
IT University
of Copenhagen

An Experiment on Creating Enterprise
Specific BPM Languages and Tools

Steen Brahe

IT University Technical Report Series TR-2008-102

ISSN 1600–6100 March 2008

Copyright c© 2008, Steen Brahe

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-161-8

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

An Experiment on Creating Enterprise Specific BPM
Languages and Tools

Steen Brahe
Danske Bank and IT University of Copenhagen

Holmens Kanal 2-12
1092 Copenhagen K, Denmark

stbr@danskebank.dk

ABSTRACT
Many enterprises use their own domain concepts in model-
ing business process and use technology in specialized ways
when they implement them in a Business Process Man-
agement (BPM) system. In contrast, BPM tools used for
modeling and implementing business processes often provide
a standard modeling language, a standard implementation
technology and a fixed transformation that may generate the
implementation from the model. This makes the tools in-
flexible and difficult to use. This paper presents another ap-
proach. It applies the basic model driven development prin-
ciples of direct representation and automation to BPM tools
through a tool experiment in Danske Bank, a large financial
institute; We develop business process modeling languages,
tools and transformations that capture Danske Banks spe-
cific modeling concepts and use of technology, and which
automate the generation of code. An empirical evaluation
shows that Danske Bank will possibly gain remarkable im-
provements in development productivity and the quality of
the implemented code. This leads us to the conclusion that
BPM tools should provide flexibility to allow customization
of languages, tools and transformations to the specific needs
of an enterprise.

1. INTRODUCTION
Business Process Management (BPM) is currently receiving
much focus from the industry. Top management demands to
understand and control their business processes and agility
to adjust them when market conditions change. This can be
achieved through Process Aware Information Systems (Du-
mas et al. (2005)). A Workflow Management (WFM) system
(Jablonski and Bussler (1996); Leymann and Roller (2000))
is one example of such a system. A WFM system allows
execution and automation of a business process that can be
described explicitly as an executable workflow.

Although the hype about BPM and process automation
is high, reality has shown that it is relatively complex to
understand, model and implement a business process as an

executable workflow (Brahe (2007)). First the process must
be understood, second it must be formalized and modeled at
a highly conceptual and logical level, and third the process
design must be transferred to technology.

Two different worlds are meeting: Business and IT. Trans-
ferring business requirements to an IT solution is challeng-
ing. For business processes this is especially clear as the
IT solution should actually execute the business process.
Hence, it is crucial to transfer the business requirements and
knowledge to the IT development team in a precise manner
and with a certainty that the requirements will be imple-
mented.

Many software vendors have complete BPM tool suites for
modeling and implementing business processes. Such tools
are mostly based on a predefined process modeling language
like BPMN (White (2006)) for capturing the business pro-
cess at the conceptual level and one technology like BPEL
(BPEL (2003)) for implementing the process. These tools
also assume a fixed development process where only two
models exist, i.e. the conceptual business process and the
implementation.

Using such tools causes two challenges for an enterprise
that has specific requirements to its development process,
uses its own modeling concepts and uses technology in spe-
cialized ways; First, a standardized modeling notation does
not allow users to use domain concepts and may contain too
many modeling constructs which makes the tool difficult to
use. The models may also be difficult to understand and
use as a communication media. Second, transformation of
a model into implementation must be done manually as the
enterprise may use a variety of technologies to implement
the process and not only e.g. BPEL as many state-of-the-art
tools support today. Even if one technology as e.g. BPEL
is used, the enterprise may be using domain specific imple-
mentation patterns which cannot be generated because the
transformations are hard-coded into the BPM tools.

The approach behind current BPM tools is similar to the
extinct Computer Aided Software Engineering (CASE) tools
from the 90es. They also often used a standard modeling
language, one implementation technology and a standard-
ized transformation. Their limited flexibility in supporting
enterprise specific standards was one of the reasons why they
were never accepted (Windsor (1986); Flynn et al. (1995)).

This paper takes another approach than state-of-the-art
BPM tools. In order to avoid the CASE trap we must come
up with an approach that allows an enterprise to use its own
modeling notations and specific use of technology. Our hy-
pothesis is that this can be achieved through applying the

1

basic model driven development (Stahl et al. (2006)) prin-
ciples of direct representation and automation (Booch et al.
(2004)) to BPM tools; An enterprise should be able to model
its business processes directly in enterprise specific concepts,
decide on a target platform and write transformations that
encapsulate its specific use of technology, and that automate
the generation of code.

This leads us to the research question which we will an-
swer through this paper: Does an enterprise specific BPM
tool improve the efficiency and quality of modeling and im-
plementing business processes, how difficult is it to create,
and is it worth the effort?.

We will through an experiment develop BPM languages,
tools and transformations for a specific enterprise and eval-
uate advantages and drawbacks of this approach. We use
Danske Bank, the second largest financial institute in north-
ern Europe, as a case study. In lack of sufficient indus-
trial standards, Danske Bank has defined its own develop-
ment process and uses a number of different tools to support
it. This has cause several challenges as described by Brahe
(2007).

A prototype tool was developed to show that it is possi-
ble and provide value to develop BPM tools fitted for the
needs of a specific enterprise. The prototype illustrates that
it is possible to do model driven development of a business
process with nearly 100% code generation. The prototype is
fitted specially for Danske Banks development process and
consists of three different Domain Specific Languages (DSLs)
(Mernik et al. (2005)) and corresponding editors that are
used to model a business process and related information.
Furthermore, the tool provides transformations between the
DSLs and a transformation to BPEL. These transformations
capture implementation patterns specific for Danske Banks
modeling standards and use of the implementation technol-
ogy. Manual changes can be introduced into the generated
BPEL code by a persistence utility feature.

The prototype tool is used in three steps; First, the busi-
ness process is modeled at the conceptual level.

Second, the physical specification, i.e. information re-
quired to implement the model as a workflow, is specified.
This includes documentation, technical attributes and re-
quired additional functionality.

Third, the conceptual model and physical specification are
merged and transformed directly to executable BPEL and
WDSL documents where only mapping of data and control
flow logic need to be specified. A developer can regener-
ate the BPEL code completely without loosing the manual
changes previously introduced when the logical business pro-
cess model has been changed.

We use a fictitious project called Customer Quick Loan
throughout the paper. First, we illustrate the current devel-
opment process in Danske Bank and the observed challenges
of using current BPM tools. Second, we show how the pro-
totype tool eliminates these challenges. We conclude that
BPM tools customized to a specific enterprise potentially
have a huge effect on the efficiency of a project team and
will result in implementations with fewer errors.

However, we also conclude that developing BPM tools
from scratch requires high expertice and much effort and
is a strategic decision that many enterprises will not take.
What we need is a tool based framework that allows the en-
terprise to customize languages, transformations and tools
to their specific needs instead of creating them from scratch.

Such a framework has been described by Brahe and Øster-
bye (2006) and Brahe and Bordbar (2006). Implementation
and utilization of this framework in commercial tools would
allow flexibility and customizability for an enterprise like
Danske Bank and it would still offer standardized modeling
tools to those who prefer this.

The rest of the paper is organized as follows. Section 2 in-
troduces Danske Bank and its development process at a high
conceptual level. Section 3 describes the fictitious Customer
Quick Loan project and illustrates how the project team de-
velops modeling artifacts during the development process.
In section 4 we discuss challenges regarding the develop-
ment process and used modeling tools. Section 5 abstracts
the development process into metamodels and algorithms for
transforming models into code. Domain concepts and nec-
essary information required to implement a business process
using Danske Banks infrastructure are formalized. Based
on this abstraction, the developed tool suite is described in
section 6 and the example is used to illustrate how the cus-
tomized tools make the project team more efficient. Section
7 describes an empirical evaluation of the tool. Section 8
discusses the results, section 9 contains related work and
section 10 summarizes the report and outlines future work.

2. CASE STUDY: DANSKE BANK
This section introduces Danske Bank and describes how the
enterprise models and implements business processes from
understanding current work practice over high level model-
ing down to implementation of executable workflows.

2.1 Danske Bank
Danske Bank has grown to become the largest financial
group in Denmark - and one of the largest in northern Eu-
rope. It comprises a variety of financial services such as
banking, mortgage credit, insurance, pension, capital man-
agement, leasing and real estate agency.

To support and fulfill its IT strategy, Danske Bank has
adopted a Service Oriented Architecture (SOA) at which
all new system development is targeted and where existing
legacy systems are service enabled. Applications and ser-
vices developed for one part of the group can through a
central service library and repository be located and used
by other parts of the group. As Danske Bank started out
implementing SOA before the web services standard was
defined, it has developed its own proprietary standard for
service specifications. Although proprietary, the standard is
web service compliant. Currently, the enterprise has several
thousand different service operations.

Support for executing and automating business processes
can be achieved through different process execution engines.
One of them is is batch execution of process implementations
in PL1 and COBOL. Another one a BPM system from IBM,
where the business processes are implemented using BPEL
(BPEL (2003)). The BPM system has been extended in ar-
eas where business requirements were not fulfilled. For ex-
ample, the enterprise has created its own Human Task Man-
ager to handle and distribute human tasks that are part of an
executable workflow and its own task portal where process
participants claim and execute human tasks. Furthermore,
it has specific uses of BPEL fault handlers andhas defined
specific strategies of capturing business and technical faults
during process execution. Compensation is not used and
process instances are not allowed to fail. If an error occurs

2

during execution, the fault is caught by a fault handler, and
the failing node is forced into a stopped state. A person
or an application subsequently has to repair the failure and
restart the failed node.

2.2 Business and IT Development Process
A part of the Danske Banks strategy is to use standardized
methods, tools and technologies when they are considered
mature and fulfills the enterprises requirements. However,
no standardized development process as e.g. the Rational
Unified Process (Kroll and Kruchten (2003)) was sufficient
to fulfill Danske Banks requirements. Danske Bank ther-
efore defined its own development process. Business and
IT solutions are developed as one for any business problem.
When a project team is established to address a business
problem, all important stakeholders are represented includ-
ing business process participants, business analyst, solution
architects, system developers and test specialists. It is based
on service oriented principles (Erl (2005)) where business re-
quirements are mapped into required business services and
processes.

Models are an important part of the development pro-
cess. Most requirements and design decisions are captured
in models. They are used for documentation of all important
decisions in the project and for communicative purposes but
they are also used as blueprints for the implementation. The
development process includes specialized modeling notations
and creation of different modeling artifacts.

Here we only look at the part of the development pro-
cess that targets business process modeling and implemen-
tation although the development process also covers areas
like functionality- and user interface development.

A project team works on a project through four stages;
Requirements and functionality and process building blocks
are identified in the preanalysis phase. In the first half of
the specification phase, the project continues to identify and
detail requirements, and logical solutions are modeled and
described that fulfills the requirements. The logical design
is mapped to physical artifacts, and information about con-
crete implementation technologies are specified during phys-
ical design which takes place in the last half of the specifica-
tion phase. The systems are constructed in the construction
phase and implemented in the organization in the implemen-
tation phase.

3. EXAMPLE: CUSTOMER QUICK LOAN
The fictitious project “Customer Quick Loan” will be used
for illustrative purposes throughout the rest of the paper.

Changes in consumer patterns have required immediate
action for introducing a new type of customer loans. The
new loans can be requested from email and mobile phones
with possible immediately approval and transfer of the re-
quested amount to the customers account. A project team
is established which includes a loan specialist, a business an-
alyst, a solution architect, system developers and a project
manager. They name the project Customer Quick Loan.

In the following we will see how the project team follows
the enterprise specific development process to model require-
ments, design the solution, specify the physical design and
implement it as an executable workflow.

3.1 Business Events
In the preanalysis phase, the business analyst defines all

Figure 1: Business events for the Customer Quick Loan
project modelled as a UML class diagram in Rational Soft-
ware Modeler

possible business events that may occur for a given business
case. The events are described in a model called an event
map. If an event will initiate another event, it is modeled
as an arrow between them.

For the Customer Quick Loan the primary events are Ap-
plyForLoan, which is initiated when a customer requests a
loan, and PayoffLoan, which occurs each month after the
a loan has been created. The business analyst or the solu-
tion architect defines an event map as a UML class diagram
in Rational Software Modeler (Swithinbank et al. (2005)).
Figure 1 shows the event map and how events are orga-
nized manually in columns, which indicate different groups
of events. The analyst decides on how to group the events.
Textural nodes are used to describe scenarios. A simple
UML profile has been applied to the model to allow mod-
eling of business events using a stereotype. As a generic
UML class diagram editor is used, the modeler first has to
create a new class diagram, apply the relevant UML pro-
file, model classes and then add the right stereotype to the
classes. Additional information about the events is specified
in MS Word documents. An event is classified as external
if it is invoked by an actor as e.g. a customer or another
department in the enterprise and it is classified as timede-
pendent if the event is occurring at a certain point in time.
The ApproveForLoan event is external as it is invoked by a
customer while the Payoff loan is time dependent as it is in-
voked once a month. For time dependent events, the time of
the occurrence must be specified as well as conditions that
may initiate the event. An external event must have spec-
ified information about business possibilities and decisions
that may initiate the event.

3.2 Solution Process Flow
Each business event, e.g. a customer requesting a loan,
will involve execution of some business logic. For exam-
ple, a back office worker or customer advisor that receives
an email with a loan request from a customer will have to go
through certain steps to address the request. For each busi-
ness event, the business analyst will model such business
logic as asis and tobe process models of current and possible
future work practice. These models are made in cooperation
with process participants who are involved in the real work
practice. They are at a high conceptual level expressing
creative thoughts about the business requirements. These

3

Figure 2: Solution Process Flow for the ApproveForLoan business event modeled in Websphere Business Modeler. MS Word
is used to describe System Uses Cases for each task and for the process

models are only used for communicative means. Based on
the creative tobe process, the business analyst together with
a solution architect and possible a system developer model
a precise business process at a logical level which expresses
all logical steps in the business process including all possible
exceptional cases. This model is called a Solution Process
Flow (SPF). Each task in the SPF must either be of type
Automatic, which means handled automatically by a service
invocation, Manual as e.g. moving papers from a table to
an archive or UserExperiance as e.g. creating a loan us-
ing an application user interface. Asis and tobe processes
are defined in the preanalysis phase while Solution Process
Flows are modeled in both the preanalysis phase and the
first half of the specification phase. The IBM Websphere
Business Modeler is used to define these models. The used
task types are indicated by use of classifiers, a tooling con-
cept that allows the modeler to classify tasks with textural
descriptions.

The Solution Process Flow for the primary business event,
ApplyForLoan, is illustrated in Figure 2. It consists of four
logical tasks; first the automatic ApproveLoan task will make
a risk calculation of the customer. If the risk is high, the loan
request is rejected; process participant will be notified by the
Reject task of type UserExperience, and will have to send
an rejection message to the customer using an application
interface. If the risk is low, the loan, or possible several
loans applied for at once, will be created by the automatic
CreateLoans tasks, and a confirmation will be sent to the
customer by the Confirm task.

The project team has examined the local service repos-
itory for existing services and has found that two existing
service operations called in a sequence will fulfill the require-
ment for a Confirm task in the Solution Process Flow. Ther-
efore, the Confirm task is further broken down and modeled
in a separate sub process as illustrated in Figure 3.

First, a service operation is invoked to create the content
of the confirm message, and second, a service operation is
invoked to send the message by SMS, email or letter.

Further from specifying the Solution Process Flow, the
project team also details the description of each task in Sys-
tem Use Cases (SUC), one for the process and one for each
task. A System Use Case describes the purpose of a task
and is also used to link to other related models. For exam-
ple, it will contain a link to a service contract model for an
automatic task and for a user experience task it will contain
a link to a Graphical User Interface model. For the Apply-
ForLoan process, five MS Word documents are defined. For

Figure 3: The Confirm task modeled as a sub process

instance, in the SUC for the CreateLoans task, it is written,
that the task automatically creates all loans the customer
has requested for. This is done by invoking a service oper-
ation multiple times. All models and descriptions from the
specification phase are completely logical as it has not yet
been decided which implementation technology to use.

3.3 Physical Design
The project team decides on how to implement the concep-
tual business process model during physical design. This
takes place in the second half of the specification phase.
Some business processes may be implemented in BPEL, oth-
ers may be implemented in PL1 or COBOL for batch exe-
cution, and finally some processes may not be implemented
by IT at all.

Although a WFM system allows automatic execution of
the coordination of a business process, often the process is
organizationally implemented with only partial IT support
in form of graphical user interfaces or batch programs im-
plemented. Actually, implementation of a business process
using BPEL is only chosen for a small percentage of all mod-
eled business processes.

However, this paper is about implementing business pro-
cesses as executable workflows. The example as well as the
prototype to be presented later only presents a Solution Pro-
cess Flow that can be completely implemented as an exe-
cutable workflow. In reality, it may be decided to implement
only a part of a Solution Process Flow or merge several into
one executable workflow. For the ApplyForLoan process,
the project team decides to automate the execution of the
process by implementing it in BPEL. Two kind of physical
specifications now have to be made: BPEL process design,
also called Control Flow Behavior, and a Workflow Speci-
fication, which contains additional information required to
implement the Solution Process Flow and all its tasks in the
WFM system.

4

3.4 Control Flow Behavior
The Solution Process Flow described in section 3.2 is the
starting point for the Control Flow Behavior, a model of the
physical implementation in BPEL which is created using
Websphere Business Modeler. In cases where one SPF is
completely implemented as a BPEL process, it will be quite
similar to the Control Flow Behavior.

However, three physical design decisions make them dif-
ferent; First, the decision on implementing an SPF sub pro-
cess in a separate BPEL process or as an inlined process
flow in the main BPEL process. Second, the introduction of
additional technological dependent functionality required by
the BPEL implementation, and third, specification of imple-
mentation patterns which is how each task is implemented.
We will discuss these physical design decisions in the next
three sections:

3.4.1 Separate versus Inlined Subprocess
When designing a BPEL process it must be decided if the
process should be implemented as one BPEL process, or if it
should be broken down into several. In the case of the Ap-
plyForLoan process, the developer decides that the Confirm
sub process should be implemented as an inlined sub process
in the ApplyForLoan BPEL process. This is illustrated in
Figure 4. He or she could also have decided to implement the
sub process as a separate BPEL process. Extracting parts
of the process into sub processes has advantages: More than
one developer can simultaneously work on the construction,
it is easier to make a change and deploy a small sub process
compared to change and deploy the main process, and a sub
process can be reused by other processes. But extensively
use of sub processes has the disadvantages of maintaining
and operating several processes instead of one main process.
This causes an overhead and introduces complexity regard-
ing change management.

3.4.2 Technology Dependent Functionality
Additional functionality that is required for the technical
implementation in a specific technology should not be mod-
eled in the Solution Process Flow. In the case of BPEL, this
could be complex data transformations inside in a BPEL
process that are externalized as separate service invocations,
it could be synchronization of data between different systems
that make up the extended WFM system in Danske Bank,
or it could be a specific service invocation that updates the
business state for the specific process instance, a feature of
the extended WFM system. For the ApplyForLoan process,
an additional service invocation has to be inserted in the
Control Flow Behavior after the AssessRisk service invoca-
tion to update the business state of the process instance.
A service operation that is part of the WFM system must
be invoked to set the business state to either “Approved” or
“Rejected”. This state information can be viewed by em-
ployees in the enterprise through the Human Task Portal
that is part of the extended WFM system. If the Solution
Process Flow had been implemented using another technol-
ogy like COBOL, this additional functionality had not been
required (see Figure 4).

3.4.3 Implementation Patterns
Each task in the Solution Process Flow has to be mapped to
a task in the Control Flow Behavior. As this is a model of
the implementation, each task must express how it should

be implemented in BPEL, i.e. which implementation pat-
tern to use. In this context implementation patterns are
patterns, or code templates and rule used by Danske Bank
to implement tasks of different types. An Automatic task
type can be implemented by three different patterns; Ser-
viceOperation, MultipleInstances and Bundle. Tasks of type
Manual and UserExperience are always implemented using
a HumanTaskManual or a HumanTaskGUI pattern. These
patterns are illustrated in Table 2 and will be explained
in section 3.6. When modeling the Control Flow Behavior,
these pattern names are used to classify all tasks in the same
way as the Automatic, Manual and UserExperience classi-
fiers were used in the SPF model. Table 1 lists how tasks
from the ApplyForLoan Solution Process Flow have been
mapped to the Control Flow Behavior.

Table 1: Solution Process Flow tasks mapped into Control
Flow Behavior

Task Implementation pattern

AssessRisk ServiceOperation
CreateLoans Bundle
CreateContent ServiceOperation
SendMessage ServiceOperation
Reject HumanTaskGUI

The implementation pattern to be used in the physical
design is determined from the task type in the SPF and
the description of the task in the corresponding System Use
Case.

3.5 Workflow Specific Information
Much information has to be specified to implement the Con-
trol Flow Behavior in the BPM system. For a ServiceOp-
eration task this includes information about which service
operations to invoke, exception handling and escalation of
errors, if the task must be restarted in case of failures dur-
ing service invocation etc. It must also be specified what
data is needed to invoke the operation and what data will
be returned, as well as possible business and technical faults.
Some of the required information has already been specified
in other (functional) models such as which name of service
operation to invoke, but to keep the example simple, we will
provide this information below instead of introducing more
models.

A tasks of type HumanTaskManual or HumanTaskGUI is
a task handled by humans. Process participants will be able
to list, claim and execute such a task from a task portal. For
both type of tasks following information is needed; groups
allowed to claim and execute a task are defined as Alloca-
tion Rules, labels, descriptions and data values in three to
five different languages must be described to be presented
to the business participants in the task portal, and rules
about earliest start of the task and a possible deadline and
several others also has to be specified. The HumanTaskGUI
task further has a link to an existing application interface
where the process participant has to handle the task. It
must also be specified which data values from within the
running BPEL process instance the link should transfer to
the business system. For the process itself, additional infor-
mation also has to be specified. This includes input data
for the process, allocation rules, and description in several

5

Additional

Functionality

Inlined

Subprocess

Implementation

Patterns

Figure 4: Controlflow behavior of the ApplyForLoan SPF

languages for presentation in the task portal.
All information for one task is specified in a MS Word

document and is called a Workflow Task Specification. For
each type a Word template is available for defining the re-
quired information. For the ApplyForLoan process six such
task specifications are created.

3.6 BPEL Construction
After the Control Flow Behavior and Workflow Specifica-
tion have been completed all required information and de-
sign decisions are available, and the BPEL process can be
constructed.

A system developer now maps the Control Flow Behav-
ior into a BPEL process. From the workflow specification
that contains information about the controlflow, he is able
to specify input/output data, set attributes about the pro-
cess as e.g. when it is valid from, if it is a long running
process etc. Also other systems as e.g. Danske Banks pro-
prietary Human Task Manager can be populated with al-
location rules specified in this document. The developer
maps each task defined in the Control Flow Behavior to a
BPEL implementation based on his knowledge of how BPEL
is used in Danske Bank, i.e. the implementation patterns,
and the information specified in the workflow specification
documents. Each task type introduced in section 3.4.3 has
a certain BPEL template and an algorithm for how to im-
plement it. The pattern names and corresponding BPEL
templates are illustrated in Table 2. Algorithms for how
to populate these templates with data are described in sec-
tion 5.

The Service Operation pattern invokes a service opera-
tion and incorporates specific way of using logging and fault
handling. All service operations in Danske Bank throw a
Technical Fault, which is caught by the fault handler for the
Invoke node. The fault handler forces the invoke node into
stopped state.

The MultipleInstances pattern is a loop containing a ser-
vice invocation as implemented by the Service Operation
pattern. It is similar to the workflow pattern “Multiple in-
stances without priori runtime knowledge” (van der Aalst
et al. (2003)).

The service operation invoked in the loop may initiate
another process or thread that runs concurrently. For some
business scenarios the main business process is not allowed
to continue before all initiated processes behind these service
invocations have finished. Danske Bank has extended the

Table 2: Danske Bank specific BPEL implementation pat-
terns. The dots are replaced with information from the
Control Flow Behavior and the workflow specification doc-
uments

Pattern name BPEL template

ServiceOperation

<a ss i gn name=..> . .</ a ss i gn>

<invoke name=..>
<catch faultName=TechFault . .>

. .
</ catch>

</ invoke>

MultipleInstances

<a ss i gn name=..> . .</ a ss i gn>

<whi l e name=..>
<as s i gn name=..>
<invoke name=..>

<catch faultName=TechFault>
. .

</ catch>

</ invoke>

</whi l e>

Bundle

<a ss i gn name=..> . .</ a ss i gn>

<whi l e name=..>
<as s i gn name=..>
<invoke name=..>

<catch faultName=TechFault>
. .

</ catch>

</ invoke>

</whi l e>
<r e c e i v e name=..> . .</ r e c e i v e>

HumanTask

<a ss i gn name=..> . .</ a ss i gn>

<invoke name=SetTaskInQueue>
<catch faultName=TechFault>

. .
</ catch>

</ invoke>

WFM system with infrastructure functionality that allows
such a mechanism. In the BPEL process it is called the
Bundle pattern and is implemented as the MultipleInstances
pattern followed by an event. At runtime after invoking the
service operation a number of times, the main process will
wait until all the initiated concurrently running processes
have finished. The WFM infrastructure extension will be
notified about the state change and will fire the event that
will cause the BPEL process to continue executing.

The HumanTaskManual and GUI patterns are implemen-
ted by invoking a specific service operation exposed by Dan-
ske Banks Human Task Manager followed by an event node.
The translation of a task and its related information is purely
manual, even though it is the same patterns that are imple-
mented multiple times.

Above descriptions only show a subset of the implementa-
tion steps that the developer has to go through when imple-
menting the tasks from the Control Flow Behavior. Com-

6

mon for all patterns is that data mapping also has to be
specified before invoking a service operation.

Control flow logic also has to be specified by the developer.
This is described at the edges that connect the tasks in the
Control Flow Behavior model.

4. A NEED FOR CUSTOMIZED TOOLS
The models and information are developed and specified us-
ing a number of commercial modeling and implementation
tools. The event map is modeled in Rational Software Mod-
eler (RSM) using a UML class diagram with an applied pro-
file. It is further detailed in a MS Word document. Business
process models, i.e. asis, tobe and Solution Process Flows
are modeled in Websphere Business Modeller (WBM) which
uses an internal IBM notation. To support Danske Banks
own modeling notation, nodes and connections are manually
annotated with textual descriptions. WBM is also used to
model Control Flow Behavior, but with other classifiers than
for the conceptual business process models. System Use
Cases and Workflow Specifications are described using Mi-
crosoft Word templates. As previously mentioned the SUC
contains links to other models, but these links are purely
textual. Websphere Integration Developer (WID) is used
to implement Control Flow Behavior models in BPEL. The
development team faces several challenges by using these
different tools:

Difficult to use domain concepts Danske Bank has de-
fined its own concepts for modeling business processes,
but it is not possible to create models by directly using
these concepts. Tools have been twisted and tweaked
to force them to behave as desired. The usability is
low and it is hard to use the models for communica-
tive means. For instance, to model an automatic task
a business analyst must first create a general task,
view its properties and apply an “Automatic” classi-
fier value. Visualization of classifiers is restricted to
only textural representation.

Difficult to comprehend infomation A number of dif-
ferent tools are used to describe and specify how a
business process should be implemented. The devel-
oper and the architect therefore need to look into sev-
eral different tools and models to find relevant informa-
tion. For example, for each service invocation the de-
veloper needs to locate the word document containing
workflow specific information for the specific service
operation read it through and re-enter the information
into a WSDL document.

Missing traceability and consistency It is difficult to
find relevant models because traceability between mod-
els is handled by textual descriptions. Furthermore, a
model created in one tool cannot refer to models cre-
ated in other tools. Consistency between models must
therefore be handled manually. When changes appear
to a Solution Process Flow, the architect must manu-
ally apply the changes to the Control Flow Behavior.
The same challenge exists between the Control Flow
Behavior and the BPEL implementation.

Imprecise data definitions in Word Imprecise data de-
finitions can only be interpreted by humans. For in-
stance, the name and version of the service operation

is specified in a workflow specification document. The
lack of a metamodel for this information makes it non-
readable by machines. Therefore the developer must
read the information manually and reenter it into a
WSDL document.

Because of above challenges, transformation of models and
information from specification and physical design into phys-
ical artifacts as e.g. BPEL have to be done purely manually.
The system developer needs to open models in RSM and
WBM and retrieve information manually, and he/she must
open many MS Word document to get detailed information
about design decisions. Although model driven development
is the goal of the development process, the result is mere a
document driven development process.

For the simple example of the ApproveForLoan business
process, the number of models and documents get high even
for a simple example with only four tasks. One RSM model,
two WBM models and about 10 word documents make up
the specification. It is quite difficult to comprehend the large
amount of distributed information required for constructing
the BPEL code. Further, the construction process is ineffi-
cient and error-prone as much of the information from the
specification has to be manually reentered into the physical
artifacts.

The core of the problem is that the commercial tools used
presume one development process defined by the software
vendor, a fixed set of modeling languages and a specific way
to use the implementation technology. This is in deep con-
trast to the requirements from Danske Bank who found the
standard development process and standard notations insuf-
ficient for their needs. They need to build their own devel-
opment process into the tools, to use their own modeling
notations and artifacts and to define their own use of tech-
nology.

In the next section we will make an abstraction of Dan-
ske Banks development process and the modeling artifacts,
which will form the basis for the tool chain that has been
developed specifically for Danske Bank. As we will observe
later, the tool chain make the project team more produc-
tive as domain concepts are directly available within editors,
traceability between models is provided, the use of Word has
been replaced by models and the construction of the BPEL
implementation is done automatically by customized trans-
formations. This further reduces the risk for inconsistency
between models and code, as information is taken directly
from models without having to be reentered.

5. ABSTRACTED DEVELOPMENT
PROCESS

Based on the Customer Quick Loan example described above
we will now abstract the development process into meta-
models and transformations. First, we give an overview
of the current development process and describe require-
ments to a model driven development process. Second, we
introduce the abstracted development process, which uses
the metamodels and transformations that we will develop in
this section. Last, we define these metamodels and describe
algorithms of how to carry out the transformations. The
metamodels and transformation algorithms form the basis
for the prototype tool suite described in next section, which
has been developed specific for Danske Bank.

7

5.1 Current Development Process
Figure 5 gives an overview of the described development

process in previous section, and illustrates the created ar-
tifacts as well as design decisions. The artifacts are depic-
tured with rounded boxes to indicate they are not precisely
modeled, and the clouds indicate decisions that are not doc-
umented but instead put directly into models or code. Much

Event SPF BPEL

WSDL

CFB
Design

Decisions

Analyst Architect

Workflow
specification

Impl

Decisions

Developer

M
od

el

be
ha

vi
or

create &
specify

createdefine
Model

behavior

cr
ea

tecreate

Figure 5: Current development process with main modeling
artifacts and decision points. The clouds indicate that deci-
sions are not documented, and the rounded boxes indicate
that no metamodels are used.

of the information required though the development process
is described as plain text. A human must read and interpret
it to be able to construct the implementation. The cloud
between the Solution Process Flow and the Control Flow
Behavior illustrates that decisions about how the physical
design are taken by the architect or developer; First, for
each sub process modeled in the SPF it must be decided if
it should be implemented as an inlined flow or as a separate
process. Second, additional functionality must be specified.
By defining the Control Flow Behavior from scratch, but in-
spired by the Solution Process Flow, the possibility to have
tool based consistency check between the them is lost. The
Control Flow Behavior model needs to be manually updated
each time the Solution Process Flow changes. The cloud
between the Control Flow Behavior model and the BPEL
code indicates decision taken by the developer about BPEL
specific information as e.g. the name of the project where
the code is being developed, default package name, target
namespace to use in the BPEL process, if generated WSDL
files are kept in separate directories, etc.

5.2 Requirements to a Model Driven
Development Process

One of the main ideas behind model driven development
is to have tools that can transform platform independent
models to platform specific models, and then generate the
implementation code. In our example this means transfor-
mation of a Solution Process Flow into a Control Flow Be-
havior from which the BPEL implementation and related
documents can be generated. In general, three basic require-
ments must be fulfilled to enable an efficient model driven
development process:

1. Information and design decisions must be specified pre-
cisely in models.

2. Transformation between models must be formally de-
scribed.

3. Information added to generated models or code must
survive future transformations.

Creating precise models requires availability of languages or
metamodels that support modeling standards and which al-
low modeling of all required information in a precise manner.

As Danske Bank has created its own notations and use tech-
nology in specific ways, they need to be able to express this
in their models.

5.3 Abstracted Development Process
Figure 6 illustrates the model driven development process

that we will describe through the rest of this section. It
uses metamodels, called Eventmap, SPF and WFSpec, for
modeling event maps, Solution Process Flows and workflow
specifications. It further uses a ModelInjection metamodel,
and a BPELCodeGen metamodel. They are used to capture
decisions currently taken in the “clouds”. The metamodels
form the basis for algorithms that can generate models and
code. The BPELCodeGen metamodel is used to describe

M
od

el
be

ha
vi

orModel behavior

Event Algorithm 1 SPF BPEL

WSDL

Analyst Architect Developer
WFSpec

Model Injections BPEL Codegen

A
lgorithm

 2

Adds injections
Code details

Specific information

Add
m

ap
pi
ng

an
d

lo
gi
c

define

Figure 6: New development process with metamodels and
transformations. Information is specified precisely by us-
ing the SPF, WFSpec, BPELCodeGen and ModelInjections
metamodels

specific BPEL implementation decisions, while the WFSpec
metamodel and the ModelInjection metamodel are used to
describe the three differences between the Solution Process
Flow and the Control Flow Behavior described in section
3.4:

1. Decisions about how to implement sub processes mod-
eled as part of the Solution Process Flow is captured
by the WFSpec metamodel. A WFSpec model is used
to specify workflow specific information for each task
in the Solution Process Flow. It also has an element
to specify if a sub process should be implemented as
an inlined BPEL flow or as a separate BPEL process.

2. Additional technical functionality is modeled as sepa-
rate process fragments. Each process fragment is also
called a model injection as it is to be injected at a
specific point in the Solution Process Flow to gener-
ate the Control Flow Behavior. Process fragments are
modeled using the Solution Process Flow metamodel.
The relation between a process fragment and where to
inject it is captured by a ModelInjection metamodel.

3. The implementation patterns to be used for imple-
menting tasks in the Solution Process Flow are doc-
umented by the WFSpec metamodel, for instance that
an Automatic task is implemented by the ServiceOp-
eration or the Bundle implementation pattern.

The development process illustrated in Figure 6 has been
implemented in a prototype tool that uses the metamod-
els to capture information precisely and transformations to
automate the generation of the Control Flow Behavior and
the BPEL implementation. After a business analyst has cre-
ated an event in an event map, he or she uses Algorithm 1

8

to create a template for the corresponding Solution Process
Flow. This template is used to for modeling the business
process behavioral. The architect uses Algorithm 2 to gen-
erate the WFSpec model with default information, which
he updates with correct information for the concrete busi-
ness process. The architect and the developer may create
a ModelInjection model to specify additional functionality
to be injected when the implementation code is generated.
Further, the developer creates a BPELCodegen model and
defines attributes for the BPEL implementation. The de-
veloper uses these four models together with Algorithm 3 to
generate the BPEL code. The transformation arrow for Al-
gorithm 3 illustrates that the Control Flow Behavior model
has disappeared as it is indirectly generated from the Solu-
tion Process Flow, the WFSpec model and the ModelInjec-
tion model. The prototype tool will be described in details
in section 6

5.4 Metamodels
The five metamodels introduced above will now be described.
They have been developed by analyzing the current develop-
ment process. This includes discussions with development
teams, enterprise architects and examination of educational
material.

5.4.1 Eventmap Metamodel
The Eventmap metamodel, depictured in Figure 7 expresses
how events can be modeled and related to each other. The
metamodel has incorporated all information that previously
was described as plain text in MS Word documents. As pre-

Figure 7: Event map (EventMap) metamodel. An event
can either be external or timedependent and consists of a
number of scenarios.

viously described, an event could be classified as external if it
was initiate by an actor or internal if it was a time dependent
event. Inheritance has been used to define these two event
types and requirement for different information. An abstract
Event metaclass contains attributes for information common
for both types of events while the TimedependentEvent and
the ExternalEvent subclasses contain specific attributes. In-
formation has to be defined for the two event types. For the
TimedependentEvent, time of occurrence must be defined as

well as an optional condition for when the event can occur.
For the ExternalEvent, information about business possibil-
ities and occurrence has to be defined. Other information
like priority and the responsible actor musts be defined for
both types of events.

5.4.2 Solution Process Flow Metamodel
A Solution Process Flow is constructed for each event mod-
eled in the event map. The SPF metamodel is illustrated
in Figure 8. It is a simple flow based metamodel that re-
minds much of a UML activity diagram. The difference is
the use of the domain specific task types, i.e. Automatic,
Manual and UserExperience, and the domain specific edges,
i.e. ProcessConnection, DialogConnection and ProcessDi-
alogConnection. This paper and the implemented proto-
type only deals with modeling and transformation of an SPF
model that can be completely transformed to an executable
workflow, which means the it must only contain edges of
type ProcessConnection. The other connection types can
be used to model a process where part of it should be im-
plemented in a dialog wizard framework instead of a WFM
system.

5.4.3 Workflow Specification Metamodel
The Workflow Specification (WFSpec) metamodel, illustra-
ted in Figure 9 is a formalization of the Workflow Specifi-
cation previously defined in Word documents. A WFSpec
model refers directly to a Solution Process Flow model in-
stead of referring to a Control Flow Behavior model, as this
is not explicitly modeled after the introduction of the Model
Injection concept in section 5.3. Much information is re-
quired by the WFSpec metamodel, therefore only selected
parts of it are described here. The SPF4WFM metaclass is
the main element. It refers to a Solution Process Flow model
and has several attributes specifying information required
for implementing the BPEL process, e.g. a deadline rule,
process lifetime information, allocation rules about process
responsibility, department owner, process type etc. Many of
these attributes are specific for Danske Bank as a BPEL pro-
cess implemented in the WFM system is a part of a larger
proprietary case system that extends the commercial BPM
system with additional functionality. The SPF4WFM meta-
class also specifies input and output data structures for the
BPEL process. These data structures are modeled using
the DataStructure metamodel which is described later. The
reason to have a separate DataStructure metamodel is for
reuse issues. In the prototype implementation it is used by
the WFSpec metamodel as well as (a mock up of) Danske
Banks service repository.

The SPF4WFM metaclass contains a number of TaskSpe-
cification elements. A TaskSpecification can either be an Au-
tomaticSpecification, ManualSpecification, UserExperience-
Specification or a SubProcessSpecification. An Element of
one of these metaclasses refer to a task of type Automatic,
Manual, UserExperience and SubProcess respectively. A
TaskSpecification specifies required additional information
for the implementation in BPEL and which implementation
pattern to use. Previously, information about the imple-
mentation pattern was stored directly in the Control Flow
Behavior while additional information was stored in Word
documents.

The SubProcessSpecification metaclass is the simplest one,
which only requires a type attribute specifying if the sub-

9

Figure 8: Solution Process Flow (SPF) metamodel. Tasks are modeled by the Automatic, Manual, UserExperience and
SubProcess tasks types and connected in a control flow by using edges of type Process, Dialog or ProcessDialog.

process should be implemented as an inlined flow or as a sub
process.

The AutomaticSpecification metaclass requires following
attributes

• retriesBeforeEscalation: Service invocations occasion-
ally fail due to network timeouts. This attribute indi-
cate how many retries should be executed before esca-
lating the failure.

• escalationType: The type of escalation in case a tech-
nical failure occurs. Can either be Manual indicating
the a human activity is started from within the work-
flow, Peregrine which is a failure report generated by
the Danske Banks extension to the workflow engine,
or Both.

• timeout : A timeout indicator in milliseconds indicating
when the service invocation has failed due to network
failure.

• restartable: A boolean indicating if the service invo-
cation must be restarted in case of failures. As the
environment in which the workflow system operates is
heterogeneous, two phase commit is not an option. If a
service invocation fails the workflow engine cannot be
certain if the operation was invoked or not. Therefore
restartable must only be true is case the service imple-
mentation is immune for several similar invocations.

It further requires a TechnicalFault, an Operation and In-
putSchema and OutputSchema objects. The TechnicalFault
object specifies an exception that the service operation may
throw when invoked. The Operation object specifies name
and version of the service operation to be invoked and the
pattern to be used for implementation, i.e. ServiceOpera-
tion, MultipleInstances or Bundle. The InputSchema and
OutputSchema objects specify data structures for the ser-
vice operation. These are modeled using the DataStructure
metamodel.

The ManualSpecification and UserExperienceSpecification
metaclasses are equal except that the UserExperienceSpeci-
fication contains a link to the business application where a
process participant has to execute the task. For both spec-
ifications it must be defined if the task can be cancelled or
skipped by the user and if the business application is aware
of the workflow system so the task can be completed di-
rectly from the business system (wfLevel: basic, lite or full).
Further, presentation of a task in the task portal is speci-
fied by using the ListPresentation and DetailsPresentation
metaclasses. Here, textural descriptions to be used by the
task portal is described in three to five languages, and it is
described which data values from within the workflow that
has be visible in the task portal, as e.g. loan amount and
customer name. The AllocationRule metaclass is used to de-
fine who is allowed to claim, execute and complete the task
and the DeadlineRule metaclass is used to specify the task
deadline and earliest start.

5.4.4 DataStructure Metamodel
The DataStructure metamodel (Figure 10) has been ex-
tracted from the WSUC metamodel to allow reuse of the
metamodel by several tools. A DataModel contains a num-
ber of DataStructure classes. A DataStructure class is used
to model input and output data for a service operation. It
is quite simple; A DataStructure consists of a number of ele-
ments which can either be SimpleElement, which is a string,
an integer or a boolean, or ComplexElement which itself
contains other elements.

5.4.5 BPEL Code Generation Metamodel
The BPEL code generation (BPELCodeGen) metamodel is
used to store decisions of how to implement a physical design
in BPEL (Figure 11). It refers to a Solution Process Flow
and specifies target namespace to use for the BPEL process,
name of the project that should contain the BPEL process,
base package name to define the BPEL process in, if WSDL

10

Figure 9: Workflow specification (WFSpec) metamodel. The SPF4WFM metaclass refers to a Solution Process Flow and
contain a number of TaskSpecifications. A task specification refers to a task in a Solution Process Flow and can be of type
Manual, UX, Automatic or SubProcess

11

Figure 10: Data structure (DataStructure) metamodel

files should be located in the separate folders, and the name
of the base WDSL folder name. While these attributes ex-

Figure 11: BPEL code generation (BPELCodeGen) meta-
model

presses some of the basic decisions of BPEL implementation,
the metamodel could be extended to provide several more
variation points.

5.4.6 Model Injection Metamodel
In section 5.3 it was described how the Control Flow Behav-
ior could be generated based on the Solution Process Flow
model and model injections. The ModelInjection metamodel
illustrated in Figure 12 keeps track of all process fragments
to inject and where to inject them in a Solution Process
Flow model. The ModelInjection metaclass has a reference
back to the Solution Process Flow (spfRef) and contain a
number of Injections. An Injection class specifies the point
in the SPF where the process fragment should be injected.
The injection point (JointPointSpfConnectionId) is specified
by the ID of a connection in the SPF. It further contains a

Figure 12: Model injections (ModelInjections) meta model

file reference to the process fragment to inject (spfToInject).
As mentioned earlier, process fragments are modeled in sep-
arate files using the SPF metamodel.

5.5 Transformations
Now, when all information required during the development
process can be stored precisely in models, we are able to
describe algorithms for how to transform a Solution Process
Flow and related models into BPEL. We may further de-
scribe an algorithm to generate an empty Solution Process
Flow from an event and another algorithm to generate a
Workflow Specification (WFSpec) model based on a Solu-
tion Process Flow.

Previously, knowledge of the transformation algorithms
was only implicitly available in the minds of architects and
developers. This knowledge has been extracted into explicit
algorithmic descriptions in pseudo code (Algorithm 1,2 and
3) which form the basis for creating tool based transforma-
tions.

5.5.1 From Event to Solution Process Flow
One Solution Process Flow model has to be created for each
event in the eventmap. The model is given the same name as
the event and is stored under a folder named “SPF”. As the
event map is the first artifact to be created in the project,
the transformation described by Algorithm 1 only creates an
empty Solution Process Flow model with the correct name.
After executing Algorithm 1, the analyst and the architect

Algorithm 1 From Event to SPF

procedure Event2SPF(event::Event)
for all events in eventmap do

create spf :: SPF
set spf.name = event.name
spf.nodes.add(create start :: StartNode)
spf.nodes.add(create end :: EndNode)

end for

end procedure

model the behavior of the business process inside the gener-
ated Solution Process Flow model.

5.5.2 From SPF to Workflow Specification
The physical specification, i.e. the Workflow Specification
(WFSpec) model, can be generated based on the Solution
Process Flow model. It is named and stored according to
Danske Banks standards. A simplified algoritm is specified
in Algorithm 2. A TaskSpecification class is generated and
added to the WFSpec model for each task in the Solution
Process Flow. The WFSpec model contains all required in-
formation, but all attributes contain default values. Succes-
sively it therefore has to be filled with correct information by
the architect. As the architect changes a generated model,
there is a risk that this information is lost when the model is
regenerated. This can be avoided by letting the transforma-
tion algorithm recognize if a WFSpec model already exists
and if the TaskSpecification has already been defined.

5.5.3 Generation of the BPEL implementation
The physical design and specification is finished after in-
formation has been filled into the WFSpec model, process
fragments has been modeled and the ModelInjection model

12

Algorithm 2 From SPF to Workflow Specification

procedure SPF2WFSpec(spf::SPF)
create spf4wfm :: SPF4WFM
spf4wfm.spfRef = fileLocation(spf)
spf4wfm.allocRules.add(create AllocationRule)
spf4wfm.extSystemLink =create SystemLink
spf4wfm.input =create InputSchema
spf4wfm.output =create OutputSchema
for all tasks :: Automatic in spf do

create spec :: AutomaticSpecification
create spec.technicalFault :: TechnicalFault
create spec.operation :: Operation

end for

for all tasks :: Manual in spf do

create spec :: ManualSpecification
spec.allocRules.add(create AllocationRule
spec.deadlineRules.add(create DeadlineRule
create spec.presentation :: Description
create spec.listPres :: ListPresentation
create spec.detailsPres :: DetailsPresentation

end for

for all tasks :: UserExperience in spf do

. Same steps as for ManualSpecification
create spec :: UserExperienceSpecification
create spec.link :: Link

end for

for all tasks :: SubProcess in spf do

create spec :: SubProcessSpecification
end for

end procedure

created, and a BPELCodeGen model has been created with
information about the BPEL implementation. All informa-
tion required to implement the BPEL process is now present
in models. Four different kinds of models contain the nec-
essary information to create the BPEL implementation; a
model of the Solution Process Flow and models of its sub
processes, a model of the workflow specification, a model
of model injections, and a model of BPEL code generation
decisions.

Algorithm 3 describes at a high level how these four mod-
els can be merge together to generate the BPEL implemen-
tation where only control flow logic and data mapping has
not been taken care of. The full algorithmic implementation
is much more complex than this description and contains
many steps to e.g. manage namespaces for several web ser-
vice documents, generation of XSD schema definitions for
data types, setting up correct relations between BPEL part-
nerlinks and WSDL documents etc.

The algorithm contains a recursive graph transformation
procedure, graphTransform(). This procedure first locates
the initial node in the Solution Process Flow and then it
recursively traverse the complete control flow graph and
generates the corresponding BPEL implementation. The
graph transformation delegates the responsibility for the
task transformation to a separate pattern transformation
procedures based on the implementation pattern specified
in the workflow specification. The described algorithm has
been limited to transformation of simple control flow graphs.
Cyclic behavior, loops and other often used constructs have
not been described nor implemented.

6. TOOL CUSTOMIZATION
In this section we describe a tool suite, called Danske Bank
Workbench (DBW) that implements the metamodels and
transformations described in last section. Hence, it directly
supports Danske Banks development methodology and do-
main concepts. It has been built on the Eclipse platform
(Eclipse (2008)) and various Eclipse open source projects.
The Eclipse Modeling Framework (EMF) (Budinsky et al.
(2003))has been used for defining the abstract syntax, or
metamodels of the DSLs, that have been implemented. The
concrete syntax of the DSLs and editor support have been
implemented by using the Graphical Modeling Framework
(GMF (2008)), while openArchitectureWare (oAW) (oAW
(2007)) has been used to implement the semantics of the
DSLs as model-to-model and model-to-text transformations.

We start be introducing the Eclipse projects related to
model driven development, on which the DBW is based.
This is a necessary introduction before we describe the over-
all architecture of DBW and how metamodels, editors, trans-
formations and functional utilities that support easy devel-
opment have been build. Last, we illustrate the usage of the
tools by revisiting the Customer Quick Loan project.

6.1 Model Driven Development in Eclipse
Many Eclipse projects exist for supporting the development
of tools for model driven development. The MOF MOF
(2006) and the UML UML2.0 (2004) specification have been
implemented under the Eclipse Modeling Framework (EMF)
project and the UML project. It is possible to define and cre-
ate metamodel implementations using both these implemen-
tation. For Danske Bank Workbench it was decided to de-
fine and implement metamodels based on EMF as both the
openArchitectureWare (oAW) framework and the Graphical
Modeling Framework (GMF) supports EMF directly. Now,
we introduce four important projects, that the Danske Bank
Workbench builds upon.

6.1.1 Eclipse Modeling Framework
The Eclipse Modeling Framework (EMF) (Budinsky et al.
(2003)) forms the basis for most of the modeling projects
within Eclipse. EMF is an implementation of a subset of the
MOF specification and contains a meta-meta model called
Ecore, which is used for defining ones own metamodels. All
metamodels described in section 5 have been implemented
using EMF. The EMF project provides wizards for generat-
ing an Ecore model from annotated Java interfaces, a UML
model and an XSD schema. The EMF framework provides
code generation facility which can generate Java code from
an Ecore model. This code is used by Eclipse based tools
to create, modify and persist models. The EMF framework
is responsible for serialization and deserialization of models
as well as event notifications when a model changes. A part
of EMF, the EMF.Edit framework forms a bridge between
the Eclipse UI framework and the EMF core framework and
comes as a part of the EMF project. The Ecore model can
be used to generate the EMF.Edit Java classes which are
used by editors and viewers to display and edit a model.
The EMF and the EMF.Edit framework can be used to cre-
ate editors for creating and editing models. The EMF code
generation facility is also able to generate a simple tree ba-
sed editor that takes advances of the generated EMF and
EMF.Edit implementations.

The tree based EMF editor quickly becomes insufficient.

13

Algorithm 3 Constructing BPEL implementation

procedure ConstructBPEL(spf::SPF, wfspec::WFSpec, modelinj::ModelInjections, bpelCodeGen::BPELCodeGen)
create bpel, bpel.wsdlinterface
create bpel.variables[input, output]fromspf
for all tasks :: Automatic in spf , modelinj do

wsdlfile = createWDSL(task,wfspec, bpelCodeGen)
bpel.partnerlinks.add(createPartnerLink(task))
bpel.variables.add(create request/response)

end for

if count(tasks :: HumanTask > 0) then

wdslfile = createWSDL(“HumanTask′′)
bpel.partnerlinks.add(createPartnerLink(“HumanTask”))

end if

node = findInitialNodeInSPF (spf)
graphTransform(node,wfspec, modelinj)
save bpel in location based on bpelCodeGen

end procedure

procedure graphTransform(node::Node, wfspec::WFSpec, modelinj::ModelInjections)
for all node.outgoings as edge do

child = edge.targetNode
taskSpec = getTaskSpec(wfspec, child)
if child instanceof Automatic then

if taskspec...type == Serv..Operation then

Serv..OperationPattern(child,taskSpec)
else if taskspec...type == Bundle then

BundlePattern(child,taskSpec)
end if

else if child instanceof Manual then

HumanTaskPattern(child,taskSpec)
else if child instanceof UserExperience then

HumanTaskPattern(child,taskSpec)
else if child instanceof SubProcess then

SubProcessPattern(child,taskSpec)
end if

if hasModelInjection(edge,modelinj) then

Load process fragment from modelinj
Transform process fragment into bpel
Insert generated bpel fragment into bpel.
Break edge into two to connect to fragment

end if

graphTransform(child, wfspec, modelinj)
end for

end procedure

procedure ServiceOperationPattern(node::Automatic, taskspec::AutomaticSpecification)
Create WSDL document, XSD schemas, partnerlinks,
input/output variables. Customize the BPEL
template by defining attributes.

end procedure

procedure BundlePattern(node::Automatic, taskspec::AutomaticSpecification)
Create WSDL document, XSD schemas, partnerlinks,
input/output variables and customize the BPEL
template by defining attributes

end procedure

procedure HumanTaskPattern(node::Manual, taskspec::ManualSpecification)
Create input/output variables
Define allocation rules and data in Human Task Manager
Define XML document with all data

end procedure

14

Instead, the Graphical Editing Framework (GEF) and the
Graphical Modeling Framework (GMF) can be used for cre-
ating graphical modeling editors.

6.1.2 Graphical Editing Framework
GEF is a framework for building graphical editors. It is
quite advanced and difficult to learn and much low level
implementation code has to be written. GEF is meant to be
used with an arbitrary metamodel. Hence, it is not aware
of the structure and functionality of EMF models. It takes
much effort to integrate it with the EMF and the EMF.Edit
framework. The developed editors only implicitly depend
on GEF. They have instead been build upon GMF.

6.1.3 Graphical Modeling Framework
The GMF framework was build to address the challenges
experienced with combining EMF and GEF. It is a bridge
between EMF and GEF and provides a generative compo-
nent and runtime infrastructure for developing graphical ed-
itors. GMF itself is using EMF. In a number of models a
tool developer defines how the editor and the metamodel to
be used by the editor relates. The GMF generative compo-
nent can now generate the editor implementation based on
these models. This code relies on both the GMF runtime
infrastructure as well as the GEF framework. The devel-
oped editors for the Eventmap, the SPF and the WFSpec
metamodels have been built by using GMF.

6.1.4 openArchitectureWare
The openAchitectureWare (oAW) project is an Eclipse ba-
sed MDD generator framework. It supports parsing and gen-
erating arbitrary models, and has a strong support for EMF
based models. It consists of a number of specialized lan-
guages to support model checking (Check), model-to-model
transformations (Xtend) and model-to-text transformations
(Xpand). These languages can be combined with external
Java code if needed. At its core oAW has a workflow engine
that executes transformation workflows. A workflow may
specify source models for the transformation, components
to check the validity of models and which transformation
scripts to be used for either model-to-model or model-to-text
transformations. The transformational algorithms have all
been implemented in oAW and are directly executable from
Danske Bank Workbench.

There are many other projects related to model driven
development in Eclipse, but as they are not used in the pro-
totype, they will not be discussed here.

6.2 Tool architecture
Danske Bank Workbench is build on Eclipse 3.3 Europa edi-
tion with corresponding versions of EMF, GEF and GMF.
Version 4.2 of OAW is used. Metamodels have been im-
plemented using the Eclipse Modeling Framework (EMF),
graphical editors have been generated by using the Graphi-
cal Modeling Framework (GMF), and transformations have
been implemented using openArchitectureWare (oAW).

Danske Bank Workbench consists of several independent
tools for developing the different artifacts in the develop-
ment process. These are depictured in Figure 13, which
also illustrates dependencies to other Eclipse projects. The
names of the projects conform to the names of the meta-
models previously described. Each project contains several
Eclipse plug-ins which are named as follows:

EMF

GEF

GMF

OAW

Eclipse Platform

Workbench Resources

Runtime

SWT

JFace

Danske Bank Workbench

Eclipse Modeling

OSGi

SPF

BPELCodeGen

WFSpec

EventMap DataStructure

ModelInjections

Figure 13: Overview of Danske Bank Workbench and its
dependencies of other Eclipse projects

• <projectname>.model. Contains the Ecore model,
GMF models and the EMF Java implementation

• <projectname>.edit. Generated EMF.Edit project
based on the Ecore model.

• <projectname>.editor. Generated EMF editor ba-
sed on the Ecore model. Is only used by the DataStruc-
ture, ModelInjections and BPELCodegen metamodels,
for which there have not been developed a graphical
editor.

• <projectname>.diagram. Generated GMF editor
based on the GMF models contained in the <project-
name>.model project.

• <projectname>.generator. Contains OAW trans-
formation definitions for the EMF model defined in the
<projectname>.model project. It also contains util-
ity tools for executing transformations and to enrich
the model. Generator plugins have been created for
the EventMap, the SPF and the WFSpec project, and
contain transformation definitions for Algorithm 1, 2
and 3

6.3 Metamodels and editors
All metamodels have been modeled in Rational Software Ar-
chitect as UML class diagrams. Each of these were exported
as an XMI representation of UML and imported into Eclipse
by using the EMF model creation wizard which comes as a
part of the EMF project. This wizard generates an Ecore
model based on the UML model, and it also generates an-
other EMF model, the codegen model, that is used for gen-
erating code. Using this model, it is possible to specify at-
tributes for the EMF code generator that is not a part of the
Ecore model as e.g. name of the Eclipse project and the base
package to generate the code in. Actually, the BPELCode-
Gen metamodel was inspired by the EMF codegen model.

Models for creating a GMF editor are created after finish-
ing an EMF metamodel. The tool model is used to define
which tools that are available in the editor. The graph model
is used to define graphical representations to be used in the
editor. For instance, the shape of a figure to represent an al-
location rule has been specified as a polygon that illustrates

15

a human. A shape may also contain a number of text labels.
The mapping model is used to combine the tool model, the
graph model and the domain (EMF) model. For example it
can be defined that tool A creates a graphical figure B on
the canvas and that it represents domain element C. The
mapping model is also used to map a label on a graphical
figure to an attribute on a domain element. For example,
the allocation rule figure has a label that is mapped to the
action attribute at the AllocationRule element in the WF-
Spec metamodel. Hence, the action attribute of an Allo-
cationRule object is visible and directly editable from the
AllocationRule figure at the canvas. The mapping model is
used to generate a generator model. This model contains
all information necessary for generating the GMF editor. It
is similar to the EMF codegen model that is contains ad-
ditional information about the code generation that is not
present in any of the other models. The GMF editor imple-
mentation is generated from this model.

Figure 14, 15 and 16 illustrate the GMF based Eventmap,
SPF and Workflow Specification (WFSpec) editors in action.

Figure 14: Event map editor with events for the Cus-
tomerQuickLoan project. External and Timedependent
events can be modeled directly from the tool palette and
required information can be specified as properties.

6.4 Transformations
The three transformation algorithms described previously
have been implemented in oAW. Algorithm 1 and 2 have
been implemented as model-to-model transformations using
the Xtend language. Algorithm 3, which is supposed to gen-
erate BPEL code has been implemented as a model-to-text
transformation using the Xpand language. The implemen-
tation is quite complex. It is implemented as a graph trans-
formation that recursively runs through the SPF controlflow
starting with the initial node. When a model injection or a
sub process is detected, the corresponding process fragment
or sub process is be interpreted and BPEL code generated,
which must then be merged into the partly generated BPEL
code. It requires much book keeping to handle the associ-
ations between models as four different models, i.e. SPF,
WFSpec, ModelInjection and BPELCodeGen are used as
input to the transformation. A number of utility functions

Figure 15: Solution Process Flow editor. The ApproveFor-
Loan process is modeled. Task and connection types are
available from the tool palette. The concrete syntax is cus-
tomized for tasks as well as edges.

Figure 16: WFSpec editor with task specifications for the
ApproveForLoan process. Information can be modeled pre-
cisely for Automatic, Manual and UserExperience tasks.

have been written in Xtend and in Java to support this.
Each transformation is executed by an oAW workflow.

The workflows as well as the transformation definitions in
Xtend and Xpand are located in the generator plugins.

6.5 Tool Utilities
Several tool utilities have been developed to enhance usabil-
ity of Danske Bank Workbench and to smoothen the use of
the different tools. The users of the tools are guided from
one step in the development process to the next by using
these utilities.

6.5.1 Transformation Execution
One kind of tool utility is the generation of “the next”devel-
opment artifact in the development process, i.e. execution
of transformation workflows that implement Algorithm 1, 2
and 3. These are implemented as actions that appears on
the context menu when the user right-clicks on an event in

16

an eventmap, at the canvas for a SPF and at the canvas for
a WFSpec model.

6.5.2 Service Repository Data Extract
Another task to be handled by a modeler is to find de-
finitions of input and output data structures for service op-
erations and put them into the WFSpec model. The user
right-clicks on a task specification for an Automatic task
and chooses “Retrieve Repository Data”. The executed ac-
tion looks up the defined service operation in (a mock up
of) Danske Banks centralized service repository, retrieve de-
finitions of data structures and updates the WFSpec model
with these.

6.5.3 Persistence of manually changed BPEL code
Generated BPEL code needs to be updated with data map-
ping and control flow logic. A small persistence framework
has been developed that allows the developer to persist logic
from within an assign node or a control link in a separate
file. The developer simply right-clicks on the assign node
or control link and chooses “Persist element”. The action
creates a separate file where the assign or control flow logic
is persisted. Next time the transformation that implements
Algorithm 3 is executed, the changed BPEL code is overrid-
den, but successively, the persisted changes are copied into
the newly generated BPEL code.

6.6 Customer Quick Loan Retooled
Danske Bank Workbench will now be illustrated by apply-
ing it at the example. Figure 17 illustrates a workflow of
the development process with the artifacts that are created
and the transformations between them. The letter tags in
the figure refer to screen dumps of tool utilities and arti-
facts developed for the ApproveForLoan process. They are
depictured in Figure 19 which can be found in Appendix A.

First, a business analyst creates a new eventmap. All
business events are now modeled as either external or time-
dependent, and scenarios are added to each event (Figure
19a). The editor provides direct support for these concepts
from the tool palette. The analyst simply drags and drops
events and scenarios to the canvas. The property view re-
flects properties for the selected event type, where e.g. pri-
ority can be selected as low, medium or high and business
possibilities can be described. Event types and properties
directly reflect the defined metamodel for an eventmap. Pre-
viously, the analyst had to model the events in one tool and
define all information in a separate textural document.

After finishing the event map, the business analyst has
to create a Solution Process Flow for each event. It must
be named correctly and placed in a certain folder structure.
The analyst simply right-clicks on the event, for instance the
ApproveForLoan event, in the eventmap editor and chooses
“Generate SPF” (Figure 19b). An empty Solution Process
Flow is now generated in a subfolder named “SPF” and is
given the same name as the business event. It is then mod-
eled by either the business analyst or the solution architect.
Tasks may now be modeled directly as Automatic, Man-
ual or UserExperience (as defined by the SPF metamodel)
by dragging them directly onto the canvas from the tooling
palette. Connections of type Process, Dialog or ProcessDia-
log are also directly available. The usability and the precise-
ness have increased compared to the general modeling tool
previously used.

The architect right-clicks at the Solution Process Flow
when it is complete (Figure 19c) and chooses “Generate WF-
Spec model”(Figure 19d). A WFSpec model is now gener-
ated under the Implementation folder and a subfolder named
after the Solution Process Flow. It contains task specifica-
tions for all tasks and has been populated with default data.
The task specifications and all objects inside them conform
directly to the WFSpec metamodel.

Now, information has to be entered into the specification.
For example, the architect defines that the CreateLoans task
must be implemented by the Bundle pattern; he or she se-
lects the Operation object in the CreateLoans task speci-
fication and in the properties view changes the type from
ServiceOperation to Bundle (Figure 19i).

The Confirm task is modeled as a SubProcess task type
in the Solution Process Flow. The architect chooses that
it must be implemented as an inlined flow in the BPEL
process by selecting the Confirm task specification in the
WFSpec model and sets the Type property to InlinedFlow
(Figure 19j). The subprocess to which the Confirm task refer
is generated by right clicking on it and choose “Generate
SubProcess”. An empty sub process is created and opened
automatically. It is named accordingly to the name of the
Confirm task and optionally put in a sub directory if the path
property at the Confirm task has a value. The subprocess
is now modeled as a sequence of two automatic activities
(Figure 19g), and its workflow specification can be generated
(Figure 19h).

The architect and the developer recognize that an addi-
tional task is needed in the physical implementation. The
task should set the business state of the process instance to
either “Approved” or “Rejected” depending of the outcome
of the AssessRisk task.

They right click on the control link in the Solution Pro-
cess Flow that connects the AssessRisk task with the Cre-
ateLoans, and the Reject task and choose“Create Injection”.
An empty model is created under the Injection folder and
is automatically opened in an SPF editor. The developer
models the process fragment as just one automatic activity
(Figure 19l) and generates the workflow specification for it
(Figure 19m).

The book keeping of Model injections are handled by the
ModelInjection model. This model is illustrated in Fig-
ure 19q. It contains one injection that has two important
properties; the injection point in the Solution Process Flow,
which is the ID of the control link, and the process fragment
to inject (SPF to Inject) at the injection point.

Before having the WFSpec metamodel and editor, all the
design decisions were modeled in the Control Flow Behavior
without any reuse of the Solution Process Flow, and required
additional information was defined in textural documents.

Now, the project team has modeled three processes; one
SPF, one subprocess and one process fragment. They are all
modeled in the same language and have each a corresponding
WFSpec model.

All automatic task specifications must be synchronized
with the centralized Service Repository to obtain correct
input and output data definitions. Figure 19o shows the
selected CreateContent task specification in the WFSpec
model for the Confirm subprocess. The modeler has right-
clicked on it and selected “Retrieve Repository Data”. The
operation name for the CreateContent specification has been
set to CREATECONTENT. The same operation name ex-

17

Eventmap Empty SPF
Enriched

SPF

Empty Sub

process

Enriched Sub

process

Generated

WFSpec

Enriched

WFSpec

Generated

WFSPC

Enriched

WFSpec

Generated

BPEL
Enriched

BPEL

Empty Model

Injection

Enriched

Model

Injection

Generated

WFSpec
Enriched

WFSpec

Persisted

Assign node
(A)

(G)

(C)

(H)

(E)

(F)

(D)

(K)

(B) (N)

(L) (M)

(I,J,O) (P)

Figure 17: Workflow for using tools through the customized development process. Letter tags refer to screen dumps in Figure
19 which can be found in Appendix A. A thick arrow indicates a tool utility while a thin arrow indicates that a human has
to enrich the model

Figure 18: File structure of the Customer Quick Loan
project containing all generated files.

ists in the service repository, which can also be seen in the
figure. The action now retrieves data definitions from the
repository and populates the WFSpec model with these.
Subsequently, the BPEL code generator can use these data
structures to create a correct WSDL document for the ser-
vice operation.

Without this import utility, the developer had to find data
definitions and create XSD schemas manually.

The developer sets parameters for the code generation in
a BPELCodeGen model before executing the BPEL code
generation. Previously, these design decisions were not doc-
umented. Figure 19r illustrates that the developer has se-
lected default values for the code generation; The BPEL
code will be generated in the same project as where the mod-
els are, and WSDL files will be located in the same directory
as the BPEL file. The developer generates the BPEL code

by right-clicking on the WFSpec model and choose “Gener-
ate BPEL” (Figure 19n).

Figure 18 shows the Customer Quick Loan project and all
files generated through the development process and Figure
19p shows the generated BPEL code opened in the Eclipse
open source BPEL editor.

Only the event map, which was the first artifact to be cre-
ated, has been created manually. The rest of the artifacts
have been created by tool utilities supporting the enterprise
specific development process. Hence, the file structure fol-
lows specified standards, and the traceability between mod-
els can be ensured. Without Danske Bank Workbench these
artifacts and all the information bookkeeping are handled
manually by the project team.

7. EVALUATION
The tool was evaluated through an empirical test which

involved five people. They have all worked as workflow de-
velopers. Two of them have experiences from working as
- or closely together with - a business analyst, and one of
them is a solution architect. They used Danske Bank Work-
bench to model an event map, a Solution Process Flow and
a workflow specification and generate the BPEL code. The
business scenario was the same as presented in this paper.
They got a one-page description of how to use the tool. From
the description they used about 30-40 minutes to complete
the exercise. They filled out questionnaires with 12 ques-
tions and were interviewed about their experiences with the
tool. Each question asked about the experience of using
the tool compared to current practice in Danske Bank. The
questions were answered by a rating from 1 to 6, where 1 is
“Much worse”, 2 is “worse”, 3 is “a little worse”, 4 is “a little
better”, 5 is “better” and 6 is “much better”. The questions
and their ratings can be found in Table 3.

The developers believed that the tool would improve their
productivity significantly and it would be easier to work
with. Especially, they were happy with the Danske Bank
specific modeling capabilities. It was much easier and intu-
itive to work with domain specific modeling. Further was
it easier to comprehend the workflow specific information
that had to be specified for the Solution Process Flow. This
is reflected in question 1 to 5. They all got a mean score
around 5.4 out of 6, which is between “better” and “much
better”. Some of the developers suggested that validation

18

Table 3: Questions and answers for the empirical evaluation.
The ratings were: 1 is “Much worse”, 2 is “worse”, 3 is “a
little worse”, 4 is “a little better”, 5 is “better”and 6 is “much
better”

Question Mean
value

1 How is the Danske Bank specific syntax to
work with compared to Websphere Busi-
ness Modeler?

5.5

2 How is it to work with the WFSpec editor
compared to MS Word?

5.6

3 Is the information easier to comprehend
and access?

5.2

4 How is it to comprehend the number of
modeling artefacts and locate where they
are?

5.4

5 Are the tool utilities helpful and support
the developement process

5.4

6 Is the code generation to prefer over man-
ual translation

5.0

7 Do you believe in model driven develop-
ment as the right direction to go in?

5.0

8 How is the quality of generated code com-
pared to manually written code?

3.8

9 Do you prefer to model and generate the
solution instead of manually implement it?

5.0

10 Does the tool eliminate tedious work? 5.0
11 Will the tool influence on the development

productivity
5.0

12 Will the tool decrease the number of errors
in implemented code?

4.8

rules would improve the development process as a modeler
would be caught if required information was not specified.
They also came up with suggestions of how to improve the
usability of the modeling tools.

In general, they believed in the idea of model driven devel-
opment and that it would help improving their daily work.
This is reflected in question 6, 7, 9, 10 and 11. They all got
a mean score at 5 out of 6, which is equal “Better”. One
of the developers suggested that data and control link logic
should also be modeled to allow 100% code generation.

They liked the code generation capability, but this was
of less importance compared to the modeling capabilities.
However, as one of them stated, new workflow developers
would benefit much from this capability as they could easily
get from the model to the code. This would possible reduce
the requirements for education. An experienced workflow
developer would also benefit from the code generation, but
he or she would be able to make the translation manually.

Some of the developers were quite skeptical about the
quality of the generated code as they suspected that manu-
ally written code would perform better than generated one.
This is reflected in the answers to question 8. It got a mean
score at 3.8 which is between “a little worse” and “a little
better”. However, they believed that the number of errors
would be lower in generated code compared to manually
written code. This is reflected in question 12. It got a mean
score at 4.8, which is between “a little better” and “better“.

8. DISCUSSION
We have used Danske Bank Workbench for modeling and
implementing the ApproveForLoan business process. The
exemplification of the tool and the empirical evaluation has
shown that the development process becomes more efficient
as the different experts are supported directly in their work.
They are able to use familiar domain concepts directly in
the modeling tools, they are guided to provide correct infor-
mation, and execution of the transformation algorithms has
been automated. We have shown that it is possible to define
and utilize a number of DSLs and tools to effectively sup-
port an enterprise specific development process for business
process modeling and implementation.

Danske Bank Workbench is a prototype and therefore it
has a number of limitations and points for improvements;

Consistency checking We have not defined methods, nor
implemented tools to check consistency between mod-
els, although such tool support would provide much
value to a project team.

Validation and modeling constraints Model validation
is an important area that has not been dealt with. Val-
idation rules and model constraints should be specified
by the team responsible for defining the metamodels,
and these rules and constraints should be handled by
the modeling tool to avoid creation of invalid models.

Controlflow The prototype only supports transformation
of certain types of controlflow. For instance, the trans-
formation cannot handle cyclic behavior, or loop con-
structs. It further cannot transform a decision/merge
structure into a switch block in BPEL, a construction
that is often desired over a BPEL graph implementa-
tion.

Data mapping Data mappings are added manually to the
BPEL implementation and persisted by the developed
persistence utility framework. It might improve the
prototype and the development process to abstract
the definition of data mappings to either the WFSpec
model or to a generated Java class which would be
responsible for the data mapping.

Restrictions on the SPF The prototype only supports a
one-to-one relationship between an SPF and a BPEL
implementation. In reality there are often cases where
an SPF might be divided to several BPEL processes
or several SPF’s may be merged into one BPEL im-
plementation. For such cases there is a need for an
explicit Control Flow Behavior model as it cannot be
generated from the logical model(s). The BPEL code
can still be generated by a (slightly modified) Algo-
rithm 3, but the tool-based consistency insurance be-
tween the logical and the physical model is then lost.

The prototype has been build by using a language work-
bench that provided basic frameworks for defining metamod-
els, graphical editors and transformations. This has been
very useful. However, Danske Bank Workbench is a proto-
type and it requires much work to be ready for production
use. This was also mentioned through the empirical eval-
uation. The tool further needs to implement several use-
ful features such as constraint validation, synchronization
checking, etc. Building a tool chain for production use is

19

a challenging task that requires much expertise and effort.
Building a business process modeling language and editor
from scratch is very difficult. Many enterprises will neither
have the expertise, the size, nor the wish to depend so much
on internally developed tools.

What tool vendors should recognize is that enterprises
need to be able to customize tools to their specific needs.
In case of process modeling, the process modeling notation
should be extensible, as e.g. UML activity diagrams and
profiles provide. But instead of using general UML tools
for a DSL based on e.g. an activity diagram, a commercial
tool should be customized in an easy manner to provide the
types and the visual presentation required by the enterprise.

Similarly, vendors should not assume one specific way to
use technology. Enterprises often have a variety of technolo-
gies and systems and need to control how to use the tech-
nology to implement models. The model transformations
should therefore be open and extensible for the enterprises.

A commercial model driven development tool suite should
be customizable to an extent where tools like the ones pre-
sented in this paper may be defined and used. Brahe and
Østerbye (2006) and Brahe and Bordbar (2006) have de-
scribed an approach that allows such flexibility.

9. RELATED WORK
Only limited work has previously been made at customiz-

ing business process modeling notations and correspond-
ing tools to a specific domain and enterprise. In general,
most modeling languages like Petri nets (Murata (1989)),
Event-driven Process Chains (EPC) and the Business Pro-
cess Modeling Notation (BPMN) (White (2006)) only have
one notation which all domains have to follow. An excep-
tion is UML activity diagrams that can be extended by a
profile for a specific domain. UML Activity diagrams are
used by both academia and industry for its extensibility
and available tool support in form of general UML modeling
tools. Dumas and Hofstede (2001) argues based on work-
flow patterns that the expressiveness of activity diagrams
as a workflow language is large and Guntama et al. (2003)
has extended activity diagrams to enable flexible business
workflow modeling. There are also various UML profiles
for business process modeling, e.g. List and Korherr (2005)
who considers both the business process flow as well as the
business process context.

Brahe and Østerbye (2006) uses UML activity diagrams
as the semantic base for creating domain specific modeling
languages for business process modeling based on UML pro-
files. They suggest that many enterprises need their own
modeling notations and present a prototype tools that al-
lows metamodeling of domain-specific workflow-based lan-
guages and automatically generation of domain-specific tool
support in form of editors. Jablonski and Götz (2007) has
a similar approach. They present a flexible and extensible
metamodel and the concept of perspective oriented business
process visualization that allows multiple visual presenta-
tions of a business process model

Model Driven Development and the Model Driven Ar-
chitecture have been used extensively in transforming busi-
ness process models to implementations, particularly from
UML activity diagrams to service composition languages.
Bézivin et al. (2004) uses the ATL transformation language
to transform UML models into three different target plat-
forms; Java, Web Services and Java Web Service Developer

Pack. Bordbar and Staikopoulos (2004a,b) studies trans-
formation of activity diagrams to BPEL and WSCI based
on their MOF compliant metamodels. Skogan et al. (2004)
proposes a method that uses activity diagrams to design
web service compositions and transforms them into differ-
ent service composition languages. The method also builds
on transforming WSDL descriptions into UML, which can
then be used to build the service compositions. The Dan-
ske Bank Workbench utility that retrieves service operation
information from the service repository and populates the
workflow specification model is an implementation of this
idea. Koehler et al. (2003, 2005) has worked on model driven
generation of BPEL implementations based on activity di-
agrams using techniques originating from compiler theory
and declarations of rules in the Object Constraint Language.
The BMNM specification contains a chapter that specifies
how BPMN models can be mapped to BPEL. Using BPMN
ensures using a language which is specifically designed for
business process modeling.

Common for above transformational approaches is the use
of a fixed modeling notation and a fixed transformation. In
contrast, Brahe and Bordbar (2006) presents a transforma-
tion framework that builds upon the use of domain specific
business process modeling languages and customized trans-
formations. They also introduce a prototype implementa-
tion that allows definition and execution of customized and
pattern-based transformations for a domain specific model-
ing language.

Fowler (2005) talks about Language Workbenches as tools
that allow definition and usage of domain specific languages,
editors and transformation between languages. Several of
such workbenches exist such as MetaEdit+ (Tolvanen and
Rossi (2003)), GME (Ledeczi et al. (2001)), Microsoft DSL
tools, and many others. The Eclipse projects used to build
Danske Bank Workbench can also be considered as a lan-
guage workbench. The research presented in this paper fol-
lows cutting edge trends in language workbenches; models
should be constructed in domain, or enterprise specific con-
cepts and transformed into an implementation.

10. SUMMARY AND FUTURE WORK
In the introduction of the paper we postulated that general
purpose business process modeling and implementation tool
suites are not feasible for many enterprises. Using the case
study of Danske Bank and an example we showed that a de-
velopment team faces many challenges when they use stan-
dard modeling languages and tools but have to use enterprise
specific modeling notations, follow an enterprise specific de-
velopment process and use technology in specific ways.

We abstracted the development process into metamodels
and transformational algorithms and developed a tool called
Danske Bank Workbench, fitted specially for Danske Bank.
The tool implemented the model driven development prin-
ciples of direct representation and automation as it allowed
creating models directly in Danske Bank specific concepts
and it automated the generation of lower level models and
code.

By using Danske Bank Workbench at the example, we saw
that it is possible to achieve an efficient model driven devel-
opment process where process participants collaborate to
create different modeling abstractions of a business process
with tool based transformations and ensured synchronicity
between the different modeling abstractions. Using the tool,

20

information only has to be defined once, and it is easy to
comprehend as it is stored in traceable models. Knowledge
of implementation patterns is reused by automated transfor-
mation, and several tool utilities support the development
process which makes Danske Bank Workbench very efficient
to work with. An empirical evaluation of the tool confirmed
this. Hence, we have confirmed the hypothesis that was set
up in the introduction, which stated that applying the basic
model driven development principles of direct representa-
tion and automation to BPM tools would solve many of the
experienced challenges.

Danske Bank Workbench was not difficult to build as
many language workbenches exist for build metamodels, ed-
itors and transformations (though it did require deep insight
in various Eclipse technologies and MDD concepts). How-
ever, it has several limitations, and it only addresses a small
subset of business processes that may be modeled. To make
it a production ready tool that can be used by the orga-
nization requires much more effort. Despite a promising
prototype, our guess is that only a very limited number of
enterprises will go the way and implement their own tools.
While it may be economical beneficial to develop ones own
tools, there might be political reasons not to do so.

To answer the research question set up in the introduction
we can now say,

“Defining and developing a model driven develop-
ment tool to support an enterprise specific busi-
ness process development process is possible and
seems promising. It will heighten the produc-
tivity of development teams and probably cause
fewer errors in implementations. However, it re-
quires a high degree of expertise in model driven
development methodology and technology to de-
velop such a tool. It will probably be unachiev-
able for most enterprises”

Although language workbenches provide huge support in
development of model driven development tools, it should
be much easier to customize ones own languages and tools
for a specific area as business process modeling and imple-
mentation. For future research we therefore suggest to work
on tool-based frameworks that feature extensions of prede-
fined languages, editors and model visualizations to a certain
domain. It would require less investment and it would be
easer for an enterprise without experienced tool developers
to customize BPM tools instead of develop develop them
from scratch.

References
Booch, G., Brown, A., Iyengar, S., Rumbaugh,

J., and Selic, B. (2004). An MDA Mani-
festo. Business Process Trends - MDA Jour-
nal, http://www.bptrends.com/publicationfiles/05-
04%20COL%20IBM%20Manifesto%20-%20Frankel%20-
3.pdf.

Bordbar, B. and Staikopoulos, A. (2004a). Modelling and
transforming the behavioural aspects of web services. In
Third Workshop in Software Model Engineering (WiSME
2004) at UML, Lisbon, Portugal.

Bordbar, B. and Staikopoulos, A. (2004b). On Behavioural
Model Transformation in Web Services. In Conceptual

Modelling for Advanced Application Domain (eCOMO),
pages 667–678, Shanghai, China.

BPEL (2003). Business Process Execution Language for
Web Services (BPEL4WS). Version 1.1. http://www-
128.ibm.com/developerworks/library/specification/ws-
bpel/.

Brahe, S. (2007). BPM on top of SOA: Experiences from the
Financial Industry. In G. Alonso, P. D. and Rosemann,
M., editors, BPM2007, volume 4714 of LNCS, pages 96–
111. Springer, Heidelberg.

Brahe, S. and Bordbar, B. (2006). A Pattern-based Ap-
proach to Business Process Modeling and Implementation
in Web Services. In Georgakopoulos, D., editor, ICSOC
2006, volume 4652 of LNCS, pages 161–172. Springer, Hei-
delberg.

Brahe, S. and Østerbye, K. (2006). Business Process Model-
ing: Defining Domain Specific Modeling Languages by use
of UML Profiles. In Rensink, A. and Warmer, J., editors,
ECMDA-FA 2006, volume 4066 of LNCS, pages 241–255.
Springer, Heidelberg.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and
Grose, T. J. (2003). Eclipse Modeling Framework: A De-
veloper’s Guide. Addison Wesley.

Bézivin, J., Hammoudi, S., Lopes, D., and Jouault, F.
(2004). An Experiment in Mapping Web Services to Im-
plementation Platforms. Technical report, LINA, Univer-
sity of Nantes.

Dumas, M. and Hofstede, A. H. M. (2001). UML Activity
Diagrams as a Workflow Specification Language. In UML
2001, volume 2185 of Lecture Notes in Computer Science,
pages 76–90.

Dumas, M., van der Aalst, W., and Hofstede, A. (2005).
Process-Aware Information Systems: Bridging People and
Software through Process Technology. John Wiley & Sons,
Inc.

Eclipse (2008). The Eclipse project, www.eclipse.org.

Erl, T. (2005). Service Oriented Architecture: Concepts,
Technology and Design. Prentice Hall.

Flynn, D., Vagner, J., and Vecchio, O. D. (1995). Is CASE
technology improving quality and productivity in software
development? LOGISTICS INFORMATION MANAGE-
MENT, 8(2):8–21.

Fowler, M. (2005). Language Workbenches: The Killer-App
for Domain Specific Languages? http://
martinfowler.com/articles/languageWorkbench.html.

GMF (2008). Graphical Modeling Framework project.
http://www.eclipse.org/gmf.

Guntama, E., Chang, E., Jayaratna, N., and Pudhota, L.
(2003). Extension of Activity Diagrams for Flexible Busi-
ness Workflow Modeling. International Journal of Com-
puter Systems Science & Engineering, 18(3):137–152.

Jablonski, S. and Bussler, C. (1996). Workflow Management
- Modeling Concepts, Architecture and Implementation.
Intl. Thomson Computer Press, London.

21

Jablonski, S. and Götz, M. (2007). Perspective oriented
business process visualization. In 3rd International Work-
shop on Business Process Design (BPD) in conjunction
with the 5th International Conference on Business Pro-
cess Management (BPM 2007). Brisbane, Australia.

Koehler, J., Hauser, R., Kapoor, S., Wu, F. Y., and
Kumaran, S. (2003). A Model-Driven Transformation
Method. In 7th International Enterprise Distributed Ob-
ject Computing Conference (EDOC 2003), pages 186–
197.

Koehler, J., Hauser, R., Sendall, S., and Wahler, M. (2005).
Declarative Techniques for Model-Driven Business Pro-
cess Integration. IBM Systems Journal, 44(1):47–65.

Kroll, P. and Kruchten, P. (2003). The Rational Unified
Process Made Easy. A Practitioner’s Guide to the RUP.
Addison Wesley.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J.,
Thomason, C., Nordstrom, G., Sprinkle, J., and Volgyesi,
P. (2001). The Generic Modeling Environment. In Work-
shop on Intelligent Signal Processing, Budapest, Hungary,
http://www.isis.vanderbilt.edu/Projects/gme/
GME2000Overview.pdf.

Leymann, F. and Roller, D. (2000). Production Workflow:
Concepts and Techniques. Prentice Hall.

List, B. and Korherr, B. (2005). A UML 2 Profile for Busi-
ness Process Modelling. In Perspectives in Conceptual
Modeling, ER 2005 Workshops, volume 3770 of Lecture
Notes in Computer Science, pages 85–96.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344.

MOF (2006). Meta Object Facility (MOF) 2.0
Core Specification, available at http://www.omg.org/cgi-
bin/doc?formal/2006-01-01.

Murata, T. (1989). Petri Nets: Properties, Analysis and
Applications. Proceedings of the IEEE, 77(4):541–580.

oAW (2007). openarchitectureware,
http://www.openarchitectureware.org.

Skogan, D., Grønmo, R., and Solheim, I. (2004). Web
Service Composition in UML. In Eighth IEEE Interna-
tional Enterprise Distributed Object Computing Confer-
ence (EDOC’04), pages 47–57.

Stahl, T., Völter, M., Bettin, J., Haase, A., and Helsen, S.
(2006). Model-Driven Software Development: Technology,
Engineering, Management. Wiley.

Swithinbank, P., Chessell, M., Gardner, T., Griffin, C.,
Man, J., Wylie, H., and Yusuf, L. (2005). Pat-
terns: Model-Driven Development Using IBM Ratio-
nal Software Architect. IBM Redbooks, available at
http://www.redbooks.ibm.com/abstracts/
sg247105.html?Open.

Tolvanen, J.-P. and Rossi, M. (2003). MetaEdit+: defining
and using domain-specific modeling languages and code
generators. In OOPSLA ’03: Companion of the 18th an-
nual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages
92–93, New York, NY, USA. ACM.

UML2.0 (2004). UML 2.0 Superstructure Speci-
fication, Final Adopted Specification, available at
http://www.omg.org/docs/formal/05-07-04.pdf.

van der Aalst, W. M. P., Hofstede, A. H. M., Kiepuszewski,
B., and Barros, A. P. (2003). Workflow Patterns. Dis-
tributed and Parallel Databases, 14(1):5–51.

White, S. (2006). Business Process Modeling Nota-
tion, Version 1.0, final adopted version, avaiblable at
http://www.bpmn.org/Documents/OMG-02-01.pdf.

Windsor, J. (1986). Are automated tools changing systems
analysis and design? Journal of Systems Management,
37(11):28–33.

APPENDIX

A. PROTOTYPE SCREEN DUMPS

22

(a) Event map model. Events are modeled as External or
Timedependent events and contain scenarios

(b) Tool utility to generate a Solution Process Flow. The
modeler has right-clicked at the ApproveForLoan event.

(c) Solution Process Flow for the ApproveForLoan event.
The business analyst or solution architect has completed
the generated model

(d) Tool utility to generate the Workflow Specification
model for the ApproveForLoan Solution Process Flow.
The modeler has right-clicked at the canvas

(e) The generated Workflow specification (WFSpec)
model for the ApproveForLoan Solution Process Flow

(f) Tool utility to create an empty sub process. The modeler
has right-clicked at a SubProcess task in the Solution Process
Flow

(g) The Confirm subprocess as modeled by a business an-
alyst or a solution architect

(h) Generated Workflow specification for the Confirm sub-
process

Figure 19: Using Danske Bank Workbench

23

(i) Setting the CreateLoans task to be implemented by
the Bundle pattern

(j) Setting the confirm subprocess to be implemented in
the ApproveForLoan process as in inlined flow

(k) Tool utility to create an empty process fragment for
a model injection. The modeler has selected at the con-
nection between the start node and the AssessRisk task
as injection point by right-clicking on it

(l) Process fragment to be used as injection. The solution
architect has modeled it.

(m) Generated Workflow Specification (WFSPec) model
for the injection process fragment

(n) Utility tool to generate BPEL implementation. The
modeler has right-clicked at the canvas

Figure 19: Using Danske Bank Workbench (cont’d)

24

(o) Too utility to retrieve data structures from the en-
terprise Service Repository into the WFSpec model. The
modeler has right-clicked at an AutomaticSpecification el-
ement

(p) BPEL code generated from the Solution Process Flow
model, the WFSpec model, the ModelInjections model
and the BPELCodeGen model

(q) ModelInjections model viewed by the default EMF
editor

(r) BPELCodeGen model specifying BPEL specific values
for the implementation

Figure 19: Using Danske Bank Workbench (cont’d)

25

	front.ps.pdf
	spf2bpel.ps.pdf

