n eyD(xz’j) Dl =40 = n ¢ Oy} forall k > i
J D(z) otherwise
Ip40-20 — {l’ﬁ’]
Op40-20 = {xz,j k> Z}

39

PR7 No 40-foot container belowthe cells below a cell stowing a 20-foot container cannot
stow 40-foot halves.

P-A0(D) (¥) = {n € D(zy;) : L =20 =mn ¢ Cfty forallk <
o D(x} ;) otherwise

Ip2010 = {xé,j

Op20-10 = {ZL’ZJ k> Z}

PR8 Correct Halvesthe halves of a 40-foot container must be placed next to etwdr.
. _ I _ .z _ .z i
PO (D) (1) = {n € D(x) : l:vi-’j =40 A x;J = cz =n = CE} T € {x”
{n € D(x) : lxéyj =40 AN a;; =c* = n#c’} otherwise
Ip40»40 = {l'i-d-
Op40-40 =X

PR9 Overfitting a 20-foot container placed in a cell excludes the possitoli its neighbor
cell to accommodate a 40-foot half.

P2 (D) () = {n € D(x) : lxé.’j =20=>ne€Cy U{L}} =z € {xﬁj}
D(x) otherwise

Ip20»20 = {xé7j}

Op20-20 = {CL‘EJ}

The above defined propagators are sufficient for repreggthténconstraints of the problem.
However, additional propagators have been introduced dierato enhance pruning and

discover deadends and solutions earlier.

PR10 Forced air due to spacef the number of containers, not assigned to a cell, is etpual
the number of cells that must hold a container, the rest o¢fis are left empty.

X4 ={zl; e X\ S : L eD(,)}is the set of all unassigned variables, which can
accommodate air.

P (D) () = {neD(x): |CHUCy\ns(@)| =|XE|=n=1} reX
D(x) otherwise

I’pa»s = {:L'ﬁd

O’Pa-s — XA

40

PR11 Forced air due to weightAs described irPG10in section 4.1, cells that cannot ac-
commodate any container should have its domain pruned focamitain air. In order
to resolve the cells, which cannot accommodate any contdioléowing notation is
introduced:

I j?O is the index set of variables of staglassigned to a 20-foot container:

0 ={(i,l) : o}, =cAhceCy}

ij

IV is the index set of variables of staglkassigned to a 40-foot half:

[;-m = {(i,1) : 2! ANt e oy

2/

W; is the current weight of stack

; 20 ' ; 40
(4,D)€l3 (z,1)el?

n 1S the number of available containers:

n = ‘Cfor U Cgo\ﬂg<6)|

® is the sequence of available containers ordered by weight:

® = {cy, ¢, ..., 000, € Clp U Cop \ ms(a@) andw,, < we, < ... < w,,
m; is the number of cells in stackthat can be filled without weight excess:
k
mj = argmaxchpz < (w; — W)

kel..n 1

XJ’. is the set of unassigned cells in stagksdel above tiem;:

X]l-:{xﬁ,j : xajeX\S/\izmj},leL

]jl. is the index set of unassigned variables of stasldel:

U E
Li={i: 2, € X\S}lel

{neD@):m;<|ll]=n=1} = eX]
D(x) otherwise

Pr(D)(e) = {

I’Pa-’w == {JJLJ

O’pa-’w - le

41

5.5 Early termination criteria

Some requirements cannot be discovered by the propagatprsfehe number of con-
tainers to be loaded exceeds the available space. Othetizidp not prune away enough
values or happen so late that it does not pay off to prune leegheight limit. Early termi-
nation criteria are introduced to represent constrairgsdhe not modeled by propagators.
A termination criterion is a boolean function that indicatghether a specific constraint
is satisfied. In case the early termination criterion is &iusead end has been discovered,
and the search cannot continue along current search patbayntermination criterion is
denoted ag* wherea stands for the name of the termination criterion.

ETC1 The height of a stack has exceeded its limit.
tc;
Vi M) & hy >y
z=1 N
ETC2 The weight of a stack has exceeded its limit.
te;

Vi . EV(j) < Zwazz’j > w,

z=1 leL
ETC3 Too many containers: all containers cannot be placed witiérspace available.
gXC = |Ci% U 020\71'3(6” > |X\S|
ETC4 Too many reefers: all reefers cannot be placed within thdadbla reefer cells.
EXNM e |0\ ms(@)] > i, € X 2 rigy\ S|
ETC5 Too few containers: not enough containers to support theagwers already placed.

£ e |G\ ms(a@)] < | X7

5.6 Correctness of propagators

Propagators and early termination criteria may not haveea@one relationship with con-
straints in the formal model. In some cases, several prapegar a combination among
propagators and early termination criteria implement glsiconstraint. This section es-
tablish correspondence between propagators/early tatimimcriteria and constraints from
the formal model. The correctness is shown through seriagyopimentation.

CT1 All containers are assigned to a cell of a slot

42

CT2

CT3

CT4

CT5

CT6

The constraint is represented 6y °.

£X¢ guarantees that a complete instantiation has all contaassigned to a cell. The
proof is by contradiction: assume that the search can ret@omplete instantiation
where not all containers are assigned. This contradictdefieition of £X¢, which
stops search if the number of available cells is less thantingber of containers to
be assigned.

A cell can hold at most 1 container

Since variables are cells and each variable can be assigoee tvalue at a time, the
constraint is implicitly represented by the model itself.

A 40-foot container must cover both sides of a slot

The constraint is represented By4°.

When a 40-foot container is assigned to a cell, the domaimeieighbor cell is
pruned to contain only the other half and all other variakldshave the other half
pruned away from their domain.

A 20-foot container is allowed to cover one cell in a slot

The constraint is represented BY.

Whenever a containeris assigned to a ceMﬁ-J, P prunes away: as a candidate
value from all other cells than!

; » Which ensures that can never be chosen again
for any other cell.
Assigned slots must form stacks
The constraint is represented By andP“.

Whenever a containeris assigned to a cell, ;, P9 removes air as candidate value
from all cells beneath! ;. Therefore, air cannot be chosen beneath a cell that accom-

modates a container.

Whenever air is assigned to a c“eﬂj», P prunes away all other values than air from
any cells above! ;. Therefore, a container can never be placed above some air.

The combination ofP? and P¢ ensures that there will never be air between two
containers in a stack.

20-foot containers cannot be stacked on top of any 40-foutiatoer

The constraint is represented By’-2° and P00,

For this constraint it will only matter if a cell is assignedi@-foot container or a
20-foot container.

In case a 40-foot container is assigned to a egll P*>*° prunes away 20-foot
containers from the domain of all cells abax;ﬁ%, ensuring that 20-foot containers
can never be placed on top of a 40-foot container.

43

CT7

CT8

CT9

CT10

CT11

CT12

In case a 20-foot container is assigned to axﬁgl] P29-10 prunes away 40-foot con-
tainers from the domain of all cells underneath), ensuring that 40-foot containers
can never be placed below a 20-foot container.

The combination ofP%-2% and P?°4° ensures that it can never be the case that a
40-foot container can be underneath a 20-foot containeicerxersa.

The height of each stack is within its limits

The constraint is exactly represented by the early terioinatriterion£, which is

the negation of the actual constraint.

The weight of each stack is within its limits

The constraint is represented by the early terminatioreroin £, which is the
negation of the actual constraint.

Reefer containers must be placed in reefer slots

The constraint is ensured by the domain magpand constrainf X%,

D ensures that reefer containers cannot be considered asla@ndalues for non-
reefer cells.£X% guarantees that a complete instantiation has all reefaaic@mns
assigned to a reefer cell. The proof is by contradictionjlamto the one given for
CT1.

IMO rules are satisfied for each container

The IMO-1 constraint is represented BM°-L.

For a placed IMO-1 containers the constraint states thatcaily adjacent t@ﬁ,j
cannot accommodate an IMO-1 contairel''°-! ensures this by pruning all IMO-1
container from cells adjacent iq) ;.

The IMO-2 constraint is represented BM°-1 andP'™M©-2,

For a placed IMO-2 container, the constraint states thatcatlg adjacent tocl
cannot accommodate an IMO-1 container, which is ensure@'hy . Addltlonally

no IMO-2 container can be assigned to the rest of the celltackg and to all cells

in stacksj + 1 andj — 1. P™O-2 ensures this, by pruning away IMO-2 containers
from any cells in stackg + 1 and;j — 1 and any cell in the stackexcept celkcﬁﬁj.

Two halves of a 40-foot container must be placed in the saate sl

This is constraint is similar t&€T3 and is ensured by the same pruning operation.
A cell that accommodates a 20-foot container excludes tBeipitity of its neighbor
cell to accommodate a 40-foot half

The constraint is represented By"2°.

When a 20-foot container is assigned to a cell, the domaimefeighbor cell is
pruned to contain only the 20-foot container.

44

CT13 Allowing each container only to appear once
The constraint is represented BY.

Whenever a containeris assigned to a ceMﬁ-vj, P* prunes away: as a candidate

value from all other cells, which ensures thatan never be chosen again.

45

46

Chapter 6

Estimation

The purpose of this chapter is to give the reader an undelisiof the estimation the

branch and bound algorithm uses. The chapter is dividedfmtosections, where each
section explains one objective of the storage area stoweansem. Each section defines
the estimated cost, proves that the estimate is an undasgstof the real completion cost
and argues for the efficiency of the estimator.

6.1 Overstowage Bounding

Given a partial solution,,, we wish to calculate a lower bound on the number of overstows
of any solution extending it. Due to the exponential numidesambinations, the "brute-
force” way of building all complete solutions that extefidand computing the number of
overstows for each stowage plan is infeasible. The goakietbre to efficiently calculate

a good, but not necessarily tight bound.

The main idea is to relax the problem by not taking into coamsition the overstows among
containers belonging to the extension of the partial sotuti

The air container must not be counted in for the number ofstoers. The following
notation defines the domain values different than air thiatrggto the current instantiation:

s (@) = ms(@) \ {L}
Formally, the costs are defined as follows:
F29(a,) is the number of overstows af,.

Foogo(&'p) = chﬂ ZleL H(xﬁ]v xfm) € Wép(&'p)z : dp:pﬁyj > dp%’j N> k’}‘

F2(a@,, ay.1.,) is the number of overstows among containers belonging, tand con-

ov

tainers belonging to an extensigg, ., . .., a,) of @, into a complete instantiation.

a7

FOXl (CLp, Ap41: n) -

ZleL H ,]7xkj € 7TS (Gps Qpi1:m) X 7TX Sy (Tps Apr1:n) dpxg_ ; > dple ; Nt > k}}

F1X (ap, ap+1.,) IS the number of overstows among containers belonging toxemsion

ov

(ap+1, ..., ay,) of @, into a complete instantiation.
Fpt @y pirin) = 22520 D e, H Ti j» Ty j) € - Sp (@py Qpi1:n)? dpx,lm. > dpxﬁw Ni > k}‘
The overstow cost of the partial instantiatigis:
Gou(Tp) = Fooio(&»p)
The cost of the optimal completion af is

higo (@) = min (F (@, apirn) + Fon’ (Gp, Opi1in))

ap+1:n

where(d,, a,+1.,) IS @ complete and valid instantiation.
The estimated completion cost is

hov(ap) = min (FoOle(apv ;3+1 n))

where(d,, a;ﬂm) is a complete, but not necessarily valid instantiation.

Proposition 6.1 The bounding cost,, is always an underestimate of the optimal comple-
tion costh’, i.e. h, > hey

Proof.
hi,(d,) = min +F01§1(d'p,ap+1:n))

) + min (F1X1(ap,ap+1n))

)
) Ap+1:n
)
)

AV
2 iE
= =
—~~
&
X
?gl
S
=
s
3

v
=
=

which completes the proof. 0J
How to calculateh,,?

Having proved the correctness of the estimator, the goaldslculate its value efficiently.
For a particular, create a weighted graght = (V, £, w) in the following manner: all
unassigned containers and all cells not part of the insttoti, become nodes in the graph,
and an edge is added between a container and a cell, if th@ieenbelongs to the variables
domain. The weight of the edge is the number of overstowsrdsatlt from stowing the
container into the cell.

48

WhenT = {c € Cy,c € Cff : ¢ ¢ 7s,(d,)} denotes the set of unassigned containers
andR = {z}; € X'\ S,} denotes the set of not yet instantiated cells, the set ofsisde

V=TUR

the set of edges is
E={(c,a};,) €T xR : ce D(z},)}

) Z7.j
and

w(c, xij) = ‘{xﬁw € ﬂép(ﬁp) :dp. > dpxﬁw Nk <i}|+

ngw' € W§p(5p) s dpe < dpmgw, ANk > i}‘

for each edgéc, =} ;) € E.

G is bipartite and, due to the way it is constructégl, is equal to the cost of a complete
matching of minimum cost. Therefore, efficiently calcutath,,, is reduced to efficiently
find a maximum matching of minimum cost of the associatedrbtpagraph and verifying
if the maximum matching is complete. In case the maximum hiagcis not complete, it
can be concluded that the current instantiation cannot temdgd to a valid solution.

Example 6.1 Consider the CSP-Model defined in Example 5.1 and a parsgahiriation

6p = {(xll/t/lv CO)? (IITQ? Cl)}'
The bipartite graph used for overstow estimation is showFigire 6.1.

Figure 6.1: Bipartite Graph.

49

Definition 6.1 (Minimum Cost Matching Problem(MCMP)) Given a weighted bipartite
graphG = (T' U R, E,w) wherew : E — IN, the MCMP is to find a maximum match-
ing of minimum costM C FE, such that no edges dff have common endpoints/| is
maximized angd ___,, w(e) is minimized.

Flow algorithms are state of the art algorithms that caniefiity solve a MCMP. These
algorithms build a flow network and find a maximum flow of minimgost [6].

Example 6.2 A solution of the matching problem built of Figure 6.1 is:

M = {(CIZ/Vv xIl/I,/Si)v (Cgv 1{3)7 (037 ‘Z{l)v (C47 xm)}

The matching is complete and therefdre = 3.

6.2 Emptystack Bounding

In this case, the goal is to calculate a lower bound on the rumiused cellstacks of any
solution extending a partial instantiatiap A cellstack isusedif at least one container has
been stowed into it. Otherwise a cellstaclempty

To accurately bound the number of used cellstacks of a camptdution, an estimation
algorithm should fill already used cellstacks before stgrempty cellstacks. Identifying
a cellstack independently of its parent stack makes it eabyitd an ordering among the
cellstacks. A straightforward way to identify a cellstasloy its relative position to the left
side of the stowage area. Cellstacks are counted from ledlboatarboard, starting with 1.

K ={2j—1,2j : j € J}isthe set of cellstacks.

Accordingly, one can identify the parent stack of a cellstaied the side the cellstack rep-
resents)V is considered to come befofeand it is assumed that each side can be identified
by its relative position to the parent slot.

Cellstack properties
gk = [3(k+1)] . stack to whom cellstack belongs
z _{ W if [(k+1) mod 2] =0

71 T otherwise

the side cellstack represents

fs(k)=h,;, — Zz‘e{i:xifzk es,) hlr’;jk . free space of cellstack
ws(k) = fs(k) if fs(k.) < s . the wasted space of cellstakk
0 otherwise

U={keK :3Ji.ar ¢ s, ()} is the set of used cellstacks.

L)k

E = K\ U is the set of empty cellstacks.

50

Having defined the set of used cellstacks and the set of enafistacks, we are ready to
introduce an ordering relation on the set of cellstakks

For any permutatiop of U, <” is a pre-order ork that orders the used cellstacks accord-
ingly to p while the free cellstacks are ordered in decreasing orddresf available cells
and follow used cellstacks.

k=<rm < (kkmeU A pp<pm)V
(keUAmeE)V

(k,me E A |{i: xﬁkjk ¢ ms, (@)} < |{i : Z”;m ¢ ms,(@y)})

<# denotes théth cellstack in the ordering.

For a particular ordering”, the minimum number of cellstacks needed$mstandard con-
tainers and{ highcube containers, when theth cellstack in the ordering hasavailable
space is defined recursively in terms of the optimal solstiorsubproblems:

((k,if S=0 and H =0

min(u,[S — 1, H, k,0 — hg),u,(S, H —1,k,0 — hp.))

if S>1and H>1 and o > hj,.

u,(S,H —1,k,0 —hy)if S=0 and H>1 and o > hy,
up(S, H, b, 0) = uZ(—1 H k,o—hg)if S>1 and H=0 and o > hy
u,(S —1Hka hg)if S>1 and H > 1 and hy < o < hy,
u,(S, H, <§+1,fs(<k+1)) if S+ H >1and o < hy
u,(S, H, <1, fs(<hq) i H>1and hy <o < hy

\

The structure of an optimal solution of the problem can beatdtarized in the following
way. LetA;.; denote the optimal arrangementjo€ontainers. Let be the first container
of the last cellstack, needed to accommodate theontainers. The goal is to prove that
Ai.;_1 1s an optimal arrangement. The proof is by contradictiotis l@ssume tha#l;.; _;

is not optimal. In this case there is another arrangemént , that is optimal and needs
k' < k — 1 cellstacks. In this case, we can construct arrangem'gptonsisting ofd], |
followed by containersto j stowed in cellstack’ + 1. Since cellstack’ + 1 comes before
cellstackk in the cellstack ordering, it is certain that it can accomatectontainersto ;.
Observing that' + 1 < k& we have just constructed an arrangement for containéosj
that needs fewer cellstacks than the optimal arrangemgptcontradicting the optimality
of Ay.;.

We are now ready to formally define the cost functions. $.&e the number of unassigned
20-foot containers anél be the number of unassigned 20-foot containers:

}{c €Cy : c¢ ﬂgp(cfp)}}
}{c echh . ¢ §é7r3p(6p)}}

51

The empty stack cost of the partial instantiatignis:
968(6:0) = ‘U‘
The cost of the optimal completion af is:

h:.(@,) = max (0, min u,(S, H, <7, fs(<)) — ges(o?p))
peP(U)

The estimated completion cost is:
hes(@,) = max (0, up, (S, H, <1, fs(<1")) = ges(ap)),

wherep, is an arbitrary permutation of the used cellstackd 5et
ges(a@,) has to be subtracted from the above costs since it is alreatlydied inu.

Proposition 6.2 The bounding cost,, is always an underestimate of the optimal comple-
tion costh’, i.e. hl, > hes

Proof.

Since, used stacks are filled before empty stacks, and enguyssare considered in the
same order, the proof that, is a correct bounding function far:, is reduced to showing
that the number of newly started empty stacks does not depetice order in which the
used cellstacks are considered. Given two permutatipasdp, of the used cellstacks,,,
andu,, will examine in different order, but nevertheless the satoeage combinations,
and therefore choose the same optimal arrangement, geanagthat the same number
of additional empty cellstacks are necessary. Thus ther andehich the used stacks are
considered is irrelevant, proving that, = h;, .

U
How to calculate h.,?

We have already argued for the optimal structure of the prablAdditionally, if the space
of subproblems is small, in the sense that the recursiveitigosolves the same subprob-
lems repeatedly, dynamic programming is applicable andieffily solves the problem.

To analyze how subproblems overlap, a problem tree is huilafproblem with a single
cellstack with infinite space. The root of the tree is theiahiproblem and each node
identifies a subproblem for a number of standard containedsaanumber of highcube
containers. Due to the construction procedure the numbstaofdard containers of each
node is at most less than the number of standard containers of its parermt. nidte same
holds for highcube containers. Picture 6.2 shows part o$tigroblem tree.

52

S, H, space

S-1,H, S, H -1,
space — hy space— hy,
S—2,H, S—1LH-1, S=LEH -1 S, H-—2,
space—2h, space—hgy — h, space—hy —hy, space—2h,
§=3,H,; S=D H -1 S=2 H—1 S=H —2, S=2 H -1 S=H =2,
space—3hg space—2hy — Iy, Space—2h, —h, Space—ho—2h, Space—2h, —h, Space—h, —2h,

b dh 4 4 dh dhdoo

Figure 6.2:0verlapping subproblems for a single cellstack.

Considering the root of the tree having leGebbserve that each sequence to a subproblem
found at levek is identified by a sequence of choices of lengthvhere each choice is ei-
ther a standard container or a highcube container. To chamtumber of distinct subprob-
lems of levelk is reduced to counting the different possible ways of baogda sequence of
lengthk where the accumulative number of standard containersecésp highcube con-
tainers matters, but the order in which they appear in thaesgee is irrelevant. There are

(g) ways to build a sequence havisgstandard containers amtd— S highcube con-

tainers. However, since order is irrelevant, th S¢, subproblems are identical. Since

we can build sequences haviig< S < k standard containers (and accordingly- S
highcube containers), the number of distinct subproblemsad at levek is & + 1.

Consequently, the total number of distinct subproblemsfeingle cellstack problem with

infinite space is:

I§<k+1>:(H+S+1)(H+S+2)

2

k=0

A similar proof holds for the general problem, where a catikthas a limited amount of

space and there are several stacks available by viewingtheralated available space of
the set of cellstacks as the available space of a singla¢ashlsThe main difference is that

whenever the space associated with a particular cellssaidled, the wasted space should
be substracted from the accumulated available space.

Dynamic programming optimizes the inefficient recursivgoaithm by maintaining and
reusing solutions to subproblems. A table maintains smhstito subproblems. Initially

all table entries contain theil value to indicate that the entry has not been calculated yet.
When the subproblem is first encountered during the exatofithe recursive algorithm,

its solution is computed and stored. Each subsequent tienguibproblem is encountered,

53

the value stored in the table is simply returned.

6.3 Wastedspace Bounding

In this case, the goal is to calculate a lower bound on theedlaspace of any solution
extending a partial instantiatiafy. The idea behind this estimator is the same with the one
presented for Emptystack bounding: an ordering is chosethéoset of cellstacks, and all
stowage combinations that fill cellstack after cellstacklefned in the ordering are built
and evaluated.

The main difference lies, when the recursive algorithmmeaa boundary condition. This

happens, when a cellstack cannot accommodate furthericergaor when the stowage

plan is complete. In the first case, the remaining space itedasince it is less than the

space needed for a standard container. In the later caseasited space is calculated as
being the wasted space of the the current cellstack, addedter with the wasted space
of all cellstacks that follow in the ordering.

For a particular ordering”, the minimum wasted space férstandard containers arid
highcube containers, when theh cellstack in the ordering hasavailable space is defined
recursively in terms of the optimal solutions to subprokdem

(o +Z‘JZL+1w$(—<§), if S=0and H=0
min(w,[S —1,H, k,0 —hg), w,(S, H —1,k,0 — hp.))

if S>1and H>1 and o > hy,
w,(S, H —1,k,0—hp)if S=0 and H > 1 and o > hy,

S H, k = .
wo(S, H, k,) w,(S—1,H,k,o0 —hg)if S>1 and H=0 and 0 > hy
w,(S—1,H, k0 —hg)if S>1 and H>1 and hy < o < hp,e
o+ w,(S, H, <}, fs(<h4))if S+ H>1and o < hy
(o4 w,(S, H, <71, fs(=4y1) it H>1and hy <o < hy
where

. oo it o<hg
971 0 otherwise

is the wasted space of the current cellstack. The cost fumctre defined below.

The wasted space cost of the partial instantiadipis:

_ > ek w(k)

ng(ap) = hes

The cost of the optimal completion af is:

54

. o min,epyy W S,H,%p,fS <f .
pay) = e IS g

The estimated completion cost is:

. U, (S, H, <0, fs(=° .
hws(ap) = po(hlt (:)) _gws(ap)

wherep, is an arbitrary permutation of the used cellstackd 5et

gws(d,) has to be subtracted from the above costs since it is alreatlydied inw.

Proposition 6.3 The bounding cost,, is always an underestimate of the optimal comple-
tion costh} i.e. hl . > hys

Proof.
The correctness proof far,,, is the same as for,, in proposition 6.2

An efficient way to calculate it, is by using dynamic prograim

6.4 Reefer Bounding

For any partial instantiatiod,, the goal is to estimate the number of reefer cells that are
occupied with non-reefer containers for any complete smiuthat completesi,. The
estimate is achieved by counting the number of reefer dedtsaill certainly be instantiated
with a not-air container and subtracting it from the counteaffer container halfs. Formally,
the costs are defined as follows:

X" is the set of reefer cells @i, instantiated with non reefer containers.

nr __ l e l H
X = {x” €S, rij N T ; € Ch

X is the set of reefer cells af, instantiated with reefer containers.

X:: = {.Tﬁd € Sp T N l'é’j € Cg{}

X, is the set of uninstantiated reefer cells whose domain doesamtain air.
X, = {aj; € XT i)

The reefer cost of the partial instantiatignis the number of reefer cells af, instantiated
with non reefer containers:

gr(p) = | X"

55

The cost of the optimal completion af, is the number of reefer cells that with certainty
will be instantiated with non reefer containers plussarumber of reefer cells that may be
instantiated with non reefer containers:

hy(@,) = max (0, X, — (|G| = |X]])) +¢
The estimated completion cost is:

he(@,) = max (0, | X, | — (|G = |X]]))

Proposition 6.4 The bounding cosi, is always an underestimate of the optimal comple-
tion costh’ i.e. b > h,

Proof.
Trivially, h(a,) > h.(d,).

The bounding evaluation function used by the branch anddbeaarch algorithm is:

Definition 6.2 (Bounding evaluation function)

f(ap) = WOU (gov(ap)+hov(5p)) +W€$ (988(5p)+h88(5p)) +st (gws(ap)+hw8(6p)) +W7” (gr(ap)+hr(6p))

Proposition 6.5 The bounding cosf(a,) is always an underestimate of the optimal com-
pletion costf*(a,) i.e. f*(a,) > f(a,)

Proof.
The proof follows trivially from the individual proofs foraeh cost component:

f*(c_ip) = Wy (gov(5p> + h&(@ﬂ) + Wes (968(6p> + th<_’P)) +

Z ov D + Wes
Wos (Guws(@p) + huws(@y)) + Wy (9-(@,) + he (@)
= f(ap)

56

Chapter 7

Implementation

The implementation chapter gives a description on how thie parts have been imple-
mented. We consider the main parts to be representationtafskzarch algorithms, propa-
gation engine, estimator and evaluation calculator.

The chapter begins with explaining fundamental concepts;lware necessary in order to
understand how the running time is improved. Then an exfilamaf how data are rep-
resented is given. After the data representation, the peeudle for the search algorithms,
propagation engine, estimators and evaluation calcuistgiven.

This chapter outline an approach of how effective pruning ba achieved and a data
structure for represent a collection of characteristicstone of the objects within SASP.

7.1 Fundamental concepts

One of the main focuses in the implementation has been tolee¢@prune domains and
backtrack efficiently. In order to do that, the concepts @red domains and labels have
been conceived.

Shared Domains

Each variable maintains some characteristic informatimuaproperties that possible do-
main values should posses, in order to be eligible for bessgyaed to a particular variable.
One possible naive implementation is to let each variabletaia a domain with all the
candidate values, it can select. A domain value is then rechowhen it is no longer el-
igible for that particular variable. Domain changes areorded for each variable, such
that a domain value reappears, when it is eligible for sile@gain. The basic operations,
which the domain is required to support, are adding and ramyadomain values. Using
a hashtable to represent a domain - adding and removing a smkxpected to be O(1).
Pruning away several domain values from a domain will treeeebeO (| D|). The domain
values in SASP can be viewed as being shared amongst thelearid hat is, containers

57

to be placed are taken from the same pool. Based on this @bseryit is required that
any used domain value has to be removed as a candidate vaindle domains of the
remaining unassigned variables. Using the time compesx#bove for a set ofX| vari-
ables - adding or removing an already selected value fronddineains of the remaining
unassigned variables is expected tah¢X|). Table 7.1 summarize the time complexities
for a naive implementation of domains.

Table 7.1:Time complexities for naive implementation
Adding a domain value to a domain

O(
Removal of a domain value from a domain O(
Pruning several values from a domain O(
O(
o(

Adding a domain value to the domains of all unassigned veasab
Removal of a domain value from the domains of all unassigae@dbles

Since each variable in the worst case has all domain valpessented in its domain, the
space requirement is expected to®gX || D|). Table 7.2 summarize the space complexi-
ties for a naive implementation of domains.

Table 7.2:Space complexities for naive implementation
Representing domain values in a single domain(| D)

Representing domain values in each domain O(| X || D)

Due to the nature of how pruning occurs in SASP, it has bearodesed through analysis
that the pruning mainly occurs on the basis of the contaiyg aind not so much on the
container itself e.g. if a cell cannot accommodate a coataiiue to a property such as
IMO-1, then that cell will not be able to accommodate any aorr with that property.
In addition, the variation of container types that is, thenber of unique combinations of
container properties, are quite limited. Further moreggacells are able to accommodate
the same kind of containers, which implies that severabdes can potentially share the
same domain. If the cardinality of the set of unique domaéins considerable less than the
total number of variables, then the time and space requimestoan be lessened consider-
ably. This holds in the case of SASP and the concept is predesshared domainThe
idea behind shared domains is that exactly one copy of eagh@domain is maintained,
which each variable is able to refer to by using some chanatitedescription.

This characteristic description is referred to aklael, and will be explained in further
detail in the following section. Based on a particular laBe& reference to a domain with
label £ can be obtained. The concept of pruning several values fnerd@amain of a single
variable will simply be a matter of changing the label fortthariable and obtaining a new
reference to a domain with the newly constructed label. @iotg a reference can easily
be implemented by using a hashtable, which uses the labbeds®y and the reference to
a shared domain as the value, retrieval can therefore betexpt beO(1). If changing
the label and obtaining the reference can be expected torbedccaut in constant time,

58

1 C
o &)

@)

Figure 7.1:Variablex, andz; are initially pointing to domainil. ContainerC;;
is then assigned to some variable and has to be pruned awayaft@omains due
to uniqueness propagation. Some properties when assigimndomain value”;,
causes variables to change its domain t@2.

then pruning based on the label can be achieved in constaat Tiable 7.3 shows the time
complexities for implementing shared domains.

Table 7.3:Time complexities for shared domain implementation
Adding a domain value to a domain

O(
Removal of a domain value from a domain O(
Pruning several values from a domain O(
O(
o(

Adding a domain value to domains of all unassigned variables
Removal of a domain value from domains of all unassignechiotes

Since variables can share the same domain, the space raguiréor all domains can be
reduced fronO(|X||D|) to O(|U||D]). The table 7.4 summarizes the space complexities
for implementing shared domain.

Constructing unique domains

The number of uniqgue domainsin, will depend on the structure of the problem. Through
some analysis of SASP, the following properties, were takenconsideration when con-
structing the unique domains: IMO, Container length, neafe air properties.

The possible IMO combinations is based on the fact that awklth can accommodate an
IMO-2 container can also accommodate an IMO-1 containeiGiwin turn can accommo-
date an IMO-0. This is induced from the propagatBté°-* andP™O-2, which describes
the IMO constraint for SASP.

59

Table 7.4:Space complexities for shared domain implementation
Representing domain values in a single domain(|D|)
Representing domain values in all domains O(|U||D|)

Three combinations based on the length property of contare constructed. They are
selected on the basis that cells typically can accommodtitere 40-foot half, or a 20-
foot container before any containers have been placedmitie bay. Since a slot cannot
accommodate both a 20-foot container and a 40-foot confqlaeing a 20-foot container
in a cell excludes any 40-foot container half in the neightlot, which is ensured by
propagatoP?’-2°, The same argumentation holds for 40-foot containers aedsared by
propagatoP**-*°, This yields two additional combinations: 20-foot contimand 40-foot
containers.

The possible reefer combinations is constructed on thetlfettany non-reefer cell may
only accommodate non-reefer containers, while reefes ogdly accommodate either reefer
containers or non-reefer containers.

The air property is finally taken into consideration, for alnitwo combinations exists.
Initially a cell may either hold a container or air. Cells,ialincannot accommodate air, are
constructed as a result of propagalt. The combinations for each chosen category are
summarized in table 7.5.

IMO Length Reefer Air
IMO-0 U IMO-1 U IMO-2 40-footu 20-foot non-Reeferu Reefer| | Air
IMO-0 U IMO-1 40-foot non-Reefer non-Air
IMO-0 20-foot

Table 7.5:Combinations in the selected categories

The properties selected for constructing the unique dosrteame been chosen based on the
low number of combinations within each criteria. The uppmiid on the number of unique
domains is calculated by multiplying the cardinality of #t@mbinations created for each
selected criterion. Criterions with many possible comtiores are therefore unsuitable to
be distinguished upon. The weight property is an examplhisf t

Having three possible IMO combinations, three containegtle combinations, two reefer
combinations and two air combinations, the total numberashains results in 36 unique
domains.

Any domaind for SASP has a corresponding domdin, which has an additional air do-
main value.d" is referred to as the air domain. Whenever a domain valiseremoved
from d thenv has to be removed from" as well. Besides the air domain value the domains
have the same behavior. This fact can be exploited by havitagaastructure, which keeps
a reference to domaii, such that when reasoning about the number of elements,in
then it would be all elements i@ with the additional air domain value. Consequently air

60

2
= | (e

Ol0)
GO0

Figure 7.2: The domaindl andd1* have the same containers except for the air
container. When some container appearinglihas to be removed the same container
has to be removed fromil - as well.d1+ can therefore include the containers, which
d1 has

domain values do not need to get pruned away since pruningeachieved by changing
to the corresponding domain, which does not accommodat@&lais technique halves the
number of unique domains.

Single container domain

The propagatoP%-*° requires that a 40-foot container half needs to be placetitoéts
other half. Consequently the other container half cannatnsidered as an eligible value
for any other variable than the neighbor cell of the placedo#@ container half. When
using shared domain this has an impact on the number of umigoeins and pruning.
The idea ofSingle container domaiand Collapsing 40-foot container halvdsas been
conceived to remedy this issue. Having the requirement whipg all containers, such
that only a 40-foot container half is left, makes the numbelamains grow linearly in the
number of 40-foot containers. These domains are namecdestogitainer domains. They
have the property that only a single 40-foot container is@né P* forces the 40-foot
container half to be pruned away once it has been assignedeih and consequently the
time complexity for removal of a single domain value is delg@toO (|U |+|Cyo|), because
it is unknown, which one of the single container domain the¢ds to be pruned. The
running time can be improved by collapsing containers. elagtof having two container
halvesc” andc" for containere, a single container hatf is used to represent Since the
two container parts’ andc" are the same container all properties for one of the containe
halves are the same as the other half and vice versa. Furibrey, there is nothing in
SASP, which requires to distinguish the container halvab®kame container from each
other, thus no issue will appear in that relation. When plgaa 40-foot containet in

a cell, the container is removed from any shared domai®Pbyand the domain for the
neighbor cell needs to be the single container domain fotadoerc, since that is the only
container, which should be considered. Sifiteremovesc from any shared domain,
cannot be considered as candidate value for any other clké.sihgle container domain
ensures that the other half is the only value to be choseracktbacking occurs; should

61

not be inserted into any shared domains before all assigisimeherec appears have been
removed. The single container domain is only used after thelfalf is chosen. From this
it can be inferred, that a 40-foot container should only lyeserted into domains, once the
half which was assigned first has been unassigned.

Further pruning will not be necessary and consequently ddiadal cost is added to the
running time, when removing a domain value from domains hadunning time o (|U)
is therefore retained.

Domain pruning

Changing a domain reference for a variable in itself does&miove any domain values.
This is however necessary for domain values, which havadyreéeen assigned to a spe-
cific variable. All other factors being equal, when not usamy particular data structure,
the removal of a domain value can only be attained by itegativer all unique domains,
which results in a running time @&d(|U|). In order to reduce running time, the domains
are divided into lists, where each list holds a referencedl twoanains, which share a given
combination of container properties. These lists are thered in a hashtable, where the
given property is used as key. Using this data structureqingntime can be improved to
O(|U|). Removing a domain value with a given set of properties is tieply a mat-
ter of retrieving the list of domains, with the corresporglproperties and then iteratively
remove it from the domains in the list. The proposed datagtira is referred to alsabel-
Domain table The pseudocode for the described approach can be foune epiendix
C.3. Example 7.1 below shows how pruning can be carried out.

"-—- °
- .
EN

Domain Current Assignment
Change
Recorded| | Domain Changes Current

Xir [dy Variable
X {do Assigned
\ Container

X7 | diy

Example 7.1
Cell z;9 is stowed with containet;, causing domain pruning for all affected cells.

The domain reference for cetl; changes from domaih, to dg

Domain restoration

Restoring shared domains when backtracking is a bit moretoated than when variables
maintains a domain on its own. In order to be able to restoreailes when a backtrack

62

occurs, domain reference changes, that were made durirgsagmenent of variable, has
to be recorded. Example 7.2 shows how domain restoraticariged out.

Previous Assignment

Current Assignment

‘\
Domain Changes *,

Current
Xig | diz Variable
Xu | de Assigned
Container
X7 | di

Example 7.2

Cell ;0 has been stowed with containef previously causing domain reference
changes for any affected variables to be recorded in a lish. adlditional domain
change for cell:;» is recorded when the current instantiation of cej| is being in-
stantiated with containet;;

The list of domain reference changes is a list of pairs, shahthe first component is a
future variabler’ and the second component is a reference to the shared dofmaas
referring to beforer was assigned. When backtrackingatoany reference changes are
restored by traversing the list and updating each varialitle the domain it previously
referred to. A restriction induced by this data structusethiat the domains can only be
restored properly, if the variables are unassigned in threesarder as they were assigned.

Example 7.3 Suppose a given unassigned variable have multiple neighdssigned with
IMO-1 containers. The domain of the unassigned variabletmosbe changed to a do-
main allowing IMO-1 containers until all neighboring aseigents with IMO-1 have been
unassigned. As this information is only kept within the fiesighbor, which was assigned
with an IMO-1 container, its domain would be restored ineatty if the assignment order
for assigned variables is altered.

Since it is expected that changing reference for a variatételbe done in constant time,
restoring all domains to a previously domain is expectecetoO § X|).

Making a domain change does not add the domain valogck to any domains, and con-
sequently does not make it eligible for future variables.e Bomain value needs to be

63

reinserted to any domains, which containeg@rior to v was used. Having in mind the
label-domain table described previously, the lab&br v can identify the domains needs
to be added to, thus the running can still be kepO{¢U|). The pseudecode for the de-
scribed operation can be found in appendix C.3.

Maintenance of search state

A variable may be attempted to be assigned with severalrdiffedomain values from its
domain to see if that value will lead to a consistent instdin. Once a domain value has
proven not to lead to any consistent instantiation, it stiowdt be considered a candidate
value for that variable again. However using shared dom@aiakes it not possible just
to remove domain values as the removal of a domain value wiliibible for any other
variable which shares the same domain. This issue can bessdd, if the domains can
guarantee a fixed order of the domain values. By using a catibmof an order and a
pointer all domain values from the beginning of the ordehtpointer can be regarded as
domain values, which has been considered as candidate vdtile the rest are eligible
candidate value for instantiation. Initially the pointer & variabler is pointing to the first
domain value within the ordered list of a domain. For eaclsm®red candidate value the
index is incremented. Whenever a backtrack occurs and @opisdy instantiated variable
2/ needs to consider a new candidate value, the pointeri®reset to the beginning of the
domain, such that all domain values can be reconsidered fmder the new assignment
of 2.

Domain d;

| Ci1 | Ciz | Cia | Cia | Cis | Cig |

Domain Index Pointers
Do [xe] - [[]

Variable Array

Figure 7.3:Index pointer to domaid; of the variables:;;, z;2, x;3, . . .

Label

Each container, cell, domain, and propagator have a setavacteristics, which collec-
tively are referred to aabel. A label is implemented as an array of bits in order to support
following operations efficiently:

e Constructing a label

e Elementhood test

64

e Testing a label for a specific property

Each property in the label is represented as a sequence lefdnoitags and indicates the
presence of following properties: IMO-0, IMO-1, IMO-2, 20et container, 40-foot con-

tainer, reefer, non-reefer and air. An additional flag, Wwhicarks whether a container is
standard height or highcube, is used as well.

The labels are interpreted differently depending on the tyfpobject, which possesses the
label. For a cell, the label is interpreted as the type of@ioet the cell can accommodate.
For a domain, the label is interpreted as the set of contaitherdomain consists of. This

gives an easy association between cells and their corrdsgpdomains, as a cell and its

corresponding domain have identical labels.

For a container, the label describes the properties of thengtontainer. To determine
whether a container belongs to a given domain, it must bdiegrihat the properties de-
scribed within the label of the container are also presetitiwihe label of the domain.

For the propagators, the label works as an association batpmpagators and containers,
in a similar way as the label works between domains and acositsi A propagator is
scheduled to be run if the label of the propagator has prigggeshich exist in the label of
the container. As an examplBMO-! is scheduled to run propagation for an input variable,
if the IMO-1 property is present within the label of the cang, that the input variable is
assigned with.

A propagator prunes the domain of a cell, by altering itsllabeh that a reference to a new
domain is obtained. As an example, tA&°1 prunes the domain of the output variables,
by ensuring that the flag for IMO-1 within the label for a giveutput variable is reset.
Pseudocode foP™O1 can be found in appendix C.4.2

Due to the fact that labels are shared amongst different heddéers some combinations of

flags are not possible for a specific label holder. For ingaacontainer is not able to both

be a 20-foot and 40-foot container at the same time, thusamayof these two bits can be

set. However, a cell may accommodate both a 20-foot and di0ctmtainer and therefore

allows both flags to be set at the same time. Still, this doepose any issue as long as the
label is interpreted correctly.

The space needed for a label is 9 flags or bits and can theteégpéaced within a single
machine word on a 32-bit machine. This makes it possibleppasti the desired operations
with few instructions.

The bit layout of the label is showed in the left table in ex#rip4, while the right table
depicts the legend of each flag.

Example 7.4 Layout for label

65

Flags
highcube
air
IMO-0
IMO-1
IMO-2
reefer
non-reefer
20-foot container
40-foot container

Bit:

> 0
\‘
(o]
)]
N B~
w
N
o
-~ 353 = NP, OQ =T

In the following, the operations supported by a label araitkt. In order to explain how
the different operations are computed, some notation dreduaced: the bitwise AND
operation is denoted a& , the bitwise OR operation is denoted asand the bitwise NOT
operation is denoted as.

Constructing a label

Since the label is a bit array, bits can easily be set or resairistruct labels. For instance,
this is used when a variable needs to retrieve a new sharedidom

Pruning a label
Let p be a label and; be a label identifying properties which should not be parp.of
Pruning of labep can be achieved by the following operation:

p& ~q

Including properties in a label
Letp be a label and be a label identifying properties desired to be pai.ofhe following
operation includesg in p:

pla

Elementhood test

The elementhood test checks whether a labied contained within another label for
instance if a container is a member of a domain. This is aekli®y checking whether all
flags inp are ing. If some of the flags ip are not set iy it means that some property was
not supported by.

This corresponds to performing a logical AND for each flag #resh check if the flags still
are intact in respect t@¢. By using this fact, one can support the elementhood ojeraty
using two instructions (one bitwise AND and one equal ircgiam).

Let p andq be labels. The following operation returtngeif p is contained withiny:
(p&q)=gq

66

Example 7.5 Elementhood test Let= 001001010 be the label for a 20-foot IMO-0 reefer
containerp = 001000111 be the label of the domain which can contain 20-foot or 4G;foo
IMO-0 and only non-reefer containers. Elementhood tesirret false.

Testing a label for a specific property

Testing a label for a specific property is used for exampleetemnine if a container is a
40-foot container. This is achieved by doing following cgitern:

Letp be a label and be a label with the properties being tested. The followingrapon
returnstrue if the properties identified by are present ip:

(p&q)<>0

7.2 Representing data

The main data structure used in the pseudocode is a setdifiesttucture, in the following
referred to as @etarray Setarrays mimics the behavior of sets known from mathemati
i.e. all elements are distinct, a new set can be construgtedebunion of two sets or by
applying the set difference and so forth. The differencéa the elements of the sets are
ordered along the insertion order and ttith element can be accessed by using the postfix
operator f]. This structure can be implemented by combining a hasétabiaintain the
elements and a linked list to maintain the element order.

In the pseudocode, setarrays are used to represent bottsthgstiation and the domains:

1. The instantiatiod is a setarray of pairs. = (z,v), wherez € X andv € D(x).
2. The instantiation’s scopeg(d), is a setarray of variables.

3. Each domairD(z) is a setarray of containers.

The algorithm for picking a container as a candidate valsdie@n implemented by choos-
ing elements according to some order. The search spacdff@tdepending on the chosen
order among containers. Since complete solutions areetdkgire goal is to place domain
values in an order, which maximizes the probability of reagha complete solution. An
example is to always attempt to place IMO containers firsprioher to ensure that IMO
containers are stowed as close together as possible. @ergan a domain are sorted
based on the label of the container. The idea is that, sireckabiel is an array of bits and
thereby represents a value, the organization of the flagbeamdered such that the most
important criteria will appear first in the setarray. Giveattelements in the setarray are
ordered in an increasing order of their label, the most irigurcriteria within a label must
be placed at the least significant bit position while the sdcmost important criteria is

67

placed at the second least significant bit position and gb.fddsing the organization of

the bits within a label gives the advantage that sorting dasethe label flag can be done
without an additional cost of constructing some value regnéing the order, as the order
is directly represented. In addition to the label used astmgccriteria, the discharge port

is added as a second criteria. This can be used, to ensutitatners with an upcoming

discharge port, are stowed in the top of stacks.

7.3 Algorithm

The pseudocode is written with the intention of explainiogvithe optimal solution can be
found. It is kept at an abstract level, such that languageifspéetails does not clutter the
important details. Details about the actual implementatian be found in the appendix A

Domain management function

The usage of shared domains requires that a domain can iezedtby the label of the do-
main. A domain function\ is introduced to retrieve a domain based on its label. Howeve
to avoid introducing a function that extracts the label frawariable, the domain function
maps a variable, to a domain by the label associated with variahle

Two additional procedures,ERNSERTDOMAIN VALUE and REMOVEDOMAIN VALUE, have
been introduced in order to maintain the shared domainspdsrting or removing a do-
main value for some shared domain respectively. These guoedake a value as input
and based on the label associated withll shared domains, which can accommodate that
value will be affected. The pseudocode faEIRSERTDOMAIN VALUE and REMOVEDoO-
MAIN VALUE can be found in appendix C.3.

7.4 Search

The search section is divided into two subsections. Thedastdescribes the algorithms
to find a single solution within the search space. The secartdopesents the algorithm to
find the optimal solution within the search space.

Maintenance of search state

A global arraysearchstate maintains information on how much of the search space has
been traversed. Each elementirchstate[x] contains the pointer to the domain value it
currently considers as the candidate value, within the dom@ssociated ta: for variable

x. The details of maintaining the search state can be founeldtos 7.1.

68

7.4.1 Single solution search

Three backtrack algorithms have been implemented witratrari on how the next vari-
able for instantiation is being selected. The similarityttiése three algorithms has been
extracted into the procedureN&sLESOLUTIONSEARCH and each variation is outlined in
its own procedure. ThelSGLESOLUTIONSEARCH is a modification of a standard back-
track algorithm, which can be found in [2].

Given a partial instantiatiod, a costF' and a SLECTNEXTVARIABLE function, the algo-
rithm searches in a problem instance, until a solution isifbwhich has better cost than
F, or concludes that no more solutions could be found. Oncergl=ie solution is found,
the algorithm returns the solution foundelISECTNEXTVARIABLE is a variable ordering
function, which sets the strategy on how the next variabteikhbe chosen.

SINGLESOLUTIONSEARCH relies on the following procedures, described in detatksrla

e SELECTANDASSIGNVALUE
Extendsa with the assignment of a given variabteand carries out propagation to
enforce consistency. A boolean is returned to indicate &retlcould be consistently
extended.

e ESTIMATIONCALC
The estimation calculator maintains the estimators anédas the given partial
instantiation, it returns an estimated cost of any soluéxtending it.

SINGLESOLUTIONSEARCH(@, F, SELECTNEXTVARIABLE)
x «— SELECTNEXTVARIABLE (@)
while z #Znull A S C X
consistent < SELECTANDASSIGNVALUE (z, @)
if consistent A ESTIMATIONCALC (d@) < F
x « Select NextV ariable(a)
else
if S={}
x < null
else
10 REINSERTDOMAIN VALUE (v)
11 searchstate|x] « 0
12 x—S[|S|]
13 i —a\{(z, m(@))}

14 return ad

OCoOoO~NOOTh,WNPE

Figure 7.4:SINGLESOLUTIONSEARCH

The SingleSolutionSearch algorithm, shown in figure 7.dydrses through the search
space of a problem, using a while loop, which terminatesdafdlected variable isull, or
if the instantiation is no longer partial.

69

The algorithm uses the boolean returned By SCTANDA SSIGNVALUE in line 3, to deter-
mine whether the selected value was consistent. If the v&le@nsistent and the estimated
cost is below the cost’, the search proceeds to the next variable on line 5. Otheywis
the algorithm attempts to perform a backtrack. Line 7 chedhksther the instantiation is
empty. If this is the case, it means that the no solution has b@und, and line 8 setsto
null in order to end the while loop. Otherwise a backtrack is penéd in lines 10-13. The
algorithm returns either a complete or an empty instawtiedin line 14.

Select and Assign Value

Given a variabler and a partial instantiatios, the procedure S . ECTANDA SSIGNVALUE
attempts to assigm in @. The exhaustedvariable signals itz cannot lead to a solution
when extended with an assignmentofinitially exhausteds set totrue. The while loop
in lines 2-10 attempts to find a consistent candidate value: folt runs until either the
domain forz is exhausted or a valid candidate value fas found. In line 3, the domain
m IS retrieved from the domain managkt, based on the label associated with variable
and a candidate valueis chosen fromn as thesearchstate|x]th element in line 4. The
assignment is added &in line 5 and the pointer fosearchstate[x] is incremented in line
6. Line 7 runs the propagators, to check if the assignmersissailne domain for any future
variable to get exhausted. Lines 9-10 remove the assignimrentin case a future domain
is exhausted. Lines 11-14 return whether the assignmentoain lead to a solution. It
should be noted that the valueloes not need to be removed from the domains since it will
be removed whe®" is applied.

The pseudocode forERECTANDASSIGNVALUE is shown in figure 7.5.

SELECTANDASSIGNVALUE (z, @)
erhausted < true
while |[M(x)| < searchstate[z] A exhausted
m «— M(x)
v «— m|searchstate[z]]
a«—auJ {(x,v)}
searchstate|x] < searchstate[x] + 1
exhausted +— RUNPROPAGATORS @)
if exhausted
REINSERTDOMAIN VALUE (v)
@ —a\{(z,v)}
if exhausted
12 return false
13 else

14 return true

O oOoO~NOOTh,WN PR

(o
= O

Figure 7.5:The SELECTANDASSIGNVALUE algorithm

70

Variable ordering heuristics

Different parts of the backtrack algorithms can be changeatder to improve the search.
This report focuses on heuristics, which select a good bkriardering. The variable
ordering strategies, which are chosen are: Smallest dofimsinstatic order bottom-up
and minimum overstow. Each of these ordering functions camided as the ERECT
NEXTVARIABLE function used by the procedureN& LESOLUTIONSEARCH.

DVFC

This variable ordering selects the variable with the srsalldomain, as the next variable
to be instantiated. It is motivated by the fact that all ottinengs being equal, the variable
with the smallest domain will have the smallest number otr@ds. Combined with the
SINGLESOLUTIONSEARCH this variable ordering heuristic is the DVFC described ih [2

Figure 7.6 shows the pseudocode for the selecting the nesbla by using the DVFC
heuristic.

SELECTVARIABLEDVFC(Q)
1 if|S| = |X]|

2 return null
3 U—X\S$

4 51

5 fori« 2to |U|
6 if MU < |MU))
7 J—1

8 return UJ[j]

Figure 7.6:The SELECTVARIABLE DVFC algorithm

Static order bottom-up

This approach relies on the Forward Checking approach itbesidoy [2]. The algorithm is
motivated by the fact that overstows should be avoided. Kmgwhat the containers in a
domain are ordered by label and discharge port, the ideaassign variables in a bottom
up approach on each stack, in an attempt to naturally mieionerstows. SLECTVARI-
ABLEBOTTOMUP implements the variable order such that it looks for the frsdilable
variable in a bottom up fashion for each stack. This variatkering heuristic is also re-
ferred to as static order bottom-up. The pseudocode #QESTVARIABLEBOTTOMUP is
shown in figure 7.7.

Minimum overstow

This variable ordering heuristic focuses on minimizingrstewage. The idea behind this
technique is to find the variable, which is estimated to gneeleast amount of overstow, if
assigned with the first domain value from the set of all abdéaomain values, maintained
in a sorted order on label and discharge port. Using the mimroost matching algorithm,

the optimal stowage can be obtained for a partial instaotiaand the variable matched

71

SELECTVARIABLEBOTTOMUP(@)

1 forj+« 1tosc /I iterating through stacks
2 for [— 1 to |L] /I iterating through cells
3 for i < 1 to tc; [l iterating through tiers

4 if o}, ¢d

5 return xﬁj

5 return null

Figure 7.7:The SELECTVARIABLE BOTTOMUP algorithm

with the first domain value can be easily retrieved.

The following procedures are introduced to ease the ddoripf the SELECTVARI-
ABLEOVERSTOW procedure.

e REPRESENTATIONCOST computes the weights of the edges as described under "How
to calculateh,,,?” in section 6. The pseudocode is listed in appendix C.

e MINCOSTMATCH solves a minimum cost matching problem given as paramater. |
returns the matching as a set of edges, where an @dggrepresents the matching
between a containerand a cellz. A description on how to solve the minimum cost
matching problem is in Chapter 5 of [6].

e FIRST returns the first endpoint of an edge.

e SECOND returns the second endpoint of an edge.

An example of a graph returned byIMCOSTMATCHGRAPH is shown in figure 7.8.

Figure 7.9 lists the pseudocode of theL&CTVARIABLE OVERSTOW procedure. Lines
1-3 initialize the set of unassigned variables, the set otaioers yet to be placed and
the weights for the minimum cost matching graph. The mininaast matching graph is
computed in line 4. Lines 5-7 search for the variable matakigll the first container to
be placed. In case the first container is not matched to ablariaull is returned. This
situation occurs, when the overstowage estimation dissdbat the current instantiation
cannot be extended to a solution.

7.4.2 Depth First Branch and Bound

The implementation of depth first branch and boun@ABCH&B OUND, relies on two
backtrack algorithmsNITIAL SEARCH and MAIN SEARCH, given as input besides an empty
instantiationz. This technique opens the possibility of giving an optindidesing heuristic

as the initial search algorithm that finds the first soluti®his algorithm may be special-
ized in finding a very good solution, but may be too slow to ¢rae the entire problem in

72

Figure 7.8: DivingOverstowSearch graph returned byNCOSTMATCHGRAPH.
The graph shows a sample query, imagining thats the first domain value in the
domain. The graph shows that the variable to be instantiatédd,, in order to
create the least amount of overstowis

SELECTVARIABLE OVERSTOW(q)
U—X\S
CY «— O\ 7s(a)
w «+ REPRESENTATIONCOST(CY U, @)
M «— MINCOSTMATCH(CY, U, w)
foreach e M

if FIRST(e) = CY[1]

return SECOND(e)

return null

oO~NO U WN PR

Figure 7.9: ELECTVARIABLE OVERSTOW

general. For this reason, the second algorithm would tylgiba specialized in traversing
the search space fast to discover the remaining solutions.

The pseudo code is shown in figure 7.10rRAICH&B OUND searches for the initial so-
lution by using the procedure given asiTIAL SEARCH. If a solutionis found, a better
solution is searched by using the procedure given as thesBEARCH. The algorithm
maintains the variables™ and Bestfor respectively the best cost and the best solution
found so far. Line 3 invokes the initial search. In case atiahsolution is found, lines

5 - 13 iteratively search for a new solution. The solutionvialeated in line 6 and if the
solution is an improvement, lines 7-9 update the best soidtund so far. Lines 10-12
retrieve the last assigned variable and remove its assighnoeallow MAIN SEARCH to
continue traversing the search spaceABRCH&B OUND returns the best found solution in
line 14.

73

BRANCH&B OUND(INITIAL SEARCH, MAINSEARCH, @)

1 F"—o0

2 Best « null

3 Sol « INITIAL SEARCH(d, F™)

4 if Sol # null [/ A solution was found
5 while Sol # null

6 F «— EVALUATION CALC (Sol)

7 if ' < F*

8 Best «— Sol

9 F*—F

10 x«— S[|S|] //'Unassign the last instantiated variable
11 REINSERTDOMAIN VALUE (7, (@))
12 7 — @\ {(z,) (@)}

13 Sol < MAINSEARCH(Sol, F*)

14 return Best

Figure 7.10:The Branch & Bound algorithm

Propagation engine

When avariable is assigned, propagationis performed byrtieeedure RNPROPAGATORS
which is the propagation engine in the application. The npairt of the propagation en-
gine is to iterate through a list of propagators and applyrgaopagator in turn. A naive
approach has one list, which the engine iterates througdirogall propagators to be sched-
uled both in the best and the worst case. An improved approaahthe naive implemen-
tation is to use a hashtable, which uses the Idbef a container as key and the associated
value is a list of propagators, which should be executed’f@nsuring that only the prop-
agators necessary fdrare executed.

Evaluation calculator

The cost of a solution is computed by the proceduvalEEATION CALC, which takes a
solution as an argument. The procedure sums over a predsghetievaluation functions.
Each result from the evaluation function is multiplied wstbme weight.

OvERSTOW(@) and WASTEDSPACE) are detailed in appendiX.1.

Estimation calculator

The estimation of a partial solution is carried out by thecpure ESTIMATIONCALC. The
procedure takes a partial instantiation as input and sumisaopredefined set of estimator

functions. Each result from the estimation function is npligd with a weight, predefined
according to relevance.

74

procedure EVALUATION CALC (@)

1 return W, * OVERSTOW(Q)
+ Wy *x WASTEDSPACHE®)
+ W * EMPTYSTACK(@)
+ W, * REEFER(Q)

Figure 7.11:Cost evaluation fo.

procedure ESTIMATIONCALC (@)

1 return W, *x ESTIMATEOVERSTOW(Q)
+ Wy x ESTIMATEWASTEDSPACH)
+ W.s *x ESTIMATEEMPTYSTACK (@)
+ W, *« ESTIMATEREEFER(Q)

Figure 7.12:Cost estimation foi.

ESTIMATEOVERSTOW(d) and ESTIMATEWASTEDSPACH @) are detailed in appendiX.2.

75

76

Chapter 8

Experiments

This chapter describes the experiments, which were coaduoctinvestigate the perfor-
mance of the implementation and being able to identify attarastic, which could be
decisive for the performance. The section begins by dasgriihe test components avail-
able for experimentation and an explanation of what is nreasuThen experiments are
performed to investigate various aspect of the implem@maEach experimental section
is build up with a motivation for the experiment. The tesugefiollows with a conclusion
of the result. This chapter shows a method to compute therdppend the search space.
In addition a technique for avoid excessive estimation iadgevestigated. In addition a
method to measure the quality of alternative heuristicssis lbeing provided.

8.1 Testcomponents

This section presents the individual parts, which are us@dnduct the experiments. The
presentation begins with the test data, then propagatareary termination criteria are
described. The various search algorithms are then presantkthe section concludes with
a description of what is to be measured.

8.1.1 Testdata

For testing purposes the structural layout of a vessel hers penerated in order to simulate
a realistic size vessel. The vessel will be referred tWBSSEL-1. The vessel is divided
into 18 bays numbered from 0 to 17. The widest bay is eightieeks wide and the thirteen
tiers deep below deck at the deepest level. In addition,vaagte plan foMESSEL-1 has
been generated. However it soon proved that we were not alslelte the SASP within
reasonable time and therefore an alternative had to bedzmesi.

A smaller vesselYESSEL-2, has therefore been constructed such that the properties of
the bays varies from one another in order to ensure diffespects can be examined.
Furthermore, it is also required that the bays could be sohi¢ghin a reasonable amount

77

of time. Table 8.1 summarize the most important propertidseobays iVESSEL-2. The
two first columns show the dimensions of each bay. The thitdnob shows how many
cells are available for placing a container. The fourth afid &olumn shows the number
of 20-foot and 40-foot container, and the last column shoovg many different discharge
ports are there for the containers to be loaded.

Tiers | Stacks| Available | 20-foot | 40-foot Number of

cells discharge ports
Bay V 2 2 7 3 1 2
Bay S 5 3 22 5 5 2
Bay B 5 3 25 8 7 6
Bay A 5 4 33 4 10 6

Table 8.1: Vessel data fMESSEL-2

Propagators and early termination criteria

The constraints of SASP are represented by propagatorsaatydt@mination criterions,
which are described in details in section 5.4 and 5.5 reyagt A standard set of propa-
gators are defined to ensure that the constraints of SASBpscted. The standard set is
defined in table 8.2.

Table 8.2: standard propagator sets
PRS1 {Pu, 7)9’ Pa, PIMO—l) PIMO—Zj 7)40-207 7)20-40’ 7)40-40’ 7)20-207 Pa-s}

No aspects in relation to early termination criteria wassidered and therefore all early
termination criterions are used for all experiments.

8.1.2 Search

The purpose of the experiments is to reason about the sqzach and see how efficient the
implemented search algorithms are. The efficiency of theckedgorithm can be examined
on two aspects: "How fast can a single solution be found?” "&twv fast can the entire
search space be traversed?” This section begins with aareqmyn on how to quantify the
search space followed by a presentation of the differemtrdifgns to find a single solution.
The search section is concluded with a presentation of twecbrand bound variant used
in the experimentation.

Bounding search space

The upper bound of the search space gives an idea of how wes¢#nch space is. Having
an upper bound, makes it possible to reason about how mudheaddarch space gets

78

pruned away when using different heuristics. Throughoatdkperiments the common
measure is the number of iterations. This corresponds touheer of nodes visited in the
search space and can be compared to the theoretical uppet.bou

As described in section 2.2, the search space is shapedessvaitere each node represents
an assignment of some variableand branches represents the candidate values fone
possible way to bound the number of complete instantiatidnise tree for SASP is to let
the air value be unique, such that the number of possiblddatedvalues always will be the
number of available cells. The number of solutions can thendiculated by the number
of unique orderings of the candidate values including thigusair values. The number of
complete assignments for the cell-model is therefore uppended byO (| X |!). However
the bound is quite weak, since air is not unique and therdfiareches, where air has been
considered for a variable should be considered as beingthe subtree. A tighter bound
can be derived by following consideration. Havinggells andj containers we assume three
cases:

1. having exactly enough slots to place all containers
2. more slots available but no more containers to be placed

3. more slots available than containers to be placed.

For convenience the case where there are more containarsithais not being considered.

In the case where there are enough slots to place all corgaime number of possibilities
for placing all containers will be a simple permutation. Whieere are no more containers
to be placed, only one possibility is left, which is to fill thest of the slots with air. In the
case, where slots exceeds the number of containers, onkéhelsdice to either choose to
place a container or air. For each choice a subtree can b&wectes with the remainding
possibilities. If a container has been chosen a subtreejwitih container has to be placed
within ¢ — 1 slots, while chosen air to be placed creates a subtreejwitintainers to be
placedi — 1 slots. This leads to following recursive function:

Let be the number of cells, lgtbe the number of containerg(i, j) gives the number of
complete assignments.

7! j=i
(i) =9 1 j=0
jWPi—1,7—-1))+¢F (i —1,5) otherwise

The number of nodes in the search tree can be counted by usiigrargumentation and
results in the following function:

L+ Y T j=i
(i, g) =19 i J=0
JH1+7@W6G—-1,j—1)+¢'(i—1,5) otherwise

79

The functiony’ computes the number of nodes a subtree excluding the roa. baike
casei = j represents the number of nodes whgreontainers have to placed within
cells. The tree ig + 1 high and have! paths. From the root the number of containers
available for selection ig, which results inj new nodes. At the next level all nodes will
have the possibility to choose betwegen 1 containers, which result if{ j — 1) new nodes.
Extending this argument the number of nodes at léuslthe product frony down tok i.e.

1_.. The sum of the nodes in the entire tree will therefore be doé mode in addition to
the sum of nodes at each level in the tree. In the case whar dhe no more containers
left to be placed the remaining cells will be placed with aug there will be nodes left.
In the recursive case eithgrcontainers or air can be placed a cell, which resultgin1
possibilities for each cell. Placing a container in a cedlutes inj subtrees with one less
container to be placed in one less slot i/&(i — 1, j — 1). Placing an air container results
in a subtree where one less slot can be usedi@.— 1, j).

YN (i) = 1+ /(i j)
The functiomy)’¥ computes the number of nodes in a subtree including the root.

For some of the bays it was possible to traverse the entirelsepace and thereby count
the number of solutions. Table 8.3 show the number of salatand the number of how
consistent solutions and the percentage.

_ Table 8.3: Solutions o
Bay Candidate solutions Complete instantiations Pergenta

Bay S 336 3,160,080 1.06E-04
Bay B 2880 870,072,320 3.31E-06
Bay A 23040 150,994,944 1.53E-04

Searching for a single solution

Different heuristics have been considered in order to im@tbe efficiency of the backtrack
algorithms. The variants used in this report are all basedaoiable ordering as described
in section 7.4.1. The variants of the backtrack algorithsedun this report can be found
in table 8.4.

Table 8.4: Single solution varieties

Name Select variable procedure
DVFC . SELECTVARIABLEDVFC
Forward checking : BSLECTVARIABLEBOTTOMUP
Overstow : ELECTVARIABLE OVERSTOW

80

Traversal of the search space

The implemented branch and bound applies the diving heubgttake two algorithms as
input: One which is efficient for finding a good solution théert for efficiently traversing
the search space. When performing experiments relateaversal of the search space the
DVFC is used as the initial search algorithm and as the maircke

8.1.3 Measurements criteria

After an experiment has been executed data is being gatgatbdred and analyzed. De-
pending on what is required to be examined, the measureméased on one or more of
the following criterions:

e Number of iterations
In a search an iteration is a step for extending a consisteniapinstantiation to
another consistent partial instantiation by one variablee unit is defined to be de-
fined as one variable. Some propagators have been enhantertatically assigned
a variable when there is only a single domain value left tosater, however these
are not considered as an iteration step.

e Number of backtracks
In search the number of backtrack is defined as the numbemektsome variable
is being reconsidered for another value after it has beegres$to a domain value,
which were consistent. One unit is defined for each time atbaok is enforced by
an inconsistent assignment.

e Duration
The duration describes the time used to perform the expatiniée unit is milisec-
onds or seconds.

e Estimation backtracks
An estimation backtrack refers to a partial solution, forahhthe estimated cost is
higher than the current best cost. This results in a badktrahich is not inferred
from a domain exhaustion, but due to the estimators. Theisidiéfined each time
an estimator forces a backtrack.

8.2 Propagator improvements

Although the initial developed propagators modeled thesttamts in SASP, the amount
of pruning was not sufficient. Several measures have beea tostrengthen the pruning
power of propagators. One heuristic is to assign contaiteerll immediately, when

there is only one value left to be selected. The propagatmscould be improved by this
heuristic, areP® andP**-4°, which are denoted &8'® andP’**-4 respectively. Furthermore

81

a weight propagatoP®" was implement as well, which is described in more details in
section 5.4.

8.2.1 Searching for a single solution

The motivation for doing a single solution test is to exanifriee improvement of the new

propagators has any effect, when searching for a singl¢isolin the search space. The
setup can be seen in table 8.5. The bays chosen has been letbdnva solution could be

found within reasonable time.

Table 8.5:Setup for finding a single solution using different propagsit
Search algorithm : DVFC
Problem instance : BayV, Bay S, Bay B, Bay A, Bay 0,
Bay 1, Bay 2, Bay 6, Bay 16

Propagators : Pu, ng’ fpa’ fPIMO-l’ fPIMO-Z’ 7340-20’ 7320-407
7)40-40 7320-20 Pa-s Pa-w Pla 73/40-40
Measurement . lteration, Backtrack

Three new sets of propagators has been constructed, wikishawn in the table 8.2RS2
is the set, which replaces the propaga®@tsandP*%-? with the improved propagatoi®'®
and P19 PRS3andPRS4are the setPRS1andPRS2respectively with an additional
propagatofP* .

Table 8.6: propagator sets
PRS2 {Pu, fpg7 fp/a7 PIMO-l) fPIMO-Z’ 7340-207 7320-40’ 73/40-407 7)20-20’ fPa-s}
PRS3 PRS1 U {pP*™}
PRS4 PRS2 U {pP+v}

Conclusion on finding a single solution

The results are shown in table 8.7. As the table showBRB&2yields a lower amount of
iterations, but has a higher amount of backtracks compaleBRE1 This is to be expected,
as immediately assigning variable avoids instantiatimguph select value calls, but does
not avoid backtracks if the assignment triggering instastgnments is invalid.

SetPRS3shows no improvement ov&RS1, when searching for a single solution. This
could be explained by the low amount of iterations.

82

PRS1| PRS2| PRS3| PRS4
Bay A
Iterations | 9659| 7219| 9659| 7217
Backtracks| 4813| 4517| 4813| 4517
Bay B
Iterations 213 159 213 159
Backtracks 94 92 94 92
Bay S
Iterations 28 15 28 15
Backtracks 0 0 0 0
Bay V
Iterations 7 7 7 7
Backtracks 0 0 0 0
Bay O
Iterations 22 13 22 13
Backtracks 0 0 0 0
Bay 1
Iterations 53 30 53 30
Backtracks 1 0 1 0
Bay 2
Iterations 80 46 80 46
Backtracks 0 0 0 0
Bay 6
Iterations 172 46 172 46
Backtracks 0 0 0 0
Bay 16
Iterations 89 53 89 53
Backtracks 9 9 9 9

Table 8.7:Result of Single solution search with propagator sets. &blkehtries are
the best for entry for each bay.

8.2.2 Traversal of the search space

Since searching for a single solution did not show any imenoents, it was considered,
whether it was due to the fact that the number of iterationgwaeo small. As an alternative

an additional test has been setup to investigate if that ead the case. In order not to
prune any solutions away, the branch and bound was carriagithwut using estimations.
The bays orWESSEL-1 were too large to to be able to complete and consequentlysit wa
only bays fromVESSEL-2, which was subjected to experiments. The test setup is shown
in table 8.8. A description of the sets of propagators useth®experiment can be found

in table 8.6.

83

Table 8.8: Test setup

Search algorithm : Branch & Bound

Estimators Do-

Problem instance : BayV, Bay S, Bay B, Bay A

Propagators : Pu’ 7)97 7)(1’ rPIMO-1’ rPIMO-Z’ 7)40-207 7)20-407
7)40-407 7)20-207 7)(1-57 fpa-w7 Pla, 7)/40-40

Measurement . Iteration, Backtrack

Conclusion of the traversal of the search space

Shown in table 8.9 is the result of iterations and backtracksge, when using the propa-
gator set on each problem. The table shows thaPB&2does not always perform better
thanPRS1, which can be interpreted as the improvements is weak cadparsimply just
evaluating whether the current weight of the stack exceeelsnaximum allowed weight.
This is to be expected, as the improvement cannot triggettizaks, unless the weight
for the containers placed in the stack is close to the maxinmveight of the stackPRS4

has the most bolded entries, showing that the best propasgtits the set containing all
improved propagators.

PRS1 PRS2 PRS3 PRS4
Bay V
Iterations 351 339 351 339
Backtracks 146 146 146 146
Bay S
Iterations 96,111 76,503 85,983 71,751
Backtracks 47,816 46,744 42,824 43,624
Bay B

Iterations 105,403 82,917 86,779 69,525
Backtracks 50,590 50,046 41,950 41,246
Bay A
Iterations | 10,023,317 7,932,603 10,023,317 7,932,603
Backtracks| 5,000,139 4,881,829 5,000,139 4,881,829

Table 8.9:Result of branch and bound with propagator sets. Boldedesrdre the
best for entry for each bay.

84

10000

1000 1—

100 1+]

Iterations

10 4

IS NI B

Bay A Bay B Bay S Bay V Bay 0 Bay 1 Bay 2 Bay 6 Bay 16

Problem size

OPRS1 EPRS4

Figure 8.1:A histogram of the two propagator s€@®S1andPRS4for a range of
different bays. Each column in the diagram shows the numbgerations for each
propagator set on a given problem.

Figure 8.1 shows that the séi®S1andPRS4follow each other very closely, showing that
the improvement is merely by a constant factor. This is toXpeeted, as the pruning per-
formed byPRS4 mainly concerns skipping iterations, by immediately gsiig variables
when possible. Although the problem size of some problemsraticated to be smaller,
the amount of iterations spent before finding a solutionegriThis shows that although
the problem is smaller, the initial solution is not alwayegent early in the search space.

8.3 Estimators

8.3.1 Traversal of the search space

Experimentation with the estimators focuses on how diffevariations of estimators would
affect the search. Another interesting observation is\westigate how early the estimators
are able to backtrack in order to reason how much the und®esin is. The estimators is
based on the four objectiv€3E1-OE4 defined in SASP, which are detailed in section 3.2.

For each objective, a weight is provided to express the itngiagiolating one of the ob-
jectives. The weight is expressed in terms of dollars andrez@nt to show the economical
impact, when not satisfying a given objective. The provieetdghts are shown in table
8.10.

The test setup is shown in table 8.11. The sets of estimatobic@tions are shown in table
8.12. It should be noted that the implementatiorhQfand ., has been merged into one
for efficiency and therefore only eight instead of 16 setseHasen constructed.

85

Table 8.10: Weights

Overstow w,, = 200
Wasted space W,,, = 100
Reefer W, = 50
Empty stack W,, = 200

Table 8.11: Setup for estimation
Search algorithm : DVFC

Estimators Y hows By Besy By

Problem instance : Bay S, Bay B, Bay A

Propagators - PRS1

Measurement . Iteration, Duration, Estimation backtrack

Conclusion for traversal of the search space for estimatiommprovements

The result of the test execution is shown in table 8.13 withdliferent estimator setups
given in each column. An initial test run are given in the fastlumn, where the algorithm
are run without using estimators. As shown in the table, tii@emented estimators does
not always yield a better cost, compared to not using anynasion at all. Especially the
overstow estimator, when running alone, which uses veleg liltme on the first two bays,
but suddenly jumps to use the most time among all the estnhatbhen run on Bay S,
surpassing even the approach of not running estimators.

The reason for this is that the containers to be loaded in Bagv@ almost no variation
on their discharge port, which makes the overstow estimatenely as extra workload.
This affects all the estimator setups that the overstownedtir is part of for Bay S, which
shows that the overstow estimator furthermore is dominanthe time it uses on each
iteration. From this it can be concluded that although thenedion techniques allows to
skip solutions, the extra work they infer does not necesgayyoff.

8.4 Lazy Estimation

8.4.1 Traversal of the search space

A partial solution might be too small for the estimators ticadate a cost, which is close to
any solution that can be extended from it. For that reasastifmation is started too early,
it might introduce a substantial overhead. To avoid this,ittea oflazy estimations in-
troduced, which refers to avoiding of estimation, until &a® percentage of the variables
in a given problem instance are assigned. The motivatioo examine whether it lazy
estimation is beneficial. Setup for lazy estimation can hmdbin table 8.14. The chosen
bays are those that are able to find a solution within readertiate for this experiment.

86

Table 8.12: Estimator sets

ERS1 -

ERS2 : s, hus

ERS3 how

ERS4 : h,

ERS5 : Ay, hoy

ERSG : hOU? esy hws

ERS7 By, heg, Py

ERSS h?”7 hOU) h@ bl CUJS

| [ERSI| ERSZ2 | ERS3 | ERS4 | ERSS | ERS6 | ERS7 | ERSS |

Bay B
Iterations 69,525 714 512 35,168 8,038 512 35,168 8,062
Duration 2,750.018 109.376 203.126 1,546.885 2,843.768 125.001 2,171.889 3,046.895
Estimation
Backtracks 0 165 35 5,056 1,266 35 5,056 1,266
Bay A
Duration 7,932,603 98,769 274,214 3,167,664 401,881 259,022 2,823,876 476,231

Time spent| 305,970.708| 7,484.423| 112,828.847| 153,672.859| 158,766.641| 116,188.244| 199,829.404| 201,729.166
Estimation

Backtracks 0 22,389 43,397 375,678 57,586 40,191 359,922 62,735
Bay S

Iterations 7,1751 42,074 27,782 56,808 42,504 32,196 61,308 42,281
Duration 2,687.517| 2,156.264 7,078.170 2,593.767 9,937.564 8,578.180 3,671.899| 10,747.179
Estimation

Backtracks 0 2,661 1,600 5,399 2,493 2,018 1,266 2,357

Table 8.13:Estimation setup results

The experiments for lazy estimation is being performed bsfopming lazy estimation
ranging from starting estimation when 100% of the variahkesbeen assigned to 0% when
no variable has been assigned. It should be noted that haeinthe threshold to 100%
implies that estimations is never carried out, 45% impled estimation is only performed
for partial instantiations were more than 45% of the vagalilave been assigned and 0%
indicates the estimation is performed for any partial ingédion.

When comparing two setups, where one is using a lazy estmaercent greater than
zero, and the other is performing estimation all the time, gbtup using lazy estimation
will always use at least as many or more iterations as the sgtap, since it will at most
be able to perform estimation backtracks as often as whdorpgng estimation for all
partial instantiations. For this reason, the only critéoiacomparison that remains is the
time spent, for each of the two setups.

Line 4 in SNGLESOLUTIONSEARCH needs to be modified to incorporate lazy estimation
for a threshold ofz which are shown in figure 8.2

87

Table 8.14: Test setup

Search algorithm : Branch & Bound
Estimators D hows By Besy Py
Problem instance : Bay S, Bay B, Bay A
Propagators : PRS1
Range(%) : 0-100
Measurement . Duration

4 if consistent A (% >z V ESTIMATIONCALC (@) < C)

Figure 8.2:INCORPORATION LAZY ESTIMATION IN SINGLESOLUTIONSEARCH

Conclusion of traversing the search space for lazy estimain

Shown in figure 8.3 is test results for lazy estimation for BayThe initial bump in the
graph is the time taken for the estimator setups involvimgetstimation for overstow. This
shows that the estimators are actually started too latetatdite time spent on calculating
the estimated cost is slower than simply searching withstitmators in the remaining
subtree of that partial solution. As estimation is allowathvess assigned variables, the
time taken decreases until a lazy percent 45%, after whicreasing the lazy percent
does not have any effect on the time taken. As the time foetsang the problem with
zero percent for lazy estimation is equal to the lowest tiitnean be concluded that lazy
estimation does not pay off for this problem instance.

As figure 8.4 showkERS2andERS3performs the best for Bay B, once the lazy estimation
percent is below 55%. Combined with the results from theiptes/graph, this suggest that
these estimators actually perform the best when startégwveitin a decreasing performance
as the lazy estimation percentage increases.

ERS8 performs almost as bad as not using estimators (100% lazgmpiy regardless of
the lazy estimation percentage. This shows that althougtesaf the estimators, when
tested alone performs well, their performance is penalizedmbined with an estimator
performing poorly for a given problem instance.

In figure 8.5 for the final problem instandeR S8 performs worse than not running estima-
tors at all at 100% lazy estimation.

88

Time in miliseconds

Time in miliseconds

Bay A

600000

500000

400000

300000
200000

100000

0 T T T T

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 O

Lazy percent

—&— All Estimators
Overstow
—¥— Overstow & Reefer

—l—\Vasted Space & Emptystack
Reefer
—8—\Yasted Space & Emptystack & Reefer

Figure 8.3: Result

Bay B

100 95 20 85 80 75 70 65 60

55 50 45 40 35 30 25 20 15 10 &5 O

Lazy percent

—&— All Estimators
Overstow
—3¥— Overstow & Reefer

—l—Wasted Space & Emptystack
Reefer
—&—Wasted Space & Emptystack & Reefer

Figure 8.4: Result

89

Time in miliseconds

Bay S

12000
10000

8000

6000
4000

2000

0 ‘ ‘ T T
100 95 90 85 80

75 70 65 60 55 50 45 40 35 30

Lazy percent

25 20 15 10 5 O

—&—All Estimators —l—\Wasted Space & Emptystack
-Overstow 2 Reefer
—¥— Overstow & Reefer —8—Wasted Space & Emptystack & Reefer

Figure 8.5: Result

90

This could explain the reason for why the overstow estimatoks poorly as the estimator
may estimate a very low cost until a container with high désgle port is assigned to a cell
late in the search space.

8.5 Approximation

8.5.1 Traversal of the search space

The branch and bound algorithm can easily be made into arosippation algorithm,
by adding a percentage to the cost calculated by the estimmaidhve motivation for this
experiment is to investigate how approximating the esthabst of a partial instantiation
would affect the performance of the search at the expensgtihality.

Line 4 in SNGLESOLUTIONSEARCH needs to be modified to incorporate approximation
which are shown in figure 8.6

4 if consistent A (14 0) * ESTIMATIONCALC (@) < C

Figure 8.6:Incorporation of approximation inISGLESOLUTIONSEARCH

Using this modification, the goal is to find solution closehe bptimal in significantly less
time, compared to when searching for the optimal one. Thepsetr experimentation is
shown in table 8.15. The chosen bays are the ones, which aosotwould be found in
reasonable time.

Table 8.15: Test setup for branch and bound approximation

Search algorithm : Branch & Bound

Estimators D hows By Bes, By

Problem instance : Bay S, Bay B, Bay A
Propagators : PRS1

Range(%) : 0-50

Measurement . Iteration, Estimation backtrack

Figure 8.7 shows the results from approximating with an exipration percent ranging
from 50-0% on the x-axis and the number of estimation back&ran the y-axis. Red dots
on each line marks when the best found solution is improved.

The number of estimation backtracks used grows steadilgspeact to the approximation
percent, unless the best found solution is improved. Fraa éstimation backtracks it
can be inferred that larger branches of the search space &wvey, which, as expected,
shows that approximating the estimated cost enables tloeithlgp to backtrack sooner in
the search space. Once the best found solution is updagedrdph shows a drastic drop

91

in the number of estimation backtracks performed. This lsetexpected, as the estimators
will have better terms for triggering a backtrack if the cobthe best found solution is
lower. This in turn affects approximating the estimated esswell.

When approximating by a certain percentage, itis indiyegitien that the best solution will
be improved in leaps by at least a percentage equal to thexpyation percent. Although
the chosen problem instances hold many candidate solutioegraph appears to show
very few improvements to the best found solution. While hastially can be blamed on
the approximation percentage, it can also be argued thantieeint of improvements to the
best found solution is low, if the solutions initially fourade good.

It can be observed for Bay B, the solution initially found eeimproves regardless of the
approximation percent, which indicate that the solutiatiahy found is the optimal one.

R WW
10000
73]
-~
(&)
£ 1000 — _,
3]
m
=
S
£ 100 1
E .
= ™
11}
10
)

50 48 46 44 42 40 38 36 34 3230282624 22201816 141210 8 6 4 2 O
Approximation percent

——Bay A Bay B —&—Bay S

Figure 8.7:Approximating the estimated results from 50-0%, showiregriamber
of estimation backtracks used for three different bays.

Extracted from the approximation tests, Figure 8.8 showntlm@ber of iteration for the
same problem and the same range as the previous graph. Gogib&two graphs, shows
a close correspondence between the measured estimatikimaois and the number of
iterations used. From this, it can be concluded that the amofutime used has a close
correspondence to the approximation percentage and thihbed solution in the problem.

92

o L“”“”W

100000

e

1000

Iterations

100

10

1

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 201816141210 8 6 4 2 0

Approximation percent

———Bay A BayB —&—Bay S

Figure 8.8:Approximating the estimated results from 50-0%, showiregrtamber
of iterations used for three different bays.

Conclusion on traversal of search space when using approxiation

Based on the test data on which approximation is perforntecin be concluded that
approximation has a strong potential, in that the best mrlus found even with a high
approximation percentage. The amount of test bays on wigiproaimation is performed
is however very few and to properly verify the results, a mnexeensive number of bays is
required to be tested. Due to time restrictions, this hasshvewbeen left as future work.

8.6 Variable ordering

8.6.1 Searching for a single solution

Different variable ordering heuristics has been consillarerder to improve the efficiency
of finding the initial solution. Three different algorithrhas been created for that purpose
and a further description can be found in section 8.4. Thevaman for this experiment is
to measure, whether any of the variable ordering heuriatiedeneficial, as the intention
with finding an initially better solution is to decrease thtat search space.

The other components in the experiment can be found in talb& 8

93

Table 8.16: Setup for variable ordering
Search algorithm : DVFC, Forward Checking, Overstow

Estimators Y hows By Begy By
Problem instance :VESSEL-2, BayO
Propagators : PRS1
Measurement . Cost, Iteration

Conclusion

The diagram in figure 8.9 shows the cost of the initially fowsadution for four different
bays, when using Forward Checking, DVFC or Overstow as bbriardering. Giving the
best cost for all bays except Bay A is forward checking. DV &verstow gives an al-
most equally good cost, which indicates that the extra waaklerby the overstow heuristic
does not pay off.

3000
2500

2000 —

1500 +—

Cost

1000 +—

M Ol |
0 ‘ T ‘

Bay A Bay B Bay S Bay V

Problem

‘D DVFC HEForward Checking OOverstow |

Figure 8.9:Cost of the initial solution found on four different bays

Figure 8.10 shows the number of iterations taken for eacheatgorithms for traversing
the entire search space in the three different bays. Holdisiight advantage in all bays
except for Bay A is the Forward Checking. A reason why the &oowchecking performs
badly on Bay A could involve the fact that the initially fousdlution has a high cost, as
can be seen in the diagram above. Overstow diving does notlgs iterations for each
problem compared to using DVFC, from which it together with tesults from figure 8.9,
can be concluded that this heuristic does not work.

Table 8.17 shows the cost of the initial solution found, whsimg different variable order-
ing heuristics and the cost is compared to the optimal swidbr each bay iIVESSEL-2.
The intention is to show the diversion between the optimkitsm and the solution found
by using a particular variable ordering. A small differerstews that the given variable
ordering found a solution with a cost close to the optimal.

94

1000000
100000 —
10000 §— - []
1000 +—

100 4—
10 L ﬁ
1 T T T

Bay A Bay B Bay S Bay V

Problem

Iterations

‘EIDVFC EForward Checking OOverstow ‘

Figure 8.10: Measuring the iterations used before finding the initialiioh on
three different bays, using forward checking, DVFC and Gteer as diving heuristic

Shown below is the number of iterations used for the foured#iht bays for the different
diving heuristic setups in the branch and bound algorithrs.cAn be seen in the table,
none of the diving heuristics finds a solution with a cost etatan 41% to the optimal
cost, showing that none of the diving heuristics is capabfending a solution reasonable
close to the optimal one.

Diving cost Distance in % to the optimal solution

DVFC Forward Checking Overstow OptimalDVFC Forward Checking Overstow
Bay A | 2350 1950 2750 1150 51 41 58
BayB | 2150 1350 1950 75(65 44 62
BayS | 2250 2250 2250 2250 0 0 0
Bay V 550 550 550 550 0 0 0

Table 8.17:Diving heuristic evaluation table

8.7 Profiling

A performance analysis has been made of the implementatican attempt to identify
which parts of the program that is the best candidates famagdtion. A profiling tool
has been used to gather the data and shows a percentage edgingctime used by the
different components which the program consist of. Theltesid the analysis is intended
as a basis for future improvement of the processing time. sBligp can be found in table
8.18.

Conclusion on profiling

Figure 8.11 shows an overview of the time used by variouspdrthe program. Taking
the most time by far is the estimators with over 80% of thel fmtacessing time this makes

95

Table 8.18: Test setup

Search algorithm : Branch & Bound
Estimators © hows By Bes, By
Problem instance : BayB
Propagators : PRS1
Measurement : Processing time

the component the best candidate for further optimization.

Profiling

OEstimators OPropagators @Variable assignment BMUnassign variable B Other

Figure 8.11:Profiling run on all program components

The figure 8.12 diagram focuses on the estimator componéhtiive aim to identify which
estimators that takes the most processing time. Taking thare 80% of all processing
time in the estimator component, the overstow estimatdrnasve as the best candidate for
optimization.

Although the time spent by the overstow estimator is hugeestimator is also one of the
strongest, capable of inferring estimation backtracksnatarly stage of a given instan-
tiation. As the algorithm for implementing overstow, is rhbkely the one causing the
overhead, serious considerations should be made befdexirgpit an alternative imple-
mentation.

96

Profiling - Estimators

|OOE1 BOE2 + OE4 MOE3 M Other |

Figure 8.12: Processing time on estimators

Figure 8.13 shows the processing time distributed on thpagators. Improvements on
the propagators have mainly focused on being able to prurmy aentainers from the

domains more extensively and not much on optimization. éndiagram below, some of
the propagators have been omitted, as the processing tieme ispthese propagators was
so low, that they were irrelevant. The three propagatorsggthe most time is:

e ETC3
e PRS
e PR3

Although the propagators might appear to be using a lot afgesing time, some of them
might simply be using the processing time because they dredséed many times. An
example of this is the implementation Bf°, which simply ensures that the correct half
of a 40-foot container is placed next to its other half. Thia propagator, which essentially
does very little work is constant asymptotically. Howevss problem, on which the pro-
filing tool was executed, had mainly 40-foot containers $nsitowage plan, which in turn
affects the propagator.

The most interesting discovery in the profiling test was thmant of time taken by the
overstow estimator. The overstow estimator is however wepprtant and future optimiza-
tions would most likely consist of experimentation witheaitative algorithms for calculat-
ing the estimate or, lazy estimation. Propagators takesliee time, which shows that the
implementation effectively supports fast pruning of domealues. This also shows that
making the propagators prune more efficiently shows pranaiseadditional propagators
would not affect the total processing time considerably.

97

Profiling - Propagators

1%

15%

4% 7%

‘DETCS BETCS OPR3 OPR2 BMPR4 OPRS IOther‘

Figure 8.13: Profiling run on the estimator component

8.8 Solution discoveries

8.8.1 Traversal of the search space

The experiments revealed that the capability of solvingstioeage area stowage problem
for our implementation had not been satisfactory. Thisadsad to be further investigated
to determine whether the implementation or the choice ohogktvas the issue. The first
aspect, which had to be investigated, was the solutiongdfyrour implementation. The
branch and bound algorithm was modified to show the cost fon salution found. In
addition the estimators were omitted to ensure, that naisolsiin the search tree were
disregarded. The test setup is shown in table 8.19.

Table 8.19: Test setup

Search algorithm : Branch & Bound

Estimators Do

Problem instance : BayA

Propagators : Pu, 7)97 Pa, fPIMO-17 rPIMO-27 7)40-20’ 7)20-407
7)40-y7 7)20-20’ PC, wa7 Pla, 7)/40-y

Measurement : Cost of solution

98

Bay A

4000

3500

——

11

3000 +rridHH -

2500 |- : sy

coo0 RIS H TR R 1 RN W [[~ Bay A

1gymitigiis

1500 _ T L

1000

500

0

1 359 717 1075 1433 1791 2149 2507 2865 3223 3581 3939 4297 4655

Figure 8.14: Result

Conclusion of the traversal of the search space

Figure 8.14 shows the cost for the first 5000 solutions foumthé search space for Bay
A, where the y-axis denotes the cost and the x-axis denogesrtfer of the solutions. For
Bay B and Bay S it has been possible to traverse the entiretsspace, which is depicted
in figures 8.15 and 8.16 respectively. Through inspectiameigraphs following has been
observed: Solution with same cost seems to be clustered.cbhid be explained by the
fact that containers with the same set of properties cantmeugated without the cost being
affected. Containers with the same properties will be reteto as an equivalence set. The
other interesting observation is that even though solstare clustered they seemed to be
reappearing continuously during the search. The explamé&ir this could be that if several
equivalence sets exists then any permutation between etemmeany particular set would
result in a new solution without affecting the cost. These tservations serve as the
lower bound of how many solutions is to be found within a peoblinstance i.e. Lel be

a set of equivalence sets of containers in problemhen the lower bound of solutions for
a problem instance will bg] . [e|'.

e

The containers to be loaded on bo&MHSSEL-2 was further examined in order to see if
this observation was indeed correct. Equivalence setsavasefl based on height, weight,
IMO level, size and discharge port. However the graphs staweasiderable more solu-
tions than expected and therefore further analysis wagedawut. For Bay B the solutions
for a particular cost was examined in order to explained whyensolutions than expected
was found. It became quite clear that our definition on edeinae sets was too strict.

99

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

Bay B

1

Inf

[

(—Bave

it

1 284 567 850 1133 1416 1699 1982 2265 2548 2831 3114 3397 3680 3963

Figure 8.15: Result

3500

3000

2500

2000

1500

1000

500

0

I

==
%
=3
E=
B

i

-3
=y
I~ =%

=

il il

1 27 53

79 105 131 157 183 209 235 261 287 313 339 365 391 417 443 469

|+ Bays]

Figure 8.16: Result

100

Through observation it could be observed that swapping @vtodt container on the same
tier produced two new solution without changing the costisTould be the case where
all properties on the container remain the same except éowtight or IMO level. Fur-
thermore it was also observed that as long as the number oftowes did not change for
a permutation of containers it would be possible to swapainats without affecting the
cost. This is particular true when considering containera single stack since the total
height and the weight will remain unchanged. E.g. having 20doot containers on the
different tier, with different discharge port can be swapjfethese are to be discharged
later than any containers above them. Due to these obsanvadisimple rule on how these
equivalence sets should be form could be given.

8.9 Conclusion on experiment

The performed experiments gave a good insight to the stnergtd weaknesses of the
chosen implementation, showing the advantages of usingamé&ination of components

over another combination, and giving some indication hdfedént characteristics for ap-

proximately equal-sized problem instances made the sspaate vary significantly. It also

gave some explanation why our implementation did not perfas well as we could have

hoped for.

The set of problem instances used was quite small and it waildecessary to perform
more experiments to strengthen the conclusion given inhlapter. Additionally it would
be interesting to do further experimentation on how charatics of containers would
affect the search. However due to the time constraint tlslohbeen done.

101

102

Chapter 9

Conclusion

The goal for this report has been to investigate whether Emapsolution could be found

for a combinatorial problem by using branch and bound coetbinith propagators. This
guestion has been inspired by the industry, however it hagkhan interest in the academic
world since branch and bound algorithm combined with prapag has according to our
knowledge not been attempted before to solve the storagesto@age problem. Relating
back to the issues this report would consider:

Can backtrack combined with a CSP-Model find a solution
within reasonable time for the storage area stowage problem

Can branch and bound combined with a CSP-Model find an optwiation
within reasonable time for the storage area stowage problem

Experiments show that the algorithm is capable of solvirggioblem, but does not scale
well to realistic problem sizes. Nevertheless becausatipsoach has not been used previ-
ously, no means to measure the quality of any algorithm, vbauld solve SASP existed.
Guaranteing optimality, we are able to provide a tool to meashe quality of alternative
algorithms.

Furthermore the experiments showed that the storage angaget problem contained sev-
eral properties. The first interesting discovery was, thatdonstraints were too weak to
restrict the search space considerably. Secondly, manyi@olwith the same cost ap-
pear during a search, which indicates that the objectivéesdli restrict the solution space
sufficiently, consequently requiring the estimators to &her precise in order to cut of
branches.

The third discovery was that the implemented estimators\edifferently depending on

the properties of the containers to be loaded. What is istiagein that respect would be
to investigate which decisive properties could improvedsigmators. Lazy estimation was
an interesting approach, which showed promising resuitsjged that the estimators were
beneficial for that given problem instance.

103

Future work

Even though a lot of ground have been covered in this repochmork still needs to be
done in order to solve the SASP. Based on the result from therarents and the conclu-
sion the future work should focus on how to solve the issub salutions reappearing with
the same cost. We suggest the following:

e Considering equivalent container as a single solution

Having n containers with the same characteristics will yielddifferent solutions
without the cost changing. Having this in mind the searclcsmauld be reduced
if it is possible to identify any of thes! — 1 solutions and skip these. In connec-
tion to this it would be interesting to see if forcing the eguént containers to be
placed early in the search rather than late will improve #erch. The motivation
for placing equivalent containers early in the search is¢batainers with the same
characteristics are only rearranged once rather than ébr ®zbtree.

e Using estimation value to cut of branches in the search tree

The estimators computes an estimation of what the actualnbbde when extend-

ing the partial solution to a complete solution. Howevehé#re is a tight correspon-
dence between the estimation value and the actual costittvenlld be possible to

avoid unnecessary exploration of the search tree by congpéne estimated value
for the current partial instantiation with some estimatatlig for a previous partial
instantiation.

e Alternative search methods

The branch and bound algorithm relies on estimators to cbrariches within the
search tree. Having many solution with the same cost wilseahe estimator to
not being able to cut of branches and thus many solutions tivélrsame cost are
discovered.

Due to time constraints several other aspects were not eeginFollowing aspects could
have been interesting to examine in depth:

e Scalability

An experiment to see how the performance is affected by tree &fi the problem
instance. Since it is already known that the size grows esupidaily, it would still be
interesting to see how much time is used when as search spaee. d he sheer size
of problem instances would not generate sufficient resaltsetconcluded upon on
the scalable test, and has therefore been disregarded.

e Domain value ordering

Section 7.4.1 describes how the order of the domain valuengosed by the label
and discharge port and used for selecting domain valueshwhatricts the search

104

space the most. What could be interesting is to examine feeteadf altering the
sorting order, however this would require almost all expemntations to be redone
and was therefore disregarded due to time restriction.

Variable orderings

Experimenting with variable ordering has a lot of potentoalimproving on the it-
eration count as the possibilities for variable orderingrigtic approaches are many.
One interesting approach could be to combine the DVFC wihQkerstow heuris-
tic, which would allow to select the optimal value, accoglio the overstow, for
variables with the smallest domain. However, this necatesitextensive changes in
the current implementation and has for this reason beendzmesl as future work.

Weights on the objectives

More experiments could be performed with different sets eights, in order to see
if it would affect the execution of estimators. However gavéests has to be redone
for each set of weights and it was disregarded due to timeticonts.

Identifying decisive characteristics for the estimators

The conclusion for the estimators was somewhat unclear lagerformance of
them seems to be dependent on some characteristics of thiepranstance. For
future work it could be interesting to identify, which cheieristics are decisive for
the performance of the implemented estimators.

Lazy estimation

In general, lazy estimation shows many interesting proggrtfor some problem
instances it is the most interesting to do estimation witly éew assigned variables,
while for other problem instances it is not beneficial to dineation at all. It would
be interesting to be able to identify the properties thateredtimation beneficial, as
the reward appears to be great. This has however been |eftas fvork.

105

106

Bibliography

[1] Mordecai Avriel, Michal Penn, Naomi ShpireiContainer ship stowage problem:
Complexity and connection to the coloring of circle grapBksevier (1999)

[2] Dechter, RinaConstraint Processindzlsevier Science (2003), ISBN 1-5860-890-7

[3] F. Rossi, P. Van Beek, T. WalsiHiandbook of Constraint Programminglsevier
(2006), ISBN 978-0-444-52726-4

[4] M. Mochnacs, M. Tanaka, A. NyborgAn experimental analysis of constraint pro-
cessing algorithmg2006)

[5] T. Cormen, C. Leiserson, R. Rivest, C. Steintroduction to AlgorithmsMcGraw-
Hill (2003), ISBN 0-262-03293-7

[6] Kenneth P. Bogartintroductory CombinatoricsAcademic Press (1983), ISBN 0-12-
110830-9

[7] 1. D. Wilson and P. A. RoachPrinciples of combinatorial optimization applied to
container- ship stowage planningournal of Heuristics (1999)

107

108

Appendix A

Program organization

Shown below is a component diagram of the implementatiorldped. It presents the
program as divided up into four basic components, of whiehntlost central is the Model
component, which contains the problem description and is&antiation build upon it,
and the Branch & Bound component, containing the actuatheglgorithm. Each of the
components are described in further detail later in thiscec

Estimation Model Propagator
Branch &
Bound

Figure A.1: The implementation presented as a componegtatia

109

Model Component

Containing the constraint network representation of tlobl@m is the model component.
The variables are kept within the problem class in a threeedsional array, with the rows,
tiers, stacks and cells as indexes on the different dimaassiédditional information re-
garding maximum height and weight allowed for each stackefs in the stack class.
Besides the problem, the model component also containsuitient instantiation being

built upon the problem assignments that the instantiatomsists of.

Instantiation

Assighment

Model Component

Container

Variable

Stack

|

Problem

DomainManager

Domain

Figure A.2:The Branch & Bound component presented as a class diagram

110

Propagator Component

The main class within the propagator component is the sdbeduhich maintains the
underlying propagators. Based on the assignment of a gnmrt variable, it determines
which propagators should be run using the label conceptitheskin the report. The prop-
agators are kept within the scheduler in a simple list stmect All communication with
the propagators go through the scheduler, making the stdreskrve as an abstract layer
between the propagators and the remaining application.

Propagator Component

Scheduler

+RunPropagators()

P_Uniqueness P_Gravity P_Air
(PR1) (PR2) (PR3)

Figure A.3: The propagator component presented as a clagsadi

111

Estimator Component

The class responsible for running the estimators, is $EMATION CALCULATOR which
schedules the estimators one by one and sums up the retwsigftiaen each. A reference
to each estimator is kept in a list structure within thr&rEMATION CALCULATOR.

Also kept within the estimator component is evaluators,clvhworks in a similar fashion
as the estimators. Evaluators are used to calculate th@ttosinplete solutions only and
calculates the cost faster than the estimators. The masomdar using the estimators was
for debugging purposes, in an attempt to verify that therestors always underestimated
the cost of any solution which could be extended from a givaatigd solution. It was kept
as a part of the final implementation, as they give a slightcke@me reduction, due to the
more simply and efficient way of calculating the cost for céetg solutions.

All communication with the estimators and evaluators gotigh the ETIMATIONCAL -
CULATOR and B/ALUATION CALCULATOR, making these classes serve as an abstract layer
between the estimators/evaluators and the remainingcapioln

Estimator Component

EstimationCalculator

+Estimate()

E_Overstow | | E_WastedSpace E_Reefer E_Emptystack
(OET) (OE2) (OE3) (OE4)

EvaluationCalculator

+Evaluate()

V_Overstow | | V_WastedSpace V_Reefer V_Emptystack

Figure A.4: The estimator component presented as a clagsadia

112

Branch & Bound Component

This section gives a detailed description of the main cle$sndling the actual search
within a problem instance. Shown below is an UML diagram @& thasses within the
Branch & Bound component.

Branch & Bound Component

DepthFirstBranchAndBound

+Search()

SingleSolutionSearch

+Search()
+SelectNextVariable()

T

DVFC ForwardChecking DivingPureStackSearch DivingOverstowSearch

Figure A.5: The Branch & Bound component presented as a dlass
gram

The different implementations of the backtracking aldorntis shown in the class diagram
as inheritance from I8GLESOLUTIONSEARCH with the option to override the procedure
SELECTNEXTVARIABLE. DEPTHFIRSTBRANCHANDBOUND holds the actual branch
and bound algorithm, described with pseudocode in the tepor

113

114

Appendix B

Informal description

Stowage Problem for Under Deck Storage Area

Input

1. Current port number £0,...,N}
2. A physical layout of a container vessel under deck stoaaga defining:

a) A number of standard container cells organized in stacks
b) Max height for each stack

c) Max weight for each stack

d) Attributes for each cell

Reefer cell (Y/N).

Max number of 20’ containers cell can hold (0,1,2)
Max number of 40’ containers cell can hold (0,1)
(we assume no 45-foot bays)

3. Alist of containers already stored in the storage aresataing for each container:

a) The cell the container is assigned to

b) The weight of the container

c) The height of the container (high-cube/not high-cube)
d) The length of the container (20’ or 40’)

e) Load port (0,1,...,N)

f) Discharge port (0,1,...,N)

g) IMO level (0,1,2)

h) Reefer (Y/N)

115

4. A list of containers to load into the storage area contgifior each container:

a) The weight of the container

b) The height of the container (high-cube/not high-cube)
c) The length of the container (20’ or 40’)

d) Discharge port (0,1,...,N)

e) IMO level (0,1,2)

f) Reefer (Y/N)

Output
An assignment of containers in the load-list under bulldvdva to cells in the storage area
such that the constraints and objectives below are achieved

1. Constraints (a valid assignment must satisfy all of them)

a) Assigned slots must form stacks (containers stand on ft@aah other in the
stacks. They cannot hang in the air)

b) Reefer containers must be placed in reefer slots (obs.rakfer slot can hold
more than one 20’ container, both of these can be reefer.)

c) A slot can at most hold two 20’ containers or one 40 containe
d) Aslot can only hold the max number of containers of diffeédength as described

e) 20’ containers can not be stacked on top of 40 containeisiét physically im-
possible)

f) The height of each stack is within its limits
g) The weight of each stack is within its limits
h) IMO rules are satisfied for each container:

i. level O: no rule

ii. level 1: level 1 containers must be separated from levahd 2 containers
by at least one slot vertically and horizontally (obs. ascdbsd in the note
below, we map containers to slots successively from theobotif stacks,
independent of whether some of these containers are higé)-ctihus, if we
have an IMO level 1 at slot i in stack j, then the container at 811 and i-1
in stack j cannot be a level 1 or level 2, and the containena iein stack
j+1 and j-1 can not be a level 1 or level 2

iii. Level 2: level 2 containers must be separated from |&vabntainers accord-
ing to the rules of level 1 containers. In addition, level 2taoners must be
separated from any other level 2 containers by a stack witlewel 2 con-
tainers. Thus, if a stack i contains a level 2 container, gtaok i+1 and i-1
cannot contain a level 2 container.

116

2. Objectives

(a) Minimize overstows. Cost penalty: one unit for each aorr in a stack over-
stowing another container below it in the stack. Unit weigliverstow

(b) Minimize the space wasted in a stack. Cost penalty: leofitwasted stack
space. Unit weight WspaceWaste

(c) Avoid loading non-reefers into reefer slots. Cost pgnalne unit for each non-
reefer container in a reefer slot. Unit weight Wreefer

(d) Keep stacks empty if possible. Cost penalty one unit per stack used. Unit
weight Wemptystack

e Note on interpretation of cell restrictions

High-cube containers may get containers in a stack out of syth the cell posi-
tions. For this reason, it may be unclear how cell restnndiare to be interpreted for
each container in a stack. Given the current state of affainsever, it is safe to apply
the cell restrictions to the containers in the order theyeapin the stack rather than
their actual position. Thus, the restrictions on the i'th ceunted from the bottom of
a stack apply to the i'th container in the stack independgits @ctual position. For
20-foot containers, this is the case, because 20-foot ic@mtanever get out of sync
with the cell level. No high-cube 20-foot containers existlany legal stack either
consists fully of 20-foot containers or has a single shifnir20-foot containers in
the bottom to 40 and 45-foot containers in the top. 40 andoébdontainers, on the
other hand, can get out of sync with the cell level since 40 4Bwoot containers
can overstow a high-cube container. We need to argue foresdlatestriction in turn
that it can be applied to the relative rather than absolus#tipa of a container in a
stack. For reefer restrictions this is the case becauserpmmaections only exist at
the bottom tiers over and under deck. So even if high-cubéaauers are stored at
the bottom tiers, the stack levels never get so much out af #yat the power lines
cannot reach the connectors. For length restrictions shike case since we only
have one rule where misalignment of containers may be irapbrtOver deck 45-
foot containers must be placed over the lashing bridge. fihés however, is only
relaxed by placing high-cube containers in bottom tiers.

117

118

Appendix C

Pseudo code

This appendix presents the pseudocode for helper functishieh was chosen to omit
from the report itself. For each pseudocode procedure, alegtdescription of the key
elements is provided for clarification.

C.1 Evaluation

C.1.1 Overstowage Evaluation

OVERSTOW returns the real overstow cogi, of the instantiationi given as parameter.
The algorithm iterates over the entire stowage location @odhtes the overstow count
whenever a container with a lower discharge port is stowéaba container with a higher
discharge port.

The time complexity for @ERsTOW is O(sc T), whereT is the maximum number of tiers
of all stacks.

119

procedure OVERSTOW(@)

1 gow<0

2 for j«+ 1toscdo

4 for il «+ tc; downto 1 do

5 for 2 + 11 — 1 downto 1 do
3 foreach [€ L do

6 if dpry @ >dpr, @ then
7 Gov < Gov + 1

8 endif

9 endfor

10 endfor

11 endfor

12 endfor

13 return g,,

Figure C.1:Overstow cost of the instantiatiéh

C.1.2 Wastedspace Evaluation

WASTEDSPACETreturns the real wastedspace cggt of the instantiatiorw given as pa-
rameter. The algorithm considers each cellstack in turd,caficulates accumulatively the
wasted space of the entire stowage configuration.

procedure WASTEDSPACH @)
Guws < 0
foreach k£ € K do
Guws < Jws + WASTEDSPACEOFSINGLESTACK (fs(k))
endfor

Juws
H AL
Guos — L2

return g,

o o0 A NP

Figure C.2:Wastedspace cost of the instantiatitn

The time complexity for WSTEDSPACEiIS O(|K|), since WASTEDSPACEOFSINGLE STACK
is O(1). fs takes constant time, by being maintained along with thegassents of the
search.

120

procedure WASTEDSPACEOFSINGLESTACK (o)

1 w+0

2 if 0 < hy then
3 w— o

4 endif

5 return w

Figure C.3:Wasted space from free space.

C.2 Estimation

C.2.1 Overstowage Estimation

ESTIMATEOVERSTOW returns the estimated overstow cOg}, + h.,) of the instantiation
a given as parameter.

procedure ESTIMATEOVERSTOW(q)
U—X\S
CYU — C\ 7s(a)
Jov <— OVERSTOW(@)
M + MINCOSTMATCH (CU, U, REPRESENTATIONCOST(CY, U, 6))
if |[M|=|CY|then
how = ZeeM w(e)
return go, + oy
else
return oo

OCoOoO~NOOYOT »h WN P

Figure C.4:Estimated overstow cost of the instantiatin

MINCOSTMATCH is a routine that takes as arguments a Minimum Cost Matchioll&m
and returns the maximum matching of minimum cost as a set ightex edges. The algo-
rithm can be found in Chapter 5 of [6].

OVERSTOW calculates the real overstow cost of the instantiationrgiae parameter, as
described in section C.1.1.

The REPRESENTATIONCOST procedure details the computation of the representatistsco
As parameters, it receives the collectiof of containers yet to be loaded, the collection

121

of available stowage cells, and the current instantiatiobhe trivial algorithm to calculate
the representation costs is optimized based on the folepwbservations: two containers
with the same discharge port stowed in the same locationt nesthe same amount of
overstows, and a container stowed in a particular cell glresame amount of overstows
as if it was stowed in a neighboring below or above cell of thme cellstack, if such a
cell exists. Based on these ideas, the containers are evedith increasing order of their
discharge ports and the free cells of each stack in a bottoondg.

Initially, the algorithm calls the SRT subroutine to sort the container list according to
the partial order defined by thedBITAINERCOMPARATOR comparison function, that is
in increasing order of their discharge ports. The algorithaintains two variables, the
container considered at the previous iteraioand the cell considered at the previous it-
eration/’. In case the current containeand previous containef are similar or current
cell l and previous' cell can accommodate the same type of container then theopsdy
calculated value can be reused. In case where the contamelistinct and cell cannot
accommodate the same container the number of overstowarsezbexplicitly by calling
OVERSTOWOF. The RC' hash-table maintains the resulting costs.

procedure REPRESENTATIONCOST(CY U, @)

1 SoRT(CONTAINERCOMPARATOR, CY)

2 ¢ «—nil

3 foreach c € CY

4 if CONTAINERCOMPARATOR(c , ¢) = 0 then
5 RC[c] « RC|c]

6 else

7 ¢ —c

8 I nil

9 foreach [€ U *** this considers cells per stack, bottom ti
10 if 1sIN(c, 1) then

11 if CELLCOMPARATOR(I',) = 0 then
12 RC[[l] — RC[][I'

13 else

14 RCc][l] < OVERSTOWOF(d, ¢, 1)
15 [—1

16 endif

17 endif

18 endfor

19 endif

20 endfor

21 return RC

Figure C.5:Representation costs computation.

122

procedure OVERSTOWOF(d, ¢, z! ;)
ov «— 0
fort<—1toi—1do

if dp " @ < dp. then

ov «— ov+1

endif
endfor
fort—i1+1to tc; do

if dp Tl (@) > dp. then

»J

co~NOULh WN R

9 ov +—ov+1
10 endif
11 endfor

12 return ov

Figure C.6:0verstow cost of stowing containein cell =, ;.

The GONTAINERCOMPARATOR defines the partial ordering of the container set accord-
ing to discharge port then label. Sorting according to ¢hi$) comparison function results

in the container list sorted in the increasing order of disgh ports followed by their la-
bel. The &LLCOMPARATOR is aO(1) comparison routine that receives as parameters
two cells/; andi, and returng) if the cells belong to the same cellstack, are situated one
on top of the other and have the same label.

The worst case running time offRRESENTATIONCOST is O(|CY|log|CY| + |CY||U| T),
since sorting take® (|CY |log|CY|) and there are at mogtV ||U| calls to OVERSTOWCOSTOF,
each call using)(T) time. A tighter bound ofD(|CY|log|CY| + DIT) can be derived
observing that the number of calls tov©RSTOWCOSTOF depends on the number of dif-
ferent discharge ports, writted, and the number of neighboring cellstack regions, written
I.

123

C.2.2 Wastedspace Estimation

ESTIMATEWASTEDSPACEreturns the estimated wasted spaced ¢ast+ h,,) of the in-
stantiationz given as parameter. On line 4 it calls the procedurssWDSPACEOF which
is the dynamic programming implementation of the recursigénition given in section
6.3.

procedure ESTIMATEWASTEDSPACE @)

S—|{ce Urex\s M(@) © he = 8.5}

2 H<|{ce Usex\s M(@) © he = 9.5}

3 po < decreasing order of available cells, used stacks first
4

WASTEDSPACEOF (5,H,<%0,/5(<%°))
hst

=

return

Figure C.7:Estimated wastedspace cost of the instantiation

WASTEDSPACEOFSINGLESTACK is described in section C.1.2.

124

procedure WASTEDSPACEOF (S, H, k, o)

1 if W[S, H,k, o] =nil

2 if ¢ < hy then

3 if S>1or H>1 then

4 w < NOSPACEINSTACK (S, H, k, o)

5 else

6 w < NOCONTAINERS(k, o)

7 endif

8 elseif o > h;. then

9 if S>1and H > 1 then

10 w «— min(WASTEDSPACEOF(S — 1, H, k,0 — hg),
WASTEDSPACEOF(S, H — 1,k,0 — hy,)

11 elseif H > 1 then

12 w «— WASTEDSPACEOF (S, H — 1,k,0 — hp.)

13 elseif S > 1 then

14 w «— WASTEDSPACEOF (S — 1, H, k,0 — hg)

15 else

16 w «— NOCONTAINERS(k, o)

17 endif

18 else

19 if S >1 then

20 w «— WASTEDSPACEOF (S — 1, H, k,0 — hg)

21 elseif H > 1

22 w «— NOSPACEINSTACK (S, H, k, o)

23 else

24 w < NOCONTAINERS(k, o)

25 endif

26 endif

27 WIS, H,k,o] «— w

28 endif

29 return WIS, H, k, o]

Figure C.8:Wasted space estimation algorithm.

125

procedure NOCONTAINERS(k, o)

1 w < WASTEDSPACEOFSINGLESTACK (o)

2 forj«—k+1to|K|do

3 w — w + WASTEDSPACEOFSINGLESTACK (fs(<7’))
4 endfor

5 returnw

Figure C.9:Update of wasted space due to no more containers.

procedure NOSPACEINSTACK (S, H, k, o)
w <« 0
if £+ 1> |K| then
w «— WASTEDSPACEOFSINGLESTACK (o)
else
w «— o + WASTEDSPACEOF (S, H, <", |, fs(=<1%1))
endif

return w

~NOoO ok WNBE

Figure C.10:Update of wasted space due to no more space in cellatack

126

C.3 Domain management function

A global Label-Domain table as described in section 7.1 is maintained by the two proce-
dures REINSERTDOMAIN VALUE and REMOVEDOMAIN VALUE.

Reinsertion of domain value

The procedure RINSERTDOMAINVALUE inserts the value given as input into all do-
mains, which can accommodateFromr a list of all domains is retrieved by the label of
v. Each domain in the list gets valugeinserted.

REINSERTDOMAIN VALUE (v)

1 m « 7t[DomainV alueLabel (v)]

2 foreach sem

3 s «— s U {v}

4 T[DomainV alueLabel(v)] «— m

Figure C.11: Pseudocode fOERNSERTDOMAIN VALUE

Removal of domain value

The procedure RMOVEDOMAIN VALUE removes the value given as input from all do-
mains, which can accommodateFromr a list of all domains is retrieved by the label of
v. Each domain in the list gets valugemoved.

REMOVEDOMAIN VALUE (v)

1 m « t[DomainV alueLabel (v)]

2 foreach sem

3 s «— s\ {v}

4 T[DomainV alueLabel(v)] < m

Figure C.12: Pseudocode foEROVEDOMAIN VALUE

127

C.4 Propagators examples

C.4.1 Uniqueness

The uniqueness propagator ensures that a domainvaloes not remain an eligible candi-
date value, when it has been assigned. It relies on the pioe&dMOVEDOMAIN VALUE
described in the appendix C.3. Given as input is the currartigb instantiationz, the
current variable being assigne@j and the candidate value which are removed from
any shared domain. Since no domain is not checked for exbadatseis returned. The
omission of the check of exhaustion, causes the algorithpotentially backtrack much
later. However this only occurs if a cell, which has some amar placed above it, has a
reference to an empty domain. This is caughtby'.

PROPAGATORJNIQUENESS(@, 7! ;, v)
1 REMOVEDOMAINVALUE (v)

2 return false

Figure C.13: Pseudocode for uniquness propagator

C.4.2 IMO-1

The IMO-1 propagator ensures that the cells according tdNi@ rule are not able to

consider an IMO-1 and IMO-2 containers. It relies on the pthoe REMOVEDOMAIN -

VALUE described in the appendix C.3. A current partial instaiatied, the current variable

xﬁ’- being instantiated and the candidate valuggiven as input. All assignable cells in set

Xi‘]!\]’.'o'l, which is defined in table 5.1, are getting the IMO-1 and IM@r@perty removed

from the celllabel in line 2. A check whether the pruning eigxhaustion of their do-

main is carried out in line 4, in the case that exhaustion wedithe procedure returmisie

otherwisefalseis returned if no of the assignable variables caused exioaust
PROPAGATORMO-1(d, ! ;,v)

1 foreach x € X;"°*

2 ifres

3 Label|x] < Label[x] & ~(LabellMO-1 | LabellMO-2)

4 if D(z) =0

5 return true

6 return false

Figure C.14: Pseudocode for IMO-1 propagator

128

