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Abstract

This report investigates whether propagators combined with branch and bound al-
gorithm are suitable for solving the storage area stowage problem within reasonable
time. The approach has not been attempted before and experiments show that the
implementation was not capable of solving the storage area stowage problem effi-
ciently. Nevertheless, the report incorporates a detailedanalysis of the problem, acts
as a valuable basis for comparing the quality of alternativeapproaches and reveals
the properties of the solution space.
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Chapter 1

Introduction

Containerized transport in vessels traveling overseas is afield in rapid growth. As the trade
increases, pressure is put on shipping companies to lower the cost of their transportation
services. For that reason, there is an interest in the industry for developing algorithms,
which can help placing containers efficiently aboard a vessel, respecting safety require-
ments and optimizing logistic criteria. Viewed from an academic perspective the problem
has some interesting properties, as it contains subproblems, which have been proven to be
NP-hard [1].

Placing containers on a vessel can be regarded as a combinatorial problem. The size of the
combinatorial space can be roughly estimated as a permutation of placing a unique con-
tainer for each slot available. Since a bay may accommodate up to 200 20-foot containers,
the combinatorial space is immense, making it a very hard combinatorial problem.

One typical approach used within the field of operations research is to solve the problem
by using integer programming. However nonlinear constraints cannot be modeled properly
by the usage of integer programming. Consequently alternative approaches have to be
considered.

In this report, an in depth study is given of the storage area stowage problem, which is
a constraint optimization problem, consisting of arranging a set of containers below deck
within a bay of a vessel. The safety requirements and logistic criteria are divided into hard
and soft constraints respectively. A weight has been definedfor each soft constraint to
identify the importance of fulfilling each logistic criteria. Due to the ability of modeling
nonlinear constraints in a simple fashion, functions knownas propagators has been cho-
sen to represent the constraints within the problem The chosen algorithm for solving the
problem is branch and bound, described by [2] as: ”the most commonly known algorithm
for solving constraint optimization problems”. The algorithm and choice of representation
was selected based on the fact that no research within the field of containerized transport
overseas exists, relying on this combination to solve the storage area stowage problem. The
goal is that the research provided in this report will serve as a first step, in uncovering some
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of the strengths and weaknesses by using a Constraint Satisfaction Problem(CSP)-model
and branch and bound for solving the storage area stowage problem.

The issues which, this report would like to address is as follows:

Can backtrack combined with a CSP-Model find a solution
within reasonable time for the storage area stowage problem.

Can branch and bound combined with a CSP-Model find an optimalsolution
within reasonable time for the storage area stowage problem.

Several task had to be formulated in order to answer the aboveissues. The first tasks, is to
get a thorough understanding by formulating a mathematicalmodel of the problem. The
second task is to find a suitable CSP-Model by considering different candidate models,
evaluate each of these, and select the most suitable candidate. The third tasks is to conduct
experiments on the developed implementation and analyze the results.

Document outline

In chapter 2, the theoretical background of the report is established. Based on the the-
ory and an informal problem description, the problem is formalized into a mathematical
model in chapter 3. Three candidate CSP-Models are suggested based on an analysis of the
formalized model in chapter 4. Chapter 5 formalize the chosen CSP-Modeland the formal-
ization of the estimators are presented in chapter 6. Implementation of the CSP-Modeland
search algorithms are represented in chapter 7. Based on theimplementation, experiments
are performed to cover different aspects of the search spaceand implementation in chapter
8. Chapter 9 concludes the report with some suggestion of what can be done in future.
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Chapter 2

Background

This chapter provides a brief explanation of different constraint processing concepts used
in the report.

2.1 Constraint satisfaction problems

Constraint satisfaction problems, or CSPs, are mathematical problems that typically in-
volve finding out how to assign a discrete set of variables under certain constraints. Many
solutions may actually satisfy the constraints of the problem.

For many hard constraint satisfaction problems, no algorithm has been discovered to solve
the problem efficiently yet and some have been proved to be NP-hard. Solving these combi-
natorial problems is done by searching in the solution space, which is typically exponential
in the size of the problem. A systematic search of the search space ensures that all candidate
solutions are considered and the optimal one is found with certainty.

A constraint networkis a model of a CSP that consists of a finite set of variables, a finite set
of domains, and a finite set of constraints. Avariable is a value holder for an entity of the
problem. Each variable has its owndomainthat lists the possible values the variable can
take. Aconstraintis a relation defined on a subset of variables that representssimultaneous
legal assignments of the variables. A constraint can be specified explicitly by the list of
satisfying tuples, or implicitly by a formula that characterizes the constraint.

An instantiationis the assignment of some subset of variables with some valuefrom the
domain of each variable. When all variables are assigned, the instantiation is said to be
complete. Otherwise the instantiation is said to bepartial. An instantiation isconsistent, if
it satisfies all of the constraints, whose scopes have no uninstantiated variables.

A valid solutionof the constraint network is a consistent complete instantiation of all of its
variables. An unsatisfiable problem does not have any solutions.
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Constraint propagation

Searching for solutions can be viewed as traversing a searchspace, where the task is to
reach a state, where all variables have been assigned with a legal value from their domain.
Moving from one state to another state in the search space implies assigning or unassign-
ing variables. The search space of the problem can be considerably larger than the solution
space, potentially containing many inconsistent instantiations in respect to the given prob-
lem. Consequently, searching for solutions can be very inefficient. An approach is to
tighten the search space by formulating an equivalent but more explicit model.

In general, the more explicit the model is, the more restricted the search space will be, mak-
ing search more effective. When any consistent instantiation of a subset of variables can be
extended to a consistent instantiation of all the variables, the model is said to beglobally
consistent. Having a model, which is globally consistent, makes it straightforward to find
solutions, since any value chosen for any variable will leadto a solution. However com-
puting a globally consistent model is intractable for sufficiently large problems. Instead,
transforming a model into an approximation of a global consistent model may be preferable
due to the lower computation cost.

Constraint propagationis the process of transforming a model into a tighter one. The
tightening process can be done during the search itself, by inferring new knowledge using
local consistency enforcing algorithmsthat perform a bounded amount of constraint infer-
ence during each iteration, such as arc or path consistency.A local consistency property is
defined regardless of the domains or constraints of the CSP problem.

Another approach to do constraint propagation isrules iteration. Rules iteration tightens
a model by iteratively applying reduction rules. Areduction ruleor a propagator is a
decreasing function that rules out domain values, which will not appear in a solution. A
propagator depends on one or moreinputvariables and changes the domain of one or more
outputvariables. The assignment of an input variabletriggers the propagator. Propagators
can be seen as an actual implementation of the constraints themselves. When assigning
one variable a specific value, the set of propagators remove values from the domain of the
uninstantiated variables enforcing consistency with the newly instantiated variable.

A one-to-one relationship does not necessarily exists among the set of constraints and the
set of propagators. The problems nature may imply that it is easier to construct several
propagators that jointly implement a specific constraint. When a combination of several
propagators together implement a given constraint, the propagators that the combination
consists of is said tocontain the constraint.

Example 2.1 One of the constraints within the storage area stowage problem is that a 20-
foot container cannot be stacked on top of a 40-foot container. One approach is to divide
the constraints into two propagators: One, which ensures that no 40-foot containers can
be placed below a 20-foot container and one, which ensures that no 20-foot container can
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be placed on top of a 40-foot.

For details of rules iteration and how a propagation engine works, refer to [3].

2.2 Search algorithms

The goal of a search algorithm is to find solutions to the CSP orconclude that the problem is
unsatisfiable. Traversing the search space can be based on different strategies, each strategy
resulting in a family of search algorithms. The search family this report considers is the
backtrack search family.

Backtrack search algorithms belong to the family of systematic search and, as a conse-
quence, are guaranteed to be complete. The completeness is attained by viewing the search
space as a tree, where each node in the tree is an instantiation of a single variable and each
branch is a possible assignment for that particular variable. The depth of the tree is deter-
mined by the number of variables and consequently the paths,from the root to a leaf node
in the tree, are complete instantiations. The starting point, where all backtrack algorithms
originate from, is the naive backtrack algorithm, which canbe thought of as an algorithm
which performs a depth first traversal of the tree, until a solution is found. If some variable
along the path towards the leaf node results in an inconsistent partial instantiation, a back-
track occurs.Backtrackingis the process, where the assignment of a previously assigned
variable is reconsidered. Traversing the tree is clearly exponential in time in the worst
case and is not practical for too large problems. Therefore,many variations of the naive
backtrack algorithm, which tries to improve search time, have been suggested.

This report considers two members of the backtrack family: Forward checking and Dy-
namic Variable Forward Checking (DVFC). The motivation forchoosing forward check-
ing, is that the problem contains properties, which makes the algorithm suitable for finding
optimal solutions efficiently along a static variable order. The DVFC has been chosen based
on previous experience of being an algorithm, which could find a solution fast, since being
based on the forward checking approach of pruning, ensures that the branching factor of
the next variable to be instantiated is at a minimum [4].

Current variableis the variable, which the search algorithm currently is attempting to find
an assignment for. The nodes of the search tree represent thecurrent variable of a specific
stage in the search.

Candidate valueis any possible value an uninstantiated variable can be assigned to. In
respect to the search tree the branches of a node are candidate values.

Current instantiationis the assignments that has been done until so far in the search. The
path from the root of the search tree down to current variableis the current instantiation.

Future variablesis the set of variables which still has to be assigned, excluding the current
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variable. The set of nodes along any path from the current variable is the future variables.

Forward Checking

Forward checking is a simple improvement to naive backtracking. The principle is to
prune domain values from future variables, that are inconsistent with the currently instan-
tiation. Given a CSP-Model, where the constraints are represented with propagators, for-
ward checking is achieved in a straightforward way: Whenever a variable is assigned, all
propagators that specify the variable as input are applied.This guarantees that the current
instantiation is consistent with any assignment of some future variable. Forward checking
is superior compared to naive backtracking, in that it ensures that thrashing is avoided at an
earlier stage of a given instantiation.

DVFC

DVFC is a heuristic based on the forward checking strategy that takes into account the
benefits of variable orderings, which produces a small search space. DVFC determines
the variable ordering dynamically, during search. It relies on the fail-first heuristic, by se-
lecting the variable, which is most likely to restrict the search space as early as possible.
By considering the variables that most likely restrict the search space as early as possible,
DVFC strengthens the benefits of forward-checking look ahead by being able to detect dead
ends as soon as possible considering the amount inference. All other factors being equal,
the variable with the smallest number of viable values in itscurrent domain, will have the
fewest subtrees rooted at those values, and therefore the smallest search space below it.

For a thorough presentation of backtrack variations and their standard implementation refer
to [2].

2.3 Constraint optimization problems

For some problems, candidate solutions must be ranked in terms of quality to some given
criteria. In this case, constraint problems areoptimization problemsor COPs. The quality
is described by anobjectiveor costfunction and the goal is to find a solution with as high
quality as possible, in other words a solution with an optimal objective function value. In
case the objective function has to be minimized, a minimization problem is considered,
otherwise a maximization problem is considered.

A CSP-Model augmented with a cost function provides a framework to model a COP. Typ-
ically, the cost function is a weighted sum of several cost components. Acost component
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is a problem-dependent real value function defined on a subset of variables. The cost com-
ponents are also referred to assoft constraints, while the constraints of the problem are
referred to ashard constraints.

An optimal solutionfor a minimization problem is any valid solution which has the lowest
cost amongst all valid solutions.

For a detailed description of COP see [2].

2.3.1 Branch and Bound

Any backtracking algorithm can easily be modified in order tofind an optimal solution
of a COP: Rather than stopping with the first solution, the search is continued throughout
the entire search space. Whenever a solution is found, evaluate its cost and maintain the
current best cost solution. Given that the solution space isexponential this is intractable for
sufficiently large problems. A straightforward improvement is to exploit the cost function.
In case of a minimization problem, when the sum of cost components over the instantiated
variables is already higher than the best solution found so far, the partial solution can be
pruned away.

The above idea is the foundation of a popular search algorithm for constraint optimization,
namelybranch and bound. Branch and bound estimates the completion cost of a partial
solution to prune potential solutions away. The algorithm maintains the cost of the best
solution found so far. In case of a minimization problem thiscost is an upper boundU
for the cost of the optimal solution. Additionally, whenever a variable is instantiated, a
bounding evaluation functionf computes a lower boundL on the cost of any complete
solution that extends the current partial instantiation. In caseL ≥ U , the partial solution
cannot improve the current best cost and therefore the search along the current patch can
be discontinued. In caseL < U , the search continues along the current path, since there
is a possibility to improve the current best cost. The algorithm terminates, when the first
variable has no values left. The bounding evaluation function sums over two parts: the cost
of the current partial instantiation and an estimated cost of the optimal completion of the
current instantiation to a complete instantiation.

In order to ensure that all solutions, which improve the bestcost are discovered, it is re-
quired that the estimated cost is an underestimate of optimal completion cost. On the other
hand, in case the estimate is too weak, branch and bound will explore unnecessary solu-
tions. The goal is to have an estimate as close as possible to the best completion cost.

For some problems, finding the optimal solution is not feasible and one may settle for less
by computing anapproximationof the optimal solution. The principle for computing an
approximation of the optimal solution is to allow the estimation part to overestimate by a
constant. Consequently, some solutions will be skipped andthe search space is reduced.

7



The cost of the first found solution has an impact on the performance of branch and bound.
The closer the cost is to the optimal cost, the more solutionsare pruned away during search,
and the sooner the search finishes. Adiving heuristicis a heuristic to find a good initial
solution.

For details of branch and bound refer to [2].

2.3.2 Model of a constraint optimization problem

This section formally presents the model this report uses for the given problem. It starts
by defining the notions of adomain mapperandpropagator, and concludes with theCSP-
ModelrespectivelyCOP-Modeland a set of general notations.

Definition 2.1 (Domain mapper) LetP be a CSP, letX = {x1, x2, . . . , xn} be the set of
variables forP and letdi be the initial domain for eachxi ∈ X.
A domain mapper is a total function that specifies for each variablexi ∈ X a set of domain
valuesD(xi) ⊆ 2di .

A domain mapperD1 is strongerthan a domain mapperD2, writtenD1 ⊑ D2, if D1(xi) ⊆

D2(xi)∀xi ∈ X.

Definition 2.2 (Domain mapper consistent with an assignment) LetD be a domain map-
per and let〈xj, v〉 denote the assignment of an arbitrary valuev to a variablexj .
A domain mapper consistent with the assignment〈xj , v〉 is a domain mapperD〈xj ,v〉 ⊆ D

such that the assignment〈xj , v〉 can be extended consistently by any future assignment of
any other variablexi. In casexi cannot extend consistently〈xj , v〉 thenD〈xj ,v〉(xi) = Ø

D〈xj ,v〉(xi) =

{

D ⊆ D(xi) if 〈xj, v〉 is consistent with〈xi, u〉 for anyu ∈ D
Ø otherwise

Thestrongestdomain mapper consistent with the assignment〈xj , v〉 is:

D∗
〈xj ,v〉 ∈ {D〈xj ,v〉 : ∀D

′

〈xj ,v〉 ⊑ D : (D
′

〈xj ,v〉 6= D〈xj ,v〉 ⇒ D
′

〈xj ,v〉 ⊑ D〈xj ,v〉)}

Definition 2.3 (Propagator)
A propagatoris a triple (P, IP ,OP) consisting of:

1. a set of one input variablesIP ⊆ X. An assignment〈xi, v〉 of an arbitrary valuev
to an input variablexi ∈ IP triggersthe domain decreasing functionP.

2. a set of output variablesOP ⊆ X. The domain of an output variable may be pruned
when theP is triggered.
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3. a domain decreasing functionP:

P(D)(xi) =











{v} if xi ∈ IP and〈xi, v〉 triggeredP
D∗

〈xi,v〉
(xk) if xk ∈ OP and〈xi, v〉 triggeredP

D(xi) otherwise

Definition 2.4 (CSP-Model of a constraint satisfaction problem) LetP be a CSP.
A CSP-Modelℜ for P is a triple (X,D, C), consisting of:

1. a finite set of variablesX = {x1, x2, . . . , xn}

2. the initial variable domainsD(xi) = di

3. a finite set of constraintsC = {r1, . . . , rm} where each constraintrj is explicitly
specified as a set of propagators.

The definition of the COP-Model extends the definition of the CSP-Model:

Definition 2.5 (COP-Model of a constraint optimization problem) LetP ∗ be a COP.
A COP-Modelℜ∗ for P ∗ is defined as a pair(ℜ, F ) where:

1. ℜ is the CSP-Model of the constraint satisfaction problemP ∗

2. F is the cost function that measures the quality of a solution~a with regards to a finite
set of cost components{F1, F2, . . . , Fl} and a finite set of weights{W1,W2, . . . ,Wl}.

F (~a) =

l
∑

j=1

WjFj(~a)

Definition 2.6 (Bounding evaluation function) Let P ∗ be a COP and let(ℜ, F ) be the
COP-Model ofP ∗.
A bounding evaluation functionf for a partial instantiation~ap is defined as:

f(~ap) =

l
∑

j=1

Wj

(

gj(~ap) + hj(~ap)
)

where
gj(~ap) = Fj(~ap) is the true cost componentFj restricted to the partial instantiation~ap

and
hj(~ap) is the estimated completion cost of~ap into a complete, but not necessarily valid

instantiation.
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The following table summarizes the notations used throughout this report.

General notations
X : variable set
D : domain mapper
Pname : propagator identified by aname
IPname : input variable set ofPname

OPname : output variable set ofPname

~a : current instantiation
S : scope of~a
πSi

(~a) : projection of~a onSi ⊆ S

~ap : partial instantiation of the firstp variables
Sp : scope of~ap

(~ap, ap+1, . . . , an) : complete instantiation extended from~ap

Fname : cost component identified by aname
Wname : unit weight for the cost componentFname

gname(~ap) : true cost of~ap, restricted to the cost componentFname

hname(~ap) : estimated completion cost of~ap, restricted to the cost componentFname

h∗name(~ap) : optimal completion cost of~ap, restricted to the cost componentFname

f(~ap) : bounding evaluation function for~ap i.e. estimated completion cost of~ap

f ∗(~ap) : optimal completion cost of~ap

A variablex belongsto an instantiation~a if it is in the scope of the instantiation. This is
denoted asx ∈ S.

A domain valuev belongsto an instantiation~a, if a variable within the scope of the instan-
tiation is assigned to it. This is denoted asv ∈ πS(~a).
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Chapter 3

The Storage Area Stowage Problem

The motivation for this chapter is to present a formalization of the storage area stowage
problem. The formalization is based on an informal problem description, which can be
found in the appendix B. The chapter begins with providing background information about
various notions within the problem domain. After the background information the informal
description is translated into a mathematical model.

3.1 Background

As goods are often manufactured far away from the consumer, the goods will have to be
transported to the consumer. One way of doing this is by containerized transportation over
sea, where vessels sail along preplanned routes. The preplanned routes makes it simple
to decide, how containers can be transported from one destination to another. Each route
forms a cycle and at each stop on the route, the vessel may unload containers or load
additional containers destined for future ports. Therefore, vessels arriving at any port will
usually have containers onboard. The containers arriving at a port may come inland e.g. by
train or truck or by seaway e.g. other vessels. By connectingmultiple routes together, it
is possible to transport containers from one location to another without the establishment
of a direct route. Each container will have a load port and a discharge port, which are the
ports, where the container is loaded onto the vessel and where the container are destined to
respectively.

In order to accommodate various goods, containers come in a range of sizes. The sizes
are divided into standard measurements for containers, in order to alleviate planning of
container placement aboard a vessel. For consistency however, this report only focuses
on containers with the measurements denoted 20-foot and 40-foot, which are the most
commonly used containers.

The stowage part of a vessel is divided into bays, dividing the ship in cross sections from
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Figure 3.1:An overview of the layout of a ship. [7]

the stern to the bow. Containers are placed within each bay ofa vessel according to a plan,
referred to as the stowage plan. The containers are placed either below deck or above deck
that is, inside the vessel or out in the open respectively. For later retrieval it is necessary to
determine the exact location of a container. Several schemes exists in order to establish the
position of each stowed container. The scheme, this report will use, is based on dividing
the bays into slots fitting either one 40-foot container or two 20-foot containers. The slots
within a bay is structured as a matrix, where each column is referred to as a stack and each
row is referred to as a tier. Due to the shape of the vessel, some of the slots in the matrix
are not allowed to hold any containers. Tiers are counted from the bottom of the matrix and
up and stacks are counted from left to right. In order to identify two 20-foot container in a
slot, a slot is further divided into two cells. As a consequence of stacking 20-foot container
the term cell stack is introduced as cells in either one side of the stack or the other side of
the stack.
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Figure 3.2:An overview of the cell layout of a bay below deck.

Different height of containers may cause the actual location of the container to not match
the positioning system. However in order to ease identification of neighboring slots, this
report will regard the neighboring slots as the slots, whichare immediately adjacent to it
according to the positioning system.

Figure 3.3:Models the positioning system for two neighbor stacks. The stack to
the left has been filled with standard containers, while the stack to the right have been
filled with high cube containers. The dotted lines representthe actual position of each
container according to the positioning system.

Containers stowed above deck and below deck are physically separated by hatches on the
deck of the ship. In order to sail safely, a number of safety precautions are given as rules
for stowage of containers. As these rules vary from above andbelow deck, this report will
focus only on containers stored below deck. The safety requirements are described in the
following:

Due to the physical shape of the ship, a height and a weight restriction is put on the contain-
ers stowed in each stack. A maximum allowed height ensures that the containers stowed
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below deck fits below the hatches on the deck. The maximum allowed weight of a stack en-
sures that the stress put on the hull of the ship by the stowed containers is within acceptable
limits.

As the vessels travels overseas, the movement of the containers must be restricted. This
is ensured by locking mechanisms attached to each corner of acontainer. Locking the
containers in this manner restricts the placement of 20-foot containers such that they cannot
be stowed on top of a 40-foot container.

Besides the physical properties of containers, goods have properties, which affect how con-
tainers can be arranged. Other properties, which will affect the arrangement of containers
are the IMO level of a container and temperature requirements.

In order to be able to reduce damages from accidents, containers with hazardous goods such
as fireworks, needs to be placed at a safe distance from other containers with hazardous
goods. The IMO level is a description of how close container with certain goods can be
placed next to each other. This mechanism simplifies the requirements for specialized
knowledge of handling hazardous goods.

Perishable goods such as fruit or meat needs to remain at a consistent and low temperature
in order to avoid decomposition. Therefore these types of goods will need to be placed in
containers with temperature controlling devices. Containers of this kind are referred to as
reefers. Power is necessary to make the temperature controlling device running, and there-
fore container can only be placed at designated areas with power supplying capabilities.

Given that containers may be placed according to the requirements above, many different
stowage plans may still be possible. Selecting one of them isarbitrary if no preference
has been defined. However, each valid stowage plan posses different qualities and may
be preferred depending on defined objectives. One of the objectives usually defined by
any company is profit maximization. For container transportation this can in principle be
achieved either by increase the fee on transportation or reducing the cost of transporting
containers. Due to the competition increasing the fee is notalways a viable solution. Con-
sequently companies are forced to look at the cost instead. The objectives for reducing the
cost are defined as objectives for the storage area stowage problem and are mainly centered
around arranging containers. The objectives are to minimize the following: Overstows,
usage of stacks, wasted space and usage of reefer slots.

Cranes are necessary to unload or load containers and the cost of loading or unloading
a container is calculated by a fee. An objective follows thatcontainers, which are to be
unloaded in the current port, is to be placed on top of each stack in order to avoid unnec-
essary container movement. Containers destined for futureports that are stacked on top of
containers which are to be unloaded at the current port, is referred to as overstow contain-
ers. An overstow is inferred for each container stacked on top of another container with a
smaller discharge port number.

14



As more containers are stowed within the same bay at future ports, it is of interest to keep
as many stacks within a bay empty as possible. This will in turn provide freedom when
stacking future containers to maximize optimization criteria.

The stowage of containers needs to be as compact as possible in order to transport as many
containers as possible. If an arrangement of containers areplaced, such that there is some
space, which cannot be replaced by a container then that space is considered wasted.

Reefers can only be placed in designated areas, where power is being supplied. Placing
non-reefer container in reefer slots may prevent a reefer container to be loaded onboard
for some future port. Consequently as few reefer slots should be used to place non-reefer
containers.

This section ends with a summary of the requirements for Storage Area Stowage Problem:

Physical requirements
Gravitation Each container has to be supported either by thebottom

of the deck or by containers.

Max Height The total cellstack height cannot exceed the
maximum cellstack height.

Max Weight The total weight cannot exceed the maximum weight.

No 20-foot On Top No 20-foot container can be on top of a 40-foot container.

Safety requirements
IMO Each container are assigned an IMO level, and the rules

is that two IMO-2 container have to be separated by a
stack with no IMO-2.
Each IMO-1 container cannot be adjacent to other container
which is either IMO-1 or IMO-2.

Support requirements
Reefer Each reefer has to be near a power supplying unit.
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Objectives
Overstow Each overstow will be penalized.

Empty Stack Each empty stack will be rewarded.

Wasted Space The amount of wasted space is penalized.

Reefer slot Each reefer slot which is occupied by a non-reefer
container is penalized.

3.2 Formal definition of SASP

In the following, the requirements specified in the problem definition are translated into a
formal definition of Storage Area Stowage Problem.

A slot is defined as the 40-foot stowage unit of a container vessel, uniquely identified by its
bay, tier and stack position.

A stackdenotes the slots of the same bay that have the same stack position. In each bay,
stacks are counted from larboard to starboard, starting with 1.

Stack related notationsα = (sc, tcj, hj, wj)

sc : number of stacks
tcj ∈ IN : number of tiers of stackj
hj ∈ IR

+ : height limit in foot of stackj
wj ∈ IR

+ : weight limit in kg of stackj
J = {1, . . . , sc} : indexed set of stacks

A storage areadenote lower-deck slots having belonging to the same bay. Consequently,
each slot of a storage area is uniquely identified by its 2-dimensional position consisting of
the tier positioni counted bottom-up and its stack positionj counted from left to right.

Since a slot may hold two 20-foot containers it is necessary to distinguish their positioning
relative to the slot itself. Acell is defined as the part of a slot needed for a 20-foot container.
The sides of a slot having place for two containers are referred to as the bow-side cell and
the stern-side cell respectively. A slot, which can accommodate a single 20-foot container,
is either placed on the bow-side or the stern-side dependingon the ships physical structure.
W denotes the bow-side of a cell.T denotes the stern-side of a cell. LetL denote set of
cells possible for a slot.
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Slot related notationsβ = {S, ri,j, t
20
i,j, t

40
i,j, Li,j}

si,j : slot at stackj and tieri
ri,j ∈ IB : true if si,j is a reefer
t20i,j ∈ IB : true if si,j can hold 20-foot containers
t40i,j ∈ IB : true if si,j can hold 40-foot containers
L = {W,T} : set of sides of a slot
Li,j ⊆ L : set of cells that can be taken by 20-foot

containers ift20i,j is true or by 40-foot
containers ift40i,j is true

S = {si,j : 1 ≤ j ≤ sc ∧ 1 ≤ i ≤ tcj} : indexed set of slots

C0 is the set ofcontainers already on boardbefore arriving to port1, and remain on board
after the vessel leaves port1.

C1 is the set ofcontainers to be loadedinto the storage area at port1.

C denotes the entire set of containers, which will be onboard the ship when departing from
port1 i.e.C = C0 ∪ C1.

P is the number of ports on the route the vessel sails.

Properties of containerc ∈ C
dpc ∈ {1, . . . , P} : discharge port number of containerc
wc ∈ IR

+ : weight in kg of containerc
hc ∈ {8.5, 9.5} : height in feet of containerc
imoc ∈ {0, 1, 2} : IMO-level of containerc
lc ∈ {20, 40} : length in feet of containerc
rc ∈ IB : true if containerc is a reefer

Besides the properties defined above, on board containers specify their load port and their
stowage position in the vessel.

Additional properties of a containerc ∈ C0

lpc ∈ {1, . . . , P} : load port number of containerc
pc ∈ S × 2L : on board position of containerc

For convenience,γ denotes the collection of container related properties:

γ = (dpc, wc, hc, imoc, lc, rc, lpc, pc)
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An assignmentor astowage planis an arrangement of containers within the vessel.

A0 : C0 → S × 2L defined byA0(c) = pc is the stowage plan for containers on board.

A1 : C1 → S × 2L is the stowage plan for containers to be loaded at port1.

Definition 3.1 (Assignment) An assignment of containers inC is a total functionA : C →

S × 2L

A(c) =

{

A0(c) if c ∈ C0

A1(c) if c ∈ C1

The projections on slot and cell for a containerc are:

AS : C → S is the projection ofA onS.

AL : C → 2L is the projection ofA on2L.

Definition 3.2 (Storage Area Stowage Problem(SASP))The storage area stowage prob-
lem is a 5-tuple(C0, C1, α, β, γ).

Example 3.1 Consider the stowage area shown in Figure 3.7, consisting ofa single stack
and a container on board.

c0

Figure 3.4:Stowage area with one stack.

Stack properties areα = (sc = 1, tc1 = 5, h1 = 43, w1 = 14000)

The set of slots isS = {s1,1, s1,2, s1,3, s1,4, s1,5}

Slot properties are:

β t20i,j t40i,j Li,j ri,j

s1,5 true false {W} false

s1,4 true true {W,T} false

s1,3 true true {W,T} true

s1,2 true false {W,T} true

s1,1 true false {W,T} true

The set of containers on board is:C0 = {c0}

The set of containers to be loaded is:C1 = {c1, c2, c3, c4}

18



Container properties are:

γ dpci
lci

rci
lpci

pci
wci

hci
imoci

c0 2 20 true 0 (s1,1,W ) 14000 8.5 0

c1 2 20 true - - 1400 8.5 0

c2 3 40 false - - 2800 8.5 0

c3 4 20 true - - 1400 8.5 0

c4 2 20 false - - 1400 8.5 0

The assignment for containers on board isA0(c0) = pc0

The SASP of this configuration is(C0, C1, α, β, γ, A0)

Before enumerating the constraints and objectives of the problem, some additional sets are
constructed, that will ease the writing.

Container sets
Cz = {c ∈ C : lc = z} : containers of lengthz ∈ {20, 40}

CIMO-z = {c ∈ C : imoc = z} : containers having IMO levelz ∈ {0, 1, 2}
Cj = {c ∈ C : ∃i . 1 ≤ i ≤ tcj ∧ AS(c) = si,j} : containers assigned to stackj
C l

j = {c ∈ C : c ∈ Cj ∧ l ∈ AL(c)} : containers assigned to sidel of stackj
Ci,j = {c ∈ C : AS(c) = si,j} : containers assigned tosi,j

Cnr = {c ∈ C : ¬rc} : non reefer containers

Slot and Cell Sets
S IMO-1

i,j = {si−1,j, si+1,j, si,j−1, si,j+1} : slots that cannot stow an IMO-1 container
in case slotsi,j holds an IMO-1 container

S IMO-2
i,j = {sk,j−1 : 1 ≤ k ≤ tcj−1}∪ : slots that cannot stow an IMO-2 container

{sk,j+1 : 1 ≤ k ≤ tcj+1}∪ in case slotsi,j holds an IMO-2 container
{sk,j : 1 ≤ k ≤ i ∨ i < k ≤ tcj}

Snr = {A(c) : c ∈ Cnr} : cells storing non-reefer containers

Cell coverage
Ti,j =

⋃

c∈Ci,j
AL(c) : cells covered by containers assigned tosi,j

oi,j ⇔ Li,j = Ti,j : oi,j true if slot si,j is fully occupied
oW

i,j ⇔W ∈ Ti,j : oW
i,j true if the bow side of slotsi,j is occupied

oT
i,j ⇔ T ∈ Ti,j : oT

i,j true if the stern side of slotsi,j is occupied

Example 3.2 if a 40-foot container has been placed atsi,j thenTi,j = {W,T}
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Constraints

CT1 All containers are assigned to a cell of a slot

∀c ∈ C .AS(c) = si,j ⇒ AL(c) ⊆ Li,j

CT2 A cell can hold at most 1 container

∀c, c
′
∈ C . c 6= c

′
∧ AS(c) = AS(c

′
)⇒ AL(c) ∩ AL(c

′
) = ∅

CT3 A 40-foot container must cover both sides of a slot

∀c ∈ C40 . |AL(c)| = 2

CT4 A 20-foot container is allowed to cover one cell in a slot

∀c ∈ C20 . |AL(c)| = 1

CT5 Assigned slots above tier 1 must form stacks (gravity constraint)

∀si,j ∈ S . oi,j ∧ j > 1⇒ oi−1,j

∀si,j ∈ S . o
T
i,j ∧ j > 1⇒ oT

i−1,j

∀si,j ∈ S . o
W
i,j ∧ j > 1⇒ oW

i−1,j

CT6 20-foot containers cannot be stacked on top of any 40-foot container

∀c40 ∈ C40 ∀c20 ∈ C20 . AS(c40) = si,j ⇒ AS(c20) 6= si+1,j

CT7 The height of each cell stack is within its limits

∀j ∈ J∀l ∈ L .
∑

c∈Cl
j
hc ≤ hj

CT8 The weight of each stack is within its limits

∀j ∈ J .
∑

c∈Cj
wc ≤ wj

CT9 Reefer containers must be placed in reefer slots

∀c ∈ C . rc ∧ AS(c) = si,j ⇒ ri,j

CT10 IMO rules are satsified for each container

∀c ∈ CIMO-1 ∪ CIMO-2 ∀c
′
∈ CIMO-1 . AS(c) = si,j ⇒ AS(c

′
) /∈ S IMO-1

i,j

∀c, c
′
∈ CIMO-2 . AS(c) = si,j ⇒ AS(c

′
) /∈ S IMO-2

i,j
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Objectives

OE1 Minimize overstows

There is a cost penalty of one unit for each container in a stack overstowing another
container below it in the stack. The unit weight isWov.

There is anoverstowbetween any two distinct containers in case they belong to the
same cellstack and the discharge port of the container stowed at the lower tier is
higher than the discharge port of the container stowed at thehigher tier.

The binary relation≺ onS × S defines whether two slots belong to the same stack
and whether the first slot is located below the second slot:

si,j ≺ si
′
,j

′ ⇔ i < i′ ∧ j = j′

ov : C × C → IB defines if there is an overstow between two containers:

ov(c, c
′

)⇔ c 6= c
′

∧ dpc < dpc
′ ∧ AS(c) ≺ AS(c

′

) ∧AL(c) ∩ AL(c
′

) 6= ∅

Definition 3.3 (Overstow cost)Fov(A) =
∣

∣{(c, c
′
) ∈ C × C : ov(c, c

′
)}

∣

∣

OE2 Minimize the space wasted in a stack

The cost penalty is the length of wasted space. The unit weight isWws.

A stack consists of two cellstacks that do not necessarily have the same number of
containers stacked into them. Therefore the two cellstackscan grow to different
heights. Thewasted spaceof the stack is defined as the sum of the wasted space of
its two cellstacks. There is no wasted space in a cellstack, if there is enough space
space to fit a standard container, otherwise the wasted spaceis the space left in the
cellstack.

fs : J × L→ IR defines the available space on sidel of stackj:

fs(j, l) = hj −
∑

c∈Cl
j

hc

ws : J × L→ IR defines the wasted space on sidel of stackj:

ws(j, l) =

{

0 if fs(j, l) ≥ hst

fs(j, l) if fs(j, l) < hst

Definition 3.4 (Wasted space cost)Fws(A) =
∑

j∈J(ws(j, T ) + ws(j,W ))

21



Figure 3.5: Skewed positioning system
Due to a skewed positioning of containers in the right stack,wasted space is introduced
in the top in which no containers can be placed.

OE3 Avoid loading non-reefers into reefer slots

The cost penalty is one unit for each non-reefer container ina reefer slot. The unit
weight isWr.

Definition 3.5 (Reefer cost)Fr(A) =
∣

∣{(si,j, l) ∈ S
nr : ri,j}

∣

∣

OE4 Avoid starting new stacks

The cost penalty is one unit per new stack used. The unit weight isWes.

Definition 3.6 (Empty stack cost)Fes(A) =
∣

∣{j ∈ J : |Cj| > 0}
∣

∣

Definition 3.7 (Cost of an assignment)The cost of a solution is the weighted sum of the
costs defined for objectives (OE1) - (OE4):

F (A) = WovFov(A) +WwsFws(A) +WrFr(A) +WesFes(A)

Definition 3.8 (Valid Solution of the SASP) A valid solution of SASP is an assignment
of containers to be loaded in port 1A1 : C1 → S × 2L, such that the total assignment of
containersA : C → S × 2L satisfies constraints (CT1)-(CT10).

Definition 3.9 (Solution space)The solution space forSASP is the setA1 of all valid
solutions.

A1 = {A1
′

: A1
′

is a valid solution of SASP}
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Definition 3.10 (Optimal Solution of the SASP)An optimal solutionA1∗ of SASP is a
valid solutionA1

′

that minimizes the cost functionF (A).

A1∗ = argmin
A1

′
∈A1

F (A)

Example 3.3 Consider SASP defined in Example 3.1:

A1(c1) =
(

s1,1, {W}
)

A1(c2) =
(

s1,3, {W,T}
)

c2
A1(c3) =

(

s1,2, {T}
)

c3 c4
A1(c4) =

(

s1,2, {W}
)

c0 c1

Figure 3.6:A valid solution with cost1150.

A1(c1) =
(

s1,2, {W}
)

A1(c2) =
(

s1,3, {W,T}
)

c2
A1(c3) =

(

s1,1, {T}
)

c1 c4
A1(c4) =

(

s1,2, {T}
)

c0 c3

Figure 3.7:An optimal solution with cost950.
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Chapter 4

Evaluating CSP representations of SASP

Many variations exist on how to represent the Storage Area Stowage Problem as a con-
straint satisfaction problem. Three possibilities have been considered on how to model
SASP as a CSP - namely”Container as variables and slot as domain values”, ”Slot as
variables and container as domain values”and ”Cell as variables and container halves
as domain values”. These suggestions will be referred to ascontainer-model, slot-model
andcell-modelrespectively. A presentation for each model is given with a brief descrip-
tion, followed by how domain values are pruned then pros and cons are outlined. After
the presentation, a scoreboard follows with a conclusion ofwhich model was chosen. In
this chapter the initial step of how to translate the constraints into propagators is shown by
identifying the pruning operations.

4.1 Pruning operations

Before outlining each model, the pruning operations, whichare required to satisfy the con-
straints in SASP, are presented. The necessary pruning operations have been identified
by analyzing each constraint and extracting the operationsrequired. Table 4.1 shows the
pruning operations identified. Table 4.2 illustrates, how each constraint is covered by some
pruning operations. As the table shows, no pruning could be inferred fromCT1, so this
constraint must be implemented by other means.

PG1 - Uniqueness
Each container to be loaded are used from the same pool, whichimplies placed containers
cannot be considered for another slot. Each cell can only be used once.

PG2 - Gravity
When placing a container sufficiently high in a stack, it is required that some containers are
placed underneath it, in order to avoid it from falling to thebottom of the ship. The term
support is introduced to state that a container is required in order to ensure that a placed
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ID Name Constraint Pruning
PG1 Uniqueness CT1 N/A
PG2 Gravity CT2 PG1
PG3 Reefer CT3 PG8
PG4 Pick IMO-1 container CT4 PG1
PG5 Pick IMO-2 container CT5 PG2
PG6 Pick 20-foot container CT6 PG6, PG7
PG7 Pick 40-foot container CT7 PG9
PG8 Cover 40-foot container CT8 PG10
PG9 Height CT9 PG3
PG10 Weight CT10 PG4, PG5

Table 4.1: Pruning operations Table 4.2: Pruning coverage

container stays at its position.

PG3 - Reefer
A reefer container cannot be in a non-reefer slot. However, since it is given by the problem
which slots have reefer capability this pruning can occur prior to the search.

PG4 - Pick IMO-1 container
According to the IMO constraint, neighboring slots is not allowed to accommodate IMO-1
container once an IMO-1 have been placed in a given slot.

PG5 - Pick IMO-2 container
According to the IMO constraint, slots in the current and neighboring stacks is not allowed
to accommodate IMO-2 containers, once a given slot in a current stack is assigned with
an IMO-2 container. Furthermore, neighboring slots to the given slot may not contain an
IMO-1 container as well.

PG6- Pick 20-foot container
It should not be possible to place any 20-foot container on top of a 40-foot container.
Therefore in the case when a 20-foot container has been placed no 40-foot container can be
considered for any slots below it.

PG7 - Pick 40-foot container
A constraint states that it should not be possible to place any 20-foot container on top of
a 40-foot container. Therefore, in the case where a 40-foot container has been placed, no
20-foot container can be considered for any slots above it.

PG8 - Cover 40-foot container
A 40-foot container must cover an entire slot.

PG9 - Height
In the problem definition, a height limitation constraint has been given. Since all stacks
are divided into slots and only two different container heights available, pruning will not
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occur until one empty slot in a given stack remains. For this reason, no pruning will occur
based on the height constraint. An alternative mechanism needs to ensure that the height
limitation is respected.

PG10- Weight
The weight constraint states that each stack cannot exceed its weight limitwj . The re-
maining weight, is the weight that can be added to stackj, before exceedingwj no matter
if some containers have been placed or not. The remaining number of slots, will be the
number of slots, where nothing has been placed yet and the remaining available containers
are the containers, which still needs to be placed within thebay. In the general case it will
be that either all remaining available containers can be placed within stackj or somen
lightest containers can be placed before exceeding the remaining weight. Ifn is less than
the number remaining empty slots, then it can be inferred that only n slots can be filled up
with then lightest containers before exceeding the weight limitation. Therefore the rest of
the slots cannot be assigned to any container. Since gravityrule requires that containers are
supported, the bottom available slots have to be filled and the upper available slots can be
left with nothing.

4.2 Container-model

Variables: Container
Domain values: Slot

Approach: The idea behind this model is to have containers representedas variables and
then consider, which slot each container should be assignedto. Since this is the task of
SASP this representation seems to be a natural choice for representing the CSP-model.

Pruning:

PG1 Slot si,j can be pruned away as a candidate value, when it has been fullycovered
by containers. When the assigned container covering the slot is a 40-foot container,
si,j can be removed immediately. Assigning a 20-foot container,requires thatsi,j is
checked for whether it has been fully covered before being pruned away.

PG2 When placing containers it has to be ensured that there are enough containers to
support it. When the number of containers needed to support some other container is
the same as the number of available containers to be placed, then slots, which do not
have any placed containers above the picked slot, can be pruned away as candidate
values from all the available containers to be placed.

PG3 Each reefer container can only be placed in a reefer slot, while a non-reefer container
can be placed in either a reefer or a non-reefer slot.
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PG4 Picking some slotsi,j for an IMO-1 container prunes any slot according to the IMO
constraint for any IMO-1 container.

PG5 Picking some slotsi,j for an IMO-2 container prunes any slot according to the IMO
constraint for any IMO-1 and IMO-2 container.

PG6 Picking some slotsi,j for a 20-foot container prunes any slot in stackj below tieri
as candidate values for any 40-foot containers.

PG7 Picking some slotsi,j for a 40-foot container prunes any slot in stackj above tieri
as candidate values for any 20-foot containers.

PG8 40-foot container has the same dimension as a slot, it is therefore ensured by the
model that a 40-foot container fully covers a slot.

PG9 As described previously this pruning operation will not be considered.

PG10 When only then lightest containers can fit in a stackj. All available containers,
which are not among then lightest containers needs to get slots pruned away. The
slots, which are required to be pruned away, are those described inPG10 in section
4.1.

Advantages:

• Since the search goes through all containers, it is ensured by the model that every
container will be assigned.

• Reefers can be pruned prior to search

• Do not need to prune anything forPG8.

Disadvantages:

• The gravity constraint is difficult to ensure, since this model relies on forcing some
containers to pick specific cells.

• Placed container may potentially affect where all other containers can be placed.
For instance placing an IMO-1 container will affect where all other IMO-1 containers
can be placed.

• The number of variables, which will be affected byPG10 are all unassigned vari-
ables.

The following model takes the reverse of the previous approach by looking at the stowage
area and examines what can be fitted into each slot. Since there cannot be more contain-
ers than slots available, some slots are assigned but left empty. An air value has been
introduced to denote that a slot remains empty.
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4.3 Slot-model

Variables: Slot
Domain values: Containers

Approach: This model uses the slots as variables and containers as domain values. In
example, for each slot, one can chose which container it should accommodate. Since a slot
can accommodate a 40-foot container and some containers maybe 20-foot long, placing
two 20-foot containers within a slot poses an issue. One approach is to construct pairs of
20-foot containers, which will result in|C20|

2 of such combinations. In addition, one 20-
foot containers may be placed in a slot alone, leaving half ofthe slot empty. Furthermore,
special slots exists, which can only hold a single 20-foot container.

Pruning:

PG1 When a containerc has been used, it needs to be pruned away as a possibility from
all other unassigned slots. Ifc is a 20-foot container, then all domain values, in which
c appears, has to be pruned away as a candidate value as well.

PG2 When a container is placed in a slot, all slots underneath it cannot select the intro-
duced air value for assignment. That is, when a 40-foot container is placed in slot
si,j, the air value is pruned away from the domain of any variable positioned in the
same stack beneathsi,j.

PG3 Each reefer container can only be placed in a reefer slot, while any non-reefer con-
tainer can be placed in either a reefer or a non-reefer cell.

PG4 Picking some IMO-1 container for slotsi,j prunes any IMO-1 container as candidate
value for slots according to the IMO constraint.

PG5 Picking some IMO-2 container for slotsi,j prunes any IMO-1 and IMO-2 containers
as possible candidate values according to the IMO constraint.

PG6 Picking some 20-foot container for slotsi,j prunes any 40-foot container as candidate
value for slots in stackj below tieri.

PG7 Picking some 40-foot container for slotsi,j prunes any 20-foot containers as candi-
date value for slots in stackj above tieri.

PG8 40-foot container has the same dimension as a slot, it is therefore ensured by the
model that a 40-foot container fully covers a slot.

PG9 As described previously this pruning will not be considered.

29



PG10 Each stackj will only be able to accommodate then lightest containers before ex-
ceeding the weight limitation. All other containers to be placed can be pruned away
as candidate values from any slots inj. Furthermore if the number of slots available
in the stack exceedsn it can be inferred that all but the lowestn slots will have to
accommodate air, since any containers above tier 1 needs to be supported.

Advantages:

• The search can be done such that the slots are filled in a bottomup approach, thereby
respecting the gravity constraint.

• Reefers can be pruned prior to search.

• Simple to reason about containers placed in a stack.

• Do not need to prune anything forPG8.

• The number of variables, which will be affected byPG10, are limited to only one
stack when using this model, as opposed to the container-model, where all variables
are affected.

Disadvantages:

• Since any slot initially can pick air as a candidate value, not all containers may be
placed within the stowage area. This has to be ensured by introducing additional
propagator.

• Implacable IMO-1/IMO-2 containers are potentially discovered late.

4.4 Cell-model

Variables: Cells
Domain values: Containers

Approach: The drawback of using the slot-model, is the number of domainvalues. To
address this issue, the following model is introduced, which avoids the combination of 20-
foot containers by using cells as variables. By having cellsas variables one can fit exactly
a 20-foot container. However, 40-foot containers will not fit within a cell. This issue can
be handled by splitting 40-foot containers into matching halves. For convenience, when a
container half is mentioned in this section, it refers to both a 20-foot container or a 40-foot
half container.

Pruning:
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PG1 Picking containerc for slotsi,j prunesc from any other slot.

PG2 When a container is placed in a cell, all cells underneath it can not select the intro-
duced air value for assignment. That is, when a 40-foot container is placed in slot
si,j, the air value is pruned away from the domain of any variable positioned in the
same stack beneathsi,j.

PG3 Each reefer container can only be placed in a reefer cell, while a non-reefer container
can be placed in either a reefer or a non-reefer cell.

PG4 Picking some IMO-1 container celll in slot si,j prunes any IMO-1 container in slots
according to the IMO constraint.

PG5 Picking some IMO-2 container celll in slot si,j prunes any IMO-1 and IMO-2 con-
tainer in slots according to the IMO constraint.

PG6 Picking some 20-foot container for celll in slotsi,j prunes away any 40-foot contain-
ers in cells below tieri in stackj and on the same side as celll.

PG7 Picking some 40-foot container for celll in slotsi,j prunes away any 20-foot contain-
ers in cells below tieri in stackj and on the same side as celll.

PG8 40-foot container needs to be cut in half to fit a cell, therefore ensuring that the two
halves are placed next to each other is required. This can be achieved by pruning all
domain values except the other half from the domain of the neighbor cell.

PG9 As described previously this pruning will not be considered.

PG10 Each stackj will only be able to accommodate then lightest containers before ex-
ceeding the weight limitation. The containers to be placed,can be pruned away as
candidate values from any cells inj, which only can accommodate air.

Advantages:

• The search can be done such that each stack is filled bottom up,thereby respecting
the gravity constraint in a natural way.

• Maintaining 20-foot container pairs is not needed, which results in a narrower search
tree than the slot-model, due to smaller domains.

• Non-reefer cells can have their initial domains pruned to only select the non-reefer
container halves.

• The number of variables, which will be affected byPG10, are limited to only one
stack when using this model, as opposed to the container-model, where all variables
are affected.
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• Simple to reason about containers placed in a stack.

• Do not need to prune anything forPG8.

Disadvantages:

• Number of variable is doubled, compared to the slot-model, which results in a deeper
search tree.

• Additional constraints needs to be added:

– 40-foot container half has to be placed next to its other half.

– 20-foot containers cannot be placed next to 40-foot container halves.

4.5 Conclusion

The variable and domain sizes are summarized in table 4.3. Assuming that there are suffi-
cient slots for the containers, the table shows that the cell-model has the most variables and
thus results in the deepest search tree. The container-model will have the lowest number
of variables and therefore have the shallowest search tree.The domain sizes shows that
slot-model has the largest domain size and therefore also provides the widest search tree.
The cell-model result in the narrowest search tree due to thedomain size.

Container-model Slot-model Cell-model
Variables |C| |S| |S||L|
Domains |S| |C40|+ |C20|

2 + 2|C20| |C|

Table 4.3:space complexities for the given elements in the future application

Table 4.4 shows how many variables are affected when pruningbased on a constraint is
carried out. Lettc = maxj∈{1,...,sc}{tcj} denote the number of tiers for the stack in the
bay, which has the most tiers. As the table shows, the container-model will depend on the
number of containers when pruning. For the other two models the amount of pruning is
mainly dependent on the stack size. Since it is expected thatthe number of slots which
appears in a stack is significantly less than the number of containers, it is expected that
either the slot-model or the cell-model is affecting less variables than the container-model.
The number of domain values in the slot-model is significantly higher than in the cell-
model. Based on the above observation, the model chosen is the cell-model.
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Container-model Slot-model Cell-model
PG1 - Uniqueness |C| |S| |S||L|
PG2 - Gravity |C| |tc| |tc|
PG3 - Reefer - - -
PG4 - Pick IMO-1 container |C| 4 9
PG5 - Pick IMO-2 container |C| 3|tc| 3|L||tc|
PG6 - Pick 20-foot container |C| |tc| |L||tc|
PG7 - Pick 40-foot container |C| |tc| |L||tc|
PG8 - Cover 40-foot container - - 1
PG9 - Height - - -
PG10- Weight |C| |tc| |tc|

Table 4.4:Shows the maximum number of affected variables when performing dif-
ferent pruning operations in the three different models.
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Chapter 5

CSP representation of SASP

Based on the analysis for selecting a proper representationof SASP, the CSP-Model needs
to be detailed further. This chapter presents the CSP-Modelin terms of variables, domains
and propagators. It is shown how pruning operations can be transformed into propagators.

5.1 Variables

Each variable in the CSP model corresponds to a cell as definedin the SASP. The set of
variables is:

X = {xl
i,j : si,j ∈ S ∧ l ∈ Li,j}

Table 5.1: Model specific variable sets
X IMO-z

i,j = {xl
i,j ∈ X : si,j ∈ S

IMO-z
i,j } : variables that cannot stow an IMO levelz,

when an IMO levelz has been placed insi,j

XR = {xl
i,j ∈ X \ S : ⊥ /∈ D(xl

i,j)} : all unassigned variables, which cannot
accommodate air

For convenience, a neighboring operation is defined on the set of cellsL, to denote the
other side of a cell within a slot:

W = T, T = W.

5.2 Domains

Since variables are cells, a variable cannot be assigned to a40-foot container. Consequently,
40-foot containers are divided into two halves, each half maintaining the properties of the
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original 40-foot container. To identify the two halves thatmake up an original 40-foot con-
tainer, the halves are given the same unique identifier. In this model, thecontainerterm is
used both for 20-foot containers and 40-foot container halves. A 40-foot container half is
marked similarly to a cell, as being bow or stern.

Model specific container sets
CH

40 = {cT , cW : c ∈ C40} : 40-foot container halves
CH

nr = {cλ ∈ CH
40, c ∈ C20 : ¬rc} : non-reefer 40-foot halves and 20-foot containers

CH
r = {cλ ∈ CH

40, c ∈ C20 : rc} : reefer 40-foot halves and 20-foot containers
CH

IMO-z = {cλ ∈ CH
40, c ∈ C20 : imoc = z} : 40-foot halves and 20-foot containers with IMO-z

The neighboring operation on the set of cells still holds. That is, the corresponding half of
a 40-foot halfcλ is cλ.

In case the bay has more cells than containers, some of the cells will remain empty. Let⊥
denote the domain value that indicates that a cell is left empty. The ”air” term is used as a
synonym for⊥. The properties for⊥ are:

h⊥ = 0, w⊥ = 0, l⊥ = 0, imo⊥ = 0, r⊥ = false, lp⊥ = 0 anddp⊥ = 0.

The domain of a variable consists of the containers the cell can accommodate. Some slots
can stow a single 20-foot container. Therefore 40-foot containers are excluded from the do-
main of the cells belonging to these slots. Reefer containers can only be placed into reefer
slots and therefore reefer containers are excluded from thedomain of non-reefer cells.

LetD(xl
i,j) be the initial domain for each variablexl

i,j .

D(xl
i,j) =































































CH
40 ∪ {⊥} : ¬t20i,j ∧ t

40
i,j ∧ ri,j

(CH
40 ∩ CH

nr) ∪ {⊥} : ¬t20i,j ∧ t
40
i,j ∧ ¬ri,j

C20 ∪ {⊥} : t20i,j ∧ ¬t
40
i,j ∧ ri,j

(C20 ∩ CH
nr) ∪ {⊥} : t20i,j ∧ ¬t

40
i,j ∧ ¬ri,j

CH
40 ∪ C20 ∪ {⊥} : t20i,j ∧ t

40
i,j ∧ ri,j

((CH
40 ∪ C20) ∩ CH

nr) ∪ {⊥} : t20i,j ∧ t
40
i,j ∧ ¬ri,j

{c} : ∃c ∈ C20 . A
0
S(c) = si,j ∧ l ∈ A

0
L(c)

{cλ} : l = λ ∧ ∃cλ ∈ CH
40 . A

0
S(c) = si,j ∧ l ∈ A

0
L(c)

∅ : ¬t20i,j ∧ ¬t
40
i,j

Example 5.1 Consider the SASP defined in Example 3.1.
The set of variables is:

X = {xW
1,1, x

T
1,1, x

W
1,2, x

T
1,2, x

W
1,3, x

T
1,3, x

W
1,4, x

T
1,4, x

W
1,5}
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The set of 20-foot containers is:

C20 = {c0, c1, c3, c4}

The set of 40-foot container halves is:

CH
40 = {cW2 , c

T
2 }

The initial domains are :

D(xW
1,1) = {c0}

D(xT
1,1) = {c1, c3, c4,⊥}

D(xW
1,2) = {c1, c3, c4,⊥}

D(xT
1,2) = {c1, c3, c4,⊥}

D(xW
1,3) = {c1, c

W
2 , c

T
2 , c3, c4,⊥}

D(xT
1,3) = {c1, c

W
2 , c

T
2 , c3, c4,⊥}

D(xW
1,4) = {cW2 , c

T
2 , c4,⊥}

D(xT
1,5) = {c4,⊥}

5.3 Additional constraints and pruning operations

Besides the constraints given in SASP, this model introduces three additional constraints:

CT11 The two halves of a 40-foot container must be placed in the same slot

∀c ∈ C40 . x
l
i,j = cλ ⇒ xl

i,j = cλ

CT12 A cell that accommodates a 20-foot container excludes the possibility of its neighbor
cell to accommodate a 40-foot half

∀xl
i,j , x

l
i,j ∈ X . xl

i,j = c ∧ c ∈ C20 ∧ x
l
i,j = c′ ⇒ c′ /∈ CH

40

CT13 Allowing each container only to appear once

∀xl
i,j , x

l
i,j ∈ X . xl

i,j 6= xl
i,j ∧ x

l
i,j = c ∧ xl

i,j = c′ ⇒ c 6= c′

In addition the following pruning operation is defined:
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Constraint Pruning
CT11 PG8
CT12 PG11
CT13 PG1

Table 5.2: Pruning coverage for
additional constraints

PG11- Placing a 20-foot container excludes any 40-foot container
By definition a slot can typically accommodate either two 20-foot containers or a single
40-foot container. Placing a 20-foot container excludes any 40-foot container to be placed
in that slot.

5.4 Propagators

As defined in section 2.1 propagators remove values in conflict with constraints. Table 5.3
presents the propagators derived by analyzing the pruning operations described in section
4.1.

ID Name Pruning Propagators
PR1 Uniqueness PG1 PR1
PR2 Gravity PG2 PR2, PR3
PR3 Air PG3 N/A
PR4 IMO-1 PG4 PR4
PR5 IMO-2 PG5 PR5
PR6 No 20-foot container on top PG6 PR7
PR7 No 40-foot container below PG7 PR6
PR8 Correct halves PG8 PR8
PR9 Overfitting PG9 N/A
PR10 Forced air due to space PG10 PR11
PR11 Forced air due to weight PG11 PR9

Table 5.3:Propagators Table 5.4:Coverage

PR1 Uniqueness: a container cannot be assigned to more than one variable at atime

Pu(D)(x) =

{

{n ∈ D(x) : n 6= xl
i,j} x ∈ X \ {xl

i,j}

D(xl
k,j) otherwise

IPu = {xl
i,j}

OPu = X \ {xl
i,j}
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PR2 Gravity: the cells below a cell that stows a container cannot be left empty

Pg(D)(xl
k,j) =

{

{n ∈ D(xl
k,j) : xl

i,j 6= ⊥ ⇒ n 6= ⊥} if k < i
D(xl

k,j) otherwise

IPg = {xl
i,j}

OPg = {xl
k,j : k < i}

PR3 Air: the cells above a cell that is empty cannot stow a container

Pa(D)(xl
k,j) =

{

{n ∈ D(xl
k,j) : xl

i,j = ⊥ ⇒ n = ⊥} if k > i
D(xl

k,j) otherwise

IPa = {xl
i,j}

OPa = {xl
k,j : k > i}

PR4 IMO-1: a cell stowing an IMO-1 container restricts the stowage of IMO-1 containers
according to the IMO constraint

P IMO-1(D)(x) =

{

{n ∈ D(x) : imoxl
i,j

= 1⇒ n /∈ CH
IMO-1} for all x ∈ X IMO-1

i,j

D(x) otherwise

IP IMO-1 = {xl
i,j}

OP IMO-1 = X IMO-1
i,j

PR5 IMO-2: a cell stowing an IMO-2 container restricts the stowage of IMO-1 and IMO-2
containers according to the IMO constraint

P IMO-2(D)(x) =











{n ∈ D(x) : imoxl
i,j

= 2⇒ n /∈ CH
IMO-1} for all x ∈ X IMO-1

i,j

{n ∈ D(x) : imoxl
i,j

= 2⇒ n /∈ CH
IMO-2} for all x ∈ X IMO-2

i,j

D(x) otherwise

IP IMO-2 = {xl
i,j}

OP IMO-2 = X IMO-1
i,j ∪ X IMO-2

i,j

PR6 No 20-foot container on top: the cells above a cell stowing a 40-foot half cannot stow
20-foot containers.

P40-20(D)(xy
k,j) =

{

{n ∈ D(xy
k,j) : lxl

i,j
= 40 ⇒ n /∈ C20} for all k > i

D(xy
k,j) otherwise

IP40-20 = {xl
i,j}

OP40-20 = {xy
k,j : k > i}
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PR7 No 40-foot container below: the cells below a cell stowing a 20-foot container cannot
stow 40-foot halves.

P20-40(D)(xy
k,j) =

{

{n ∈ D(xy
k,j) : lxl

i,j
= 20 ⇒ n /∈ CH

40} for all k < i

D(xy
k,j) otherwise

IP20-40 = {xl
i,j}

OP20-40 = {xy
k,j : k > i}

PR8 Correct Halves: the halves of a 40-foot container must be placed next to eachother.

P 40-40(D)(x) =

{

{n ∈ D(x) : lxl
i,j

= 40 ∧ xl
i,j = cz ⇒ n = cz} x ∈ {xl

i,j}

{n ∈ D(x) : lxl
i,j

= 40 ∧ xl
i,j = cz ⇒ n 6= cz} otherwise

IP40-40 = {xl
i,j}

OP40-40 = X

PR9 Overfitting: a 20-foot container placed in a cell excludes the possibility of its neighbor
cell to accommodate a 40-foot half.

P20-20(D)(x) =

{

{n ∈ D(x) : lxl
i,j

= 20⇒ n ∈ C20 ∪ {⊥}} x ∈
{

xl
i,j

}

D(x) otherwise

IP20-20 =
{

xl
i,j

}

OP20-20 =
{

xl
i,j

}

The above defined propagators are sufficient for representing the constraints of the problem.
However, additional propagators have been introduced in order to enhance pruning and
discover deadends and solutions earlier.

PR10 Forced air due to space: if the number of containers, not assigned to a cell, is equalto
the number of cells that must hold a container, the rest of thecells are left empty.

XA = {xl
i,j ∈ X \ S : ⊥ ∈ D(xl

i,j)} is the set of all unassigned variables, which can
accommodate air.

Pa-s(D)(x) =

{

{n ∈ D(x) : |CH
40 ∪ C20 \ πS(~a)| = |XR| ⇒ n = ⊥} x ∈ XA

D(x) otherwise

IPa-s = {xl
i,j}

OPa-s = XA
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PR11 Forced air due to weight: As described inPG10 in section 4.1, cells that cannot ac-
commodate any container should have its domain pruned to only contain air. In order
to resolve the cells, which cannot accommodate any container, following notation is
introduced:

I20
j is the index set of variables of stackj assigned to a 20-foot container:

I20
j = {(i, l) : xl

i,j = c ∧ c ∈ C20}

I40
j is the index set of variables of stackj assigned to a 40-foot half:

I40
j = {(i, l) : xl

i,j = cλ ∧ cλ ∈ CH
40}

Wj is the current weight of stackj:

Wj =
∑

(i,l)∈I20
j

wxl
i,j

+
1

2

∑

(i,l)∈I40
j

wxl
i,j

n is the number of available containers:

n = |CH
40 ∪ C20 \ πS(~a)|

Φ is the sequence of available containers ordered by weight:

Φ = 〈c1, c2, . . . , cn〉, ci ∈ C
H
40 ∪ C20 \ πS(~a) andwc1 ≤ wc2 ≤ . . . ≤ wcn

mj is the number of cells in stackj that can be filled without weight excess:

mj = argmax
k∈1...n

k
∑

z=1

wΦz
≤ (wj −Wj)

X l
j is the set of unassigned cells in stacksj sidel above tiermj :

X l
j = {xl

i,j : xl
i,j ∈ X \ S ∧ i ≥ mj}, l ∈ L

I l
j is the index set of unassigned variables of stackj sidel:

I l
j = {i : xl

i,j ∈ X \ S}, l ∈ L

Pa-w(D)(x) =

{

{n ∈ D(x) : mj < |I
l
j| ⇒ n = ⊥} x ∈ X l

j

D(x) otherwise

IPa-w = {xl
i,j}

OPa-w = X l
j
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5.5 Early termination criteria

Some requirements cannot be discovered by the propagators e.g. if the number of con-
tainers to be loaded exceeds the available space. Other criteria do not prune away enough
values or happen so late that it does not pay off to prune e.g. the height limit. Early termi-
nation criteria are introduced to represent constraints that are not modeled by propagators.
A termination criterion is a boolean function that indicates whether a specific constraint
is satisfied. In case the early termination criterion is truea dead end has been discovered,
and the search cannot continue along current search path. Anearly termination criterion is
denoted asEα whereα stands for the name of the termination criterion.

ETC1 The height of a stack has exceeded its limit.

∀j . EH(j)⇔

tcj
∑

z=1

hxl
z,j
> hj

ETC2 The weight of a stack has exceeded its limit.

∀j . EW (j)⇔

tcj
∑

z=1

∑

l∈L

wxl
z,j
> wj

ETC3 Too many containers: all containers cannot be placed withinthe space available.

EXC ⇔ |CH
40 ∪ C20 \ πS(~a)| > |X \ S|

ETC4 Too many reefers: all reefers cannot be placed within the available reefer cells.

EXR ⇔ |CH
r \ πS(~a)| > |{xl

i,j ∈ X : ri,j} \ S|

ETC5 Too few containers: not enough containers to support the containers already placed.

EFA ⇔ |CH
r \ πS(~a)| < |XR|

5.6 Correctness of propagators

Propagators and early termination criteria may not have a one to one relationship with con-
straints in the formal model. In some cases, several propagators or a combination among
propagators and early termination criteria implement a single constraint. This section es-
tablish correspondence between propagators/early termination criteria and constraints from
the formal model. The correctness is shown through series ofargumentation.

CT1 All containers are assigned to a cell of a slot
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The constraint is represented byEXC .

EXC guarantees that a complete instantiation has all containers assigned to a cell. The
proof is by contradiction: assume that the search can returna complete instantiation
where not all containers are assigned. This contradicts thedefinition ofEXC , which
stops search if the number of available cells is less than thenumber of containers to
be assigned.

CT2 A cell can hold at most 1 container

Since variables are cells and each variable can be assigned to one value at a time, the
constraint is implicitly represented by the model itself.

CT3 A 40-foot container must cover both sides of a slot

The constraint is represented byP40-40.

When a 40-foot container is assigned to a cell, the domain of the neighbor cell is
pruned to contain only the other half and all other variableswill have the other half
pruned away from their domain.

CT4 A 20-foot container is allowed to cover one cell in a slot

The constraint is represented byPu.

Whenever a containerc is assigned to a cellxl
i,j, P

u prunes awayc as a candidate
value from all other cells thanxl

i,j, which ensures thatc can never be chosen again
for any other cell.

CT5 Assigned slots must form stacks

The constraint is represented byPg andPa.

Whenever a containerc is assigned to a cellxl
i,j , P

g removes air as candidate value
from all cells beneathxl

i,j. Therefore, air cannot be chosen beneath a cell that accom-
modates a container.

Whenever air is assigned to a cellxl
i,j, P

a prunes away all other values than air from
any cells abovexl

i,j . Therefore, a container can never be placed above some air.

The combination ofPg andPa ensures that there will never be air between two
containers in a stack.

CT6 20-foot containers cannot be stacked on top of any 40-foot container

The constraint is represented byP40-20 andP20-40.

For this constraint it will only matter if a cell is assigned a40-foot container or a
20-foot container.

In case a 40-foot container is assigned to a cellxl
i,j, P

40-20 prunes away 20-foot
containers from the domain of all cells abovexl

i,j, ensuring that 20-foot containers
can never be placed on top of a 40-foot container.
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In case a 20-foot container is assigned to a cellxl
i,j , P

20-40 prunes away 40-foot con-
tainers from the domain of all cells underneathxl

i,j, ensuring that 40-foot containers
can never be placed below a 20-foot container.

The combination ofP40-20 andP20-40 ensures that it can never be the case that a
40-foot container can be underneath a 20-foot container or vice versa.

CT7 The height of each stack is within its limits

The constraint is exactly represented by the early termination criterionEH , which is
the negation of the actual constraint.

CT8 The weight of each stack is within its limits

The constraint is represented by the early termination criterion EW , which is the
negation of the actual constraint.

CT9 Reefer containers must be placed in reefer slots

The constraint is ensured by the domain mapperD and constraintEXR.

D ensures that reefer containers cannot be considered as candidate values for non-
reefer cells.EXR guarantees that a complete instantiation has all reefer containers
assigned to a reefer cell. The proof is by contradiction, similar to the one given for
CT1.

CT10 IMO rules are satisfied for each container

The IMO-1 constraint is represented byP IMO-1.

For a placed IMO-1 containers the constraint states that anycells adjacent toxl
i,j

cannot accommodate an IMO-1 container.P IMO-1 ensures this by pruning all IMO-1
container from cells adjacent toxl

i,j.

The IMO-2 constraint is represented byP IMO-1 andP IMO-2.

For a placed IMO-2 container, the constraint states that anycells adjacent toxl
i,j

cannot accommodate an IMO-1 container, which is ensured byP IMO-1. Additionally
no IMO-2 container can be assigned to the rest of the cells of stackj and to all cells
in stacksj + 1 andj − 1. P IMO-2 ensures this, by pruning away IMO-2 containers
from any cells in stacksj + 1 andj − 1 and any cell in the stackj except cellxl

i,j.

CT11 Two halves of a 40-foot container must be placed in the same slot

This is constraint is similar toCT3 and is ensured by the same pruning operation.

CT12 A cell that accommodates a 20-foot container excludes the possibility of its neighbor
cell to accommodate a 40-foot half

The constraint is represented byP20-20.

When a 20-foot container is assigned to a cell, the domain of the neighbor cell is
pruned to contain only the 20-foot container.
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CT13 Allowing each container only to appear once

The constraint is represented byPu.

Whenever a containerc is assigned to a cellxl
i,j, P

u prunes awayc as a candidate
value from all other cells, which ensures thatc can never be chosen again.
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Chapter 6

Estimation

The purpose of this chapter is to give the reader an understanding of the estimation the
branch and bound algorithm uses. The chapter is divided intofour sections, where each
section explains one objective of the storage area stowage problem. Each section defines
the estimated cost, proves that the estimate is an underestimate of the real completion cost
and argues for the efficiency of the estimator.

6.1 Overstowage Bounding

Given a partial solution~ap, we wish to calculate a lower bound on the number of overstows
of any solution extending it. Due to the exponential number of combinations, the ”brute-
force” way of building all complete solutions that extend~ap and computing the number of
overstows for each stowage plan is infeasible. The goal is therefore to efficiently calculate
a good, but not necessarily tight bound.

The main idea is to relax the problem by not taking into consideration the overstows among
containers belonging to the extension of the partial solution.

The air container must not be counted in for the number of overstows. The following
notation defines the domain values different than air that belong to the current instantiation:

π⊥
S (~a) = πS(~a) \ {⊥}

Formally, the costs are defined as follows:

F 0×0
ov (~ap) is the number of overstows of~ap.

F 0×0
ov (~ap) =

∑sc

j=1

∑

l∈L

∣

∣{(xl
i,j, x

l
k,j) ∈ π

⊥
Sp

(~ap)
2 : dpxl

i,j
> dpxl

k,j
∧ i > k}

∣

∣

F 0×1
ov (~ap, ap+1:n) is the number of overstows among containers belonging to~ap and con-

tainers belonging to an extension(ap+1, . . . , an) of ~ap into a complete instantiation.
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F 0×1
ov (~ap, ap+1:n) =

∑sc

j=1

∑

l∈L

∣

∣{(xl
i,j , x

l
k,j) ∈ π

⊥
Sp

(~ap, ap+1:n)× π
⊥
X−Sp

(~ap, ap+1:n) : dpxl
i,j
> dpxl

k,j
∧ i > k}

∣

∣

F 1×1
ov (~ap, ap+1:n) is the number of overstows among containers belonging to an extension

(ap+1, . . . , an) of ~ap into a complete instantiation.

F 1×1
ov (~ap, ap+1:n) =

∑sc

j=1

∑

l∈L

∣

∣{(xl
i,j , x

l
k,j) ∈ π

⊥
X−Sp

(~ap, ap+1:n)2 : dpxl
i,j
> dpxl

k,j
∧ i > k}

∣

∣

The overstow cost of the partial instantiation~ap is:

gov(~ap) = F 0×0
ov (~ap)

The cost of the optimal completion of~ap is

h∗ov(~ap) = min
ap+1:n

(

F 0×1
ov (~ap, ap+1:n) + F 1×1

ov (~ap, ap+1:n)
)

where(~ap, ap+1:n) is a complete and valid instantiation.

The estimated completion cost is

hov(~ap) = min
a
′
p+1:n

(

F 0×1
ov (~ap, a

′

p+1:n)
)

where(~ap, a
′

p+1:n) is a complete, but not necessarily valid instantiation.

Proposition 6.1 The bounding costhov is always an underestimate of the optimal comple-
tion costh∗ov i.e. h∗ov ≥ hov

Proof.

h∗ov(~ap) = min
ap+1:n

(

F 0×1
ov (~ap, ap+1:n) + F 1×1

ov (~ap, ap+1:n)
)

= min
ap+1:n

(

F 0×1
ov (~ap, ap+1:n)

)

+ min
ap+1:n

(

F 1×1
ov (~ap, ap+1:n)

)

≥ min
ap+1:n

(

F 0×1
ov (~ap, ap+1:n)

)

≥ min
a
′
p+1:n

(

F 0×1
ov (~ap, a

′

p+1:n)
)

= hov(~ap)

which completes the proof. �

How to calculatehov?

Having proved the correctness of the estimator, the goal is to calculate its value efficiently.
For a particular~ap, create a weighted graphG = (V,E, w) in the following manner: all
unassigned containers and all cells not part of the instantiation, become nodes in the graph,
and an edge is added between a container and a cell, if the container belongs to the variables
domain. The weight of the edge is the number of overstows thatresult from stowing the
container into the cell.
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WhenT = {c ∈ C20, c
l ∈ CH

40 : c /∈ πSp
(~ap)} denotes the set of unassigned containers

andR = {xl
i,j ∈ X \ Sp} denotes the set of not yet instantiated cells, the set of nodes is

V = T ∪ R

the set of edges is
E = {(c, xl

i,j) ∈ T × R : c ∈ D(xl
i,j)}

and

w(c, xl
i,j) =

∣

∣{xl
k,j ∈ π

⊥
Sp

(~ap) : dpc > dpxl
k,j
∧ k < i}

∣

∣ +
∣

∣{xl
k,j ∈ π

⊥
Sp

(~ap) : dpc < dpxl
k,j
∧ k > i}

∣

∣

for each edge(c, xl
i,j) ∈ E.

G is bipartite and, due to the way it is constructed,hov is equal to the cost of a complete
matching of minimum cost. Therefore, efficiently calculating hov is reduced to efficiently
find a maximum matching of minimum cost of the associated bipartite graph and verifying
if the maximum matching is complete. In case the maximum matching is not complete, it
can be concluded that the current instantiation cannot be extended to a valid solution.

Example 6.1 Consider the CSP-Model defined in Example 5.1 and a partial instantiation
~ap = {(xW

1,1, c0), (x
T
1,2, c1)}.

The bipartite graph used for overstow estimation is shown inFigure 6.1.

Figure 6.1: Bipartite Graph.
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Definition 6.1 (Minimum Cost Matching Problem(MCMP)) Given a weighted bipartite
graphG = (T ∪ R,E,w) wherew : E → IN , the MCMP is to find a maximum match-
ing of minimum cost:M ⊆ E, such that no edges ofM have common endpoints,|M | is
maximized and

∑

e∈M w(e) is minimized.

Flow algorithms are state of the art algorithms that can efficiently solve a MCMP. These
algorithms build a flow network and find a maximum flow of minimum cost [6].

Example 6.2 A solution of the matching problem built of Figure 6.1 is:

M = {(cW2 , x
W
1,3), (c

T
2 , x

T
1,3), (c3, x

T
1,1), (c4, x

W
1,2)}

The matching is complete and thereforeh∗ov = 3.

6.2 Emptystack Bounding

In this case, the goal is to calculate a lower bound on the number of used cellstacks of any
solution extending a partial instantiation~ap. A cellstack isusedif at least one container has
been stowed into it. Otherwise a cellstack isempty.

To accurately bound the number of used cellstacks of a complete solution, an estimation
algorithm should fill already used cellstacks before starting empty cellstacks. Identifying
a cellstack independently of its parent stack makes it easy to build an ordering among the
cellstacks. A straightforward way to identify a cellstack is by its relative position to the left
side of the stowage area. Cellstacks are counted from larboard to starboard, starting with 1.

K = {2j − 1, 2j : j ∈ J} is the set of cellstacks.

Accordingly, one can identify the parent stack of a cellstack and the side the cellstack rep-
resents.W is considered to come beforeT and it is assumed that each side can be identified
by its relative position to the parent slot.

Cellstack properties
jk = ⌊1

2
(k + 1)⌋ : stack to whom cellstackk belongs

lk =

{

W if ⌊(k + 1) mod 2⌋ = 0
T otherwise

: the side cellstackk represents

fs(k) = hjk
−

∑

i∈{i :x
lk
i,jk

∈Sp}
hlk

xi,jk
: free space of cellstackk

ws(k) =

{

fs(k) if fs(k) < hst

0 otherwise
: the wasted space of cellstackk

U = {k ∈ K : ∃ i . xlk
i,jk
∈ πSp

(~ap)} is the set of used cellstacks.
E = K \ U is the set of empty cellstacks.
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Having defined the set of used cellstacks and the set of empty cellstacks, we are ready to
introduce an ordering relation on the set of cellstacksK.

For any permutationρ of U , ≺ρ is a pre-order onK that orders the used cellstacks accord-
ingly to ρ while the free cellstacks are ordered in decreasing order oftheir available cells
and follow used cellstacks.

k ≺ρ m ⇔
(

k,m ∈ U ∧ ρk < ρm

)

∨
(

k ∈ U ∧ m ∈ E
)

∨
(

k,m ∈ E ∧
∣

∣{i : xlk
i,jk

/∈ πSp
(~ap)}

∣

∣ ≤
∣

∣{i : xlm
i,jm

/∈ πSp
(~ap)}

∣

∣

)

≺ρ
k denotes thekth cellstack in the ordering.

For a particular ordering≺ρ, the minimum number of cellstacks needed forS standard con-
tainers andH highcube containers, when thek-th cellstack in the ordering hasσ available
space is defined recursively in terms of the optimal solutions to subproblems:

uρ(S,H, k, σ) =















































k, if S = 0 and H = 0
min(uρ[S − 1, H, k, σ − hst), uρ(S,H − 1, k, σ − hhc))

if S ≥ 1 and H ≥ 1 and σ ≥ hhc

uρ(S,H − 1, k, σ − hhc) if S = 0 and H ≥ 1 and σ ≥ hhc

uρ(S − 1, H, k, σ − hst) if S ≥ 1 and H = 0 and σ ≥ hst

uρ(S − 1, H, k, σ − hst) if S ≥ 1 and H ≥ 1 and hst ≤ σ < hhc

uρ(S,H,≺
ρ
k+1, fs(≺

ρ
k+1)) if S +H ≥ 1 and σ < hst

uρ(S,H,≺
ρ
k+1, fs(≺

ρ
k+1)) if H ≥ 1 and hst ≤ σ < hst

The structure of an optimal solution of the problem can be characterized in the following
way. LetA1:j denote the optimal arrangement ofj containers. Leti be the first container
of the last cellstackk, needed to accommodate thej containers. The goal is to prove that
A1:i−1 is an optimal arrangement. The proof is by contradiction: let’s assume thatAi:1−1

is not optimal. In this case there is another arrangementA
′

1:i−1 that is optimal and needs
k

′
< k − 1 cellstacks. In this case, we can construct arrangementA

′

1:j consisting ofA
′

1:i−1

followed by containersi to j stowed in cellstackk
′
+1. Since cellstackk

′
+1 comes before

cellstackk in the cellstack ordering, it is certain that it can accommodate containersi to j.
Observing thatk

′
+ 1 < k we have just constructed an arrangement for containers1 to j

that needs fewer cellstacks than the optimal arrangementA1:j , contradicting the optimality
of A1:j.

We are now ready to formally define the cost functions. LetS be the number of unassigned
20-foot containers andH be the number of unassigned 20-foot containers:

S =
∣

∣{c ∈ C20 : c /∈ πSp
(~ap)}

∣

∣

H =
∣

∣{cl ∈ CH
40 : cl /∈ πSp

(~ap)}
∣

∣
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The empty stack cost of the partial instantiation~ap is:

ges(~ap) = |U |

The cost of the optimal completion of~ap is:

h∗es(~ap) = max
(

0, min
ρ∈P(U)

uρ(S,H,≺
ρ
1, fs(≺

ρ
1))− ges(~ap)

)

The estimated completion cost is:

hes(~ap) = max
(

0, uρ0
(S,H,≺ρ0

1 , fs(≺
ρ0

1 ))− ges(~ap)
)

,

whereρ0 is an arbitrary permutation of the used cellstacks setU .

ges(~ap) has to be subtracted from the above costs since it is already included inu.

Proposition 6.2 The bounding costhes is always an underestimate of the optimal comple-
tion costh∗es i.e. h∗es ≥ hes

Proof.

Since, used stacks are filled before empty stacks, and empty stacks are considered in the
same order, the proof thathes is a correct bounding function forh∗es is reduced to showing
that the number of newly started empty stacks does not dependon the order in which the
used cellstacks are considered. Given two permutationsρ1 andρ2 of the used cellstacks,uρ1

anduρ2
will examine in different order, but nevertheless the same stowage combinations,

and therefore choose the same optimal arrangement, guaranteeing that the same number
of additional empty cellstacks are necessary. Thus the order in which the used stacks are
considered is irrelevant, proving thathes = h∗es .

�

How to calculatehes?

We have already argued for the optimal structure of the problem. Additionally, if the space
of subproblems is small, in the sense that the recursive algorithm solves the same subprob-
lems repeatedly, dynamic programming is applicable and efficiently solves the problem.

To analyze how subproblems overlap, a problem tree is built for a problem with a single
cellstack with infinite space. The root of the tree is the initial problem and each node
identifies a subproblem for a number of standard containers and a number of highcube
containers. Due to the construction procedure the number ofstandard containers of each
node is at most1 less than the number of standard containers of its parent node. The same
holds for highcube containers. Picture 6.2 shows part of thesubproblem tree.
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Figure 6.2:Overlapping subproblems for a single cellstack.

Considering the root of the tree having level0, observe that each sequence to a subproblem
found at levelk is identified by a sequence of choices of lengthk, where each choice is ei-
ther a standard container or a highcube container. To count the number of distinct subprob-
lems of levelk is reduced to counting the different possible ways of building a sequence of
lengthk where the accumulative number of standard containers, respective highcube con-
tainers matters, but the order in which they appear in the sequence is irrelevant. There are
(

k
S

)

ways to build a sequence havingS standard containers andk − S highcube con-

tainers. However, since order is irrelevant, these

(

k
S

)

subproblems are identical. Since

we can build sequences having0 ≤ S ≤ k standard containers (and accordinglyk − S
highcube containers), the number of distinct subproblems found at levelk is k + 1.

Consequently, the total number of distinct subproblems fora single cellstack problem with
infinite space is:

H+S
∑

k=0

(k + 1) =
(H + S + 1)(H + S + 2)

2

A similar proof holds for the general problem, where a cellstack has a limited amount of
space and there are several stacks available by viewing the accumulated available space of
the set of cellstacks as the available space of a single cellstack. The main difference is that
whenever the space associated with a particular cellstack is filled, the wasted space should
be substracted from the accumulated available space.

Dynamic programming optimizes the inefficient recursive algorithm by maintaining and
reusing solutions to subproblems. A table maintains solutions to subproblems. Initially
all table entries contain thenil value to indicate that the entry has not been calculated yet.
When the subproblem is first encountered during the execution of the recursive algorithm,
its solution is computed and stored. Each subsequent time the subproblem is encountered,
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the value stored in the table is simply returned.

6.3 Wastedspace Bounding

In this case, the goal is to calculate a lower bound on the wasted space of any solution
extending a partial instantiation~ap. The idea behind this estimator is the same with the one
presented for Emptystack bounding: an ordering is chosen for the set of cellstacks, and all
stowage combinations that fill cellstack after cellstack asdefined in the ordering are built
and evaluated.

The main difference lies, when the recursive algorithm reaches a boundary condition. This
happens, when a cellstack cannot accommodate further containers, or when the stowage
plan is complete. In the first case, the remaining space is wasted, since it is less than the
space needed for a standard container. In the later case, thewasted space is calculated as
being the wasted space of the the current cellstack, added together with the wasted space
of all cellstacks that follow in the ordering.

For a particular ordering≺ρ, the minimum wasted space forS standard containers andH
highcube containers, when thek-th cellstack in the ordering hasσ available space is defined
recursively in terms of the optimal solutions to subproblems:

wρ(S,H, k, σ) =















































σ∗ +
∑|K|

j=k+1ws(≺
ρ
j ), if S = 0 and H = 0

min(wρ[S − 1, H, k, σ − hst), wρ(S,H − 1, k, σ − hhc))
if S ≥ 1 and H ≥ 1 and σ ≥ hhc

wρ(S,H − 1, k, σ − hhc) if S = 0 and H ≥ 1 and σ ≥ hhc

wρ(S − 1, H, k, σ − hst) if S ≥ 1 and H = 0 and σ ≥ hst

wρ(S − 1, H, k, σ − hst) if S ≥ 1 and H ≥ 1 and hst ≤ σ < hhc

σ + wρ(S,H,≺
ρ
k+1, fs(≺

ρ
k+1)) if S +H ≥ 1 and σ < hst

σ + wρ(S,H,≺
ρ
k+1, fs(≺

ρ
k+1)) if H ≥ 1 and hst ≤ σ < hst

where

σ∗ =

{

σ if σ < hst

0 otherwise

is the wasted space of the current cellstack. The cost functions are defined below.

The wasted space cost of the partial instantiation~ap is:

gws(~ap) =

∑

k∈K ws(k)

hst

The cost of the optimal completion of~ap is:
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h∗ws(~ap) =
minρ∈P(U)wρ(S,H,≺

ρ
1, fs(≺

ρ
1))

hst

− gws(~ap)

The estimated completion cost is:

hws(~ap) =
uρ0

(S,H,≺ρ0

1 , fs(≺
ρ0

1 ))

hst

− gws(~ap)

whereρ0 is an arbitrary permutation of the used cellstacks setU .

gws(~ap) has to be subtracted from the above costs since it is already included inw.

Proposition 6.3 The bounding costhws is always an underestimate of the optimal comple-
tion costh∗ws i.e. h∗ws ≥ hws

Proof.

The correctness proof forhws is the same as forhes in proposition 6.2

�

An efficient way to calculate it, is by using dynamic programming.

6.4 Reefer Bounding

For any partial instantiation~ap, the goal is to estimate the number of reefer cells that are
occupied with non-reefer containers for any complete solution that completes~ap. The
estimate is achieved by counting the number of reefer cells that will certainly be instantiated
with a not-air container and subtracting it from the count ofreefer container halfs. Formally,
the costs are defined as follows:

Xnr
r is the set of reefer cells of~ap instantiated with non reefer containers.

Xnr
r = {xl

i,j ∈ Sp : ri,j ∧ xl
i,j ∈ C

H
nr}

Xr
r is the set of reefer cells of~ap instantiated with reefer containers.

Xr
r = {xl

i,j ∈ Sp : ri,j ∧ xl
i,j ∈ C

H
r }

Xr is the set of uninstantiated reefer cells whose domain does not contain air.

Xr = {xl
i,j ∈ X

R : ri,j}

The reefer cost of the partial instantiation~ap is the number of reefer cells of~ap instantiated
with non reefer containers:

gr(~ap) = |Xnr
r |
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The cost of the optimal completion of~ap is the number of reefer cells that with certainty
will be instantiated with non reefer containers plus anε number of reefer cells that may be
instantiated with non reefer containers:

h∗r(~ap) = max
(

0, |Xr| − (|CH
r | − |X

r
r |)

)

+ ε

The estimated completion cost is:

hr(~ap) = max
(

0, |Xr| − (|CH
r | − |X

r
r |)

)

Proposition 6.4 The bounding costhr is always an underestimate of the optimal comple-
tion costh∗r i.e. h∗r ≥ hr

Proof.

Trivially, h∗r(~ap) ≥ hr(~ap).

�

The bounding evaluation function used by the branch and bound search algorithm is:

Definition 6.2 (Bounding evaluation function)

f(~ap) = Wov

(

gov(~ap)+hov(~ap)
)

+Wes

(

ges(~ap)+hes(~ap)
)

+Wws

(

gws(~ap)+hws(~ap)
)

+Wr

(

gr(~ap)+hr(~ap)
)

Proposition 6.5 The bounding costf(~ap) is always an underestimate of the optimal com-
pletion costf ∗(~ap) i.e. f ∗(~ap) ≥ f(~ap)

Proof.

The proof follows trivially from the individual proofs for each cost component:

f ∗(~ap) = Wov

(

gov(~ap) + h∗ov(~ap)
)

+Wes

(

ges(~ap) + h∗es(~ap)
)

+

Wws

(

gws(~ap) + h∗ws(~ap)
)

+Wr

(

gr(~ap) + h∗r(~ap)
)

≥ Wov

(

gov(~ap) + hov(~ap)
)

+Wes

(

ges(~ap) + hes(~ap)
)

+

Wws

(

gws(~ap) + hws(~ap)
)

+Wr

(

gr(~ap) + hr(~ap)
)

= f(~ap)

�
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Chapter 7

Implementation

The implementation chapter gives a description on how the main parts have been imple-
mented. We consider the main parts to be representation of data, search algorithms, propa-
gation engine, estimator and evaluation calculator.

The chapter begins with explaining fundamental concepts, which are necessary in order to
understand how the running time is improved. Then an explanation of how data are rep-
resented is given. After the data representation, the pseudocode for the search algorithms,
propagation engine, estimators and evaluation calculatoris given.

This chapter outline an approach of how effective pruning can be achieved and a data
structure for represent a collection of characteristics for some of the objects within SASP.

7.1 Fundamental concepts

One of the main focuses in the implementation has been to be able to prune domains and
backtrack efficiently. In order to do that, the concepts of shared domains and labels have
been conceived.

Shared Domains

Each variable maintains some characteristic information about properties that possible do-
main values should posses, in order to be eligible for being assigned to a particular variable.
One possible naive implementation is to let each variable maintain a domain with all the
candidate values, it can select. A domain value is then removed, when it is no longer el-
igible for that particular variable. Domain changes are recorded for each variable, such
that a domain value reappears, when it is eligible for selection again. The basic operations,
which the domain is required to support, are adding and removing domain values. Using
a hashtable to represent a domain - adding and removing a value is expected to be O(1).
Pruning away several domain values from a domain will therefore beO(|D|). The domain
values in SASP can be viewed as being shared amongst the variables. That is, containers
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to be placed are taken from the same pool. Based on this observation, it is required that
any used domain value has to be removed as a candidate value from the domains of the
remaining unassigned variables. Using the time complexities above for a set of|X| vari-
ables - adding or removing an already selected value from thedomains of the remaining
unassigned variables is expected to beO(|X|). Table 7.1 summarize the time complexities
for a naive implementation of domains.

Table 7.1:Time complexities for naive implementation
Adding a domain value to a domain O(1)
Removal of a domain value from a domain O(1)
Pruning several values from a domain O(|D|)
Adding a domain value to the domains of all unassigned variables O(|X|)
Removal of a domain value from the domains of all unassigned variables O(|X|)

Since each variable in the worst case has all domain values represented in its domain, the
space requirement is expected to beO(|X||D|). Table 7.2 summarize the space complexi-
ties for a naive implementation of domains.

Table 7.2:Space complexities for naive implementation
Representing domain values in a single domainO(|D|)
Representing domain values in each domain O(|X||D|)

Due to the nature of how pruning occurs in SASP, it has been discovered through analysis
that the pruning mainly occurs on the basis of the container type and not so much on the
container itself e.g. if a cell cannot accommodate a container due to a property such as
IMO-1, then that cell will not be able to accommodate any container with that property.
In addition, the variation of container types that is, the number of unique combinations of
container properties, are quite limited. Further more, several cells are able to accommodate
the same kind of containers, which implies that several variables can potentially share the
same domain. If the cardinality of the set of unique domainsU is considerable less than the
total number of variables, then the time and space requirements can be lessened consider-
ably. This holds in the case of SASP and the concept is presented asshared domain. The
idea behind shared domains is that exactly one copy of each unique domain is maintained,
which each variable is able to refer to by using some characteristic description.

This characteristic description is referred to as alabel, and will be explained in further
detail in the following section. Based on a particular labelL, a reference to a domain with
labelL can be obtained. The concept of pruning several values from the domain of a single
variable will simply be a matter of changing the label for that variable and obtaining a new
reference to a domain with the newly constructed label. Obtaining a reference can easily
be implemented by using a hashtable, which uses the label as the key and the reference to
a shared domain as the value, retrieval can therefore be expected to beO(1). If changing
the label and obtaining the reference can be expected to be carried out in constant time,
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Figure 7.1:Variablex2 andx3 are initially pointing to domaind1. ContainerCi1

is then assigned to some variable and has to be pruned away from all domains due
to uniqueness propagation. Some properties when assigningthe domain valueCi1

causes variablex3 to change its domain tod2.

then pruning based on the label can be achieved in constant time. Table 7.3 shows the time
complexities for implementing shared domains.

Table 7.3:Time complexities for shared domain implementation
Adding a domain value to a domain O(1)
Removal of a domain value from a domain O(1)
Pruning several values from a domain O(1)
Adding a domain value to domains of all unassigned variables O(|U |)
Removal of a domain value from domains of all unassigned variables O(|U |)

Since variables can share the same domain, the space requirement for all domains can be
reduced fromO(|X||D|) to O(|U ||D|). The table 7.4 summarizes the space complexities
for implementing shared domain.

Constructing unique domains

The number of unique domains inU , will depend on the structure of the problem. Through
some analysis of SASP, the following properties, were takeninto consideration when con-
structing the unique domains: IMO, Container length, reefer and air properties.

The possible IMO combinations is based on the fact that a cell, which can accommodate an
IMO-2 container can also accommodate an IMO-1 container, which in turn can accommo-
date an IMO-0. This is induced from the propagatorsP IMO-1 andP IMO-2, which describes
the IMO constraint for SASP.
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Table 7.4:Space complexities for shared domain implementation
Representing domain values in a single domainO(|D|)
Representing domain values in all domains O(|U ||D|)

Three combinations based on the length property of containers are constructed. They are
selected on the basis that cells typically can accommodate either a 40-foot half, or a 20-
foot container before any containers have been placed within the bay. Since a slot cannot
accommodate both a 20-foot container and a 40-foot container, placing a 20-foot container
in a cell excludes any 40-foot container half in the neighborslot, which is ensured by
propagatorP20-20. The same argumentation holds for 40-foot containers and isensured by
propagatorP40-40. This yields two additional combinations: 20-foot containers and 40-foot
containers.

The possible reefer combinations is constructed on the factthat any non-reefer cell may
only accommodate non-reefer containers, while reefer cells may accommodate either reefer
containers or non-reefer containers.

The air property is finally taken into consideration, for which two combinations exists.
Initially a cell may either hold a container or air. Cells, which cannot accommodate air, are
constructed as a result of propagatorPg. The combinations for each chosen category are
summarized in table 7.5.

IMO Length Reefer Air
IMO-0 ∪ IMO-1 ∪ IMO-2 40-foot∪ 20-foot non-Reefer∪ Reefer Air
IMO-0 ∪ IMO-1 40-foot non-Reefer non-Air
IMO-0 20-foot

Table 7.5:Combinations in the selected categories

The properties selected for constructing the unique domains have been chosen based on the
low number of combinations within each criteria. The upper bound on the number of unique
domains is calculated by multiplying the cardinality of thecombinations created for each
selected criterion. Criterions with many possible combinations are therefore unsuitable to
be distinguished upon. The weight property is an example of this.

Having three possible IMO combinations, three container length combinations, two reefer
combinations and two air combinations, the total number of domains results in 36 unique
domains.

Any domaind for SASP has a corresponding domaind⊥, which has an additional air do-
main value.d⊥ is referred to as the air domain. Whenever a domain valuev is removed
from d thenv has to be removed fromd⊥ as well. Besides the air domain value the domains
have the same behavior. This fact can be exploited by having adata structure, which keeps
a reference to domaind, such that when reasoning about the number of elements ind⊥,
then it would be all elements ind with the additional air domain value. Consequently air
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Figure 7.2: The domaind1 andd1
⊥ have the same containers except for the air

container. When some container appearing ind1 has to be removed the same container
has to be removed fromd1

⊥ as well.d1
⊥ can therefore include the containers, which

d1 has

domain values do not need to get pruned away since pruning canbe achieved by changing
to the corresponding domain, which does not accommodate air. This technique halves the
number of unique domains.

Single container domain

The propagatorP40-40 requires that a 40-foot container half needs to be placed next to its
other half. Consequently the other container half cannot beconsidered as an eligible value
for any other variable than the neighbor cell of the placed 40-foot container half. When
using shared domain this has an impact on the number of uniquedomains and pruning.
The idea ofSingle container domainand Collapsing 40-foot container halveshas been
conceived to remedy this issue. Having the requirement of pruning all containers, such
that only a 40-foot container half is left, makes the number of domains grow linearly in the
number of 40-foot containers. These domains are named single container domains. They
have the property that only a single 40-foot container is present. Pu forces the 40-foot
container half to be pruned away once it has been assigned to acell, and consequently the
time complexity for removal of a single domain value is degraded toO(|U |+|C40|), because
it is unknown, which one of the single container domain that needs to be pruned. The
running time can be improved by collapsing containers. Instead of having two container
halvescT andcW for containerc, a single container halfc′ is used to representc. Since the
two container partscT andcW are the same container all properties for one of the container
halves are the same as the other half and vice versa. Further more, there is nothing in
SASP, which requires to distinguish the container halves ofthe same container from each
other, thus no issue will appear in that relation. When placing a 40-foot containerc in
a cell, the container is removed from any shared domain byPu and the domain for the
neighbor cell needs to be the single container domain for containerc, since that is the only
container, which should be considered. SincePu removesc from any shared domain,c
cannot be considered as candidate value for any other cell. The single container domain
ensures that the other half is the only value to be chosen. If backtracking occurs,c should
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not be inserted into any shared domains before all assignments, wherec appears have been
removed. The single container domain is only used after the first half is chosen. From this
it can be inferred, that a 40-foot container should only be reinserted into domains, once the
half which was assigned first has been unassigned.

Further pruning will not be necessary and consequently no additional cost is added to the
running time, when removing a domain value from domains and the running time ofO(|U |)
is therefore retained.

Domain pruning

Changing a domain reference for a variable in itself does notremove any domain values.
This is however necessary for domain values, which have already been assigned to a spe-
cific variable. All other factors being equal, when not usingany particular data structure,
the removal of a domain value can only be attained by iterating over all unique domains,
which results in a running time ofΘ(|U |). In order to reduce running time, the domains
are divided into lists, where each list holds a reference to all domains, which share a given
combination of container properties. These lists are then stored in a hashtable, where the
given property is used as key. Using this data structure, running time can be improved to
O(|U |). Removing a domain value with a given set of properties is then simply a mat-
ter of retrieving the list of domains, with the corresponding properties and then iteratively
remove it from the domains in the list. The proposed datastructure is referred to asLabel-
Domain table. The pseudocode for the described approach can be found in the appendix
C.3. Example 7.1 below shows how pruning can be carried out.

Example 7.1
Cell xi0 is stowed with containerci0 causing domain pruning for all affected cells.
The domain reference for cellxi7 changes from domaind1 to d6

Domain restoration

Restoring shared domains when backtracking is a bit more complicated than when variables
maintains a domain on its own. In order to be able to restore domains when a backtrack
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occurs, domain reference changes, that were made during an assignment of variablex, has
to be recorded. Example 7.2 shows how domain restoration is carried out.

Example 7.2
Cell xi0 has been stowed with containerci0 previously causing domain reference
changes for any affected variables to be recorded in a list. An additional domain
change for cellxi2 is recorded when the current instantiation of cellxi1 is being in-
stantiated with containerci1

The list of domain reference changes is a list of pairs, such that the first component is a
future variablex′ and the second component is a reference to the shared domainx′ was
referring to beforex was assigned. When backtracking tox, any reference changes are
restored by traversing the list and updating each variable with the domain it previously
referred to. A restriction induced by this data structure, is that the domains can only be
restored properly, if the variables are unassigned in the same order as they were assigned.

Example 7.3 Suppose a given unassigned variable have multiple neighbors assigned with
IMO-1 containers. The domain of the unassigned variable must not be changed to a do-
main allowing IMO-1 containers until all neighboring assignments with IMO-1 have been
unassigned. As this information is only kept within the firstneighbor, which was assigned
with an IMO-1 container, its domain would be restored incorrectly if the assignment order
for assigned variables is altered.

Since it is expected that changing reference for a variable can be done in constant time,
restoring all domains to a previously domain is expected to beO(|X|).

Making a domain change does not add the domain valuev back to any domains, and con-
sequently does not make it eligible for future variables. The domain value needs to be
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reinserted to any domains, which containedv prior to v was used. Having in mind the
label-domain table described previously, the labelL for v can identify the domainsv needs
to be added to, thus the running can still be kept toO(|U |). The pseudecode for the de-
scribed operation can be found in appendix C.3.

Maintenance of search state

A variable may be attempted to be assigned with several different domain values from its
domain to see if that value will lead to a consistent instantiation. Once a domain value has
proven not to lead to any consistent instantiation, it should not be considered a candidate
value for that variable again. However using shared domainsmakes it not possible just
to remove domain values as the removal of a domain value will be visible for any other
variable which shares the same domain. This issue can be addressed, if the domains can
guarantee a fixed order of the domain values. By using a combination of an order and a
pointer all domain values from the beginning of the order to the pointer can be regarded as
domain values, which has been considered as candidate value, while the rest are eligible
candidate value for instantiation. Initially the pointer for a variablex is pointing to the first
domain value within the ordered list of a domain. For each considered candidate value the
index is incremented. Whenever a backtrack occurs and a previously instantiated variable
x′ needs to consider a new candidate value, the pointer forx is reset to the beginning of the
domain, such that all domain values can be reconsidered forx under the new assignment
of x′.

Figure 7.3:Index pointer to domaind1 of the variablesxi1, xi2, xi3, . . .

Label

Each container, cell, domain, and propagator have a set of characteristics, which collec-
tively are referred to aslabel. A label is implemented as an array of bits in order to support
following operations efficiently:

• Constructing a label

• Elementhood test
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• Testing a label for a specific property

Each property in the label is represented as a sequence of boolean flags and indicates the
presence of following properties: IMO-0, IMO-1, IMO-2, 20-foot container, 40-foot con-
tainer, reefer, non-reefer and air. An additional flag, which marks whether a container is
standard height or highcube, is used as well.

The labels are interpreted differently depending on the type of object, which possesses the
label. For a cell, the label is interpreted as the type of container the cell can accommodate.
For a domain, the label is interpreted as the set of containers the domain consists of. This
gives an easy association between cells and their corresponding domains, as a cell and its
corresponding domain have identical labels.

For a container, the label describes the properties of the given container. To determine
whether a container belongs to a given domain, it must be verified that the properties de-
scribed within the label of the container are also present within the label of the domain.

For the propagators, the label works as an association between propagators and containers,
in a similar way as the label works between domains and containers. A propagator is
scheduled to be run if the label of the propagator has properties, which exist in the label of
the container. As an example,P IMO-1 is scheduled to run propagation for an input variable,
if the IMO-1 property is present within the label of the container, that the input variable is
assigned with.

A propagator prunes the domain of a cell, by altering its label such that a reference to a new
domain is obtained. As an example, theP IMO-1 prunes the domain of the output variables,
by ensuring that the flag for IMO-1 within the label for a givenoutput variable is reset.
Pseudocode forP IMO-1 can be found in appendix C.4.2

Due to the fact that labels are shared amongst different label holders some combinations of
flags are not possible for a specific label holder. For instance, a container is not able to both
be a 20-foot and 40-foot container at the same time, thus onlyone of these two bits can be
set. However, a cell may accommodate both a 20-foot and 40-foot container and therefore
allows both flags to be set at the same time. Still, this does not pose any issue as long as the
label is interpreted correctly.

The space needed for a label is 9 flags or bits and can thereforebe placed within a single
machine word on a 32-bit machine. This makes it possible to support the desired operations
with few instructions.

The bit layout of the label is showed in the left table in example 7.4, while the right table
depicts the legend of each flag.

Example 7.4 Layout for label
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Flags
h highcube
a air
0 IMO-0

Bit: 8 7 6 5 4 3 2 1 0 1 IMO-1
h a 0 1 2 r n t f 2 IMO-2

r reefer
n non-reefer
t 20-foot container
f 40-foot container

In the following, the operations supported by a label are detailed. In order to explain how
the different operations are computed, some notation are introduced: the bitwise AND
operation is denoted as& , the bitwise OR operation is denoted as| and the bitwise NOT
operation is denoted as∼.

Constructing a label

Since the label is a bit array, bits can easily be set or reset to construct labels. For instance,
this is used when a variable needs to retrieve a new shared domain.

Pruning a label
Let p be a label andq be a label identifying properties which should not be part ofp.
Pruning of labelp can be achieved by the following operation:

p & ∼ q

Including properties in a label
Let p be a label andq be a label identifying properties desired to be part ofp. The following
operation includesq in p:

p | q

Elementhood test

The elementhood test checks whether a labelp is contained within another labelq, for
instance if a container is a member of a domain. This is achieved by checking whether all
flags inp are inq. If some of the flags inp are not set inq it means that some property was
not supported byq.

This corresponds to performing a logical AND for each flag andthen check if the flags still
are intact in respect toq. By using this fact, one can support the elementhood operation by
using two instructions (one bitwise AND and one equal instruction).

Let p andq be labels. The following operation returnstrue if p is contained withinq:

(p & q) = q
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Example 7.5 Elementhood test Letu = 001001010 be the label for a 20-foot IMO-0 reefer
container,v = 001000111 be the label of the domain which can contain 20-foot or 40-foot,
IMO-0 and only non-reefer containers. Elementhood test returns false.

Testing a label for a specific property

Testing a label for a specific property is used for example to determine if a container is a
40-foot container. This is achieved by doing following operation:

Let p be a label andq be a label with the properties being tested. The following operation
returnstrue if the properties identified byq are present inp:

(p & q) <> 0

7.2 Representing data

The main data structure used in the pseudocode is a set-like data structure, in the following
referred to as asetarray. Setarrays mimics the behavior of sets known from mathematic
i.e. all elements are distinct, a new set can be constructed by the union of two sets or by
applying the set difference and so forth. The difference is that the elements of the sets are
ordered along the insertion order and thenth element can be accessed by using the postfix
operator [n]. This structure can be implemented by combining a hashtable to maintain the
elements and a linked list to maintain the element order.

In the pseudocode, setarrays are used to represent both the instantiation and the domains:

1. The instantiation~a is a setarray of pairsm = (x, v), wherex ∈ X andv ∈ D(x).

2. The instantiation’s scope,πS(~a), is a setarray of variables.

3. Each domainD(x) is a setarray of containers.

The algorithm for picking a container as a candidate value has been implemented by choos-
ing elements according to some order. The search space will differ depending on the chosen
order among containers. Since complete solutions are desired, the goal is to place domain
values in an order, which maximizes the probability of reaching a complete solution. An
example is to always attempt to place IMO containers first, inorder to ensure that IMO
containers are stowed as close together as possible. Containers in a domain are sorted
based on the label of the container. The idea is that, since the label is an array of bits and
thereby represents a value, the organization of the flags canbe ordered such that the most
important criteria will appear first in the setarray. Given that elements in the setarray are
ordered in an increasing order of their label, the most important criteria within a label must
be placed at the least significant bit position while the second most important criteria is
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placed at the second least significant bit position and so forth. Using the organization of
the bits within a label gives the advantage that sorting based on the label flag can be done
without an additional cost of constructing some value representing the order, as the order
is directly represented. In addition to the label used as a sorting criteria, the discharge port
is added as a second criteria. This can be used, to ensure thatcontainers with an upcoming
discharge port, are stowed in the top of stacks.

7.3 Algorithm

The pseudocode is written with the intention of explaining how the optimal solution can be
found. It is kept at an abstract level, such that language specific details does not clutter the
important details. Details about the actual implementation can be found in the appendix A

Domain management function

The usage of shared domains requires that a domain can be retrieved by the label of the do-
main. A domain functionM is introduced to retrieve a domain based on its label. However,
to avoid introducing a function that extracts the label froma variable, the domain function
maps a variablex, to a domain by the label associated with variablex.

Two additional procedures, REINSERTDOMAIN VALUE and REMOVEDOMAIN VALUE, have
been introduced in order to maintain the shared domains, by inserting or removing a do-
main value for some shared domain respectively. These procedure take a valuev as input
and based on the label associated withv, all shared domains, which can accommodate that
value will be affected. The pseudocode for REINSERTDOMAIN VALUE and REMOVEDO-
MAIN VALUE can be found in appendix C.3.

7.4 Search

The search section is divided into two subsections. The firstpart describes the algorithms
to find a single solution within the search space. The second part presents the algorithm to
find the optimal solution within the search space.

Maintenance of search state

A global arraysearchstate maintains information on how much of the search space has
been traversed. Each elementsearchstate[x] contains the pointer to the domain value it
currently considers as the candidate value, within the domain associated tox for variable
x. The details of maintaining the search state can be found in section 7.1.
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7.4.1 Single solution search

Three backtrack algorithms have been implemented with variation on how the next vari-
able for instantiation is being selected. The similarity ofthese three algorithms has been
extracted into the procedure SINGLESOLUTIONSEARCH and each variation is outlined in
its own procedure. The SINGLESOLUTIONSEARCH is a modification of a standard back-
track algorithm, which can be found in [2].

Given a partial instantiation~a, a costF and a SELECTNEXTVARIABLE function, the algo-
rithm searches in a problem instance, until a solution is found which has better cost than
F , or concludes that no more solutions could be found. Once a complete solution is found,
the algorithm returns the solution found. SELECTNEXTVARIABLE is a variable ordering
function, which sets the strategy on how the next variable should be chosen.

SINGLESOLUTIONSEARCH relies on the following procedures, described in details later:

• SELECTANDASSIGNVALUE

Extends~a with the assignment of a given variablex and carries out propagation to
enforce consistency. A boolean is returned to indicate wether~a could be consistently
extended.

• ESTIMATIONCALC

The estimation calculator maintains the estimators and based on the given partial
instantiation, it returns an estimated cost of any solutionextending it.

SINGLESOLUTIONSEARCH(~a, F, SELECTNEXTVARIABLE )
1 x← SELECTNEXTVARIABLE (~a)
2 while x 6= null ∧ S ⊂ X
3 consistent← SELECTANDASSIGNVALUE (x,~a)
4 if consistent ∧ ESTIMATIONCALC (~a) < F
5 x← SelectNextV ariable(~a)
6 else

7 if S = {}
8 x← null

9 else

10 REINSERTDOMAIN VALUE (v)
11 searchstate[x]← 0
12 x← S[ |S| ]
13 ~a← ~a \ {(x, πx(~a))}
14 return ~a

Figure 7.4:SINGLESOLUTIONSEARCH

The SingleSolutionSearch algorithm, shown in figure 7.4, traverses through the search
space of a problem, using a while loop, which terminates if the selected variable isnull, or
if the instantiation is no longer partial.
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The algorithm uses the boolean returned by SELECTANDASSIGNVALUE in line 3, to deter-
mine whether the selected value was consistent. If the valueis consistent and the estimated
cost is below the costF , the search proceeds to the next variable on line 5. Otherwise,
the algorithm attempts to perform a backtrack. Line 7 checkswhether the instantiation is
empty. If this is the case, it means that the no solution has been found, and line 8 setsx to
null in order to end the while loop. Otherwise a backtrack is performed in lines 10-13. The
algorithm returns either a complete or an empty instantiation on line 14.

Select and Assign Value

Given a variablex and a partial instantiation~a, the procedure SELECTANDASSIGNVALUE

attempts to assignx in ~a. The exhaustedvariable signals if~a cannot lead to a solution
when extended with an assignment ofx. Initially exhaustedis set totrue. The while loop
in lines 2-10 attempts to find a consistent candidate value for x. It runs until either the
domain forx is exhausted or a valid candidate value forx is found. In line 3, the domain
m is retrieved from the domain managerM, based on the label associated with variablex
and a candidate valuev is chosen fromm as thesearchstate[x]th element in line 4. The
assignment is added to~a in line 5 and the pointer forsearchstate[x] is incremented in line
6. Line 7 runs the propagators, to check if the assignment causes the domain for any future
variable to get exhausted. Lines 9-10 remove the assignmentfor x in case a future domain
is exhausted. Lines 11-14 return whether the assignment ofx can lead to a solution. It
should be noted that the valuev does not need to be removed from the domains since it will
be removed whenPu is applied.

The pseudocode for SELECTANDASSIGNVALUE is shown in figure 7.5.

SELECTANDASSIGNVALUE (x, ~a)
1 exhausted← true

2 while |M(x)| ≤ searchstate[x] ∧ exhausted
3 m←M(x)
4 v ← m[searchstate[x]]
5 ~a← ~a ∪ {(x, v)}
6 searchstate[x]← searchstate[x] + 1
7 exhausted← RUNPROPAGATORS(~a)
8 if exhausted
9 REINSERTDOMAIN VALUE (v)
10 ~a← ~a \ {(x, v)}
11 if exhausted
12 return false

13 else

14 return true

Figure 7.5:The SELECTANDASSIGNVALUE algorithm
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Variable ordering heuristics

Different parts of the backtrack algorithms can be changed in order to improve the search.
This report focuses on heuristics, which select a good variable ordering. The variable
ordering strategies, which are chosen are: Smallest domainfirst, static order bottom-up
and minimum overstow. Each of these ordering functions can be used as the SELECT-
NEXTVARIABLE function used by the procedure SINGLESOLUTIONSEARCH.

DVFC

This variable ordering selects the variable with the smallest domain, as the next variable
to be instantiated. It is motivated by the fact that all otherthings being equal, the variable
with the smallest domain will have the smallest number of subtrees. Combined with the
SINGLESOLUTIONSEARCH this variable ordering heuristic is the DVFC described in [2].

Figure 7.6 shows the pseudocode for the selecting the next variable by using the DVFC
heuristic.

SELECTVARIABLE DVFC(~a)
1 if |S| = |X|
2 return null

3 U ← X \ S
4 j ← 1
5 for i← 2 to |U |
6 if |M(U [i])| < |M(U [j])|
7 j ← i
8 return U [j]

Figure 7.6:The SELECTVARIABLE DVFC algorithm

Static order bottom-up

This approach relies on the Forward Checking approach described by [2]. The algorithm is
motivated by the fact that overstows should be avoided. Knowing that the containers in a
domain are ordered by label and discharge port, the idea is toassign variables in a bottom
up approach on each stack, in an attempt to naturally minimize overstows. SELECTVARI-
ABLEBOTTOMUP implements the variable order such that it looks for the firstavailable
variable in a bottom up fashion for each stack. This variableordering heuristic is also re-
ferred to as static order bottom-up. The pseudocode for SELECTVARIABLE BOTTOMUP is
shown in figure 7.7.

Minimum overstow

This variable ordering heuristic focuses on minimizing overstowage. The idea behind this
technique is to find the variable, which is estimated to give the least amount of overstow, if
assigned with the first domain value from the set of all available domain values, maintained
in a sorted order on label and discharge port. Using the minimum cost matching algorithm,
the optimal stowage can be obtained for a partial instantiation and the variable matched
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SELECTVARIABLE BOTTOMUP(~a)
1 for j ← 1 to sc // iterating through stacks
2 for l ← 1 to |L| // iterating through cells
3 for i← 1 to tcj // iterating through tiers
4 if xl

i,j /∈ ~a
5 return xl

i,j

5 return null

Figure 7.7:The SELECTVARIABLE BOTTOMUP algorithm

with the first domain value can be easily retrieved.

The following procedures are introduced to ease the description of the SELECTVARI-
ABLEOVERSTOW procedure.

• REPRESENTATIONCOST computes the weights of the edges as described under ”How
to calculatehov?” in section 6. The pseudocode is listed in appendix C.

• M INCOSTMATCH solves a minimum cost matching problem given as parameter. It
returns the matching as a set of edges, where an edge(c, x) represents the matching
between a containerc and a cellx. A description on how to solve the minimum cost
matching problem is in Chapter 5 of [6].

• FIRST returns the first endpoint of an edge.

• SECOND returns the second endpoint of an edge.

An example of a graph returned by MINCOSTMATCHGRAPH is shown in figure 7.8.

Figure 7.9 lists the pseudocode of the SELECTVARIABLE OVERSTOW procedure. Lines
1-3 initialize the set of unassigned variables, the set of containers yet to be placed and
the weights for the minimum cost matching graph. The minimumcost matching graph is
computed in line 4. Lines 5-7 search for the variable matchedwith the first container to
be placed. In case the first container is not matched to a variable, null is returned. This
situation occurs, when the overstowage estimation discovers that the current instantiation
cannot be extended to a solution.

7.4.2 Depth First Branch and Bound

The implementation of depth first branch and bound, BRANCH&B OUND, relies on two
backtrack algorithms, INITIAL SEARCH and MAIN SEARCH, given as input besides an empty
instantiation~a. This technique opens the possibility of giving an optimized diving heuristic
as the initial search algorithm that finds the first solution.This algorithm may be special-
ized in finding a very good solution, but may be too slow to traverse the entire problem in
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Figure 7.8: DivingOverstowSearch graph returned by MINCOSTMATCHGRAPH.
The graph shows a sample query, imagining thatd1 is the first domain value in the
domain. The graph shows that the variable to be instantiatedwith d1, in order to
create the least amount of overstow isx3.

SELECTVARIABLE OVERSTOW(~a)
1 U ← X \ S
2 CU ← C \ πS(~a)
3 w ← REPRESENTATIONCOST(CU , U,~a)
4 M ← M INCOSTMATCH(CU , U, w)
5 foreach e ∈M
6 if FIRST(e) = CU [1]
7 return SECOND(e)
8 return null

Figure 7.9: SELECTVARIABLE OVERSTOW

general. For this reason, the second algorithm would typically be specialized in traversing
the search space fast to discover the remaining solutions.

The pseudo code is shown in figure 7.10. BRANCH&B OUND searches for the initial so-
lution by using the procedure given as INITIAL SEARCH. If a solutionis found, a better
solution is searched by using the procedure given as the MAIN SEARCH. The algorithm
maintains the variablesF ∗ and Best for respectively the best cost and the best solution
found so far. Line 3 invokes the initial search. In case an initial solution is found, lines
5 - 13 iteratively search for a new solution. The solution is evaluated in line 6 and if the
solution is an improvement, lines 7-9 update the best solution found so far. Lines 10-12
retrieve the last assigned variable and remove its assignment, to allow MAIN SEARCH to
continue traversing the search space. BRANCH&B OUND returns the best found solution in
line 14.
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BRANCH&B OUND(INITIAL SEARCH, MAIN SEARCH, ~a)
1 F ∗ ←∞
2 Best← null

3 Sol← INITIAL SEARCH(~a, F ∗)
4 if Sol 6= null // A solution was found
5 while Sol 6= null

6 F ← EVALUATION CALC (Sol)
7 if F < F ∗

8 Best← Sol
9 F ∗ ← F
10 x← S[ |S| ] // Unassign the last instantiated variable
11 REINSERTDOMAIN VALUE (π{x}(~a))
12 ~a← ~a \ {(x, π{x}(~a))}
13 Sol← MAIN SEARCH(Sol, F ∗)
14 return Best

Figure 7.10:The Branch & Bound algorithm

Propagation engine

When a variable is assigned, propagation is performed by theprocedure RUNPROPAGATORS,
which is the propagation engine in the application. The mainpart of the propagation en-
gine is to iterate through a list of propagators and apply each propagator in turn. A naive
approach has one list, which the engine iterates through causing all propagators to be sched-
uled both in the best and the worst case. An improved approachover the naive implemen-
tation is to use a hashtable, which uses the labelL of a container as key and the associated
value is a list of propagators, which should be executed forL, ensuring that only the prop-
agators necessary forL are executed.

Evaluation calculator

The cost of a solution is computed by the procedure EVALUATION CALC, which takes a
solution as an argument. The procedure sums over a predefinedset of evaluation functions.
Each result from the evaluation function is multiplied withsome weight.

OVERSTOW(~a) and WASTEDSPACE(~a) are detailed in appendixC.1.

Estimation calculator

The estimation of a partial solution is carried out by the procedure ESTIMATIONCALC. The
procedure takes a partial instantiation as input and sums over a predefined set of estimator
functions. Each result from the estimation function is multiplied with a weight, predefined
according to relevance.
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procedure EVALUATION CALC (~a)
1 return Wov ∗ OVERSTOW(~a)

+ Wws ∗WASTEDSPACE(~a)
+ Wes ∗ EMPTYSTACK(~a)
+ Wr ∗ REEFER(~a)

Figure 7.11:Cost evaluation for~a.

procedure ESTIMATIONCALC (~a)
1 return Wov ∗ ESTIMATEOVERSTOW(~a)

+ Wws ∗ ESTIMATEWASTEDSPACE(~a)
+ Wes ∗ ESTIMATEEMPTYSTACK(~a)
+ Wr ∗ ESTIMATEREEFER(~a)

Figure 7.12:Cost estimation for~a.

ESTIMATEOVERSTOW(~a) and ESTIMATEWASTEDSPACE(~a) are detailed in appendixC.2.
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Chapter 8

Experiments

This chapter describes the experiments, which were conducted to investigate the perfor-
mance of the implementation and being able to identify characteristic, which could be
decisive for the performance. The section begins by describing the test components avail-
able for experimentation and an explanation of what is measured. Then experiments are
performed to investigate various aspect of the implementation. Each experimental section
is build up with a motivation for the experiment. The test setup follows with a conclusion
of the result. This chapter shows a method to compute the upper bound the search space.
In addition a technique for avoid excessive estimation is being investigated. In addition a
method to measure the quality of alternative heuristics is also being provided.

8.1 Test components

This section presents the individual parts, which are used to conduct the experiments. The
presentation begins with the test data, then propagators and early termination criteria are
described. The various search algorithms are then presented and the section concludes with
a description of what is to be measured.

8.1.1 Test data

For testing purposes the structural layout of a vessel has been generated in order to simulate
a realistic size vessel. The vessel will be referred to asVESSEL-1. The vessel is divided
into 18 bays numbered from 0 to 17. The widest bay is eighteen stacks wide and the thirteen
tiers deep below deck at the deepest level. In addition, a stowage plan forVESSEL-1 has
been generated. However it soon proved that we were not able to solve the SASP within
reasonable time and therefore an alternative had to be considered.

A smaller vessel,VESSEL-2, has therefore been constructed such that the properties of
the bays varies from one another in order to ensure differentaspects can be examined.
Furthermore, it is also required that the bays could be solved within a reasonable amount
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of time. Table 8.1 summarize the most important properties of the bays inVESSEL-2. The
two first columns show the dimensions of each bay. The third column shows how many
cells are available for placing a container. The fourth and fifth column shows the number
of 20-foot and 40-foot container, and the last column shows how many different discharge
ports are there for the containers to be loaded.

Tiers Stacks Available 20-foot 40-foot Number of
cells discharge ports

Bay V 2 2 7 3 1 2
Bay S 5 3 22 5 5 2
Bay B 5 3 25 8 7 6
Bay A 5 4 33 4 10 6

Table 8.1: Vessel data forVESSEL-2

Propagators and early termination criteria

The constraints of SASP are represented by propagators and early termination criterions,
which are described in details in section 5.4 and 5.5 respectively. A standard set of propa-
gators are defined to ensure that the constraints of SASP is respected. The standard set is
defined in table 8.2.

Table 8.2: standard propagator sets
PRS1 {Pu,Pg,Pa,P IMO-1,P IMO-2,P40-20,P20-40,P40-40,P20-20,Pa-s}

No aspects in relation to early termination criteria was considered and therefore all early
termination criterions are used for all experiments.

8.1.2 Search

The purpose of the experiments is to reason about the search space and see how efficient the
implemented search algorithms are. The efficiency of the search algorithm can be examined
on two aspects: ”How fast can a single solution be found?” and”How fast can the entire
search space be traversed?” This section begins with an explanation on how to quantify the
search space followed by a presentation of the different algorithms to find a single solution.
The search section is concluded with a presentation of the branch and bound variant used
in the experimentation.

Bounding search space

The upper bound of the search space gives an idea of how vast the search space is. Having
an upper bound, makes it possible to reason about how much of the search space gets
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pruned away when using different heuristics. Throughout the experiments the common
measure is the number of iterations. This corresponds to thenumber of nodes visited in the
search space and can be compared to the theoretical upper bound.

As described in section 2.2, the search space is shaped as a tree where each node represents
an assignment of some variablex and branches represents the candidate values forx. One
possible way to bound the number of complete instantiationsof the tree for SASP is to let
the air value be unique, such that the number of possible candidate values always will be the
number of available cells. The number of solutions can then be calculated by the number
of unique orderings of the candidate values including the unique air values. The number of
complete assignments for the cell-model is therefore upperbounded byO(|X|!). However
the bound is quite weak, since air is not unique and thereforebranches, where air has been
considered for a variable should be considered as being the same subtree. A tighter bound
can be derived by following consideration. Havingi cells andj containers we assume three
cases:

1. having exactly enough slots to place all containers

2. more slots available but no more containers to be placed

3. more slots available than containers to be placed.

For convenience the case where there are more containers than slots is not being considered.

In the case where there are enough slots to place all containers the number of possibilities
for placing all containers will be a simple permutation. When there are no more containers
to be placed, only one possibility is left, which is to fill therest of the slots with air. In the
case, where slots exceeds the number of containers, one has the choice to either choose to
place a container or air. For each choice a subtree can be constructed with the remainding
possibilities. If a container has been chosen a subtree withj − 1 container has to be placed
within i − 1 slots, while chosen air to be placed creates a subtree withj containers to be
placedi− 1 slots. This leads to following recursive function:

Let i be the number of cells, letj be the number of containers.ψ(i, j) gives the number of
complete assignments.

ψP (i, j) =







j! j = i
1 j = 0
j(ψP (i− 1, j − 1)) + ψP (i− 1, j) otherwise

The number of nodes in the search tree can be counted by using similar argumentation and
results in the following function:

ψ′(i, j) =







1 +
∑j

k=1

∏j
l=k l j = i

i j = 0
j + 1 + j(ψ′(i− 1, j − 1)) + ψ′(i− 1, j) otherwise
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The functionψ′ computes the number of nodes a subtree excluding the root. The base
casei = j represents the number of nodes wherej containers have to placed withini
cells. The tree isi + 1 high and havej! paths. From the root the number of containers
available for selection isj, which results inj new nodes. At the next level all nodes will
have the possibility to choose betweenj−1 containers, which result inj(j−1) new nodes.
Extending this argument the number of nodes at levelk is the product fromj down tok i.e.
∏j

l=k. The sum of the nodes in the entire tree will therefore be the root node in addition to
the sum of nodes at each level in the tree. In the case where there are no more containers
left to be placed the remaining cells will be placed with air thus there will bei nodes left.
In the recursive case eitherj containers or air can be placed a cell, which results inj + 1
possibilities for each cell. Placing a container in a cell results inj subtrees with one less
container to be placed in one less slot i.e.ψ′(i− 1, j − 1). Placing an air container results
in a subtree where one less slot can be used i.e.ψ′(i− 1, j).

ψN (i, j) = 1 + ψ′(i, j)

The functionψN computes the number of nodes in a subtree including the root.

For some of the bays it was possible to traverse the entire search space and thereby count
the number of solutions. Table 8.3 show the number of solutions and the number of how
consistent solutions and the percentage.

Table 8.3: Solutions
Bay Candidate solutions Complete instantiations Percentage
Bay S 336 3,160,080 1.06E-04
Bay B 2880 870,072,320 3.31E-06
Bay A 23040 150,994,944 1.53E-04

Searching for a single solution

Different heuristics have been considered in order to improve the efficiency of the backtrack
algorithms. The variants used in this report are all based onvariable ordering as described
in section 7.4.1. The variants of the backtrack algorithms used in this report can be found
in table 8.4.

Table 8.4: Single solution varieties
Name Select variable procedure
DVFC : SELECTVARIABLE DVFC
Forward checking : SELECTVARIABLE BOTTOMUP

Overstow : SELECTVARIABLE OVERSTOW
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Traversal of the search space

The implemented branch and bound applies the diving heuristic by take two algorithms as
input: One which is efficient for finding a good solution the other for efficiently traversing
the search space. When performing experiments related to traversal of the search space the
DVFC is used as the initial search algorithm and as the main search.

8.1.3 Measurements criteria

After an experiment has been executed data is being gatheredgathered and analyzed. De-
pending on what is required to be examined, the measurement is based on one or more of
the following criterions:

• Number of iterations
In a search an iteration is a step for extending a consistent partial instantiation to
another consistent partial instantiation by one variable.The unit is defined to be de-
fined as one variable. Some propagators have been enhance to automatically assigned
a variable when there is only a single domain value left to consider, however these
are not considered as an iteration step.

• Number of backtracks
In search the number of backtrack is defined as the number of times some variable
is being reconsidered for another value after it has been assigned to a domain value,
which were consistent. One unit is defined for each time a backtrack is enforced by
an inconsistent assignment.

• Duration
The duration describes the time used to perform the experiment. The unit is milisec-
onds or seconds.

• Estimation backtracks
An estimation backtrack refers to a partial solution, for which the estimated cost is
higher than the current best cost. This results in a backtrack, which is not inferred
from a domain exhaustion, but due to the estimators. The unitis defined each time
an estimator forces a backtrack.

8.2 Propagator improvements

Although the initial developed propagators modeled the constraints in SASP, the amount
of pruning was not sufficient. Several measures have been done to strengthen the pruning
power of propagators. One heuristic is to assign containersto cell immediately, when
there is only one value left to be selected. The propagators,that could be improved by this
heuristic, arePa andP40-40, which are denoted asP ′a andP ′40-40 respectively. Furthermore
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a weight propagatorPa-w was implement as well, which is described in more details in
section 5.4.

8.2.1 Searching for a single solution

The motivation for doing a single solution test is to examineif the improvement of the new
propagators has any effect, when searching for a single solution in the search space. The
setup can be seen in table 8.5. The bays chosen has been based whether a solution could be
found within reasonable time.

Table 8.5:Setup for finding a single solution using different propagators
Search algorithm : DVFC
Problem instance : Bay V, Bay S, Bay B, Bay A, Bay 0,

Bay 1, Bay 2, Bay 6, Bay 16
Propagators : Pu,Pg,Pa,P IMO-1,P IMO-2,P40-20,P20-40,

P40-40,P20-20,Pa-s,Pa-w,P ′a,P ′40-40

Measurement : Iteration, Backtrack

Three new sets of propagators has been constructed, which are shown in the table 8.6.PRS2
is the set, which replaces the propagatorsPa andP40-40 with the improved propagatorsP ′a

andP ′40-40. PRS3andPRS4are the setsPRS1andPRS2respectively with an additional
propagatorPa-w.

Table 8.6: propagator sets
PRS2 {Pu,Pg,P ′a,P IMO-1,P IMO-2,P40-20,P20-40,P ′40-40,P20-20,Pa-s}
PRS3 PRS1 ∪ {Pa-w}
PRS4 PRS2 ∪ {Pa-w}

Conclusion on finding a single solution

The results are shown in table 8.7. As the table shows setPRS2yields a lower amount of
iterations, but has a higher amount of backtracks compared to PRS1. This is to be expected,
as immediately assigning variable avoids instantiating through select value calls, but does
not avoid backtracks if the assignment triggering instant assignments is invalid.

SetPRS3shows no improvement overPRS1, when searching for a single solution. This
could be explained by the low amount of iterations.
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PRS1 PRS2 PRS3 PRS4
Bay A
Iterations 9659 7219 9659 7217
Backtracks 4813 4517 4813 4517
Bay B
Iterations 213 159 213 159
Backtracks 94 92 94 92
Bay S
Iterations 28 15 28 15
Backtracks 0 0 0 0
Bay V
Iterations 7 7 7 7
Backtracks 0 0 0 0
Bay 0
Iterations 22 13 22 13
Backtracks 0 0 0 0
Bay 1
Iterations 53 30 53 30
Backtracks 1 0 1 0
Bay 2
Iterations 80 46 80 46
Backtracks 0 0 0 0
Bay 6
Iterations 172 46 172 46
Backtracks 0 0 0 0
Bay 16
Iterations 89 53 89 53
Backtracks 9 9 9 9

Table 8.7:Result of Single solution search with propagator sets. Bolded entries are
the best for entry for each bay.

8.2.2 Traversal of the search space

Since searching for a single solution did not show any improvements, it was considered,
whether it was due to the fact that the number of iterations were too small. As an alternative
an additional test has been setup to investigate if that had been the case. In order not to
prune any solutions away, the branch and bound was carried out without using estimations.
The bays onVESSEL-1 were too large to to be able to complete and consequently it was
only bays fromVESSEL-2, which was subjected to experiments. The test setup is shown
in table 8.8. A description of the sets of propagators used for the experiment can be found
in table 8.6.
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Table 8.8: Test setup
Search algorithm : Branch & Bound
Estimators : -
Problem instance : Bay V, Bay S, Bay B, Bay A
Propagators : Pu,Pg,Pa,P IMO-1,P IMO-2,P40-20,P20-40,

P40-40,P20-20,Pa-s,Pa-w,P ′a,P ′40-40

Measurement : Iteration, Backtrack

Conclusion of the traversal of the search space

Shown in table 8.9 is the result of iterations and backtracksmade, when using the propa-
gator set on each problem. The table shows that setPRS2does not always perform better
thanPRS1, which can be interpreted as the improvements is weak compared to simply just
evaluating whether the current weight of the stack exceeds the maximum allowed weight.
This is to be expected, as the improvement cannot trigger backtracks, unless the weight
for the containers placed in the stack is close to the maximumweight of the stack.PRS4
has the most bolded entries, showing that the best propagator set is the set containing all
improved propagators.

PRS1 PRS2 PRS3 PRS4
Bay V
Iterations 351 339 351 339
Backtracks 146 146 146 146
Bay S
Iterations 96,111 76,503 85,983 71,751
Backtracks 47,816 46,744 42,824 43,624
Bay B
Iterations 105,403 82,917 86,779 69,525
Backtracks 50,590 50,046 41,950 41,246
Bay A
Iterations 10,023,317 7,932,603 10,023,317 7,932,603
Backtracks 5,000,139 4,881,829 5,000,139 4,881,829

Table 8.9:Result of branch and bound with propagator sets. Bolded entries are the
best for entry for each bay.
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Figure 8.1:A histogram of the two propagator setsPRS1andPRS4for a range of
different bays. Each column in the diagram shows the number of iterations for each
propagator set on a given problem.

Figure 8.1 shows that the setsPRS1andPRS4follow each other very closely, showing that
the improvement is merely by a constant factor. This is to be expected, as the pruning per-
formed byPRS4, mainly concerns skipping iterations, by immediately assigning variables
when possible. Although the problem size of some problems are indicated to be smaller,
the amount of iterations spent before finding a solution varies. This shows that although
the problem is smaller, the initial solution is not always present early in the search space.

8.3 Estimators

8.3.1 Traversal of the search space

Experimentation with the estimators focuses on how different variations of estimators would
affect the search. Another interesting observation is to investigate how early the estimators
are able to backtrack in order to reason how much the underestimation is. The estimators is
based on the four objectivesOE1-OE4 defined in SASP, which are detailed in section 3.2.

For each objective, a weight is provided to express the impact of violating one of the ob-
jectives. The weight is expressed in terms of dollars and aremeant to show the economical
impact, when not satisfying a given objective. The providedweights are shown in table
8.10.

The test setup is shown in table 8.11. The sets of estimator combinations are shown in table
8.12. It should be noted that the implementation ofhes andhws has been merged into one
for efficiency and therefore only eight instead of 16 sets have been constructed.
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Table 8.10: Weights
Overstow Wov = 200
Wasted spaceWws = 100
Reefer Wr = 50
Empty stack Wes = 200

Table 8.11: Setup for estimation
Search algorithm : DVFC
Estimators : hov, hr, hes, hws

Problem instance : Bay S, Bay B, Bay A
Propagators : PRS1
Measurement : Iteration, Duration, Estimation backtrack

Conclusion for traversal of the search space for estimationimprovements

The result of the test execution is shown in table 8.13 with the different estimator setups
given in each column. An initial test run are given in the firstcolumn, where the algorithm
are run without using estimators. As shown in the table, the implemented estimators does
not always yield a better cost, compared to not using any estimation at all. Especially the
overstow estimator, when running alone, which uses very little time on the first two bays,
but suddenly jumps to use the most time among all the estimators when run on Bay S,
surpassing even the approach of not running estimators.

The reason for this is that the containers to be loaded in Bay Shave almost no variation
on their discharge port, which makes the overstow estimatormerely as extra workload.
This affects all the estimator setups that the overstow estimator is part of for Bay S, which
shows that the overstow estimator furthermore is dominant on the time it uses on each
iteration. From this it can be concluded that although the estimation techniques allows to
skip solutions, the extra work they infer does not necessarypay off.

8.4 Lazy Estimation

8.4.1 Traversal of the search space

A partial solution might be too small for the estimators to calculate a cost, which is close to
any solution that can be extended from it. For that reason, ifestimation is started too early,
it might introduce a substantial overhead. To avoid this, the idea oflazy estimationis in-
troduced, which refers to avoiding of estimation, until a certain percentage of the variables
in a given problem instance are assigned. The motivation is to examine whether it lazy
estimation is beneficial. Setup for lazy estimation can be found in table 8.14. The chosen
bays are those that are able to find a solution within reasonable time for this experiment.
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Table 8.12: Estimator sets
ERS1 : -
ERS2 : hes, hws

ERS3 : hov

ERS4 : hr

ERS5 : hr, hov

ERS6 : hov, hes, hws

ERS7 : hr, hes, hws

ERS8 : hr, hov, hes, cws

ERS1 ERS2 ERS3 ERS4 ERS5 ERS6 ERS7 ERS8

Bay B
Iterations 69,525 714 512 35,168 8,038 512 35,168 8,062
Duration 2,750.018 109.376 203.126 1,546.885 2,843.768 125.001 2,171.889 3,046.895
Estimation
Backtracks 0 165 35 5,056 1,266 35 5,056 1,266

Bay A
Duration 7,932,603 98,769 274,214 3,167,664 401,881 259,022 2,823,876 476,231
Time spent 305,970.708 7,484.423 112,828.847 153,672.859 158,766.641 116,188.244 199,829.404 201,729.166
Estimation
Backtracks 0 22,389 43,397 375,678 57,586 40,191 359,922 62,735

Bay S
Iterations 7,1751 42,074 27,782 56,808 42,504 32,196 61,308 42,281
Duration 2,687.517 2,156.264 7,078.170 2,593.767 9,937.564 8,578.180 3,671.899 10,747.179
Estimation
Backtracks 0 2,661 1,600 5,399 2,493 2,018 1,266 2,357

Table 8.13:Estimation setup results

The experiments for lazy estimation is being performed by performing lazy estimation
ranging from starting estimation when 100% of the variableshas been assigned to 0% when
no variable has been assigned. It should be noted that havingset the threshold to 100%
implies that estimations is never carried out, 45% implies that estimation is only performed
for partial instantiations were more than 45% of the variables have been assigned and 0%
indicates the estimation is performed for any partial instantiation.

When comparing two setups, where one is using a lazy estimation percent greater than
zero, and the other is performing estimation all the time, the setup using lazy estimation
will always use at least as many or more iterations as the other setup, since it will at most
be able to perform estimation backtracks as often as when performing estimation for all
partial instantiations. For this reason, the only criteriafor comparison that remains is the
time spent, for each of the two setups.

Line 4 in SINGLESOLUTIONSEARCH needs to be modified to incorporate lazy estimation
for a threshold oflz which are shown in figure 8.2
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Table 8.14: Test setup
Search algorithm : Branch & Bound
Estimators : hov, hr, hes, hws

Problem instance : Bay S, Bay B, Bay A
Propagators : PRS1
Range(%) : 0 - 100
Measurement : Duration

4 if consistent ∧ ( |S|
|X|
≥ lz ∨ ESTIMATIONCALC (~a) < C)

Figure 8.2:INCORPORATION LAZY ESTIMATION IN SINGLESOLUTIONSEARCH

Conclusion of traversing the search space for lazy estimation

Shown in figure 8.3 is test results for lazy estimation for BayA. The initial bump in the
graph is the time taken for the estimator setups involving the estimation for overstow. This
shows that the estimators are actually started too late and that the time spent on calculating
the estimated cost is slower than simply searching without estimators in the remaining
subtree of that partial solution. As estimation is allowed with less assigned variables, the
time taken decreases until a lazy percent 45%, after which increasing the lazy percent
does not have any effect on the time taken. As the time for traversing the problem with
zero percent for lazy estimation is equal to the lowest time,it can be concluded that lazy
estimation does not pay off for this problem instance.

As figure 8.4 showsERS2andERS3performs the best for Bay B, once the lazy estimation
percent is below 55%. Combined with the results from the previous graph, this suggest that
these estimators actually perform the best when started early with a decreasing performance
as the lazy estimation percentage increases.

ERS8 performs almost as bad as not using estimators (100% lazy percent), regardless of
the lazy estimation percentage. This shows that although some of the estimators, when
tested alone performs well, their performance is penalizedif combined with an estimator
performing poorly for a given problem instance.

In figure 8.5 for the final problem instance,ERS8performs worse than not running estima-
tors at all at 100% lazy estimation.
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Figure 8.3: Result

Figure 8.4: Result
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Figure 8.5: Result
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This could explain the reason for why the overstow estimatorworks poorly as the estimator
may estimate a very low cost until a container with high discharge port is assigned to a cell
late in the search space.

8.5 Approximation

8.5.1 Traversal of the search space

The branch and bound algorithm can easily be made into an approximation algorithm,
by adding a percentage to the cost calculated by the estimators. The motivation for this
experiment is to investigate how approximating the estimated cost of a partial instantiation
would affect the performance of the search at the expense of optimality.

Line 4 in SINGLESOLUTIONSEARCH needs to be modified to incorporate approximationδ
which are shown in figure 8.6

4 if consistent ∧ (1 + δ) ∗ ESTIMATIONCALC (~a) < C

Figure 8.6:Incorporation of approximation in SINGLESOLUTIONSEARCH

Using this modification, the goal is to find solution close to the optimal in significantly less
time, compared to when searching for the optimal one. The setup for experimentation is
shown in table 8.15. The chosen bays are the ones, which a solution could be found in
reasonable time.

Table 8.15: Test setup for branch and bound approximation
Search algorithm : Branch & Bound
Estimators : hov, hr, hes, hws

Problem instance : Bay S, Bay B, Bay A
Propagators : PRS1
Range(%) : 0 - 50
Measurement : Iteration, Estimation backtrack

Figure 8.7 shows the results from approximating with an approximation percent ranging
from 50-0% on the x-axis and the number of estimation backtracks on the y-axis. Red dots
on each line marks when the best found solution is improved.

The number of estimation backtracks used grows steadily in respect to the approximation
percent, unless the best found solution is improved. From less estimation backtracks it
can be inferred that larger branches of the search space is cut away, which, as expected,
shows that approximating the estimated cost enables the algorithm to backtrack sooner in
the search space. Once the best found solution is updated, the graph shows a drastic drop
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in the number of estimation backtracks performed. This is tobe expected, as the estimators
will have better terms for triggering a backtrack if the costof the best found solution is
lower. This in turn affects approximating the estimated cost as well.

When approximating by a certain percentage, it is indirectly given that the best solution will
be improved in leaps by at least a percentage equal to the approximation percent. Although
the chosen problem instances hold many candidate solutions, the graph appears to show
very few improvements to the best found solution. While thispartially can be blamed on
the approximation percentage, it can also be argued that theamount of improvements to the
best found solution is low, if the solutions initially foundare good.

It can be observed for Bay B, the solution initially found never improves regardless of the
approximation percent, which indicate that the solution initially found is the optimal one.

Figure 8.7:Approximating the estimated results from 50-0%, showing the number
of estimation backtracks used for three different bays.

Extracted from the approximation tests, Figure 8.8 show thenumber of iteration for the
same problem and the same range as the previous graph. Comparing the two graphs, shows
a close correspondence between the measured estimation backtracks and the number of
iterations used. From this, it can be concluded that the amount of time used has a close
correspondence to the approximation percentage and the best found solution in the problem.
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Figure 8.8:Approximating the estimated results from 50-0%, showing the number
of iterations used for three different bays.

Conclusion on traversal of search space when using approximation

Based on the test data on which approximation is performed, it can be concluded that
approximation has a strong potential, in that the best solution is found even with a high
approximation percentage. The amount of test bays on which approximation is performed
is however very few and to properly verify the results, a moreextensive number of bays is
required to be tested. Due to time restrictions, this has however been left as future work.

8.6 Variable ordering

8.6.1 Searching for a single solution

Different variable ordering heuristics has been considered in order to improve the efficiency
of finding the initial solution. Three different algorithmshas been created for that purpose
and a further description can be found in section 8.4. The motivation for this experiment is
to measure, whether any of the variable ordering heuristicsare beneficial, as the intention
with finding an initially better solution is to decrease the total search space.

The other components in the experiment can be found in table 8.16.

93



Table 8.16: Setup for variable ordering
Search algorithm : DVFC, Forward Checking, Overstow
Estimators : hov, hr, hes, hws

Problem instance : VESSEL-2, Bay0
Propagators : PRS1
Measurement : Cost, Iteration

Conclusion

The diagram in figure 8.9 shows the cost of the initially foundsolution for four different
bays, when using Forward Checking, DVFC or Overstow as variable ordering. Giving the
best cost for all bays except Bay A is forward checking. DVFC and Overstow gives an al-
most equally good cost, which indicates that the extra work made by the overstow heuristic
does not pay off.

Figure 8.9:Cost of the initial solution found on four different bays

Figure 8.10 shows the number of iterations taken for each of the algorithms for traversing
the entire search space in the three different bays. Holdinga slight advantage in all bays
except for Bay A is the Forward Checking. A reason why the forward checking performs
badly on Bay A could involve the fact that the initially foundsolution has a high cost, as
can be seen in the diagram above. Overstow diving does not yield less iterations for each
problem compared to using DVFC, from which it together with the results from figure 8.9,
can be concluded that this heuristic does not work.

Table 8.17 shows the cost of the initial solution found, whenusing different variable order-
ing heuristics and the cost is compared to the optimal solution for each bay inVESSEL-2.
The intention is to show the diversion between the optimal solution and the solution found
by using a particular variable ordering. A small differenceshows that the given variable
ordering found a solution with a cost close to the optimal.
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Figure 8.10:Measuring the iterations used before finding the initial solution on
three different bays, using forward checking, DVFC and Overstow as diving heuristic

Shown below is the number of iterations used for the four different bays for the different
diving heuristic setups in the branch and bound algorithm. As can be seen in the table,
none of the diving heuristics finds a solution with a cost closer than 41% to the optimal
cost, showing that none of the diving heuristics is capable of finding a solution reasonable
close to the optimal one.

Diving cost Distance in % to the optimal solution
DVFC Forward Checking Overstow OptimalDVFC Forward Checking Overstow

Bay A 2350 1950 2750 1150 51 41 58
Bay B 2150 1350 1950 750 65 44 62
Bay S 2250 2250 2250 2250 0 0 0
Bay V 550 550 550 550 0 0 0

Table 8.17:Diving heuristic evaluation table

8.7 Profiling

A performance analysis has been made of the implementation,in an attempt to identify
which parts of the program that is the best candidates for optimization. A profiling tool
has been used to gather the data and shows a percentage of processing time used by the
different components which the program consist of. The results of the analysis is intended
as a basis for future improvement of the processing time. Thesetup can be found in table
8.18.

Conclusion on profiling

Figure 8.11 shows an overview of the time used by various parts of the program. Taking
the most time by far is the estimators with over 80% of the total processing time this makes
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Table 8.18: Test setup
Search algorithm : Branch & Bound
Estimators : hov, hr, hes, hws

Problem instance : Bay B
Propagators : PRS1
Measurement : Processing time

the component the best candidate for further optimization.

Figure 8.11:Profiling run on all program components

The figure 8.12 diagram focuses on the estimator component, with the aim to identify which
estimators that takes the most processing time. Taking morethan 80% of all processing
time in the estimator component, the overstow estimator is shown as the best candidate for
optimization.

Although the time spent by the overstow estimator is huge, the estimator is also one of the
strongest, capable of inferring estimation backtracks at an early stage of a given instan-
tiation. As the algorithm for implementing overstow, is most likely the one causing the
overhead, serious considerations should be made before replacing it an alternative imple-
mentation.
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Figure 8.12: Processing time on estimators

Figure 8.13 shows the processing time distributed on the propagators. Improvements on
the propagators have mainly focused on being able to prune away containers from the
domains more extensively and not much on optimization. In the diagram below, some of
the propagators have been omitted, as the processing time spent in these propagators was
so low, that they were irrelevant. The three propagators taking the most time is:

• ETC3

• PR8

• PR3

Although the propagators might appear to be using a lot of processing time, some of them
might simply be using the processing time because they are scheduled many times. An
example of this is the implementation ofP40-z, which simply ensures that the correct half
of a 40-foot container is placed next to its other half. This is a propagator, which essentially
does very little work is constant asymptotically. However the problem, on which the pro-
filing tool was executed, had mainly 40-foot containers in its stowage plan, which in turn
affects the propagator.

The most interesting discovery in the profiling test was the amount of time taken by the
overstow estimator. The overstow estimator is however veryimportant and future optimiza-
tions would most likely consist of experimentation with alternative algorithms for calculat-
ing the estimate or, lazy estimation. Propagators takes very little time, which shows that the
implementation effectively supports fast pruning of domain values. This also shows that
making the propagators prune more efficiently shows promise, as additional propagators
would not affect the total processing time considerably.
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Figure 8.13: Profiling run on the estimator component

8.8 Solution discoveries

8.8.1 Traversal of the search space

The experiments revealed that the capability of solving thestorage area stowage problem
for our implementation had not been satisfactory. This issue had to be further investigated
to determine whether the implementation or the choice of method was the issue. The first
aspect, which had to be investigated, was the solutions found by our implementation. The
branch and bound algorithm was modified to show the cost for each solution found. In
addition the estimators were omitted to ensure, that no solutions in the search tree were
disregarded. The test setup is shown in table 8.19.

Table 8.19: Test setup
Search algorithm : Branch & Bound
Estimators : -
Problem instance : Bay A
Propagators : Pu,Pg,Pa,P IMO-1,P IMO-2,P40-20,P20-40,

P40-y,P20-20,PC ,Pw,P ′a,P ′40-y

Measurement : Cost of solution
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Figure 8.14: Result

Conclusion of the traversal of the search space

Figure 8.14 shows the cost for the first 5000 solutions found in the search space for Bay
A, where the y-axis denotes the cost and the x-axis denotes the order of the solutions. For
Bay B and Bay S it has been possible to traverse the entire search space, which is depicted
in figures 8.15 and 8.16 respectively. Through inspection ofthe graphs following has been
observed: Solution with same cost seems to be clustered. This could be explained by the
fact that containers with the same set of properties can be permutated without the cost being
affected. Containers with the same properties will be referred to as an equivalence set. The
other interesting observation is that even though solutions are clustered they seemed to be
reappearing continuously during the search. The explanation for this could be that if several
equivalence sets exists then any permutation between elements in any particular set would
result in a new solution without affecting the cost. These two observations serve as the
lower bound of how many solutions is to be found within a problem instance i.e. LetE be
a set of equivalence sets of containers in problemP then the lower bound of solutions for
a problem instance will be

∏

e∈E |e|!.

The containers to be loaded on boardVESSEL-2 was further examined in order to see if
this observation was indeed correct. Equivalence sets was formed based on height, weight,
IMO level, size and discharge port. However the graphs showed considerable more solu-
tions than expected and therefore further analysis was carried out. For Bay B the solutions
for a particular cost was examined in order to explained why more solutions than expected
was found. It became quite clear that our definition on equivalence sets was too strict.
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Figure 8.15: Result

Figure 8.16: Result
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Through observation it could be observed that swapping two 20-foot container on the same
tier produced two new solution without changing the cost. This would be the case where
all properties on the container remain the same except for the weight or IMO level. Fur-
thermore it was also observed that as long as the number of overstows did not change for
a permutation of containers it would be possible to swap containers without affecting the
cost. This is particular true when considering containers in a single stack since the total
height and the weight will remain unchanged. E.g. having two20-foot containers on the
different tier, with different discharge port can be swapped if these are to be discharged
later than any containers above them. Due to these observation no simple rule on how these
equivalence sets should be form could be given.

8.9 Conclusion on experiment

The performed experiments gave a good insight to the strengths and weaknesses of the
chosen implementation, showing the advantages of using onecombination of components
over another combination, and giving some indication how different characteristics for ap-
proximately equal-sized problem instances made the searchspace vary significantly. It also
gave some explanation why our implementation did not perform as well as we could have
hoped for.

The set of problem instances used was quite small and it wouldbe necessary to perform
more experiments to strengthen the conclusion given in the chapter. Additionally it would
be interesting to do further experimentation on how characteristics of containers would
affect the search. However due to the time constraint this has not been done.
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Chapter 9

Conclusion

The goal for this report has been to investigate whether an optimal solution could be found
for a combinatorial problem by using branch and bound combined with propagators. This
question has been inspired by the industry, however it has aswell an interest in the academic
world since branch and bound algorithm combined with propagators has according to our
knowledge not been attempted before to solve the storage area stowage problem. Relating
back to the issues this report would consider:

Can backtrack combined with a CSP-Model find a solution
within reasonable time for the storage area stowage problem.

Can branch and bound combined with a CSP-Model find an optimalsolution
within reasonable time for the storage area stowage problem.

Experiments show that the algorithm is capable of solving the problem, but does not scale
well to realistic problem sizes. Nevertheless because thisapproach has not been used previ-
ously, no means to measure the quality of any algorithm, which could solve SASP existed.
Guaranteing optimality, we are able to provide a tool to measure the quality of alternative
algorithms.

Furthermore the experiments showed that the storage area stowage problem contained sev-
eral properties. The first interesting discovery was, that the constraints were too weak to
restrict the search space considerably. Secondly, many solution with the same cost ap-
pear during a search, which indicates that the objectives did not restrict the solution space
sufficiently, consequently requiring the estimators to be rather precise in order to cut of
branches.

The third discovery was that the implemented estimators behave differently depending on
the properties of the containers to be loaded. What is interesting in that respect would be
to investigate which decisive properties could improve theestimators. Lazy estimation was
an interesting approach, which showed promising results, provided that the estimators were
beneficial for that given problem instance.
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Future work

Even though a lot of ground have been covered in this report much work still needs to be
done in order to solve the SASP. Based on the result from the experiments and the conclu-
sion the future work should focus on how to solve the issue with solutions reappearing with
the same cost. We suggest the following:

• Considering equivalent container as a single solution

Havingn containers with the same characteristics will yieldn! different solutions
without the cost changing. Having this in mind the search space could be reduced
if it is possible to identify any of then! − 1 solutions and skip these. In connec-
tion to this it would be interesting to see if forcing the equivalent containers to be
placed early in the search rather than late will improve the search. The motivation
for placing equivalent containers early in the search is that containers with the same
characteristics are only rearranged once rather than for each subtree.

• Using estimation value to cut of branches in the search tree

The estimators computes an estimation of what the actual cost will be when extend-
ing the partial solution to a complete solution. However if there is a tight correspon-
dence between the estimation value and the actual cost, thenit would be possible to
avoid unnecessary exploration of the search tree by comparing the estimated value
for the current partial instantiation with some estimated value for a previous partial
instantiation.

• Alternative search methods

The branch and bound algorithm relies on estimators to cut ofbranches within the
search tree. Having many solution with the same cost will cause the estimator to
not being able to cut of branches and thus many solutions withthe same cost are
discovered.

Due to time constraints several other aspects were not examined. Following aspects could
have been interesting to examine in depth:

• Scalability

An experiment to see how the performance is affected by the size of the problem
instance. Since it is already known that the size grows exponentially, it would still be
interesting to see how much time is used when as search space grows. The sheer size
of problem instances would not generate sufficient results to be concluded upon on
the scalable test, and has therefore been disregarded.

• Domain value ordering

Section 7.4.1 describes how the order of the domain value is composed by the label
and discharge port and used for selecting domain values which restricts the search
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space the most. What could be interesting is to examine the effect of altering the
sorting order, however this would require almost all experimentations to be redone
and was therefore disregarded due to time restriction.

• Variable orderings

Experimenting with variable ordering has a lot of potentialfor improving on the it-
eration count as the possibilities for variable ordering heuristic approaches are many.
One interesting approach could be to combine the DVFC with the Overstow heuris-
tic, which would allow to select the optimal value, according to the overstow, for
variables with the smallest domain. However, this necessitates extensive changes in
the current implementation and has for this reason been considered as future work.

• Weights on the objectives

More experiments could be performed with different sets of weights, in order to see
if it would affect the execution of estimators. However several tests has to be redone
for each set of weights and it was disregarded due to time constraints.

• Identifying decisive characteristics for the estimators

The conclusion for the estimators was somewhat unclear and the performance of
them seems to be dependent on some characteristics of the problem instance. For
future work it could be interesting to identify, which characteristics are decisive for
the performance of the implemented estimators.

• Lazy estimation

In general, lazy estimation shows many interesting properties: for some problem
instances it is the most interesting to do estimation with only few assigned variables,
while for other problem instances it is not beneficial to do estimation at all. It would
be interesting to be able to identify the properties that make estimation beneficial, as
the reward appears to be great. This has however been left as future work.
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Appendix A

Program organization

Shown below is a component diagram of the implementation developed. It presents the
program as divided up into four basic components, of which the most central is the Model
component, which contains the problem description and the instantiation build upon it,
and the Branch & Bound component, containing the actual search algorithm. Each of the
components are described in further detail later in this section.

Figure A.1: The implementation presented as a component diagram
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Model Component

Containing the constraint network representation of the problem is the model component.
The variables are kept within the problem class in a three dimensional array, with the rows,
tiers, stacks and cells as indexes on the different dimensions. Additional information re-
garding maximum height and weight allowed for each stack, iskept in the stack class.
Besides the problem, the model component also contains the current instantiation being
built upon the problem assignments that the instantiation consists of.

Figure A.2:The Branch & Bound component presented as a class diagram
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Propagator Component

The main class within the propagator component is the scheduler, which maintains the
underlying propagators. Based on the assignment of a given input variable, it determines
which propagators should be run using the label concept described in the report. The prop-
agators are kept within the scheduler in a simple list structure. All communication with
the propagators go through the scheduler, making the scheduler serve as an abstract layer
between the propagators and the remaining application.

Figure A.3: The propagator component presented as a class diagram

111



Estimator Component

The class responsible for running the estimators, is the ESTIMATIONCALCULATOR which
schedules the estimators one by one and sums up the returned cost from each. A reference
to each estimator is kept in a list structure within the ESTIMATIONCALCULATOR.

Also kept within the estimator component is evaluators, which works in a similar fashion
as the estimators. Evaluators are used to calculate the costof complete solutions only and
calculates the cost faster than the estimators. The main reason for using the estimators was
for debugging purposes, in an attempt to verify that the estimators always underestimated
the cost of any solution which could be extended from a given partial solution. It was kept
as a part of the final implementation, as they give a slight search time reduction, due to the
more simply and efficient way of calculating the cost for complete solutions.

All communication with the estimators and evaluators go through the ESTIMATIONCAL -
CULATOR and EVALUATION CALCULATOR, making these classes serve as an abstract layer
between the estimators/evaluators and the remaining application

Figure A.4: The estimator component presented as a class diagram
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Branch & Bound Component

This section gives a detailed description of the main classes handling the actual search
within a problem instance. Shown below is an UML diagram of the classes within the
Branch & Bound component.

Figure A.5: The Branch & Bound component presented as a classdia-
gram

The different implementations of the backtracking algorithm is shown in the class diagram
as inheritance from SINGLESOLUTIONSEARCH with the option to override the procedure
SELECTNEXTVARIABLE . DEPTHFIRSTBRANCHANDBOUND holds the actual branch
and bound algorithm, described with pseudocode in the report.
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Appendix B

Informal description

Stowage Problem for Under Deck Storage Area

Input

1. Current port number p{0,. . . ,N}

2. A physical layout of a container vessel under deck storagearea defining:

a) A number of standard container cells organized in stacks

b) Max height for each stack

c) Max weight for each stack

d) Attributes for each cell

Reefer cell (Y/N).

Max number of 20’ containers cell can hold (0,1,2)

Max number of 40’ containers cell can hold (0,1)

(we assume no 45-foot bays)

3. A list of containers already stored in the storage area containing for each container:

a) The cell the container is assigned to

b) The weight of the container

c) The height of the container (high-cube/not high-cube)

d) The length of the container (20’ or 40’)

e) Load port (0,1,. . . ,N)

f) Discharge port (0,1,. . . ,N)

g) IMO level (0,1,2)

h) Reefer (Y/N)
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4. A list of containers to load into the storage area containing for each container:

a) The weight of the container

b) The height of the container (high-cube/not high-cube)

c) The length of the container (20’ or 40’)

d) Discharge port (0,1,. . . ,N)

e) IMO level (0,1,2)

f) Reefer (Y/N)

Output
An assignment of containers in the load-list under bullet 4 above to cells in the storage area
such that the constraints and objectives below are achieved:

1. Constraints (a valid assignment must satisfy all of them)

a) Assigned slots must form stacks (containers stand on top of each other in the
stacks. They cannot hang in the air)

b) Reefer containers must be placed in reefer slots (obs. if areefer slot can hold
more than one 20’ container, both of these can be reefer.)

c) A slot can at most hold two 20’ containers or one 40 container.

d) A slot can only hold the max number of containers of different length as described
by its attributes under bullet 2.d.ii-iii above.

e) 20’ containers can not be stacked on top of 40 containers (this is physically im-
possible)

f) The height of each stack is within its limits

g) The weight of each stack is within its limits

h) IMO rules are satisfied for each container:

i. level 0: no rule

ii. level 1: level 1 containers must be separated from level 1and 2 containers
by at least one slot vertically and horizontally (obs. as described in the note
below, we map containers to slots successively from the bottom of stacks,
independent of whether some of these containers are high-cube). Thus, if we
have an IMO level 1 at slot i in stack j, then the container at slot i+1 and i-1
in stack j cannot be a level 1 or level 2, and the container at level i in stack
j+1 and j-1 can not be a level 1 or level 2

iii. Level 2: level 2 containers must be separated from level1 containers accord-
ing to the rules of level 1 containers. In addition, level 2 containers must be
separated from any other level 2 containers by a stack without level 2 con-
tainers. Thus, if a stack i contains a level 2 container, thenstack i+1 and i-1
cannot contain a level 2 container.
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2. Objectives

(a) Minimize overstows. Cost penalty: one unit for each container in a stack over-
stowing another container below it in the stack. Unit weightWoverstow

(b) Minimize the space wasted in a stack. Cost penalty: length of wasted stack
space. Unit weight WspaceWaste

(c) Avoid loading non-reefers into reefer slots. Cost penalty: one unit for each non-
reefer container in a reefer slot. Unit weight Wreefer

(d) Keep stacks empty if possible. Cost penalty one unit per new stack used. Unit
weight Wemptystack

• Note on interpretation of cell restrictions

High-cube containers may get containers in a stack out of sync with the cell posi-
tions. For this reason, it may be unclear how cell restrictions are to be interpreted for
each container in a stack. Given the current state of affairs, however, it is safe to apply
the cell restrictions to the containers in the order they appear in the stack rather than
their actual position. Thus, the restrictions on the i’th cell counted from the bottom of
a stack apply to the i’th container in the stack independent of its actual position. For
20-foot containers, this is the case, because 20-foot containers never get out of sync
with the cell level. No high-cube 20-foot containers exist and any legal stack either
consists fully of 20-foot containers or has a single shift from 20-foot containers in
the bottom to 40 and 45-foot containers in the top. 40 and 45-foot containers, on the
other hand, can get out of sync with the cell level since 40 and45-foot containers
can overstow a high-cube container. We need to argue for eachcell restriction in turn
that it can be applied to the relative rather than absolute position of a container in a
stack. For reefer restrictions this is the case because power connections only exist at
the bottom tiers over and under deck. So even if high-cube containers are stored at
the bottom tiers, the stack levels never get so much out of sync that the power lines
cannot reach the connectors. For length restrictions this is the case since we only
have one rule where misalignment of containers may be important. Over deck 45-
foot containers must be placed over the lashing bridge. Thisrule, however, is only
relaxed by placing high-cube containers in bottom tiers.
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Appendix C

Pseudo code

This appendix presents the pseudocode for helper functions, which was chosen to omit
from the report itself. For each pseudocode procedure, a detailed description of the key
elements is provided for clarification.

C.1 Evaluation

C.1.1 Overstowage Evaluation

OVERSTOW returns the real overstow costgov of the instantiation~a given as parameter.
The algorithm iterates over the entire stowage location andupdates the overstow count
whenever a container with a lower discharge port is stowed below a container with a higher
discharge port.

The time complexity for OVERSTOW isO(sc T), whereT is the maximum number of tiers
of all stacks.

119



procedure OVERSTOW(~a)
1 gov ← 0
2 for j ← 1 to sc do

4 for i1← tcj downto 1 do

5 for i2← i1− 1 downto 1 do

3 foreach l ∈ L do

6 if dp π
{xl

i1,j
}
(~a) > dp π

{xl
i2,j

}
(~a) then

7 gov ← gov + 1
8 endif

9 endfor

10 endfor

11 endfor

12 endfor

13 return gov

Figure C.1:Overstow cost of the instantiation~a.

C.1.2 Wastedspace Evaluation

WASTEDSPACE returns the real wastedspace costgws of the instantiation~a given as pa-
rameter. The algorithm considers each cellstack in turn, and calculates accumulatively the
wasted space of the entire stowage configuration.

procedure WASTEDSPACE(~a)
1 gws ← 0
2 foreach k ∈ K do

4 gws ← gws + WASTEDSPACEOFSINGLESTACK (fs(k))
5 endfor

6 gws ←
gws

hst

6 return gws

Figure C.2:Wastedspace cost of the instantiation~a.

The time complexity for WASTEDSPACEisO(|K|), since WASTEDSPACEOFSINGLESTACK

is O(1). fs takes constant time, by being maintained along with the assignments of the
search.
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procedure WASTEDSPACEOFSINGLESTACK (σ)
1 w ← 0
2 if σ < hst then

3 w ← σ
4 endif

5 return w

Figure C.3:Wasted space fromσ free space.

C.2 Estimation

C.2.1 Overstowage Estimation

ESTIMATEOVERSTOW returns the estimated overstow cost(gov + hov) of the instantiation
~a given as parameter.

procedure ESTIMATEOVERSTOW(~a)
1 U ← X \ S
2 CU ← C \ πS(~a)
3 gov ← OVERSTOW(~a)

4 M ← M INCOSTMATCH
(

CU , U,REPRESENTATIONCOST(CU , U,~a)
)

5 if |M | = |CU | then
6 hov =

∑

e∈M w(e)
7 return gov + hov

8 else
9 return ∞

Figure C.4:Estimated overstow cost of the instantiation~a.

M INCOSTMATCH is a routine that takes as arguments a Minimum Cost Matching Problem
and returns the maximum matching of minimum cost as a set of weighted edges. The algo-
rithm can be found in Chapter 5 of [6].

OVERSTOW calculates the real overstow cost of the instantiation given as parameter, as
described in section C.1.1.

The REPRESENTATIONCOST procedure details the computation of the representation costs.
As parameters, it receives the collectionCU of containers yet to be loaded, the collectionU
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of available stowage cells, and the current instantiation~a. The trivial algorithm to calculate
the representation costs is optimized based on the following observations: two containers
with the same discharge port stowed in the same location result in the same amount of
overstows, and a container stowed in a particular cell givesthe same amount of overstows
as if it was stowed in a neighboring below or above cell of the same cellstack, if such a
cell exists. Based on these ideas, the containers are considered in increasing order of their
discharge ports and the free cells of each stack in a bottom uporder.

Initially, the algorithm calls the SORT subroutine to sort the container list according to
the partial order defined by the CONTAINERCOMPARATOR comparison function, that is
in increasing order of their discharge ports. The algorithmmaintains two variables, the
container considered at the previous iterationc

′
and the cell considered at the previous it-

erationl
′
. In case the current containerc and previous containerc

′
are similar or current

cell l and previousl
′
cell can accommodate the same type of container then the previously

calculated value can be reused. In case where the container are distinct and cell cannot
accommodate the same container the number of overstows is counted explicitly by calling
OVERSTOWOF. TheRC hash-table maintains the resulting costs.

procedure REPRESENTATIONCOST(CU , U,~a)
1 SORT(CONTAINERCOMPARATOR, CU)
2 c

′
← nil

3 foreach c ∈ CU

4 if CONTAINERCOMPARATOR(c
′
, c) = 0 then

5 RC[c]← RC[c
′
]

6 else

7 c
′
← c

8 l
′
← nil

9 foreach l ∈ U *** this considers cells per stack, bottom up***
10 if ISIN(c, l) then

11 if CELLCOMPARATOR(l
′
, l) = 0 then

12 RC[c][l]← RC[c][l
′
]

13 else

14 RC[c][l]← OVERSTOWOF(~a, c, l)
15 l

′
← l

16 endif

17 endif

18 endfor

19 endif

20 endfor

21 return RC

Figure C.5:Representation costs computation.
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procedure OVERSTOWOF(~a, c, xl
i,j)

1 ov ← 0
2 for t← 1 to i− 1 do

3 if dp π
{xl

t,j
}
(~a) < dpc then

4 ov ← ov + 1
5 endif

6 endfor

7 for t← i+ 1 to tcj do

8 if dp π
{xl

t,j
}
(~a) > dpc then

9 ov ← ov + 1
10 endif

11 endfor

12 return ov

Figure C.6:Overstow cost of stowing containerc in cell xl
i,j .

The CONTAINERCOMPARATOR defines the partial ordering of the container set accord-
ing to discharge port then label. Sorting according to thisO(1) comparison function results
in the container list sorted in the increasing order of discharge ports followed by their la-
bel. The CELLCOMPARATOR is aO(1) comparison routine that receives as parameters
two cellsl1 andl2 and returns0 if the cells belong to the same cellstack, are situated one
on top of the other and have the same label.

The worst case running time of REPRESENTATIONCOST isO(|CU |log|CU |+ |CU ||U | T ),
since sorting takesO(|CU |log|CU |) and there are at most|CU ||U | calls to OVERSTOWCOSTOF,
each call usingO(T ) time. A tighter bound ofO(|CU |log|CU | + DI T ) can be derived
observing that the number of calls to OVERSTOWCOSTOF depends on the number of dif-
ferent discharge ports, writtenD, and the number of neighboring cellstack regions, written
I.
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C.2.2 Wastedspace Estimation

ESTIMATEWASTEDSPACEreturns the estimated wasted spaced cost(gov + hov) of the in-
stantiation~a given as parameter. On line 4 it calls the procedure WASTEDSPACEOF which
is the dynamic programming implementation of the recursivedefinition given in section
6.3.

procedure ESTIMATEWASTEDSPACE(~a)
1 S ←

∣

∣{c ∈
⋃

x∈X\SM(x) : hc = 8.5}
∣

∣

2 H ←
∣

∣{c ∈
⋃

x∈X\SM(x) : hc = 9.5}
∣

∣

3 ρ0 ← decreasing order of available cells, used stacks first

4 return
WASTEDSPACEOF(S,H,≺

ρ0
1

,fs(≺
ρ0
1

))

hst

Figure C.7:Estimated wastedspace cost of the instantiation~a.

WASTEDSPACEOFSINGLESTACK is described in section C.1.2.
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procedure WASTEDSPACEOF(S,H, k, σ)
1 if W [S,H, k, σ] = nil
2 if σ < hst then

3 if S ≥ 1 or H ≥ 1 then

4 w ← NOSPACEINSTACK (S,H, k, σ)
5 else

6 w ← NOCONTAINERS(k, σ)
7 endif

8 elseif σ ≥ hhc then

9 if S ≥ 1 and H ≥ 1 then

10 w ← min(WASTEDSPACEOF(S − 1, H, k, σ − hst),
WASTEDSPACEOF(S,H − 1, k, σ − hhc)

11 elseif H ≥ 1 then

12 w ← WASTEDSPACEOF(S,H − 1, k, σ − hhc)
13 elseif S ≥ 1 then

14 w ← WASTEDSPACEOF(S − 1, H, k, σ − hst)
15 else

16 w ← NOCONTAINERS(k, σ)
17 endif

18 else

19 if S ≥ 1 then

20 w ← WASTEDSPACEOF(S − 1, H, k, σ − hst)
21 elseif H ≥ 1
22 w ← NOSPACEINSTACK (S,H, k, σ)
23 else

24 w ← NOCONTAINERS(k, σ)
25 endif

26 endif

27 W [S,H, k, σ]← w
28 endif

29 return W [S,H, k, σ]

Figure C.8:Wasted space estimation algorithm.
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procedure NOCONTAINERS(k, σ)
1 w ← WASTEDSPACEOFSINGLESTACK (σ)
2 for j ← k + 1 to |K| do

3 w ← w + WASTEDSPACEOFSINGLESTACK (fs(≺ρ0

j ))
4 endfor

5 return w

Figure C.9:Update of wasted space due to no more containers.

procedure NOSPACEINSTACK (S,H, k, σ)
1 w ← 0
2 if k + 1 ≥ |K| then

3 w ← WASTEDSPACEOFSINGLESTACK (σ)
4 else

5 w ← σ + WASTEDSPACEOF(S,H,≺ρ0

k+1, fs(≺
ρ0

k+1))
6 endif

7 return w

Figure C.10:Update of wasted space due to no more space in cellstackk.
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C.3 Domain management function

A global Label-Domain tableτ as described in section 7.1 is maintained by the two proce-
dures REINSERTDOMAIN VALUE and REMOVEDOMAIN VALUE.

Reinsertion of domain value

The procedure REINSERTDOMAIN VALUE inserts the valuev given as input into all do-
mains, which can accommodatev. Fromτ a list of all domains is retrieved by the label of
v. Each domain in the list gets valuev reinserted.

REINSERTDOMAIN VALUE (v)
1 m← τ [DomainV alueLabel(v)]
2 foreach s ∈ m
3 s← s ∪ {v}
4 τ [DomainV alueLabel(v)]← m

Figure C.11: Pseudocode for REINSERTDOMAIN VALUE

Removal of domain value

The procedure REMOVEDOMAIN VALUE removes the valuev given as input from all do-
mains, which can accommodatev. Fromτ a list of all domains is retrieved by the label of
v. Each domain in the list gets valuev removed.

REMOVEDOMAIN VALUE (v)
1 m← τ [DomainV alueLabel(v)]
2 foreach s ∈ m
3 s← s \ {v}
4 τ [DomainV alueLabel(v)]← m

Figure C.12: Pseudocode for REMOVEDOMAIN VALUE
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C.4 Propagators examples

C.4.1 Uniqueness

The uniqueness propagator ensures that a domain valuev does not remain an eligible candi-
date value, when it has been assigned. It relies on the procedure REMOVEDOMAIN VALUE

described in the appendix C.3. Given as input is the current partial instantiation~a, the
current variable being assignedxl

i,j and the candidate valuev, which are removed from
any shared domain. Since no domain is not checked for exhaustion falseis returned. The
omission of the check of exhaustion, causes the algorithm topotentially backtrack much
later. However this only occurs if a cell, which has some container placed above it, has a
reference to an empty domain. This is caught byEFA.

PROPAGATORUNIQUENESS(~a, xl
i,j, v)

1 REMOVEDOMAIN VALUE (v)
2 return false

Figure C.13: Pseudocode for uniquness propagator

C.4.2 IMO-1

The IMO-1 propagator ensures that the cells according to theIMO rule are not able to
consider an IMO-1 and IMO-2 containers. It relies on the procedure REMOVEDOMAIN -
VALUE described in the appendix C.3. A current partial instantiation~a, the current variable
xl

i,j being instantiated and the candidate valuev is given as input. All assignable cells in set
X IMO-1

i,j , which is defined in table 5.1, are getting the IMO-1 and IMO-2property removed
from the celllabel in line 2. A check whether the pruning caused exhaustion of their do-
main is carried out in line 4, in the case that exhaustion occurred the procedure returnstrue
otherwisefalseis returned if no of the assignable variables caused exhaustion.

PROPAGATORIMO-1(~a, xl
i,j, v)

1 foreach x ∈ X IMO-1
i,j

2 if x ∈ S
3 Label[x] ← Label[x] & ∼(LabelIMO-1 | LabelIMO-2)
4 if D(x) = Ø
5 return true

6 return false

Figure C.14: Pseudocode for IMO-1 propagator
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