
Preliminary Proceedings
14th International Workshop on
Expressiveness in Concurrency

EXPRESS’07
Lisbon, Portugal
3 September 2007

Roberto Amadio (Université Paris 7)
Thomas Hildebrandt (IT University of Copenhagen)
editors

IT University Technical Report Series TR-2007-100

ISSN 1600–6100 August 2007

Copyright c© 2007, Roberto Amadio (Université Paris 7)
Thomas Hildebrandt (IT University of Copenhagen)
editors

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-157-1

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Contents

Preface ii

Program Committee iii

Subreferees iii

Cédric Fournet (joint Express/SecCo invited talk)
A Type Discipline for Authorization in Distributed Systems . 1

Mario Bravetti
Expressing Priorities and External Probabilities in Process Algebra via Mixed Open/Closed
Systems . 2

Johannes Borgström, Andy Gordon and Andrew Phillips
A Chart Semantics for the Pi-Calculus . 27

Bjørn Haagensen, Sergio Maffeis and Iain Phillips
Matching Systems for Concurrent Calculi . 45

Diletta Romana Cacciagrano, Flavio Corradini, Frank D. Valencia and Jesus
Aranda
Persistence and Testing Semantics . 58

Jos Baeten (invited talk)
Models of Computation: Automata and Processes . 72

François Laroussinie (invited talk)
Alternating-time temporal logic: expressivity, complexity,... and variants 73

Iain Phillips (joint Express/GT-VC invited talk)
Leader Election and Expressiveness . 74

Daniele Gorla and Uwe Nestmann (moderators)
Discussion: When is an encoding good? Full abstraction and other criteria. 75

i

Preface

The EXPRESS workshops aim at bringing together researchers interested in the relations between
various formal systems, particularly in the field of Concurrency. More specifically, they focus on
the comparison between programming concepts (such as concurrent, functional, imperative, logic
and object-oriented programming) and between mathematical models of computation (such as
process algebras, Petri nets, event structures, modal logics, rewrite systems etc.) on the basis of
their relative expressive power.

The EXPRESS workshops were originally held as meetings of the HCM project EXPRESS,
which was active with the same focus from January 1994 till December 1997. The first three
workshops were held respectively in Amsterdam (1994, chaired by Frits Vaandrager), Tarquinia
(1995, chaired by Rocco De Nicola), and Dagstuhl (1996, co-chaired by Ursula Goltz and Rocco
De Nicola). EXPRESS’97, which took place in Santa Margherita Ligure and was co-chaired by
Catuscia Palamidessi and Joachim Parrow, was organized as a conference with a call for papers and
a significant attendance from outside the project. EXPRESS’98, co-chaired by Ilaria Castellani and
Catuscia Palamidessi, was held as a satellite workshop of the CONCUR’98 conference in Nice and
like on that occasion EXPRESS’99, co-chaired by Ilaria Castellani and Björn Victor, was hosted
by the CONCUR’99 conference in Eindhoven. The EXPRESS’00 workshop, co-chaired by Luca
Aceto and Björn Victor, was held as a satellite workshop of CONCUR 2000, Pennsylvania State
University, USA. The EXPRESS’01 workshop, co-chaired by Luca Aceto and Prakash Panangaden,
was held at BRICS, Aalborg University as a satellite of CONCUR’01. The EXPRESS’02 workshop,
co-chaired by Uwe Nestmann and Prakash Panangaden, was held at Brno University as a satellite
of CONCUR’02. The EXPRESS’03 workshop, co-chaired by Flavio Corradini and Uwe Nestmann,
was co-located with CONCUR 2003, Marseille, France. The EXPRESS ’04 workshop, co-chaired
by Jos Baeten and Flavio Corradini, was co-located with CONCUR 2004, London, Great Britain.
The EXPRESS ’05 workshop, co-chaired by Jos Baeten and Iain Phillips, was co-located with
CONCUR 2005, San Francisco, USA. The EXPRESS ’06 workshop, co-chaired by Roberto Amadio
and Iain Phillips, was co-located with CONCUR 2006, Bonn, Germany.

This year EXPRESS is co-located with CONCUR ’07, held in Lisbon. In response to the call
for papers, we received one short paper and 13 full papers. The program committee selected 4 of
the full papers for presentation at the workshop. In addition, the workshop contains four invited
presentations, by Cédric Fournet (invited jointly with the SECCO workshop), Jos Baeten, François
Laroussinie, and Iain Phillips (invited jointly with the GTVC workshop), and a discussion intro-
duced and moderated by Daniele Gorla and Uwe Nestmann on the definition of the criteria that
make an encoding ’good’. Abstracts for the invited talks and discussion appear in these preliminary
proceedings. We would like to thank the authors of the submitted papers, the invited speakers,
the members of the program committee, and their subreferees for their contribution to both the
meeting and this volume. Also we thank Daniele and Uwe for introducing the discussion, the
CONCUR organising committee for hosting EXPRESS07, and the workshop organisers Francisco
Martins and António Ravara for arranging the printing of these preliminary proceedings, which
were compiled by Espen Højsgaard. The final proceedings will become available electronically at
Elsevier’s web site http://www.elsevier.com/locate/entcs.

The editors

Roberto Amadio (Universit Paris 7)
Thomas Hildebrandt (IT University of Copenhagen)

ii

EXPRESS 2007 Program Committee

Roberto Amadio (co-chair)
Luis Caires
Sybille Froeschle
Philippa Gardner
Daniele Gorla
Thomas Hildebrandt (co-chair)

Bas Luttik
Uwe Nestmann
Julian Rathke
Roberto Segala
Pawel Sobocinski

EXPRESS 2007 Subreferees

Suzana Andova
Ingo Brueckner
Stefano Guerrini
Sergio Maffeis

Lutz Schröder
Daniele Varacca
Björn Victor

iii

EXPRESS 2007 Preliminary Version

A Type Discipline for Authorization in
Distributed Systems

Invited talk

Cédric Fournet1,2

Microsoft Research Ltd.
7 J J Thomson Avenue
Cambridge CB3 0FB

United Kingdom

Abstract

We consider the problem of statically verifying the conformance of the code of a system to an explicit
authorization policy. In a distributed setting, some part of the system may be compromised, that is,
some nodes of the system and their security credentials may be under the control of an attacker. To help
predict and bound the impact of such partial compromise, we advocate logic-based policies that explicitly
record dependencies between principals. We propose a conformance criterion, ”safety despite compromised
principals”, such that an invalid authorization decision at an uncompromised node can arise only when
nodes on which the decision logically depends are compromised. We formalize this criterion in the setting
of a process calculus, and present a verification technique based on a type system. Hence, we can verify
policy conformance of code that uses a wide range of the security mechanisms found in distributed systems,
ranging from secure channels down to cryptographic primitives, including secure hashes, encryption, and
public-key signatures.

1 Joint work with Andrew Gordon and Sergio Maffeis.
2 Email: fournet@microsoft.com

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:fournet@microsoft.com

EXPRESS 2007 Preliminary Version

Expressing Priorities and External
Probabilities in Process Algebra via Mixed

Open/Closed Systems

Mario Bravetti1,2

Dipartimento di Scienze dell’Informazione
Università di Bologna

Bologna, Italy

Abstract

Defining operational semantics for a process algebra is often based either on labeled transition systems
that account for interaction with a context or on the so-called reduction semantics: we assume to have a
representation of the whole system and we compute unlabeled reduction transitions (leading to a distribution
over states in the probabilistic case). In this paper we consider mixed models with states where the system
is still open (towards interaction with a context) and states where the system is already closed. The
idea is that (open) parts of a system “P” can be closed via an operator “P ↑ G” that turns already
synchronized actions whose “handle” is specified inside “G” into prioritized reduction transitions (and,
therefore, states performing them into closed states). We show that we can use the operator “P ↑ G” to
express multi-level priorities and external probabilistic choices (by assigning weights to handles inside G),
and that, by considering reduction transitions as the only unobservable τ transitions, the proposed technique
is compatible, for process algebra with general recursion, with both standard (probabilistic) observational
congruence and a notion of equivalence which aggregates reduction transitions in a (much more aggregating)
trace based manner. We also observe that the trace-based aggregated transition system can be obtained
directly in operational semantics and we present the “aggregating” semantics. Finally, we discuss how the
open/closed approach can be used to also express discrete and continuous (exponential probabilistic) time
and we show that, in such timed contexts, the trace-based equivalence can aggregate more with respect to
traditional lumping based equivalences over Markov Chains.

Keywords: Process algebra, Priorities, Probabilities, Congruence property.

1 Introduction

In the literature, two main approaches are commonly used to define the semantics
of a process algebra in an operational way. The first one, originally used to define
the sematics of CCS [6], is based on labeled transition systems: the labels are used to
represent both internal behaviours and possible behaviors obtained by interacting
with a context. In the following we will refer to such labeled transition systems
as open transition systems. The second one, used e.g. in [4], is based on the

1 Research partially funded by EU Integrated Project Sensoria, contract n. 016004.
2 Email: bravetti@cs.unibo.it

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:bravetti@cs.unibo.it

Bravetti

assumption to have a process algebraic representation of the whole system, and uses
unlabeled reduction transitions to represent the system behavior, i.e. no behaviors
possibly induced by a context are considered. In the following we will refer to such
unlabeled reduction-based transition systems as closed transition systems. Note
that, sometimes, reduction transitions can also be labeled: such labels however are
not used to represent possible interactions with contexts, but are just informative
labels describing what is happening internally in the system (they are useful to
analyse the system behaviour by, e.g., model checking).

The distinction between open and closed transition systems is important, in
particular, in the case we want to express quantitative behaviours as, e.g., priori-
tized and probabilistic choices. In the closed transition system of a whole system
representation only prioritized behaviours (reductions) are represented and prob-
abilistic choices are just internal: a possible representation is to make use of re-
duction transitions that lead to probability distribution over states (instead of just
single states). On the contrary, in open transition systems, we have the problem of
explicitely representing priorities and external probabilistic choices: absolute quan-
titative information, such as priority levels and probabilistic weights, associated to
actions whose execution is just “potential”, i.e. depends on the behavior of the
context. Though very important from an expressive viewpoint, dealing with prior-
ities and external probabilistic choices in open transition systems turned out to be
problematic, especially when the issue of defining weak equivalences (that could be
congruences) was considered (see, e.g., [2] for priorities): by directly attaching the
quantitative information to actions the problem arises on (i) how to compute the
quantitative value for synchronized actions and (ii) how to deal with distinguished
τ actions carrying different quantitative information in the weak equivalence. A
non-compositional way to deal, in a simple way, with the problem of expressing
prioritized behaviours and external probabilistic choices in open transition systems
is to use schedulers: we consider the open transition system of the whole system and
we express weights and priority levels to be associated to actions in the scheduler
definition. By applying such a scheduler to the (non-quantified) open transition
system we obtain a (quantified) closed transition system as described above.

In this paper we propose a compositional solution to the problem above based on
the idea of partially closing open transition systems via a process-algebraic operator.
More precisely, we consider mixed models with states where the system is still open
(towards interaction with a context) and states where the system is already closed.
Moreover, we endow actions labeling open transitions with “handles” h: handles are
used by the operator to identify the actions to which the quantitative information
must be attached. The idea is that (open) parts of a system “P” can be closed
via an operator “P ↑ G” that turns τh actions whose handle h is specified inside
“G” into reduction transitions that take priority with respect to labeled transitions
(and, therefore, states performing such τh actions into closed states). Note that,
as probably expected, only τh actions (e.g. in CCS synchronized actions), whose
execution no longer depends on the context, can be closed by the operator.

In this way, we can use the operator “P ↑ G” to express multi-level priorities
by subsequent applications of the operator: actions closed by an inner application
of the operator turn out to have higher priority with respect to actions closed by

3

Bravetti

an outer application of the operator. For instance, by using a CCS-like parallel
operator “|”, (ah1 .P + bh2 .Q|R)↑{h2}↑{h1}, where output actions a and b occur in
R with neutral handle ∗ (so that synchronization in “|”, that involves also handles,
gives rise to τh1 and τh2 actions), represents a prioritized choice between input
actions a and b: if R offers synchronization (output) for both of them at the same
time then the b action is executed otherwise the synchronization offered by R is
executed. Moreover, we can extend the operator “P ↑ G” to also express external
probabilistic choices (at some priority level) by assigning weights to handles inside
G. For instance, (ah1 .P+bh2 .Q|R)↑{{(h1, 1), (h2, 3)}}, where output actions a and b
occur in R with neutral handle ∗, represents an external probabilistic choice between
input actions a and b: if R offers synchronization (output) for both of them at the
same time then they are executed with probabilities .25 (a action) and .75 (b action)
otherwise the synchronization offered byR is executed with probability 1. Note that,
since priority (and closure of external probability in a state) can be actually applied
only when the synchronization context is considered and the involved actions turn
from potential to internal, the proposed approach, which allows to put the “P ↑ G”
operator just outside this context (and not necessarily at the outermost syntactic
level) does not “delay” the application of quantitative information with respect to
the traditional approach based on attaching quantitative information directly to
potential actions. Moreover, the usage of handles allows the closure operator to be
applied selectively even to a single choice.

In the context of probabilistic process algebra literature, classifying states into
standard states and quantified states is a natural language design choice that is com-
monly used to expess internal probabilistic choices (see e.g. [1]): this can be easily
done by imposing probabilistic reduction transition to take priority with respect to
standard action transitions. Moreover, in this respect, the approach that we adopt
here gives us the following additional capabilities: (i) by giving the open/closed
interpretation to states and by using an operator to both close the open system
parts and, at the same time, assign a probabilistic quantification to them, we can
additionally express external probability and also multi-level priority just as a con-
sequence of the simple form of priority between the two kind of transitions; (ii) we
can use the same technique in the reduced context of pure non-deterministic process
algebra to give a solution to the long term open problem of expressing priorities in
this context.

In the paper we consider full CCS with recursion: we use operator “recX.P”
to express guarded and unguarded recursion. We use such a “core” process algebra
(where we additionally attach handles to both internal and visible actions) to ex-
press open transition systems and we extend it in two subsequent steps: first we just
consider non-deterministic prioritized reductions and a simple version of “P ↑ G”
where G is just a set of handles (giving us the ability to express multi-level pri-
oirities only), then we also endow reductions with target probability distributions
(thus expressing non-determinism among probabilistic reductions) and we extend
the structure of set G in “P ↑ G” to be composed by set of mappings from handles
to weights (where every mapping can generate a probabilistic reduction transition).
Note that, since the role of the core process algebra is just to compute τh transitions
(possibly via process interaction) and “P ↑ G” just acts on such transitions, i.e. we

4

Bravetti

have a separation in two “layers” of the open transitions and of reduction (closed)
transitions where the second ones are prioritized with respect to the first ones, our
approach is not bound to the particular choice (CCS) of the core process algebra:
we could have used any other process algebra.

Concerning equivalences, we are able to define weak equivalences that are com-
patible with the proposed technique by considering reduction transitions as the only
unobservable τ transitions: the idea is that transitions of open states, even if τh,
are still incomplete because they are not closed, i.e. we still have to apply quantifi-
cation to them. More precisely, for both extensions of CCS we consider two kinds
of weak equivalences that both deal with open transitions according to standard
bisimulation and are distinguished for the treatment of reduction transitions. The
first one aggregates reduction transitions in a trace-based manner: when a closed
state is reached by an open transition, we just care about which open states are
reachable by finite traces of reduction transitions and if non-escable divergence, e.g.
a non-escapable loop of reduction transitions, can be reached. The intuition is that,
being reduction transitions prioritized, it is natural to assume that a context cannot
observe intermediate states in sequences of such transitions. The second one is sim-
ply standard observational congruence: Milner’s one in the pure non-deterministic
case and its probabilistic extension in [8] for transitions leading to probability distri-
butions. Note that, even if obviously the trace-based equivalence aggregates much
more than standard (probabilistic) observational congruence, we considered the lat-
ter to show that it is possible to make it compatible with multi-level priorities and
external/internal probabilities.

As a main result we have that the trace-based equivalence is a congruence for the
extension of CCS and that standard observational congruence is a congruence pro-
vided that “0” is interpreted as failure (so that it is allowed to be weakly equivalent
to recX.τ.X without breaking congruence with respect to parallel) and successful
termination “1” is introduced in the process algebra.

We also observe that the aggregated transition system obtained by applying the
trace-based equivalence to systems can be derived directly in operational semantics.
By using an “aggregating” version of the operational semanitcs, we do not need to
apply equivalence to reduce states, but the system state space is reduced directly
by the operational semantics while we go from inner syntactic levels to outer ones
and the system is progressively closed.

Finally, we build on the non-deterministic/probabilistic algebra by considering:
discrete time, where reduction transitions take one time unit before reaching their
probabilistic target, and continuous time, where reduction transitions take, instead,
a probabilistic duration (denoted by the rate of an exponential distribution), to
be executed. In both timed contexts we show that, by considering the trace-based
equivalence, we can aggregate more with respect to the traditional lumping-based
equivalences over Discrete Time or Continuous Time Markov Chains that corre-
spond to a bisimulation-based matching of reductions. In particular, in the case
of continuous time, if the semantics of parallel of reductions just gives rise to their
non-deterministic interleaving (i.e. such a semantics it is not modified with respect
to the untimed version in order to account for contemporaneous passage of time
in reduction transitions) and just steady state probabilities are to be preserved by

5

Bravetti

equivalence, then thanks to the insensitivity property, the trace-based equivalence
just reduces to checking the mean overall duration of traces and, like in the untimed
case, probabilities to reach non-reducible or divergent states.

The paper is structured as follows. Sect. 2, concerning management of multi-
level Priorities in purely non-deterministic process algebra, presents the process
algebra for non-deterministic open/closed systems and the related machinery: tran-
sition systems, the equivalences, syntax and semantics, congruence results and the
aggregated semantics. Sect. 3 extends all the machinery of Sect. 2 to also deal with
internal/external probabilistic choices. Finally, Sect. 4 concerns the usage of the
closure operator to express discrete and continuous (exponential) time.

2 Multi-level Priorities

2.1 Partially open and partially closed non-deterministic transition systems

Definition 2.1 A non-deterministic open/closed transition system is a quadruple
(S,Lab,−−−−→c,−−−−→o), where

• S is a countable set of states,
• Lab is a countable set of labels of open transitions,
• −−−−→c ⊆ S × S is a transition relation over states of S that represents closed

transitions, i.e. reduction transitions,
• −−−−→o ⊆ S × Lab × S is a transition relation over states of S labeled over Lab

that represents open transitions,

such that, for any s ∈ S, it holds that: s−−−−→c implies 6 ∃l ∈ Lab : s
l

−−−−→ o.

Note that, in the definition above and in the rest of the paper, we use: s
l

−−−−→ os
′

to stand for (s, l, s′) ∈ −−−−→o and s
l

−−−−→ o to stand for ∃s′ : s
l

−−−−→ os
′ A similar

notation is used for (unlabeled) reduction transition relation −−−−→c. We assume
predicate >> to single out reducible states, i.e. s>> if s−−−−→c, s 6>> otherwise.

The constraint in Def. 2.1 guarantees that states of non-deterministic open/closed
transition systems that have outgoing closed transitions (reducible states) cannot
have outgoing open transitions and vice-versa. As a consequence system states can
be classified into closed system states (states with outgoing closed transitions) and
open system states (all other states). In Sect. 2.4 we will see an alternative approach
where states with no outgoing transitions are assumed to be closed.

We use −−−−→+
c to denote the transitive closure of −−−−→c and −−−−→∗c to de-

note the transitive and reflexive closure of −−−−→c. Predicate ↑ singles out (non-
escapable) divergent states, i.e. s ↑ iff 6∃s′ : s−−−−→∗c s′∧s′ 6>>. Note that s ↑ implies
s>> . We assume predicate on states “s (6>>∨ ↑)” to be defined as “(s 6>>) ∨ (s ↑)”.

Definition 2.2 A symmetric relation β over non-reducible states 3 of a non-
deterministic open/closed transition system (S,Lab,−−−−→c,−−−−→o) is a weak equiv-

3 In general it is possible to consider also reducible states in the definition of weak equivalences, however
this is not needed for defining weak congruences. See [3] for the extended definition.

6

Bravetti

alence if, whenever (s1, s2) ∈ β:

• If s1

l
−−−−→o −−−−→∗c s′1 (6>>∨↑) then, for some s′2, with s2

l
−−−−→o −−−−→∗c s′2 (6>>∨

↑), we have: either s′1 ↑ and s′2 ↑, or (s′1, s
′
2) ∈ β.

Two non-reducible states s1, s2 are weakly equivalent, written s1 ≈ s2, iff (s1, s2)
is included in some weak equivalence.

Definition 2.3 Two states s1, s2 of a non-deterministic open/closed transition
system (S,Lab,−−−−→c,−−−−→o) are weakly congruent, written s1 ' s2, iff:

• If s1

l
−−−−→o −−−−→∗c s′1 (6>>∨↑) then, for some s′2, with s2

l
−−−−→o −−−−→∗c s′2 (6>>∨

↑), we have: either s′1 ↑ and s′2 ↑, or s′1 ≈ s′2.
• if s1−−−−→+

c s
′
1 (6>>∨ ↑) then, for some s′2, with s2−−−−→+

c s
′
2 (6>>∨ ↑), we have:

either s′1 ↑ and s′2 ↑, or s′1 ≈ s′2.

and a symmetrical constraint holds true for moves of s2 as well.

Example 2.4 In the paper we will represent behaviors of states by means of pro-
cess algebraic terms (as we will detail in the next Sect. 2.2), for the examples
below the standard meaning of prefix (where τ represent a reduction transition),
recursion and sum can be assumed. τ.l.0 + τ.recX.τ.X 6' τ.l.0 4 because τ.l.0 +
τ.recX.τ.X −−−−→+

c l.0 and it can reach a divergent state, while τ.l.0−−−−→+
c l.0 but

it cannot reach a divergent state. On the contrary τ.l.0+τ.recX.(τ.l.0+τ.X) ' τ.l.0
because τ.l.0+τ.recX.(τ.l.0+τ.X)−−−−→+

c l.0 and it cannot reach a divergent state.

2.2 Prioritized process algebra

The set of synchronization names N is ranged over by a, b, c, The set of action
namesN∪{a | a ∈ N}∪{τ}, which includes input actions, output actions (identified
by the overbar) and the special symbol τ to denote synchronized unnamed actions,
is denoted by AN , ranged over by α, α′, We extend complementation to the
whole AN by assuming a = a and τ = τ . The finite set of handle names H is ranged
over by h, h′, We assume synchronizing actions to yield unnamed actions and
handlers of synchronizing actions to be composed by a given (arbitrarily defined)
binary operator “∝”, i.e. when ah1 synchronizes with ah2 we get τh1∝h2 . From a
modeling viewpoint it is convenient to adopt an operator “∝” that has a neutral
element, i.e. an handle ∗ (called neutral handle) such that ∗ ∝ h = h ∝ ∗ = h for
every handle h. The set of open actions (actions with handle) is denoted by OAct =
{αh | α ∈ AN ∧ h ∈ H}. The set of (all) actions is denoted by Act = OAct ∪ {τ},
that includes τ to express closed actions (actions without handle). The set of term
variables is Var , ranged over by X,Y, The set E of behavior expressions, ranged
over by E,F is defined by

E ::= 0 | X | αh.E | τ.E | E + E | E|E | E\L | E[ϕ] | E ↑G | recX.E

where L is a finite subset of N , G is a finite subset of H and ϕ is a relabeling
function over Act such that: (i) For every α ∈ AN , h ∈ H there exists α′ such

4 We assume syntactical precedence of prefix w.r.t. other operators when writing terms.

7

Bravetti

that ϕ(αh) = α′h; (ii) ϕ(τ) = τ ; and (iii) ϕ(α) = ϕ(α). The meaning of the
operators is the standard one of [6,7], where “recX.E” denotes recursion. The main
differences and novelties are the following ones. Closed actions (actions τ) give
rise to reduction (closed) transitions and are assumed to be prioritized with respect
to open actions (actions αh) that give rise to open transitions. The prioritization
operator “E ↑G′′ turns unnamed open actions τh performable by E whose handle h
is in G into closed actions τ thus turning them into prioritized actions and cutting
possible unprioritized alternative behaviors. Closed terms are terms that do not
include free variables (i.e. variables X not bound by a “recX.E” operator) and are
called processes. The set P of processes is ranged over by P ,Q,R. We omit trailing
0 when writing process terms.

The semantics of processes gives rise to the non-deterministic open/closed tran-
sition system (P, OAct,−−−−→c,−−−−→o), where −−−−→c (here denoted simply by
−−−−→ and by explicit use of τ reduction labels) and −−−−→o (here denoted simply
by −−−−→) are defined via structural operational semantics by the rules in Tables 1
and 2, plus symmetric rules. In Table 1 we take γ to range over the set of all
actions Act: in the symmetric communication rule the handle of the τ transition is
still h1 ∝ h2, with h1 handle of the output action and h2 handle of the input action.
type(γ) yields the name in N of the action γ or τ if γ is an unnamed synchronized
action (i.e. γ = τ or γ = τh for some handle h).

Example 2.5 The (non-deterministic open/closed) transition system of τ.P+αh.Q
is the same as that of τ.P . The transition system of τh.P+αh′ .Q↑{h}, where h′ 6= h,
is the same as that of τ.P .

The transition system of (ah1 .P + bh2 .Q|R) ↑ {h2} ↑ {h1}, where output actions
a and b occurr in R with neutral handle ∗, represents a prioritized choice between
input actions a and b: if R offers synchronization (output) for both of them at the
same time then the b action is executed (since “↑{h2}” syntactically occurs before
“↑ {h1}”) otherwise the synchronization offered by R is executed. For instance, if
R is a∗.P ′ + b∗.Q

′ then the transition system of the whole system is the same as
that of τ.(Q|Q′). If R is a∗.P ′ then the transition system of the whole system is
the same as that of τ.(P |P ′). If R is b∗.P ′ then the transition system of the whole
system is the same as that of τ.(Q|Q′). The transition system of (P |Q|a∗)↑{h2}↑
{h1}, where input action a occurrs in P with handle h1 and in Q with handle h2,
represents a prioritized choice between the two input actions a: if both P and Q offer
synchronization (input) on a at the same time then the a action of Q is executed
(since “↑{h2}” syntactically occurs before “↑{h1}”) otherwise the synchronization
offered by either P or Q is executed.

In general we can express multilevel priority by using operator P ↑G to succes-
sively prioritize (and close) actions. We can use

P ↑Gn ↑Gn−1 . . .↑G1

to express that actions whose handle (after synchronization) belongs to Gn are at
priority level n, actions whose handle belongs to Gn−1 are at a lower priority level
n−1, and so on...: actions whose handle belongs to G1 are at the lowest (supposing
that all actions used in P have been closed/prioritized) priority level 1.

8

Bravetti

γ.P
γ

−−−−→ P

P
αh

−−−−→ P ′ Q 6>>

P +Q
αh

−−−−→ P ′

P
αh

−−−−→ P ′ Q 6>>

P |Q
αh

−−−−→ P ′|Q

P
ah1

−−−−→ P ′ Q
ah2

−−−−→ Q′

P |Q
τh1∝h2

−−−−→ P ′|Q′

P
γ

−−−−→ P ′

P\L
γ

−−−−→ P ′\L
type(γ) /∈ L

P
γ

−−−−→ P ′

P [ϕ]
ϕ(γ)
−−−−→ P ′[ϕ]

P
γ

−−−−→ P ′ 6∃h ∈ G : P
τh
−−−−→

P ↑G
γ

−−−−→ P ′ ↑G

P{recX.P/X}
γ

−−−−→ P ′

recX.P
γ

−−−−→ P ′

Table 1
Proposed variant of standard structural operational rules

P
τ

−−−−→ P ′

P +Q
τ

−−−−→ P ′

P
τ

−−−−→ P ′

P |Q
τ

−−−−→ P ′|Q

P
τh
−−−−→ P ′

P ↑G
τ

−−−−→ P ′ ↑G
h ∈ G

Table 2
Additional rules for non-deterministic reduction transitions

Note that (i) closing/prioritizing actions makes it possible to to be closed (ii)
closing/prioritizing actions does not necessarily happen at the outermost syntactic
level, like in the scenario above, where a similar effect could be obtained by just
applying external (prioritized) schedulers to the transition system of P : synchro-
nized actions should be closed at the innermost possible syntactic level so to make
effective compositional reduction by means of the weak equivalence.

Theorem 2.6 Weak congruence “'” is a congruence with respect to all the oper-
ators of the prioritized process algebra.

Proof. We first show that weak equivalence ≈ is a congruence for non-reducible
processes with respect to static operators. We start with the parallel operator “|”.
It is sufficient to show that:

β = {(P1|Q,P2|Q) | P1 6>>∧P2 6>>∧Q 6>>∧P1 ≈ P2}

is a weak bisimulation. Supposed that P1|Q
αh

−−−−→ P ′1|Q′−−−−→∗ P ′′1 |Q′′(6>>∨ ↑)
we have, due to the simple interleaving semantics of reduction transitions in “|”:

9

Bravetti

P ′1−−−−→∗ P ′′1 and Q′−−−−→∗Q′′. We additionally consider P ′′′1 (6>>∨ ↑) such that
P ′′1 −−−−→∗ P ′′′1 .

We have three cases depending on how the
αh

−−−−→ is derived:

• α 6= τ ∧ P1

αh

−−−−→ P ′1 ∧ Q′ = Q. Since Q′ = Q 6>> we also have Q′′ = Q′. Since

P1 ≈ P2, there exist P ′2, P
′′
2 such that P2

αh

−−−−→ P ′2−−−−→∗ P ′′2 (6>>∨ ↑) with either
P ′′′1 ↑ ∧P ′′2 ↑ or P ′′′1 6>>∧P ′′2 6>> and P ′′′1 ≈ P ′′2 .

Therefore we have: P2|Q
αh

−−−−→ P ′2|Q−−−−→∗ P ′′2 |Q. If we now use Q′′ = Q 6>>
and P ′′′1 ↑ ⇐⇒ P ′′1 ↑ and P ′′1 6>> ⇒ P ′′′1 = P ′′1 , we have P ′′2 |Q(6>>∨ ↑) and either
(P ′′1 |Q ↑ ∧P ′′2 |Q ↑) or (P ′′1 |QβP ′′2 |Q) and we are done.

• α 6= τ ∧ Q
αh

−−−−→ Q′ ∧ P ′1 = P1. Since P ′1 = P1 6>> we also have P ′′1 = P ′1. We

have directly P2|Q
αh

−−−−→ P2|Q′−−−−→∗ P2|Q′′. If we now use P ′′1 = P1 6>>, we
have P2|Q′′(6>>∨ ↑) and either (P1|Q′′ ↑ ∧P2|Q′′ ↑) or (P1|Q′′βP2|Q′′) and we are
done.

• α = τ ∧ P1

α′h
−−−−→ P ′1 ∧ Q

α′h
−−−−→ Q′ with α′ 6= τ . Since P1 ≈ P2, there exist

P ′2, P
′′
2 such that P2

α′h
−−−−→ P ′2−−−−→∗ P ′′2 (6>>∨ ↑) with either P ′′′1 ↑ ∧P ′′2 ↑ or

P ′′′1 6>>∧P ′′2 6>> and P ′′′1 ≈ P ′′2 .

Therefore we have: P2|Q
τh
−−−−→ P ′2|Q′−−−−→∗ P ′′2 |Q′′. If we now use P ′′′1 ↑ ⇐⇒

P ′′1 ↑ and P ′′1 6>> ⇒ P ′′′1 = P ′′1 , we have P ′′2 |Q′′(6>>∨ ↑) and either (P ′′1 |Q′′ ↑
∧P ′′2 |Q′′ ↑) or (P ′′1 |Q′′βP ′′2 |Q′′) and we are done.

The proof for the other static operators, i.e. relabeling and restriction is just a much
simplified version of the above proof as in the standard case. We instead report the
proof of for the new operator “P ↑ G” that is special because reduction transitions
can be generated. It is sufficient to show that:

β = {(P1 ↑ G,P2 ↑ G) | P1 ↑ G 6>>∧P2 ↑ G 6>>∧P1 ≈ P2}
is a weak bisimulation. Let us suppose that P1 ↑ G

αh

−−−−→ P ′1 ↑ G−−−−→∗ P ′′1 ↑
G(6>>∨ ↑). We preliminary consider P ′′′1 (6>>∨ ↑) such that P ′′1 −−−−→∗ P ′′′1 . We have
that, since reduction transitions executed by the “↑ G” operator are either copied
or generated by closure, there exists n ≥ 0 and non-reducible processes P 1

1 , . . . , P
n
1

such that P ′1−−−−→∗ P 1
1 and, for 1 ≤ i ≤ n, P i1

τhi

−−−−→ −−−−→∗ P i+1
1 with hi ∈ G,

where Pn+1
1 = P ′′′1 . We have that:

• P1

αh

−−−−→ P ′1 and there is no h′ ∈ G such that P1

τh′
−−−−→ . Therefore there ex-

ist P ′2, P
1
2 such that P2

αh

−−−−→ P ′2−−−−→∗ P 1
2 (6>>∨ ↑) with either P 1

1 ↑ ∧P 1
2 ↑ or

P 1
1 6>>∧P 1

2 6>> and P 1
1 ≈ P 1

2 . Note that, if n ≥ 1 then P 1
2 6>>. Moreover there is no

h′ ∈ G such that P2

τh′
−−−−→ (easly proved by contradiction).

• There exist non-reducible processes P 2
2 , . . . , P

n
2 such that, for 1 ≤ i ≤ n − 1, we

have P i2

τhi

−−−−→ −−−−→∗ P i+1
2 with P i+1

1 ≈ P i+1
2 . Finally, if n ≥ 1, there exist

Pn+1
2 such that Pn2

τhi

−−−−→ −−−−→∗ Pn+1
2 (6>>∨ ↑) with either Pn+1

1 ↑ ∧Pn+1
2 ↑ or

Pn+1
1 6>>∧Pn+1

2 6>> and Pn+1
1 ≈ Pn+1

2 .

• In conclusion, we have P2 ↑ G
αh

−−−−→ P ′2 ↑ G−−−−→∗ P
n+1
2 ↑ G. We observe that

10

Bravetti

(Pn+1
1 ↑ G) ↑⇒ (Pn+1

2 ↑ G) ↑. This holds because, if Pn+1
1 cannot reach, via

reduction transitions or τh transitions with h ∈ G, a non-reducible state that
performs no τh actions with h ∈ G; then also Pn+1

2 cannot reach, via the same
kind of transitions, such a state (easily proved, by contradiction, by subsequently

matching
τh
−−−−→ −−−−→∗ transitions with h ∈ G, moving from equivalent states

to equivalent states, similarly as done with the i-th indexed sequence above, and
showing that P ′′′1 would reach a non-reducible state that performs no τh actions
with h ∈ G). We also observe that (Pn+1

1 ↑ G) 6>>⇒ (Pn+1
2 ↑ G) 6>> and we recall

P ′′′1 = Pn+1
1 .

If we now use such statements and P ′′1 6>>⇒ P ′′′1 = P ′′1 , we have Pn+1
2 ↑ G(6>>∨ ↑)

and either (P ′′1 ↑ G) ↑ ∧(Pn+1
2 ↑ G) ↑, or P ′′1 ↑ GβP

n+1
2 ↑ G and we are done.

The congruence of weak congruence over all the operators can be showed by just
applying the definition of weak congruence and, for static operators, by resorting
to congruence of weak bisimulation. The only non-trivial case is parallel that we
sketch in the following.
Let us suppose P1 ' P2. Let us consider first P1|Q

αh

−−−−→ P ′1|Q′−−−−→∗ P ′′1 |Q′′(6>>∨
↑). We have three cases for the moves of P1 and Q similar to the ones considered
above for the congruence of weak bisimulation. In the case of a move of P1, a
corresponding move of P2 must exist and either both divergent processes or non-
reducible weak equivalent processes P ′′1 and P ′′2 are reached. In the case they are non-
reducible and Q′′ is non-reducible as well, due to congruence of weak bisimulation
with respect to parallel we obtain P ′′1 |Q′′ and P ′′2 |Q′′.
Let us now consider P1|Q−−−−→+ P ′1|Q′(6>>∨ ↑). In the case P1 is reducible and
originates some moves in the reduction sequence, a corresponding move of P2 must
exist and either both divergent processes or non-reducible weak equivalent processes
P ′1 and P ′2 are reached. The proof then concludes as in the previous case. 2

2.3 Aggregating directly in operational semantics

The idea is that we can represent the behavior of a system in a minimal aggregated
way by just saying which states s are reducible, i.e. such that s>>, and by showing
directly (i) which non-reducible states s′ are reachable by reducible states s, i.e.
s−−−−→+

c s
′ ∧ s′ 6>> , and (ii) weather a divergence state is reachable by reducible

states s, i.e. s−−−−→+
c s
′∧s′ ↑ for some s′; instead of including all −−−−→c transitions

in labeled transition systems. By doing this, we do not need to apply equivalence
to reduce states, but the system state space is reduced directly by the operational
semantics, while we go from inner syntactic levels to outer ones and the system is
progressively closed.

Definition 2.7 A non-deterministic aggregated open/closed transition system is a
quintuple (S,Lab,Red,−−→c,−−−−→o), where

• S is a countable set of states,
• Lab is a countable set of labels of open transitions,
• Red is the subset of S of reducible states,
• −−→c ⊆ Red × {(S−Red) ∪ {↑}} is a transition relation, leading directly from

11

Bravetti

reducible states to non-reducible states or to divergence “↑”, that represents mul-
tiple closed transitions

• −−−−→o ⊆ (S−Red) × Lab × S is a transition relation labeled over Lab that
represents open transitions,

Similarly as before, given such a transition system, we use predicate >> to single
out reducible states, i.e. s>> if s ∈ Red, s 6>> otherwise. We use ŝ to range over
S ∪ {↑}.

The aggregated semantics of processes can be obtained, by determining Red

and −−→c from −−−−→c as explained above and by just leaving −−−−→o unchanged,
from the semantics of Sect. 2.2.

Equivalence over non-deterministic aggregated open/closed transition system
can be directly defined (by simply applying the correspondance above) as follows.

Definition 2.8 A symmetric relation β over non-reducible states of a non-deter-
ministic aggregated open/closed transition system (S,Lab,Red,−−→c,−−−−→o) is
a weak equivalence if, whenever (s1, s2) ∈ β:

• If s1

l
−−−−→o s

′
1 and (s′1−−→c ŝ

′′
1 or ŝ′′1 = s′1 6>>) then, for some s′2 and ŝ′′2, with

s2

l
−−−−→o s

′
2 and (s′2−−→c ŝ

′′
2 or ŝ′′2 = s′2 6>>), we have either ŝ′1 = ŝ′2 =↑ or

(ŝ′1, ŝ
′
2) ∈ β.

Two non-reducible states s1, s2 are weakly equivalent, written s1 ≈ s2, iff (s1, s2)
is included in some weak equivalence.

Definition 2.9 Two states s1, s2 of a non-deterministic aggregated open/closed
transition system (S,Lab,Red,−−→c,−−−−→o) are weakly congruent, written s1 '
s2, iff:

• If s1

l
−−−−→o s

′
1 and (s′1−−→c ŝ

′′
1 or ŝ′′1 = s′1 6>>) then, for some s′2 and ŝ′′2, with

s2

l
−−−−→o s

′
2 and (s′2−−→c ŝ

′′
2 or ŝ′′2 = s′2 6>>), we have either ŝ′1 = ŝ′2 =↑ or

ŝ′1 ≈ ŝ′2.
• If s1−−→c ŝ

′
1 then, for some s′2, with s2−−→c ŝ

′
2, we have either ŝ′1 = ŝ′2 =↑ or

ŝ′1 ≈ ŝ′2.

and a symmetrical constraint holds true for moves of s2 as well.

The aggregated semantics can be also obtained directly from processes as follows.
The non-deterministic aggregated open/closed transition system is (P, OAct,Red,
−−→c,−−−−→o), where the set of reducible states Red is taken to be the smallest
subset of P that includes terms τ.P for every P ∈ P and is such that

P ∈ Red =⇒ P +Q,Q+ P, P |Q,Q|P, P\L,P [ϕ], P ↑G ∈ Red

P
τh
−−−−→o ∧ h∈G =⇒ P ↑G ∈ Red

P{recX.P/X} ∈ Red =⇒ recX.P ∈ Red

and −−−−→o (here denoted simply by −−−−→) is still defined by the rules of Table 1
plus symmetric rules; however, differently from Sect. 2.2, here we take γ to just

12

Bravetti

P >> 6∃P ′ : P −−→P ′

P −−→ ↑

P 6>>

τ.P −−→P

P −−→ P̂ ′

τ.P −−→ P̂ ′

P −−→ P̂ ′

P +Q−−→ P̂ ′

P −−→ P̂ ′ Q 6>>

P |Q−−→ P̂ ′|Q

P −−→ P̂ ′ Q−−→ Q̂′

P |Q−−→ P̂ ′|Q̂′

P −−→ P̂ ′

P\L−−→ P̂ ′\L

P −−→ P̂ ′

P [ϕ]−−→ P̂ ′[ϕ]

P
τh
−−−−→ P ′ P ′ ↑G 6>>

P ↑G−−→P ′ ↑G
h ∈ G

P
τh
−−−−→ P ′ P ′ ↑G−−→ P̂ ′′ ↑G

P ↑G−−→ P̂ ′′ ↑G
h ∈ G

P −−→ P̂ ′

P ↑G−−→ P̂ ′ ↑G

P{recX.P/X}−−→ P̂ ′

recX.P −−→ P̂ ′

Table 3
Additional rules for aggregated non-deterministic reduction transitions

range over the set of open actions OAct (thus now excluding τ) and we have that
predicate >> (re-defined above) is directly determined from set Red. Finally, −−→c

(here denoted simply by −−→) is defined by the rules of Table 3 plus symmetric
rules, starting from Red and −−−−→o. In Table 3, given a context for terms P
“con(P)”, we take “con(↑)” to just stand for ↑. For instance, “↑ |Q” stands for ↑.
Moreover, we take ′′ ↑ | ↑′′ to stand for ↑.

Note that, we need to preliminarily define set Red and to base the definition
of “−−→” on Red because, in order to establish if a term P can be the target of
an aggregated transition that does not lead to divergence, we cannot just require
that P does not perform any such aggregated transition. This because, if P is, e.g.,
recX.τ.X that does not perform any such aggregated transition (just like 0), then
the check above does not work. If unguarged recursion is somehow disallowed (in
such a way that also cannot be “dinamically” generated by application of P ↑G),
then the preliminary definition of set Red is not necessary and non-reducibility of
states can be just determined by absence of −−→ transitions.

2.4 A variant compatible with standard observational congruence

The machinery for multilevel priorities can be modified to make it compatible with
standard Milner’s observational congruence. From the one hand we loose the dis-

13

Bravetti

tinction between reducible and unreducible states (i.e. recX.τ.X is now equated
by weak bisimulation to 0), from the other hand we observe also intermediate (re-
ducible) state in τ paths, so the equivalence becomes sensitive to the branching
structure of τ behaviours and the state space reduction by aggregation of τ transi-
tions (and elimination of intermediate states) less effective.

The crucial modification that we have to do in order to make the process al-
gebra of Sect. 2.2 compatible with standard observational congruence concerns the
parallel operator. Modifying the behaviour of parallel is necessary because with the
definition of Sect. 2.2, e.g., while ah.0|recX.τ.X has the same transition system of
recX.τ.X, ah.0|τ.0 has the same transition system of τ.ah.0, hence observational
congruence cannot be a congruence. The problem is that, with observational con-
gruence, 0 (that is weakly bisimilar to recX.τ.X) must be considered by the parallel
as a failure event that makes the whole system fail: i.e. the parallel must be such
that the behaviour of P |0 is that of 0 for any P .

The wanted behaviour for parallel is obtained as follows. We interpret 0 as fail-
ure and we introduce in the syntax of behaviour expressions E (and of processes
P) successful termination 1. Moreover we introduce a special action

√
, denoting

successful termination, that we add to the set OAct of open actions. The new op-
erational semantics is obtained by modifying the rule for unsynchronized parallel
transitions of Table 1 as follows:

P
αh

−−−−→ P ′ Q
γ

−−−−→

P |Q
αh

−−−−→ P ′|Q
γ ∈ OAct

where now we have
√
∈ OAct . An analogous modification of the rule for + (that

would lead the behaviour of P + 0 to be that of 0) is optional.
Moreover the following two standard rules, concerning generation of “

√
” moves,

must be added (to Table 1):

1
√

−−−−→ 0
P

√

−−−−→ P ′ Q

√

−−−−→ Q′

P |Q
√

−−−−→ P ′|Q′

From the modeling viewpoint the modifications above require successful termi-
nation of processes 1 to be explicitly used by modelers: in a parallel a process
that internally fails (i.e. becomes 0) immediately makes the whole system fail. For
instance in ah.0|P the whole system fails as soon as the ah action is executed; in
ah.1|P , instead, the system waits for termination of P after execution of ah. Finally
note that in the scenario (ah.1|P)\a the system waits for P to execute an output on
a as desirable from a modeling viewpoint, i.e. the system does not fail immediately
because the lefthand process cannot execute actions. This happens because the
cause that disallows action execution is external (the restriction) and not internal.

Theorem 2.10 Milner’s observational congruence is a congruence with respect to
all the operators of the prioritized process algebra with successful termination.

Proof. In the proof we denote Milner’s observational congruence (where OAct ac-
tions, that include “

√
”, are the observable actions) by “'” and Milner’s weak

14

Bravetti

bisimulation by “≈”. OAct is ranged over by γ, Act = OAct ∪ {τ} is ranged over
by θ. We first show that ≈ is a congruence with respect to static operators. We
start with the parallel operator “|”. It is sufficient to show that:

β = {(P1|Q,P2|Q) | P1 ≈ P2}

is a weak bisimulation. Supposed that P1|Q
θ

−−−−→ P ′1|Q′, we have six cases de-

pending on how the
θ

−−−−→ is derived:

• θ = αh, α 6= τ, P1

αh

−−−−→ P ′1 ∧ Q′ = Q. We must have Q
γ

−−−−→ for some γ.
Since P1 ≈ P2, there exists P ′2 such that P2

αh=⇒ P ′2 and P ′1 ≈ P ′2. Therefore
P2|Q

αh=⇒ P ′2|Q and (P ′1|QβP ′2|Q) and we are done.

• θ = αh, α 6= τ,Q
αh

−−−−→ Q′∧P ′1 = P1. We must have P1

γ
−−−−→ for some γ. Since

P1 ≈ P2, P2
γ

=⇒ for some γ. Therefore P2|Q
αh=⇒ P2|Q′ and (P1|Q′βP2|Q′) and

we are done.

• θ = τh, P1

α′h
−−−−→ P ′1 ∧ Q

α′h
−−−−→ Q′ with α′ 6= τ . Since P1 ≈ P2, there exists P ′2

such that P2
α′h=⇒ P ′2 and P ′1 ≈ P ′2. Therefore P2|Q

τh=⇒ P ′2|Q′ and (P ′1|Q′βP ′2|Q′)
and we are done.

• θ =
√
, P1

√

−−−−→ P ′1 ∧Q
√

−−−−→ Q′. This case is totally analogous to the previous
one.

• θ = τ, P1

τ
−−−−→ P ′1∧Q′ = Q. Since P1 ≈ P2, there exists P ′2 such that P2

τ̂=⇒ P ′2

and P ′1 ≈ P ′2. Therefore P2|Q
τ̂=⇒ P ′2|Q and (P ′1|QβP ′2|Q) and we are done.

• θ = τ,Q
τ

−−−−→ Q′ ∧ P ′1 = P1. We have immediately P2|Q
τ

−−−−→ P2|Q′ and
(P1|Q′βP2|Q′) and we are done.

The proof for the other static operators, i.e. relabeling and restriction is just a much
simplified version of the above proof as in the standard case. We instead report the
proof of for the new operator “P ↑ G” that is special because reduction transitions
can be generated. It is sufficient to show that:

β = {(P1 ↑ G,P2 ↑ G) | P1 ≈ P2}

is a weak bisimulation. Supposed that P1 ↑ G
θ

−−−−→ P ′1 ↑ G, we have three cases

depending on how the
θ

−−−−→ is derived:

• θ = γ, P1

γ
−−−−→ P ′1. We must have that 6∃h ∈ G : P1

τh
−−−−→ . Since P1 ≈ P2,

there exists P ′2 such that P2
γ

=⇒ P ′2 and P ′1 ≈ P ′2. Moreover, called P ′′2 the

intermediate state of the weak transition above such that P ′′2
γ

−−−−→ it must be

that 6 ∃h ∈ G : P ′′2
τh
−−−−→ (by contradiction, if such a transition existed then

P2
τh=⇒ , hence P1

τh=⇒ , but P1 is not allowed to perform τ actions and it does
not perform the τh action). Therefore P2 ↑ G

γ
=⇒ P ′2 ↑ G and (P ′1 ↑ GβP ′2 ↑ G)

and we are done.
• θ = τ, P1

τh
−−−−→ P ′1 with h ∈ G. Since P1 ≈ P2, there exists P ′2 such that

P2
τh=⇒ P ′2 and P ′1 ≈ P ′2. Therefore P2 ↑ G

τ=⇒ P ′2 ↑ G and (P ′1 ↑ GβP ′2 ↑ G) and
we are done.

• θ = τ, P1

τ
−−−−→ P ′1 with h ∈ G. Since P1 ≈ P2, there exists P ′2 such that

15

Bravetti

P2
τ̂=⇒ P ′2 and P ′1 ≈ P ′2. Therefore P2 ↑ G

τ̂=⇒ P ′2 ↑ G and (P ′1 ↑ GβP ′2 ↑ G) and
we are done.

The congruence of observational congruence over all the operators can be showed
by just applying the definition of observational congruence and, for static operators,
by resorting to congruence of weak bisimulation, as in the standard way. In the case

of parallel, supposed P1 ' P2, we consider P1|Q
θ

−−−−→ P ′1|Q′. We have six cases
for the moves of P1 and Q similar to the ones considered above for the congruence
of weak bisimulation. 2

3 Adding Probabilities

3.1 Partially open and partially closed non-deterministic and probabilistic transi-
tion systems

First of all we introduce the following notation that will be used in the rest of the
paper. Let f be a partial function from an arbitrary domain D to real numbers RI .
Given a subset D of dom(f) and supposed that

∑
s∈D f(s) ∈ RI , we use f(D) to

denote such a sum.
A partial discrete probability distribution over a countable set of states S is a

function σ : S −→ [0, 1] such that σ(S) ≤ 1. A discrete probability distribution
σ is a partial discrete probability distribution such that σ(S) = 1. We denote by
PDistS the set of discrete probability distributions over states S.

In the case S is infinite, it is convinient to introduce the following notatation to
denote discrete probability distributions in a finite way. Given a partial function
f from S to [0, 1] such that σ(dom(f)) = 1, we use it to denote a probability
distribution by writing σf defined as: σf (s) = f(s) if s ∈ dom(f), σf (s) = 0
otherwise.

Definition 3.1 A non-deterministic/probabilistic open/closed transition system is
a quadruple (S,Lab,−−−−→c,−−−−→o), where

• S is a countable set of states,
• Lab is a countable set of labels of open transitions,
• −−−−→c ⊆ S × PDistS is a transition relation from states of S to discrete proba-

bility distributions over S that represents closed transitions, i.e. reduction tran-
sitions,

• −−−−→o ⊆ S × Lab × S is a transition relation over states of S labeled over Lab
that represents open transitions,

such that, for any s ∈ S, it holds that: s−−−−→c implies 6 ∃l ∈ Lab : s
l

−−−−→ o.

Note that, in the definition above and in the rest of the paper, we use: s−−−−→c σ

to stand for (s, σ) ∈ −−−−→c and s−−−−→c to stand for ∃σ : s−−−−→c σ. We assume
predicate >> to single out reducible states, i.e. s>> if s−−−−→c, s 6>> otherwise.

We extend predicates P (s) defined on states to hold on discrete probability
distributions over states as follows: P (σ) iff ∀ s ∈ S. σ(s) > 0 ⇒ P (s). For
instance, σ 6>> stands for ∀ s ∈ S. σ(s) > 0 ⇒ s 6>>. Moreover, given a predicate

16

Bravetti

P (s) defined on states, we take: SP to denote the subset of S of states s that
satisfy P (s), i.e. SP = {s ∈ S | P (s)}; σP to denote the partial discrete probability
distribution obtained from σ by considering only probability associated to states s
that satisfy P (s), i.e. ∀ s ∈ S we have σP (s) = σ(s) if P (s), σP (s) = 0 otherwise.
For instance, S 6>> denotes the set of non-reducible states and σ6>> is the partial
discrete probability distribution obtained from σ by considering only probability
associated to non reducible states.

A finite trace tr of reduction transitions is a function tr : {1, . . . , n} −→ S, for
some n ∈ NI + (the length of the trace), such that for every i ∈ {1, . . . , n− 1} there
exists σ such that tr(i)−−−−→c σ and σ(tr(i + i)) > 0. We denote by Tr the set of
such traces and by Trs the subset of all traces tr in Tr such that tr(1) = s. In the
following we will denote the states of a trace tr just as tr1, . . . , trn standing for
tr(1), . . . , tr(n). Moreover, given a trace tr of length n, we use trfin to denote its
final state trn (the only state of the trace that can be a non-reducible state) and
tr≤i, with i ≤ n, to denote the trace of length i that is a prefix of tr.

A (hystory dependent) scheduler scheds from a state s is a partial function
scheds : Trs−→o PDistS such that sched(tr) = σ implies trfin−−−−→c σ and satis-
fies: tr ∈ dom(scheds) implies tr≤n−1 ∈ dom(scheds) and scheds(tr≤n−1)(trn) > 0,
where n is the length of tr. Trscheds , representing finite traces that can be sched-
uled going from s all the way until one of scheduler’s halt states, is the subset
of all traces tr in Trs such that tr /∈ dom(scheds), tr≤n−1 ∈ dom(scheds) and
scheds(tr≤n−1)(trn) > 0, where n is the length of tr. The probability of a trace
tr ∈ Trscheds of length n under a scheduler scheds is defined by probscheds(tr) =∏

1≤i≤n−1 scheds(tr≤i)(tri+i).
5 A scheduler scheds is terminating (by means of fi-

nite traces) if
∑

tr∈Trscheds
probscheds(tr) = 1. 6 Terminating schedulers from s are

ranged over by tscheds.
We define s−−−−→∗c σ, with σ ∈ PDistS , to hold if and only if there exists a

scheduler tscheds such that for every s′ ∈ S it holds σ(s′) =
∑

tr∈Trtscheds∧trfin=s′

probtscheds(tr). The definition of s−−−−→+
c σ is the same with the additional con-

straint of tscheds 6= ∅. Predicate ↑ singles out (non-escapable) divergent states, i.e.
s ↑ iff 6∃σ : s−−−−→∗c σ ∧ σ(S6>>) > 0. Note that s ↑ implies s>> .

Given an equivalence relation β over states S, we say that two partial discrete
probability distributions σ′ and σ′′ are equivalent, written σ′ ≡β σ′′ if, for every
equivalence class C ∈ S/β, it holds that

∑
s∈C σ

′(s) =
∑

s∈C σ
′′(s).

Definition 3.2 An equivalence relation β over non-reducible states of a non-de-
terministic/probabilistic open/closed transition system (S,Lab,−−−−→c,−−−−→o) is
a weak equivalence if, whenever (s1, s2) ∈ β:

• If s1

l
−−−−→o −−−−→∗c σ(6>>∨ ↑) then, for some σ′, s2

l
−−−−→o −−−−→∗c σ′(6>>∨ ↑) and

σ 6>> ≡β σ′6>>.

Two non-reducible states s1, s2 are weakly equivalent, written s1 ≈ s2, iff (s1, s2)
is included in some weak equivalence.

5 We assume an empty product to yield 1.
6 We assume an empty summation to yield 0.

17

Bravetti

Definition 3.3 Two states s1, s2 of a non-deterministic/probabilistic open/closed
transition system (S,Lab,−−−−→c,−−−−→o) are weakly congruent, written s1 ' s2,
iff:

• If s1

l
−−−−→o −−−−→∗c σ(6>>∨ ↑) then, for some σ′, s2

l
−−−−→o −−−−→∗c σ′(6>>∨ ↑) and

σ 6>> ≡≈ σ′6>>.
• If s1−−−−→+

c σ(6>>∨ ↑) then, for some σ′, s2−−−−→+
c σ
′(6>>∨ ↑) and σ 6>> ≡≈ σ′6>>.

and a symmetrical constraint holds true for moves of s2 as well.

Example 3.4 Below we represent a reduction transition that leads to a probability
distribution over states by means of a sum “[p1]P1 + . . . + [pn]Pn” (

∑
1≤i≤n pi=

1) 7 where each target state is prefixed by a probability. On the contrary non-
deterministic choices between (open or reduction) transitions are still represented
via standard “P +Q” sums (the formal definitions will be given in next Sect. 3.2).
[.3]l.0 + [.7]recX.[1]X 6' [1]l.0 because the only distributions σ such that σ(6>>∨ ↑)
reachable by [.3]l.0 + [.7]recX.[1]X assign probability .3 to l.0 and probability .7 to
a divergent state, while the only distribution σ such that σ(6>>∨ ↑) reachable by
[1]l.0 assigns probability 1 to l.0 (i.e. 0 probability is assigned to divergent states).
On the contrary, [.3]l.0 + [.7]recX.([1]l.0 + [1]X) ' [1]l.0 (where the choice inside
recursion is non-deterministic) because the only distributions σ such that σ(6>>∨ ↑)
reachable by [.3]l.0+[.7]recX.([1]l.0+[1]X) assign probability 1 to l.0: no divergent
states can be reached by the initial state.

3.2 Probabilistic prioritized process algebra

The set E of behavior expressions, ranged over by E,F is defined by

E ::= 0 | X | αh.E |
∑
i∈I

[pi].Ei | E + E | E|E | E\L | E[ϕ] | E ↑G | recX.E

where
∑

i∈I pi = 1, L is a finite subset of N , G is a finite set of partial functions from
H to RI + (representing weights) whose domains are disjoint and ϕ is a relabeling
function over OAct such that: (i) For every α ∈ AN , h ∈ H there exists α′ such
that ϕ(αh) = α′h; (ii) ϕ(α) = ϕ(α).

∑
i∈I [pi].Ei represents a (discrete) probabilistic

choice among terms Ei, where Ei is chosen with probability pi. The prioritization
operator “E ↑ G′′, for every partial function g ∈ G, turns all open transitions τh
performable by E whose handlers h are (distinguished and) in the domain of g,
into a single closed reduction transition leading to a probability distribution over
the target states of the open tranitions, where probabilities are proportional to the
weights associated to the handlers by g. Moreover, as in the pure nondeterministic
case, it cuts possible unprioritized alternative open behaviors. Again we assume the
set P of processes (i.e. closed terms) to be ranged over by P ,Q.

The semantics of processes gives rise to the non-deterministic/probabilistic open/
closed transition system (P, OAct,−−−−→c,−−−−→o), where −−−−→c (here denoted
simply by −−−−→ with no label) and −−−−→o (here denoted simply by −−−−→) are
defined via structural operational semantics by the rules in Tables 1 and 4, plus

7 In the case of a distribution where all probability is given to a single target P the sum reduces to [1]P .

18

Bravetti

symmetric rules. In Table 1, differently from Sect. 2.2, here we take γ to just range
over the set of open actions OAct (thus now excluding τ that is not considered in this
section), and we consider h ∈ G to be an abuse of notation for h ∈ dom(g) for some
g ∈ G, i.e. h ∈

⋃
g∈G dom(g). In Table 4, given a context for terms P “con(P)” and

a probability distribution σ, we take “con(σ)” to stand for the probability distribu-
tion such that: con(σ)(con(P)) = σ(P), for every P ∈ P; con(σ)(P ′) = 0, for every
P ′ ∈ P that is not in the form con(P) for some P . For instance, σ|Q(P |Q) = σ(P),
for every P ∈ P; σ|Q(P ′) = 0 if P ′ is not in the form P |Q for some P .

Example 3.5 The (non-deterministic/probabilistic open/closed) transition system
of

∑
i∈I [pi].P + αh.Q is the same as that of

∑
i∈I [pi].P . The transition system of

τh1 .P1 + τh2 .P2 + αh′ .Q ↑ {{(h1, 1), (h2, 3), (h3, 2)}}, where h1, h2, h3, h
′ are distin-

guished handlers, is the same as that of [.25]P1 + [.75]P2. The transition system
of τh1 .P1 + τh2 .P2 + τh3 .P3 + τh4 .P4 ↑ {{(h1, 1), (h2, 3)}{(h3, 1), (h4, 1)}{(h′, 1)}},
where h1, h2, h3, h4, h

′ are distinguished handlers, is the same as that of ([.25]P1 +
[.75]P2)+([.5]P3 +[.5]P4). The transition system of τh1 .P1 +τh2 .P2 +τh2 .P3 +αh′ .Q↑
{{(h1, 1), (h2, 3)}}, where h1, h2, h

′ are distinguished handlers, is the same as that
of ([.25]P1 + [.75]P2) + ([.25]P1 + [.75]P3).

The transition system of (ah1 .P+bh2 .Q|R)↑{{(h1, 1), (h2, 3)}}, where output ac-
tions a and b occurr in R with neutral handle ∗, represents an external probabilistic
choice between input actions a and b: if R offers synchronization (output) for both
of them at the same time then they are executed with probabilities .25 (a action)
and .75 (b action) otherwise the synchronization offered by R is executed. The tran-
sition system of (ah1 .P1 +bh2 .P2 +ch3 .P3|R)↑{{(h3, 1)}}↑{{(h1, 1), (h2, 3)}}, where
output actions a, b and c occurr in R with neutral handle ∗, represents a probabilis-
tic/prioritized choice among input actions a, b and c: if R offers synchronization
(output) for all of them at the same time (in general if the synchronization set
offered by R includes output c) then the c action is executed (since “↑{{(h3, 1)}}”
syntactically occurs before “↑ {{(h1, 1), (h2, 3)}}”); otherwise if output on c is not
offered and both output on actions a and b are offered then a is executed with
probability .25 and b with probability .75; finally if just output on action a or on
action b is offered that the correspondig action is executed with probability 1.

In general we can express (external) probabilistic choices at multiple priority
levels by using P ↑G to successively prioritize (and close) actions. We can use

P ↑Gn ↑Gn−1 . . .↑G1

to express that actions whose handle (after synchronization) belongs to Gn are at
priority level n and a non-deterministic/probabilistic choice among them occurs
based on the weight functions in Gn, actions whose handle belongs to Gn−1 are
at a lower priority level n − 1 and a non-deterministic/probabilistic choice among
them occurs based on the weight functions in Gn−1, and so on...: actions whose
handle belongs to G1 are at the lowest (supposing that all actions used in P have
been closed/prioritized) priority level 1 and a non-deterministic/probabilistic choice
among them occurs based on the weight functions in G1.

As far as the congruence property of “'” is concerned, first of all we have
to make the definition of −−−−→∗ and −−−−→+ slightly more complicate by using

19

Bravetti

∑
i∈I [pi].Pi −−−−→ σ{(Pi,

∑
j∈I:Pj=Pi

pj)|i∈I}

P −−−−→σ

P +Q−−−−→σ

P −−−−→σ

P |Q−−−−→σ|Q

P −−−−→σ

P\L−−−−→σ\L

P −−−−→σ

P [ϕ]−−−−→σ[ϕ]

dom(g)∩{h|P
τh
−−−−→}=D 6= ∅ ∀h∈ D.P

τh
−−−−→ Ph

P ↑G−−−−→σ{(Ph,(
∑

h′∈D:Ph′=Ph
g(h′))/g(D))|h∈D} ↑G

g ∈ G

P −−−−→σ

P ↑G−−−−→σ↑G

P{recX.P/X}−−−−→σ

recX.P −−−−→σ

Table 4
Additional rules for non-deterministic/probabilistic reduction transitions

probabilistic schedulers like in [8]. Such schedulers lead to an increased capability of
equating states (without modifying the definition of equivalence): e.g. single system
transitions can be matched even if the distribution of one of them is just obtained as
a probabilistic combination of the distributions of the others (instead of matching
transitions by requiring them to have the same distribution). The adoption of
probabilstic schedulers is essential for the aggregation of multiple occurrences of
the same states in a probabilistic choice, as e.g. in [.2]P + [.8]P that has the
same semantics as [1]P , (and ultimately for the aggregation of states belonging to
the same equivalence class) to be compatible with equivalence (weak congruence).
Moreover, the congruence for the parallel operator is crucially based on the adoption
of schedulers with partial visibility. The definition of −−−−→∗ and −−−−→+ must
be further complicated by additionally requiring that the corresponding scheduler
satisfies the following partial visibility condition: the decision about the probabilistic
reduction of a given (sequential) process to be performed in a state must depend
only on the state of such a process and on the hystory of the states of such a process.
In general, when such a scheduler reaches a state: first decides which (sequential)
process must perform a probabilistic reduction (this decision can depend on the
whole state and on the history of whole states like for schedulers defined in Sect. 3.1),
then decides which probabilistic reduction of the chosen process is to be performed
by using partial visibility as explained above. Such a property is natural, since, like
for probabilities, the decisions about the choice of the reductions to be performed
on a process should not depend on the decisions about the choice of the reductions
to be performed in the other processes. See [3] for details about congruence.

3.3 Aggregating directly in operational semantics

The idea is that, similarly as in the purely non-deterministic case, we can represent
the behavior of a system in a minimal aggregated way by just saying which states s

20

Bravetti

are reducible, i.e. such that s>>, and by showing directly which distributions σ̂ over
non-reducible states and divergence (denoted by ↑) are reachable by reducible states
s, i.e. σ̂ ∈ PDistS6>>∪{↑} such that s−−−−→+

c σ ∧ σ(6>>∨ ↑) and σ 6>> = σ̂6>> instead
of including all −−−−→c transitions in labeled transition systems. Note however,
that, in the case probabilistic schedulers are adopted, since infinite schedulings
are possible, in the general case, we have (continuously) infinite σ̂ distributions
reachable by states. Adopting the non-probabilistic schedulers of Sect. 3.1 does not
solve completely the problem, since, e.g., RecX.[.2]X+[.8]([1]a+[1]b) would reach a
(enumerable) infinite number of σ̂ distributions too. Only by restricting to the case
where all choices are purely probabilistic (see below), we can be sure of branching
finiteness.

Definition 3.6 A non-deterministic/probabilistic aggregated open/closed transi-
tion system is a quintuple (S,Lab,Red,−−→c,−−−−→o), where

• S is a countable set of states,
• Lab is a countable set of labels of open transitions,
• Red is the subset of S of reducible states,
• −−→c ⊆ Red × PDist(S−Red)∪{↑} is a transition relation, leading directly from

reducible states to discrete probability distributions over non-reducible states and
divergence “↑”, that represents multiple closed transitions

• −−−−→o ⊆ (S−Red) × Lab × S is a transition relation labeled over Lab that
represents open transitions,

As usual, we use predicate >> to single out reducible states, i.e. s>> if s ∈ Red,
s 6>> otherwise. We use σ̂ to range over PDist(S−Red)∪{↑}.

The aggregated semantics of processes can be obtained, by determining Red

and −−→c from −−−−→c as explained above and by just leaving −−−−→o unchanged,
from the semantics of Sect. 2.2.

Equivalence over non-deterministic/probabilistic aggregated open/closed transi-
tion system can be directly defined (by simply applying the correspondance above)
as follows.

Definition 3.7 A symmetric relation β over non-reducible states of a non-deter-
ministic/probabilistic aggregated open/closed transition system (S,Lab,Red,
−−→c,−−−−→o) is a weak equivalence if, whenever (s1, s2) ∈ β:

• If s1

l
−−−−→o s

′
1 and (s′1−−→c σ̂ or σ̂6>>(s′1)=1) then, for some s′2 and σ̂′, with

s2

l
−−−−→o s

′
2 and (s′2−−→c σ̂

′ or σ̂′6>>(s′2)=1), we have σ̂6>> ≡β σ̂′6>>.

Two non-reducible states s1, s2 are weakly equivalent, written s1 ≈ s2, iff (s1, s2)
is included in some weak equivalence.

Definition 3.8 Two states s1, s2 of a non-deterministic/probabilistic aggregated
open/closed transition system (S,Lab,Red,−−→c,−−−−→o) are weakly congruent,
written s1 ' s2, iff:

• If s1

l
−−−−→o s

′
1 and (s′1−−→c σ̂ or σ̂ 6>>(s′1)=1) then, for some s′2 and σ̂′, with

21

Bravetti

s2

l
−−−−→o s

′
2 and (s′2−−→c σ̂

′ or σ̂′6>>(s′2)=1), we have σ̂6>> ≡≈ σ̂′6>>.
• If s1−−→c σ̂ then, for some σ̂′, with s2−−→c σ̂

′, we have σ̂6>> ≡≈ σ̂′6>>.

and a symmetrical constraint holds true for moves of s2 as well.

The aggregated semantics can be also obtained directly from processes similarly
as in the non-deterministic case. In the following we show how this can be done
in the pure probabilistic case, i.e. for processes such that: (i) we have at most
one probabilistic choice occurring (unguarded) in the scope of non deterministic
choices, (ii) for every P ↑G operator, the set G includes a single partial function g.
We will then discuss how the presented semantics can be extended to the general
non-deterministic/probabilistic case.

The non-deterministic/probabilistic aggregated open/closed transition system is
(P, OAct,Red,−−→c,−−−−→o), where the set of reducible states Red is taken to
be the smallest subset of P that includes terms

∑
i∈I [pi].Pi, where Pi are arbitrary

processes of P, and is such that

P ∈ Red =⇒ P+Q,Q+P, P |Q,Q|P, P\L,P [ϕ], P ↑G∈Red

P
τh
−−−−→o ∧ ∃g∈G : h∈dom(g) =⇒ P ↑G ∈ Red

P{recX.P/X} ∈ Red =⇒ recX.P ∈ Red

and −−−−→o (denoted simply by −−−−→) is still defined by the rules of Table 1 plus
symmetric rules; however, differently from Sect. 2.2, here we take γ to just range
over the set of open actions OAct (thus now excluding τ) and we have that predicate
>> (re-defined above) is directly determined from set Red. Finally, −−→c (here
denoted simply by −−→) is defined by

P −−→ σ̂ ⇔ ∀P̂ ′ ∈ P ∪ {↑}. σ̂(P̂ ′) =
∑

P
p
−−→ P̂ ′

p

where 8 the probability labeled multi-transition relation −−→, a multi-set over
P × [0, 1]×P, is defined by the rules of Table 5 plus symmetric rules, starting from
Red and −−−−→: in Table 5 a transition is taken with multiplicity n if it can be
derived in n different ways.

As in the pure non-deterministic case, if unguarged recursion is somehow disal-
lowed, then the preliminary definition of setRed is not necessary and non-reducibility
of states can be just determined by absence of −−→ transitions.

The semantics above can be extended to deal with the general non-deterministic/
probabilistic case by just adding information, representing scheduling choices, to
reduction transitions. This must be done so to distinguish, in a given reducible state,
outgoing probabilistic transitions belonging to different schedulers. The information
can be produced as an additional label that records application of operators by their
derivation rules. Another possibility is to define the semantics directly on reduction
transitions P −−→ σ̂. It is possible to do this by defining a preorder over partial
probability distributions that coincides with point to point ≤ on the probability

8 In the summation, a distinguished istance of p is considered for each multiple instance of that same

transition P
p

−−→ P̂ ′.

22

Bravetti

associated to states and by defining the semantics of a term to be the one with
the minimal paritial probability distributions satisfying the operational semantics.
The use of such a pre-order can be seen, for instance, in term recX.([.4]l.0 + [.6]X),
whose semantics is evaluated by starting from a partial probability distribution that
assigns zero to all states and incrementing such a partial probability distribution
by applying the operational rules.

Note that another way, common in the literature (see, e.g., [1]), to force the
system to be purely probabilistic is to adopt a different “+” operator, where prob-
abilistic (reduction) transitions do not resolve the choice. More precisely, by using
the notation for (non-aggregated) probabilistic transitions used in this paper and
by denoting such an operator with “u”, the semantics is:

P −−−−→σ

P uQ−−−−→σ uQ

and a symmetric rule, i.e. the same rules for reduction transitions that we have
for parallel, while the semantics for open transition is the same as that of “+”.
Aggregated reduction transitions for “u” are determined with the same rules used
for parallel in Table 5. The use of “u” instead of “+” and of restricted P ↑ G
operators, where the set G includes a single partial function g, guarantees that all
reducible states are purely probabilistic in the aggregated model.

3.4 A variant compatible with probabilistic standard observational congruence

The machinery for internal/external probability and multilevel priorities can be
modified to make it compatible with (probabilistic) standard Milner’s observational
congruence. From the one hand we loose the distinction between reducible and
unreducible states (i.e. recX.τ.X is now equated by weak bisimulation to 0), from
the other hand we observe also intermediate (reducible) state in τ paths, so the
equivalence becomes sensitive to the branching structure of τ behaviours and the
state space reduction by aggregation of τ transitions (and elimination of intermedi-
ate states) less effective.

More precisely, we consider probabilistic observational congruence and prob-
abilistic weak bisimulation equivalence as defined in [8] for the so-called “simple
model”: non-deterministic/ probabilistic open/closed transition systems can be seen
as a restriction of such a model where: (i) closed reduction transitions correspond
to probabilistic τ transitions and (ii) open labeled transitions correspond to prob-
abilistic labeled (non-τ) transitions that lead to a distribution giving probability 1
to a single target state.

As in the pure non-deterministic case, the crucial modification that we have to
do in order to make the process algebra of Sect. 3.2 compatible with probabilistic
observational congruence concerns the parallel operator. This because, in terms
of the probabilistic algebra we have, e.g., that while ah.0|recX.[1]X has the same
transition system of recX.[1]X, ah.0|[1]0 has the same transition system of [1]ah.0,
hence observational congruence cannot be a congruence.

We must therefore consider 0 (that is weakly bisimilar to recX.[1]X) as a failure
event. As a consequence: we introduce in the syntax of behaviour expressions E

23

Bravetti

P >> 6∃p, P ′ : P
p

−−→ P ′

P
1

−−→ ↑

Pj 6>>∑
i∈I [pi].Pi

pj

−−→ Pj
j ∈ I

Pj
p

−−→ P̂ ′∑
i∈I [pi].Pi

pj ·p
−−→ P̂ ′

j ∈ I

P
p

−−→ P̂ ′

P +Q
p

−−→ P̂ ′

P
p

−−→ P̂ ′ Q 6>>

P |Q
p

−−→ P̂ ′|Q

P
p′

−−→ P̂ ′ Q
p′′

−−→ Q̂′

P |Q
p′·p′′
−−→ P̂ ′|Q̂′

P
p

−−→ P̂ ′

P\L
p

−−→ P̂ ′\L

P
p

−−→ P̂ ′

P [ϕ]
p

−−→ P̂ ′[ϕ]

dom(g)∩{h′|P
τh′
−−−−→}=D P

τh
−−−−→ P ′ P ′ ↑G 6>>

P ↑G
g(h)/g(D)
−−→ P ′ ↑G

h∈ dom(g), g∈ G

dom(g)∩{h′|P
τh′
−−−−→}=D P

τh
−−−−→P ′ P ′ ↑G

p
−−→ P̂ ′′ ↑G

P ↑G
(g(h)/g(D))·p
−−→ P̂ ′′ ↑G

h∈ dom(g), g∈ G

P
p

−−→ P̂ ′

P ↑G
p

−−→ P̂ ′ ↑G

P{recX.P/X}
p

−−→ P̂ ′

recX.P
p

−−→ P̂ ′

Table 5
Additional rules for aggregated non-deterministic/probabilistic reduction transitions

(and of processes P) successful termination 1, we add to the set OAct of open actions
a special action

√
, denoting successful termination, and we modify the operational

semantics of Table 1 exactly as in the pure non-deterministic case.
As far as the congruence property of probabilistic observatonal congruence is

concerned, since, according to the definition given in [8], probabilistic weak equiva-
lence matches single probabilistic reductions to weak transitions (instead of “maxi-
mal” weak transitions into weak transitions like in the trace-based equivalence), here
the adoption of probabilistic schedulers and the requirement about partial visibility
of schedulers are not needed.

In the case we consider a generalized definition of probabilistic weak bisimulation
where arbitrary weak transitions must be matched by weak transitions then we have
to adopt, as for the trace-based equivalence, the probabilistic schedulers of [8] (a
phenomenon similar to the sequence of schedulers in the proof of congruence for
the trace-based equivalence with respect to the “P ↑ G” operator arises, due to the

24

Bravetti

decomposition of the weak transitions into single transitions and re-composition in
the other term).

4 Possible extensions: discrete and continuous time

A simple techinque, previoulsy used in the literature (e.g. in the context of con-
tinuous time, with exponential distributions), to add capability to express time to
a process algebra is to attach the timing information to actions when a model is
considered to be complete.

By exploiting our approach, it is possible to do this compositionally: when a
part of a system is closed via the “P ↑ G” operator, we can put inside set G the
timing information to be attached to actions. We can express, e.g.: (exponentially
distributed) continuos time by putting rates of exponential distributions instead
of weights inside G and by letting the semantics of “P ↑ G” to additionally label
(with respect to that considered in Sect. 3.3) reduction transitions with the assigned
(overall) rate; discrete time by assuming that the resulting reduction transition take
one time unit to be executed (and by preserving the possibility to include weights
inside G to express probabilistic choices).

When timing is considered, trace-based equivalence is established by addition-
ally requiring, w.r.t. that considered in the probabilistic case (see Def. 3.2 and
Def. 3.3), that the (continuous or discrete) probability distribution of time associ-
ated to matching aggregated reduction transitions (−−−−→∗c or −−−−→+

c) must be the
same. Moreover in the general case (if we do not want equivalent systems to just
preserve particular properties, as we will discuss below) it is necessary to require
that, not only the mean probability distribution over states reached by aggregated
reduction transitions (−−−−→∗c or −−−−→+

c) are compared, but also, probability distri-
butions conditioned on the amount of time taken by aggregated reduction transitions
(i.e. a probability distribution is matched for every possible, discrete or continuous,
time value).

With respect to bisimulation-based (ordinary lumping-based) markovian aggre-
gation, which requires (as for the equivalence considered Sect. 3.4 for probabilistic
systems) to preserve the branching structure of reduction transitions, the obtained
equivalence is more coarse. For example, with discrete time

[p1][1]a.0 + [p2][1]b.0 = [1]([p1]a.0 + [p2]b.0)

and with continuous exponentially distributed time

[λ1][µ]a.0 + [λ2][µ]b.0 = [λ1 + λ2]([µ ·
λ1

(λ1 + λ2)
]a.0 + [µ ·

λ2

(λ1 + λ2)
]b.0). 9

Such examples show how, by considering coarser equivalences with respect to bisim-
ulation (as trace-based or even testing-based equivalences), we can reduce the num-
ber of system states by merging states (that otherwise would not be mergeable, due

9 In order for the aggregation to take place it is essential that the states reachable after the first exponential
phase have all the same total rate, i.e. sum of rates performable exponential delays (µ in the example) ,
otherwise the second phase, when aggregated, would become hyperexponentially distributed, instead of just
exponentially distributed.

25

Bravetti

to necessity of preserving the branching structure) and still obtain systems with the
same transient state (and consequently steady state) behaviors. For instance, in the
example above, the states [µ]a.0 and [µ]b.0 that are not lumpable (cannot be put in
the same quivalence class by markovian bisimulation) can, instead, be merged by
considering our equivalance: even if the states are not lumpable such aggregation
is correct from a stochastic viewpoint. Similarly, in the discrete time case, for the
states [1]a.0 and [1]b.0.

Finally, we would like to note that, in the continuous time case, if a parallel
operator like that of Sect. 3.2 is considered, where, in the case of parallel of closed
states, the reduction transition to be executed is just non-deterministically chosen
(i.e. time reduction transitions are non-deterministically interleaved by parallel,
thus obtaining a sequentilization of their execution time), then it is possible to
adopt a very coarse version of the equivalence which just matches the mean time
for performing aggregated transitions (instead of matching the time distribution)
and the mean probability distribution over states reached by aggregated reduction
transitions (instead of probability distributions conditioned on time). Due to the
insensitivity property of the considered systems (time distributions are never really
contemporaneously executed because of the priority of reduction transitions over
open transitions and of the way parallel of closed states is defined) such an equiva-
lence can be a congruence and preseves the steady state behavior of systems. The
obtained aggregating power is much greater with respect to the general equivalence
above. More precisely every system can be turned into an equivalent aggregated one
where reducible states directly reach, via exponential rate-labeled reduction tran-
sitions, distributions over non-reducible states or non-escapable divergent states:
rates are obtained as the inverse of the mean time for performing aggregated transi-
tions and reached distributions are just given by the mean probability distribution
reached by aggregated reduction transitions.

References

[1] S. Andova, “Process Algebra with Probabilistic Choice”, in Proc. of Formal Methods for Real-Time
and Probabilistic Systems, 5th International AMAST Workshop, LNCS 1601:111-129, 1999.

[2] R. Cleaveland, G. Luttgen, V. Natarajan, “Priority in Process Algebras”, in Handbook of Process
Algebra, Chapter 12, pp. 711-765, Elsevier, 2001

[3] M. Bravetti, Expressing Priorities, External Probabilities and Time in Process Algebra via Mixed
Open/Closed Systems Technical report UBLCS-2007-18, Department of computer science, University
of Bologna, June 2007.

[4] M. Bravetti, R. Gorrieri, R. Lucchi, G. Zavattaro. “Quantitative Information in the Tuple Space
Coordination Model”, Theoretical Computer Science, 346:1, pages 28-57, Elsevier, 2005.

[5] N. Lynch, R. Segala, F. Vaandrager, “Observing Branching Structure through Probabilistic Contexts”,
To appear in Siam Journal on Computing.
Available at http://theory.lcs.mit.edu/tds/lynch-pubs.html

[6] R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.

[7] R. Milner, “A complete axiomatization for observational congruence of finite-state behaviours”, in
Information and Computation 81:227-247, 1989

[8] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
1995.

26

EXPRESS 2007 Preliminary Version

A Chart Semantics for the Pi-Calculus

Johannes Borgström1,2

TU Berlin

Andrew D. Gordon3 Andrew Phillips4

Microsoft Research

Abstract

We present a graphical semantics for the pi-calculus, that is easier to visualize and better suited to expressing causality
and temporal properties than conventional relational semantics. A pi-chart is a finite directed acyclic graph recording a
computation in the pi-calculus. Each node represents a process, and each edge either represents a computation step, or a
message-passing interaction. Pi-charts enjoy a natural pictorial representation, akin to message sequence charts, in which
vertical edges represent control flow and horizontal edges represent data flow based on message passing. A pi-chart repre-
sents a single computation starting from its top (the nodes with no ancestors) to its bottom (the nodes with no descendants).
Unlike conventional reductions or transitions, the edges in a pi-chart induce ancestry and other causal relations on processes.
We give both compositional and operational definitions of pi-charts, and illustrate the additional expressivity afforded by the
chart semantics via a series of examples.

Keywords: pi-calculus, causality, message sequence charts.

1 Message Sequence Charts as Process Histories

Message sequence charts (MSCs) are a successful graphical notation for describing the his-
tory of interactions between system components running in parallel. They are standardized
by the ITU in connection with the Specification and Description Language (SDL) [22,21],
and are included, as sequence diagrams, in the Unified Modeling Language (UML) [33].
MSCs are widely used to specify the behaviour of systems made up of multiple com-
ponents; a substantial literature addresses the problems of defining formal semantics for
MSCs and deriving implementation code from MSCs used as specifications [27,2].

This paper explores a different direction, the use of MSCs as a formal semantics, in
terms of potential execution histories, for known code. We work within a process calculus,

1 A long version of this paper is available at http://lamp.epfl.ch/˜jobo/chartLONG.pdf
2 Email: jobo@cs.tu-berlin.de
3 Email: adg@microsoft.com
4 Email: aphillip@microsoft.com

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:jobo@cs.tu-berlin.de
mailto:adg@microsoft.com
mailto:aphillip@microsoft.com

Borgström, Gordon, Phillips

the pi-calculus, although the ideas should apply to other languages. The semantics of the pi-
calculus is typically specified as a reaction or reduction relation, or as a labelled transition
system [30,39]. We propose a form of MSC as an alternative.

In fact, MSCs are already used informally to illustrate computations in process cal-
culi. For example, Bonelli and Compagnoni [5] visualize intended histories of pi-calculus
processes with MSCs. Phillips, Yoshida, and Eisenbach [36] illustrate the semantics of a
distributed abstract machine for the boxed ambient calculus [11] with MSCs. Jeffrey and
Rathke [23] consider traces induced by a labelled transition system, and make informal
connections between these and sequence diagrams. A paper [4] on the TulaFale process
language uses an MSC to show an attack on a security protocol. In these papers, the formal
semantics is given by relations and MSCs appear only informally. The attraction of MSCs is
that they pictorially represent the identity of individual process components as they evolve
and interact with other components; the conventional reduction semantics hides this infor-
mation. Since the history and identity of components is valuable for expressing formal
properties of systems, we go further and ask whether MSCs are suitable in themselves as a
formal semantics.

To explain some of the basic ideas and to see some of the benefits of a chart semantics
for the pi-calculus, we describe a simple example. We suppose there is a single stateful
server S(n,s) which when called with a value n′ and a session channel c, responds by
sending on c its current state n, provisions a private service R(c) to handle the session, and
changes state to S(n′,s). Here is pi-calculus code for such a server, together with a client
C(n′,s) that initiates such a session, and then runs A(n,c) where n is the previous state of
the server and c is the session channel.

S(n,s) := s(n′,c).(c〈n〉.R(c) | S(n′,s))

C(n′,s) := (νc)s〈n′,c〉.c(n).A(n,c)

The pi-chart below shows interactions between one server and two clients. Pi-charts are in
the spirit of MSCs but do not conform to the letter of the standard [21]. In particular, we
allow processes to fork, and to generate fresh names.

C(n1,s) S(n,s) C(n2,s)

〈n1,c1〉 on s

〈n〉 on c1 S(n1,s)

〈n1〉 on c2

〈n2,c2〉 on s
R(c1)

S(n2,s) R(c2)

new c1

A(n,c1)

new c2

A(n1,c2)

A pi-chart is a directed acyclic graph. Both nodes and edges are labelled. As in this
example we usually omit some node and edge labels to avoid clutter. Nodes are labelled

28

Borgström, Gordon, Phillips

with processes. Downward (or oblique) edges represent process evolution and are labelled
with next labels, including new c, which represents the generation of a channel c, and ε ,
which represents the unfolding of a process constant or parallel composition. The next
label ε is generally omitted. Horizontal edges represent interaction, and are labelled with
communication labels, 〈c̃〉 on a.

A pi-chart represents a single computation starting from its top (the nodes with no
ancestors) to its bottom (the nodes with no descendants), with restrictions corresponding
to any new names. The computation in the example corresponds to the following series of
reductions in a conventional reduction semantics.

C(n1,s) | S(n,s) | C(n2,s)→∗ (νc1)(νc2)(A(n,c1) | R(c1) | S(n2,s) | R(c2) | A(n1,c2))

As a means of visualizing computation, pi-charts have advantages over the conventional
relational semantics. A series of computation steps in the relational semantics is hard to
visualize; listing the series of intermediate states can lead to an overwhelming amount of
syntactic detail. Conventionally, reduction and transition relations are closed up to associa-
tivity and commutativity of parallel composition. Hence, it is hard to track the evolution
of individual threads within a system. One solution is to introduce syntax for abstract
locations [13], although this increases the amount of syntactic detail when visualizing re-
ductions. On the other hand, pi-charts have a two dimensional representation that is easily
rendered pictorially. The graphical structure allows detail, such as process labels, to be
omitted with little risk of ambiguity. Vertical paths in a chart track the evolution of indi-
vidual processes; in our example, we see that S(n,s) is an ancestor of R(c1), S(n2,s), and
R(c2), but not of the other processes at the bottom of the chart. (There is, though, a causal
relation between S(n,s) and all the processes at the bottom.)

In general, MSCs have been highly successful as a means of visualising and validating
dynamic behaviour of concurrent systems, and their graphical representation has also facil-
itated communication between groups with different backgrounds [28]. We believe that a
sequence chart representation of pi-calculus computations could have similar benefits.

We proceed as follows. In Section 2 we formally define a chart semantics for a syn-
chronous pi-calculus with mixed choice. We give three separate inductive characterizations
of the set of pi-charts; Theorem 2.4 establishes the equivalence of these characterizations.
As evidence for the expressivity of pi-charts, we give a series of examples of correctness
properties expressible using charts. Section 3 investigates the relationship of pi-charts to
a conventional reduction semantics. Theorem 3.3 shows the relation between the parallel
compositions of processes at the top and bottom of a pi-chart coincides with the reflexive
and transitive closure of a conventional reduction semantics, up to top-level restrictions.
Theorem 3.5 relates structural congruence of processes with a structural congruence on
graphs. Sections 4 and 5 conclude and discuss related work.

Appendix A defines the conventional reduction semantics. Appendix B shows how
charts can usefully illustrate the behaviour of biological reactions expressed in the pi-
calculus. Appendix C is a case study of proving properties expressible with pi-charts.
We introduce a type system built from standard notions of name groups, group creation,
and usage bounds on channels. Formal data flow and usage properties are conveniently
expressed using charts. Theorem C.1 establishes bounds on data flow and channel usage
guaranteed by the type system.

29

Borgström, Gordon, Phillips

2 A Chart Semantics

We consider a polyadic pi-calculus, with synchronous communication, mixed choice, and
process constants. Standard variations such as replication operators or asynchronous output
can be accommodated in our framework, but we omit the details. The only unusual feature
is that we annotate the autonomous τ prefixes with terms t from a free algebra A over
names; these terms serve various purposes, such as representing events (for correspondence
assertions [20]) and type annotations (for the system in Appendix C).

Syntax for Pi-Calculus Processes: P

a,c,x names and variables
M ::= M +M | a〈c̃〉.P | a(x̃).P | τt .P mixed choice
P,Q,R ::= M | (P | Q) | (νa)P | A(c̃) | 0 process

Let P be the set of all processes. Names identify communication channels. We write
fn(P) for the set of names occurring free in P. Let P{y/x} be the outcome of substituting y
for each free occurrence of x in P. We write ã, c̃, x̃ for finite tuples of names.

The intended meaning of the process syntax is as follows. An output a〈c̃〉.P sends the
tuple c̃ on channel a, to become P. An input a(x̃).P receives a tuple c̃, of the same length
as x̃, off channel a, to become P

{
c̃/̃x
}

. In a(x̃).P, the names x̃ are bound with scope P,
and assumed to be pair-wise distinct. A process τt .P autonomously marks the event t,
and becomes P. A choice M +N behaves either as M or N. A parallel composition P | Q
behaves as P running in parallel with Q. A restriction (νa)P creates a fresh name a and
becomes P; the name a is bound and has scope P. We assume a given constant library,
a finite collection of process constants, each of which has a definition, written A(x̃) := P,
where fn(P) ⊆ x̃. Given such a definition, a process A(c̃) behaves as P

{
c̃/̃x
}

. Finally, 0
does nothing.

We identify phrases of syntax up to consistent renaming of bound names; for instance,
(νa)P = (νb)P

{
b/a
}

if b /∈ fn(P). We also identify processes up to associativity and com-
mutativity of the choice operator.

2.1 Labelled graphs

Charts are particular labelled graphs. Nodes are drawn from an infinite set of node iden-
tifiers, I, ranged over by ι . Nodes are labelled with pi-calculus processes. Each edge has
either a next label (n`) or a communication label (〈c̃〉 on a). A next label represents an
event, and labels an edge from a process to its successor; the next label new x, where the
free name x is globally fresh, represents name generation. Annotation t represents a tau
step, while next step ε represents all other kinds of process evolution, including unfold-
ing of process constants and parallel compositions. A communication label represents a
message passing from an output to an input.

30

Borgström, Gordon, Phillips

Edge Labels for the Pi-Calculus: nL and L

n` ∈ nL ::= next label
new x name generation
t annotation
ε next step

` ∈ L ::= edge label
n` next label
〈c̃〉 on a communication

A labelled graph is a pair (N,E) where N : I→ P and E : I× I→ L are finite maps.
Given G =(N,E), we write NG for N and EG for E. A graph G is well-formed iff dom(EG)⊆
(dom(NG)× dom(NG)). The following notations express graphs as compositions of la-
belled nodes and edges.

ι
`
−_ ι

′ := (∅,{((ι , ι ′), `)})
ι •P := ({(ι ,P)},∅)

G∪H := (NG∪NH ,EG∪EH) when a well-formed graph
G\H := (NG \NH ,EG \EH)

2.2 Primitive pi-charts

We begin our chart semantics by defining a set of primitive pi-charts. Let a primitive chart
be any instance of one of the following five schemas. Here and elsewhere we omit the
ε label from edges. We refer to nodes with the variables ι1, ι2, ι3, ι4, assumed pair-wise
distinct. Let Cp be the set of primitive charts.

Primitive Charts: Cp

ι1 (νa)P

newa

ι2 P

ι1 P | Q

ι2 P ι3 Q

ι1 τt .P+M

t

ι2 P

ι1
a〈c̃〉.P+M

〈c̃〉 on a
ι2

a(x̃).Q+N

ι3P Q
{

c̃/̃x
}

ι4

ι1 A(c̃)

ι2 P
{

c̃/̃x
}

when A(x̃) := P

Since we identify processes up to renaming of bound names, from (νa)P we get in-
finitely many primitive charts of the first form above, one for each possible choice of a.

2.3 The top and bottom of pi-charts

Each pi-chart has a top, the nodes with no predecessors, and a bottom, the nodes with no
successors. A core idea, formalized later as Theorem 3.3, is that a pi-chart represents a
computation starting with the processes at the top, and ending with those at the bottom. We
formalize top and bottom below, together with other notations needed for a compositional

31

Borgström, Gordon, Phillips

definition of pi-charts: new(G) is the set of names generated within a chart; Gnil is the
edgeless graph consisting of the terminal nodes of G, that is, those labelled with 0.

G> := ({(ι ,P) | NG(ι) = P∧¬(∃ι ′,n`. EG(ι ′, ι) = n`)},∅)
G⊥ := ({(ι ,P) | NG(ι) = P∧¬(∃ι ′,n`. EG(ι , ι ′) = n`)},∅)

new(G) := {a | new a ∈ range(EG)}
Gnil := ({(ι ,0) | NG(ι) = 0},∅)

IG := dom(NG)

We write nnG(S) for ∪ι∈Sfn(NG(ι)) when S ⊆ IG. When speaking about a particular
graph G, we often write nn(S) for nnG(S). We let nn(G) := nnG(IG). One invariant we
want to preserve is that all names that occur in a chart are either free in the processes
at the top of the chart or freshly created. A well-named chart is one satisfying nn(G) ⊆
nn(G>)]new(G); note that all primitive charts are well-named.

2.4 Three equivalent characterizations of pi-charts

We can now define how to build larger charts from primitive ones. We give three definitions,
two compositional and one operational in flavour, and show them equivalent.

Intuitively, two pi-charts may be composed in sequence if the bottom of the first equals
the top of the second. Dually, two pi-charts may be composed in parallel if they are com-
pletely disjoint. Given these notions, a pi-chart is either a singleton chart ι •P, a primitive
chart G ∈ Cp, or a composition G∪H where G and H are composable, either in sequence
or in parallel.

The following definitions make these intuitions precise; various freshness conditions
are needed to guarantee global uniqueness of generated names.

Sequential Composition: S(G,H)

If G and H are well-formed then S(G,H) iff
(1) IG∩ IH = IG⊥ \ I(G⊥)nil

= IH> ;
(2) new(H)∩new(G) = nn(G>)∩new(H) = ∅; and
(3) whenever ι ∈ IG∩ IH then NG(ι) = NH(ι).

Parallel Composition: P(G,H)

If G and H are well-formed then P(G,H) iff
(1) IG∩ IH = ∅; and
(2) new(G)∩new(H) = nn(G>)∩new(H) = nn(H>)∩new(G) = ∅.

A First Characterization of Pi-Charts: CSP

ι •P ∈ CSP

G ∈ Cp

G ∈ CSP

G,H ∈ CSP S(G,H)

G∪H ∈ CSP

G,H ∈ CSP P(G,H)

G∪H ∈ CSP

Although sequential and parallel compositions are intuitive and easy to define, they lack
some algebraic properties useful in proofs. As an example, if P(G1,G2) and S(G1∪G2,H),
we neither have S(G1,H) nor P(G1,H), in general. Moreover, inductive proofs using the

32

Borgström, Gordon, Phillips

definition of CSP require two inductive cases, where one ought to suffice. To overcome
these problems, we unify parallel and sequential composition into liberal composition, and
obtain a second definition of pi-charts.

Liberal Composition: L(G,H)

If G and H are well-formed then L(G,H) (“G before H”) iff
(1) IG∩ IH ⊆ IG⊥ and IG∩ IH ⊆ IH> ;
(2) new(H)∩new(G) = nn(G>)∩new(H) = nn(H> \G)∩new(G) = ∅; and
(3) whenever ι ∈ IG∩ IH then NG(ι) = NH(ι).

A Second Characterization of Pi-Charts: CL

ι •P ∈ CL

G ∈ Cp

G ∈ CL

G ∈ CL H ∈ CL L(G,H)

G∪H ∈ CL

By comparing definitions, it is clear that liberal composition is more permissive than
either parallel or sequential composition. Crucially, liberal composition is associative, and
preserves well-namedness.

Lemma 2.1 Assume that graphs G1,G2,G3 are well-named.

(1) If L(G1,G2) and L(G1∪G2,G3), then L(G2,G3) and L(G1,G2∪G3).

(2) If L(G2,G3) and L(G1,G2∪G3), then L(G1,G2) and L(G1∪G2,G3).

Lemma 2.2 If G1,G2 are well-named and L(G1,G2) then G1∪G2 is well-named.

By associativity (Lemma 2.1) we obtain the following iterative account of CL.

Lemma 2.3 G ∈ CL iff there exist pi-charts H1, . . . ,Hn ∈ Cp ∪{ι •P | ι ∈ I,P ∈ P} such
that G = H1∪ . . .∪Hn and L(H1∪·· ·∪Hi−1,Hi) for each i ∈ 2..n.

For our final definition, we start with an initial set of unconnected nodes and add prim-
itive charts one by one to the bottom. This amounts to an operational semantics. (We use
it as the basis of two separate pi-calculus implementations that output pi-charts in the dot
language, suitable for rendering with Graphviz [19].) We define chart extension G→ G′

(“G extends to G′”) as follows, and hence obtain a third characterization of pi-charts.

Chart Extension G→ G′ and a Third Characterization of Pi-Charts CI

G→ G′ iff there is H ∈ Cp such that G′ = G∪H and L(G,H) and IH> ⊆ IG⊥
CI := {G | G>→∗ G}

Theorem 2.4 CSP = CL = CI

Proof. We begin by proving that CL ⊆ CI , that is, that G ∈ CL implies that G> →∗ G.
Trivially, L(G>,G). By Lemma 2.3, there exist primitive pi-charts H1, . . . , Hn such that
G = H1∪ . . .∪Hn and L(H1∪ ·· · ∪Hi−1,Hi) for each i ∈ 1..n. Since L(G>,H1∪ . . .∪Hn)
Lemma 2.1(i) gives that L(G>,H1∪ . . .∪Hn−1) and L(G>∪H1∪ . . .∪Hn−1,Hn). We also
have IHn> ⊆ I(G>∪H1∪...∪Hn−1)⊥ , so G>∪H1∪ . . .∪Hn−1→ G. Inductively, G>→n G.

Secondly, we prove that CI ⊆CSP, that is, that if G>→∗ G then G ∈CSP, by induction
on the number of extensions. For the base case, G = G> = (NG,∅) ∈ CSP, by parallel
composition of charts of the form ι •P. For the induction case we have G = G′ ∪H with

33

Borgström, Gordon, Phillips

G′ ∈ CI , H ∈ Cp, L(G′,H) and IH> ⊆ IG′⊥ . As above (IG′⊥ \ IG′nil
)∪H ∈ CSP. By induction

G′ ∈ CSP. Since 0 6∈ dom(NIH>
) we get S(G′,(IG⊥ \ IG′nil

)∪H), so G′∪H ∈ CSP.
Finally, since S(G,H)∨P(G,H) =⇒ L(G,H), CSP ⊆ CL by induction. 2

2.5 Expressible properties

To end this section, we discuss some properties expressible with pi-charts. We may see the
edges of a chart G as a relation −_G ⊆ I×L× I. We split this relation, writing ι1

on
_G ι2 for

∃c̃,a. ι1
〈c̃〉 on a
−−−−_G ι2 and ι1

_
ι2 for EG(ι1, ι2) ∈ nL. Hence, we define some causal relations,

roughly following the terminology of Priami [38].

Causal Relations:

[Ancestor]G:=
_∗
G [Causes]G:= (

_
G∪

on
_G)∗ [Enables]G:= (

_
G∪

on
_G ∪(

on
_G)−1)∗

The node receiving a message enables the sending node and all of its descendants.
This is due to the synchronous nature of communication: the sender proceeds with the
knowledge that the message was received, just as if they had received an explicit acknowl-
edgement of reception. The “causes” relation only flows in the direction of communicated
messages; it is the equivalent in our setting to Lamport’s “happened before” relation [26].

Another causal semantics for the pi-calculus is proved semantics [9,17,16], which makes
a distinction between subject and object dependencies [7]. Since the latter are only defined
in terms of “bound output” labels of a labelled transition system, they have no direct coun-
terpart in our setting where all communication is internal to a pi-chart.

Let the nodes with ι as an ancestor be the descendants of ι . If ι2, ι3 are the nodes in
the primitive chart for parallel composition, the sets of descendants of ι2 and ι3 are disjoint.
(The “causes” and “enables” relations do not possess this property.)

Lemma 2.5 If a pi-chart G has distinct edges ι1
ε

−_ ι2 and ι1
ε

−_ ι3 then there is no ι4 such
that both ι2 [Ancestor]G ι4 and ι3 [Ancestor]G ι4.

We can concisely express some intensional properties of the interactions recorded in a
chart G as follows (omitting the subscripts G).

• “I got an answer to this message (ι1
〈a〉 on c̃
−−−−_ ι2).”

∃ι ′. (ι1 [Ancestor] ι
′)∧ (ι2 [Ancestor]

on
_ ι

′)

• “Every end(t) event was caused by a corresponding begin(t) event.” [20]

∀t, ι1, ι2∃ι ′. (ι1
end(t)
−−−_ ι2) =⇒ (ι ′

begin(t)
−−−−_[Causes] ι1)

• “I (ι1) only communicated with descendants of somebody else (ι2).”

∀ι ′ (ι1 [Ancestor]
on
_ ι

′) =⇒ (ι2 [Ancestor] ι
′)

• “No name created by me (ι1) was ever transmitted to somebody else (ι2).”

¬∃ι ′1, ι ′2,a, c̃. (b ∈ c̃)∧ (ι1 [Ancestor]
new b
−−−_ ι

′
1)∧ (ι ′1 [Ancestor]

〈c̃〉 on a
−−−−_ ι

′
2)∧ (ι2 [Ancestor] ι

′
2)

34

Borgström, Gordon, Phillips

3 Relating the Reduction Semantics and Chart Semantics

Appendix A defines a standard reduction semantics for our pi-calculus [30,39], based on
structural equivalence P ≡ Q, and reduction P→ Q. The only noteworthy detail is that
constant instantiation is a rule of reduction, not structural equivalence. This avoids the
syntactic constraints on definitions usually needed to avoid any unbounded unfolding.

3.1 Operational correspondence

We now develop the correspondence between the reduction semantics of the pi-calculus
and pi-charts. We begin by defining the process corresponding to a pi-chart: the parallel
composition of the processes at the bottom of the chart inside a restriction of the names
generated in the chart.

Unloading a pi-chart G to a process: [[G]]

[[G]] := (νnew(G))(∏ι∈IG⊥
NG(ι)) (hence: [[G]] = (νnew(G))[[G⊥]])

We split the primitive charts into housekeeping charts, that do not correspond to re-
duction steps, and computation charts, that do. Let the set of housekeeping charts, Ch, be
the subset of Cp generated just from the schemas for parallel composition and restriction.
Let the set of computation charts, Cc, be Cp \Ch. Similarly, we split the chart extension
relation→ into two relations→h and→c as follows. If G→ G∪H with H ∈ Ch, we write
G→h G∪H. Similarly G→c G∪H if G→ G∪H with H ∈ Cc.

We can then show that housekeeping extension does not change the process correspond-
ing to the chart, up to structural equivalence.

Lemma 3.1 Suppose G is a pi-chart and P≡ [[G]]. If G→h G∪H then P≡ [[G∪H]].

Reductions, on the other hand, are matched one for one by computation extension of
charts, possibly with some housekeeping beforehand to reveal the redex.

Lemma 3.2 Suppose G is a pi-chart and P≡ [[G]].

(1) If P→ P′ then G→∗h→c G′ with [[G′]]≡ P′.

(2) If G→c G′ then P→ P′ with [[G′]]≡ P′.

The full correspondence between many-step reduction of processes and pi-charts is then
given by the following theorem.

Theorem 3.3 P→∗ Q iff there is a pi-chart G with P≡ [[G>]] and Q≡ (νnew(G))[[G⊥]].

Proof. By Lemma 3.1, Lemma 3.2 and induction, with G and G′ in the lemmas given by
G := G> and G′ := G. 2

Conversely, if [[G>]]→∗ (νnew(G))[[G⊥]] for some graph G, the graph is not necessarily
a pi-chart. It may have spurious edges, for example. We cannot expect to recover the notion
of a pi-chart simply from the reduction semantics.

Many standard equivalences, such as barbed equivalence and congruence, are defined
in terms of the relation P→∗ Q, plus direct observations of process structure [39]. Theo-
rem 3.3 provides a basis for re-defining such equivalences in terms of charts.

35

Borgström, Gordon, Phillips

3.2 Structural equivalence on graphs

The set of pi-charts {G | ι •P→∗ G} generated by a process P is not preserved by structural
congruence of processes, that is, it is not true that if P≡ Q then P and Q will generate the
same charts, or even of the same shape. For example, consider two equivalent processes
(νa)(P |Q) and P | (νa)Q, where a /∈ fn(P). The first process will generate a fresh name a
and then branch to P and Q, whereas the second process will branch to P and (νa)Q, which
then can generate the fresh name a. We reconcile these differences by defining a notion of
structural congruence on graphs. Let G≡G′ be the least relation on graphs that is reflexive,
symmetric and transitive and that satisfies the following axioms.

Structural Equivalence on Graphs: G≡ H

ι1 (νa)(P | Q)

new a

ι2 P | Q

ι3 P Qι4

≡

ι1 P | (νa)Q

ι3 P ι2 (νa)Q

new a

Qι4

ι1 (νa)(νb)P

newa

ι2 (νb)P

newb

ι3 P

≡

ι1 (νb)(νa)P

newb

ι2 (νa)P

newa

ι3 P

ι1 (P | Q) | R

P | Qι2 Rι5

Pι3 Qι4

≡

ι1 P | (Q | R)

Pι3 Q | Rι2

Qι4 Rι5

P≡ Q
ι •P≡ ι •Q

G≡ G′ H ≡ H ′ L(G,H) L(G′,H ′)
G∪H ≡ G′∪H ′

We note various properties of equivalent charts in Lemma 3.4. The lemma states that
the nodes at the top of equivalent charts are equal up to structural congruence of processes
(1), and similarly for the nodes at the bottom (2). Equivalent charts also generate the same
fresh names (3), and their corresponding processes are equivalent (4).

Lemma 3.4 If G is a pi-chart and G ≡ H then H is a pi-chart and (1) G> ≡ H>, (2)
G⊥ ≡ H⊥, (3) new(G) = new(H), and (4) [[G]]≡ [[H]].

We can characterize structural equivalence of processes in terms of the extension rela-
tion G→ G′ on graphs and structural equivalence of graphs, as stated in Theorem 3.5. The
theorem states that equivalent processes generate equivalent charts, up to housekeeping ex-
tensions. Ideally we would like the statement of Theorem 3.5 to hold for G ≡ H rather
than the weaker G→∗h≡H (recall that→h denotes a “housekeeping” transition involving a
parallel composition or a restriction). Unfortunately, the stronger statement does not hold
in general. For a counterexample, consider the two equivalent processes (νa)(P | Q) and
P | (νa)Q, where a /∈ fn(P), and the charts G,H,G′ defined as follows.

36

Borgström, Gordon, Phillips

G =

ι1 (νa)(P | Q)

new a

ι2 P | Q
H =

ι1 P | (νa)Q

ι3 P ι2 (νa)Q

new a

Qι4

G′ =

ι1 (νa)(P | Q)

new a

ι2 P | Q

ι3 P Qι4

We have that ι1 • (νa)(P | Q) can extend to G but ι1 •P | (νa)Q cannot extend to any
chart structurally congruent to G. However, ι1 •P | (νa)Q→→ H and G can perform an
additional housekeeping extension to G′ with G′ ≡ H.

Theorem 3.5 P≡ Q iff whenever ι •P→∗ G there is H with ι •Q→∗ H and G→∗h≡ H.

4 Related Work

Starting with Petri [34], there is a substantial literature on graphs as a notation for states
of concurrent computations. Examples include process algebras inspired by Petri Nets [3],
together with a range of graph-based notations such as [18] and its numerous citations. In
the area of process calculi Milner’s pi-nets [29] represent pi-calculus processes as graphs,
where each node represents a channel and edges to a node represent inputs or outputs on
the channel. Rewrite rules on graphs coalesce nodes after an interaction. Other graph-
rewriting based models for the pi calculus include a hypergraph semantics [25] and a term
graph semantics [18]. History dependent automata [32] map the entire state space of a
pi-calculus process, where each node represents a separate state. The history of names is
recorded in the graph, but not the history of computations. Bigraphs [31] are a graphical
representation of both the computational and spatial aspects of a process. The graphical
stochastic pi-calculus [35] represents a pi-calculus process as a collection of synchronising
automata. All these process representations use graphs to represent states of computations,
but not the computation history. (However, in certain of the cases one can recover causal
relationships [10].) In contrast, a pi-chart represents one of the possible interaction histories
of a set of processes, themselves given by syntax trees.

A trace is a sequence of actions performed by a process. In the setting of the pi-calculus,
there are several formal definitions of trace, with the aim of defining properties of type sys-
tems [39], investigating asynchronous equivalences [6], and defining correspondence asser-
tions [20]. Proved traces [8,38] are decorated with the locations in the term that participated
in a transition. Pi-charts enable two-dimensional rendering and record more information,
especially regarding restricted names as the subjects and objects of communication.

Various graphical structures are used to define noninterleaving semantics and equiva-
lences of processes; this work has mainly concerned other process calculi and algebras,
but recently Varacca and Yoshida [41] develop such a semantics for the pi-calculus using
event structures [42]. In contrast, pi-charts are not directly useful (and are not intended)
for generating equivalences on processes. The equivalence induced by the set of pi-charts
{G | ι •P→∗ G} extending from a process P is syntactic identity, since the process P is
embedded in each member of the set. Of course, Theorem 3.3 allows us to reformulate any
equivalence relation defined using the interleaving semantics P→∗ Q in terms of the chart
semantics. Our development of structural congruence of graphs, leading to Theorem 3.5,
begins the study of equivalences induced by charts.

37

Borgström, Gordon, Phillips

Cryptographic security protocols are often specified by protocol narrations [1], exem-
plary sequences of communications of the form “Message n X → Y : M”, meaning that the
nth message M of the protocol goes from role X to role Y . A narration itself is essentially an
MSC. Some formalisms for security protocols represent protocol runs as MSCs, essentially.

For example, strand spaces [40] are a graphical formalism for protocol narrations, based
on strands and bundles. Each strand is a string of inputs and outputs, with implicit name
generation, representing a role in the protocol. A bundle is a directed acyclic graph obtained
by composing strands, similar to an MSC. Properties of protocols are expressed in terms
of occurrences of strands within bundles and “ancestor of” and “earlier than” relations,
similar to the causal relations in Section 2.

Crazzolara and Milicia [14] establish explicit formal links between MSCs, formalized
as pomsets [37], and the semantics of the Security Protocol Language (SPL) [15]. SPL can
be seen as a simple process calculus, with broadcast communication, but without process
forking as in the pi-calculus. They define an algorithm for constructing an MSC from any
finite trace in the transition semantics of an SPL program. Their main formal result is that
the events of such an MSC can be linearized to match the trace and moreover that every
linearization of the MSC corresponds to a trace of the original SPL program. Their MSCs
are extracted from an existing semantics for SPL, rather than being defined directly.

5 Conclusion

To summarize, our chart semantics is the first semantics for the pi-calculus based on the
idea of message sequence charts. The main benefits of pi-charts compared to a conventional
relational semantics are: (1) pi-charts are easier to visualize; and (2) pi-charts can express
ancestry and causal dependencies that state-based relational semantics omit.

Although a chart corresponds to a single execution trace, in future we envisage verifica-
tion tools for proving properties about the set of all charts generated by a given process. For
example, this could be useful for validating high-level protocols expressed as pi-calculus
processes. In cases where the desired properties do not hold, a visual execution trace rep-
resenting a counter-example could be presented to the user.

The pi-calculus is used to model programming language features, communication and
security protocols and their properties, and more recently, aspects of systems biology (see
Appendix B for an example). Hence, the broader significance of our work beyond the pi-
calculus is that it forms a formal basis to help visualize and express properties of systems
in all of these areas.

Acknowledgements

U. Nestmann and G. Winskel advised us on related work. J. Guttman helped us understand
the connection between pi-charts and strand spaces.

38

Borgström, Gordon, Phillips

A Standard Relational Semantics

Structural Equivalence: P≡ Q and Reduction: P→ Q

P≡ P P→ P′⇒ P | Q→ P′ | Q

Q≡ P⇒ P≡ Q P→ P′⇒ (νa)P→ (νa)P′

P≡ Q,Q≡ R⇒ P≡ R P≡ Q,Q→ Q′,Q′ ≡ P′⇒ P→ P′

P≡ P′⇒ (νx)P≡ (νx)P′ (a(x̃).P+M) | (a〈c̃〉.Q+N)→ P
{

c̃/̃x
}
| Q

P≡ P′⇒ P | Q≡ P′ | Q τt .P+M→ P

P | Q≡ Q | P A(c̃)→ P
{

c̃/̃x
}

if A(x̃) := P

(P | Q) | R≡ P | (Q | R)

a /∈ fn(P)⇒ (νa)(P | Q)≡ P | (νa)Q

(νa)(νb)P≡ (νb)(νa)P

As stated in Section 2, we identify processes up to associativity and commutativity of the
choice operator.

B A Biological Example

This example shows how pi-charts can be a useful tool for visualising interactions between
stochastic pi-calculus models of biological systems. We use the same pi-calculus syntax
and reduction rules from Sections 2 and 3, enriched with a stochastic extension along the
lines of [35]. Stochastic behaviour is incorporated into the calculus by associating each
channel a with a corresponding interaction rate given by ρ(a), and associating each action
τr with a delay rate r. The rates are used as the basis for a stochastic simulation algorithm,
which calculates the probability of all possible reductions at each step and stochastically
chooses the next reduction based on these probabilities.

Consider the following network of three genes that mutually repress each other, with
definitions for Gene(a,b), Blocked(a,b) and Protein(b) based on [35]:

Gene(a,b) := τtranscribe.(Gene(a,b) | Protein(b))
+ a().Blocked(a,b)

Blocked(a,b) := τunblock.Gene(a,b)
Protein(b) := b〈〉.Protein(b)

+ τdegrade

Gene(a,b) | Gene(b,c) | Gene(c,a)

The Gene(a,b) is parameterised by its promoter region a, together with the promoter
region b that is recognised by its transcribed proteins. The gene can perform one of two
actions. Either it can transcribe a Protein(b) by doing a stochastic delay at rate transcribe,
after which the new protein is executed in parallel with the gene, or it can block by do-
ing an input on its promoter region a. The blocked gene can then unblock by doing a
stochastic delay at rate unblock. The Protein(b) can repeatedly do an output on the pro-

39

Borgström, Gordon, Phillips

moter region b, or it can decay at rate degrade. According to the reduction rules of the
calculus, the output b〈〉 of the transcribed protein can interact with the input b() of a
Gene(b,c), which becomes blocked as a result. The three genes Gene(a,b), Gene(b,c)
and Gene(c,a) can mutually repress each other, since Gene(a,b) produces a protein that
can block Gene(b,c), which produces a protein that can block Gene(c,a), which produces
a protein that can block Gene(a,b), completing the cycle. This mutual repression gives rise
to alternate oscillation of protein levels, as shown in the above simulation plot, in which
the vertical axis represents the number of processes and the horizontal axis represents the
simulation time. The results were obtained with equal rates for channels a,b,c such that
ρ(a)� transcribe� degrade > unblock. However, the plots themselves give no indica-
tion as to what actually causes the oscillations to occur. Such a question is fundamental to
understanding the behaviour the system, and pi-charts can help to provide a partial answer.
An execution trace for the system is represented by the following pi-chart, which shows
how the system can evolve starting from one of each gene. The visual representation of
causality in the pi-chart helps to clarify the sequence of execution steps leading to the first
oscillation cycle.

Gene(c,a) Gene(a,b) Gene(b,c)

〈〉 on b

transcribe Gene(a,b) Protein(b)

〈〉 on a

Gene(c,a) Protein(a) 0Blocked(a,b) Blocked(b,c)

transcribe

Protein(b)

degrade

Protein(a)

The chart shows how one of the genes, in this case Gene(a,b), transcribes a Protein(b),
which immediately blocks Gene(b,c). Gene(c,a) transcribes Protein(a) soon after, which
blocks Gene(a,b).The Gene(a,b) and Gene(b,c) both remain blocked, waiting for a slow
unblock delay to fire, while Gene(c,a) is able to freely produce Protein(a) and start the
first oscillation cycle.

We have implemented a prototype stochastic simulator that automatically generates
a pi-chart during a given simulation run. The prototype was implemented as a simple
extension to the SPiM simulator, 5 by exporting the execution history of a simulation to a
file using the DOT syntax [19]. The DOT layout engine is then used to automatically render
the file as a pi-chart. The generated charts can be quite large, but it is relatively easily to
scroll and zoom through the charts to a time point of particular interest in the simulation.
For the above biological example one can focus on the sequence of transitions leading up
to a switch in oscillation cycles, which can be quite informative.

In general, pi-charts seem to be a convenient way of visualising and debugging the

5 SPiM is available at http://research.microsoft.com/~aphillip/spim/.

40

http://research.microsoft.com/~aphillip/spim/

Borgström, Gordon, Phillips

behaviour of concurrent biological systems, and initial reactions from biologists have so
far been positive. We plan to include a pi-chart debugging option in the next release of the
SPiM simulator, so that biologists can experiment with generating their own charts from a
range of models.

C Expressing the Bounds Guaranteed by a Type System

We present a synthesis of some existing type systems, including groups (or sorts) [30],
group creation [12], and usage bounds [24]. A channel type T takes the general form
g ?i !o [T1, . . . ,Tn]. We say g is the group of the type, and of names belonging to the type.
Groups indicate different usages, for example, REQ or RES. A name x of type T is a
channel conveying tuples of names with types T1, . . . , Tn. The multiplicities i and o are
upper bounds on the number of uses of x for input and output.

Group creation (νgrp g)P makes a fresh group g for use within P. Groups are repre-
sented as names, but well-typed processes cannot send them on channels. Hence, group
creation helps structure processes by confining the flow of names belonging to a group. In
particular, if a process O | (νgrp g)P is well-typed and there is a name x in group g, then
the name x is communicated only between descendants of P—the lexical scope of g—and
cannot flow to descendants of O.

Our point here is not the type system itself, an assembly of variations of existing com-
ponents, but rather to show that pi-charts can conveniently express both the usage bounds
induced by multiplicities and the secrecy properties induced by group creation. The original
statement of the latter [12, Proposition 3] relies on an informal notion of process derivation;
our statement in terms of the “ancestor of” relation is completely formal.

We proceed with a terse presentation of the type system. Further explanations and
examples are in the original publications [12,24,30].

Groups and Types:

g,h group: subset of the set of the names
µ, i,o ::= 0 | 1 | ω multiplicity
T ::= g ?i !o [T1, . . . ,Tn] polyadic channel type (n≥ 0)
m ::= g | (x : T) item: either a group, or a name with a type
E ::= ∅,m1, . . . ,mn typing environment: finite list of items

dom(∅) := ∅ dom(E,g) := dom(E)∪{g} dom(E,x : T) = dom(E)∪{x}

Our pi-calculus syntax is untyped, but we place type and group annotations on τ pre-
fixes, both to guide typechecking, and to record typing information in the pi-chart seman-
tics. We take the algebra of annotations A to be the set of items, so that we can write
τg.P and τx:T .P. Let typed name restriction be (νx : T)P := (νx)τx:T .P and group cre-
ation be (νgrp g)P := (νg)τg.P. Every chart extending from (νx : T)P and reaching P

includes edges ι
new x
−−−_ ι ′ and ι ′

x:T
−−_ ι ′′ and node ι ′′ •P. Similarly, every chart extending

from (νgrp g)P and reaching P includes ι
new g
−−−_ ι ′, ι ′

grp g
−−−_ ι ′′, and ι ′′ •P.

Let the addition µ + µ ′ of two multiplicities be the commutative function satisfying the
equations µ +0 = µ and µ +ω = ω and 0+1 = 1 and 1+1 = ω . The addition functions
on types, items, and environments are the least partial functions to satisfy the following
equations. They are all associative and commutative.

41

Borgström, Gordon, Phillips

Type, Item, and Environment Addition: T +T ′ m+m′ E +E ′

(g ?i !o [T1, . . . ,Tn])+(g ?i′ !o′ [T1, . . . ,Tn]) := g ?(i+ i′) !(o+o′) [T1, . . . ,Tn]
g+g := g
(x : T)+(x : T ′) := x : (T +T ′)
(∅,m1, . . . ,mn)+(∅,m′1, . . . ,m

′
n) := (∅,m1 +m′1, . . . ,mn +m′n)

We assume a relation between process constants and lists of groups and types describing
their parameters. Specifically, for each definition A(x1, . . . ,xn) := P, we assume that the
constant A is related to a list of group parameters h1, . . . ,hm and a list of types T1, . . . ,Tn.
We write this as A[h1, . . . ,hm,x1 : T1, . . . ,xn : Tn].

The following rules define four judgments: E ` � means that the environment E is
well-formed; E ` m means that the item m occurs in E; E ` T means that the type T is
well-formed in E; and E ` P means that the process P is well-formed in E.

Typing Rules: E ` � E ` m E ` T E ` P

∅ ` �

E ` � g /∈ dom(E)

E,g ` �

E ` T x /∈ dom(E)

E,x : T ` �

∅,m1, . . . ,mn ` � i ∈ 1..n

∅,m1, . . . ,mn ` mi

E ` g E ` T1 . . . E ` Tn

E ` g ?i !o [T1, . . . ,Tn]

E ` �

E ` 0

E0 ` x : g ?1 !0 [T1, . . . ,Tn] E1,y1 : T1, . . . ,yn : Tn ` P E = E0 +E1 defined

E ` x(y1, . . . ,yn).P

E0 ` x : g ?0 !1 [T1, . . . ,Tn] Ei ` yi : Ti ∀i ∈ 1..n
En+1 ` P E = E0 + · · ·+En+1 defined

E ` x〈y1, . . . ,yn〉.P

E ` m E ` P

E ` τm.P

E `M E ` N

E `M +N

E,g ` P

E ` (νgrp g)P

E,x : T ` P

E ` (νx : T)P

E1 ` P1 E2 ` P2 E = E1 +E2 defined

E ` P1 | P2

A[h1, . . . ,hm,x1 : T1, . . . ,xn : Tn] σ = {g j/h j | j ∈ 1..m}
E ` � E ` g j ∀ j ∈ 1..m Ei ` ci : Tiσ ∀i ∈ 1..n E = E1 + · · ·+En defined

E ` A(c1, . . . ,cn)

We assume that h1, . . . ,hm,x1 : T1, . . . ,xn : Tn ` P for each definition A(x1, . . . ,xn) := P
where A[h1, . . . ,hm,x1 : T1, . . . ,xn : Tn].

Theorem C.1 Suppose E ` [[G>]], G is a pi-chart, and T = g ?i !o [T1, . . . ,Tn].

(1) If ι1
x:T
−−_ ι2 then the number of communications on x in G is no more than min(i,o).

(2) If ι1
g
−_ ι2 and ι3

x:T
−−_ ι4 then ι2 [Ancestor] ι3.

Moreover, if ι5
〈ỹ〉 on z
−−−−_ ι6 and x ∈ fn(ỹ,z) then ι2 [Ancestor] ι5 and ι2 [Ancestor] ι6.

42

Borgström, Gordon, Phillips

We can explain the secrecy property of group creation by appeal to this theorem. Sup-
pose that E `O | (νgrp g)P, and consider any pi-chart G such that G> = ι •(O | (νgrp g)P)
for some ι . Such a G represents an arbitrary interaction between the process O and the pro-
cess (νgrp g)P. Unless G is a singleton, in which case it includes no interactions, it must
include an instance of the primitive chart for parallel composition, with edges ι −_ ι ′ and
ι −_ ι ′′, and nodes ι ′ •O and ι ′′ • (νgrp g)P. As discussed above, if P is reached, there

must be edges ι ′′
new g
−−−_ ι1, ι1

grp g
−−−_ ι2, and a node ι2 •P. By Lemma 2.5, no descendant of

ι ′ •O is a descendant of ι2 •P, and the converse. If a name x of group g is created, there

must be an edge ι3
x:T
−−_ ι4, where g is the group of T . By Theorem C.1(ii), ι2 [Ancestor] ι3,

that is, a descendant of P creates the name x. Now, consider any communication of x, that

is, consider any edge ι5
〈ỹ〉 on z
−−−−_ ι6 with x ∈ fn(ỹ). By Theorem C.1(ii), ι2 [Ancestor] ι5 and

ι2 [Ancestor] ι6, that is, both the sender ι5 and the receiver ι6 of the tuple ỹ containing x
are descendants of P. Additionally, the theorem implies that all communications on the
channel x itself are between descendants of P.

Hence, pi-charts directly formalize the intention that “channels of group g are forever
secret outside the initial scope of (νgrp g)” [12].

References
[1] M. Abadi. Security protocols and their properties. In Foundations of Secure Computation, NATO Science Series, pages

39–60. IOS Press, 2000.

[2] R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message sequence charts. Software Concepts and Tools,
17(2):70–77, 1996.

[3] E. Best, R. R. Devillers, and M. Koutny. The box algebra = petri nets + process expressions. Inf. Comput., 178(1):44–
100, 2002.

[4] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. TulaFale: A security tool for web services. In FMCO’03,
volume 3188 of LNCS, pages 197–222. Springer, 2004.

[5] E. Bonelli, A. Compagnoni, and E. Gunter. Correspondence assertions for process synchronization in concurrent
communications. JFP, 15(2):219–147, 2004.

[6] M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asynchronous processes. Information and
Computation, 172(2):139–164, 2002.

[7] M. Boreale and D. Sangiorgi. A fully abstract semantics of causality in the π-calculus. Acta Informatica, 35:353–400,
1998.

[8] G. Boudol and I. Castellani. Concurrency and atomicity. TCS, 59:25–84, 1988.

[9] G. Boudol and I Castellani. A non-interleaving semantics for CCS based on proved transitions. Fundamenta
Informaticae, 4(XI):433–452, 1988.

[10] R. Bruni, H. C. Melgratti, and U. Montanari. Event structure semantics for nominal calculi. In CONCUR, pages
295–309, 2006.

[11] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Theoretical Aspects of Computer Software (TACS 2001),
volume 2215 of LNCS, pages 38–63. Springer, 2001.

[12] L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. Information and Computation, 196(2):127–155,
2005.

[13] I. Castellani. Process algebras with localities. In Handbook of Process Algebra, chapter 15, pages 945–1045. Elsevier,
2001.

[14] F. Crazzolara and G. Milicia. Graphical descriptions of security protocols. In COnstraint & LOgic Programming in
Security (COLOPS 2003), 2003.

[15] F. Crazzolara and G. Winskel. Events in security protocols. In Eight ACM Conference on Computer and
Communications Security (CCS’2001), 2001.

[16] P. Degano and C. Priami. Non interleaving semantics for mobile processes. Theoretical Computer Science, 216:237–
270, 1999.

43

Borgström, Gordon, Phillips

[17] P. Degano and C. Priami. Enhanced operational semantics. ACM Computing Surveys, 2(33):135–176, 2001.

[18] F. Gadducci. Term graph rewriting for the pi-calculus. In Atsushi Ohori, editor, APLAS, volume 2895 of Lecture Notes
in Computer Science, pages 37–54. Springer, 2003.

[19] E. R. Gansner and S. C. North. An open graph visualization system and its applications to software engineering.
Software—Practice and Experience, 30(11):1203–1233, 2000.

[20] A. D. Gordon and A. Jeffrey. Typing correspondence assertions for communication protocols. Theoretical Computer
Science, 300:379–409, 2003.

[21] ITU. Message Sequence Chart (MSC), 1999. Recommendation Z.120.

[22] ITU. Specification and Design Language (SDL), 1999. Recommendation Z.100.

[23] A. S. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects. Theoretical Computer
Science, 338:17–63, 2005.

[24] N. Kobayashi, B. Pierce, and D. Turner. Linearity and the pi-calculus. TOPLAS, 21(5):914–947, 1999.

[25] B. König. A graph rewriting semantics for the polyadic pi-calculus. In Proc. of GT-VMT ’00 (Workshop on Graph
Transformation and Visual Modeling Techniques), pages 451–458. Carleton Scientific, 2000.

[26] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565, 1978.

[27] S. Mauw and M. A. Reniers. An algebraic semantics of basic message sequence charts. The Computer Journal, 37(4),
1994.

[28] S. Mauw, M.A. Reniers, and T.A.C. Willemse. Message Sequence Charts in the software engineering process. In S.K.
Chang, editor, Handbook of Software Engineering and Knowledge Engineering. World Scientific, 2000.

[29] R. Milner. Pi-nets: A graphical form of π-calculus. In ESOP’94, pages 26–42, 1994.

[30] R. Milner. Communicating and Mobile Systems: the π-Calculus. CUP, 1999.

[31] R. Milner. Bigraphical reactive systems: Basic theory. Technical Report 523, University of Cambridge Computer
Laboratory, 2001.

[32] U. Montanari and M. Pistore. History-dependent automata: An introduction. Lecture Notes in Computer Science,
3465:1–28, 2005.

[33] Object Management Group. Unified Modeling Language. At http://www.uml.org.

[34] C. Petri. Fundamentals of a theory of asynchronous information flow. In IFIP Congress ’62, pages 386–390. North
Holland, 1962.

[35] A. Phillips, L. Cardelli, and G. Castagna. A graphical representation for biological processes in the stochastic pi-
calculus. Transactions in Computational Systems Biology, 4230:123–152, 2006.

[36] A. Phillips, N. Yoshida, and S. Eisenbach. A distributed abstract machine for boxed ambient calculi. In European
Symposium on Programming, LNCS. Springer, April 2004.

[37] V. Pratt. Modelling concurrency with partial orders. International Journal of Parallel Programming, 15(1):33–71,
1986.

[38] C. Priami. Enhanced Operational Semantics for Concurrency. PhD thesis, Pisa, 1996.

[39] D. Sangiorgi and D. Walker. The π-calculus: A theory of mobile processes. CUP, 2001.

[40] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security protocols correct. Journal of
Computer Security, 7:191–230, 1999.

[41] D. Varacca and N. Yoshida. Typed event structures and the pi-calculus. In Mathematical Foundations of Programming
Semantics, ENTCS. Elsevier, 2006.

[42] G. Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1980.

44

http://www.uml.org

EXPRESS 2007 Preliminary Version

Matching Systems for Concurrent Calculi

Bjørn Haagensen1

Aalborg University
Denmark

Sergio Maffeis2

Imperial College London

Iain Phillips3

Imperial College London

Abstract

Matching systems were introduced by Carbone and Maffeis, and used to investigate the expressiveness of the
pi-calculus with polyadic synchronisation. We adapt their definition and investigate matching systems for
CCS, the pi-calculus and Mobile Ambients. We show among other results that the asynchronous pi-calculus
with matching cannot be encoded (under certain conditions) in CCS with polyadic synchronisation of all
finite levels.

Keywords: Matching systems, CCS, pi-calculus, Mobile Ambients

1 Introduction

Matching systems were introduced by Carbone and Maffeis [4]. A matching system
is a protocol which ensures that a client matches successfully with a server if and
only if both parties have the same sequence of names as parameters. This can
be achieved trivially if client and server can synchronise on all names in a single
atomic communication. However it may not be possible if, for instance, they can
only synchronise on one name at a time, as in standard π-calculus. Carbone and
Maffeis used matching systems to establish a hierarchy within eπ, the π-calculus
with polyadic synchronisation. They show that there is no encoding (satisfying
certain conditions) of the asynchronous calculus with n-adic communication into
the synchronous calculus with m-adic communication (for any m < n).

1 Email: bh@cs.aau.dk
2 Email: maffeis@doc.ic.ac.uk
3 Email: iccp@doc.ic.ac.uk

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:bh@cs.aau.dk
mailto:maffeis@doc.ic.ac.uk
mailto:iccp@doc.ic.ac.uk

Haagensen, Maffeis and Phillips

In this paper we investigate matching systems further. In particular, we pro-
pose a weakened form of matching system, where if client and server agree on their
parameters then there is a successful computation, but success is no longer guaran-
teed, unlike in the original formulation. These weak matching systems enable us to
obtain different separations between calculi. We regard matching systems (whether
in the weak form or the original strong form) as measuring the capability of partic-
ular calculi to perform transactions, in other words to perform a series of operations
which can be treated as a single operation. Weak matching systems require only
that all the commits are justified, whereas strong matching systems require also
that the transaction is not rolled back an unbounded number of times.

In [4], it is shown that there is no “sensible” encoding of matching in the π-
calculus with mixed choice. Here we use weak matching systems to give a different
separation result involving a language with matching, based on a different notion of
encoding. We shall show there there is no encoding (subject to certain conditions)
from the asynchronous π-calculus with matching into CCS with n-adic communi-
cation (for any n).

This is related to the question of showing that the asynchronous π-calculus
cannot be encoded into CCS. As far as we are aware, such a negative result has
never been obtained, even though most researchers would presumably expect this
to hold, since the asynchronous π-calculus has the ability to send and receive names
(objects) and then use them as channels (subjects), and this is disallowed in CCS
(even with value passing).

Palamidessi [9] used electoral systems to prove two relevant results. Firstly, she
showed that CCS cannot be encoded in the asynchronous π-calculus (the converse
of what we are discussing). Secondly, she showed that the π-calculus with mixed
choice cannot be encoded in CCS. However her work leaves open the possibility that
the asynchronous π-calculus can be encoded in CCS.

Banach and van Breugel [1] encoded the π-calculus into a version of CCS. This
involves augmenting CCS with infinite operations (and not just infinite summation).

Sangiorgi [12] defined the π-calculus with internal mobility (πI), where only
private names can be transmitted. He gave a hierarchy of typed calculi within πI,
such that the bottom level represents “the core of CCS”. He showed that higher
levels in the hierarchy exhibit a “higher degree” of mobility, in the sense that they
admit longer subject-object dependency chains. However he did not assert any
result about the non-encodability of higher levels in lower levels of the hierarchy.

Boreale [2] gave an encoding of the asynchronous π-calculus into πI. This en-
coding is in two steps, and goes via an intermediate calculus, localised π, or Lπ,
the subset of the asynchronous π-calculus where the recipient of a name may only
use it in output actions. This terminology is due to Merro and Sangiorgi [7]. They
showed that Lπ can be encoded fully abstractly in localised πI using the second
step in Boreale’s encoding.

After presenting our results on weak matching systems, we recast the separation
result concerning polyadic synchronisation of [4] into our current setting, using
the notion of replicated strong matching systems. Our new formulation is a slight
generalisation of the previous result. Surprisingly, and against previous intuition,
we have found that by simply requiring each instance of a matching system to be

46

Haagensen, Maffeis and Phillips

finite (strong matching systems), the full π-calculus is powerful enough to solve
the problem for any degree n. We conjecture that the same is not possible for the
asynchronous π-calculus, suggesting a possible new interpretation of the expressive
power of the mixed choice construct.

The remainder of the paper is organised as follows. In Section 2 we define the
calculi we shall be considering. Then in Sections 3 and 4 we investigate weak and
strong matching systems, respectively. We finish with conclusions and further work.

2 Calculi

In this section we define the calculi that we shall be concerned with in this paper.
We let x, y, . . . range over the set of names N . We shall let −→x denote a tuple of

names x1, . . . , xn.
Polyadic synchronisation, where e.g. an output process x · y〈z〉.P can synchro-

nise with an input process x · y(w).Q, was introduced in [4].

Definition 2.1 The full πn-calculus (fπn) is defined as the polyadic synchronous
π-calculus with mixed choice, matching and mismatching, and polyadic synchroni-
sation of degree n, that is

P ::= P | Q | νxP | !P | Σiαi.P | [x = y]P | [x 6= y]P

where each αi is of the form x1 · . . . · xn(−→y) or x1 · . . . · xn〈−→y 〉. We let S, T range
over summations, and write the empty summation as 0.

Note that fπ1 is the standard full π-calculus. We define the free names fn(P) as
usual, with input and restriction being name-binding.

Definition 2.2 Structural congruence is the least congruence ≡ on fπn processes
satisfying the following laws: P | Q ≡ Q | P , (P | Q) | R ≡ P | (Q | R), 0 | P ≡ P ,
[x = x]P ≡ P , [x 6= y]P ≡ P if x 6= y, !P ≡ P |!P and νx(P | Q) ≡ P | νxQ if x /∈
fn(P), together with reordering of summations.

Definition 2.3 The reduction relation on fπn is defined by the following axiom and
rules

(x1 · . . . · xn〈y1, . . . , ym〉.P + S) | (x1 · . . . · xn(z1, . . . , zm).Q+ T)

→ P | Q{y1, . . . , ym/z1, . . . , zm}

P → Q

P | R→ Q | R
P → Q

νxP → νxQ

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

We let ⇒ be the reflexive and transitive closure of →.

Definition 2.4 Input and output barbs are defined by

P ↓x1·...·xn iff P ≡ ν−→z ((x1 · . . . · xn(−→y).R+ S) | Q) where −→x ∩ −→z = ∅

P ↓x1·...·xn iff P ≡ ν−→z ((x1 · . . . · xn〈−→y 〉.R+ S) | Q) where −→x ∩ −→z = ∅

We let P ⇓x1·...·xn iff P ⇒↓x1·...·xn, and similarly for output barbs.

Definition 2.5 The calculus aπn is defined as the polyadic asynchronous π-calculus

47

Haagensen, Maffeis and Phillips

with polyadic synchronisation of degree n, that is

P ::= 0 | P | Q | νxP | !P | x1 · . . . · xn(−→y).P | x1 · . . . · xn〈−→y 〉

The only reduction axiom for aπn is

x1 · . . . · xn(y1, . . . , ym).P | x1 · . . . · xn〈z1, . . . , zm〉 → P{z1, . . . , zm/y1, . . . , ym}

Note that aπ1 is the standard asynchronous π-calculus. The localised π-calculus
Lπ [2,7] is the subset of aπ1 where the recipient of a name may only use it in output
actions. We write aπ=

n to denote aπn with matching [x = y]P .

Definition 2.6 The calculus CCSn is defined as the fragment of fπn which has no
name-passing and no matching or mismatching, that is

P ::= P | Q | νxP | !P | Σiαi.P

where each αi is of the form x1 · . . . · xn or x1 · . . . · xn.

The CCSn synchronisation rule is

(x1 · . . . · xn.P + S) | (x1 · . . . · xn.Q+ T)→ P | Q .

Note that CCS1 is a form of standard CCS. It resembles the CCS of [8] with
replication instead of recursion.

Definition 2.7 The calculus of Mobile Ambients (MA) [5] has the following syntax:

P ::= 0 | P | Q | νxP | !P | x[P] | inx.P | outx.P | openx.P

| 〈x〉 | (x).P

Here x[P] is an ambient named x enclosing P , and in, out, open are the capabilities
for entering, leaving or dissolving ambients. We also have asynchronous, anony-
mous (no channel) output and input. 4 The free names fn(P) of a process P are
defined much as for the π-calculus, with input and restriction being name-binding.
Structural congruence and reduction rules are adapted from the π-calculus, with
the following reduction axioms:

x[in y.P | Q] | y[R]→ y[x[P | Q] | R]

y[x[out y.P | Q] | R]→ x[P | Q] | y[R]

openx.P | x[Q]→ P | Q

〈x〉 | (y).P → P{x/y}

Barbs are defined by

P ↓x iff P ≡ ν−→z (x[P] | Q) where x /∈ −→z .

Pure public boxed MA (ppbMA) is got by omitting communication, restriction and
the open capability. Recall that the open capability is omitted in the calculus of
boxed ambients [3].

Let MA−in denote (full) MA with only the in capability omitted.

4 Note that for simplicity we have just defined name-passing communication, whereas communication in [5]
allows sequences of capabilities to be transmitted.

48

Haagensen, Maffeis and Phillips

3 Weak Matching Systems

We present the weakened definition of matching system. Then we show that aπ2

has matching systems of every finite degree. We show that CCSn does not have
matching systems of degree n+ 1 or greater. We then show that matching systems
are preserved by encodings satisfying certain properties. We deduce that there is no
encoding from aπ2 to CCS satisfying those properties. We also present analogous
results concerning ppbMA and CCS.

In matching systems [4], the idea is that clients C communicate with servers S
and try to match their parameters, reporting success if there is a match. We change
Carbone and Maffeis’s definition of matching system to the following, which applies
to all the calculi defined in Section 2:

Definition 3.1 A weak matching system (WMS) of degree n is a tuple
(C, S, x1, . . . , xn) where C and S are processes and x1, . . . , xn are distinct names,
such that for all finite index sets I and J , and all injective substitutions σi (i ∈ I)
and θj (j ∈ J) where dom(σi) = dom(θj) = {x1, . . . , xn},

(
∏
i∈I

Cσi |
∏
j∈J

Sθj) ⇓ω iff ∃i ∈ I, j ∈ J such that σi = θj .

Here ω is a special name used for reporting a successful match. We require that ω /∈
{x1, . . . , xn} and that substitutions do not change any xi into ω. Also substitutions
should not map any xi into a free name of C or S, other than x1, . . . , xn. When
convenient, we display parameters explicitly, writing Cσ as C〈σ(x1), . . . , σ(xn)〉.

It is easy to see that, in a WMS (C, S, ~x), all of ~x must be free in both C and S.
There are five changes from the pre-existing notion. Firstly, and most impor-

tantly, we do not require that if there is a match then every computation leads to
success. Thus we have a “may” notion of success, rather than a “must” notion.
Secondly, we do not use replication in the definition (for the server). Thirdly, we
omit the identifier for the client, so that client and server are symmetrical. Fourthly,
we allow both client and server to contain free names not drawn from ~x. Fifthly,
we require that parameters are distinct, so that we are dealing with permutations
rather than substitutions in general. This last condition will be useful when we
show that matching systems are preserved by encodings (Theorem 3.9).

Note that in standard process calculi a weak matching system never needs to use
recursion or replication. It must be the case that (C〈~x〉 | S〈~x〉) ⇓ω by a finite com-
putation. We can unfold recursion or replication enough to get this computation,
and then set the recursion or replication part to the nil process 0. The modified
client and server still give an ω barb when there is a match, and, since we have only
reduced behaviour and not added any new behaviour, they still do not yield an ω

barb when there is no match.
If a calculus has a WMS of degree n then it has WMSs of all smaller degrees:

Lemma 3.2 Let m < n. If (C, S, x1, . . . , xn) is a WMS of degree n then
(C, S, x1, . . . , xm) is a WMS of degree m. 2

We now show that aπ=
1 has weak matching systems of every degree:

Theorem 3.3 For every n ≥ 1, aπ=
1 has a WMS of degree n.

49

Haagensen, Maffeis and Phillips

Proof. (Sketch) We define Cn and Sn as follows:

Cn(x1, . . . , xn) df= x1(z′).(
∏n
i=2 z

′〈xi〉)

Sn(x1, . . . , xn) df= νz(x1〈z〉 | S′n−1〈z, x2, . . . , xn〉)

S′n−k(z, xk+1, . . . , xn) df= z(x′k+1).([xk+1 = x′k+1]S′n−k−1〈z, xk+2, . . . , xn〉)

for k = 1, . . . , n− 2

S′1(z, xn) df= z(x′n).([xn = x′n]ω)

The server creates a new private name z, which is passed to the client on the first
communication on x1. The client then uses this private channel to send the other
names back to the server. As each name is received, the server checks that it
matches. Notice that the computation can fail even if conducted entirely between
a matching client and server, due to the nondeterminism in the order in which the
messages from the client are sent. This does not cause a problem, since we are
dealing with weak matching systems—a single successful computation is enough.2

Remark 3.4 We recall from [4] that matching can be encoded in aπ2; the process
[x = y]P may be encoded as νz(z · x | z · y.P) where z is fresh. Hence Theorem 3.3
also holds for aπ2. Note also that, in fact, the solution is written in Lπ with match-
ing.

We can also define matching systems using ambients:

Theorem 3.5 For every n ≥ 1, ppbMA has a WMS of degree n.

Proof. Let

Cn
df= m[inx1. · · · .inxn.outxn.outx1.ω[outm]]

Sn
df= x1[x2[. . . xn[] . . .]] .

The idea is that the client enters successively the stacked x1, . . . , xn ambients of the
server, before returning to the top level to report success. The client simply gets
stuck if there is no match. 2

We next investigate matching systems for CCS.

Theorem 3.6 Let m,n ≥ 1. Then CCSn has a WMS of degree m if and only if
n ≥ m.

Proof. (Sketch) First suppose that n ≥ m. We define a WMS of degree m in CCSn
as follows:

Cm
df= x1 · . . . · xm Sm

df= x1 · . . . · xm.ω

Notice that this WMS is guaranteed to succeed, and so it is in fact a strong MS, to
be defined in Section 4.

For the converse direction, by Lemma 3.2 it is enough to show that CCSn
does not have a WMS of degree n + 1. So suppose for a contradiction that
(C, S, x1, . . . , xn+1) is a WMS of degree n + 1 in CCSn. We shall show that there
is a combination of clients and servers which does not contain a match, and yet
erroneously returns success.

50

Haagensen, Maffeis and Phillips

There is k ≥ 0 and there are Ci, Si (0 ≤ i ≤ k) such that

C | S = C0 | S0 → · · · → Ck | Sk where (Ck | Sk) ↓ω .

This holds because there is a match between the single client and and the single
server (using the identity substitution in both cases). Note that during the com-
putation we may have to extrude the scope of restrictions in order to obtain the
necessary redex, but we can then immediately return the scopes so that they lie
entirely within Ci+1 or Si+1. This returning of scopes would not in general be pos-
sible in the π-calculus, where restricted names can be transmitted along channels,
resulting in more than one process sharing the same restricted name.

Let x′1, . . . , x
′
n+1 be distinct fresh names different from x1, . . . , xn+1. Let s =

s1 · · · sn+1 range over binary strings in {0, 1}n+1. Let σs be the substitution which
sets

σs(xi)
df=

 xi if si = 0

x′i if si = 1

Let E = {s ∈ {0, 1}n+1 : s has an even number of 1s} and O = {s ∈ {0, 1}n+1 :
s has an odd number of 1s}. For i = 0, . . . , k let

Pi
df=

∏
s∈E

Ciσs |
∏
s∈O

Siσs

Then P0 does not contain a match. We show that Pi →2n
Pi+1 for i = 0, . . . , k− 1.

Since plainly Pk ↓ω, we shall have a contradiction.
There are various cases

(i) Suppose that Ci → Ci+1 with Si+1 = Si. Then for each s ∈ E we have
Ciσs → Ci+1σs, and for each s ∈ O we have Si+1σs = Siσs.

(ii) The case where Si → Si+1 with Ci+1 = Ci is handled like the preceding case.

(iii) Suppose that Ci | Si → Ci+1 | Si+1 by a communication on channel y1 · . . . · yn.
Let j be such that xj /∈ −→y . Let s ∈ E. Let t be the same as s except that
tj = 1 − sj . Then t ∈ O. Also, Ciσs and Siσt can communicate on channel
σs(y1) · . . . ·σs(yn) to produce Ci+1σs | Si+1σt. In this way we pair off all clients
and servers and we produce Pi+1 after 2n reductions.

2

The next result suggests that the in capability is needed to obtain WMSs for MA.

Theorem 3.7 For n ≥ 2, there is no WMS of degree n in pure MA−in.

Proof. (Sketch) We adapt the method used in the proof of Theorem 3.6. We
suppose that we have a WMS of degree 2, and show for a contradiction that

C〈x1, x2〉 | C〈x′1, x′2〉 | S〈x′1, x2〉 | S〈x1, x
′
2〉

has a successful computation. This is possible because the clients and servers can
only interact at the top level of the ambient tree, due to the absence of the in
capability. 2

Conjecture 3.8 For n ≥ 2 there is no WMS of degree n in pure MA without the
out capability. 2

51

Haagensen, Maffeis and Phillips

We now establish conditions under which matching systems are preserved when
encoding one language in another. Our result (Theorem 3.9) will apply to all the
languages defined in Section 2.

We assume that we are dealing with process calculi L which satisfy: (1) for any
permutation σ, P ⇓ω iff σ(P) ⇓σ(ω); (2) N is infinite. These conditions are satisfied
by any process calculus in the π-calculus family (including ambient calculi).

The next theorem shows that weak matching systems are preserved by encodings
satisfying certain conditions. The first two conditions are similar to those used by
Palamidessi [9]. In the third condition, the injection ϕ and its properties are similar
to Gorla’s “strict renaming policy” [6]. The idea is that names of the source language
are mapped across to unique names in the target language by ϕ, with the names
which are not in the range of ϕ being available as “reserved names” for use in the
encoding (so ϕ could be the identity if the encoding required no reserved names).
The encoding of a process P should not depend on the particular names in P , since
names have no structure or meaning. This idea is expressed by requiring a property
of invariance under injective substitution, mediated by ϕ.

Theorem 3.9 Let L and L′ be process calculi. Let [[−]] : L → L′ be an encoding
satisfying:

(i) P ⇓ω iff [[P]] ⇓ω;

(ii) [[P | Q]] = [[P]] | [[Q]];

(iii) There is an injective ϕ : N → N with ϕ(ω) = ω, such that for all finite
injective substitutions σ, if P is such that rge(σ) ∩ fn(P) = ∅ then we have
[[Pσ]] = [[P]]σ′, where the injective substitution σ′ is defined by

σ′(ϕ(x)) = ϕ(σ(x)) if x ∈ dom(σ)

σ′(x) undefined otherwise

Let (C, S, ~x) be a weak matching system of degree n in L. Then ([[C]], [[S]],
−−→
ϕ(x)) is

a weak matching system of degree n in L′.

Proof. (Sketch) Consider

P
df=

∏
i∈I

[[C]]σi |
∏
j∈J

[[S]]θj

where dom(σi) = dom(θj) = {ϕ(x1), . . . , ϕ(xn)}. We need to show that P ⇓ω iff P

has a match, i.e. there are i ∈ I and j ∈ J such that σi = θj .
Let A =

⋃
i∈I rge(σi) ∪

⋃
j∈J rge(θj). Let B be a set of names in bijection with

A via f : A → B, such that for each x ∈ B, both x and ϕ(x) are fresh. This is
always possible, since we assume that N is infinite.

For each i ∈ I and each k = 1, . . . , n, let

σ′i(xk)
df= f(σi(ϕ(xk))) .

Similarly, for each j ∈ J and each k = 1, . . . , n, let

θ′j(xk)
df= f(θj(ϕ(xk))) .

Then σ′i, θ
′
j are finite injective substitutions. Also σ′i(xk), θ

′
j(xk) /∈ {ω} ∪ fn(P) ∪

fn(Q), since all x ∈ B are fresh.

52

Haagensen, Maffeis and Phillips

Now P has a match iff

Q
df=

∏
i∈I

Cσ′i |
∏
j∈J

Sθ′j

has a match. This is because Q has a match iff ∃i, j. ∀k. f(σi(ϕ(xk))) = f(θj(ϕ(xk)))
iff ∃i, j. ∀k. σi(ϕ(xk)) = θj(ϕ(xk)) (since f is a bijection) iff P has a match.

By property (iii) of the encoding, for each i ∈ I there is σ′′i such that [[Cσ′i]] =
[[C]]σ′′i where σ′′i (ϕ(xk)) = ϕ(σ′i(xk)). Similarly, for each j ∈ J there is θ′′j such that
[[Sθ′j]] = [[S]]θ′′j where θ′′j (ϕ(xk)) = ϕ(θ′j(xk)).

Now Q has a match iff Q ⇓ω (since (C, S,−→x) is a WMS). Also, Q ⇓ω iff [[Q]] ⇓ω
(property (i) of the encoding). Using property (ii) of the encoding, we have [[Q]] = R,
where

R
df=

∏
i∈I

[[C]]σ′′i |
∏
j∈J

[[S]]θ′′j

Notice that σ′′i (ϕ(xk)) = ϕ(σ′i(xk)) = ϕ(f(σi(ϕ(xk)))). Similarly, θ′′j (ϕ(xk)) =
ϕ(θ′j(xk)) = ϕ(f(θj(ϕ(xk)))). Also note that rge(σ′′) ∩ ((fn([[C]]) ∪ fn([[S]])) \
{ϕ(x1), . . . , ϕ(xn)}) = ∅, since all y ∈ ϕ(B) are fresh. Similarly for rge(θ′′). Since
f and ϕ are injective, we can extend their composition ϕ(f(·)) to a suitable per-
mutation ρ which leaves ω unchanged, such that R = Pρ. But then R ⇓ω iff P ⇓ω
(property of L′).

Combining, we have: P has a match iff P ⇓ω, as required. 2

We can use Theorem 3.9 and our various preceding positive and negative results
to state some non-encodability results:

Theorem 3.10 There is no encoding satisfying the conditions of Theorem 3.9 from
aπ=

1 to CCSn (all n ≥ 1).

Proof. By Theorems 3.3, 3.6 and 3.9. 2

In connection with Theorem 3.10, we note that Carbone and Maffeis showed that
there is no sensible encoding from aπ=

1 into the standard π-calculus with mixed
choice (and without matching) [4, Theorem 4.1]. Our result here uses different
conditions and holds for all levels of polyadic synchronisation in CCS.

Theorem 3.11 There is no encoding satisfying the conditions of Theorem 3.9 from
ppbMA to CCSn (all n ≥ 1).

Proof. By Theorems 3.5, 3.6 and 3.9. 2

Concerning Theorem 3.11, Phillips and Vigliotti [11] showed there is no encoding
(under different conditions) from pure public MA (with open) to CCS. Previously
they showed that there is no encoding (under yet other conditions) from pure public
boxed MA to aπ1 [10].

4 Strong Matching Systems

In this section we investigate strong matching systems, where if there is a match
then every computation is guaranteed to succeed. We show that the full π-calculus
fπ1 has strong matching systems of every finite degree (Theorem 4.4).

53

Haagensen, Maffeis and Phillips

Definition 4.1 A strong matching system (SMS) of degree n is a tuple
(C, S, x1, . . . , xn) where C and S are processes and x1, . . . , xn are distinct names,
such that for all finite index sets I and J , and all substitutions σi (i ∈ I) and
θj (j ∈ J) where dom(σi) = dom(θj) = {x1, . . . , xn}, defining

MS
df=

∏
i∈I

Cσi |
∏
j∈J

Sθj

(i) if MS ⇓ω then ∃i ∈ I, j ∈ J. σi = θj;

(ii) if ∃i ∈ I, j ∈ J. σi = θj then ∀MS′. MS ⇒MS′ implies MS′ ⇓ω;

(iii) there are no infinite reduction sequences starting from MS.

A replicated SMS (!SMS for short) is defined as an SMS, except that we require
the servers to be replicated, so that

MS
df=

∏
i∈I

Cσi |
∏
j∈J

!Sθj

Observe that if (C, S,−→x) is a !SMS then (C, !S,−→x) is an SMS. Also, if (C, S,−→x) is
an SMS then (C, S,−→x) is a WMS.

The notion of !SMS is quite close to the original formulation of matching system
in [4]. It differs from the original MS in two ways: Firstly, we omit the identifier
for the client, so that client and server are symmetrical. Secondly, we allow both
client and server to contain free names not drawn from −→x .

The next result is similar to [4, Theorem 4.2]:

Theorem 4.2 For all non-negative integer numbers n and m, there is a !SMS of
degree m in fπn if and only if n ≥ m.

Proof. (⇐) Choosing

Cm
df= x1 · . . . · xm〈〉 Sm

df= x1 · . . . · xm(z).ω〈〉

we have that (Cm, Sm, x1, . . . , xm) is a strong matching system of degree m.
(⇒) The idea is that a client can be endlessly “fooled” into interaction with

servers which only partially match, giving rise to an infinite computation.
Consider the minimal case where m = n+ 1 and suppose (C, S, x1, . . . , xm) is a

!SMS of degree m in πn. Let σ be an injective substitution of fresh names. Then

P
df= Cσ | Sσ

is a matching instance of (C, S, x1, . . . , xm). Note that for any such σ and any R,
if there is a Q such that Rσ ⇒ Q then there is also an R′ such that R ⇒ R′ and
Q = R′σ.

By point (iii) of Definition 4.1, there must be C ′ and S′ such that Cσ ⇒ C ′σ

and C ′σ 6→, and similarly Sσ ⇒ S′σ and S′σ 6→. By point (ii) of Definition 4.1, it
must be the case that P ⇒ (C ′σ | S′σ) ⇓ω. By the contrapositive of point (i) of
Definition 4.1, it must be the case that C ′σ 6↓ω and Sσ 6↓ω. Hence, it must be the
case that C ′σ | S′σ → P ′ ⇓ω for some appropriate P ′.

By definition of reduction, without loss of generality, we can assume that C ′σ ↓−→a1
, . . . , C ′σ ↓−→ak and S′σ ↓−→a1

, . . . , S′σ ↓−→ak
, where −→a1, . . . ,−→ak are all of the possible

channels on which the two processes are ready to communicate. Since m > n, for

54

Haagensen, Maffeis and Phillips

each j ∈ [1..k] there exists i such that σ(xi) 6∈ −→aj . Let ρj be defined as ρj(xi) = dj ,
for a fresh dj , and ρj(xh) = σ(xh) otherwise. By construction, since both σ and
each ρj are injective and fresh, we have Sρj ⇒ S′ρj . Since σ and ρj agree on −→aj , it
must be the case that S′ρj ↓−→aj . By the contrapositive of point (i) of Definition 4.1,

it must be the case that

P j0
df= (Cσ | Sρj) 6⇓ω .

However, because of the complementary barbs, there must be P j1 such that P j0 → P j1 .
Still, since

P j2
df= P j0 | Sσ

is a valid instance of a matching system, by point (ii) it must be the case that
P j2 ⇓ω. Moreover, since

P j2 ⇒ P j3
df= (P j1 | Sσ)

it must be the case that P j3 ⇓ω.
We have established above that there must be S′ such that Sσ ⇒ S′σ and S′σ 6→,

and S′σ ↓−→a1
, . . . , S′σ ↓−→ak

. Similarly, there must be P j4 such that P j1 ⇒ P j4 ↓−→ai for

some i in [1..k]. By considering now

P0
df= Cσ |

∏
j∈[1..k]

!Sρj

we have a contradiction because the system can enter a loop: each Sρj intercepts
the corresponding attempt that Cσ must keep repeating in order to communicate
with a potential matching server Sσ. 2

Theorem 4.3 For n ≥ 2, there is no !SMS of degree n in MA.

Proof. The idea is similar to the proof of Theorem 4.2. 2

By contrast with Theorem 4.2, we show that fπ1 is strong enough to have SMSs
of all degrees:

Theorem 4.4 There is a strong matching system of degree n in fπ1.

Proof. (Sketch) Lists and operations on lists can be encoded in fπ1 without intro-
ducing divergence, using only restricted names (we consider the encoding given by
Turner [13]). For example the list [a, b], accessible through channel x, is represented
by the process νy, z(!x(n, c).c〈a, y〉 |!y(n, c).c〈b, z〉 |!z(n, c).n〈〉). Note that this list
above can be passed around as a single value by passing the name x. Below, we
use the context L[−] df= ν

−→
l (L | −) to denote the machinery to implement lists and

head, tail, concatenation, etc. operations in fπ1. We assume that the names −→l ,
used to implement the list operations, are fresh, and that fn(L[0]) = ∅. Consider
the processes

Cn
df= L[e〈[x1, . . . , xn], []〉]

Sm
df= L[νa

a〈[], [x1, . . . , xn]〉 |!a(x, y).(e〈x, y〉+

e(z, w).F (x@z, y@w, x′, y′).a〈x′, y′〉)

]

55

Haagensen, Maffeis and Phillips

where function F takes as input the lists x@z, y@w and returns the lists x′, y′

obtained by removing all the matching pairs from x@z and y@w (@ stands for list
concatenation). For each matching pair, F produces the barb ω. Such a function
can be implemented in fπ1 without introducing divergence. 2

There is an essential use of mixed choice in the proof of Theorem 4.4. We conjecture
that without mixed choice it is impossible to get SMSs of degree higher than the
level of synchronisation in the language:

Conjecture 4.5 For m > n there is no SMS of degree m in aπn.

5 Conclusions and Further Work

We have adapted the notion of matching system from earlier work by Carbone
and Maffeis. We have seen that there are two main types of matching system, the
weak and the strong, depending on whether successful termination is possible or
guaranteed (in the event of a match between some client and some server). In the
strong case, there are two subtypes of matching system, depending on whether the
server is required to be a replication or not (the former being the stronger of the
two).

These notions can be used to “grade” process calculi according to how good they
are at treating synchronisation on several different names as a single transaction.

We have seen that the full π-calculus is strong enough to have strong matching
systems of all degrees, but not strong enough to have replicated strong matching
systems of degree greater than one.

We also showed that the asynchronous π-calculus with matching has weak match-
ing systems of every finite degree. Our work leaves open the question of whether
the asynchronous π-calculus has a strong matching system of degree two or higher.
We conjecture that the answer is no.

We showed that the calculus of Mobile Ambients has weak matching systems
of all finite degrees. Furthermore, MA does not have replicated strong matching
systems of degree two or higher. Our work leaves open the question of whether MA
has a strong matching system of degree two or higher. Again, we conjecture that
the answer is no.

We showed that CCS does not have weak matching systems of degree greater
than one. By our result on preservation of weak matching systems by suitable en-
codings, we could deduce a non-encodability result for the asynchronous π-calculus
with matching into CCS with all levels of polyadic synchronisation.

Acknowledgements

We thank Uwe Nestmann for a helpful discussion, and the referees for their helpful
suggestions.

56

Haagensen, Maffeis and Phillips

References

[1] Banach, R. and F. van Breugel, Mobility and modularity: expressing pi-calculus in CCS (extended
abstract) (1998), draft.

[2] Boreale, M., On the expressiveness of internal mobility in name-passing calculi, Theoretical Computer
Science 195 (1998), pp. 205–226.

[3] Bugliesi, M., G. Castagna and S. Crafa, Access control for mobile agents: the calculus of Boxed
Ambients, ACM Transactions on Programming Languages and Systems 26 (2004), pp. 57–124.

[4] Carbone, M. and S. Maffeis, On the expressive power of polyadic synchronisation in π-calculus, Nordic
Journal of Computing 10 (2003), pp. 70–98.

[5] Cardelli, L. and A.D. Gordon, Mobile ambients, Theoretical Computer Science 240 (2000), pp. 177–213.

[6] Gorla, D., Comparing calculi for mobility via their relative expressive power, Technical Report 05/2006,
Dip. di Informatica, Univ. di Roma “La Sapienza”, Italy (2006).

[7] Merro, M. and D. Sangiorgi, On asynchrony in name-passing calculi, Mathematical Structures in
Computer Science 14 (2004), pp. 715–767.

[8] Milner, R., “Communicating and Mobile Systems: the π-calculus,” Cambridge University Press, 1999.

[9] Palamidessi, C., Comparing the expressive power of the synchronous and the asynchronous π-calculi,
Mathematical Structures in Computer Science 13 (2003), pp. 685–719.

[10] Phillips, I.C.C. and M. Vigliotti, Electoral systems in ambient calculi, in: Proceedings of 7th
International Conference on Foundations of Software Science and Computation Structures, FoSSaCS
2004, Lecture Notes in Computer Science 2987 (2004), pp. 408–422.

[11] Phillips, I.C.C. and M. Vigliotti, Leader election in rings of ambient processes, Theoretical Computer
Science 356 (2006), pp. 468–494.

[12] Sangiorgi, D., π-calculus, internal mobility and agent-passing calculi, Theoretical Computer Science
167 (1996), pp. 235–274.

[13] Turner, D.N., “The Polymorphic Pi-calculus: Theory and Implementation,” Ph.D. thesis, University of
Edinburgh (1995).

57

EXPRESS 2007 Preliminary Version

Linearity, Persistence and Testing Semantics
in the Asynchronous Pi-Calculus

Diletta Cacciagrano2, Flavio Corradini3

Dipartimento di Matematica e Informatica
Università degli Studi di Camerino, Italy

Jesús Aranda 1,4

INRIA Futurs, LIX École Polytechnique, France

Escuela de Ingenieŕıa de Sistemas y Computación, Universidad del Valle, Colombia

Frank D. Valencia5

CNRS and LIX École Polytechnique, France

Abstract

In [24] the authors studied the expressiveness of persistence in the asynchronous π-calculus (Aπ) wrt weak
barbed congruence. The study is incomplete because it ignores the issue of divergence. In this paper,
we present an expressiveness study of persistence in the asynchronous π-calculus (Aπ) wrt De Nicola and
Hennessy’s testing scenario which is sensitive to divergence. Following [24], we consider Aπ and three
sub-languages of it, each capturing one source of persistence: the persistent-input calculus (PIAπ), the
persistent-output calculus (POAπ) and persistent calculus (PAπ). In [24] the authors showed encodings
from Aπ into the semi-persistent calculi (i.e., POAπ and PIAπ) correct wrt weak barbed congruence. In
this paper we prove that, under some general conditions, there cannot be an encoding from Aπ into a
(semi)-persistent calculus preserving the must testing semantics.

Keywords: Asynchronous Pi-Calculus, Linearity, Persistence, Testing Semantics.

1 Introduction

In [24] the authors present an expressiveness study of linearity and persistence
of processes. Since several calculi presuppose persistence on their processes, the
authors address the expressiveness issue of whether such persistence restricts the

1 The work of Jesús Aranda has been supported by COLCIENCIAS (Instituto Colombiano para el Desar-
rollo de la Ciencia y la Tecnoloǵıa ”Francisco José de Caldas”) and INRIA Futurs.
2 Email:diletta.cacciagrano@unicam.it
3 Email:flavio.corradini@unicam.it
4 Email:jesus.aranda@lix.polytechnique.fr
5 Email:frank.valencia@lix.polytechnique.fr

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:diletta.cacciagrano@unicam.it
mailto:flavio.corradini@unicam.it
mailto:jesus.aranda@lix.polytechnique.fr
mailto:frank.valencia@lix.polytechnique.fr

Aranda, Cacciagrano, Corradini, Valencia

systems that we can specify, model or reason about in the framework. Their work is
conducted using the standard notion weak barbed congruence and hence it ignores
divergence issues. Since divergence plays an important role in expressiveness studies,
particularly in those studies involving persistence, in this work we aim at extending
and strengthening their study by using the standard notion of testing equivalences.
As elaborated below, our technical results contrast and complement those in [24].
More importantly, our results also clarify and support informal expressiveness claims
in the literature.

Motivation: Linearity is present in process calculi such as CCS, CSP, the π-
calculus [20] and Linear CCP [31,14] where messages are consumed upon being
received. In the π-calculus the system x̄z|x(y).P |x(y).Q represents a message
with a datum z, tagged with x, that can be consumed by either x(y).P or x(y).Q.
Persistence of messages is present in several process calculi. Perhaps the most
prominent representative of such calculi is Concurrent Constraint Programming
(CCP) [32]. Here the messages (or items of information) can be read but, unlike in
Linear CCP, they cannot be consumed. Other prominent examples can be found
in the context of calculi for analyzing and describing security protocols: Crazzolara
and Winskel’s SPL [12], the Spi Calculus variants by Fiore and Abadi [15] and by
Amadio et all [2], and the calculus of Boreale and Buscemi [5] are operationally
defined in terms of configurations containing messages which cannot be consumed.
Persistent receivers arise, e.g. in the notion of omega receptiveness [29] where the
input of a name is always available—but always with the same continuation. In the
π-calculus persistent receivers are used, for instance, to model functions, objects,
higher-order communications, or procedure definitions. Furthermore, persistence of
both messages and receivers arise in the context of CCP with universally-quantified
persistent ask operations. In the context of calculi for security, persistent receivers
can be used to specify protocols where principals are willing to run an unbounded
number of times (and persistent messages to model the fact that every message
can be remembered by the spy). In fact, the approach of specifying protocols in a
persistent setting, with an unbounded number of sessions, has been explored in [4]
by using a classic logic Horn clause representation of protocols (rather than a linear
logic one).

Expressiveness of Persistence - Drawbacks and Conjectures: The study in
[24] is conducted in the asynchronous π-calculus (Aπ), which naturally captures
the persistent features mentioned above. Persistent messages (and receivers) can
simply be specified using the replication operator of the calculus which creates an
unbounded number of copies of a given process. In particular, the authors in [24]
investigate the existence of encodings from Aπ into three sub-languages of it, each
capturing one source of persistence: the persistent-input calculus (PIAπ), defined as
Aπ where inputs are replicated; persistent-output calculus (POAπ), defined dually,
i.e. outputs rather than inputs are replicated; persistent calculus (PAπ), defined as
Aπ but with all inputs and outputs replicated. The main result basically states that
we need one source of linearity, i.e. either on inputs (PIAπ) or outputs (POAπ)
to encode the behavior of arbitrary Aπ processes via weak barbed congruence.
Nevertheless, the main drawback of the work [24] is that the notion of correct

59

Aranda, Cacciagrano, Corradini, Valencia

encoding is based on weak barbed bisimulation (congruence), which is not sensitive
to divergence. In particular, the encoding provided in [24] from Aπ into PIAπ is
weak barbed congruent preserving but not divergence preserving. Although in some
situations divergence may be ignored, in general it is an important issue to consider
in the correctness of encodings [8,17,16,18,7].

In fact, the informal claims of extra expressivity of Linear CCP over CCP in
[3,14] are based on discrimination introduced by divergence that is clearly ignored by
the standard notion of weak bisimulation. Furthermore, the author of [11] suggests
as future work to extend SPL, which uses only persistent messages and replication,
with recursive definitions to be able to program and model recursive protocols such
as those in [1,25]. Nevertheless, one can give an encoding of recursion in SPL from
an easy adaptation of the composition between the Aπ encoding of recursion [30]
(where recursive calls are translated into linear Aπ outputs and recursive definitions
into persistent inputs) and the encoding of Aπ into POAπ in [24]. The resulting
encoding is correct up-to weak bisimulation. The encoding of Aπ into POAπ, how-
ever, introduces divergence and hence the composite encoding does not seem to
invalidate the justification for extending SPL with recursive definitions. The above
works suggest that the expressiveness study of persistence is relevant but incomplete
if divergence is not taken into account.

This work: In this paper we shall therefore study the existence of encodings from
Aπ into the persistent sub-languages mentioned above using testing semantics [13].

Our main contribution is to provide a uniform and general result stating that
under some reasonable conditions Aπ cannot be encoded into any of the above
(semi-) persistent calculi while preserving the must testing semantics. The general
conditions involve compositionality on the encoding of constructors such as parallel
composition, prefix, and replication. The main result contrasts and completes the
ones in [24]. It also supports the informal claims of extra expressivity mentioned
above. We shall also state other more specialized impossibility results for must
preserving encodings from Aπ into the semi-persistent calculi, focusing on specific
properties of each target calculus. This helps clarifying some previous assumptions
on the interplay between syntax and semantics in encodings of process calculi. We
believe that, since the study is conducted in Aπ with well-established notions of
equivalence, we can easily adapt our results to other asynchronous frameworks such
as CCP languages and the above-mentioned calculi for security.

2 The Calculi

Here we define the calculi we study. We first recall the (monadic) asynchronous
π-calculus (Aπ). The other calculi are defined as syntactic restrictions of Aπ.

2.1 The asynchronous pi-calculus

Let N (ranged over by x, y, z, . . .) be a set of names. The set of the asynchronous
π-calculus processes (ranged over by P , Q, R . . .) is generated by the following
grammar:

60

Aranda, Cacciagrano, Corradini, Valencia

P,Q, . . . ::= 0 x̄z x(y).P P |Q (νx)P ! P

Intuitively, an output x̄z represents a message z tagged with a name x indicating
that it can be received (or consumed) by an input process x(y).P which behaves,
upon receiving z, as P{z/y}. Furthermore, x(y).P binds the names y in P . The
other binder is the restriction (νx)P which declares a name x private to P . The
parallel composition P | Q means P and Q running in parallel. The replication !P
means P |P | . . ., i.e., !P represents a persistent resource.

We use the standard notations bn(Q) for the bound names in Q, and fn(Q) for
the free names in Q. The set of names of P is defined as n(P) = fn(P) ∪ bn(P).
We write (νx1 . . . xn)P to denote (νx1) . . . (νxn)P . We let σ, ϑ . . . range over (non-
capturing) substitutions of names on processes.

The reduction relation −→ is the least binary relation on processes satisfying
the rules in Table 1. ∗−→ denotes the reflexive, transitive closure of −→ . The
reductions are quotiented by the structural congruence relation ≡.

Definition 2.1 [Structural equivalence] Let ≡ be the smallest congruence over pro-
cesses satisfying α-equivalence, the commutative monoid laws for composition with
0 as identity, the replication law !P ≡ P | !P , the restriction laws (νx)0 ≡ 0,
(νx)(νy)P ≡ (νy)(νx)P and the extrusion law: (νx)(P | Q) ≡ P | (νx)Q if
x 6∈ fn(P).

Com x̄z | x(y).P −→ P{z/y}

Par
P −→ P ′

P |Q −→ P ′ |Q
Res

P −→ P ′

(νx)P −→ (νx)P ′

Cong
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q

Table 1
Reduction Rules.

2.2 The (semi-)persistent calculi

The persistent-input calculus PIAπ results from Aπ by requiring all input processes
to be replicated. Processes in PIAπ are generated by the following grammar:

P,Q, . . . ::= 0 ! x(y).P x̄y P |Q (νx)P ! P

The persistent-output calculus POAπ arises as from Aπ by requiring all outputs
to be replicated. Processes in POAπ are generated by the following grammar:

P,Q, . . . ::= 0 x(y).P ! x̄y P |Q (νx)P ! P

Finally, we have the persistent calculus PAπ, a subset of Aπ where output and
input processes must be replicated. Processes in PAπ are generated by the following
grammar:

61

Aranda, Cacciagrano, Corradini, Valencia

P,Q, . . . ::= 0 ! x(y).P ! x̄y P |Q (νx)P ! P

The relation −→ for PIAπ, POAπ and PAπ can be equivalently defined as
in Table 1, with Com replaced respectively with Com(PIAπ), Com(POAπ) and
Com(PAπ) rules (Table 2). The new rules reflect the persistent-input and linear-
output nature of PIAπ (Rule Com(PIAπ)), the linear-input and persistent-output
nature of POAπ (Rule Com(POAπ)), and the persistent nature of PAπ (Rule
Com(PAπ)).

Com(PIAπ) x̄z | ! x(y).P −→ P{z/y} | ! x(y).P

Com(POAπ) ! x̄z | x(y).P −→ ! x̄z | P{z/y}

Com(PAπ) ! x̄z | ! x(y).P −→ P{z/y} | ! x̄z | ! x(y).P

Table 2
Reduction Rules

Notation 2.1 We shall use P to range over the set of the calculi so-far defined
{Aπ,PIAπ,POAπ,PAπ}.

3 Testing Semantics

In [13] De Nicola and Hennessy propose a framework for defining pre-orders that
is widely acknowledged as a realistic scenario for system testing. It means to de-
fine formally when one process is a correct implementation of another considering
specially unsafe contexts, in which is particularly important what is the revealed
information of the process in any context or test. In this section we summarize the
basic definitions behind the testing machinery for the π-calculi.

Definition 3.1 [Observers]

- The set of names N is extended as N ′ = N ∪ {ω} with ω 6∈ N . By convention
we let fn(ω) = {ω} and bn(ω) = ∅ (ω is used to report success).

- The set O (ranged over by o, o′, o′′, E,E′, . . .) of observers (tests) is defined like
P, where the grammar is extended with the production P ::= ω.P .

- ω−→ is the least predicate overO satisfying the inference rules in Table 3.

Omega ω.E
ω−→ Res

E
ω−→

(νy)E ω−→

Par
E1

ω−→

E1 | E2
ω−→

Cong
E′

ω−→ E′ ≡ E

E
ω−→

Table 3
Predicate

ω−→ .

62

Aranda, Cacciagrano, Corradini, Valencia

Definition 3.2 [Maximal computations] Given P ∈ P and o ∈ O, a maximal
computation from P | o is either an infinite sequence of the form

P | o = E0 −→ E1 −→ E2 −→ . . .

or a finite sequence of the form

P | o = E0 −→ E1 −→ . . . −→ En 6−→ .

Definition 3.3 [May, must and fair relations 6] Given P ∈ P and o ∈ O, define:

- P may o if and only if there is a maximal computation (as in Def. 3.2) such that
Ei

ω−→, for some i ≥ 0;

- P must o if and only if for every maximal computation (as in Def. 3.2) there exists
i ≥ 0 such that Ei

ω−→;

- P fair o [6] if and only if for every maximal computation (as in Def. 3.2) and
∀i ≥ 0, ∃ E′i such that Ei

∗−→ E′i and E′i
ω−→.

4 Encoding linearity into persistence

First, we recall some notions about encodings. An encoding is a mapping from
the terms of a calculus into the terms of another. In general a “good” encoding
satisfies some additional requirements, but there is no agreement on a general notion
of “good” encoding. Perhaps indeed there should not be a unique notion, but
several, depending on the purpose. In this paper we shall study the existence of
encodings [[·]] : Aπ → P from π into P ∈ {PAπ,PIAπ,POAπ} and focus on typical
requirements such as compositionality w.r.t. certain operators, and the correctness
w.r.t. a given semantics.

Compositionality and multi-hole contexts: We shall use notion of (multi-hole)
process contexts [30] to describe compositionality. Recall that a P context C with
k holes is a term with occurrences of k distinct holes []1, . . . , []k such that a P
process must result from C if we replace all the occurrences of each []i with a P
process. The context C is singularly-structured if each hole occurs exactly once.
For example, []1 | x(y).([]2 | []1) is an Aπ non singularly-structured context with
two holes. Given P1, . . . , Pk ∈ P and a context C with k holes, C[P1, . . . , Pk] is the
process that results from replacing the occurrences of each []i with Pi. The names
of a context C with k holes, n(C), are those of C[Q1, . . . , Qk] where each Qi is 0.
The free and bound names of a context are defined analogously. We can regard the
input prefix x(y), | and ! as the operators of arity 1, 2 and 1 respectively in Aπ in
the obvious sense.

Definition 4.1 [Compositionality w.r.t. an operator] Let op be an n-ary operator
of Aπ. An encoding [[·]] : Aπ → P is compositional w.r.t. op iff there is a P context
Cop with n holes such that [[op(P1, .., Pn)]]= Cop[[[P1]], .., [[Pn]]].

6 It may be possible to give other equivalent definition not based on maximal computations by using

properties of the calculi under consideration such as: if P
ω−→ and P −→ P ′ then P ′ ω−→. For uni-

formity, however, we have used a well-known testing semantics definition based on the notion of maximal
computations.

63

Aranda, Cacciagrano, Corradini, Valencia

In the following, C[·] denotes contexts with one hole and C[·, ·] contexts with
two holes. Furthermore, given an encoding [[·]] : Aπ → P, we define Cop[[·]] as the
context C such that [[op(P1, . . . , Pn)]] = C[[[P1]], . . . , [[Pn]]]. We shall often omit the
“[[·]]” in Cop

[[·]] since it is easy to infer from the context.

Remark 4.2 [Homomorphism wrt parallel composition] An interesting case of
compositionality is homomorphism w.r.t a given operator op: The operator is
mapped into the same operator of the target language, i.e. [[op(P1, .., Pn)]]
= op([[P1]], . . . , [[Pn]]). Homomorphism w.r.t parallelism, also called distribution-
preserving [33,26,27], can arguably be considered as a reasonable requirement for
an encoding. In particular, the works [33,26,27,23,9,16,17] support the distribution-
preserving hypothesis by arguing that it corresponds to requiring that the degree
of distribution of the processes is maintained by the translation, i.e. no coordinator
is added. Some of these works are in the context of solving electoral problems and
some others in more general scenarios [16,17]. Other works [22,28], however, argue
that the requirement can be quite demanding as it rules out practical implemen-
tation of distributed systems. Some of our impossibility results will appeal to the
distribution-preserving hypothesis.

Remark 4.3 Typically, the Cop mentioned in Definition 4.1 is a singularly-
structured multi-hole context in encodings of operators such as input prefix, parallel
composition and replication. Note that, if the encoding is homomorphic wrt op, then
Cop is a singularly-structured multi-hole context.

Correctness wrt Testing: Concerning semantic correctness, we consider preser-
vation of sat testing, where sat can be respectively may , must and fair . Given
an encoding e = [[·]] : Aπ → P, we assume that its lifted version e′ from the set of
observers of π to the ones of P is an encoding satisfying the following: e′(o) = e(o)
if o has no occurrences of ω.

Definition 4.4 [Soundness, completeness and sat-preservation] Let [[·]] : Aπ → P.
We say that [[·]] is:

- sound w.r.t. sat iff ∀ P ∈ Aπ, ∀ o ∈ O, [[P]] sat [[o]] implies P sat o;

- complete w.r.t. sat iff ∀ P ∈ Aπ, ∀ o ∈ O, P sat o implies [[P]] sat [[o]];

- sat-preserving iff [[·]] is sound and complete w.r.t. sat.

4.1 Some encodings from asynchronous pi- calculus into its semi-persistent subsets

We consider the following encoding from Aπ to PIAπ defined in [24].

Definition 4.5 The encoding [[·]] : Aπ → PIAπ is a homomorphism for 0, parallel
composition, restriction and replication, otherwise is defined

- [[x̄z]] = x̄z, and

- [[x(y).P]] = (νtf)(t̄ | !x(y).(νl)(l̄ | !t.!l.([[P]] | !f̄) | !f.!l.x̄y))

where t, f, l 6∈ fn(P) ∪{x, y}. (The lifted version is given adding [[ω.P]] = ω.[[P]].)

This encoding enjoys a strong property: namely, for any P, [[P]] ≈ P , where
≈ denotes weak barbed congruence [30]. This implies, in the testing scenario, a

64

Aranda, Cacciagrano, Corradini, Valencia

property stronger than sat-preservation.

Proposition 4.6 Let [[·]] : Aπ → PIAπ as in Definition 4.5. ∀ P ∈ Aπ, ∀ o ∈ O ⊆
PIAπ P sat o iff [[P]] sat o, where sat can be respectively may and fair .

To prove that the statement does not hold in the case of must semantics,
consider P = (a.0 |!ā) and o = a.ω.0: then P must o but [[P]] 6must o.

Extending the notion of barb to ω, Clearly P | o ≈ [[P | o]] as P | o ∈ Aπ, and by
homomorphism w.r.t parallel composition, we obtain that P | o ≈ [[P]] | [[o]]. This is
enough to hold fair and may preserving.

In [24] the encoding in Definition 4.5 is used to get an encoding of Aπ into
POAπ, by composing it with the following mapping from PIAπ into POAπ.

Definition 4.7 The encoding f = [[·]] : PIAπ → POAπ is a homomorphism for 0,
parallel composition, restriction, and replication, otherwise is defined as

- [[x̄z]] = (νs)(!x̄s | s(r).!r̄z), and

- [[!x(y).P]] =!x(s).(νr)(!s̄r | r(y).[[P]])

where s, r 6∈ fn(P) ∪ {x, z}. (The lifted version is given adding [[ω.P]] = ω.[[P]].)

Let g be [[·]] : Aπ → PIAπ in Definition 4.5. The encoding h = [[·]] : Aπ → POAπ is
the composite function f ◦ g.

Because of this encoding maps a linear output into a replicated one with the
same barb, the composite encoding h = [[·]] : Aπ → POAπ in Definition 4.7 does
not satisfy [[P]]≈ P . It has a weaker property: namely, P ≈ Q iff [[P]] ≈ POAπ

[·] [[Q]],

where [[P]] ≈ POAπ
[·] [[Q]] means that ∀C[·] context in Aπ, [[C]][[[P]]] and [[C]][[[Q]]]

(assuming [[[]]] = []) are weak barbed bisimilar [30]. Similarly, the results for the
composite encoding from Aπ into POAπ in a testing scenario are weaker than these
ones for the encoding from Aπ into PIAπ. Obviously, the following proposition
would not hold if sat were must . Consider P =!ā and o = a.ω.0: then P must o
but [[P]] 6must [[o]].

Proposition 4.8 Let h = [[·]] : Aπ → POAπ as in Definition 4.7. ∀P ∈ Aπ, ∀o ∈ O,
P sat o if and only if [[P]] sat [[o]], where sat can be respectively may and fair .

5 Uniform impossibility results for persistence

This section is the core of the paper and it focuses on general and uniform negative
results for encodings of Aπ into PIAπ,POAπ and PAπ, respectively. We identify
some reasonable conditions which will guarantee that none of these encodings can be
must-preserving. In particular, we show that there does not exist a must-preserving
compositional encoding, homomorphic wrt replication, from π-calculus into any
semi-persistent calculus. The proofs mainly rely on the following statement: if [[·]] is
an encoding from Aπ into P satisfying (1) compositionality w.r.t. input prefix, (2)
must -preservation and (3) [[ω.0]] ω−→ then ∀x, y ∈ N , any hole is prefixed in C

[[·]]
x(y).

We believe that the hypothesis [[ω.0]] ω−→ is reasonable for an encoding. It can
follow from the existence of a divergent process in the range of the encoding which

65

Aranda, Cacciagrano, Corradini, Valencia

is necessary if the encoding preserves divergence—recall that P diverges, P ↑, if
there is an infinite sequence of reductions from P . However, it can be a divergence-
independent property of the encoding, obtained in a purely syntactic way whenever
the lifted version of the encoding is defined adding [[ω.P]] = ω.[[P]].

Theorem 5.1 Let [[·]] : Aπ → P, with P ∈ {PIAπ,POAπ,PAπ}, be an encoding
satisfying:

1. compositionality w.r.t. input prefix, parallelism and replication,

2. [[ω.0]] ω−→ ,

3. ∃x, y, z : n(C [[·]]
!) ∩ n(C [[·]]

x(y))= n(C [[·]]
!) ∩ n([[x̄z]])=n(C [[·]]

!) ∩ n(C [[·]]
|)=∅,

4. C [[·]]
! is a singularly-structured context.

Then [[·]] is not must -preserving.

Proof. (Sketch of:) Suppose that [[·]] in C
[[·]]
! is not in the scope of a replication.

Then it is possible to prove that the hole is prefixed in C
[[·]]
! . Now it suffices to

consider that x(y).0 must !ω.0 but Cx(y)[[[0]]] 6must C![[[ω.0]]], since every hole is

prefixed in C
[[·]]
x(y), the hole is prefixed in C

[[·]]
! and Cx(y)[[[0]]] | C![[[ω.0]]] 6−→ by (3).

Now suppose that [[·]] in C [[·]]
! is in the scope of a replication. Then it is possible to

prove that ∀x′, z′ ∈N , either C![Cx(y)[[[ω.0]]]] | [[x̄z | x̄′z′]] or Cx(y)[[[ω.0]]] |C![[[x̄z | x̄′z′]]]
has at least one infinite computation such that [[ω.0]] does not interact or participate
in the computation. Now it suffices to consider both P | o (with [[P]] | [[o]]) and
P ′ | o′ (with [[P ′]] | [[o′]]), where P =!x(y).x′(y′).ω.0, o = x̄z | x̄′z′ (x 6= x′), P ′ =
x(y).x′(y′).ω.0 and o′ =!(x̄z | x̄′z′), obtaining that [[·]] cannot be must -preserving.2

Let us discuss the premises in the above theorem. Compositionality is in gen-
eral a reasonable condition for an encoding. As argued above, the second condition
is validated if the encoding is to preserve divergence. The third condition is val-
idated if in the encoding of each operator op the context where the encodings of
the operands are placed, i.e. Cop, uses unique names only. Replication represents
an infinite parallel composition, so it is arguably reasonable to require homomor-
phism for replication since homomorphism for the parallel operator is arguably
a reasonable requirement—see Remark 4.2. Regarding (4), we already pointed
out in Remark 4.3 that in compositional encodings the contexts Cop are typically
singularly-structured 7 .

We conclude this section with a theorem stating a general and uniform impos-
sibility result for the existence of encodings from Aπ into any (semi-)persistent
calculus. The statement results as an immediate consequence of Theorem 5.1 in the
case of homomorphism w.r.t replication, as it implies n(C [[·]]

!) = ∅.

Theorem 5.2 Let [[·]] : Aπ → P, with P ∈ {PIAπ,POAπ,PAπ}, be an encoding
satisfying:

1. compositionality w.r.t. input prefix and parallelism,

7 Notice that the situation pointed out to us a previous review where [[!P]] = [[P]] |![[P]], i.e., C! = [.]|![.] is
not singularly-structured, can be rewritten via ≡ as [[!P]] =![[P]] and in this case the corresponding C! =![.]
is singularly-structured.

66

Aranda, Cacciagrano, Corradini, Valencia

2. homomorphism w.r.t bang operator,

3. [[ω.0]] ω−→ .

Then [[·]] is not must -preserving.

6 Specialized impossibility results for persistence

In the previous section we gave a uniform impossibility result for the existence of
encodings of Aπ into the (semi-)persistent calculi. In this section, we give further
impossibility results, under different hypotheses, taking into account particular fea-
tures of some of the (semi-)persistent calculi, namely PAπ and PIAπ 8 .

For technical reasons we introduce a particular kind of contexts in P that differ
from those we have introduced in Section 4, in that brackets do not disappear
once we “fill the holes” with process terms. Additionally, we require that different
occurrences of braces are to be filled with the same process.

Definition 6.1 [Focusing contexts] A focusing context C{ } for P is generated by
the following grammar:

C{ } := { }σ 0 out in.C{ } (νx)C{ } C{ } | C{ } !C{ }

where σ is a (name) substitution, and in and out are resp. input and output,
according to P syntax. (e.g. in =!x(y) and out = x̄z when P = PIAπ)

Notation 6.1 Given a focusing context C{} and P ∈ P, C{P} is the term obtained
by replacing each occurrence { }σ in C{ } by {P}σ. We denote by L(P) (ranged
over by B,B′, ..) the set {C{P} | P ∈ P, C{ } is a focusing context}.

An occurrence of {P}σ is prefixed in B ∈ L(P) if it is in the scope of an input
prefix. We write Pref(B) when every occurrence of {P}σ is prefixed in B.

The structural equivalence and the reduction semantics for the language L(P)
are both defined on the basis of the ones for P, the only difference being that terms
are in L(P) instead than in P and that unguarded braces (i.e. terms out of the
scope of an input prefix like {P}σ) are assumed as deadlocked terms. This is not
a concern, because for the proof of our main results, for every σ each occurrence of
{P}σ is prefixed, i.e. in the scope of an input prefix.

It is possible to prove that L(P) is closed under substitution and, as a con-
sequence, under reduction. Denoting by Unbrace(B) the P process obtained by
removing all the braces from B and by applying the substitutions, it is also pos-
sible to prove that: (i)B ∈ L(P), then (i) B −→ B′ implies B′ ∈ L(P) and
Unbrace(B) −→ Unbrace(B′), and (ii) Pref(B) and Unbrace(B) −→ R implies
that ∃B′ ∈ L(P) such that B −→ B′ and R ≡ Unbrace(B′).

Focusing contexts are extended for the testing machinery, adding rule
{ω.E}ι ω−→ in Table 3. Notice that, since every σ is defined over N and ω 6∈ N ,
then ∀E ∈ P and B ∈ L(P), (i) {ω.E}σ ω−→; (ii) B ω−→ implies Bσ ω−→; (iii) B ω−→
if and only if Unbrace(B) ω−→, where Bσ represents the result of the application of
σ to B (assuming to use α-equivalence to avoid collision of names).

8 We also stated this kind of specialized result for POAπ but for reasons of space and its restricted nature
it has been moved to the full paper appendix

67

Aranda, Cacciagrano, Corradini, Valencia

Persistent Pi-Calculus: To prove our main results, we define a function over
L(P), min(B) (Table 4), and a predicate, Pr (Table 5).

min(B) = +∞ if B ∈ P; min((νx)B) = min(B);

min({P}) = 0; min(B |B′) = min{min(B),min(B′)};

min(x(y).B) = 1 + min(B); min(!B) = min(B).

Table 4
Function min.

Red
min(!x(y).B) ≥ 2

Pr(!x̄z | !x(y).B)
Res

Pr(B)

Pr((νy)B)

Par
Pr(B1)

Pr(B1 |B2)
Cong

Pr(B′) , B′ ≡ B

Pr(B)

Table 5
Predicate Pr.

We can prove that Pr is closed under reduction and it implies Pref. As a con-
sequence, for every B ∈ L(P) such that Pr(B), it is possible to build a non-empty
maximal computation from B where any term of the computation verifies the pred-
icate Pr. We can now state a rather strong negative result for PAπ.

Theorem 6.2 Let [[·]] be an encoding from Aπ into PAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. [[ω.0]] ω−→ .

Then [[·]] is not must -preserving.

Proof. By contradiction, it suffices to suppose [[·]] being must -preserving, consider
P = x̄z |x̄z and o = x(y).x(y).ω.0. and observe that Pr([[x̄z |x̄z]]|Cx(y)[Cx(y){[[ω.0]]}])
holds. Hence, it is possible to prove that there is a non-empty maximal computa-
tion from [[x̄z | x̄z]] |[[x(y).x(y).ω.0]] where any term of the computation verifies the
predicate Pr, i.e. every term does not perform ω (since every occurrence of [[ω.0]] is
prefixed). 2

The above theorem resembles the impossibility result in [24] about the existence
of an encoding from Aπ into PAπ wrt weak bisimulation (and output equivalence).
However, the hypothesis of the result in [24] is different. Namely, it is restricted to
encodings homomorphic wrt parallel composition.

Persistent-Input and Persistent-Output Pi-Calculus: Regarding both the
semi-persistent calculi, a Pr-like predicate does not preserve Pref (it suffices to
consider B1 = b̄ | c̄ | !b.!c.{P}σ, where P ∈ PIAπ, and B2 =!b̄ | !c̄ | b.c.{P}σ, where
P ∈ POAπ). In the case of PIAπ, an ad-hoc predicate, Prin, is defined. The
predicate has been defined in such a way to select those processes B ∈ L(P) such
that - every {P}σ occurrence is in the scope of an input prefix x(y), for some

68

Aranda, Cacciagrano, Corradini, Valencia

x ∈ fn(B) and y ∈ N , - there exists an input component !x(y).B (prefixing {P}σ)
such that min(!x(y).B) ≥ 2, and - every parallel component !xi(y).B is such that
min(!xi(y).B) ≥ 1 if xi = x and min(!xi(y).B) ≥ 2 if xi 6= x. As Pr, Prin preserves
Pref under reduction as well as the other results for Pr. In particular, whenever
∃x ∈ fn(B) such that Prin(B, x), it is possible to build a maximal computation
from B where any term of the computation verifies the predicate Prin. Hence, it
leads us to the negative result below.

Theorem 6.3 Let [[·]] be an encoding from Aπ into PIAπ that satisfies:

1. compositionality w.r.t. input prefix,

2. [[ω.0]] ω−→ ,

3. if fn(P) ∩ bn(x(y)) = ∅ then fn([[P]]) ∩ bn(C [[·]]
x(y)) = ∅,

4. [[x(y).P]] ≡ (ν~x)((!u(v).C[[[P]]]) | T) for some ~x,C, T with u 6∈ ~x.

Then [[·]] is not must -preserving.

Proof. It is possible to prove that ∃h ∈ fn(C [[·]]
x(y)): Prin(Cx(y)[Cx(y){[[ω.0]]}], h).

Now, it suffices to assume, by contradiction, that [[·]] is must-preserving and proving
that Prin([[x̄z | x̄z]] |Cx(y)[Cx(y){[[ω.0]]}], h) holds. Hence, it is possible to prove that
there is a non-empty maximal computation from [[x̄z | x̄z]] | [[x(y).x(y).ω.0]] where
any term of the computation verifies the predicate Prin, i.e. every term does not
perform ω (since every occurrence of [[ω.0]] is prefixed). 2

Notice that the encoding in Definition 4.5 satisfies every condition of the fol-
lowing theorem and, more important, that Prin does not rely on any divergence as-
sumption, differently from Pr. We have already argued for the first two conditions
as being reasonable. Intuitively, the third condition expresses that the encoding
preserves non-binding wrt input prefix: If in a source term x(y).P none of the free
names of P is bound by the input prefix, then the free names of [[P]] must not
be bound either (by a binder in the context where [[P]] is placed) in the encod-
ing of [[x(y).P]]. Finally, the fourth condition basically expresses that Aπ inputs
should be mapped into PIAπ inputs possibly allowing some other material around
it. This is validated, e.g., by encodings that preserve input/output polarities—i.e.,
Aπ inputs/outputs must be mapped into PIAπ input/outputs 9 .

7 Related Work and Concluding Remarks

Most of the related work was discussed in the introduction. In a different con-
text, in [22] it is shown that the separate choice encoding of the π-calculus into
the asynchronous π-calculus is faithful with respect to weak bisimulation, while
in [8] the authors prove that no must-preserving encoding of the (choiceless) syn-
chronous pi-calculus into the asynchronous one exists. Hence must semantics is a
good candidate to study the expressiveness of persistence when divergence is taken
into account. Nevertheless, differently from [8], this work does not consider any

9 E.g., the encoding in Definition 4.5 satisfies all conditions of Theorem 6.3.

69

Aranda, Cacciagrano, Corradini, Valencia

synchronous language, the must semantics is studied in a uniform and purely asyn-
chronous framework. As previously mentioned the study of persistence in [24] is
incomplete as ignores the crucial issue of divergence. In this paper, we used the
divergence-sensitive framework of testing semantics and adapted and exploited the
techniques of [8] to give a more complete account of the expressiveness of persistence
in asynchronous calculi. In particular, as discussed in the introduction, this work
supports informal expressiveness loss claims in persistent asynchronous languages
[3,14,11].

References

[1] J. Alves-Foss. An Efficient Secure Authenticated Group Key Exchange Algorithm for Large and
Dynamic Groups. In Proceedings of the 23rd National Information Systems Security Conference, 2000.

[2] R. Amadio and D. Lugiez and V. Vanackere. On the Symbolic Reduction of Processes with
Cryptographic Functions. TCS: Theoretical Computer Science 290, 2003.

[3] E. Best, F. de Boer, and C. Palamidessi. Partial order and sos semantics for linear constraint programs.
In Proc. of Coordination’97, volume 1282 of LNCS, 1997.

[4] B. Blanchet. From linear to classical logic by abstract interpretation. Information Processing Letters
95(5), 2005.

[5] M. Boreale and M. Buscemi. A Framework for the Analysis of Security Protocols, Lecture Notes in
Computer Science 2421, 2002.

[6] E. Brinksma, A. Rensink, W. Vogler. Fair Testing, Proc. of CONCUR’95, LNCS 962, pp. 313-327,
1995.

[7] D. Cacciagrano, F. Corradini. On Synchronous and Asynchronous Commu- nication Paradigms, Proc.
of ICTCS ’01, LNCS 2202, pp. 256-268, 2001.

[8] D. Cacciagrano, F. Corradini, C. Palamidessi. Separation of Synchronous and Asynchronous
Communication Via Testing. Proc. of EXPRESS’05. Electr. Notes Theor. Comput. Sci. 154(3): 95-
108, 2006. An extended version will appear in Theoretical Computer Science.

[9] M. Carbone, S. Maffeis. On the Expressive Power of Polyadic Synchronisation in pi-calculus. Nord. J.
Comput. 10(2): 70-98, 2003.

[10] I. Castellani, M. Hennessy. Testing Theories for Asynchronous Languages, Proc. of FSTTCS ’98, LNCS
1530, pp. 90-101, 1998.

[11] F. Crazzolara. Language, Semantics, and Methods for Security Protocols. PhD Dissertation, University
of Aarhus, Denmark, 2003.

[12] F. Crazzolara and G. Winskel. Events in security protocols, Proceedings of the 8th ACM Conference
on Computer and Communications Security, ACM Press, 2001.

[13] R. De Nicola, M. Hennessy. Testing Equivalence for Processes, Theoretical Computer Science 34, pp.
83-133, 1984.

[14] F. Fages, P. Ruet, and S. Soliman. Linear concurrent constraint programming: operational and phase
semantics. Information and Computation, 2001.

[15] M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic protocols. Proc.
CSFW-14. IEEE, 2001.

[16] D. Gorla: On the Relative Expressive Power of Asynchronous Communication Primitives. FoSSaCS
2006, 47-62, 2006.

[17] D. Gorla: Synchrony vs Asynchrony in Communication Primitives Proc. of EXPRESS’06, 47-62, 2006.

[18] S. Maffeis and I. Phillips. On the computational strength of pure ambient calculi. Proc. of EXPRESS
’03, 2003.

[19] R. Milner. Communication and Concurrency, Prentice-Hall International, 1989.

[20] R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes, Part I and II, Information and
Computation 100, pp. 1-78, 1992.

70

Aranda, Cacciagrano, Corradini, Valencia

[21] M. Merro, D. Sangiorgi. On asynchrony in name-passing calculi, Proc. of ICALP ’98, LNCS 1443,
1998.

[22] U. Nestmann. What is a ‘Good’ Encoding of Guarded Choice?, Information and Computation 156, pp.
287-319, 2000.

[23] C. Palamidessi. Comparing the Expressive Power of the Synchronous and Asynchronous π-calculus,
Mathematical Structures in Computer Science 13(5), pp. 685-719, 2003. A preliminary version appeared
in the proceedings of POPL ’97.

[24] C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. On the Expressiveness of Linearity vs
Persistence in the Asynchronous Pi Calculus. LICS 2006:59-68, 2006.

[25] L. C. Paulson. Mechanized proofs for a recursive authentication protocol. In 10th Computer Security
Foundations Workshop, 1997.

[26] I. Phillips and M. Vigliotti Electoral Systems in Ambient Calculi. FoSSaCS’04. 2004.

[27] I. Phillips, M. Vigliotti. Leader Election in Rings of Ambient Processes. Electr. Notes Theor. Comput.
Sci. 128(2): 185-199, 2005.

[28] K.V.S. Prasad. Broadcast Calculus Interpreted in CCS up to Bisimulation. In Proceedings of Express’01,
volume 52 of Electronic Notes in Theoretical Computer Science, pages 83-100. Elsevier, 2002.

[29] D. Sangiorgi. The name discipline of uniform receptiveness. Theoretical Computer Science,
221(12):457493, 1999.

[30] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge University
Press, 2001.

[31] V. Saraswat and P. Lincoln. Higher-order linear concurrent constraint programming. Technical report,
Xerox PARC, 1992.

[32] V. Saraswat. Concurrent Constraint Programming. The MIT Press, 1993.

[33] M. Vigliotti, I. Phillips, C. Palamidessi. Separation Results Via Leader Election Problems. FMCO 2005,
172-194, 2005.

71

EXPRESS 2007 Preliminary Version

Models of Computation: Automata and
Processes

Invited talk

Jos Baeten1,2

Formal Methods Group
Division of Computer Science

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, NL-5600 MB Eindhoven
The Netherlands

Abstract

The computational models of automata theory and concurrency theory have a lot in common: there is an
underlying model with states and transitions, a grammar corresponds to a recursive specification and the
algebra of regular expressions is a process algebra. More can be done to exploit this commonality, results,
methods and techniques and questions can be transfered from one domain to the other, and standardiza-
tion in the concurrency domain can be furthered. To give an example, we know that every computable
process is equal to a regular process communicating with a bidirectional tape (a Turing machine) modulo
weak or branching bisimulation. We establish that every context-free process is equal to a regular process
communicating with a stack modulo weak or branching bisimulation.

1 Joint work with Bas Luttik and Clemens Grabmayer.
2 Email: josb@win.tue.nl

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:josb@win.tue.nl

EXPRESS 2007 Preliminary Version

Alternating-time temporal logic: expressivity,
complexity,... and variants

Invited talk

François Laroussinie1

Laboratoire Spécification et Vérification
CNRS UMR 8643

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 CACHAN Cedex - France

Abstract

In this talk, we will consider the Alternating-time Temporal Logic (ATL). We will present several results
about its expressivity and complexity depending the kind of multi-agent model used to interpret ATL
formulae (Concurrent Game Structures, Alternating Transition Systems, Implicit Concurrent Game Struc-
tures,...). We will also present several real-time extensions of ATL and its models. In particular we will
discuss the way of combining concurrency and time.

1 Email: fl@lsv.ens-cachan.fr

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:fl@lsv.ens-cachan.fr

EXPRESS 2007 Preliminary Version

Leader Election and Expressiveness

Invited talk

Iain Phillips1,2

Theory of Computational Systems Section
Department of Computing
Imperial College, London

United Kingdom

Abstract

Choosing a leader process in a network of processes is a classical problem of distributed computing. The
work of Boug and Palamidessi has shown that we can regard the ability to perform leader election in a
symmetric and distributed fashion as a measure of the expressive power of process languages. We discuss
the results which have been obtained following this line of research, and compare them with alternative
approaches. In particular, we consider ambient calculi (languages which allow mobile code to be transported
in containers called ”ambients”). We also describe current investigation (with MohammadReza Mousavi)
into the properties of general process languages which determine whether leader election is possible.

1 Joint work with Maria Grazia Vigliotti.
2 Email: iccp@doc.ic.ac.uk

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:iccp@doc.ic.ac.uk

EXPRESS 2007 Preliminary Version

When is an encoding good?
Full abstraction and other criteria.

Discussion introduced and moderated by

Daniele Gorla and Uwe Nestmann

Abstract

One of the hottest topic for the EXPRESS audience is the definition of the criteria that make an encoding
’good’: this is a crucial issue to accept an encoding or to prove separation results. Here are some specific
problems we will discuss. What is the the relevance of operational correspondence in proving separation
results? What kind of renamings should an encoding preserve? Is it mandatory to map parallel composition
homomorphically?

This is a preliminary version. The final version will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

