
Formalizing WS-BPEL and Higher Order Mobile Em-
bedded Business Processes in the Bigraphical Program-
ming Languages (BPL) Tool

Mikkel Bundgaard, Arne John Glenstrup,
Thomas Hildebrandt, Espen Højsgaard, and
Henning Niss

IT University Technical Report Series TR-2008-103

ISSN 1600–6100 May 2008

Copyright c© 2008, Mikkel Bundgaard, Arne John Glenstrup,
Thomas Hildebrandt, Espen Højsgaard, and
Henning Niss

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-162-5

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Formalizing WS-BPEL and Higher Order Mobile

Embedded Business Processes in the Bigraphical

Programming Languages (BPL) Tool∗

Mikkel Bundgaard, Arne John Glenstrup,
Thomas Hildebrandt, Espen Højsgaard, and Henning Niss

IT University of Copenhagen
{mikkelbu, panic, hilde, espen, hniss}@itu.dk

Abstract

Bigraphical Reactive Systems (BRSs) have been proposed as a formal meta-
model for global ubiquitous computing that encompasses process calculi for mobil-
ity, notably the π-calculus and the Mobile Ambients calculus, as well as graphical
models for concurrency such as Petri Nets. In this paper we demonstrate that BRSs
also allow natural formalizations of programming languages used in practice. We do
so by providing a direct and extensible formalization of a subset of WS-BPEL as a
binding bigraphical reactive system using the BPL Tool developed in the Bigraphical
Programming Languages (BPL) project. The tool allows for compositional defini-
tion, visualization and simulation of the execution of bigraphical reactive systems.
The formalization exploits the close correspondence between bigraphs and XML to
provide a formalized run-time format very close to standard WS-BPEL syntax.

The formalization is the starting point of an endeavor to provide a completely
formalized and extensible business process engine within the Computer Supported
Mobile Adaptive Business Processes (CosmoBiz) research project at the IT Univer-
sity of Copenhagen. Building upon the formalization of WS-BPEL we propose and
formalize HomeBPEL, a higher-order WS-BPEL-like business process execution lan-
guage where processes are first-class values that can be stored in variables, passed
as messages, and activated as embedded sub-instances. A sub-instance is similar to
a WS-BPEL scope, except that it can be dynamically frozen and stored as a process
in a variable, and then subsequently be thawed when reactivated as a sub-instance.
We motivate HomeBPEL by an example of pervasive health care where treatment
guidelines are dynamically deployed as sub processes that may be delegated dynam-
ically to other workflow engines and in particular stay available for disconnected
operation on mobile devices.

∗This work was funded in part by the Danish Research Agency (grant no.: 2106-07-0019, no.: 274-06-
0415 and no.: 2059-03-0031) and the IT University of Copenhagen (the TrustCare, CosmoBiz and BPL
projects).

1

Contents

1 Introduction 2

2 Binding Bigraphs and BPL Tool 6
2.1 Binding Bigraphs . 6
2.2 BPL Tool Term Language . 7
2.3 Parametric Reaction Rules . 9

3 Formalizing WS-BPEL in the BPL Tool 9
3.1 WS-BPEL . 10
3.2 The Static Representation . 10
3.3 Reaction Rules . 15

4 Motivating HomeBPEL 23

5 Formalizing HomeBPEL 26
5.1 The Static Representation . 27
5.2 Sub-links . 30
5.3 Reaction Rules . 31

6 Conclusion and Future Work 38

1 Introduction

Services implemented and orchestrated by processes written in languages such as WS-
BPEL are being put forward as a means to achieve loosely coupled and highly flexible
computer supported business and work processes. In the current architectures, services
are deployed and managed on web servers by meta-level tools and cannot be replaced or
moved during the life-time of a session with an instance of the service. In the present paper
we propose and formalize a higher-order WS-BPEL-like language, called HomeBPEL,
where processes are values that can be stored in variables and dynamically instantiated
as embedded sub-instances. A sub-instance is similar to a WS-BPEL scope, except that
it can be dynamically frozen during a session and stored as a process in a variable. When
frozen in a variable, the process instance can be sent to remote services as any other
content of variables and dynamically re-instantiated as a local sub-instance continuing its
execution.

We envisage a use of HomeBPEL where the necessary services or even active in-
stances can be dynamically moved to a local process engine running on a mobile device
and thereby allow for disconnected operation. We exemplify this use by an example
of pervasive health care, where treatment workflows are moved between and executed
locally on mobile devices belonging to either the doctor or the patient, depending on
whether the guideline requires actions by the doctor or it prescribes actions carried out
as self-treatment by the patient.

As a first step towards the formalization of HomeBPEL we provide a formalization
of a non-trivial subset of the Web Service Business Process Execution Language, WS-
BPEL [35], which is being promoted by major industrial players including IBM, SAP,

2

BEA, Oracle, and Microsoft as the future standard for orchestrating web-services as
business processes. The formalization exploits the close correspondence between bigraphs
and XML to provide a small step rewrite semantics of the behavior of WS-BPEL, and
the formalization uses a representation of the state of active process instances which is
very close to the XML syntax of WS-BPEL processes. Building upon this formalization
we provide a bigraphical formalization of a WS-BPEL-like business process language
supporting higher-order primitives.

The investigation is part of the Computer Supported Mobile Adaptive Business Pro-
cesses (CosmoBiz) project [24], which aims to provide a fully formalized runtime engine
for a business process language extended to allow for mobile and adaptive processes. Our
primary goals of the formalization is 1) to be able to guarantee that the implemented
engine actually conforms to the semantics and 2) to form a basis for the development
of type systems that can be used to statically guarantee safe and reliable behavior. To
achieve the first goal a main concern is to limit the gap between the source language,
its formalization, and the implementation. A key element to achieve the second goal is
to strive for a compositional formalization supporting subsequent formalization of type
rules for the individual parts. We want to stress that it is not a main concern at this
point to provide techniques or principles for verification of processes, which has been the
main concern of most WS-BPEL formalizations so far. However, we do hope that fu-
ture reasoning techniques developed for bigraphs can be employed also to support formal
verification.

The work on HomeBPEL is inspired and guided by our previous work on the Homer
process calculus of Higher-order mobile embedded resources [21, 19, 8], and in particular
its formalization as a bigraphical reactive system [7]. Not surprisingly, the new features
add to the complexity of the language and its formalization. Yet, the formal approach
ensures that they are completely unambiguously specified. Also, the close relationship
to semantics of process calculi such as Homer and the Mobile Ambients gives a very
succinct formalization of sub-process mobility. Indeed, the serialized representation of
a mobile process is just a process description. In particular, this means that a future
implementation could use the standard XML format for serialized process instances.

The theory of Bigraphical reactive systems [26] provides a framework in which process
models for concurrent and ubiquitous computing can be uniformly defined and formally
analyzed. In particular, the π-calculus [33], Mobile Ambients calculus [10] and (1-safe)
Petri Nets [29] have been represented as instances of bigraphical reactive systems [26].
Bigraphical reactive systems can be seen as a specialized kind of graph rewriting systems,
in which processes are represented as two graphs (hence the name bigraphs): The place
graph and the link graph respectively. The place graph is a collection of node labeled
trees generalizing the nesting of process constructors in process calculi. The link graph
is a hyper graph specifying links between ports associated to the nodes of the place
graph and a set of external names, generalizing the link structure characteristic of the
π-calculus. The dynamics is specified by a set of parametric reaction rules, generalizing
the rule formats used in e.g. the π-calculus and the calculus of Mobile Ambients. The
general theory of bigraphical reactive systems provides a general notion of contexts and
composition. This allows for compositional description of processes as characteristic to
process calculi. Together with a notion of ”minimal” contexts, it forms the basis for an
automatic derivation of a labeled transition bisimulation congruence from the reaction

3

rules supporting compositional reasoning about the behavior of systems.
There are several reasons for why it is interesting to apply bigraphs to formalize an

evolving standard such as WS-BPEL. Firstly, we thereby demonstrate that bigraphical re-
active systems can not only be used as a meta-format for process calculi, but also be used
to formalize programming languages used in practice. Secondly, the model of bigraphical
reactive systems is extensible: An instance of a bigraphical reactive system is defined by
its signature (the possible labels and ports of nodes) and its reaction rules, which can
be chosen to fit a particular language and its semantics. By extending the signature
and the set of reaction rules, a bigraphical reactive system can be adapted according
to e.g. changes in the language specification or incremental extensions of the language.
We exploit the extensibility of bigraphical reactive systems to extend the language and
formalization of WS-BPEL with primitives for mobile, embedded sub-processes. Fur-
thermore, the place and link graph of bigraphs correspond closely to respectively the
nested element structure and sharing of attribute values in the XML data model. Since
WS-BPEL is equipped with an XML syntax, we are able to provide a small step rewrite
semantics in the model of bigraphical reactive systems using a representation of the cur-
rent state of processes which is very close to the WS-BPEL syntax. Indeed, the close
correspondence between bigraphs and XML was explored in our previous work on for-
malizing WS-BPEL as bigraphs [23, 22], on which the present work builds. However, the
formalization in [23, 22] was obtained at the cost of introducing so-called higher-order
reaction rules, for which the relationship to the existing notions of bigraphs and theory of
behavioral congruences remain to been developed. In addition to covering a larger sub-
set of WS-BPEL, the present formalization stays within the standard format for binding
bigraphs described in [26]. Thus, the general theory, techniques and tools developed for
binding bigraphs remain applicable to our formalization. In particular, we describe how
the formalization can be explored within the BPL Tool [3] developed in the Bigraphical
Programming Languages (BPL) project at the IT University of Copenhagen. The tool
allows compositional definition of bigraphical reactive systems within Standard ML. It
is also equipped with a web interface supporting visualization and interactive simulation
of the execution of binding bigraphical reactive systems based on the formal inference of
rule matching described in [1, 2].

The present paper combines the work presented in the two papers: [5] and [6].

Related work. WS-BPEL has been the target for several formalizations [40] accom-
panying the official informal specification [35]. Generally, any formalization requires a
compilation of a BPEL process to a representation in the formal model. Clearly, the
usefulness of a formalization depends on the availability of tools and reasoning techniques
for the formal model, but also on how easy it is to relate the formal representation to the
original BPEL process description.

Many of the prior formalizations have been based on versions of Petri Nets [38, 32],
following the tradition of formal workflow models. Other authors have been promoting
the use of process calculi, notably the π-calculus [39, 36]. This diversion can be partly
explained by the fact that WS-BPEL is a convergence and development of two radically
different approaches to web service orchestration proposed back in 2001: The IBM Web
Services Flow Language (WSFL) and the Microsoft XLANG specification. While WSFL
was based on flow graphs which are characteristic to the Petri Net model and most work-

4

flow languages, XLANG was based on the notion of message exchange behavior which is
characteristic to the π-calculus. A third line of formalizations are based on abstract state
machines (ASMs) [15, 16, 14, 13]. These seek to represent the informal specification as
is, i.e. they aim at using the same terminology and level of abstraction in their formal-
izations, thereby hoping to minimize the gap to the informal specification. This goal is
shared by our approach, though our method focuses on keeping the formalization close
to the BPEL language itself and not its informal description.

In this paper we focus on the XLANG subset of WS-BPEL, in particular the control
flow, scope structure, message passing and dynamic manipulation of Partner Links (akin
to name passing in the π-calculus). However, since bigraphical reactive systems have
been shown to faithfully represent both the π-calculus and Petri Nets, we believe the
model is a good candidate for providing at the same time a faithful representation of
both the WSFL and the XLANG features of WS-BPEL. Already for the present subset,
we crucially exploit the nesting structure of bigraphs to give a very succinct semantics of
”abnormal” termination caused by the WS-BPEL exit activity, which is not as easy to
formalize in the π-calculus.

Our formalization of the core WS-BPEL subset relates to the WS-BPEL process
calculus given in [28]. An advantage to our approach is that we can reuse the general
theory developed for bigraphical reactive systems, instead of redeveloping an entire theory
of a new process calculus. As in [28], we hope to be able to equip our formalization with
WSDL-like (or even richer) type systems.

Sub-processes have been proposed by IBM and SAP in [27] as an extension to WS-
BPEL (called BPEL-SPE) to allow for modularization and reuse of process fragments
to ease the burden of designing large business processes. As argued in [27] one could
simulate some of the behavior of sub-processes by invoking another process instead of
invoking a sub-process. However, this makes it impossible to establish any coupling
between the life-cycles of the two process instance, e.g. enforcing that a sub-process exits
if the super process exits prematurely. The sub-processes we propose in this paper extend
the proposal in [27] in several aspects. First and foremost, BPEL-SPE requires that the
sole interaction of a sub-process is an initial receive activity, and a last reply activity,
basically making the sub-process act as a method or function call. We allow that the sub-
process can communicate unrestrictedly with the parent process (and vice versa) using
invoke-receive. Furthermore, we add facilities for “freezing” and “thawing” sub-processes
as well as (sub-)process mobility.

Higher order workflow models applied to health care processes have been considered
in the context of Higher-Order (Petri) Nets [25], allowing sub-processes (nets) as values
(tokens), which may be dynamically composed. The approach in [25] differs from ours in
several ways: Firstly, the approach in [25] is based on Petri Nets as opposed to process
calculi, and has no direct relationship to WS-BPEL nor service orchestration. Another
central difference is that we execute sub-processes as sub-threads, whereas in [25] a sub-
process is executed step-by-step by the super process — and sub-processes can not contain
sub-processes themselves. Finally, the model in [25] allows for dynamic modification and
composition of sub-processes, which is not yet supported in our setting.

As described above, our proposal of higher order mobile sub-processes relates to our
work on the higher-order process calculus Homer. The Homer calculus is related to the
process calculus of Mobile Ambients [10] and the Seal calculus [11]. Indeed, HomeBPEL

5

shares with Seal the combination of name (link) and process passing. We leave for future
work to explore the relationship between HomeBPEL and these process calculi. Again,
we hope that the many type systems proposed for process calculi for mobility can guide
us to equip our formalization with useful type systems for controlling the mobility.

In [20] a notion of mobile business process is defined by processes in which a) the
place of execution of an activity can change, or can be different for different instances,
b) the change is caused by external factors, and c) cooperation with external resources is
needed. The mobile sub-instances we propose meet all these criteria.

Structure of the paper. In Sec. 2 we introduce the meta-model of binding bigraphs,
and in Sec. 3 we utilize binding bigraphs to give a formal semantics of a subset of WS-
BPEL and visualize it using the BPL Tool. In Sec. 4 we motivate the need for higher-order
constructs with an example of computer supported pervasive health care, and we present
the resulting language HomeBPEL — a WS-BPEL-like language where processes are
values that can be stored in variables and dynamically instantiated as embedded sub-
instances. In Sec. 5 we formalize HomeBPEL using the BPL Tool. We conclude and
propose directions for future work in Sec. 6.

2 Binding Bigraphs and BPL Tool

In this section we briefly review the binding bigraphs of Milner and Jensen [26] and
introduce the syntactical representation of binding bigraphs as implemented in the BPL
Tool. For a complete introduction to bigraphs we refer to [26].

2.1 Binding Bigraphs

A binding bigraph is a pair of graphs: a place graph and a link graph. The place graph is
an n-tuple of finite, unordered trees. Except for roots, every node is labelled by a control
and has two finite ordered sets of respectively free and binding ports. The link graph is
essentially a hypergraph connecting every free port of the nodes in the place graph to
either a closed link, a binding port, or a name in a finite set X of names. Jointly with
a collection of pairwise disjoint sets Xi ⊆ X of local names, one for each root in the
bigraph, the set X defines the (outer) interface of the link graph. The so-called scope
condition enforces that any binding port and any name in a set Xi is only connected to
ports nested strictly inside the node of the binding port and root i respectively.

What we just described above is known as ground binding bigraphs. Intuitively, one
may think of a ground binding bigraph as an ordered tuple of terms of a process calculus up
to structural congruence: Sibling nodes in the place graph represent processes combined
by an associative and commutative parallel operator. Each node is a prefix, and each
control denotes a distinct prefix operation (e.g. send or receive in the π-calculus) with
free and binding ports representing names and name binders of the particular operation
(e.g. for the π-calculus, any node labelled by a send control would have 2 free ports, while
nodes labelled by a receive control would have one free and one binding port). The link
graph then maps each name in a prefix to either a local name (closed link), a binder (i.e.
a binding port) or a name in the interface.

6

A ground bigraph with a single root is also similar to the data model for XML, with
controls playing the role of the names of XML elements, ports playing the role of attributes
and the linking of ports playing the role of attribute values. As we will see below, we
exploit this similarity to give a bigraphical semantics to HomeBPEL resembling closely
the XML syntax.

A central ingredient of the theory of bigraphs is that bigraphs in general are (multi-
hole) contexts that can be composed: The place graph has a finite ordered set of holes
(referred to as sites in the usual bigraph terminology), each associated as a child of a
node. The link graph has a set of local names Yi for each hole. As for the outer interface,
the sets Yi are pairwise disjoint and contained in a finite set of names Y which jointly with
the sets Yi forms the inner interface. As the free ports, the names in Y are connected to
either a closed link, a binding port or a name in the outer interface.

Outer (resp. inner) interfaces of binding bigraphs are thus triples 〈n, ~X,X〉, where
the width n is a finite ordinal representing the number of roots (resp. sites), X is a finite
set of names, and ~X is an n-tuple of pairwise disjoint subsets of X which declares some
of the names in X as local to specific roots (resp. sites). If x 6∈ ~X then x is said to be
global, else it is local ; if an interface I has no global names x, it is a local interface. We
write G : I → J for the bigraph G with inner interface I and outer interface J . The
composition H ◦ G : I → J of bigraphs G : I → I ′ and H : I ′ → J with compatible
interfaces is obtained by making the children of the ith root of G children of the (parent)
node of the ith site of H, discarding the roots of G and sites of H, and by coalescing links
as prescribed by the correspondence of H’s inner and G’s outer names.

A binding bigraphical reactive system is defined with respect to a signature, which
declare the set of possible controls labelling nodes of the bigraph and for each control
K the number of binding and free ports of nodes in the bigraph labelled with K. The
signature also declares each control as either atomic, active or passive. Only nodes with
non-atomic controls can have children, and reactions (as defined below) can only occur
in sub-bigraphs nested solely within active controls, i.e. the active controls determine
evaluation contexts.

2.2 BPL Tool Term Language

Binding bigraphs are often visualized graphically. However, binding bigraphs also admit a
representation via a term language based on the axiomatization of binding bigraphs [12].
This representation is exploited in the BPL Tool to allow compact and compositional
textual descriptions of binding bigraphs and their reaction rules1.

In the present paper we will use the syntax of the term language as used in the
BPL Tool. The language consists of Standard ML constructs which allows the user to
write the terms directly in SML, at the cost of introducing a few additional back quotes.
(Future versions of the BPL Tool will also support a clean input language stripped of
SML artifacts.) The employed subset of the language can be defined by the following

1The representation is also exploited in the underlying formalization and implementation of matching
used for the execution of reaction rules as described in [18].

7

Running

If
Condition

False
Then

0

Else

1

inst id

Running

0

inst id

R R’

Figure 1: Example bigraphs R : I → J and R’ : I ′ → J , where I = 〈2, [{}, {}], {}〉, I ′ =
〈1, [{}], {}〉, J = 〈2, [{}, {}], {inst id}〉

grammar.

P ::= P o P | P || P | P ‘|‘ P | C
C ::= c | c[N?] | c[N?][NS ?] | -//[N ?] | n//[N ?] | ‘[N?]‘ | <->

N ? ::= ε | N N ::= n | n,N NS ? ::= ε | NS NS ::= [N?] | [N?],NS

where n ranges over strings representing names and c over strings representing controls.
C describes so-called ions which are bigraphs consisting of a single root with a single
node as child, having a control as defined in the signature. If the control is non-atomic
the ion has a single hole inside. For instance, an ion with name c and i free ports and j
binding ports is written c[n1, . . . , ni][NS 1, . . . ,NS j] where the NSk is the set of names
bound to the kth binding port.

We use the double bars || to separate roots in the place graph and the single bar
‘|‘ as a separator between sibling nodes. The symbol o denotes composition as defined
above (the tool checks that the interfaces of the bigraphs match). The terms -//[N ?]
and n//[N ?] denote a bigraph with an empty place graph (i.e. no roots) and a link
graph mapping the names in the list N ? to respectively each their closed link and to the
name n. The term ‘[]’ denotes a hole and the term ‘[n1, . . . , nk]‘ denotes a hole with
local names n1, . . . , nk. Finally, the term <-> denotes a bigraph just consisting of a single
empty root. As an example, we may define two binding bigraphs as follows (and depict
the graphical representation of them in Fig. 1).

val R = If[inst_id] o (Condition o False ‘|‘ Then o ‘[]‘ ‘|‘ Else o ‘[]‘)

|| Running[inst_id]

val R’ = ‘[]‘ || Running[inst_id]

The bigraphs R and R’ both have two roots. The first root of R has a single node as
child with the control If and a single free port linked to the name inst id. The node
has three nodes as children, labelled respectively with the controls Condition, Then and
Else. The first node has a single node as child labelled with the atomic control False.
The two latter nodes both have a hole as a child. The holes in a bigraph term are ordered
from left to right, i.e. the hole below the Then is indexed 0 and the hole below the Else
is indexed 1. The second root of R has a single node as child labelled with the atomic
control Running and a single free port linked to the name inst id. The bigraph R’ has

8

simply a hole below its first root and the atomic Running control below its second root.
The two bigraphs in fact form respectively the redex and reactum of a reaction rule, as
defined below, defining the meaning of an if-then-else construct in the case where the
condition has been evaluated to false.

2.3 Parametric Reaction Rules

The dynamics of bigraphical reactive systems is defined in terms of a reaction relation
generated from a set of reaction rules R. Such rules are generally parametric, and may
discard and also duplicate their parameters.

A rule, written "rule name" ::: R --%̄--|> R’, consists of two bigraphs: the redex
R : I → J and the reactum R’ : I ′ → J , where both I and I ′ are local interfaces, and a
parameter mapping %̄. The mapping %̄ indicates for each site in the reactum from which
site in the redex the parameter is copied.

The expression "if false" ::: R --[0 |-> 1]--|> R’ is a reaction rule for exe-
cuting an If activity with a false condition. During a reaction, the first tree of R (the
if-then-else construct) is replaced by the first tree the reactum R’. Since the second tree
of R and R’ are identical it simply means that a node with the Running control (and the
correct id link) must be present in the context—this is used to ensure that rewrites are
only performed on running instances which are ready to execute a step. The mapping
[0 |-> 1] specifies that the hole in the reactum (site 0) should contain the contents of
the hole in the Else-branch (site 1), while the contents of the hole in the Then-branch is
discarded as it is not mentioned in the mapping.

In general parameters may have local names, thus the mapping %̄ must also define
how the local names of a parameter is mapped to local names in the hole of the reactum.
For instance, [0&[x1] |--> 0&[x], 1&[x2] |--> 0&[x]] is a mapping which (a) maps
site 0 of the reactum and its local name x1 to site 0 of the redex and its local name x,
and (b) also maps site 1 of the reactum and its local name x2 to site 0 of the redex and
its local name x.

A rule matches an agent a if a = C o (idZ || R) o d for some identity linking idZ
and active context C (i.e., no site of C is nested within a passive node); the linking idZ
connects all non-local names in the outerface of d to C. In this case reaction produces
a new agent a’ = C o (idZ || R’) o d’, where d’ is computed from d as prescribed
by %̄. When duplicating parts of the agent (by letting %̄ map several reactum sites to
a single redex site), local links in d are copied to each copy in d’, while free links are
shared between the copies. Binding ports thus enforce a notion of scope and locality on a
bigraph’s links, resembling the usual notion of binders in the λ- and the π-calculus. This
feature of binding bigraphs is crucial in our formalization of WS-BPEL to create fresh id
and scope links when new instances or scopes are created.

3 Formalizing WS-BPEL in the BPL Tool

In this section we present the subset of WS-BPEL considered in this report and its
formalization in the BPL Tool. First we present the WS-BPEL subset in Sec. 3.1. Second
we present the static representation in Sec. 3.2, i.e. the representation of processes and

9

proc ::= Process(scopecontent)
scopecontent ::= partnerlinks vars act
partnerlinks ::= PartnerLinks(PartnerLink∗)
vars ::= Variables(Variable∗(value?))
act ::= scope | seq | flow | while | if | assign

| Invoke | Receive | Reply | Exit
scope ::= Scope(scopecontent)
seq ::= Sequence(act act)
flow ::= Flow(act∗)
while ::= While(Condition(expr) act?)
if ::= If(Condition(expr) Then(act?) Else(act?))
assign ::= Assign(Copy(From To))
value ::= true() | false()
expr ::= value | $x

Table 1: Grammar for WS-BPEL processes.

instances. Third we present the reaction rules capturing the dynamic behavior of WS-
BPEL in Sec. 3.3.

3.1 WS-BPEL

We consider a subset of the WS-BPEL syntax given by the grammar in Tab. 1. For brevity
we do not use XML notation or an XML schema and omit attributes in the grammar. We
use ? and ∗ to indicate that an element can appear at most once and any number of times
respectively. We also assume that sequence elements always contain exactly two actions.
For technical reasons, which will be explained in Sec. 3.3.6, we also assume that receive
elements with the createInstance="yes" attribute refer to a partner link defined in the
outermost scope. We write attributes as sets following the element name (e.g. Process
{name=echo}) and let A range over such sets. If an element has no attributes, we leave
out the set of attributes. Note that in regard to data flow we only consider the constant
values given by the XPath expressions true() and false() and references to variables,
assuming that x ranges over strings. We let BPEL refer to the set of terms defined by
the grammar.

3.2 The Static Representation

We define our bigraphical representation of WS-BPEL in the BPL Tool with respect to the
signature given in Tab. 2. As explained in the previous section, the signature determines
the allowed controls for labeling nodes, and for each control the number of binding and
free ports of nodes labeled with this control. For instance, we write Reply =: 0 --> 6
for a control called Reply with binding arity 0 and free arity 6, which can be abbreviated
to Reply -: 6. A control having zero binding and free arity is declared by just writing
the control name, e.g. Next.

The controls listed in the upper part of the signature correspond directly to the subset
of WS-BPEL elements we are considering2 (cf. Tab. 1) and allow us to give a very direct
representation of WS-BPEL processes, while the controls listed in the lower part are

2WS-BPEL allows several forms of the from and to elements. We have chosen to formalize two of
these, namely those for variables (From, To) and partner links (FromPLink, ToPLink).

10

Active controls
PartnerLinks
Variables
If -: 1
Condition
Sequence -: 1
Flow -: 1

Instance -: 2
ActiveScope -: 2

Passive controls
Process =: 1 --> 1
Scope =: 1 --> 1
Variable -: 2
While -: 1
Then
Else
Assign -: 1
Copy
PartnerLink -: 2

Next
Message -: 1

Atomic controls
To -: 2
From -: 2
ToPLink -: 2
FromPLink -: 2
Invoke -: 8
Receive -: 6
Reply -: 6
Exit -: 1
True
False
VariableRef -: 3

CreateInstance -: 1
GetReply -: 6
ReplyTo -: 2
Link -: 1
Running -: 1
Invoked -: 1
Stopped -: 1

Table 2: Signature for WS-BPEL

introduced to facilitate the formalization of the execution semantics. We will call the
bigraphical reactive system for BRSBPEL.

As an example, consider the process in Fig. 2(a). The process is represented in the BPL
Tool as shown in Fig. 2(b). The graphical representation, generated by the BPL Tool, is
shown in Fig. 2(c) (the link to the binding port of the Process node has been colored
green to improve readability). The place graph (nesting of controls) and the link graph
correspond almost directly to the nesting of elements and the sharing of attributes of the
XML representation respectively. But we need to introduce some additional structure.
The main differences are:

1. Since the children of a node in a bigraph are unordered, and children of an XML
element are ordered, we represent the sequence construct as a nesting of binary
sequence constructs, in which the second activity is enclosed in a node labeled by
the Next control.

2. To be able to identify the scope of partner links and variables we have added an
explicit link from the PartnerLink and Variable nodes to a binding port of the
Process and Scope nodes. This will be explained below when we describe the
semantics of assignment and scopes. For similar reasons, we also link expressions
and activities to the binding port of the enclosing Process node.

3. To be able to identify the initial receive actions we insert CreateInstance nodes in
each PartnerLink which identify an operation for which there is a receive activity
with the createInstance="yes" attribute using that partner link.

4. We require PartnerLinks and Variables nodes in each scope (including process).
This allows for fewer and simpler reaction rules. This is a technicality as the absence
of e.g. a variables declaration in a WS-BPEL process is equivalent to an empty
variables declaration, so we just make them explicit in the representation.

11

<process name="echo_process">

<partnerLinks><partnerLink name="echo_client" /></partnerLinks>

<variables><variable name="x" /></variables>

<sequence>

<receive partnerLink="echo_client" operation="echo"

createInstance="yes" variable="x" />

<reply partnerLink="echo_client" operation="echo" variable="x" />

</sequence>

</process>
(a) Example WS-BPEL process.

val echo_process =

Process[echo_process][[echo_id]]

o (PartnerLinks o PartnerLink[echo_client, echo_id] o CreateInstance[echo]

‘|‘ Variables o Variable[x, echo_id] o <->

‘|‘ Sequence[echo_id] o (

Receive[echo_client, echo_id, echo, x, echo_id, echo_id]

‘|‘ Next o (

Reply[echo_client, echo_id, echo, x, echo_id, echo_id])))

(b) BPL Tool representation of example process.

Process PartnerLinks

PartnerLink

CreateInstance

Variables

Variable

Sequence

Receive
Next

Reply

echo process echo client echo x

(c) BPL Tool visualization of example process.

Figure 2: Example process.

We represent the XPath expressions true() and false() by nodes with the con-
trols True and False, respectively. Variable references (e.g. $x) are represented by
VariableRef nodes.

We give the formal definition of the map C[[−]] : BPEL → BRSBPEL in Tab. 3. The
map is defined using a map [[−]]x id,s idx̃,σ,φ : BPEL → BRSBPEL on sub-terms indexed by
names x id and s id, indicating the name connected to the bound link identifying the
process and the scope respectively, a set x̃ of names constituting the current names of
bound links, a scope map σ mapping every defined partnerlink name or variable name
to its scope link, and a map φ : Name → BRSBPEL mapping partnerlink names to
bigraph terms of the form CreateInstance[op1] ‘|‘ . . . ‘|‘ CreateInstance[opn] indi-
cating for a given partnerlink name n that the process contains terms Receive A i where
{partnerLink=n, operation=opi, createInstance=yes} ⊆ Ai, 1 ≤ i ≤ n. We use the
map I[[−]] : BPEL → Name → BRSBPEL defined in Tab. 4 to find φ from the body of
the process. For a set of partnerlink and variable declarations pls and vars we will write
σ[pls ∪ vars 7→ x id] for the update of the scope map σ mapping every partnerlink and

12

C[[Process {name=n}(pls vars act)]] = Process[n][[n id]]◦

([[pls]]n id,n id{n id},[],I[[act]] ‘|‘ [[vars]]n id,n id{n id},[],φ0
‘|‘ [[act]]n id,n id{n id},[pls∪vars 7→n id],φ0

)

[[PartnerLink {name=n}]]x id,s idx̃,σ,φ = PartnerLink[n,s id] ◦ φ(n)

[[Variable {name=n}(p)]]x id,s idx̃,σ,φ = Variable[n,s id] ◦ [[p]]x id,s idx̃,σ,φ

[[Scope(pls vars act)]]x id,s idx̃,σ,φ = Scope[x id][[y id]]◦

([[pls]]x id,y idx̃,σ,φ ‘|‘ [[vars]]x id,y idx̃y id,σ,φ ‘|‘ [[act]]x id,y idx̃y id,σ[pls∪vars 7→y id],φ)

[[Sequence(act act ′)]]x id,s idx̃,σ,φ = Sequence[x id] ◦ ([[act]]x id,s idx̃,σ,φ ‘|‘ Next ◦ [[act ′]]x id,s idx̃,σ,φ)

[[From {var=n}]]x id,s idx̃,σ,φ = From[n,σ(n)]

[[To {var=n}]]x id,s idx̃,σ,φ = To[n,σ(n)]

[[From {partnerLink=n}]]x id,s idx̃,σ,φ = FromPLink[n,σ(n)]

[[To {partnerLink=n}]]x id,s idx̃,σ,φ = ToPLink[n,σ(n)]

[[Receive A]]x id,s idx̃,σ,φ = Receive[n,σ(n),op,x,σ(x),x id],

if A ⊇ {partnerLink=n,operation=op,variable=x}

[[Invoke A]]x id,s idx̃,σ,φ = Invoke[n,σ(n),op,ix,σ(ix),ox,σ(ox),x id],

if A = {partnerLink=n,operation=op,
inputVariable=ix,outputVariable=ox}

[[Reply A]]x id,s idx̃,σ,φ = Reply[n,σ(n),op,x,σ(x),x id],

if A = {partnerLink=n,operation=op,variable=x}

[[E(p)]]x id,s idx̃,σ,φ = E ◦ [[p]]x id,s idx̃,σ,φ

where E ∈ {PartnerLinks, Variables, Then, Else, Condition, Copy}

[[Eid(p)]]x id,s idx̃,σ,φ = Eid[x id] ◦ [[p]]x id,s idx̃,σ,φ

where Eid ∈ {Flow, If, While, Assign, Exit}

[[true()]]x id,s idx̃,σ,φ = True

[[false()]]x id,s idx̃,σ,φ = False

[[$x]]x id,s idx̃,σ,φ = VariableRef[x,σ(x),x id]

[[p p′]]x id,s idx̃,σ,φ = [[p]]x id,s idx̃,σ,φ ‘|‘ [[p′]]x id,s idx̃,σ,φ

[[ε]]x id,s idx̃,σ,φ = <->

Table 3: Translating BPEL into BRSBPEL.

13

I[[Receive A]] =

φ0[n 7→ CreateInstance[op]] if ci = yes

φ0 otherwise

where A ⊇ {partnerLink=n,operation=op,createInstance=ci}
I[[E A(p)]] = φ0

where E ∈ {Condition, Assign, Invoke, Reply, Exit, Variables, PartnerLinks}
I[[E A(p)]] = I[[p]]

where E ∈ {Scope, Flow, Sequence, While, If, Then, Else}
I[[p p′]] = I[[p]] | I[[p′]]

I[[ε]] = φ0

φ0(n) = <->

(φ | φ′)(n) = φ(n) ‘|‘ φ′(n)

Table 4: Finding Receive terms with createInstance=yes.

variable name in pls and vars to the name x id and every other name n in the domain of
σ to σ(n). We write x̃y for the disjoint union of x̃ and {y} (i.e. implying y 6∈ x̃), which
is used in generating fresh bound names of scopes. Note that we assume a partition of
the set of names into two disjoint sets, one ranged over by strings with the suffix id
(e.g. x id), which is used for scope identifiers, and one ranged over by strings without the
suffix, which corresponds to XML attribute values. This prevents clashes between scope
identifiers introduced in the translation and attribute values. We let p range over any sub
term of BPEL, including the empty term ε.

A key feature of the formalization is that active process instances are represented
almost as the processes, the main difference is that they are nested within an (active)
Instance control instead of a (passive) Process control. Fig. 3(b) is an example of an
instance, which is visualized in Fig. 3(c) (again some of the links have been colored to
improve readability). It exemplifies the case, where the echo process has been invoked
resulting in a new instance of that process, which has performed the initial receive activity.
We have left out the calling instance from the figure to keep the example simple — the
edges “client id edge” and “echo id edge”, is connected to respectively the id port and a
port of a link node in the PartnerLink (used for getting the reply) in the calling instance.

One might use the close correspondence between bigraphs and XML to translate the
representation of instances into XML as shown in Fig. 3(a). This illustrates that the
run-time execution format is very close to the process specification format.

However, notice that we have also added a Running node in the instance; we call this
the status node of the instance. The purpose of the status node is twofold and somewhat
intricate, and will be explained below when we describe the reaction rules.

14

<instance name="echo_process" id="echo_id">
<running id="echo_id" />
<partnerLinks>

<partnerLink name="echo_client" />
<link id="client_id" /><replyTo id="client_id" />

</partnerLink>
</partnerLinks>
<variables><variable name="x">True</variable></variables>
<sequence>

<reply partnerLink="echo_client" operation="echo" variable="x" />
</sequence>

</instance>
(a) Example WS-BPEL instance.

val echo_instance =
Instance[echo_process, echo_id]
o (Running[echo_id]

‘|‘ PartnerLinks
o PartnerLink[echo_client, echo_id]

o (Link[client_id] ‘|‘ ReplyTo[echo, client_id])
‘|‘ Variables o Variable[x, echo_id] o True
‘|‘ Sequence[echo_id] o (

Next o (
Reply[echo_client, echo_id, echo, x, echo_id, echo_id])))

(b) BPL Tool representation of example instance.

Instance

Running

PartnerLinks

PartnerLink

Link ReplyTo

Variables

Variable

True

Sequence

Next

Reply

client id edge echo id edge

echo process echo client echo x

(c) BPL Tool visualization of example instance.

Figure 3: Example instance.

3.3 Reaction Rules

In this section we present the reaction rules used in the formalization of WS-BPEL. The
reaction rules (in BPL Tool syntax) is also available via the on-line tool3.

3.3.1 Structural Activities

The rules for structural activities covers completion of flows and sequences, conditionals
(if-then-else) and iteration (while-loop).

3See http://tiger.itu.dk:8080/bplweb/index/18

15

Completion of Activities: When a Flow is completed (i.e. there are no more instruc-
tions in the flow to be executed) we garbage collect the flow, by replacing the Flow node
with an empty bigraph (denoted by <->).

"flow completed" :::

Flow[inst_id] o <->
|| Running[inst_id]

----|>
<->

|| Running[inst_id];

In the same manner, we garbage collect a Sequence if the current instruction is com-
pleted (i.e. if there is no current instruction). We then make the following instruction the
next to be executed by replacing the Sequence node with the content of the Next node.

"sequence completed" :::

Sequence[inst_id] o Next o ‘[]‘
|| Running[inst_id]

--[0 |-> 0]--|>
‘[]‘

|| Running[inst_id];

Conditionals: The rules for evaluating an if-then-else statement is as expected. If the
condition is True we execute the then-branch, otherwise we execute the else-branch. One
of the two rules for evaluating an if-then-else statement was already given in Sec. 2 (rule
if false), so we only present the rule for when the condition is true in this section. The
rule is similar to the rule given in Sec. 2 except for the value of the condition and the
instantiation.

"if true" :::

If[inst_id] o (Condition o True
‘|‘ Then o ‘[]‘
‘|‘ Else o ‘[]‘)

|| Running[inst_id]
--[0 |-> 0]--|>
‘[]‘

|| Running[inst_id];

Iteration: We give semantics to a while-loop in the traditional manner, by unfolding
the loop once and using an if-then-else statement with the loop condition. In the syntax
of the BPL Tool (emphasizing the order of the holes using Standard ML comments), the
rule while unfold for unfolding looks as follows.

"while unfold" :::

While[inst_id] o (Condition o ‘[]‘ ‘|‘ ‘[]‘)
|| Running[inst_id]

--[0 |-> 0, 1 |-> 1, 2 |-> 0, 3 |-> 1]--|>

If[inst_id] o (Condition o ‘[]‘
‘|‘ Then o Sequence[inst_id] o (

‘[]‘
‘|‘ Next o

16

While[inst_id]
o (Condition o ‘[]‘ ‘|‘ ‘[]‘))

‘|‘ Else o <->)
|| Running[inst_id];

Note how the instantiation [0 |-> 0, 1 |-> 1, 2 |-> 0, 3 |-> 1] on the arrow
of the rule describes that the parameter in hole 0 (the condition expression) is copied and
placed in both hole 0 and hole 2 of the reactum. Also, the parameter in hole 1 (the body
of the while loop) is copied and placed in both hole 1 and hole 3 of the reactum. One
may also note that the empty process, to be executed in the Else branch, is represented
by the bigraph with a single barren root. As explained above, the Running node linked
to the While node via the name inst id is used to guarantee that the instance which the
while-loop is part of is indeed running.

3.3.2 Expression Evaluation

Our current formalization only supports one type of expressions, namely variable ref-
erences. But one can easily extend the semantics to more expression types, simply by
adding rules describing how to evaluate them — without having to alter the current rules.

A variable reference is evaluated by locating the referenced variable, using its name
and “scope”-link, and then replacing the VariableRef node by the current content of the
variable.

"variable reference" :::

VariableRef[var, var_scope, inst_id]
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id]

--[0 |-> 0, 1 |-> 0]--|>

‘[]‘
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id];

3.3.3 Assignment and Dynamic Manipulation of Partner Links:

Of the many variants of the ”Assign” activity in WS-BPEL, we cover in our formali-
zation only the four allowing for copying the content of a Variable or PartnerLink to a
Variable or PartnerLink. Each are covered by a single rule in the formalization. Below
we show the case of the rule assign copy plink2var which copies the content of the
PartnerLink node referenced to by the FromPLink node to the Variable node referenced
to by the To node. The remaining 3 rules are quite similar.

"assign copy plink2var" :::

Assign[inst_id] o Copy o (FromPLink[f, scope1]
‘|‘ To[t, scope2])

|| PartnerLink[f, scope1] o ‘[]‘
|| Variable[t, scope2] o ‘[]‘
|| Running[inst_id]

--[0 |-> 0, 1 |-> 0]--|>

<->

17

|| PartnerLink[f, scope1] o ‘[]‘
|| Variable[t, scope2] o ‘[]‘
|| Running[inst_id];

The instantiation describes that the parameter of hole 0 is copied to both hole 0 and 1
in the reactum, and that the content of hole 1 is discarded. The f and t links determine
the name of the partner link and the variable respectively. However, the name alone may
not uniquely determine a variable (or partner link). Since variables (or partner links) may
be defined within nested scopes, several variables (or partner links) may have the same
name. In this case the WS-BPEL specification states that the closest variable (partner
link) should be fetched. We represent this in the formalization by letting the scope1 and
scope2 links connect respectively the FromPLink and To nodes to the closest partner link
and variable with the correct name.

3.3.4 Scopes

The formalization of nested scopes makes crucial use of bound links. In WS-BPEL, local
scopes may be defined within a while loop. As an example consider the while loop shown
below.

<while>
<condition>true()</condition>
<scope>

<variables><variable name="x" /></variables>
<assign>

<copy><from partnerlink="echo_client" /><to variable="x" /></copy>
</assign>

</scope>
</while>

Every iteration of the while loop, i.e. every unfolding of the loop, must create a new
scope, containing a new copy of the variable. If we (naively) used a normal, i.e. free, link
within the scope to connect the reference to x in the assignment, then the two copies
created by the rule while unfold would share the same scope link. The consequence
would be that the assignment rules would not tell the two scopes apart, and thus the
variable from the wrong scope could be used in the assignment. For this reason we let the
scope links be connected to a binding port of the Scope control. This ensures that each
copy of the scope gets its own bound link. However, this introduces another problem:
In the rule assign copy plink2var above we must place the assignment, partner link
and variable controls below different roots, since they could all potentially be located in
different scopes. However, interfaces of binding bigraphs do not allow a bound link to be
shared between two nodes located below two different roots in the place graph.

To cope with this problem, we make the Scope control passive, and introduce a rule
scope activation as defined below. The rule replaces the passive Scope node with an
active ActiveScope node, where the binding port is replaced by a normal (free) port,
and the bound link by an edge connected to that port. The rule is defined as follows in
the BPL Tool syntax.4

4An alternative solution to this problem would be to use so-called local bigraphs, which exactly allow
the more general interfaces where names can be bound to several roots. Alas, local bigraphs are not
supported by the BPL Tool.

18

"scope activation" :::

Scope[inst_id][[scope]] o ‘[scope]‘
|| Running[inst_id]

--[0 |-> 0]--|>
-//[scope] o (ActiveScope[inst_id, scope] o ‘[scope]‘)

|| Running[inst_id];

Note how the use of single and double square brackets of the control Scope specify that
inst id is a normal port and scope is a binding port, whereas ActiveScope[inst id,
scope] has two normal ports. Note also that the link map -//[scope] closes the link
connected to the scope port in the reactum, and that the name scope is local to the hole
0 in both redex and reactum. In a similar manner we need to be able to activate scopes
in newly created instances, while their status is still Invoked.

"scope activation 2" :::

Scope[inst_id][[scope]] o ‘[scope]‘
|| Invoked[inst_id]

--[0 |-> 0]--|>
-//[scope] o (ActiveScope[inst_id, scope] o ‘[scope]‘)

|| Invoked[inst_id];

When we are finished executing the body of the scope we remove the scope, including
its variables, partner links, and its associated “scope”-edge.

"scope completed" :::

ActiveScope[inst_id, scope]
o (Variables o ‘[]‘ ‘|‘ PartnerLinks o ‘[]‘)

|| Running[inst_id]
----|>
<-> || scope//[]

|| Running[inst_id];

3.3.5 Process Termination

Processes can terminate in two different ways: 1) normally, i.e. when no more activities
remain, or 2) abnormally by executing an Exit activity.

Normal Termination: In the first case, we simply remove the instance in the same
way as for scopes. The precondition for the reaction rule is that there are no activities
remaining in the instance, and we then replace the instance with an empty bigraph. As
redex and the reactum are required to have the same outer face we add the “idle” link
proc name and inst id using a wiring proc name//[] || inst id//[].

"inst completed" :::

Instance[proc_name, inst_id]
o (Variables o ‘[]‘ ‘|‘ PartnerLinks o ‘[]‘ ‘|‘ Running[inst_id])

----|>
<-> || proc_name//[] || inst_id//[];

19

Abnormal Termination: The Exit activity in WS-BPEL allows processes to be ab-
normally terminated. Its semantics is given by two rules: The first rule exit stop
instance changes the status of the instance from running to stopped by replacing the
Running node inside the instance with a Stopped node.

"exit stop instance" :::

Exit[inst_id]
|| Running[inst_id]

----|>
<->

|| Stopped[inst_id];

The second rule exit remove inst removes the instance together with all its remain-
ing content. This is simply done by replacing the Instance node with the empty root
bigraph <-> and discarding the parameter in hole 0.

"exit remove inst" :::

Instance[proc_name, inst_id]
o (Stopped[inst_id] ‘|‘ ‘[]‘)

----|>
<-> || proc_name//[] || inst_id//[];

(Again the “idle” links proc name//[] || inst id//[] in the reactum is simply there
to ensure that the redex and reactum have the same outer face.)

One may think that the above semantics could be defined as a single rewrite rule,
with a redex matching an instance containing an active Exit activity, and a reactum
that simply replaces this instance with the empty bigraph <->. However, the Exit node
may be nested arbitrarily deep (e.g. inside Flow nodes) within the Instance node. This
cannot be captured in the format of parametric rules of binding bigraphs.5 Therefore
we first match on the status node Running and the Exit node and change the status to
Stopped. As the status node is a child of the Instance node, we can write a rule which
matches instances which are stopped and discard them. All other rules, except for the
rule exit remove inst, checks for the presence of the Running node, so the two reaction
rules will always be applied consecutively.

For similar reasons, we also change the status temporarily to Invoked when creating a
new instance, that is, when we execute a receive activity with the createInstance="yes"
attribute.

3.3.6 Communication

The formalization includes synchronous request-response communication which is achieved
in WS-BPEL using, in order, the invoke, receive, and reply activities. There are two cases:
the receive can either 1) be an activity of a running instance, or 2) it can create a new
instance of a process.

The first case is implemented by the invoke instance rule which handles both the
invoke and receive in one step, while the second is modeled by two rules: invoke and
receive. The content of partner links is used in the rules for invoke and reply activ-
ities to determine the target instance for communication. Thus, the ability of copying

5This however is possible using the higher-order reaction rules introduced in [23, 22].

20

between partner links and variables makes it possible to send partner links as messages
and dynamically assign instances as target for communication.

The rule invoke instance below allows two active instances to communicate. It
synchronizes an active Invoke activity in one instance with a corresponding Receive
activity in another instance, replacing the Invoke with a GetReply activity and removing
the Receive. The instantiation map ensures that the content of the input variable invar
(hole 1) is copied to the appropriate variable of the receiving instance (hole 3 in the
reactum).

"invoke_instance" :::

Invoke[partner_link_invoker, partner_link_scope_invoker, oper,
invar, invar_scope, outvar, outvar_scope, inst_id_invoker]

|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]
o (Link[inst_id_invoked] ‘|‘ ‘[]‘)

|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_invoker]
|| Receive[partner_link_invoked, partner_link_scope_invoked, oper,

var, var_scope, inst_id_invoked]
|| PartnerLink[partner_link_invoked, partner_link_scope_invoked] o ‘[]‘
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_invoked]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 1]--|>

GetReply[partner_link_invoker, partner_link_scope_invoker, oper,
outvar, outvar_scope, inst_id_invoker]

|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]
o (Link[inst_id_invoked] ‘|‘ ‘[]‘)

|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_invoker]
|| <->
|| PartnerLink[partner_link_invoked, partner_link_scope_invoked]

o (‘[]‘ ‘|‘ ReplyTo[oper, inst_id_invoker])
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_invoked];

A similar rule allows the GetReply activity to synchronize with the corresponding
Reply activity in the invoked instance, thereby copying the content from variable var to
variable outvar.

"reply" :::

Reply[partner_link_invoked, partner_link_scope_invoked, oper,
var, var_scope, inst_id_invoked]

|| PartnerLink[partner_link_invoked, partner_link_scope_invoked]
o (ReplyTo[oper, inst_id_invoker] ‘|‘ ‘[]‘)

|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_invoked]
|| GetReply[partner_link_invoker, partner_link_scope_invoker, oper,

outvar, outvar_scope, inst_id_invoker]
|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]

o (Link[inst_id_invoked] ‘|‘ ‘[]‘)
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_invoker]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 1]--|>

<-> || oper//[]
|| PartnerLink[partner_link_invoked, partner_link_scope_invoked] o ‘[]‘

21

|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_invoked]
|| <->
|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]

o (Link[inst_id_invoked] ‘|‘ ‘[]‘)
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_invoker];

The invoke rule represents the case where an Invoke activity is executed inside a
running instance and we have a process with the appropriate operation available and
marked as being able to create new instances. The reactum 1) replaces the Invoke
activity in the calling instance with a GetReply activity, which is used to represent that
the instance is waiting for the reply, and 2) creates a new instance with the body of
the process definition and the value of the input variable in a Message node within the
relevant PartnerLink node. The partner links are updated to reflect the connection
between the two instances: A Link node is inserted into the PartnerLink nodes of the
instances, with a connection to the scope link of the other instance.

Note that the PartnerLink in the invoked process must be defined in the outermost
scope. This is essentially the same issue as with Exit (cf. Sec. 3.3.5), namely that binding
bigraph contexts cannot express arbitrary nesting depth: it is impossible to capture the
whole process in the rule while also matching an arbitrarily nested partner link withing the
process. With hindsight, we could probably have sidestepped this limitation by placing
the CreateInstance nodes at a fixed location under the Process node, thus decoupling
them from the partner links.

"invoke" :::

Invoke[partner_link_invoker, partner_link_scope_invoker, oper,
invar, invar_scope, outvar, outvar_scope, inst_id_invoker]

|| PartnerLink[partner_link_invoker, partner_link_scope_invoker] o <->
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_invoker]
|| Process[proc_name][[scope]]

o (PartnerLinks
o (PartnerLink[partner_link, scope]

o (CreateInstance[oper] ‘|‘ ‘[]‘)
‘|‘ scope//[scope1] o ‘[scope1]‘)

‘|‘ scope//[scope2] o ‘[scope2]‘)

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3,
4 |-> 0, 5&[inst_id_invoked1] |--> 2&[scope1],
6&[inst_id_invoked2] |--> 3&[scope2]]--|>

-//[inst_id_invoked]
o (GetReply[partner_link_invoker, partner_link_scope_invoker, oper,

outvar, outvar_scope, inst_id_invoker]
|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]

o Link[inst_id_invoked]
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_invoker]
|| Process[proc_name][[scope]]

o (PartnerLinks
o (PartnerLink[partner_link, scope]

o (CreateInstance[oper] ‘|‘ ‘[]‘)
‘|‘ scope//[scope1] o ‘[scope1]‘)

‘|‘ scope//[scope2] o ‘[scope2]‘)
‘|‘ Instance[proc_name, inst_id_invoked]

o (PartnerLinks

22

o (PartnerLink[partner_link, inst_id_invoked]
o (Link[inst_id_invoker]

‘|‘ Message[oper] o ‘[]‘
‘|‘ ReplyTo[oper, inst_id_invoker])

‘|‘ inst_id_invoked//[inst_id_invoked1]
o ‘[inst_id_invoked1]‘)

‘|‘ Invoked[inst_id_invoked]
‘|‘ inst_id_invoked//[inst_id_invoked2]

o ‘[inst_id_invoked2]‘));

The receive rule takes care of activating the instance, by removing a receive node
associated to the partner link and the operation (indicated by the link of the Message),
copying the content of the Message in the PartnerLink to the proper input variable, and
changing the status from a Invoked node to a Running node.

"receive" :::

Receive[partner_link, partner_link_scope, oper, var, var_scope, inst_id]
|| PartnerLink[partner_link, partner_link_scope]

o (‘[]‘ ‘|‘ Message[oper] o ‘[]‘)
|| Variable[var, var_scope] o ‘[]‘
|| Invoked[inst_id]

--[0 |-> 0, 1 |-> 1]--|>

<-> || oper//[]
|| PartnerLink[partner_link, partner_link_scope]

o ‘[]‘
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id];

4 Motivating HomeBPEL

In this section we motivate the use of HomeBPEL with a simplified example of workflow
management for pervasive health care. Each doctor is assumed to run a workflow process,
which is initiated when he/she is hired. Every new treatment of a patient causes a
new workflow process to be initiated, describing the clinical guideline to be followed for
the particular treatment of the patient. In a centralized solution, this process would
be running as a separate workflow on the workflow server and only be available when
connected to the network. In HomeBPEL business processes can be manipulated as
first class values, so we can let the doctor’s workflow process execute the treatment
process as a sub-process. By assuming that the doctor carries a mobile device running
its own HomeBPEL engine the treatment process can be executed independently of the
network. Moreover, if each patient is equipped with a mobile device running a self-
treatment workflow process, the doctor may delegate the treatment process (or parts of
it) by sending a sub-process to the patient’s workflow process.

A sequence diagram illustrating a simple example of this scenario is shown in Fig. 4.
The two large boxes represent the patient’s and the doctor’s PDA respectively. The
dotted continuation of the ”life-line” of the sub-process guideline indicates that it is
the same process continuing its execution at the patient’s PDA. The BPMN diagram
in Fig. 5 gives a more detailed view of the patient process, with a group of guideline
sub-processes indicated in the dashed box in the middle. Fig. 6 shows the corresponding
HomeBPEL process for the patient. We have left out details related to the data-flow which

23

Figure 4: Sequence diagram for the pervasive health care scenario.

Figure 5: BPMN diagram of the patient workflow process.

24

<process name="patient">
<partnerLinks>

<partnerLink name="patient_client" />
<partnerLink name="task_list_UI" />

</partnerLinks>
<subLinks>

<subLink name="subinsts" />
</subLinks>
<variables>

<variable name="guideline" />
<variable name="task" />
<variable name="reply" />
...

</variables>
<sequence>

<receive partnerLink="patient_client" operation="hospitalized"
createInstance="yes" ... /><reply operation="hospitalized" ... />

<invoke partnerLink="task_list_UI" operation="init_UI" ... />
<flow>

<!-- Thaw-loop: Continually receives and executes sub-instances -->
<while>

<condition>...</condition>
<sequence>

<receive partnerLink="patient_client" operation="run"
variable="guideline" /><reply operation="run" ... />

<thaw subLink="subinsts" variable="guideline" />
<invokeSub subLink="subinsts" operation="resume" ... />

</sequence>
</while>
<!-- UI-loop: Continually receives tasks from sub-instances and

pass them on to the UI service -->
<while>

<condition>...</condition>
<sequence>

<receiveSub subLink="subinsts" operation="task" variable="task" />
<invoke partnerLink="task_list_UI" operation="add_task"

inputVariable="task" outputVariable="reply" />
<replySub subLink="subinsts" operation="task" variable="reply" />

</sequence>
</while>

</flow>
</sequence>

</process>

Figure 6: Patient workflow process.

are not relevant for this example. The initial receive on the hospitalized operation
is used to invoke the patient process, as indicated by the createInstance attribute.
We have only formalized synchronous communication, so most receive operations are
immediately followed by a ”dummy” reply. As also shown in the sequence and BPMN
diagrams, the following invoke instantiates a local user interface process running on the
patient’s PDA which we assume takes care of handling the task list of the patient. It
is followed by a WS-BPEL flow, which contains two while-loops executing in parallel.
The first while-loop (corresponding to the right-hand loop in the BPMN diagram) allows
for arbitrarily many self-treatment sub-processes to be received and instantiated: The
receive on the run operation waits for a message containing a process and stores it in
the input variable guideline. The following activity thaw is part of the new features
introduced in HomeBPEL and it is used to create an instance of a process stored in a
variable (in the example named guideline) and execute it as a sub-instance within the

25

scope of the corresponding subLink (in the example named subinsts) of the current
running instance. The second while-loop (corresponding to the left-hand loop in the
BPMN diagram) forwards messages received from the guideline sub-processes by the
HomeBPEL receiveSub activity to the user interface, and in turn forwards the answer
back to the sub-process by the HomeBPEL replySub activity.

The doctor’s workflow process shown in Fig. 7 also invokes a user interface process, and
contains an identical loop for forwarding messages from treatment workflows to the user
interface process (which we have omitted from the example code to save space). However,
different from the patient workflow, the first step of the main loop of the doctor workflow
is to receive a link (on the patient operation) which is then dynamically assigned to
the patient partner link by the copy operation. Thereby the doctor workflow process
can be dynamically linked to different patient workflow processes during its lifetime.
The following thaw activity instantiates a treatment guideline as a sub-process from the
variable named guideline. Fig. 8 shows an outline of the treatment process consisting
of two phases: A consultation phase invoked explicitly by the doctor and carried out
within the doctor’s workflow, and a self-treatment phase carried out within the patient’s
workflow. To initiate the first part of the treatment, the operation consultation is
invoked from the doctor workflow by the action invokeSub. The reply of this operation
signals that the consultation is finished, and the treatment process is ready to be frozen
(by the freeze action) and sent to the patient’s workflow process.

Note that we have not specified the specific tasks for each phase in the treatment,
which in general could be part of an arbitrarily complex workflow. However, we have
illustrated how tasks in each phase can be scheduled at the user interface of the current
super workflow by invoking the task operation by the invokeSup action. This shows
how context-dependent communication is elegantly facilitated in HomeBPEL. One could
easily imagine that the treatment processes could also access local information, e.g. special
expertise of the doctor or relevant characteristics of the patient.

We claim that the use of higher-order processes in this example is much more flexible
than a workflow simply based on a fixed configuration of a self-treatment process at the
patient engine: Configuration is limited to a pre-defined set of parameters — in contrast
to the treatment template that can be an arbitrary process which could be received by
the doctor process from a central server of clinical guidelines.

The above example is of course still highly simplified. One would most likely want
more control over the behavior of sub-processes, i.e. to disallow malicious processes from
entering ones mobile device, to only allow processes from known, trusted sources, etc. It
would also be relevant to allow reflection, combination and adaption of sub-processes on
the fly. In the health care scenario, this could be used to avoid repeating a blood pressure
measurement in two concurrent treatments, or more important, that the same pill is not
commanded to be taken twice. We expect to address these questions in future work. A
necessary first step is a formal semantics of the execution which will be provided in the
following sections.

5 Formalizing HomeBPEL

In this section we present the formalization of HomeBPEL in the BPL Tool. Using
basically the same approach as in Sec. 3 we first present the static representation in

26

<process name="doctor">
<partnerLinks>

<partnerLink name="hospital" />
<partnerLink name="patient" />
<partnerLink name="task_list_UI" />

</partnerLinks>
<subLinks><subLink name="treatment" /></subLinks>
<variables>

<variable name="guideline"><process name="guideline">...</process></variable>
<variable name="link" /><variable name="self_treatment" /> ...

</variables>
<sequence>

<receive partnerLink="hospital" operation="doctor_hired"
createInstance="yes" ... /><reply operation="doctor_hired" ... />

<invoke partnerLink="task_list_UI" operation="init_UI" ... />
<flow>

<while>
<condition>...</condition>
<sequence>

<receive partnerLink="hospital" operation="patient"
variable="link" /><reply operation="patient" ... />

<assign><copy>
<from variable="link" /><to partnerLink="patient" />

</copy></assign>
<thaw subLink="treatment" variable="guideline" />
<invokeSub subLink="treatment" operation="consultation" ... />
<freeze subLink="treatment" variable="self_treatment" />
<invoke partnerLink="patient" operation="run"

inputVariable="self_treatment" ... />
</sequence>

</while>
<!-- while-loop forwarding tasks to the local user interface -->

</flow>
</sequence>

</process>

Figure 7: Doctor workflow process.

Sec. 5.1 and then the reaction rules in Sec. 5.3, with a brief discourse on the semantics of
sub-links in Sec. 5.2.

5.1 The Static Representation

The formalization of HomeBPEL as a binding bigraphical reactive system in the BPL
Tool is given by a signature, determining the allowed controls and the ports for each
type of control, and a set of reaction rules, determining the run-time semantics. As
described previously, we utilize the extensibility of bigraphs to extend and adapt the
previous formalization of WS-BPEL given in Sec. 3.

Table 5 shows the signature of HomeBPEL. The controls listed in the upper part of the
signature correspond directly to elements in WS-BPEL, while the controls listed in the
lower part are introduced to facilitate the formalization of the execution semantics. The
underlined controls are the controls introduced (or adapted) in order to support higher
order mobile embedded sub-processes.

Not all bigraphs of the given signature will correspond to valid processes and instances.
The grammar in Table 6 shows the valid nesting of elements.6 (For brevity we have

6This restriction can be represented in the theory of bigraphs using the notion of sorting.

27

<process name="guideline">
...
<sequence>

<!-- Doctor initializes treatment -->
<receiveSup operation="consultation" ... />
<!-- Instruct doctor on how to perform consultation -->
<invokeSup operation="task" ... />
<replySup operation="consultation" ... />
<!-- Ready to be moved to patient -->
<receiveSup operation="resume" ... /><replySup operation="resume" ... />
<!-- Instruct patient how to perform self-treatment -->
<invokeSup operation="task" ... />

</sequence>
</process>

Figure 8: Treatment guideline process.

Active controls
PartnerLinks
Variables
If -: 1
Condition
Sequence -: 1
Flow -: 1

Instance -: 3
ActiveScope -: 2
TopInstance

Instances
SubLinks

Passive controls
Process =: 1 --> 1
Scope =: 1 --> 1
Variable -: 2
While -: 1
Then
Else
Assign -: 1
Copy
PartnerLink -: 2

Next
Message -: 1
SubLink -: 2

Atomic controls
To -: 2
From -: 2
ToPLink -: 2
FromPLink -: 2
Invoke -: 8
Receive -: 6
Reply -: 6
Exit -: 1

True
False
GetReply -: 6
Running -: 3

Invoked -: 3
Stopped -: 3

Freezing -: 3

TopRunning -: 1

VariableRef -: 3
ReplyTo -: 2
Link -: 1
CreateInstance -: 1
SubTransition -: 1
InvokeSub -: 8
InvokeSup -: 6

ReceiveSub -: 6
ReceiveSup -: 4

ReplySub -: 6

ReplySup -: 4

GetReplySub -: 7

GetReplySup -: 4

Freeze -: 5
FreezingSub -: 5

Thaw -: 5
FrozenSupLink -: 2

Table 5: Signature for HomeBPEL

abstracted away from the ports of nodes in the grammar. The arity of each control
is provided in the signature, where e.g. Process =: 1 --> 1 means that the Process
control has one normal port and one binding port). We let i range over the set {0, 1}
which we use to index some of the productions to keep the presentation succinct. We write
prod? for indicating that the terminal or non-terminal is optional and we write Link∗ to
denote that there can be 0 or more Link terminals. Currently the formalization only
supports one type of expressions, namely variable references. But one can easily extend
the semantics to more expression types (e.g. XPath expressions), simply by adding rules
describing how to evaluate them — without having to alter the current rules. Similarly,
values (i.e. value) are currently restricted to be either the constants True and False,
processes (higher-order values), or the content of a PartnerLink (akin to name passing
in the π-calculus). One could exploit the correspondence between XML and bigraphs to
represent any kind of XML-data.

As mentioned in the introduction, the key idea of the formalization is that a process
is represented by a bigraph very similar to the XML syntax for WS-BPEL processes.
Also, an active instance is represented almost exactly as the process, except it has an

28

system ::= procs ‘|‘ state
procs ::= proc ‘|‘ . . . ‘|‘ proc
state ::= topinst ‘|‘ . . . ‘|‘ topinst
proc ::= Process(scopecontent0)
partnerlinks ::= PartnerLinks(partnerlink ‘|‘ . . . ‘|‘ partnerlink)
partnerlink ::= PartnerLink(partnerlinkcontent)
partnerlinkcontent ::= CreateInstance? ‘|‘ link?
link ::= Link ‘|‘ message?
message ::= Message(value)
sublinks ::= SubLinks(SubLink(Link∗) ‘|‘ . . . ‘|‘ SubLink(Link∗))
vars ::= Variables(Variable(value) ‘|‘ . . . ‘|‘ Variable(value))
topinst ::= TopInstance(inst ‘|‘ topinststatus)
topinststatus ::= TopRunning | SubTransition
insts ::= Instances(inst ‘|‘ . . . ‘|‘ inst)
inst ::= Instance(status ‘|‘ scopecontent1)
status ::= Invoked | Running | Freezing | Stopped
acti ::= scopei | seqi | flow i | whilei | if i | assign | Invoke

| Receive | Reply | GetReply | Exit | InvokeSub | InvokeSup
| ReceiveSub | ReceiveSup | ReplySub | ReplySup | Thaw
| GetReplySub | GetReplySup | Freeze | FreezingSub

scope0 ::= Scope(scopecontent0)
scope1 ::= ActiveScope(scopecontent1) | Scope(scopecontent0)
scopecontenti ::= partnerlinks ‘|‘ sublinks ‘|‘ insts ‘|‘ vars ‘|‘ acti?
seqi ::= Sequence(acti? ‘|‘ Next(acti?))
flow i ::= Flow(acti? ‘|‘ . . . ‘|‘ acti?)
whilei ::= While(Condition(expr) ‘|‘ acti?)
if i ::= If(Condition(expr) ‘|‘ Then(acti?) ‘|‘ Else(acti?))
assign ::= Assign(Copy(from ‘|‘ to))
from ::= From | FromPLink
to ::= To | ToPLink
value ::= True | False | proc | partnerlinkcontent
expr ::= True | False | VariableRef

Table 6: Grammar for HomeBPEL

outermost node labeled by an Instance control. Instances keep the current content of
variables inside the variable node, and are executed as in process calculi by rewriting the
bigraph according to the set of reaction rules to be described in the following section.

As an example, the process patient from Sec. 4 is represented as a binding bigraph
in the BPL Tool as shown in Fig. 9(a) – (b). (To shorten the example we have not
fully specified the task loop. The full representation is available at the BPL Tool web
page). Note that the compositionality of bigraphs allow us to separate the process into
several parts. Fig. 10 shows the graphical representation provided by the BPL Tool of
the thaw loop bigraph in Fig. 9(a). To keep the figure clear we have abstracted away
from the identity of the patient.

Looking at the graphical representation, it should be clear that the place graph cor-
responds closely to the nesting of elements in the XML syntax, the ports of controls
correspond to attributes, and the link graph corresponds to shared values of attributes.
However, already for the formalization of the subset of WS-BPEL given in Sec. 3 we
needed to introduce some additional structure. For instance, a Next control is embedded
in Sequence controls to cope with the fact that children nodes in bigraph place graphs are
unordered while children nodes in XML are ordered (which is exploited in the sequence
construct of WS-BPEL). To facilitate the definition of reaction rules in the semantics
we needed to add links representing instance and scope identities. More intricately, we

29

val thaw_loop_body =
Sequence[patient_id] o (

Receive[patient_client, patient_id, run, x, patient_id, patient_id]
‘|‘ Next o Sequence[patient_id] o (

Thaw[subinsts, patient_id, x, patient_id, patient_id]
‘|‘ Next o

Reply[patient_client, patient_id, run, y, patient_id, patient_id]));

val thaw_loop =
While[patient_id] o (Condition o VariableRef[y, patient_id, patient_id]

‘|‘ thaw_loop_body);

val task_loop =
While[patient_id] o (......);

val patient_body = Flow[patient_id] o (thaw_loop ‘|‘ task_loop);

(a) patient body

val patient_process =
Process[patient][[patient_id]] o (

PartnerLinks o (
PartnerLink[patient_client, patient_id] o CreateInstance[start]

‘|‘ PartnerLink[task_list_UI, patient_id] o <->)
‘|‘ SubLinks o SubLink[subinsts, patient_id] o <->
‘|‘ Variables o (

Variable[x, patient_id] o <->
‘|‘ Variable[y, patient_id] o True)

‘|‘ Instances o <->
‘|‘ Sequence[patient_id] o (

Receive[patient_client, patient_id, start, x, patient_id, patient_id]
‘|‘ Next o Sequence[patient_id] o (

Reply[patient_client, patient_id, start, y, patient_id, patient_id]
‘|‘ Next o patient_body)));

(b) patient process

Figure 9: BPL Tool representation of the patient process.

also needed to introduce a node within each instance with a status control being either
Invoked, Running, or Stopped. Partly, this is needed because the semantics of Invoke
and Exit activities requires two consecutive reactions. The extension with mobile sub-
instances made it necessary to add an additional status control, Freezing, since freezing
an instance into a process in a variable cannot be done atomically either. Also, we needed
at top level to introduce a status control indicating if the top instance or any of its (ar-
bitrarily nested) sub-instances are allowed to perform normal activities (by the control
TopRunning) or if one of them are performing a sub-transition (control SubTransition)
as part of a non-atomic activity. These aspects could most likely have been dealt with
more elegantly if bigraphical reactive systems had a notion of priority on the reaction
rules. We leave it for future work to study this.

5.2 Sub-links

In this section we take a closer look at the semantics of sub-links and the associated
operations, using the patient process in Fig. 6 as example. Note how each iteration of
the thaw loop thaws a new sub-instance which is bound to the sub-link subinsts and

30

While

Condition

VariableRef

Sequence

Receive

Next

Sequence

Thaw
Next

Reply

out invar subinsts patient client run

Figure 10: BPL Tool visualization of thaw loop.

then invokes the operation resume on subinsts. What happens when a sub-instance is
already bound to the subinsts sub-link? Is this an error or should it be allowed, and
in that case which sub-instance(s) should be bound to the sub-link after the execution of
thaw?

As one of the goals of the CosmoBiz project is to integrate process management into
the process language itself, it seems reasonable to provide easy management of collections
of processes at the language level. One simple way to achieve this feature, and the one
we have chosen, is to allow multiple sub-instances to be bound to the same sub-link
simultaneusly. This choice abstracts the implementation of collections of processes away
from the programmer, building the concept of a process collection into the semantics
of the activies which use sub-links: thaw, freeze, invokeSub, and receiveSub. The
latter three activities are only intended to affect one sub-instance, but several of the sub-
instances connected to the sub-link might be a suitable target for the activity. In this
case, we choose an arbitrary process, based on the assumption that if the programmer
wanted to distinguish two processes, she would place them in different collections. This
might not hold true, and will be the subject of future work. One could imagine, for
instance, that in the case of freeze, that the programmer wants to freeze a particular
sub-instance or a sub-instance which is ready to be frozen.

5.3 Reaction Rules

In this section we present the reaction rules used in the formalization of HomeBPEL,
focusing on the new rules for freezing and thawing and for communication between parent
and child processes. The full set of reaction rules (in BPL Tool syntax) is available via
the on-line tool7.

7See http://tiger.itu.dk:8080/bplweb/index/20

31

5.3.1 Changes to the Representation

We have extended the representation in a smaller degree in order to facilitate the repre-
sentation of higher-order primitives in the formalization. An Instance node now have an
additional port which should be connected state node of the parent instance if a parent
instance exists. We have introduced a node Instances to group together sub-instances
of an instance, similar to the effect of the Variables node. As mentioned above we
also introduce a status node in the top-level instance to track whether the top instance
or any of its (arbitrarily nested) sub-instances are allowed to perform normal activities
(by the control TopRunning) or if one of them are performing a sub-transition (control
SubTransition) as part of a non-atomic activity. Also as mentioned above we add the
status Freezing. As a technicality we also introduce nodes of control TopInstance to
encapsulate top-level instances together with their associated top-level status node.

5.3.2 Augmenting the Existing Rules

Most of the reaction rules of the formalization remains unchanged from Sec. 3, except that
the rules also need to make sure that the status of the top-level instance is TopRunning.
However for the rule scope completed, the rule responsible for removing scopes that
have been executed, we now also need to make sure that there are no running sub-
instance inside the scope before removing the scope. The case is similar for the rule
inst completed just for instances instead of scopes. We also need one additional rule
to remove the new TopInstance nodes when removing a top-level instance. The added
TopInstance node also add a bit to the complexity of the invoke rule.

"top instance completed" :::

TopInstance o (-//[inst_id_top] o TopRunning[inst_id_top])
----|>

<->;

We have added some new reaction rules to the formalization to implement the added
primitives for higher-order processes. Below we present the new reaction rules.

5.3.3 Communication Between Parent and Child

The rule invoke sub takes care of an instance invoking a method in a subinstance. The
parent instance performs the InvokeSub activity in parallel with the ReceiveSup of the
subinstance. Both instances are required to be running as well as the top-level instance.
The result is that the content from the variable invar is copied to variable var. Besides
these changes the rule resembles the rule invoke instance (described below) which is
responsible for communication between two top-level instances.

"invoke sub" :::

InvokeSub[sub_link, sub_link_scope, oper, invar, invar_scope,
outvar, outvar_scope, inst_id_sup]

|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| ReceiveSup[oper, var, var_scope, inst_id_sub]
|| Variable[var, var_scope]

32

|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 1]--|>

GetReplySub[sub_link, sub_link_scope, inst_id_sub, oper,
outvar, outvar_scope, inst_id_sup]

|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| <->
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| TopRunning[inst_id_top];

In the rule reply sup the ReplySup activity inside an instance can synchronize to-
gether with a GetReplySub activity inside the parent instance, thereby copying the con-
tent from variable var to variable outvar.

"reply sup" :::

ReplySup[oper, var, var_scope, inst_id_sub]
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| GetReplySub[sub_link, sub_link_scope, inst_id_sub, oper,

outvar, outvar_scope, inst_id_sup]
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 0]--|>

<-> || oper//[]
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| <->
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top];

Rule invoke sup is similar to the rule invoke sub, except that it is the subinstance
which invokes a method in the parent.

"invoke sup" :::

InvokeSup[oper, invar, invar_scope, outvar, outvar_scope, inst_id_sub]
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| ReceiveSub[sub_link, sub_link_scope, oper, var, var_scope, inst_id_sup]
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[var, var_scope]
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 0]--|>

GetReplySup[oper, outvar, outvar_scope, inst_id_sub]
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| <->

33

|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top];

The rule reply sub is similar to the rule reply sup, except for the direction of the
communication.

"reply sub" :::

ReplySub[sub_link, sub_link_scope, oper, var, var_scope, inst_id_sup]
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| GetReplySup[oper, outvar, outvar_scope, inst_id_sub]
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 1]--|>

<-> || oper//[]
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| <->
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| TopRunning[inst_id_top];

5.3.4 Freezing Processes

Freezing a sub-instance requires several transitions, initiated by a Freeze activity. The
Freeze activity references a running subinstance through its SubLinks and changes the
status of the instance from Running to Freezing (thus ensuring that the subinstance will
not execute anymore), at the same time the Freeze activity is replaced by a FreezingSub
activity, and the top-level status is changed from TopRunning to SubTransition to indi-
cate that we have started a multistep reaction.

"freeze sub" :::

Freeze[sub_link, sub_link_scope, var, var_scope, inst_id_sup]
|| (SubLinks o (SubLink[sub_link, sub_link_scope]

o (Link[inst_id_sub] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘)

‘|‘ Instances
o (Instance[sub_name, inst_id_sub, active_scopes_sup]

o (Running[inst_id_sub, active_scopes_sub, inst_id_top] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3]--|>

FreezingSub[sub_link, sub_link_scope, var, var_scope, inst_id_sup]
|| (SubLinks o (SubLink[sub_link, sub_link_scope]

o (Link[inst_id_sub] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘)

‘|‘ Instances
o (Instance[sub_name, inst_id_sub, active_scopes_sup]

34

o (Freezing[inst_id_sub, active_scopes_sub, inst_id_top] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| SubTransition[inst_id_top];

Inside a freezing subinstance an active scope can be frozen when all nested scopes and
sub-instances have been frozen. This is ensured by requiring that the content of the scope
does not refer to the active-scopes link of the enclosing sub-instance. We then change the
ActiveScope to a Scope and bind the free edge denoted by “scope”.

"freeze scope" :::

-//[active_scopes]
o (Freezing[inst_id, active_scopes, inst_id_top]

|| -//[scope] o (ActiveScope[active_scopes, scope] o ‘[scope]‘)
|| ‘[active_scopes]‘)

--[0 |-> 0, 1 |-> 1]--|>

-//[active_scopes]
o (Freezing[inst_id, active_scopes, inst_id_top]

|| Scope[inst_id][[scope]] o ‘[scope]‘
|| ‘[active_scopes]‘);

Sub-instances of a sub-instance which is being frozen, are frozen by propagating the
freezing state, which again allows its scopes and subinstances to be frozen. This is done
by changing the status of the nested sub-instance from Running to Freezing.

"freeze sub instance" :::

Freezing[inst_id, active_scopes, inst_id_top]
|| Instance[sub_name, inst_id_sub, active_scopes]

o (Running[inst_id_sub, active_scopes_sub, inst_id_top]
‘|‘ ‘[]‘)

--[0 |-> 0]--|>

Freezing[inst_id, active_scopes, inst_id_top]
|| Instance[sub_name, inst_id_sub, active_scopes]

o (Freezing[inst_id_sub, active_scopes_sub, inst_id_top]
‘|‘ ‘[]‘);

When all those are frozen, ie. the “active scopes” link of the sub-sub-instance is only
connected to the state node, the sub-sub-instance is frozen (remaining at the same loca-
tion) and a FrozenSupLink is inserted in the frozen instance to remember which SubLink
it was connected to.

"freeze sub instance2" :::

-//[inst_id_sub]
o (Freezing[inst_id_sup, active_scopes, inst_id_top]

|| (SubLinks o (SubLink[sub_link, sub_link_scope]
o (Link[inst_id_sub] ‘|‘ ‘[]‘)

‘|‘ ‘[]‘)
‘|‘ Instances

o (Instance[sub_name, inst_id_sub, active_scopes]
o (-//[active_scopes_sub]

o Freezing[inst_id_sub, active_scopes_sub, inst_id_top]
‘|‘ ‘[inst_id_sub]‘)

‘|‘ ‘[]‘)))

35

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3]--|>

Freezing[inst_id_sup, active_scopes, inst_id_top]
|| (SubLinks o (SubLink[sub_link, sub_link_scope] o ‘[]‘ ‘|‘ ‘[]‘)

‘|‘ Instances
o (Process[sub_name][[inst_id_sub]]

o (FrozenSupLink[sub_link, sub_link_scope]
‘|‘ ‘[inst_id_sub]‘)

‘|‘ ‘[]‘));

When no more sub-instances and scopes are connected to the “active scopes” link of
the sub-instance being frozen, it can itself be frozen and placed into the proper variable
denoted by var. To indicate that the multistep reaction is completed we change the
top-level status from SubTransition and back to TopRunning.

"freeze complete" :::

-//[inst_id_sub]
o (FreezingSub[sub_link, sub_link_scope, var, var_scope, inst_id_sup]

|| Variable[var, var_scope] o ‘[]‘
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| SubTransition[inst_id_top]
|| Instance[sub_name, inst_id_sub, active_scopes_sup]

o (-//[active_scopes_sub]
o Freezing[inst_id_sub, active_scopes_sub, inst_id_top]

‘|‘ ‘[inst_id_sub]‘))

--[0 |-> 2, 1 |-> 1]--|>

<->
|| Variable[var, var_scope]

o Process[sub_name][[inst_id_sub]] o ‘[inst_id_sub]‘
|| SubLink[sub_link, sub_link_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]
|| <->;

5.3.5 Thawing Processes

Using the of new Thaw activity one can thaw a sub-process stored in a variable and
instantiating it as a sub-instance. The Thaw activity in the redex refers via its third port
to the process inside the variable var. In the reactum the Thaw activity has been removed
(indicating it has been executed) and a new running sub-instance has been inserted within
the Instances control. The last part (4&[inst id sub] |--> 0&[sub scope]]) of the
instantiation map on the arrow from the redex to the reactum ensures that the process
body (contained in hole 0 in the redex) is copied and used as body of the new sub-
instance (hole 4 in the reactum). It also ensures that the local bound link sub scope of
the process body is renamed to inst id sub in the new copy. Note also that we insert
the status node Running in the new sub-instance. Finally, the rule also insert a Link
control within the SubLinks control. The Link control points to the new sub-instance
via its link inst id sub.

"thaw sub" :::

Thaw[sub_link, sub_link_scope, var, var_scope, inst_id_sup]

36

|| Variable[var, var_scope]
o Process[sub_name][[sub_scope]] o ‘[sub_scope]‘

|| (SubLinks o (SubLink[sub_link, sub_link_scope] o ‘[]‘ ‘|‘ ‘[]‘)
‘|‘ Instances o ‘[]‘)

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3,
4&[inst_id_sub] |--> 0&[sub_scope]]--|>

<->
|| Variable[var, var_scope]

o Process[sub_name][[sub_scope]] o ‘[sub_scope]‘
|| -//[inst_id_sub]

o (SubLinks o (SubLink[sub_link, sub_link_scope]
o (Link[inst_id_sub] ‘|‘ ‘[]‘)

‘|‘ ‘[]‘)
‘|‘ Instances

o (‘[]‘
‘|‘ Instance[sub_name, inst_id_sub, active_scopes_sup]

o (-//[active_scopes_sub]
o Running[inst_id_sub, active_scopes_sub, inst_id_top]

‘|‘ ‘[inst_id_sub]‘)))
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top];

In general, when we thaw a process it may itself contain frozen sub-instances frozen
“in place”, i.e. within the Instances control. An additional reaction rule (thaw sub
instance) is thus included for thawing frozen sub-instances. The rule replaces the
Process node with a Instance node and restores the SubLinks using the information
represented by the FrozenSupLink node. Finally the rule sets the status of the instance
to Running. Note that this rule is the inverse of rule freeze sub instance2.

"thaw sub instance" :::

(SubLinks o (SubLink[sub_link, sub_link_scope] o ‘[]‘ ‘|‘ ‘[]‘)
‘|‘ Instances

o (Process[sub_name][[inst_id_sub]]
o (FrozenSupLink[sub_link, sub_link_scope]

‘|‘ ‘[inst_id_sub]‘)
‘|‘ ‘[]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3]--|>

-//[inst_id_sub]
o ((SubLinks o (SubLink[sub_link, sub_link_scope]

o (Link[inst_id_sub] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘)

‘|‘ Instances
o (Instance[sub_name, inst_id_sub, active_scopes_sup]

o (-//[active_scopes_sub]
o Running[inst_id_sub, active_scopes_sub, inst_id_top]

‘|‘ ‘[inst_id_sub]‘)
‘|‘ ‘[]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]);

37

6 Conclusion and Future Work

We have formalized a subset of WS-BPEL as a binding bigraphical reactive system. As
in our previous work described in [22] we have utilized the close correspondence between
bigraphs and XML to provide a formalization close to the original WS-BPEL syntax and
yet stays within the existing format for binding bigraphs [26].

Several new non-trivial aspects of WS-BPEL have been formalized compared to [22],
including support for nested scopes, termination (exit), and dynamic assignment and
communication of partner links. As a technical, but important point, we avoided higher-
order reaction rules as used in [22]. This means that the general theory, techniques and
tools developed for standard, binding bigraphs remain applicable to our formalization.
In particular, we have described how the formalization can be implemented and explored
within the BPL Tool [3] developed in the Bigraphical Programming Languages project
at the IT University of Copenhagen. The tool allows compositional definition of binding
bigraphs and reaction rules, as well as graphical visualization and interactive simulation
of the execution of binding bigraphical reactive systems based on the formal inference of
rule matching described in [1, 2].

We have utilised the extensibility of bigraphical reactive systems to extend the formal-
ization of WS-BPEL to a formalization of a higher-order WS-BPEL-like language called
HomeBPEL. The extensibility of bigraphical reactive systems enables us to directly reuse
most of the existing formalization. In HomeBPEL processes are first-class values that
can be stored in variables, passed as messages, and activated as embedded sub-instances.
We have formalized HomeBPEL in the BPL Tool. We have motivated HomeBPEL by an
example of pervasive health care where treatment guidelines are dynamically deployed as
sub processes that may be delegated dynamically to other workflow engines and in par-
ticular stay available for disconnected operation on mobile devices. The added features of
HomeBPEL allow us — among other — to define business processes for business process
management within HomeBPEL as opposed to relying on meta-level tools for deployment
and process administration.

Future Work. It is important to stress that we do not in this paper claim to give a
feature complete formalization of WS-BPEL, as e.g. provided in [31]. We leave as future
work to compare our formalization to the work in [31] and to provide more complete
semantics and simulation of WS-BPEL. To do this, it is likely to be helpful if the BPL
Tool was extended with a notion of high-level bigraphs allowing e.g. built-in XML and/or
ML datatypes and transformations in the reaction rules, analogous to the built-in ML
datatypes and functions found in Coloured Petri Nets and the CPN Tool. This was
already partly explored in the ReactiveXML implementation of pure bigraphical reactive
systems described in [22].

A notion of prioritized reactions could be interesting to explore as an alternative to
the explicit encoding of transitions and sub-transitions used in the present paper. It will
also be interesting to investigate the use of the general theory of bisimulation congruences
available for bigraphical reactive systems in the setting of WS-BPEL.

An interesting path for future research into HomeBPEL will be to examine different
primitives for management and manipulation of processes. Currently, we can copy and
discard processes (by copying and overwriting the content of variables) and we can —

38

to some extend — combine processes, but we are currently examining more expressive
primitives, such as sub-process reflection and general manipulation, e.g. editing or join-
ing of frozen sub-processes. This relates to the work on Higher-Order (Petri) Nets and
applications to workflow studied in [25].

Future work will also include the study of type systems, e.g. relations to the work on
formalizations of WSDL types, contracts and session types [28, 4, 9]. The addition of
mobile embedded sub-instances also opens for a study of type systems that can guarantee
safe process mobility and manipulation. We plan to explore this in the CosmoBiz research
project. In particular, we plan to examine the approaches done in Boxed Ambients [17]
and in the higher-order π-calculus [34] on the safe integration of higher-order mobility
and sessions.

Another relevant direction of work is a detailed and complete study of the expressive-
ness of HomeBPEL in relation to workflow patterns (e.g. [37]). We will also study the
language primitives and expressiveness in relation to process calculi for mobility such as
Ambients, Seal and Homer. In particular, we expect to examine a notion of subjective
mobility as in Safe Ambients [30] by introducing a co-freeze activity to be carried out by
the sub-instance, allowing it to decide whether (and when) it can be frozen.

Acknowledgements. Many thanks to the anonymous referees for their suggestions and
comments from which this paper has benefited greatly.

References

[1] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin Milner.
Matching of bigraphs. In Arend Rensink, Reiko Heckel, and Barbara König, editors,
Proceedings of the Graph Transformation for Verification and Concurrency workshop
(GT-VC’06), volume 175 of Electronic Notes in Theoretical Computer Science, pages
3–19. Elsevier, 2006.

[2] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin Milner.
An inductive characterisation of matching in binding bigraphs. to appear, 2008.

[3] The Bigraphical Programming Languages Group. The BPL Tool. http://www.itu.
dk/research/pls/wiki/index.php/BPL_Tool, 2007.

[4] Mario Bravetti and Gianluigi Zavattaro. Contract based multi-party service com-
position. In Farhad Arbab and Marjan Sirjani, editors, Proceedings of the IPM
International Symposium on Fundamentals of Software Engineering (FSEN’07), vol-
ume 4767 of Lecture Notes in Computer Science, pages 207–222. Springer Verlag,
2007.

[5] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt, and Espen
Højsgaard. An extensible formalization of WS-BPEL in binding bigraphs. Draft,
2008.

[6] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt, Espen Højsgaard,
and Henning Niss. Formalizing higher-order mobile embedded business processes

39

with binding bigraphs. In Proceedings of the 10th international conference on Coor-
dination Models and Languages (COORDINATION’08), Lecture Notes in Computer
Science, pages 83–99. Springer Verlag, 2008.

[7] Mikkel Bundgaard and Thomas Hildebrandt. Bigraphical semantics of higher-order
mobile embedded resources with local names. In Arend Rensink, Reiko Heckel, and
Barbara König, editors, Proceedings of the Graph Transformation for Verification and
Concurrency workshop (GT-VC’05), volume 154 of Electronic Notes in Theoretical
Computer Science, pages 7–29. Elsevier, 2006.

[8] Mikkel Bundgaard, Thomas Hildebrandt, and Jens Chr. Godskesen. Modelling the
security of smart cards by hard and soft types for higher-order mobile embedded
resources. In Daniele Gorla and Catuscia Palamidessi, editors, Proceedings of the 5th
International Workshop on Security Issues in Concurrency (SecCo’07), volume 194
of Electronic Notes in Theoretical Computer Science, pages 23–38. Elsevier, 2007.

[9] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In Rocco De Nicola, editor, Proceedings of
the 16th European Symposium on Programming (ESOP’07), volume 4421 of Lecture
Notes in Computer Science, pages 2–17. Springer Verlag, 2007.

[10] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, 2000.

[11] Giuseppe Castagna, Jan Vitek, and Fracesco Zappa Nardelli. The Seal calculus.
Journal of Information and Computation, 201(1):1–54, 2005.

[12] Troels Christoffer Damgaard and Lars Birkedal. Axiomatizing binding bigraphs.
Nordic Journal of Computing, 13(1–2):58–77, 2006.

[13] Dirk Fahland. Complete Abstract Operational Semantics for the Web Service Busi-
ness Process Execution Language. Technical Report 190, Humboldt-Universität zu
Berlin, 2005.

[14] Dirk Fahland and Wolfgang Reisig. ASM-based semantics for BPEL: The negative
Control Flow. In Danièle Beauquier, Egon Börger, and Anatol Slissenko, editors, Pro-
ceedings of the 12th International Workshop on Abstract State Machines (ASM’05),
pages 131–151. Paris XII, March 2005.

[15] Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. Specification and valida-
tion of the business process execution language for web services. In Abstract State
Machines 2004. Advances in Theory and Practice, volume 3052 of Lecture Notes in
Computer Science, pages 78–94. Springer Verlag, 2004.

[16] Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. An abstract machine ar-
chitecture for web service based business process management. In Christoph Bussler
and Armin Haller, editors, Business Process Management Workshops, volume 3812
of Lecture Notes in Computer Science, pages 144–157. Springer Verlag, 2006.

40

[17] Pablo Garralda, Adriana B. Compagnoni, and Mariangiola Dezani-Ciancaglini.
BASS: Boxed ambients with safe sessions. In Proceedings of the 8th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP’06), pages 61–72. ACM Press, 2006.

[18] Arne John Glenstrup, Troels Christoffer Damgaard, Lars Birkedal, and Espen
Højsgaard. An implementation of bigraph matching. submitted, 2008.

[19] Jens Chr. Godskesen and Thomas Hildebrandt. Extending Howe’s method to early
bisimulations for typed mobile embedded resources with local names. In Proceedings
of the 25th Conference on the Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’05), volume 3821 of Lecture Notes in Computer Science,
pages 140–151. Springer Verlag, 2005.

[20] Volker Gruhn and André Köhler. Effects of mobile business processes on the software
process. In Proceedings of the 5th International Workshop on Software Process Sim-
ulation and Modeling (ProSim’04), pages 228–231. IEEE Computer Society Press,
2004.

[21] Thomas Hildebrandt, Jens Chr. Godskesen, and Mikkel Bundgaard. Bisimulation
congruences for Homer — a calculus of higher order mobile embedded resources.
Technical Report TR-2004-52, IT University of Copenhagen, 2004.

[22] Thomas Hildebrandt, Henning Niss, and Martin Olsen. Formalising business process
execution with bigraphs and Reactive XML. In Paolo Ciancarini and Herbert Wik-
licky, editors, Proceedings of the 8th international conference on Coordination Models
and Languages (COORDINATION’06), volume 4038 of Lecture Notes in Computer
Science, pages 113–129. Springer Verlag, 2006.

[23] Thomas Hildebrandt, Henning Niss, Martin Olsen, and Jacob W. Winther. Dis-
tributed Reactive XML. In Lubos Brim and Isabelle Linden, editors, Proceedings of
the 1st International Workshop on Methods and Tools for Coordinating Concurrent,
Distributed and Mobile Systems (MTCoord’05), volume 150 of Electronic Notes in
Theoretical Computer Science, pages 61–80, 2006.

[24] Thomas Hildebrandt (principal investigator). Computer supported mobile adap-
tive business processes (CosmoBiz) research project. Webpage, 2007. http:
//www.cosmobiz.org/.

[25] Kathrin Hoffmann and Till Mossakowski. Algebraic higher-order nets: Graphs and
petri nets as tokens. In Martin Wirsing, Dirk Pattinson, and Rolf Hennicker, edi-
tors, Proceedings of the 16th International Workshop on Recent Trends in Algebraic
Development Techniques (WADT’02), volume 2755 of Lecture Notes in Computer
Science, pages 253–267. Springer Verlag, 2003.

[26] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Tech-
nical Report UCAM-CL-TR-580, University of Cambridge – Computer Laboratory,
2004.

41

[27] Matthias Kloppmann, Dieter Koenig, Frank Leymann, Gerhard Pfau, Alan Rick-
ayzen, Claus von Reigen, Patrick Schmidt, and Ivana Trickovic. WS-BPEL extension
for sub-processes: BPEL-SPE. Technical report, IBM and SAP, 2005.

[28] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A WSDL-based type
system for WS-BPEL. In Paolo Ciancarini and Herbert Wiklicky, editors, Proceedings
of the 8th international conference on Coordination Models and Languages (COOR-
DINATION’06), volume 4038 of Lecture Notes in Computer Science, pages 145–163.
Springer Verlag, 2006.

[29] James J. Leifer and Robin Milner. Transition systems, link graphs and Petri nets.
Journal of Mathematical Structures in Computer Science, 16(6):989–1047, 2006.

[30] Francesca Levi and Davide Sangiorgi. Mobile safe ambients. ACM Transactions on
Programming Languages and Systems (TOPLAS), 25(1):1–69, 2003.

[31] Niels Lohmann. A feature-complete Petri net semantics for WS-BPEL 2.0. In Marlon
Dumas and Reiko Heckel, editors, Proceedings of the 4th International Workshop on
Web Services and Formal Methods (WS-FM’07), volume 4937 of Lecture Notes in
Computer Science, pages 77–91. Springer Verlag, 2007.

[32] Niels Lohmann, H.M.W. Verbeek, Chun Ouyang, Christian Stahl, and Wil M. P.
van der Aalst. Comparing and evaluating Petri net semantics for BPEL. Computer
Science Report 07/23, Eindhoven University of Technology, 2007.

[33] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
parts I and II. Journal of Information and Computation, 100:1–40 and 41–77, 1992.

[34] Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for higher-order
mobile processes. In Simona Ronchi and Della Rocca, editors, Proceedings of the 8th
International Conference on Typed Lambda Calculi and Applications (TLCA’07),
volume 4583 of Lecture Notes in Computer Science, pages 321–335. Springer Verlag,
2007.

[35] OASIS WSBPEL Technical Committee. Web Services Business Process Execu-
tion Language, version 2.0, 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.pdf.

[36] Frank Puhlmann and Mathias Weske. Using the pi-calculus for formalizing workflow
patterns. In Wil M. P. van der Aalst, Boualem Benatallah, Fabio Casati, and Fran-
cisco Curbera, editors, Proceedings of the 3rd International Conference on Business
Process Management (BPM’05), volume 3649 of Lecture Notes in Computer Science,
pages 153–168. Springer Verlag, 2005.

[37] Nick Russell, Arthur H.M. ter Hofstede, Will M.P. van der Aalst, and Nataliya
Mulyar. Workflow control-flow patterns: A revised view. BPM Center Report BPM-
06-22, BPMcenter.org, 2006.

[38] Christian Stahl. A Petri net semantics for BPEL. Informatik-Berichte 188,
Humboldt-Universität zu Berlin, 2005.

42

[39] Christian Stefansen. A declarative framework for enterprise information systems.
Master’s thesis, Dept. of Computer Science, University of Copenhagen, 2005.

[40] Franck van Breugel and Maria Koshkina. Models and verification of BPEL. Draft.,
2006.

43

