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Abstract

We provide the first process calculus combining (affine) linear and non-linear higher-order
mobile processes, nested locations, and local names. We do so by extending the type and
effect system of Homer, a calculus of non-linear Higher-Order Mobile Embedded Resources,
with a distinction between affine linear and non-linear locations (akin to reference types) and
uses of variables (as in the linear lambda calculus). The type system guarantees that linear
resources are neither copied nor embedded in non-linear resources during computation. We
introduce composite reference types to guarantee that no path ever points to a linear location
nested within a non-linear location. We extend the LTS semantics and adapt Howe’s method
to the typed setting, providing a bisimulation congruence. We apply the bisimulation to prove
that scope extension across linear location boundaries is sound. Finally, we use the calculus to
model an e-cash Smart Card system, the security of which depends on the interplay between
(linear) mobile hardware, embedded (non-linear) mobile processes, and local names.

1 Introduction

The interplay between linearity and non-linearity has been studied thoroughly in variations of
Intuitionistic Linear Logic [Bar96] and the corresponding denotational models, term models, and
substructural type systems. The models and type systems have been used to describe and rea-
son about co-existing linear and non-linear resources in functional programming, e.g. for memory
management and references to system resources [TW99], in recent languages for quantum comput-
ing with classical control [SV06], and for controlling the use of names (and thus mobility) in the
π-calculus [KPT99].

Following the seminal work on Mobile Ambients [CG00], several process calculi, variations
of Mobile Ambients, the Seal calculus [CVZN05], and the Homer calculus [HGB04], have been
proposed that combine (1) mobile processes, (2) nested explicit locations and (3) local names.
These models are motivated by scenarios in global ubiquitous computing: Mobile processes are
employed to represent both mobile computing devices (e.g. laptops, PDAs, and smart cards),
as well as mobile computations (e.g. software agents and migrating processes). Nested explicit
locations represent administrative domains, physical boundaries of mobile devices, boundaries of
software processes such as sand-boxes and locations of data in memory. Finally, local names are
used to represent, private keys and scope of references to locations in memory.

∗This research is supported by the Danish Research Agency grant no: 274-06-0415 (Computer Supported Mobile
Adaptive Business Processes - CosmoBiz) and grant no: 272-05-0258 (Mobile Security).
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In the present paper, we initiate the study of linearity and non-linearity in the context of
these three key features. Our motivations are two-fold: Firstly, we claim that mobile computing
devices are intrinsically linear. A hardware device cannot easily be copied, and the security of a
system may depend on this fact, for instance for smart cards. Mobile computations in software
are intrinsically non-linear (software must usually be explicitly protected against copying, e.g. by
enclosing it in a tamper-proof hardware device). We justify this claim in Section 8, by giving an
example of an e-cash system, the security of which depends on the non-copyability of hardware
devices; dually the copyability of software processes constitute an important security threat. The
example indicates that a realistic model encompassing both mobile computing as well as mobile
computations should allow for both linear and non-linear mobile processes.

Secondly, our previous work on providing semantics for the Higher-Order Mobile Embedded
Resources (Homer) calculus [HGB04, GH05] and the related work on the Seal calculus [CVZN05]
have shown that the combination of mobile communicating processes, explicit locations, and local
names reveals a crucial difference between linear and non-linear mobile processes, which in itself
justifies a study of the combination of linearity and non-linearity in this setting. When processes
can communicate names across location boundaries, one needs a strategy for scope extension. If
mobile processes are linear (or affine linear) as in Mobile Ambients, scope extension across location
boundaries commutes with mobility, as expressed by the structural congruence rule

m[(n)p] ≡ (n)m[p] for names n 6= m .

This is not the case if mobile processes are non-linear: Cloning the location m in the left hand
process of the rule yields the process m[(n)p] ‖ m[(n)p] which in general will be different from the
process (n)(m[p] ‖ m[p]) resulting from cloning the location m in the right hand process.

Therefor in Homer and Seal, the scope of names across location boundaries is instead extended
by need at the time of the communication. However, this choice makes it possible for any name
n to construct a context Cn[ ] that exploits the dynamic scope extension and cloning to test, if
the name n is free in a mobile process (see e.g. [HGB04]). Consequently, for two resources to be
related in a congruence, they must at all times contain the same set of free names. Since names
in process calculi normally get discarded during computation, this implies that any congruence
would distinguish too many processes. In [GH05] we proved that a coarser and more interesting
bisimulation congruence can be obtained by typing mobile embedded resources with an explicit
effect type, identifying the set of names allocated by the resource (reminiscent of a type and effect
system [ANN99]).

Inspired by affine intuitionistic linear logic, we extend in the present paper the type and effect
system for Homer given in [GH05] to distinguish between affine linear and non-linear uses of
variables (as in the linear lambda calculus) as well as typing the names of locations (akin to
reference types), thereby restricting the content of locations to be either linear or non-linear. By
making non-linear a subtype of affine linear and allowing non-linear locations to be embedded in
linear locations, we ensure that non-linear resources can be used as affine linear resources. On the
other hand, the type system guarantees that linear resources are never copied nor embedded in
non-linear resources. We introduce composite reference types guaranteeing that linear locations
within non-linear locations are never referenced.

The type system has consequences for the treatment of infinite behaviours. In most (untyped)
higher-order calculi (HOπ [San92], λ-calculus [Bar84], CHOCS [Tho93], Homer [HGB04]) one can
encode infinite behaviour by process passing (and process duplication). Constructors such as
the Y-combinator, replication, or general recursion is then taken not as primitives, but rather
as derived constructions. However, the encoding of recursion in Homer [HGB04] depends on the
ability to copy resources. Thus, we can only encode recursion (and hence replication) of non-linear
resources. Since replication does make sense for linear resources, allowing the availability of an
arbitrary number of the same resource, we introduce this as a primitive constructor in the calculus.

Finally, we prove that Howe’s method, used in [HGB04] for proving that the weak and strong
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labelled bisimulations given for Homer are congruences, extends to this richer setting and thus pro-
vides a technique for contextual reasoning about linear and non-linear mobile embedded resources.
Furthermore, we prove that the strong labelled bisimulation is sound and complete characterisation
of barbed bisimulation congruence, again extending the results of [GH05]. We employ the strong
bisimulation congruence to show that the scope of a local name can indeed be extended freely
across affine linear locations.

To recap, the main contributions of this paper are thus:

• a type system for copyable and non-copyable resources extending the prior type/effect system
for Homer and introducing composite reference types,

• introduction of replication as a primitive to allow replicated hardware,

• extension of Howe’s method to prove the labelled bisimulations to be a congruence in this
setting,

• proof that the strong labelled bisimulation is sound and complete characterisation of barbed
bisimulation congruence,

• use of the strong bisimulation congruence to show that the scope of a local name can be
extended freely across affine linear locations,

• a concrete example depending on all of the key features of the calculus.

Structure of the paper The structure of the paper is as follows. In Section 2 we present the
Homer calculus, and in Section 3 and 4 we give it reaction and labelled transition semantics. The
type system for Homer is presented in Section 5. In Section 6 we provide Homer with a weak and
strong behavioural congruence, barbed bisimulation congruences, and in Section 7 we prove that
input-early delay context bisimulations are congruences and sound characterisations of the barbed
bisimulation congruences. In Section 7 we also prove that scope extension across linear location
boundaries is safe. We provide the Smart Card example in Section 8, and we conclude and propose
directions for future research in Section 9.

Related Work: We found no prior studies of linear and non-linear mobile processes combined
with nested locations and local names. The Mobile Ambients calculus does combine affine linear
mobile processes (the ambients) and non-linear messages (values), but replication of ambients does
not allow one to model non-linear mobile computations, i.e. duplication of ambients after they have
been moved or the contained processes have been partly executed. Thus, while the Mobile Ambients
calculus is very suitable for modelling mobile computing (i.e. non-copyable devices), it does not
support a direct representation of copyable mobile computations. The more recent higher-order
process calculi, such as the Seal calculus [CVZN05] and Homer [HGB04], have explicitly introduced
copyable mobile resources in the context of nested locations. But by assuming that all resources
are copyable these calculi in turn become unrealistic as models of non-copyable mobile computing
devices.

The Homer calculus extends Plain CHOCS, but shares ideas with recent calculi for mobility
such as the Seal calculus [CVZN05], the M-calculus [SS03] (and its recent successor the Kell calculus
[SS04]), in particular the ability to represent copyable (non-linear), objectively mobile anonymous
resources in nested named locations. Type systems have been introduced for the M-calculus (and
the Kell calculus [BS03]) which ensure unity of location names (used for deterministic routing). A
type system for Seal calculus is presented in [CVZN05], the type system both type active processes
and locations, thus enabling one to declare the type of processes that can enter and exit a location.

The composite address paths in Homer are in some respects similar to the composite channel
names found in the π-calculus with polyadic synchronisation [CM03]. In [Car05] a type system
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for polyadic synchronisation is given, based on Milner’s type system for the polyadic π-calculus.
Composite channel names which are typed with the type of the first (or last) element in the channel
is also suggested, but the idea is not pursued.

Linear types have been studied in great detail in the π-calculus [KPT99, Kob02] by Kobayashi
et al. Recently Berger, Honda, and Yoshida [BHY01, BHY05] have investigated the connection
between sequential functional computation and typed π-calculus. For a higher-order π-calculus
Yoshida and Hennessy [YH04, Yos04] have examined a type system which captures the effect of
mobile processes by typing each process with an interface which describes the resources which the
process can access.

A first version of the type system for linear and non-linear resources was proposed in [GH04]
for the Mobile Resources calculus [GHS02], the predecessor of Homer, but the theory was never
developed. Homer was originally presented in [HGB04], obtaining persistent allocation of names
by an explicit process constructor, together with an adaptation of Howe’s method to prove that
late contextual bisimulation is a sound characterisation of barbed bisimulation congruence. In
[GH05] the explicit name allocation constructor was replaced by explicit type annotations and the
technical results were extended to prove that input-early strong congruence is both a sound and
complete characterisation of barbed bisimulation congruence. Homer has also been examined in the
setting of bigraphs [BH06] and its expressivity have been studied in an encoding of the π-calculus
[BHG06].

2 Homer

In this section we provide the syntax of Homer. The only difference from [GH05] is that we have
extended the syntax with replication.

We assume an infinite set of names N ranged over by m and n, and let ñ range over finite sets
of names. We let δ range over non-empty finite sequences of names, referred to as paths and let δ
denote co-paths. Paths and co-paths are used to reference arbitrarily deeply nested resources. We

let ϕ range over δ and δ and define δ = δ. We assume an infinite set of process variables V ranged
over by x and y. The sets p of process expressions ranged over by p, q, and r, a of abstractions
ranged over by a, and c of concretions ranged over by c are defined by the grammar:

p ::= 0 | x | ϕe | p ‖ p′ | (n)p | !p , e ::= a | b ,
a ::= (x)p , b ::= 〈p′ : ñ〉p , c ::= b | (n)c ,

where b ranges over unrestricted concretions. We let t, ranged over by t, denote the set p ∪ a ∪ c.
Whenever e denotes an abstraction we let e denote a concretion, and vice versa. The process p′

in the concretion (referred to as the resource) is annotated by a finite set of names. As explained
in the introduction, the type system presented in Section 5 guarantees that this set contains all
names appearing free in the process p′.

Homer is defined as a simple extension of the higher-order calculus Plain CHOCS [Tho93]
to allow for active processes at named locations denoted by prefixes of the form n〈p′ : ñ〉p and
a corresponding prefix denoted by n(x)q for moving the process at the location named n and
substituting it in for the variable x in q. When the active process is moved, the location disappears
(as in Seal) and the residual process is activated. The two prefixes complement the usual prefixes
for passive process passing in CHOCS denoted by n〈p′ : ñ〉p and n(x)q. By active and passive
we mean that the process p′ in the prefix n〈p′ : ñ〉p may perform internal reactions as well as
interactions with processes outside the location, whereas the process p′ in n〈p′ : ñ〉p, as in CHOCS,
can neither react nor interact with other processes. Interactions with embedded resources are
obtained by the use of name paths, allowing a process to pass another process to (or to move) an
arbitrarily deeply nested active embedded resource. For instance, we have the reactions (ignoring
the type annotations)

n〈m(x)q〉 ‖ nm〈p〉p′ ց n〈q[p/x]〉 ‖ p′ (1)
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and
n〈m〈p〉p′〉 ‖ nm(x)q ց n〈p′〉 ‖ q[p/x] , (2)

where nm is the name path consisting of the name n followed by the name m.
As usual, (x) bind the variable x and (n) bind the name n. We define the notions of free

and bound names (fn(t) and bn(t)) and variables of t (fv(t) and bv (t)) as standard with the
sole exception that fn(〈p′ : ñ〉p) = ñ ∪ fn(p), i.e. the annotation determines the free names of a
resource. We will call a process without free variables closed, and let tc and pc denote the classes
of closed terms and processes, respectively. We will throughout the paper consider terms up to
α-equivalence, written p ≡α q, and we will write t/α and p/α for the set of α-equivalence classes
of terms and processes, respectively. We will also extend this notion to the sets of closed processes
and terms.

We use standard shorthands and often elide 0 in a process, e.g. writing 〈p : ñ〉 instead of 〈p : ñ〉0.
For a set of names ñ = {n1, . . . , nk} we will write (ñ)t for (n1) · · · (nk)t. We will also write n for
the singleton set {n} and when convenient let δ and δ denote the set of names in the path. For any
two sets s and s′ we will write ss′ for the union of s and s′ under the assumption that s ∩ s′ = ∅.

We define the application between an abstraction and a concretion. The application depends on
the type annotation of a resource. Since type annotations can “be wrong” in the untyped calculus
the application can update type annotations with a “wrong” annotation. However in the typed
setting, presented in the following sections application behave as intended.

Definition 1 (application and substitution). Given a concretion c = (m̃)〈p : ñ〉p′ and an abstrac-
tion a = (x)p′′ we define their application as follows whenever m̃ ∩ fn(p′′) = ∅

c · a = (m̃)(p′ ‖ p′′[p:ñ/x]) and a · c = (m̃)(p′′[p:ñ/x] ‖ p′)

where p′′[p:ñ/x] is defined inductively in the structure of p′′.

0[p:ñ/x] = 0

x[p:ñ/x] = p
x′[p:ñ/x] = x′ if x 6= x′

(q ‖ q′)[p:ñ/x] = q[p:ñ/x] ‖ q′[p:ñ/x]
((n)q)[p:ñ/x] = (n)(q[p:ñ/x]) if n 6∈ ñ
(!q)[p:ñ/x] = !(q[p:ñ/x])
(ϕe)[p:ñ/x] = ϕe[p:ñ/x]
(〈q : m̃′〉q′)[p:ñ/x] = 〈q[p:ñ/x] : m̃′ ∪ ñ〉q′[p:ñ/x] if x ∈ fv (q)
(〈q : m̃′〉q′)[p:ñ/x] = 〈q : m̃′〉q′[p:ñ/x] if x 6∈ fv (q)
((x′)q)[p:ñ/x] = (x′)(q[p:ñ/x]) if x 6= x′

To allow for more succinct presentations of the reaction and labelled transition semantics we
close concretions and abstractions under some of the process operators, i.e. restriction, parallel
composition, and resources. Hence, whenever c = (ñ)〈p1 : ñ1〉p and assuming ñ∩(fn(p′)∪n∪δ) = ∅
(using α-conversion if needed) we let c ‖ p′ denote (ñ)〈p1 : ñ1〉(p ‖ p′), we let δ〈c : ñ′〉p′ denote
(ñ)〈p1 : ñ1〉δ〈p : ñ′ñ〉p′, and we let (n)c denote (nñ)〈p1 : ñ1〉p, if n ∈ ñ1 and otherwise it denotes
(ñ)〈p1 : ñ1〉(n)p. Similarly, whenever a = (x)p and assuming x 6∈ fv(p′) (using α-conversion if
needed) we let a ‖ p′ denote (x)(p ‖ p′), (n)a for (x)(n)p, and we let δ〈a : ñ〉p′ denote (x)δ〈p : ñ〉p′.
These shorthands are applied to “lift” the concretion/abstraction inside the path context in the
reaction semantics, and in the rules (nesting), (rest), (par ), (par ′), and (repl1 ) in the labelled
transition semantics.

3 Reaction Semantics

As customary, we provide Homer with a reaction semantics in the chemical abstract machine style
[BB90] using structural congruence, evaluation and path contexts, and reaction rules.
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Table 1: Structural congruence

p ‖ 0 ≡ p (p ‖ p′) ‖ p′′ ≡ p ‖ (p′ ‖ p′′) p ‖ q ≡ q ‖ p

(n)p ‖ q ≡ (n)(p ‖ q), if n 6∈ fn(q) p ≡ q, if p ≡α q

(n)(m)p ≡ (m)(n)p (n)p ≡ p, if n 6∈ fn(p) !p ≡ p ‖ !p

Table 2: Reaction rule
(react) γδe ‖ Dγ(δe) ց e · Dγ(e), bn(Dγ) ∩ δ = ∅

We define structural congruence, as expected, as the least congruence relation on p/α that
satisfies the rules in Table 1. The rules express the usual commutative monoid requirements of
parallel composition and the inactive process, the rules of scope of local names, and the definition
of replication. The rules does not contain the scope extension mentioned in the introduction,
m〈(n)p : ñ〉q ≡ (n)m〈p : ñn〉q for n 6∈ m ∪ fn(q).

We define a (general) context as a term in which we have replaced one terminal 0 with the
symbol (−), denoting a hole in which we can place a process. We will let C range over (general)
contexts. As Homer permits reactions arbitrarily deep in the location hierarchy and also permits
reactions between a process and an arbitrarily deeply nested sub-resource, we define the concepts of
evaluation and path contexts to succinctly state the reaction semantics. Both kinds of contexts are
a restricted kind of a general context. An evaluation context E is a context with no free variables
and whose hole is not guarded by a prefix, nor does it occur as the object of a send prefix. We
define evaluation contexts by the following grammar

E ::= (−) | E ‖ p | (n)E | δ〈E : ñ〉p , for p ∈ pc .

Note that the evaluation context δ〈E : ñ〉p enables internal reactions of active resources. To permit
reaction between a process and an arbitrarily deeply nested sub-resource, we define a restricted
set of evaluation contexts, i.e. a family of path contexts Dγ indexed by a path address γ ∈ N ∗

which indicates the path under which the context’s hole is found. A path context Dγ is defined
inductively by Dǫ = (−) (where ǫ denotes an empty sequence of names) and

Dδγ ::= δ〈(m̃)(Dγ ‖ p) : ñ′〉p′ , for p, p′ ∈ pc ,

such that γ∩m̃ = ∅ and none of the names in m̃ are already bound in Dγ , i.e. we assume all names
binding the hole of a context are unique. We let Dγ range over path contexts. If the indexed path
in Dγ is not important we write D instead.

Finally, we define ց as the least binary relation on pc/α satisfying the (parametrised) reaction
rule in Table 2 and closed under structural congruence and evaluation contexts. By the latter we
mean that p ց p′ implies E(p) ց E(p′) for all evaluation contexts E . The reaction rule captures
succinctly both kind of reactions mentioned in the introduction. The sending of a passive resource
down into the location hierarchy Dγ , where it is received by the abstraction e and substitute in for
the process variable in the body of the abstraction. And the taking of a computing resource from
the location hierarchy Dγ to the abstraction e, and again substituting it in for the process variable
in the body of the abstraction.

4 Transition Semantics

In this section we provide Homer with a labelled transition semantics. As in the previous section,
the only difference from [GH05] is that we have extended the semantics with rules for replication.
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Table 3: Transition rules

(prefix)
ϕe

ϕ
−→ e

(sync)
p

ϕ
−→ e p′

ϕ
−→ ē

p ‖ p′
τ

−→ e · ē
(nesting)

p
π

−→ t

δ〈p : ñ〉p′
δ · π
−→ δ〈t : ñ〉p′

(rest)
p

π
−→ t

(n)p
π

−→ (n)t
, n 6∈ fn(π) (par)

p
π

−→ t

p ‖ p′
π

−→ t ‖ p′
(par’)

p′
π

−→ t

p ‖ p′
π

−→ p ‖ t

(repl1 )
p

π
−→ t

!p
π

−→ t ‖ !p
(repl2 )

p
ϕ

−→ a p
ϕ

−→ c

!p
τ

−→ (a · c) ‖ !p

We let π range over the set Π of labels, formally defined as π ::= τ | ϕ, (recall ϕ ::= δ | δ).
The set of free names in π, fn(π), is fn(δ) whenever π = δ or π = δ̄ and ∅ otherwise. The rules in
Table 3 then define a labelled transition system

(tc/α, −→ ⊆ pc/α × Π × tc/α)

for α-equivalence classes of closed processes.
The rules conservatively extend the rules for Plain CHOCS. Note that the rule (sync) covers

the two different kind of interactions: the active and passive resource movement as described in the
previous section, and that the rule (nesting) permits arbitrarily deeply nested active resources to
be moved, receive resources, and perform internal computation steps. To allow these three kinds
of actions we use an operation δ · ( ) for extending location paths, defined by:

δ · τ = τ , δ · δ′ = δδ′ .

Note that the operation is not defined for δ since δ is directed “downward” and thus not visible
outside the resource. Since δ · τ = τ , the nesting rule implies that δ〈p : ñ〉p′

τ
−→ δ〈t : ñ〉p′, if

p
τ

−→ t.
As an example of using the rules (and shorthands for concretions and abstractions) the reaction

(1) in Section 2 can be derived from m(x)q
m

−→ (x)q, so n〈m(x)q : ñ〉
nm
−→ (x)n〈q : ñ〉. Combining

with nm〈p : ñ′〉p′
nm
−→ 〈p : ñ′〉p′ we obtain

n〈m(x)q : ñ〉 ‖ nm〈p : ñ′〉p′
τ

−→ (x)n〈q : ñ〉 · 〈p : ñ′〉p′ .

By Definition 1 we get (x)n〈q : ñ〉 · 〈p : ñ′〉p′ = n〈q[p:ñ′

/x] : ñ ∪ ñ′〉 ‖ p′ (if x ∈ fv (q)). Sim-

ilarly for the reduction (2) we have that m〈p : ñ′〉p′
m

−→ 〈p : ñ′〉p′, so n〈m〈p : ñ′〉p′ : ñ′′〉
nm
−→

〈p : ñ′〉n〈p′ : ñ′′〉. So combining with nm(x)q
nm
−→ (x)q we obtain

n〈m〈p : ñ′〉p′ : ñ′′〉 ‖ nm(x)q
τ

−→ 〈p : ñ′〉n〈p′ : ñ′′〉 · (x)q ,

which by Definition 1 is the process n〈p′ : ñ′′〉 ‖ q[p:ñ′

/x].
In order to prove that the reaction relation and the labelled transition relation coincides (when

restricted to τ -transitions), we need that transitions are preserved by structural congruence.

Proposition 1. If p ≡ q and q
π

−→ t′ then for some t′′ we have p
π

−→ t′′ and t′′ ≡ t′.

We can then prove that our two semantics coincides when restricted to τ -transitions and reac-
tions, respectively.

Theorem 2 (semantics coincide). p ց p′ if and only if p
τ

−→≡ p′.
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Proof.
(⇒) From p ց p′ we can prove that this implies p ≡ E(γδe ‖ Dγ(δe)) and p′ ≡ E(e · Dγ(e)) and
bn(Dγ) ∩ δ = ∅ from the definition of the reaction relation. So from Proposition 63 we know that

there exists some p′′ such that p
τ

−→ p′′ and p′′ ≡ E(e · Dγ(e)). So since p′′ ≡ p′ we have that

p
τ

−→≡ p′ as desired.
(⇐) We prove that p

τ
−→ p′ implies p ց p′ by using Proposition 56 which tells us that p ≡ E(γδe ‖

Dγ(δe)) and p′ ≡ E(e · Dγ(e)) and bn(Dγ) ∩ δ = ∅ and the result follows from the definition of the
reaction relation.

5 The Type System

We are now ready to present the extension of the type and effect system given for Homer in [GH05]
to allow a distinction between affine linear and non-linear (unrestricted) resources.

We will assume a set S = {aff, un}, of affine and unrestricted (i.e. non-linear) sorts, and let S
range over sorts. Furthermore, we will assume the subtyping relation ≤ on S such that un < aff,
which corresponds with our intuition that an unrestricted process can be used instead of an affine
process. Or concretely, as exemplified by the model of a Smart Card system in Section 8, that
software can be embedded in, and used as, hardware, but not the other way around.

Process types consist of two parts written as S ñ. The first part, the sort S, records if the process
is affine linear or non-linear. The second part, ñ, was introduced by the type system in [GH05] and
can be regarded as an effect that captures the names used or allocated by the process. The type
system guarantees that this set is a superset of the free names in the process. Besides process types,
we also define concretion and abstraction types. The concretion type 〈S〉S′ ñ′ types a concretion
(m̃′)〈p : m̃〉p′ in which the transferred process p has sort S and where the entire concretion has the
sort S′ and effect ñ′. The abstraction type S _ S′ ñ types an abstraction (x)p that itself has sort
S′ and effect ñ and accepts a process of sort S. Note that since we do not pass abstractions as
values, we do not need to distinguish between the effect of abstractions and processes by annotating
the effect of the abstraction on the arrow as it is standard in effect systems [ANN99]. We will only
consider abstraction and concretion types where S ≤ S′, and this requirement is enforced by the
typing rules.

Definition 2 (types). We define three kinds of types, process types Tp, concretion types Tc, and
abstraction types Ta, by the following grammar

T ::= Tp | Tc | Ta

Tp ::= S ñ , Tc ::= 〈S〉Tp , Ta ::= S _ Tp

We define parallel composition, ‖ , of two process types with the same sort, S ñ and S ñ′, as
S ñ ∪ ñ′. For n 6∈ ñ we write (S ñ)n for the process type S ñn and (〈S〉S′ ñ)n for the concretion
type 〈S〉S′ ñn, i.e. the disjoint extension of the name set with a name n.

We write T ∪ ñ′′ for the (not necessarily disjoint) name extension of the type T defined induc-
tively as follows

(S ñ) ∪ ñ′′ = S ñ ∪ ñ′′

(〈S〉Tp) ∪ ñ′′ = 〈S〉Tp ∪ ñ′′

(S _ Tp) ∪ ñ′′ = S _ Tp ∪ ñ′′

The above name extension is used to propagate effects when resources are moved. We extend
the subtyping relation ≤ to types, so S ñ ≤ S′ ñ if S ≤ S′, 〈S〉Tp ≤ 〈S〉T ′

p if Tp ≤ T ′

p, and
S _ Tp ≤ S _ T ′

p if Tp ≤ T ′

p. We define type environments as expected as a finite mapping from
names and variables to their sort.

Definition 3 (type environment). A type environment Γ is a finite partial function Γ : N ⊎V ⇀ S
from names and variables to sorts. We will write domn(Γ) and domv(Γ) for respectively names
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Table 4: Combination of type environments

(empty)
∅ ⊙ ∅ = ∅

(var-un)
Γ ⊙ Γ′ = Γ′′

(Γ, x : un) ⊙ (Γ′

, x : un) = Γ′′

, x : un

(var-l)
Γ ⊙ Γ′ = Γ′′

(Γ, x : S) ⊙ Γ′ = Γ′′

, x : S
(var-r)

Γ ⊙ Γ′ = Γ′′

Γ ⊙ (Γ′

, x : S) = Γ′′

, x : S

(name)
Γ ⊙ Γ′ = Γ′′

(Γ, n : S) ⊙ (Γ′

, n : S) = Γ′′

, n : S

(name-l)
Γ ⊙ Γ′ = Γ′′

(Γ, n : S) ⊙ Γ′ = Γ′′

, n : S
(name-r)

Γ ⊙ Γ′ = Γ′′

Γ ⊙ (Γ′

, n : S) = Γ′′

, n : S

Table 5: Typing address paths

Γ, n : S ⊢ n : S Ref S

Γ, n : S ⊢ δ : S′′
Ref S′

Γ, n : S ⊢ δn : S′′
Ref S

(S ≤ S′)
Γ ⊢ δ : S Ref S′

Γ ⊢ δ : S Ref S′

and variables in the domain of Γ, and let dom(Γ) = domn(Γ)∪ domv(Γ). If n 6∈ domn(Γ) we write
Γ, n : S for the extension of Γ with the mapping from n to S, and similarly for variables. We
will write Γ \ n for the removal of the mapping of n from Γ, and similarly for variables, and we
will extend this notion to sets as well. We will let ∆ range over environments with no variable
mappings.

To present our typing rules we need to be able to combine two environments in a way that,
as usual for linear type systems, constrain the presence of linearly used variables. We define the
combination Γ′′ of two type environments Γ and Γ′, denoted Γ⊙Γ′ = Γ′′, using the rules in Table 4.
The rules enforce that for Γ ⊙ Γ′ = Γ′′, any name occurring in Γ′′ can either occur in Γ, Γ′, or in
both (if it has the same sort). The same is the case for unrestricted variables, whereas the same
affine linear variable cannot in occur in both Γ and Γ′. This underlines, that our type system is
concerned with linear use of processes and not of names, as in [KPT99].

We also need typing of address paths: Γ ⊢ ϕ : S Ref S′, as defined by the rules in Table 5. The
type S Ref S′ is read as a reference via S to S′. The rules ensure that the sorts of the names in an
address path typed S Ref S′ form a non-strictly descending chain, ensuring that an affine resource
cannot be referenced inside an unrestricted resource, and that the first name of the address path
has sort S and the last name of the path has sort S′. For instance, letting Γ = m : aff, n : un,
we can derive Γ ⊢ mm : aff Ref aff and Γ ⊢ mmn : aff Ref un, but we cannot derive neither
Γ ⊢ nm : un Ref aff nor Γ ⊢ mnm : aff Ref aff.

Proposition 3. Writing ϕi for the i’th element of the path ϕ, and length(ϕ) for the length of the
path ϕ, we have Γ ⊢ ϕ : S Ref S′ if and only if domn(Γ) ⊇ ϕ, Γ(ϕ1) = S, Γ(ϕlength(ϕ)) = S′, and
∀i, j with 1 ≤ i ≤ j ≤ length(ϕ) implies Γ(ϕj) ≤ Γ(ϕi).

We define the typing of processes, abstractions, concretions, and contexts using the rules in Ta-
ble 6. The type system conservatively generalises the prior type (effect) system for Homer [GH05],
which we can obtain by taking S to be a singleton set, making it possible to delete all references
to sorts from abstraction and concretion types, and completely remove side-conditions and envi-
ronments. We only explain some of the rules, the rest should be self-explanatory. The (conc)
rule allows us to type a basic concretion, if the extruded process has a sub-sort of the residual
process. We can type an abstraction with (abs), if we can type the body of the abstraction under
an extended environment where x is given a sub-sort of the sort of the abstraction. The rule
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Table 6: Typing rules for affine linear and non-linear Homer

(variable)
Γ, ñ : S̃, x : S ⊢ x : S ñ

(inactive)
Γ, ñ : S̃ ⊢ 0 : un ñ

(parallel)
Γ ⊢ p : S ñ Γ′ ⊢ p′ : S ñ′

Γ ⊙ Γ′ ⊢ p ‖ p′ : S ñ ∪ ñ′
(rest)

Γ, n : S ⊢ p : Tpn

Γ ⊢ (n)p : Tp

(rest-conc)
Γ, n : S ⊢ (m̃)〈p : m̃nñ〉p′ : Tcn

Γ ⊢ (m̃n)〈p : m̃nñ〉p′ : Tc

(subsump)
Γ ⊢ p : Tp

Γ ⊢ p : T ′

p

(Tp ≤ T ′

p)

(repl)
Γ ⊢ p : Tp

Γ ⊢ !p : Tp

(∀x ∈ fv(p). Γ(x) = un) (abs)
Γ, x : S′ ⊢ p : S ñ

Γ ⊢ (x)p : S′
_ S ñ

(S′ ≤ S)

(conc)
Γ ⊢ p : S ñ Γ′ ⊢ p′ : S′ ñ′

Γ ⊙ Γ′ ⊢ 〈p : ñ〉p′ : 〈S〉S′ ñ ∪ ñ′
(S ≤ S′)

(pre-abs)
Γ ⊢ a : S′

_ S ñ Γ ⊢ ϕ : S′′
Ref S′

Γ ⊢ ϕa : S ñ ∪ ϕ
(S′′ ≤ S)

(pre-conc)
Γ ⊢ b : 〈S′〉S ñ Γ ⊢ ϕ : S′′

Ref S′

Γ ⊢ ϕb : S ñ ∪ ϕ
(S′′ ≤ S)

(context)
Γ, Γ′ ⊢ (−)(Γ,S ñ) : S ññ′

(ñ′ ⊆ domn(Γ′) and ñ ⊆ domn(Γ))

(pre-abs) allows us to form a process from an abstraction as long as the sort of the received process
is the sort that the abstraction expects from the address path. The (subsump) rule corresponds to
the usual subsumption rule in type systems with subtyping. The side-condition in the rule (repl)
ensures us that all variables in Γ that occur free in p are unrestricted, however Γ may contain affine
variables which do not occur free in p. The reason why we allow this is to ensure that typing is
invariant under structural congruence. If we did not allow Γ to contain affine variables at all, then
the structural equivalence !p ≡ !p ‖ 0 would introduce problems, as a typing of the process on the
right-hand side could contain affine variables in the typing environment, whereas on the left-hand
side it could not.

In Section 3 we defined a hole as the symbol (−) for which we could substitute in an arbitrary
process. In the typed setting we need more control of which kind of processes that can be placed in
a hole, we therefore augment holes to carry annotation to constrain the set of processes. We write
(−)(Γ,Tp) for a hole in which we can place a process p which can be typed as Γ ⊢ p : Tp. We will
use the annotation of the hole to index contexts, i.e. we will let C(Γ,Tp) range over general contexts,
where the hole is annotated with (Γ, Tp). We extend this notation to evaluation contexts and path
contexts, written E(Γ,Tp) and D(Γ,Tp),γ respectively, as before we will leave out the indexed path in
a path context, if it is not important. As a technical detail (due to the side-condition of the rule
(repl)), we define the free variables of a hole as fv((−)(Γ,Tp)) = domv(Γ).

The typing rules for processes employ the path types to make sure that the resource provider
and receiver agrees on what is being communicated, combining ideas of reference types, which
constrain the types of the referenced resources, and types for process calculi, which constrain the
types of objects being communicated on channels. Thus for a typed address path Γ ⊢ ϕ : S Ref S′

both the resource provider and receiver agree on that the communicated process has sort S′ (this
constraint can be weakened by subsumption for the provider’s part, and narrowing for the receiver’s
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part). The sort S of the outermost name in the address path is used in the side-conditions of the
rules (pre-conc) and (pre-abs) to ensure that any process using the path has a super-sort of S, which
means that affine names can never occur in paths inside unrestricted resources. For instance, if n
is affine and m is unrestricted then in the process nm〈p : ñ′〉q : S ñ the resource p is unrestricted,
but the typing rules enforce that S = aff, meaning that the entire process is typed as affine.
This is a restricted use of linear resources, but it fits well with the scenario of linear, mobile
computing devices containing non-linear mobile computations: A mobile computing device can
never be contained in, or manipulated by, a software process. We leave for future work to study
more relaxed type systems for linear resources that may be contained in, or manipulated by, non-
linear resources. This makes sense if one, as in [TW99], consider linear software resources which
(in a type-safe environment) should be guaranteed not to be copied (i.e. for reasons of memory
management).

We prove the standard properties about the type system: strengthening of unused names and
variables, weakening of the typing environment, invariance of typing under structural congruence,
that composition of a well-typed process with a well-typed context gives rise to a well-typed process,
a substitution lemma, properties of well-typed terms, and subject reduction for the reaction relation
and the labelled transition relation. We prove the following results by induction on the typing
derivation.

Proposition 4 (weakening). Let l range over names and variables. If Γ ⊢ t : T and l 6∈ dom(Γ)
then Γ, l : S ⊢ t : T .

We can strengthen the environment with names and variables that does not occur free in the
process. Note that the strengthening of names also effects the type of the process.

Proposition 5 (strengthening, names). Assume n 6∈ fn(t) and Γ, n : S ⊢ t : T then Γ ⊢ t : T \ n.

Proposition 6 (strengthening, variables). Assume x 6∈ fv (t) and Γ, x : S ⊢ t : T then Γ ⊢ t : T .

We can also add names from the type environment to the effect of a term.

Proposition 7. If Γ ⊢ t : T and n : S′ ∈ Γ then Γ ⊢ t : T ∪ n.

As expected in a type system with subtyping we have narrowing of variables.

Proposition 8 (narrowing of variables). If Γ, x : S ⊢ f : T and S′ ≤ S then Γ, x : S′ ⊢ f : T .

Note that we in general cannot have narrowing (or widening) of names, as this can make address
paths ill-typed, i.e. the ordering can be destroyed, if we allow to change the type of a name. As
expected the typing is invariant under structural congruence.

Proposition 9 (structural congruence and typing). If t ≡ t′ then Γ ⊢ t : T if and only if Γ ⊢ t′ : T .

Proof. By induction on the derivation of t ≡ t.

The subsumption rule between process types induces subsumption between concretion and
abstraction types as well.

Proposition 10. If Γ ⊢ t : T and T ≤ T ′ then Γ ⊢ t : T ′.

The combination of a well-typed process and a well-typed context preserves well-typedness.

Proposition 11 (general context application). If Γ′ ⊢ C(Γ,Tp) : S′ ñ′ and Γ ⊢ p : Tp then Γ′ ⊢
C(Γ,Tp)(p) : S′ ñ′.

As corollaries of Proposition 11 we have that the application of a well-typed context and a
well-typed process (of the appropriate type) results in a well-typed process.
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Corollary 12. If Γ′ ⊢ E(Γ,Tp) : S′ ñ′ and Γ ⊢ p : Tp then Γ′ ⊢ E(Γ,Tp)(p) : S′ ñ′.

Corollary 13. If Γ′ ⊢ D(Γ,Tp) : S′ ñ′ and Γ ⊢ p : Tp then Γ′ ⊢ D(Γ,Tp)(p) : S′ ñ′.

Lemma 14 (substitution lemma). Let ∆ ⊢ p : S ñ be a closed process and let Γ′, x : S ⊢ t′ : T ′

be a term with ∆ ⊙ Γ′ defined then ∆ ⊙ Γ′ ⊢ t′[p:ñ/x] : T ′′, where T ′′ = T ′ ∪ ñ if x ∈ fv (t′) and
T ′′ = T ′ otherwise.

Proof. Proof by induction on the derivation of Γ′, x : S ⊢ t′ : T ′. We will only consider the case for
(conc), since the rule has two premises and since it (possibly) involves updating the type annotation
of a resource. The other cases are easier.

• (conc) So we know that Γ′, x : S = Γ′′ ⊙ Γ′′′, t′ = 〈p′′ : ñ′′〉p′, and T ′ = 〈S′′〉S′ ñ′′ ∪ ñ′. By
inversion we know Γ′′ ⊢ p′′ : S′′ ñ′′ and Γ′′′ ⊢ p′ : S′ ñ′ and S′′ ≤ S′. There are several
sub-cases depending on where x occurs (if x occurs at all) and the sort of x. We consider
only the sub-cases where x is affine linear. We can prove the cases where x is non-linear in
same manner. Below we use the following results: weakening (Proposition 4); strengthening
of variables (Proposition 6); a corollary of Lemma 16(1), i.e. for Γ ⊢ t : T if x 6∈ domv(Γ)
then x 6∈ fv (t); and if x 6∈ fv (t) then t[p:ñ/x] = t which we prove by structural induction.

Since x is affine linear it can occur in either Γ′′ or Γ′′′, but not in both.

– x ∈ domv(Γ′′). We have two sub-cases depending on whether x occurs free in p′′

∗ x 6∈ fv(p′′). So by strengthening we obtain Γ′′ \ x ⊢ p′′ : S′′ ñ′′ and since x 6∈
domv(Γ′′′) we have Γ′′′ ⊢ p′[p:ñ/x] : S′ ñ′. So by the rule (conc) we obtain
(Γ′′ ⊙ Γ′′′) \ x ⊢ 〈p′′ : ñ′′〉p′[p:ñ/x] : 〈S′′〉S′ ñ′′ ∪ ñ′ and the result follows by weak-
ening with ∆.

∗ x ∈ fv(p′′). So by the induction hypothesis (∆ ⊙ Γ′′) \ x ⊢ p′′[p:ñ/x] : S′′ ñ′′ ∪ ñ,
and we have Γ′′′ ⊢ p′[p:ñ/x] : S′ ñ′ as above. So again by (conc) we obtain ∆ ⊙ Γ′ ⊢
〈p′′[p:ñ/x] : ñ′′ ∪ ñ〉p′[p:ñ/x] : 〈S′′〉S′ ñ′′ ∪ ñ ∪ ñ′.

– x ∈ domv(Γ′′′). So by the induction hypothesis (∆ ⊙ Γ′′′) \ x ⊢ p′[p:ñ/x] : T ′′ and
T ′′ = S′ ñ′ ∪ ñ if x ∈ fv(p′) and T ′′ = S′ ñ′, otherwise. In both cases the result follows
as above.

Proposition 15 (well-typed application). If Γ ⊢ a : S′′
_ S′ ñ′′ is an closed abstraction and

Γ′ ⊢ c : 〈S′′〉S′ ñ′ is a closed concretion with c ·a and Γ⊙Γ′ defined then Γ ⊙ Γ′ ⊢ c · a : S′ ñ′′ ∪ ñ′

is a closed process.

Proof. Follows from Lemma 14 and the definition of application and substitution (Definition 1).

Our type system ensures us that well-typed terms satisfies several properties, below we state
the main properties. The properties imply that the annotation of resources contains the free names
of the resource, that affine terms cannot be contained in unrestricted terms, and that affine terms
cannot be duplicated.

Lemma 16 (properties of well-typed terms). Writing n(T ) for the names and s(T ) for the sort
of the type T , defined as ñ and S, if T is of the form S ñ, S′

_ S ñ, or 〈S′〉S ñ. If Γ ⊢ t : T then

1. fn(t) ⊆ n(T ) ⊆ domn(Γ) and fv(t) ⊆ domv(Γ).

2. If x : aff ∈ Γ then x occurs free at most once in t.

3. If x : aff ∈ Γ and x ∈ fv(t) then s(T ) = aff.
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4. If s(T ) = un then for every sub-derivation Γ′ ⊢ t′ : T ′ we have s(T ′) = un.

Proof (sketch). We can prove the first three items by induction on the typing derivation. For the
last item note that for every rule in Table 6, if the conclusion of the rule has sort S then each of
the premises have a sort S′ with S′ ≤ S.

Theorem 17 (subject reduction, reaction relation). If Γ ⊢ p : S ñ and p ց p′ then Γ ⊢ p′ : S ñ.

Proof (sketch). By considering the reaction rule in Table 2 and using the previous results about
placing a process in an evaluation context (Corollary 12), invariance under ≡ (Proposition 9), and
well-typed application (Proposition 15).

Theorem 18 (subject reduction, labelled transition relation). Suppose Γ ⊢ p : S ñ and p
π

−→ t
then one of the following cases hold.

• π = τ , t = p′ and Γ ⊢ p′ : S ñ.

• π = ϕ, t = a and Γ ⊢ a : S′
_ S ñ and Γ ⊢ ϕ : S′′

Ref S′ for some S′ and S′′ with S′′ ≤ S.

• π = ϕ, t = c and Γ ⊢ c : 〈S′〉S ñ and Γ ⊢ ϕ : S′′
Ref S′ for some S′ and S′′ with S′′ ≤ S.

Proof. Proof by induction on the derivation of p
π

−→ t using the results of Appendix A to handle
the typing of shorthands. Note that the rules in Table 6 are not completely syntax-directed, since
we can apply the rule (subsump) to any process. However, this only introduces minor complications
(for brevity we will not state the inversion lemma of the typing relation) We will only consider a
few of the cases

• (prefix ) Suppose Γ ⊢ p : S ñ and the transition p
π

−→ t is derived from (prefix ). So we
know that p = ϕe, π = ϕ, and t = e. We have two sub-cases depending on whether e is an
abstraction or a concretion. We present only the first sub-case as they are similar.

So we have Γ ⊢ ϕa : S ñ for some a. By inversion we know that this can only be derived using
(pre-abs) possibly followed by the rule (subsump). For generality we assume that (subsump)
has been used. So we have Γ ⊢ ϕa : S′′′ ñ for some S′′′ with S′′′ ≤ S. By the rule (pre-abs)
we have Γ ⊢ a : S′

_ S′′′ ñ′ for some S′ ad ñ′ with ñ′ ∪ ϕ = ñ and Γ ⊢ ϕ : S′′
Ref S′ and

S′′ ≤ S′′′. The desired result, Γ ⊢ a : S′
_ S ñ follows from application of Proposition 7 and

Proposition 10.

• (par) Assume Γ ⊢ p : S ñ and the transition p
π

−→ t is derived using (par). We know

p = p′′ ‖ p′ and t = t′′ ‖ p′ and that p′′
π

−→ t′′. As above, for generality we assume that
the rule (subsump) has been applied in the derivation. So we have Γ ⊢ p′′ ‖ p′ : S′′′ ñ and
S′′′ ≤ S. So by inversion we know Γ1 ⊢ p′′ : S′′′ ñ1 and Γ2 ⊢ p′ : S′′′ ñ2 and Γ = Γ1 ⊙Γ2 and
ñ = ñ1 ∪ ñ2. We have three sub-cases to consider, and we will present two of them (when
π = τ and t′′ is a process p′′′, and when π = ϕ and t′′ is an abstraction a′′′).

– (π = τ) By induction hypothesis we know that Γ1 ⊢ p′′′ : S′′′ ñ1 and the desired result,
Γ ⊢ p′′′ ‖ p′ : S ñ, follows from (parallel) and (subsump).

– (π = ϕ) By induction hypothesis we know that Γ1 ⊢ a′′′ : S′
_ S′′′ ñ1 and Γ ⊢ ϕ :

S′′
Ref S′ with S′′ ≤ S′′′. So by Proposition 43 we know that Γ ⊢ a′′′ ‖ p′ : S′

_ S′′′ ñ,
so by Proposition 10 the desired result follows and the conditions on sorts are satisfied.
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5.1 A Type Checking Algorithm

In this section we examine a type checking algorithm for the declarative rules given in Table 6.
The two main difficulties are to eliminate the subsumption rule (subsump) and to eliminate the
non-deterministic partitioning of the type environment. We solve both problems by using standard
methods: generalise the axioms in the typing system and by keeping track of which affine variables
a term uses, following the approach of [Wal04].

However, before we can present the type checking algorithm we need to change the syntax of
Homer slightly, by adding an explicit annotation on restrictions. The reason for this is that we
cannot guess the sort of the restricted name from the restriction alone, we need to know in which
contexts the name is used1. So with this change in syntax we need to change the two typing
rules regarding restriction (we will subscript this new typing judgement with an A to resolve any
ambiguity).

(rest)
Γ, n : S ⊢A p : Tpn

Γ ⊢A (n : S)p : Tp

(rest-conc)
Γ, n : S ⊢A (m̃ : S̃)〈p : m̃nñ〉p′ : Tcn

Γ ⊢A (n : S)(m̃ : S̃)〈p : m̃nñ〉p′ : Tc

We define a relation between terms of the syntax without explicit annotations on restrictions and
the syntax with explicit annotations on restrictions, and we write this relation as t ann t′. Two
terms are related, t ann t′, if t and t′ are syntactical equivalent except for the explicit annotations
in t′. If we can type a term t using the rules in Table 6 then there exists an explicitly annotated
term t′ related to t which can be typed with the new typing judgement.

Proposition 19. Γ ⊢ t : T if and only if there exists a t′ such that t ann t′ and Γ ⊢A t′ : T .

For the typing of address path we don’t need to change anything as the rules already are
syntax-directed and terminates.

Lemma 20. The typing of address path given in Table 5 is both syntax-directed, deterministic,
and terminates.

Following the standard approach to remove the non-deterministic splitting of the type envi-
ronment we define a new judgement Γ ⊢M t : T ; Γ′. Compared to the existing judgements we
have added an additional component, the output type environment. Intuitively one can read the
judgement as “under the type environment Γ we can type t as T (thereby consuming a portion of
Γ), and Γ′ is the unused portion of Γ”. Since we only constrain the usage of affine variables, these
are the only elements of Γ which can be consumed. So when type checking a rule with several
premises, e.g. (parallel) we pass the entire type environment to the left branch to type check it, and
the output type environment from this type checking is then used to type check the right branch.

To define the typing rules we need to calculate the subtraction of a mapping from a type
environment, written Γ − l : S, formally defined as follows

(Γ, l : S) − l : S = Γ
Γ − l : S = Γ l 6∈ dom(Γ) .

The first clause is used for subtracting non-linear variables, unused affine variables, and names.
The second clause is only for used affine variables, as they are the only bindings which can be
consumed during type checking.

We can now define the typing of terms using the rules in Table 7. The type rules differ from the
rules in Table 6 in several respects. As described in the beginning of this section, we have removed
the subsumption rule and the non-determinism in partitioning the type environment. We have

1In a concrete implementation we could do without the annotations and instead use sort variables. The instan-
tiation of these sort variables could then be chosen lazily when the name used. Constraint Handling Rules [Frü98]
would be an obvious candidate to implement this approach.
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Table 7: Algorithmic Typing rules for affine linear and non-linear Homer

(unrest)
Γ, ñ : S̃, x : un ⊢M x : S ñ; Γ, ñ : S̃, x : un

(aff)
Γ, ñ : S̃, x : aff ⊢M x : aff ñ; Γ, ñ : S̃

(parallel)
Γ ⊢M p : S ñ; Γ′ Γ′ ⊢M p

′ : S ñ; Γ′′

Γ ⊢M p ‖ p
′ : S ñ; Γ′′

(inactive)
Γ, ñ : S̃ ⊢M 0 : S ñ; Γ, ñ : S̃

(repl)
Γ ⊢M p : Tp; Γ′

Γ ⊢M !p : Tp; Γ′
(∀x ∈ fv(p). Γ(x) = un) (rest)

Γ, n : S ⊢M p : Tpn; Γ′

Γ ⊢M (n : S)p : Tp; Γ′ − n : S

(abs)
Γ, x : S

′ ⊢M p : S ñ; Γ′

Γ ⊢M (x)p : S
′

_ S ñ; Γ′ − x : S
′
(S′ ≤ S)

(conc)
Γ ⊢M p : S ñ; Γ′ Γ′ ⊢M p

′ : S
′

ñ
′; Γ′′

Γ ⊢M 〈p : ñ〉p′ : 〈S〉S′

ñ
′; Γ′′

(S ≤ S′ and ñ ⊆ ñ′)

(pre-abs)
Γ ⊢M a : S

′

_ S ñϕ; Γ′ Γ ⊢ ϕ : S
′′

Ref S
′

Γ ⊢M ϕa : S ñϕ; Γ′
(S′′ ≤ S)

(rest-conc)
Γ, n : S ⊢M (m̃ : S̃)〈p : m̃nñ〉p′ : Tcn; Γ′

Γ ⊢M (n : S)(m̃ : S̃)〈p : m̃nñ〉p′ : Tc; Γ′ − n : S

(pre-conc)
Γ ⊢M b : 〈S′〉S ñϕ; Γ′ Γ ⊢ ϕ : S

′′

Ref S
′

Γ ⊢M ϕb : S ñϕ; Γ′
(S′′ ≤ S)

also removed the non-determinism in splitting up the effect in several of the rules. For instance
in the rule (parallel) we type check each branch with the full effect ñ instead of splitting up the
effect in two (not necessarily disjoint) parts. We also type check the right-hand branch with the
full effect in the rule (conc). Similar, in the two rules (pre-abs) and (pre-conc) we type check the
abstraction and concretion with the full effect, and not with a possible smaller effect, as done in
Table 6. These changes, however, will not affect the set of well-typed terms. Note that we in the
rules (pre-abs) and (pre-conc) have chosen to type check the address paths with the initial type
environment Γ, we could just as well have chosen to use the output type environment Γ′, as the
environments contain the same set of name bindings (see Lemma 22 below).

In order to match the subsumption rule in the declarative type system we must prove that we
still can perform subsumption using the new type system.

Proposition 21. If Γ ⊢M t : T ; Γ′ and T ≤ T ′ then Γ ⊢M t : T ′; Γ′.

Let n(Γ) denote the name mappings, vun(Γ) the mappings of unrestricted variables, and vaff(Γ)
the mappings of affine variable in Γ, then we have that for a well-typed term Γ ⊢M t : T ; Γ′ that
Γ and Γ′ coincide on the mappings of names and unrestricted variables, but that Γ can contain
some mappings of affine variables which do not occur in Γ′.

Lemma 22. If Γ ⊢M t : T ; Γ′ then n(Γ′) = n(Γ) and vun(Γ
′) = vun(Γ), and vaff(Γ

′) ⊆ vaff(Γ).

Furthermore, we have that affine variables which appear free in the term do not occur in the
output type environment.

Lemma 23. Let Γ ⊢M t : T ; Γ′ and x : aff ∈ Γ. If x ∈ fv(t) then x : aff 6∈ Γ′.

We prove the same results for the algorithmic type system as for the declarative system: weak-
ening and strengthening of names and variables, and the addition of names to the effect of the
term. We prove all the following four results by induction on the typing derivation.
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Proposition 24. Let l range over names and variables. If Γ ⊢M t : T ; Γ′ and l 6∈ dom(Γ) then
Γ, l : S ⊢M t : T ; Γ′, l : S.

Proposition 25. Assume n 6∈ fn(t) and Γ, n : S ⊢M t : T ; Γ′, n : S then Γ ⊢M t : T \ n; Γ′.

Proposition 26. Assume x 6∈ fv(t) and Γ, x : S ⊢M t : T ; Γ′, x : S then Γ ⊢M t : T ; Γ′.

Proposition 27. If Γ ⊢M t : T ; Γ′ and n : S′ ∈ Γ then Γ ⊢M t : T ∪ n; Γ′.

Using some of the previous results we prove our algorithmic typing relation sound and complete
with respect to the declarative presentation in Table 6.

Theorem 28 (soundness and completeness). Γ ⊢A t : T if and only if Γ ⊢M t : T ; Γ′.

Proof. In both directions we prove it by induction over the typing derivation, and using the results
about weakening and strengthening of type environments, the addition of names to the effect,
Proposition 21 to match the subsumption rule, and Lemma 22 relating the input and output type
environment in the algorithmic type checking.
(⇒) Proof by induction on the derivation of Γ ⊢A t : T . We only present some of the cases

• (parallel) Assume that we have Γ ⊙ Γ′ ⊢A p ‖ p′ : S ñ ∪ ñ′, and it is derived from Γ ⊢A p : S ñ
and Γ′ ⊢A p′ : S ñ′, so by using the induction hypothesis twice we have

Γ ⊢M p : S ñ; Γ′′ and Γ′ ⊢M p′ : S ñ′; Γ′′′ .

Let ñ′′ = ñ ∪ ñ′. We weaken the first judgement with the names and variables occurring in
Γ′ \ Γ and add ñ′ to the effect, hence obtaining Γ ⊙ Γ′ ⊢M p : S ñ′′; Γ′′ ⊙ Γ′, and we weaken
the second judgement with the names and variables occurring in Γ′′ \ Γ′ and add ñ to the
effect, hence obtaining Γ′ ⊙ Γ′′ ⊢M p′ : S ñ′′; Γ′′′ ⊙ Γ′′, so we end up with Γ ⊙ Γ′ ⊢M p ‖ p′ :
S ñ′′; Γ′′′ ⊙ Γ′′ as desired.

• (subsump) We have that Γ ⊢A p : T ′

p is derived from Γ ⊢A p : Tp and Tp ≤ T ′

p, so by the
induction hypothesis we have Γ ⊢M p : Tp; Γ′ and the result follows from Proposition 21
(algorithmic subsumption).

(⇐) Proof by induction on the derivation of Γ ⊢M t : T ; Γ′. Again, we only present some of the
cases

• (parallel) Assume that we have Γ ⊢M p ‖ p′ : S ñ; Γ′′, and it is derived from Γ ⊢M p : S ñ; Γ′

and Γ′ ⊢M p′ : S ñ; Γ′′, so by using the induction hypothesis twice we have

Γ ⊢A p : S ñ and Γ′ ⊢A p′ : S ñ .

We cannot in general combine Γ and Γ′ as both might contain the same affine variables.
However, we can obtain Γ′′′ by strengthening of Γ, where we remove all affine variables which
do not occur free in p, hence giving us Γ′′′ ⊢A p : S ñ. The combination Γ′′′ ⊙ Γ′ is defined,
since an affine variable x can only occur in Γ′, if it occurs in Γ and if it does not occur free
in p. So we obtain the desired result Γ ⊢A p ‖ p′ : S ñ, as Γ′′′ ⊙ Γ′ = Γ.

• (pre-abs) Assume that we have Γ ⊢M ϕa : S ñϕ; Γ′ and that it is derived from Γ ⊢M a :
S′

_ S ñϕ; Γ′ and Γ ⊢ ϕ : S′′
Ref S′ and we have S′′ ≤ S. By the induction hypothesis we

have Γ ⊢A a : S′
_ S ñϕ, so the result follows Γ ⊢A ϕa : S ñϕ.
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6 Barbed Bisimulation Congruence

In this section we define strong and weak barbed bisimulation congruences based on the reaction
semantics and observations. In the following section we define input-early delay context bisimula-
tions which in the weak case is a sound characterisation, and in the strong case is both a sound
and complete characterisation.

As in previous work [HGB04, GH05] we define weak and strong barbs as the observation of a
resource at top level. Let ց∗ be the transitive and reflexive closure of ց.

Definition 4 (barbs). We say that the process p has a strong barb n, written p ↓ n if p ≡
(ñ)(n〈p′ : ñ′〉p′′ ‖ p′′′) and n 6∈ ñ. We say that the process p has a weak barb n, written p ⇓ n if
there exists p′ such that p ց∗ p′ and p′ ↓ n.

We have previously in [HGB04] shown that this choice of barbs is robust. We say that a well-
typed process Γ ⊢ p : Tp has a strong barb, if the underlying process p has a strong barb, and
similarly for weak barbs. We have a correspondence between barbs and transitions.

Proposition 29. p ↓ n if and only if p
n

−→ c for some c.

We define binary relations between typed terms with respect to the same environment and type,
and we furthermore require that the relations are closed under extension of the effect, weakening
of environment, and under subsumption of the type.

Definition 5. We define a binary relation R on t/α between typed terms Γ ⊢ t : T and Γ ⊢ t′ : T
of the same type and wrt. the same environment and write this as Γ ⊢ t R t′ : T . We say that R
is well-typed if Γ ⊢ t R t′ : T implies:

1. Γ ⊢ t R t′ : T ∪ n, if n ∈ domn(Γ),

2. Γ, Γ′ ⊢ t R t′ : T ,

3. Γ ⊢ t R t′ : T ′ for T ≤ T ′.

We will throughout the paper assume that all relations on typed terms are well-typed. We
define the restriction of a binary relation R to closed processes by Rc = R∩ pc/α × pc/α.

Definition 6. A weak barbed simulation is a well typed binary relation R on pc/α such that
whenever ∆ ⊢ p R q : S ñ,

• if p ↓ n, then q ⇓ n

• if p ց p′, then there exists q′ such that q ց∗ q′ and ∆ ⊢ p′ R q′ : S ñ.

R is a weak barbed bisimulation if R and R−1 are weak barbed simulations. Weak barbed bisimu-
lation congruence ≈b is the largest congruence such that (≈b)c is a weak barbed bisimulation.

We define strong barbed simulation similar to above by replacing ց∗ with ց and q ⇓ n with
q ↓ n, and define strong barbed bisimulation congruence ∼b accordingly.

Proposition 30. ≈b and ∼b are equivalence relations.

7 Bisimulation Congruence

In this section we provide Homer with weak and strong input-early (delay) context bisimulations.
We prove that both weak and strong context bisimulations are sound characterisations of weak
and strong barbed bisimulation, and furthermore that strong context bisimulation is a complete
characterisation.
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We define delay transitions as usual by p
τ

=⇒ p and p
π

=⇒ p′, if p
τ

−→
∗ π
−→ p′. We extend a

relation R on closed typed processes to typed concretions by ∆ ⊢ c R2 c′ : 〈S′′〉S′ ñ′, if for all typed
abstractions ∆′ ⊢ a : S′′

_ S′ ñ′′ with ∆ ⊙ ∆′ defined we have ∆ ⊙ ∆′ ⊢ c · a R c′ · a : S′ ñ′′ ∪ ñ′.
We then define typed input-early delay context (bi)simulation as follows. Subject reduction ensures
transitions between well-typed terms.

Definition 7. An input-early delay context simulation is a well typed binary relation R on pc/α

such that ∆ ⊢ p R q : S ñ implies

• if p
τ

−→ p′ then ∃q′. q
τ

=⇒ q′ such that ∆ ⊢ p′ R q′ : S ñ.

• if p
δ

−→ a and ∆ ⊢ δ : S′′
Ref S′ then ∀c ∈ cc/α with ∆′ ⊢ c : 〈S′〉S ñ′ and ∆ ⊙ ∆′ defined,

there ∃a′. q
δ

=⇒ a′ such that ∆ ⊙ ∆′ ⊢ c · a R c · a′ : S ñ ∪ ñ′.

• if p
δ

−→ a and ∆ ⊢ δ : S′′
Ref S′ then ∀c ∈ cc/α with ∆′ ⊢ c : 〈S′〉S′′′ ñ′′ and ∀D(∆,S ñ). ∆′′ ⊢

D(∆,S ñ) : S′′′ ñ′ with ∆′ ⊙ ∆′′ defined there exists an a′. q
δ

=⇒ a′ such that ∆′ ⊙ ∆′′ ⊢
c · D(∆,S ñ)(a) R c · D(∆,S ñ)(a

′) : S′′′ ñ′ ∪ ñ′′.

• if p
δ

−→ c and ∆ ⊢ δ : S′′
Ref S′ then ∃c′. q

δ
=⇒ c′ such that ∆ ⊢ c R2 c′ : 〈S′〉S n.

• if p
δ

−→ c and ∆ ⊢ δ : S′′
Ref S′ then ∃c′. q

δ
=⇒ c′ such that ∀D(∆,S ñ). ∆

′ ⊢ D(∆,S ñ) : S′′′ ñ′

we have ∆′ ⊢ D(∆,S ñ)(c) R
2 D(∆,S ñ)(c

′) : 〈S′〉S′′′ ñ′.

R is an input-early delay context bisimulation if both R and R−1 are input-early delay context
simulations. Let ≈ denote the largest input-early delay context bisimulation. We define input-
early strong context simulation by replacing =⇒ with −→ and let ∼ denote the largest input-early
strong context bisimulation.

Note that we employ the shorthands introduced in Section 2 when placing abstractions and
concretions in path contexts in the third and fifth condition above. For Γ ⊢ p : S ñ and Γ′, x : S ⊢
q : Tp with Γ⊙Γ′ defined we define substitution on typed terms by Γ ⊢ q : Tp[

p:ñ/x] = Γ ⊢ q[p:ñ/x] :
T ′

p, where T ′

p = Tp ∪ ñ if x ∈ fv (()q) and T ′

p = Tp otherwise.

Definition 8. A binary relation R on p/α is substitutive if Γ ⊢ p R p′ : S ñ and Γ′, x : S ⊢

p′′ R p′′′ : Tp with Γ⊙Γ′ defined implies Γ ⊙ Γ′ ⊢ p′′ : Tp[
p:ñ/x] R p′′′ : Tp[

p′:ñ/x]. We also say that
R is constructor compatible if

• Γ ⊢ 0 R 0 : S ñ if ñ ⊆ domn(Γ),

• Γ, x : S ⊢ x R x : S ñ if ñ ⊆ domn(Γ),

• Γ ⊢ p R p′ : S ñ and Γ1 ⊢ p1 R p′1 : S ñ′ with Γ⊙Γ1 defined implies Γ ⊙ Γ1 ⊢ p ‖ p1 R p′ ‖ p′1 :
S ñ ∪ ñ′,

• Γ ⊢ p R p′ : S ñ and Γ1 ⊢ p1 R p′1 : S′ ñ′ with Γ ⊙ Γ1 defined, and Γ ⊙ Γ1 ⊢ ϕ : S′′
Ref S′′′

with S ≤ S′, S ≤ S′′′, and S′′ ≤ S′ implies Γ ⊙ Γ1 ⊢ ϕ〈p : ñ〉p1 R ϕ〈p′ : ñ〉p′1 : S′ ñ ∪ ñ′ ∪ ϕ,

• Γ, x : S′ ⊢ p R p′ : S ñ and Γ ⊢ ϕ : S′′′
Ref S′′ with S′′ ≤ S′ and S′′′ ≤ S implies Γ ⊢

ϕ(x)p R ϕ(x)p′ : S ñ ∪ ϕ,

• Γ, n : S ⊢ p R p′ : Tpn implies Γ ⊢ (n)p R (n)p′ : Tp,

• Γ ⊢ p R p′ : Tp and ∀x ∈ fv (p). Γ(x) ≤ un implies Γ ⊢ !p R !p′ : Tp.
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Table 8: Howe relation for typed processes and concretions

Γ ⊢ 0 R◦

p : Tp

Γ ⊢ 0 R p : Tp

Γ ⊢ x R◦

p : Tp

Γ ⊢ x R p : Tp

Γ ⊢ p1 R p′

1 : Tp Γ′ ⊢ p2 R p′

2 : T ′

p

Γ ⊙ Γ′ ⊢ p′

1 ‖ p′

2 R◦ p : Tp ‖ T ′

p

Γ ⊙ Γ′ ⊢ p1 ‖ p2 R p : Tp ‖ T
′

p

Γ ⊢ p1 R p′

1 : S ñ Γ′ ⊢ p2 R p′

2 : S′ ñ′ Γ ⊙ Γ′ ⊢ ϕ : S′′
Ref S

Γ ⊙ Γ′ ⊢ ϕ〈p′

1 : ñ〉p′

2 R◦ p′′ : S′ ñ ∪ ñ′ ∪ ϕ

Γ ⊙ Γ′ ⊢ ϕ〈p1 : ñ〉p2 R p
′′ : S

′

ñ ∪ ñ
′ ∪ ϕ

Γ ⊢ p1 R p
′

1 : S ñ Γ′ ⊢ p2 R p
′

2 : S
′

ñ
′ Γ ⊙ Γ′ ⊢ 〈p′

1 : ñ〉p′

2 R2
p
′′ : 〈S〉S′

ñ ∪ ñ
′

Γ ⊙ Γ′ ⊢ 〈p1 : ñ〉p2 R p
′′ : 〈S〉S′

ñ ∪ ñ
′

Γ, x : S
′ ⊢ p R p

′ : S ñ Γ ⊢ ϕ : S
′′

Ref S
′ Γ ⊢ ϕ(x)p′ R◦

p
′′ : S ñ ∪ ϕ

Γ ⊢ ϕ(x)p R p
′′ : S ñ ∪ ϕ

Γ, n : S ⊢ p R p
′ : Tpn Γ ⊢ (n)p′ R◦

p
′′ : Tp

Γ ⊢ (n)p R p
′′ : Tp

Γ, n : S ⊢ c R c
′ : Tcn Γ ⊢ (n)c′ R2

c
′′ : Tc

Γ ⊢ (n)c R c
′′ : Tc

Γ ⊢ p R p
′ : Tp Γ ⊢ !p′ R◦

p
′′ : Tp

Γ ⊢ !p R p
′′ : Tp

A well typed relation R on typed processes p/α is a congruence if it is substitutive (closed
under substitution by related processes) and constructor compatible (closed under all process
constructors).

The extension of a binary relation R to open terms p and q where fv (p) = fv(q) = {x1, . . . , xk}
is done as usual, defining Γ, x1 : S1, . . . , xk : Sk ⊢ p R◦ q : Tp, if for all well-typed closed processes
(1 ≤ i ≤ k) ∆i ⊢ pi : Si ñi it holds that

Γ ⊙ ∆1 ⊙ · · · ⊙ ∆k ⊢ p′ R q′ : Tp ∪ ñ1 ∪ · · · ∪ ñk

for p′ = p[p1:ñ1/x1
] · · · [pk:ñk/xk

] and q′ = q[p1:ñ1/x1
] · · · [pk:ñk/xk

]. We extend R◦ to typed concre-
tions by Γ ⊢ c R2 c′ : 〈S′′〉S′ ñ′, if for all typed abstractions Γ′ ⊢ a : S′′

_ S′ ñ′′ with Γ ⊙ Γ′

defined we have Γ ⊙ Γ′ ⊢ c · a R◦ c′ · a : S′ ñ′′ ∪ ñ′.
In [GH05] we showed how to extend Howe’s method to prove that input-early delay and strong

context bisimulations are congruences for Homer. We will outline in the following section that this
method can be further extended to affine and unrestricted typed processes with replication.

7.1 Howe’s method

The key ingredient in Howe’s method is to extend the bisimulation ≈ inductively to a constructor
compatible relation ≈•, sometimes referred to as the Howe relation, and prove it to coincide with
the bisimulation. In [GH05] we showed how to extend Howe’s method to higher-order nested
embedded resources by defining the Howe relation for concretions ≈ and path contexts ≈N. Below
we show that the proof extends to linear and non-linearly typed processes with replication.

First we define the Howe-relation R on typed processes and concretions p/α ∪ c/α, relative
to a binary relation R on pc/α and as the least relation satisfying the rules in Table 8. Let
R•=R ∩ p/α × p/α, i.e. the relation restricted to (possibly open) processes. Below we will let ≡
denote the structural congruence relation, except for the unfolding of replication.

The first step in proving that the Howe relation is a bisimulation is to prove the following
properties.
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Table 9: Howe relation for typed path contexts

Γ′′, m̃ : S̃ ⊢ p R• p′ : S m̃ñ′′ Γ, m̃′ : S̃′ ⊢ D(Γ,Tp),γ RN D′

(Γ,Tp),γ : S m̃′ñ

Γ′ ⊢ q R• q′ : S′ ñ′ Γ′′′ ⊢ δ : S′′
Ref S

Γ′′′ ⊢ δ〈(m̃′′)(D(Γ,Tp),γ ‖ p) : ñ′′′〉q RN δ〈(m̃′′)(D′

(Γ,Tp),γ ‖ p′) : ñ′′′〉q′ : S′ ñ′′′′
,

Γ′′, m̃ : S̃ ⊙ Γ, m̃′ : S̃′ defined, m̃′′ = m̃ ∪ m̃′, γ ∩ m̃′′ = ∅, Γ ⊙ Γ′ ⊙ Γ′′ = Γ′′′.
ñ′′′ = ñ ∪ ñ′′, and ñ′′′′ = ñ ∪ ñ′′ ∪ ñ′ ∪ δ.

Γ, Γ′ ⊢ (−)(Γ,S ñ) RN (−)(Γ,S ñ) : S ññ′
(ñ′ ⊆ domn(Γ′) and ñ ⊆ domn(Γ))

Proposition 31. Let R be an equivalence relation on pc/α between typed processes then

1. R is reflexive. 5. R•−1 ⊆ R•∗

2. R R2 ⊆R . 6. R• is substitutive
3. R2 ⊆R . 7. R•∗ is symmetric
4. R• is constructor compatible

The next step is to prove the following simulation property.

Lemma 32. For closed processes ∆ ⊢ p : S ñ and ∆ ⊢ q : S ñ it holds (up to α-equivalence) that
∆ ⊢ p ≈• q : S ñ implies

• if p
τ

−→ p′ then ∃q′. q
τ

=⇒ q′ such that ∆ ⊢ p′ ≡≈• q′ : S ñ

• if p
δ

−→ a and ∆ ⊢ δ : S′′
Ref S′ then ∀∆′ ⊢ c ≈ c′ : 〈S′〉S ñ′ with ∆ ⊙ ∆′ defined, there

∃a′. q
δ

=⇒ a′ such that ∆ ⊙ ∆′ ⊢ c · a ≡≈• c′ · a′ : S ñ ∪ ñ′

• if p
δ

−→ a and ∆ ⊢ δ : S′′
Ref S′ then ∀∆′ ⊢ c ≈ c′ : 〈S′〉S ñ′ and ∀∆′′ ⊢ D(∆,S ñ) ≈

N D′

(∆,S ñ) :

S′′′ ñ′′ with ∆′⊙∆′′ defined there ∃a′. q
δ

=⇒ a′ and ∆′ ⊙ ∆′′ ⊢ c · D(∆,S ñ)(a) ≡≈• c · D′

(∆,S ñ)(a
′) :

S′′′ ñ′ ∪ ñ′′.

• if p
δ

−→ c and ∆ ⊢ δ : S′′
Ref S′ then ∃c′. q

δ
=⇒ c′ such that ∆ ⊢ c ≈ c′ : 〈S′〉S n

• if p
δ

−→ c and ∆ ⊢ δ : S′′
Ref S′ then ∃c′. q

δ
=⇒ c′ such that ∀∆′ ⊢ D(∆,S ñ) ≈

N D′

(∆,S ñ) :
S′′′ ñ′ we have ∆′ ⊢ D(∆,S ñ)(c) ≈ D′

(∆,S ñ)(c
′) : 〈S′〉S′′′ ñ′.

From the lemma above it follows that the transitive closure of ≈• is an input-early delay context
bisimulation. From Proposition 31 it then follows that the Howe relation and the bisimulation
extended to open terms coincides.

Theorem 33. ≈◦ and ∼◦ are congruences.

From Proposition 29 (correspondence between barbs and certain transitions) and Theorem 2
(correspondence between reactions and τ -transitions) we have that ≈ is a weak barbed bisimulation,
and similar that ∼ is a strong barbed bisimulation.

Lemma 34. ≈ is a weak barbed bisimulation, and ∼ is a strong barbed bisimulation.

From Lemma 34 and Thm. 33 we have that the open extension of ≈ is sound with respect to
weak barbed bisimulation congruence, and that the open extension of ∼ is sound with respect to
strong barbed bisimulation congruence.

Theorem 35 (soundness). ≈◦⊆≈b and ∼◦⊆∼b.
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As in [GH05] we can define defining testing contexts for the different kinds of labels, hence prov-
ing that strong input-early contextual bisimulation is complete with respect to barbed bisimulation
congruence restricted to closed terms.

Proposition 36. (∼b)c ⊆∼.

Proof. We prove that the relation ∆ ⊢ p (∼b)c q : S ñ is a strong input-early context bisimulation
up-to structural congruence (see Proposition 39 for validity of this proof technique). We only
present one of the five cases that define a strong input-early context bisimulation (Definition 7).
The first case (the case for τ -transitions) follows from Theorem 2 (that τ -transitions and reactions
match). Below we present the third case (the case for the reception of a passive resource), the
remaining three cases are similar to this case.

• Case: (p
δ

−→ a). We have that p
δ

−→ a and ∆ ⊢ δ : S′′
Ref S′ and we need to prove that

for all concretions c ∈ cc/α with ∆′ ⊢ c : 〈S′〉S′′′ ñ′′ and for all path-contexts D(∆,S ñ) with

∆′′ ⊢ D(∆,S ñ),γ : S′′′ ñ′ and ∆′⊙∆′′ defined there exists an abstraction a′ such that q
δ

−→ a′

and ∆′ ⊙ ∆′′ ⊢ c · D(∆,S ñ),γ(a) (∼b)c c · D(∆,S ñ),γ(a′) : S′′′ ñ′ ∪ ñ′′.

Assume that c is of the form (m̃)〈r : m̃′〉r′ and that D(∆,S ñ),γ have the formD′

γ

(

(−)(∆,S ñ) ‖ p′
)

for some path context D′

γ and some closed process p′. The case is easier if the path-context
D(∆,S ñ),γ is just a hole, so we do not present that case. For clarity we omit the type
annotation of D′

γ .

Without loss of generality we assume that the last name in δ is some n i.e. δ = γ′′n. So
we know that ∆(n) = S′. Let j be an integer greater than the sum of all address path
lengths in resources in c and in D(∆,S ñ),γ . We write nj for the address path consisting of
the concatenation of j copies of n. For a fresh name m we define the following context

C = (m̃)
(

γnj〈r : m̃′〉γnj(x)(r′ ‖ m〈0 : ∅〉)
)

‖ D′

γ

(

(−)(∆,S ñ) ‖ nj(x)δ〈x : ∅〉nj〈0 : ∅〉p′
)

(for clarity we leave out the type annotation of C). Note that C is well-typed in the extended
environment ∆′ ⊙ ∆′′, m : S′′′. We now have the following reductions

C(p) ց (m̃)
(

γnj(x)(r′ ‖ m〈0 : ∅〉) ‖ D′′

γ

(

p ‖ δ〈r : m̃′〉nj〈0 : ∅〉p′
)

)

ց (m̃)
(

γnj(x)(r′ ‖ m〈0 : ∅〉) ‖ D′′

γ

(

p′′ ‖ nj〈0 : ∅〉p′
)

)

(∗)

ց (m̃)
(

r′ ‖ m〈0 : ∅〉 ‖ D′′

γ (p′′ ‖ p′)
)

≡ c · D(∆,S ñ),γ(a) ‖ m〈0 : ∅〉 = p′′′ ‖ m〈0 : ∅〉 ,

where the only difference between D′ and D′′ is that we have added the names in m̃′ to
the type annotations in the locations constituting the path down to the hole. Note that a
synchronisation happens between p and δ〈r : m̃′〉nj〈0 : ∅〉p′ in the reaction marked with (*),
thus capturing the transition of p.

From ∆ ⊢ p (∼b)c q : S ñ it follows that ∆′ ⊙ ∆′′, m : S′′′ ⊢ C(p) (∼b)c C(q) : S′′′ (ñ′ ∪ ñ′′)m,
so we have that

C(q) ցցց q′′′ ‖ m〈0 : ∅〉 ,

where q′′′ = c · D(∆,S ñ),γ(a′) for some q
δ

−→ a′ and

∆′ ⊙ ∆′′, m : S′′′ ⊢ p′′′ ‖ m〈0 : ∅〉 (∼b)c q′′′ ‖ m〈0 : ∅〉 : S′′′ (ñ′ ∪ ñ′′)m .

We can now use the context (−) ‖ m(x) to remove the resource m〈0 : ∅〉 (again omitting the
type annotation of the hole). So we get

∆′ ⊙ ∆′′, m : S′′′ ⊢ p′′′ (∼b)c q′′′ : S′′′ (ñ′ ∪ ñ′′)m .

21



Finally, using the context (m)(−) and ≡ we obtain

∆′ ⊙ ∆′′ ⊢ p′′′ ≡ (∼b)c ≡ q′′′ : S′′′ ñ′ ∪ ñ′′ .

The result extends to open processes since ∼b is substitutive.

Corollary 37 (completeness). ∼b⊆∼◦.

Combining the results of Corollary 37 and Theorem 35 we obtain that the open extension
of strong input-early contextual bisimulation is a sound and complete characterisation of strong
barbed bisimulation congruence.

Theorem 38 (sound and complete characterisation). ∼◦=∼b.

For the same reasons as in [GH05] we conjecture that input-early delay contextual bisimulation
is not complete with respect to weak barbed bisimulation.

7.2 Scope Extension Across Affine Location

In this section we use the bisimulation congruence to prove that the scope of a local name can be
extended across the boundary of an affine location. In order to simplify the proof we will again
use a standard enhancement of the bisimulation proof method [San98], bisimulation up-to ≡. For
brevity, we will not write up the definition of bisimulation up-to ≡.

Proposition 39. If R is a strong bisimulation up-to ≡ then R ⊆∼.

Theorem 40. For m 6= n, ∆, n : aff ⊢ (m)n〈p : m̃m〉 ∼ n〈(m)p : m̃〉 : aff m̃ ∪ n .

Proof. We will write p >∗

m q for two processes p and q which are syntactical equivalent except that
p can contain some m annotations on affine resources which does not occur in q. Furthermore,
we will write q = p \ {m} for two processes p and q which are syntactical equivalent except for all
m annotations in p and these annotations must only occur in affine resources. Let R denote the
following well-typed relation

{(C(∆,aff ñ)((m)(p′[p:m̃m/x])), C(∆,aff ñ)(q
′[(m)q:m̃/x]))}

for all processes p >∗

m q and q′ = p′ \ {m} with ∆ ⊢ (m)p′[p:m̃m/x] : aff ñ and ∆ ⊢ q′[(m)q:m̃/x] :
aff ñ with x affine and any context C(∆,aff ñ) with ∆′ ⊢ C(∆,aff ñ) : aff ñ′ where the hole does
not occur under a replication. We then prove that R is a strong context bisimulation up-to ≡.

The structure of the proof is as follows. Assume we have two processes related by R, i.e.
p′′ R p′′′ and p′′ can perform a transition, p′′

π
−→ t, then by the results in Appendix B.1 we can

deduce that p′′ and t have a certain structure (up-to ≡). From the structure of p′′ we can deduce
that p′′′ has a certain (similar) structure (again up-to ≡), as p′′ and p′′′ only differ on the location
of the restriction of m and on m annotations on affine resources. From the structure of p′′′ we can
deduce that p′′′ can match the transition and end up in a term t′ which is related to t by R (note
that “related to” means something different depending on the particular case in the bisimulation)
using the results in Appendix B.2. The proof is very long and tedious and we refer to Appendix C
for some of the cases.

The result in Theorem 40 suggests a normal form for affine and non-linear Homer, where we
extend the scope of local names outside affine locations. We will leave this, and related, directions
of research for future work.
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8 An e-cash Smart Card application

In this section we provide a simple model of an e-cash system that illustrates the combination of
linear and non-linear mobile resources, nested locations, and local names. Consider first a process
defined by

crypte,k = e(x)e〈k〈x : ∅〉 : {k}〉 .

The process is able to receive a resource on the name e, which is then placed inside a location
named k nested in a location named e. If k is cryptographic key, one can think of the process as
being able to perform a single encryption of the received process. This can be utilised in a simple
e-cash system consisting of an ATM that is able to provide a coin c〈0 : ∅〉, if the process in the
location v can encrypt a nonce n with the private key k:

atm = (k)
(

v〈crypte,k : {e, k}〉 ‖ cashk

)

cashk = !(n)
(

ve〈n〈0 : ∅〉 : {n}〉vekn(x)c〈0 : ∅〉
)

.

In the control process cashk of the ATM a nonce process n〈0 : ∅〉 is sent to the location e inside
the process in the location v. Subsequently, a process is retrieved from the sub location vekn. If
this succeeds, it must be the case that the process inside the location v has embedded the nonce in
the location k, and the ATM then emits a coin. The control process can potentially be executed
any number of times. The intended behaviour is however, that only one coin will ever be delivered,
since the method on the card can only encrypt once.

Alas, if the process in the slot v can be copied, the security is broken. A e-cash copying thief
may be defined by

thief = v(x) (v〈x : ∅〉 ‖ v〈x : ∅〉) ,

which picks up the e-cash process by v(x) and creates two copies. Then

atm ‖ thief
τ

−→≡ (k)
(

v〈crypte,k : {e, k}〉 ‖ v〈crypte,k : {e, k}〉 ‖ cashk

)

τ
−→

∗

≡ (k)cashk ‖ c〈0 : ∅〉 ‖ c〈0 : ∅〉

The type system presented in the previous section allows us to type the location v as affine linear.
Thereby, we can model that the process in location v is intended as being embedded in a non-
copyable smart card (and also ensure that the entire system cannot be copied either). First, we
show that the system is well-typed.

Lemma 41. Let ∆ = e : un, c : aff, v : aff, then ∆ ⊢ atm : aff {e, c, v}.

We then show, that we cannot type the system atm ‖ thief , if the slot v is linear.

Proposition 42. For any ∆, v : aff, ñ and sort S it is not possible to derive ∆, v : aff ⊢
atm ‖ thief : S ñ.

Proof. Assume that it is possible to derive ∆, v : aff ⊢ atm ‖ thief : S ñ, by inspecting the deriva-
tion, and without loss of generality, it must then also be possible to derive ∆, v : aff, x : aff ⊢
v〈x : ∅〉 ‖ v〈x : ∅〉 : S ñ, but this contradicts Lemma 16 (that x occurs free at most once).

We leave for future work to apply the bisimulation congruence to prove that the typed atm is
indeed secure in any context. Note that the encrypted nonce is unrestricted. If we accidentally
had defined the cashk control process as (n)!

(

ve〈n〈0 : ∅〉 : {n}〉vekn(x)c〈0 : ∅〉
)

, i.e. swapping the
local name (n) and the replication and thus repeatedly using the same secret name n as challenge
for the card, the security would be broken. A thief copying the encrypted content of the card could
be defined by:

thief = ve(x)(v〈e〈x : ∅〉 : {e}〉 ‖ v〈e〈x : ∅〉 : {e}〉) .

This security threat would not show in a purely linear calculus.
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9 Conclusions and Further Work

We have successfully extended the prior type and effect system and labelled bisimulation congruence
for Homer to provide the first process calculus combining affine linear and non-linear nested mobile
embedded processes with local names. We have demonstrated that the bisimulation congruence
allows us to prove scope extension to be safe across affine linear locations, which in previous work
has been shown to be unsafe for non-linear locations. By a concrete e-cash Smart Card system
we have exemplified that the calculus captures the difference between mobile computing hardware
and embedded mobile software computations, which is crucial for the security of pervasive and
ubiquitous computing.

We believe that the type system presented for Homer in the present paper can be adapted
to other calculi combining mobile embedded resources with local names, as for instance the Seal
calculus. We expect to investigate other variations and applications of linear types and more
expressive type systems for Homer within the research projects for Mobile Security and Computer
Supported Mobile Adaptive Business Processes (CosmoBiz) at ITU. In particular, we plan to
investigate more complex type systems, expressing not only copyability capabilities, but also access
capabilities to resources like the ones presented in [CVZN05] and [YH04], and shapes, e.g. for
controlling the number of sub-resources within a resource or more generally a schema for processes.
We also plan investigate whether part of the approach presented in [Yos04] can be applied in the
setting of Homer, even though Homer does not contain name passing and hence name substitution.
In this paper we have only touched the surface of assigning types to composite addresses, an area
primarily left untouched in the existing literature. So far only a few type systems exist [Car05] for
calculi with composite addresses. We plan to examine this as future work.

The proof of Theorem 40 required that we consider general processes in constructing the bisim-
ulation relation, due to the universal quantification over contexts in the definition of context bisim-
ulation. We plan to investigate whether enhancements to the bisimulation proof method such as
bisimulation up-to context can be adapted to calculi with affine linear and non-linear active process
mobility and explicit, nested locations.

Acknowledgements: We wish to thank the anonymous referees of a previous version of the paper
for helpful comments.
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A Results about Shorthands and Typing

In this section we list some results about the typing of the closure of concretions and abstractions
under process operators. The results are primarily used in the proof of subject reduction of the
labelled transition system. We prove all the propositions by unfolding the definition and using the
typing rules.

Proposition 43. If Γ′′ ⊢ a : S′′
_ S′ ñ′′ and Γ′ ⊢ p′ : S′ ñ′ and Γ′′ ⊙ Γ′ defined then Γ′′ ⊙ Γ′ ⊢

a ‖ p′ : S′′
_ S′ ñ′′ ∪ ñ′.

Proposition 44. If Γ′′ ⊢ c : 〈S′′〉S′ ñ′′ and Γ′ ⊢ p′ : S′ ñ′ and Γ′′ ⊙ Γ′ defined then Γ′′ ⊙ Γ′ ⊢
c ‖ p′ : 〈S′′〉S′ ñ′′ ∪ ñ′.

Proposition 45. If Γ, n : S ⊢ a : S′′
_ S′ ñn then Γ ⊢ (n)a : S′′

_ S′ ñ.

Proposition 46. If Γ, n : S ⊢ c : 〈S′′〉S′ ñn then Γ ⊢ (n)c : 〈S′′〉S′ ñ.

Proposition 47. If Γ′′ ⊢ a : S′′
_ T ′ ñ′′ and Γ′ ⊢ p′ : S′ ñ′ with Γ′′ ⊙ Γ′ defined and Γ′′ ⊙ Γ′ ⊢

δ : T Ref T ′ and T ≤ S′ then Γ′′ ⊙ Γ′ ⊢ δ〈a : ñ′′〉p′ : S′′
_ S′ ñ′′ ∪ δ ∪ ñ′.

Proposition 48. If Γ′′ ⊢ c : 〈S′′′〉T ′ ñ′′ and Γ′ ⊢ p′ : S′ ñ′ with Γ′′ ⊙ Γ′ defined and Γ′′ ⊙ Γ′ ⊢ δ :
T Ref T ′ and T ≤ S′ then Γ′′ ⊙ Γ′ ⊢ δ〈c : ñ′′〉p′ : 〈S′′′〉S′ ñ′′ ∪ δ ∪ ñ′.

The above results are also used in the following two propositions for typing an abstraction or
concretion placed inside a path context, which we use in the subject reduction of the reaction
semantics.

Proposition 49. If Γ′ ⊢ D(Γ,Tp) : S′ ñ′ and Γ ⊢ a : S′′
_ Tp then Γ′ ⊢ D(Γ,Tp)(a) : S′′

_ S′ ñ′.

Proposition 50. If Γ′ ⊢ D(Γ,Tp) : S′ ñ′ and Γ ⊢ c : 〈S′′〉Tp then Γ′ ⊢ D(Γ,Tp)(c) : 〈S′′〉S′ ñ′.

B Results Relating Structure and Transitions

In this section we present some auxiliary results relating transitions and the structure of terms
involved in the transition. All of the results are used in the proof of Theorem 40.

B.1 From Transition to Structure

First, we characterise the structure of a term involved in a transition, from the label of the transition
and the resulting kind of term (process, abstraction, or concretion). We state the results for untyped
terms for simplicity, and since we can lift them to the typed setting straightforwardly.

Proposition 51. If p
δ

−→ a then p ≡ (ñ)(δa′ ‖ p′′) and a ≡ (ñ)(a′ ‖ p′′) for some abstraction a′

and process p′′ and ñ ∩ δ = ∅.

Proposition 52. If p
δ

−→ c then p ≡ (ñ)(δc′ ‖ p′′) and c ≡ (ñ)(c′ ‖ p′′) for some concretion c′

and process p′′ and ñ ∩ δ = ∅.

Proposition 53. If p
δ

−→ a then p ≡ (ñ)(Dγ(δ′a′) ‖ p′′) and a ≡ (ñ)(Dγ(a′) ‖ p′′) for some
abstraction a′ and process p′′ and δ = γδ′, ñ ∩ δ = ∅, and bn(Dγ) ∩ δ′ = ∅.

Proposition 54. If p
δ

−→ c then p ≡ (ñ)(Dγ(δ′c′) ‖ p′′) and c ≡ (ñ)(Dγ(c′) ‖ p′′) for some
abstraction c′ and process p′′ and δ = γδ′, ñ ∩ δ = ∅, and bn(Dγ) ∩ δ′ = ∅.

Lemma 55. If ñ1 is fresh for all names (both free and bound) in (ñ2)(e ‖ p2) and ñ2 is fresh for
all names in (ñ1)(e ‖ p1) then (ñ1)(e ‖ p1) · (ñ2)(e ‖ p2) ≡ (ñ1ñ2)(e · e ‖ (p1 ‖ p2)).

Proposition 56. If p
τ

−→ p′ then p ≡ E(γδe ‖ Dγ(δe)) and p′ ≡ E(e · Dγ(e)) and bn(Dγ)∩ δ = ∅.
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B.2 From Structure to Transition

The following results allow us to reason in the other direction, i.e. if a process have a certain
structure then it is possible to perform a transition ending up in a term of a certain structure.

Proposition 57. If p ≡ (ñ)(δc′ ‖ p′′′) and ñ ∩ δ = ∅ then there exists some c such that p
δ

−→ c
and c ≡ (ñ)(c′ ‖ p′′′).

Proposition 58. If p ≡ (ñ)(δa′ ‖ p′′′) and ñ ∩ δ = ∅ then there exists some a such that p
δ

−→ a
and a ≡ (ñ)(a′ ‖ p′′′).

Lemma 59. If p
δ

−→ t and bn(Dγ) ∩ δ = ∅ then Dγ(p)
γδ

−→ Dγ(t).

Proposition 60. If p ≡ (ñ)(Dγ(δ′c′) ‖ p′′) and ñ ∩ γδ′ = ∅ and bn(Dγ) ∩ δ′ = ∅ then there exists

some c such that p
γδ′

−→ c and c ≡ (ñ)(Dγ(c′) ‖ p′′).

Proposition 61. If p ≡ (ñ)(Dγ(δ′a′) ‖ p′′) and ñ ∩ γδ′ = ∅ and bn(Dγ) ∩ δ′ = ∅ then there exists

some a such that p
γδ′

−→ a and a ≡ (ñ)(Dγ(a′) ‖ p′′).

Lemma 62. If p
τ

−→ p′ then E(p)
τ

−→ E(p′).

Proposition 63. If p ≡ E(γδe ‖ Dγ(δe)) and bn(Dγ) ∩ δ = ∅ then there exists some p′ such that

p
τ

−→ p′ and p′ ≡ E(e · Dγ(e)).

C Sketch of Proof of Theorem 40

In this section we present some of the cases for proving that the well-typed relation R of Theorem 40
is a strong context bisimulation up-to ≡. First, we recall R

{(C(∆,aff ñ)((m)(p′[p:m̃m/x])), C(∆,aff ñ)(q
′[(m)q:m̃/x]))}

for all processes p >∗

m q and q′ = p′ \ {m} with ∆ ⊢ (m)p′[p:m̃m/x] : aff ñ and ∆ ⊢ q′[(m)q:m̃/x] :
aff ñ with x affine and any context C(∆,aff ñ) with ∆′ ⊢ C(∆,aff ñ) : aff ñ′ where the hole does
not occur under a replication.

We have, for brevity, decided to present only two of the cases of proving that R is a strong
context bisimulation up-to ≡ (and only in one direction, as the work done in the opposite direction
is quite similar): when the left-hand side process p′′ does a δ-transition to some abstraction a, and
when it does a δ-transition to some concretion c (i.e. the cases 3 and 4 in the bisimulation). In the
following let p′′ and q′′ be related by R, i.e. ∆′ ⊢ p′′ R q′′ : aff ñ′.

Case 3 Assume that p′′
δ

−→ a (1) and ∆′ ⊢ δ : S′′
Ref S′ then we must show that for all

concretions c ∈ cc/α with ∆′′ ⊢ c : 〈S′〉S′′′ ñ′′ and for all path contexts D(∆′,aff ñ′) with ∆′′′ ⊢

D(∆′,aff ñ′) : S′′′ ñ′′′ and ∆′′⊙∆′′′ defined there exists some a′′ such that q′′
δ

−→ a′′ and ∆′′ ⊙ ∆′′′ ⊢
c · D(∆′,aff ñ′)(a) ≡R≡ c · D(∆′,aff ñ′)(a

′′) : S′′′ ñ′′ ∪ ñ′′′.
From (1) and Proposition 53 we have that p′′ ≡ (ñ′′′)(D′

γ(δ′a′) ‖ p′′′) and a ≡ (ñ′′′)(D′

γ(a′) ‖ p′′′)

and δ = γδ′, ñ′′′∩δ = ∅, and bn(D′

γ)∩δ′ = ∅, so C(∆,aff ñ)((m)(p′[p:m̃m/x])) ≡ (ñ′′′)(D′

γ(δ′a′) ‖ p′′′)
(for simplicity we leave out the type annotation of D′

γ). Recall that C can be an arbitrary context,
except that the hole cannot occur under a replication. We proceed by considering all the different
cases where the hole of C(∆,aff ñ) can occur in (ñ′′′)(D′

γ(δ′a′) ‖ p′′′):
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• Hole inside p′′′. Then we can write p′′′ as C′

(∆,aff ñ)((m)p′[p:m̃m/x]) for some C′, so we know

that q′′ is of the form q′′ ≡ (ñ′′′)(D′

γ(δ′a′) ‖ C′

(∆,aff ñ)(q
′[(m)q:m̃/x])), so by Proposition 61

there exists some a′′ such that q′′
δ

−→ a′′ and a′′ ≡ (ñ′′′)(D′

γ(a′) ‖ C′

(∆,aff ñ)(q
′[(m)q:m̃/x])).

We need to prove that ∆′′ ⊙ ∆′′′ ⊢ c · D(∆′,aff ñ′)(a) ≡R≡ c · D(∆′,aff ñ′)(a
′′) : S′′′ ñ′′ ∪ ñ′′′,

but this clearly follows from the definition of application as, the only place that the two
processes differ is not touched by the application.

• Hole under a′ (similar to the case above, note that we fill the hole with closed processes, so
the substitution cannot affect p or q in this case).

• Hole in D′

γ but only constitute part of the path context (similar to the two cases above).

• Hole in D′

γ and δ′ from either p′ or p. We only present the first case, as the second case is
similar. Again, there are two cases to consider depending on whether p occurs in a′. Again,
we only present one of the cases: the case where p does occur in a′, the other case is similar.

We have that p′′ ≡ (ñ′′′)(D′

γ(δ′a′) ‖ p′′′) and without loss of generality we can split up the
path context D′

γ into the part that comes from C(∆,aff ñ) and the part that comes from

p′[p:m̃m/x], so there exists some D′′

γ′ such that D′

γ(δ′a′) ≡ D′′

γ′((mm̃′)(D′′′

γ′′(δ′a′) ‖ r)) where

p′[p:m̃m/x] ≡ (m̃′)(D′′′

γ′′(δ′a′) ‖ r), γ′γ′′ = γ, and we know that p occurs inside a′.

So we have that q′′ ≡ (ñ′′′)(D′′

γ′((m̃′)(D′′′′

γ′′(δ′a′′′) ‖ r′)) ‖ p′′′) and D′′′′

γ′′ = D′′′

γ′′ \ {m},

r′ = r \ {m}. Without loss of generality assume that a′ = (x)(r′′[p:m̃m/x]) then a′′′ =
(x)(r′′′[(m)q:m̃/x]) with r′′′ = r′′ \ {m}. So by Proposition 61 we know that there exists some

a′′ such that q′′
δ

−→ a′′ and a′′ ≡ (ñ′′′)(D′′

γ′((m̃′)(D′′′′

γ′′(a′′′) ‖ r′)) ‖ p′′′).

It remains to prove that ∆′′ ⊙ ∆′′′ ⊢ c · D(∆′,aff ñ′)(a) ≡R≡ c · D(∆′,aff ñ′)(a
′′) : S′′′ ñ′′ ∪ ñ′′′,

Note that the local names and the residual of the concretion, the path context D(∆′,aff ñ′),
and the bodies of the abstractions a and a′′ down to the hole of D′′

γ′ , by the definition of
application, together constitutes a common context for both sides of the relation. Also note
that the application will not affect, p and q and their relationship, as we don’t substitute into
p and q, since they are closed processes. The processes r and r′ remain unchanged in the
application, D′′′′

γ′′ and D′′′

γ′′ can have some of their annotations updated, but not with the local
name m and hence remain in relation. Finally, r′′′ and r′′ can change due to the substitution,
but since we substitute in the same process in both processes, and since the process does not
contain the local name m, the process are still related after the substitution.

• Finally, we need to handle the case where the entire path context D′

γ comes from either p′,
p, or both. Either the top-location in D′

γ comes p′ or from p.

– Top-location in D′

γ is from p. Then we know that x occurs unrestricted in p′, so we
can rewrite q′′ to exactly the same form as p′′ up-to m-annotations on affine locations.
So q′′ ≡ (ñ′′′)(D′′

γ (δ′a′′′) ‖ p′′′′), where D′

γ >∗

m D′′

γ , a′ >∗

m a′′′, and p′′′ >∗

m p′′′′. So

by Proposition 61 we know that there exists some a′′ such that q′′
δ

−→ a′′ and a′′ ≡
(ñ′′′)(D′′

γ (a′′′) ‖ p′′′′). We need to prove that the resulting abstractions are related,
i.e. ∆′′ ⊙ ∆′′′ ⊢ c · D(∆′,aff ñ′)(a) ≡R≡ c · D(∆′,aff ñ′)(a

′′) : S′′′ ñ′′ ∪ ñ′′′. But clearly
the residual of the concretion and the path context D(∆′,aff ñ′) can be matched by the
context in the relation, and since we substitute in the same process in a and a′′ they
are still related by >∗

m (up-to ≡) after the substitution. So the resulting processes are
still in the relation.

– Top-location in D′

γ is from p′. So the restriction of m is not necessarily in the same
location in p′′ and q′′. In p′′ we know that the restriction is on top-level, but in q′′ the
restriction can be inside one or more locations. The case is similar to the case above,
where the hole is in D′

γ and δ′ either comes from p or p′.
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Case 4 Assume that p′′
δ

−→ c (2) and ∆′ ⊢ δ : S′′
Ref S′ then we must show that there exists

some c′′ such that q′′
δ

−→ c′′ and for all a with ∆′′ ⊢ a : S′
_ aff ñ′′ and ∆′⊙∆′′ defined we have

∆′ ⊙ ∆′′ ⊢ c · a ≡R≡ c′′ · a : aff ñ′ ∪ ñ′′.
Again from (2) and Proposition 52 we have that p′′ ≡ (ñ′′′)(δc′ ‖ p′′′) and c ≡ (ñ′′′)(c′ ‖ p′′′)

and ñ′′′∩δ = ∅, so C(∆,aff ñ)((m)(p′[p:m̃m/x])) ≡ (ñ′′′)(δc′ ‖ p′′′). Again we consider all the possible
cases.

• Hole in p′′′ (similar to the same case in Case 3).

• Hole in c′. There are two sub-cases, either the hole is in the process to be output or in
the residual process of the concretion, we only present the first case, as the second case is
simpler. Let c′ be 〈C′

(∆,aff ñ)((m)(p′[p:m̃m/x])) : ñ′′′′〉q′′′ for some C′ and q′′′, so we know that

q′′ ≡ (ñ′′′)(δ〈C′

(∆,aff ñ)(q
′[(m)q:m̃/x]) : ñ′′′′〉q′′′ ‖ p′′′). By Proposition 57 we know that there

exists some c′′ such that q′′
δ

−→ c′′ and c′′ ≡ (ñ′′′)(〈C′

(∆,aff ñ)(q
′[(m)q:m̃/x]) : ñ′′′′〉q′′′ ‖ p′′′),

hence it remains to prove that ∆′ ⊙ ∆′′ ⊢ c · a ≡R≡ c′′ · a : aff ñ′ ∪ ñ′′.

Without loss of generality we take a = (x′)p′′′′ and we know that x′ is an affine variable.
By the definition of application and our shorthands, we have that the same local names are
lifted in both sides, and that the residual process in c and c′′ are the same. Furthermore, the
body of the abstraction a (after the substitution) is the same down to the (possible) location
of x′. All of this implies that the processes are the same down to the (possible) location of
x′, i.e. the processes have the form

(ñ1)((ñ2)(q
′′′ ‖ p′′′) ‖ p′′′′[r:ñ′′′′

/x′ ]) ,

where ñ1 = ñ′′′ ∩ ñ′′′′ and ñ′′′ = ñ1ñ2 (i.e. ñ1 is the local names that are lifted) and r is
either C′

(∆,aff ñ)((m)(p′[p:m̃m/x])) or C′

(∆,aff ñ)(q
′[(m)q:m̃/x]). We consider the two cases for

how the abstraction handles the input process (whether x′ occurs free in p′′′′ or not).

– If the abstraction does not use the variable x′ then clearly the resulting processes are
in the relation (the two processes are equivalent up-to ≡ and hence contained in the
relation).

– If the abstraction does use the variable x′ then again the processes are in the relation,
since x′ is affine we can construct a context

C′′

(∆,aff ñ) =def (ñ1)((ñ2)(q
′′′ ‖ p′′′) ‖ C′′′

(∆,aff ñ)) ,

where C′′′

(∆,aff ñ) is the body of the abstraction containing the context C′

(∆,aff ñ) in place

of the variable x′. Note that the hole in the context cannot occur under replication,
since the variable x′ is affine, satisfying the requirement of the context in the relation.

• The only remaining cases are where δ comes from either p or p′.

– δ comes from p. Then we know that x occurs unrestricted in p′ (and without loss
of generality we assume that m ∈ ñ′′′), hence x occurs unrestricted in q′, so we can
rewrite q′′ to exactly the same form as p′′ up-to m-annotations on affine locations. So
q′′ ≡ (ñ′′′)(δc′′′ ‖ p′′′′), where c′ >∗

m c′′′ and p′′′ >∗

m p′′′′. So from Proposition 57 we

know that there exists some c′′ such that q′′
δ

−→ c′′ and c′′ ≡ (ñ′′′)(c′′′ ‖ p′′′′). Again
we need to prove that ∆′ ⊙ ∆′′ ⊢ c · a ≡R≡ c′′ · a : aff ñ′ ∪ ñ′′.

There are three cases to consider: either m is not lifted in c (and hence not in c′′), m is
lifted in both, m is lifted in c, but not in c′′. We only present the last case as the other
two cases are simpler.
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Since m is lifted in c, we know from the definition of application that m is placed on
top-level in c · a. Letting ∆′′′ = ∆′ ⊙∆′′ and ñ′′′′ = ñ′ ∪ ñ′′, we take the empty context
C′

(∆′′′,aff ñ′′′′) =def (−)(∆′′′,aff ñ′′′′) in order to place m on top-level. We will let the

processes that we substitute in (i.e. p and (m)q in the relation) match the entire residual
of the concretion (satisfying the requirement p >∗

m q of p and q in the relation).

Since m is lifted in c, but not in c′′ we know that the process output from the concretion
is affine, as only affine locations can differ on their annotation in c and c′′ (and only
on the name m). So only affine locations in the abstraction will be updated with m
(satisfying the requirement q′ = p′ \ {m} of p′ and q′ in the relation). So the processes
are still in the relation.

– δ comes from p′. Then c′ can either come from p, p′, or from both.

∗ c′ comes entirely from p′. So the hole of C(∆,aff ñ) must occur unguarded and
on top-level (and without loss of generality we assume that m ∈ ñ′′′). Hence
q′′ ≡ (ñ′′′ \ m)(δc′′′ ‖ p′′′′) where c′′′ = c′ \ {m} and p′′′ ≡ r ‖ r′[p:m̃m/x] and
p′′′′ ≡ r ‖ r′′[(m)q:m̃/x] with r′′ = r′ \ {m} (as p′′′ and p′′′′ are built partly from the
context and partly from p′[p:m̃m/x] and q′[(m)q:m̃/x]). By Proposition 57 we have

that there exists some c′′ such that q′′
δ

−→ c′′ and c′′ ≡ (ñ′′′ \ m)(c′′′ ‖ p′′′′).
Then there are two sub-cases depending on whether m is lifted in c. The first
sub-case (m is not lifted) is similar to the previous sub-case above where m is not
lifted in c and hence not in c′′. The second sub-case (m is lifted, but only in c and
not in c′′, as c′′ does not contain m-annotations) is also similar to the case that we
presented above.

∗ c′ comes from both p′ and p. p can either be in the output process or in the
residual process. We only present the first case, as the other case is very similar
to previous cases. Without loss of generality we assume that m ∈ ñ′′′. So we
have that c′ ≡ 〈r[p:m̃m/x] : ñ′′′′〉r′′ and q′′ ≡ (ñ′′′ \ m)(δc′′′ ‖ p′′′′) where c′′′ ≡
〈r′[(m)q:m̃/x] : ñ′′′′ \ m〉r′′′ and p′′′′ = p′′′ \ {m}, r′ = r \ {m}, r′′′ = r′′ \ {m}.

By Proposition 57 we have that there exists some c′′ such that q′′
δ

−→ c′′ and
c′′ ≡ (ñ′′′ \ m)(c′′′ ‖ p′′′′). We need to prove that ∆′ ⊙ ∆′′ ⊢ c · a ≡R≡ c′′ · a :
aff ñ′ ∪ ñ′′.
Again we have two sub-cases depending on m is lifted (note that in both cases the
process output is affine, as p is affine, and the restriction of m in c′′ is inside the
output process, and hence cannot be lifted by c′′).

· m is lifted. So by the definition of application we will place m on top-level in
c · a, and the sub-case proceeds as the case above.

· m is not lifted. This implies that c′′ does not contain m at all, so the restriction
of m in c′′ does not bind any occurrences of m, so the output processes will be
equivalent except for the “useless” restriction of m in the output process of c′′

(in c the restriction will be in the residual process, as it is not lifted).
So the two applications c · a and c′′ · a will (possibly) place the restriction of
m in two different places, but since the restriction in c′′ does not bind any
occurrences we can use ≡ to remove the restriction. Hence the processes are
in the relation, if we use a substitution that simply discards the process to be
substitute in (and using a context to capture all of the process surrounding the
restriction of m in the residual of c).
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