
����
as an explicit substitution calculus

Shane O’Conchúir

This work was partially supported by funding from the Irish R esearch
Council for Science, Engineering and Technology: funded bythe National
Development Plan.

IT University Technical Report Series TR-2006-95

ISSN 1600–6100 9 2006

Copyright c
�

2006, Shane O’Conchúir

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-139-1

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7,
DK-2300 København S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

����
as an explicit substitution calculus

Shane O’Conchúir

Abstract

This work explores confluence and termination in Milner’s encoding of the	-calculus as a bigraphical reactive
system. In that work, the	-calculus was extended with explicit subsitutions and the extension (
��) was encoded
as a bigraphical reactive system.

We prove that the reduction relation of the extension is confluent on ground terms and preserves strong nor-
malisation (PSN) of� -reduction. This gives us corresponding proofs for the bigraphical encoding. The proofs are
based on the strong relationship between
�� and the calculus	��� of Bloo and Rose. The notion of composition
of substitutions in
�� and the problems it raises when attempting to prove PSN are discussed.

We then exploit similarities between
�� and the	��� calculus of Kesner and Lengrand to present a translation
from
�� to a modified version of	���. We show that reduction in the former may be simulated in the latter which
leads to a clearer proof of PSN for
�� .

Contents

1 Introduction to the calculi 5
1.1 The calculus���� and its encoding . 5
1.2 The calculus���� . 10
1.3 The calculus���� . 12

1.3.1 Comparing���� and��BIG . 14

2 Proofs of confluence and PSN 16
2.1 Proof of confluence for���� . 16
2.2 An inductive proof of PSN 24

2.2.1 PSN for����� . 24
2.2.2 PSN for����! " . 26
2.2.3 The problem with inter-substitution reduction 31
2.2.4 PSN for���� . 34

2.3 PSN and composition of substitutions 38
2.3.1 Weak/full composition 38
2.3.2 Breaking PSN 38
2.3.3 �� #� . 39
2.3.4 ��� . 40
2.3.5 ���$. 40
2.3.6 �% . 40
2.3.7 ���� . 40
2.3.8 Confluence, PSN, and FCS 41

2.4 Proof of PSN by simulation 42
2.4.1 The encoding of���� terms in���� . 42
2.4.2 A normal form and the translation 45
2.4.3 Contractions in the translation 46
2.4.4 Proof of PSN by simulation 49
2.4.5 Sketch of proof of PSN by translation to�& . 59

3 Extensions and other ideas 61
3.1 Proposed extension to���� . 61
3.2 Initial translation to���� . 62
3.3 Alternative encodings of the�-calculus . 63
3.4 A new property of controls 63

4 Summary 64
4.1 Conclusions and related work 64
4.2 Acknowledgements 66

A Appendices 70
A.1 Lemmas for inductive proof of PSN for���� . 70
A.2 Properties of reduction in���� . 75
A.3 Interleaving' -reductions in���� . 76
A.4 Contraction graphs 77

2

Introduction

This report concerns()*+ , a ,-calculus with explicit substitutions inspired by the,- calculus of Abadi et al..
ACCL91/ and presented by Milner [Mil04]1. The calculus has been used to present an encoding,0(BIG, of
the ,-calculus in the bigraphical framework of Milner, Leifer, and Jensen [Mil01, Lei01, JM04, Mil05b] but we
concentrate here on the properties that()*+ has when viewed as an explicit substitution calculus.

Section 1.1 introduces the explicit substitution calculus()*+ . We describe aspects of the bigraphical encoding
and compare the encoding and its reduction strategy to previous work in the1 -calculus [Mil90] and the fusion
calculus [PV98]. We also show that0(BIG encodes the full reduction strategy for the,-calculus.

Section 1.2 describes the calculus,234 of Bloo and Rose [BR95] and compares it to()*+ . Although the
calculi were developed independently and()*+ was based on,- , we find that Milner’s calculus more closely
resembles,234. The main difference as we will see is in how substitutions are performed.

The similarities between()*+ and,234 led us to ask whether the proofs of confluence and preservation of
strong normalisation (PSN) for,234 could be applied to()*+ . We investigate this in Sections 2.1 and 2.2. In
Section 2.1, we prove that the rewrite relation of()*+ is confluent. Section 2.2 contains proofs that certain subsets
of the rewrite relation preserve strong normalisation of5 -reduction. The proofs rest heavily on previous work by
Bloo and Rose [BR95] where these two properties were proved for ,234, a calculus inspired by,- . We use their
proof strategy for our proofs.

In Section 2.2.2, we prove PSN for a subcalculus of()*+ without certain interactions between substitutions.
We identify the subset6789:; of strongly normalising terms of()*+ and show it to be a strict subset of the
strongly normalising terms of,234. We then give a somewhat complicated, inductive proof of PSN.

Milner’s calculus allows ‘inter-substitution reduction’, a reduction related to the notion of composition of sub-
stitutions which allows free occurences of variables in substitutions to be substituted for. This form of reduction
is discussed throughout Section 2.2. It is explicit in the reduction rules which do not require a free occurrence of
a variable to be located ‘near’ the substitution definition.This is possible in0(BIG due to the bigraphical link-
ing structure (with multiple locality) and wide reaction rules. The wide substitution rule is unusual compared to
traditional explicit substitution calculi which typically have a set of distribution rules which serve to distribute
substitution through a term to the variable level. In Section 2.3, we note that()*+ manages to mimic full com-
position of substitutions. In Section 3.1 we propose an extension to()*+ (based on,24<) which allows a direct
weak composition of substitutions. We propose that the extension retains confluence and PSN but do not support
that here.

The bigraphical encoding of()*+ shares similarities to the,=2> calculus of Kesner and Lengrand [KL05, KL]
which is worth investigating as,=2> is the first explicit substitution calculi with confluence, preservation of strong
normalisation (PSN), and full composition of substitutions. We review the similarities in Section 1.3. We then
introduce a modified version of,=2> which retains PSN. A translation from()*+ to this modified calculus is given
which results in a neater proof of PSN.

This work does not directly concern bigraph theory. Milner introduced his bigraphical encoding of the,-
calculus both as an application of local bigraphs and as a starting point for studying confluence in bigraphical
reactive systems (BRSs). Although we prove closed confluence (confluence on terms without metavariables) of0(BIG, this work does not add to a general theory of confluence for bigraph theory. However, the technical tools
employed by Bloo and Rose in their proofs of closed confluence– projection and the generalised interpretation
method – may be helpful in proving this property in other bigraphical explicit substitution encodings of confluent
calculi.

This report is (probably overly) long. An interest-oriented reading order is shown in Figure 1.

Terminology and notation

We will assume that the reader is familiar with bigraph theory [JM04, Mil05b], the,-calculus [Bar84], and rewrite
systems [Ter03]. All the required background reading for this work can be found in [Mil05b, Mil04] and [Ros96a].
The main technical work (Sections 2.1, 2.2, and 2.4) can be read without much knowledge of bigraph theory.

The notation used here follows [Ros96a] and [Mil04]. For bigraphs,? denotes support-equivalence and@
denotes composition.(denotes the set of,-calculus terms and we useA to denoteB-equivalence of,-terms.

The bulk of the notation concerns rewrite systems and rewrite rules. We call these conceptsreductionsystems
andreductionrules respectively as does Rose [Ros96a] following Huet [Hue80]. We will mainly be working with

1At the time of writing, this work was being revised.

3

Section 1.1

Section 2.3

Section 1.2 Section 1.3

Section 2.1 Section 2.2 Section 2.4

Appendix A.1

Inductive proofs of confluence and PSN PSN via simulation

Section 3.2 Appendix A.4

Figure 1: Interest-oriented reading order

variants of theC-calculus and will useD EF E G E H E andI to denote terms,J E K E L E M E N E andO to denote variables,
andP andQ to denote contexts. In bothRSTU andCVWX, the set of terms (which is identical for both, assuming a
variable convention introduced in the next section) is denoted byRV.

When a reduction relation has a unique normal form, we writeY ZD [for the -normal form of termD . The symbol \ denotes] consecutive reductions of . The transitive closure of is denoted by ^ ,
its reflexive closure is denoted by_ , and its transitive and reflexive closure is denoted by . When
has unique normal forms, denotes ‘reduction to normal form’. We write SN when is strongly-
normalising, CR when it has the Church-Rosser property, LC when it has weak confluence, ` when
it has the diamond property, and UN when it has unique normal forms.

We only consider confluence on terms without metavariables –closed confluence – in this work and typically
omit ‘closed’ from now on. The following diagrams depict theterminology we use when discussing confluence.

a a a
a b a b a a a b

a a b a
diamond
property

weak/local
confluence

Church-
Rosser

(strong)
confluence

Weak confluence states that when a termc can reduce to two other termsde and df then there exists a common
reduct,g, of the latter pair wherede g anddf g. The other properties are defined similarly. Milner [Mil04]
calls the diamond propertyone-step confluenceand local confluence has also been calledweak Church-Rosseror
weak confluence. Any relation is confluent if and only if it has the Church-Rosser property (see [Ros96a] for a
proof) and so we will use these terms interchangeably.

We will make one change from the presentation ofRSTU in [Mil04], representing an explicit substitution
with angle brackets as opposed to square brackets. We make the same change for the presentation of explicit
substitutions inChVi. This choice of notation was made both to match that used by Bloo and Rose forCVWX and to
avoid confusion with substitution in the pureC-calculus.

4

Chapter 1

Introduction to the calculi

1.1 The calculusjklm and its encoding

We will briefly introducenopq and then comment on its encoding,rnBIG, into bigraphs. We refer the reader to
[Mil04] for a full introduction tonopq andrnBIG. We do not discussrnBIG much here. We will start by giving the
inductive definition of the setns of nopq terms as:t uuv w x yw zt x t { x t |w uv { }
where the notation

|w uv { }
represents an explicit substitutioni.e.

t |w uv { }
is aterm constructionand should

not be confused with the substitution meta-operation of the
y
-calculus. We will refer to this set of terms asns. It

is also the set of terms of
ys~�.

The definition of free variables of terms is given as part of the translation ofnopq into rnBIG and so we
introduce that first.

Definition (
y
-terms into bigraphs [Mil05b]).��w ��� �� �� defv ����� � �

��yw zt ��� �� defv ���� ����� � ��� � ��t ��� �� ��
��t { ��� �� defv ��������� � ��� � ���t ��� �� x ��{ ��� �� �

��t |w uv { }��� �� defv �klm� ����� � ��� � ���t ��� �� �� x ���� �� ��� � ��� � ��{ ��� �� � z
The second index of a translation

��t ��� ��
is a set which must at least contain the free variables of

t
in nopq .�

may contain other names. This is necessary for technical reasons; in a bigraphical reactive system, the reactum
of a rule must have the same set of free names as the redex. Therefore if a rule discards some free variables, the
names of those variables persist through the reduction. Forexample, in the reduction��w |� uv � }��� ��� �� ¡ ��w��� ��� ��
with all variables distinct, the reduct retains the free name

�
.

The translation allows us to derive the set of free variablesof ans term innopq as:�� �w � v ¢w £�� �yw zt � v �� �t � ¤ ¢w £�� �t { � v �� �t � ¥ �� �{ ��� �t |w uv { }� v ��� �t � ¥ �� �{ �� ¤ ¢w £
The last definition may be misleading. The translation fromnopq to rnBIG highlights an implicit variable conven-
tion in nopq . If we examine the translation, we see that the set of free variables of

{
is disjoint from

¢w £
. This

last definition can therefore be written�� �t |w uv { }� v ��� �t � ¤ ¢w £� ¥ �� �{ �
5

as¦ §̈ ©ª «¬ . This convention is important to avoid variable capture (see below).
The reduction rules of®¯°± , which we name after their encodings in²®BIG, are presented below in the manner

of [Ros96a].

Definition (Reduction rules for ®¯°±). Define the following reductions on the set of®¯°± terms (more precisely,
their contextual closure modulo³).

1. ´ , Apply(substitution generation)«µ¦ ¶· ¬ ¸ · ¹¦ º» ¬ ¼ (A)

2. ½ , Copy(wide/non-local/distant/external (explicit) substitution)

· ¹¦ º» ¬ ¼ ¸ · ² ¹¦ º» ¬ ¼ if ¦ ¨ ©ª «· (C)

where· » ¾ ¿¦À and· ² » ¾ ¿¬ À for some®Á-context¾ where
this occurrence of¦ is free.

3. Â , Discard (garbage collection)

· ¹¦ º» ¬ ¼ ¸ · if ¦ §̈ ©ª «· (D)

As in [Ros96a], the subterm¬ in · ¹¦ º» ¬ ¼ is calledgarbageif ¦ §̈ ©ª «· . This rule also exists inµÁÃÄ
and is calledexplicit garbage collection.

4. ®¯°±-reduction is ´½Â » ´ Å ½ Å Â . We will also study the relation½Â » ½ Å Â and
other combinations in later sections.

We choose to call ½ wide substitutionas the corresponding parametric reaction rule of²®BIG is wide – it
takes a bigraph with width two as its parameter. Milner describes such rules asnon-local[Mil05a], and ½ as
substitution acting ‘at a distance’ [Mil05b]. In®¯°± , the upshot is that in a ½ redex, the free occurrence of the
variable may be located apart from the substitution definition. This is in contrast to the distributive,local rules of
most traditional explicit substitution calculi. Non-local reactions allow full composition of substitutions in®¯°± ,
a feature which we will discuss particularly in the proof of PSN. Klop has called similar non-local substitutions in
term graph rewrite systemsexternal substitutions[Klo95].

In ®¯°± , a singleÆ -reduction is imitated withÇ È É reductions (whereÇ is the number of free occurrences of
the variable to be substituted for) so that

if · Ê ¬ then· ´ ½Ë Â ¬ ¶
As with most explicit substitution calculi, the reductionswhich combine to imitateÆ -reduction may overlap (see
Appendix A.3 for an example). This behaviour can lead to calculi where confluence or PSN is not guaranteed.
Melliès’ counterexample to PSN forµÌ [Mel95] was unexpected and led to the study of other calculi which satisfy
PSN. The work of Bloo, Rose, and Geuvers [BR95, Ros96a, Ros96b, Blo97, BG99] was instrumental in this line
of research and is the basis for the proofs in Sections 2.1 and2.2.

The rest of this section will discuss how bigraph theory can capture some of the important notions of theµ-calculus and how²®BIG relates to previous work. Some of the following also appliesto the encoding of other
calculi in bigraphs.

Variable convention In theÆ reduction below, the free occurence of¦ in «µ¦ ¶µÍ ¶¦ is replaced by the argumentÍ . To avoid variable capture, one typically employs a variable convention where the bound variables of a term are
chosen to be different and distinct from the free variables of the term.

«µ¦ ¶µÍ ¶¦ Í Ê ³Î µÏ ¶Í
If «µ¦ ¶µÍ ¶¦ Í was a valid®¯°± term then we would have the reduction sequence:

«µ¦ ¶µÍ ¶¦ Í ´ «µÍ ¶¦ ¹¦ º» Í ¼ ½ «µÍ ¶Í ¹¦ º» Í ¼ Â «µÍ ¶Í ¶
6

However, if we follow the translation rules, we get:ÐÐÑÒÓ ÔÒÕ ÔÓ ÖÕ ××Ø ÙÚÛÜ
Ý ÑÞßßØ àáâã ä åæç Ö ÑÐÐÒÓ ÔÒÕ ÔÓ××á ÙÚÛÜ è ÑéÞêâÚ ä ë ÖÖ

whereÐÐÒÓ ÔÒÕ ÔÓ××á ÙÚÛÜ
Ý ÑìÞí áàîïã ä åæÚÛÜ Ö ÐÐÒÕ ÔÓ××î ÙÚÛÜ Ûï
Ý ÑìÞí áàîïã ä åæÚÛÜ Ö ÑìÞí îàðÚ ã ä åæÚÛÜ Ûï Ö ÐÐÓ××ñ ÙÚÛÜ ÛïÛÚ
Ý òìÞí áàîïã ä åæÚÛÜ ó òìÞí îàðÚ ã ä åæÚÛÜ Ûï ó òéÞêñ ï ä ÑÕ ô ë ô Õ Öó Ô

Since
Õ

can not be disjoint from itself, we therefore assume that inõö÷ø , the bound names of a term are distinct
from the free names.

This variable convention implicit in the translation fromõö÷ø to ùõBIG also means that the set of free variables
of a term is preserved byú reduction. Consider the following translation.ÐÐÑÒÓ Ôû Öü ××Ø Ùç

Ý ÑÞßßØ àáâã ä åæç Ö ý ÑÐÐÑÒÓ Ôû Ö××á Ùç è ÐÐü ××â Ùç Ö
Ý òÞßßØ àáâã ä åæç ó ý òÑìÞí áàîïã ä åæç Ö ÐÐû ××î Ùç Ûï è ÐÐü ××â Ùç ó

As
Ó

is disjoint fromþ , it is not a free variable of
ü

. This term reduces to

ú òÿ�� Ø àîáïã ä åæç ó ý òÐÐû ××î Ùç Ûï è Ñæ�� áï àâã ä åæç Ö ÐÐü ××â Ùç ó
Ý ÐÐû �Ó �Ý ü �××Ø Ùç

where the entire term,
û

, and
ü

respectively have the same set of free variables as in
ÑÒÓ Ôû Öü

.
Similarly, one can show that

ÑÒÓ ÔÒÓ Ôû Ö
is not a valid term inõö÷ø and we can therefore assume that nested

abstractions or substitutions must have different bound names. We could take the stance that bound variables in
a term do not have to be distinct as the terms

ÑÒÓ Ô� Ö ÑÒÓ Ô� Ö and
û �Ó �Ý ÒÓ Ôû �

both have valid translations.
However, as�-equivalent terms have equivalent translations and reaction in ùõBIG matches reduction inõö÷ø
[Mil04], we assume the following convention, following Barendregt [Bar84].

Convention (bound variables inõö÷ø). When working inõö÷ø , we assume that the bound names of a term are
distinct and different from the free names of the term.

Bound variables In a ùõBIG term, a variable
Ó

is bound by linking a
Ò
-port from aéÞê- or

æ��
-node to a (binding)Ò

-port of a
ìÞí

- or ÿ��-node. This binding ensures that the variable cannot be accessed outside of the node on
which the binding port liesi.e. we have a sort of name-scoping. This feature of bigraphs fits neatly with theÒ

-calculus.
Further, this bound link is anedge. An edge in a bigraph forms part of the support set of the bigraph. Two

bigraphs are said to be support-equivalent when they are thesame up to an isomorphism of their support sets.
Hence, support-equivalence naturally encodes�-equivalence for the

Ò
-calculus.

Instantiation Replication of terms in the
Ò
-calculuse.g.

ÑÒÓ ÔÓÓÖü 	 ü ü
and destruction of termse.g.ÑÑÒÓ ÔÒÕ ÔÕ Öû Öü 	 ü

can be encoded in bigraphs via the notion of instantiation. Roughly speaking, instanti-
ation is the bigraphical mechanism which allows the parameters of the redex in a parametric reaction rule to be
discarded or copied in the reactum. It is also crucial for encoding the
 -calulus as it allows replication.

Abstract syntax tree A bigraph may be partially represented by a sort of abstract syntax tree based on the place
graph, where composition represents nesting and prime product represents branching. For example, the encoding
of a

Ò
-term in ùõBIG can be represented as in Figure 1.1. The dotted lines link free occurrences to names (at the

top of the figure) or represent a binding (the curved line).
With this representation, the abstract syntax tree of a

Ò
-term closely matches this ‘abstract syntax tree of

composition’ inùõBIG, suggesting that the encoding is indeed very natural and notforced.

7

� �
� ���

� �
�� ��� ���

����

� ���
� �

� � ���� ����

Figure 1.1: Abstract syntax trees for �� !�� " and a representation of the corresponding bigraph���# $��% &
 ��� �$��% & ���� $�� % & '����� (���� � ")) ����� *

Explicit substitution Explicit substitution in+,BIG is represented with the help of a pair of controls,-./ and012. A 3 -reduction �� !4 "5 6 4 7� 89 5 :
is encoded as a three-part reduction sequence. First, an explicit

substitution is generated, introducing a-./ node and a012 node into the bigraph. The-./ node encompasses the
term

5
, representing ‘this is to be copied.’ The012 node both takes a hold of all free occurrences of� in

4
and

encompasses both
4

and the-./ node. Next, all the free variables� in
4

are substituted with
5

, one at a time.
Informally, the012 node picks one of its free�s, throws it away and puts the contents of the-./ node (

5
) in its

place. Finally, the explicit substitution is discarded (garbage-collected)i.e. the 012 node is thrown away and the-./ node and its contents are thrown away. We are left with a bigraph representing
4 7� 89 5 :

. This description
is simplistic as these non-atomic (in the sense of3 -reduction) reductions may interleave (see Appendix A.3).

The term
4 ;� 89 5 <

can also be described as ‘
4

placed in a substitution context where� is defined to be5
’. This description is represented in the encoding by placing

774 ::
inside a012 node where all free�s in

4
are

connected to a-./ node containing
775 ::

.
The combination of names with multiple locality, wide reactive rules, and active controls means that a free

occurrence of� anywhere below a substitution
;� 89 5 <

may be replaced by
5

. Specifically, this allows substi-
tutions to replace such occurrences in substitutions belowtheme.g.

5 ;� 89 � < ;� 89 = < > 5 ;� 89 = < ;� 89 = < !
This behaviour is known ascomposing substitutions, is not present in all explicit substitution calculi, and may
break PSN. For example, this behaviour breaks PSN for

�?
and is not allowed in

�@AB
(which has PSN). Calculi

exist which have both PSN and composition of substitutions in some form but few have both PSN andfull compo-
sition of substitutionsas

,CDE
has (see Section 2.3). We will show that

,CDE
and+,BIG both have full composition

of substitutions, can simulate3 -reduction, are confluence, and have PSN. To date and to our knowledge, the only
other explicit substitution calculus which has these properties is

��@�, introduced later.

Relating +,BIG to previous work in the F -calculus There are – perhaps unsurprisingly – some nice similarities
between the encoding of the lazy

�
-calculus in theF -calculus [Mil90] and+,BIG.

In the former, abstractions are encoded as:

77�� !4 ::G def9 G � " !G H " !774 ::H
where the names� andH are bound. In this encoding, the names

G
andH are used as a means of tagging terms and

passing them around.
In +,BIG, abstractions are encoded as:

77�� !4 ::I JK def9 ��� I $L�% M N-K " 774 ::L JK O�
where again� andH are bound. In this encoding, the names

G
andH are called tag-names and� is called a

�
-name.

8

For the encoding of variables; in theP -calculus,QQRSST defU VRT while in WXBIG the translation isYZ[\] ^ _ for
some set_ . In both cases, the namesT andR are free.

The encoding of an ‘environment entry’ used for substitution in theP -calculus is:

QQR `U a SS defU bR cd e fQQa SSd
This replicated term keeps the substitution definition alive, within the scope of the substitution, until no more
substitutions may be performed. Then, the replicated term may be garbage-collected through strong bisimilarity.
This is similar to the case inWXBIG where instantiation keeps the explicit substitution aliveby copyinga and
garbage-collection is represented with an explicit reduction rule.

An interesting point is that variables of theg-calculus are treated as controls inWXBIG whereas in the bigraph-
ical encoding of the asynchronousP -calculus [JM04], names are treated as names in the encoding. This would
appear quite sensible as a variable of theg-calculus is also ag-term while the same is not true of aP -calculus
name and the two calculi are built around different paradigms. However, we feel it is helpful to collect intuitions
on these encoding choices.1

Reduction strategies Another interesting feature ofWXBIG, arising from the general bigraph theory, is that re-
ductions may be applied to any subterm of a term. This includes, as withghij, substitution inside an explicit
substitutioni.e.

if k k W thena lR `U k m a lR `U k Wm f
Aside from the full evaluation strategy [Bar84] of theg-calculus (Figure 1.2), other strategies include the lazy

cgR fa ek a QR `U k Scn e
a a Wa k a Wkco e

a a WcgR fa e cgR fa ecp e
k k Wa k a k Wcq e

Figure 1.2: Full evaluation strategy for theg-calculus

reduction strategy, having the rules
n

ando , and the strong lazy reduction strategy, having the rules
n

, o and
p
.

Milner [Mil90] showed that theP -calculus could encode the lazyg-calculus and the call-by-valueg calculus.
Parrow and Victor [PV98] later showed that the fusion calculus could encode the strong lazyg-calculus through a
slight modification of the encoding in [Mil90], utilising the symmetry in their calculus.

Since bigraphs build on ideas from both of these calculi, we would like it to be able to encode at least the
strong lazyg-calculus. It turns out that

Xrst
, and henceWXBIG, encodes the full evaluation strategy. This is shown

in Theorem 8, Section 2.1, which states: forg-termsa andk ,

a uvw k xy a z k
so that

n
-reduction may be simulated step-by-step inWXBIG.

1This idea of ‘design patterns for bigraphs’ is something that Troels C. Damgaard has discussed on several occasions.

9

1.2 The calculus{|}~
����

[BR95, Ros96b, Blo97], due to Bloo and Rose, is a refinement ofthe
�
-calculus in the tradition of

��
[ACCL91]. It is an explicit substitution calculus with (explicit) garbage collection.

The motivation behind comparing���� and
����

is as follows. ���� uses explicit substitution, names as
opposed to de Bruijn notation in its inference rules, and a form of explicit garbage collection [Ros92] so it seems
sensible to compare���� to a version of the

�
-calculus which has these properties, as

����
has.��

[ACCL91] has the first of these properties but lacks the notion of explicit garbage collection inherent in����
[Ros96a]. A variant of

��
using names was discussed in section 3.3 of [ACCL91] but has some compli-

cations as described in that work and in [Ros96a]. As a result, [ACCL91] concentrates mostly on a presentation
using de Bruijn notation.

There are some immediate similarities between���� and
����

. They both have the same set of terms (assum-
ing variable conventions). The definition of free variablesis identical. In terms of reaction/reduction relations,� and � respectively match � and �� from [Ros96a] exactly. Further, in

����
, reductions are allowed

inside explicit substitutions.
One crucial difference between the calculi is that

����
propagates explicit substitutions to the variable level of

a term (see the definition below), inducting over the structure, whereas substitution can act at a distance in���� .���� also allows full composition of substitutions whereas
����

does not allow substitutions to be composed
(although extensions of

����
do – see Sections 2.3.3-2.3.5). We will see later that this composition in���� means

that its set of strongly normalising terms is a subset of thatof
����

.
Both calculi share a rule for garbage collection at a distance – explicit garbage collection.

����
has a local

garbage-collection rule���� which begs the question why a non-local rule is useful. One answer is that ��
allows for short-cuts where a useless substitution (garbage) does not propagate through a term but is discarded
immediately. However, Rose [Ros96a] states that the main technical reason for the existence of explicit garbage
collection in

����
is that it greatly eases the proof of PSN. It seemed reasonable to be able to adapt their work to

prove these properties for���� , especially since the proof of PSN rested upon�� .
The reduction rules of

����
are as follows.

Definition (
����

reduction). � , explicit substitution, is the contextual closure (modulo�) of the union of

� �� �� � � � � ����
� �� �� � � � � � if � �� � ������
��� �� ��� �� � � � �� �� �� �� � � �����
�� � ¡� �� �� � � � � �� �� � �� ¡ �� �� � � ���¢�

����
-reduction is ���� � � £ � £ �� where � � � and �� � � .

The condition that� �� � is implicit in the ���� �
rule as the variable convention is also employed for

����
.

The main differences between�¤� and ���� are that:

(i) ¤ enables substitutions to be performed without migrating the explicit substitutions inside terms as
����

does via the xab and xap rules. This wide substitution is madepossible partly due to the linking structure
of bigraphs which connects a substitution to free occurences of the variable to be replaced. This is certainly
a nice feature of bigraphs but it also prevents us from using some inductive techniques that Bloo and Rose
employed in their proofs. As a result, some of our proofs in Sections 2.1 and 2.2 are necessarily different or
more verbose from the originals.

(ii) ¤ allows inter-substitution reduction (composition of substitutions)e.g.

� �� �� � � �� �� ¥ � ¤ � �� �� ¥ ��� �� ¥ � �
This form of reduction is not possible in

����
which can only push substitutions inside applications or

abstractions. This has consequences for the proof of PSN later but for now we will just remark that the set
of strongly normalising terms of�¤� is smaller than that of ���� .

(iii) Given a term� �� �� � �, ����
may perform a single xv step to reach the term� whereas���� must

perform a¦ step followed by a§ step – �� automatically garbage collects having replaced the only free

10

occurrence of a variable whereas C does not garbage collect as in the general case there may be more free
occurrences of̈ under the substitution.

(iv) The xvgc rule becomes redundant in©ª«¬ since if ®¯°± ² in ³´µ¶ then °± ² in ©ª«¬ (and³´µ¶).
For an intuition into comparing substitutions in the calculi, note that given a term such that ® ² we

have that ·¸ ² alsoi.e. the normal forms of ® and ·¸ coincide.

Finally, Martin Elsman shared this intuition with me:
“Informally, one can think of reductions in³´µ¶ involving explicit substitutions to encode some kind of

‘reference counting’ whereas in©ª«¬ , garbage collection is closer to ‘reference tracing’ as reductions involve
finding all free variables¹º »² ¼ of a term² in ² ½¨ ¾¿ À.

“On the other hand, substitution distribution in³´µ¶ also involves traversing the term, although this is done
lazily!”

11

1.3 The calculusÁÂÃÄ
ÅÆÇÈ

[KL05, KL] is an explicit substitution calculus which is a sound and complete computational counterpart to
the intuitionistic part of the Proof Nets of Linear Logic [Gir87]. It is also the first published explicit substitution
calculus to enjoy the properties of confluence, PSN, and fullcomposition of substitutions. We concentrate on
these properties here and do not review the typing system of

ÅÆÇÈ
or its connection to linear logic.ÅÆÇÈ

builds partly on work by David and Guillaume on the
ÅÉ Ê

calculus [DG01]. The
ÅÉ Ê

calculus allowed
a level of composition of substitutions whilst retaining PSN and was one of the first explicit substitution calculi
which satisfied step-by-step simulation ofË -reduction, confluence on terms with metavariables, and PSN.

The set of terms of
ÅÆÇÈ

is similar to that of
ÅÇÌÍ

. It is defined (with a slight change of notation) by:Î ÏÏÐ Ñ Ò ÅÑ ÓÎ Ò Î Ô Ò Î ÕÑ ÏÐ Ô Ö Ò × Ø ÙÎ Ú Ò Û Ü ÝÞØ ÙÎ Ú
The two new constructors are

×Ø ÙÎ Ú
, anexplicit weakening, and

Û Ü ÝÞØ
, anexplicit contraction. The sets of free

variables are as before for the old constructors.
Ñ

is free in
×Ø ÙÎ Ú

and
Û Ü ÝÞØ

whereasß andà are bound in the
latter. Again, we follow a variable convention where each bound name of a term

Î
is distinct and different from

any free names in
Î

.
We now discuss three important features in

ÅÆÇÈ
– weakenings, contractions, and linearity of terms2.

The term
×Ø ÙÎ Ú

is an annotated form of
Î

which states that the free variable
Ñ

does not occur free in
Î

.
As it is explicitly part of the syntax, it can play a rôle in thereduction relation of

ÅÆÇÈ
and weakenings are in

fact used to provide an explicit garbage collection rule. For example, consider the term
×Ø ÙÎ ÚÕÑ ÏÐ Ô Ö

. AsÑ
does not occur free in

Î
, we may want to garbage collect the substitution. The rule

Ù× áâã äÚ
in Figure 1.4

does precisely this. Kesner and Lengrand note that weakenings in
ÅÆÇÈ

may always be pulled out to the top level
allowing efficient garbage collection whereas

ÅÉ Ê
cannot pull its labels out to the top-level. We note that inåæBIG,

substitutions are never propagated through terms and garbage collection is always at its most efficient.
Substitution in

ÅÆÇÈ
is defined as a set of distributive rules. Weakenings also allow efficient propagation of

substitutions. For example, propagating the substitution
Ñ ÏÐ Ô

through
×Ø ÙÎ Ú

is pointless as no substitution
can take place. Indeed, the reduction rules do not permit this propagation.

Another interesting property of weakenings is that they allow free variables to be kept through reduction.
The two destructive rules are

Ùç âè Ú
and

Ù× áâã äÚ
. As expected, the substitution rule

Ùç âè Ú
does not lose

free variables. Interestingly, the garbage collection rule
Ù× áâã äÚ

remembers the free variables of the discarded
substitution via a weakening. Kesner and Lengrand compare this preservation of free variables to “interface
preserving”[Laf90] in interaction nets3. This property is also present inåæBIG where, due to the preservation of
outer interfaces through reduction, free variables are remembered through reaction.

Contractions in
ÅÆÇÈ

allow the linearity of terms discussed below. The term
Û Ü ÝÞØ ÙÎ Ú

may be read as ‘
Î

whereß andà are
Ñ
.’

Terms in
ÅÆÇÈ

may always be assumed to be linear. A term
Î

is linear if “in every subterm, every variable
has at most one free occurrence, and every binder binds a variable that does have a free occurrence (and hence
only one)” [KL05]. It is possible to translate every

Å
-term to a (linear)

ÅÆÇÈ
term. This linearity appears to be

a large factor in allowing
ÅÆÇÈ

to retain PSN whilst having full composition of substitutions (FCS). The éêë
rule in

ÅÇÌÍ
duplicates substitutions unconditionally and possibly unnecessarily – free occurrences of the bound

variable may not exist in either branch of the application. This unconditional copying of substitutions features
in the counterexamples of PSN in Section 2.3. The

ÙÛ ìíîäÚ
rule which copies substitutions in

ÅÆÇÈ
does so

conditionally and out of necessity – there is always guaranteed to be exactly two free occurrences ofß and à
below the contraction

Û Ü ÝÞØ
.

The congruence axioms and reduction rules for
ÅÆÇÈ

can be found in Figures 1.3 and 1.4 respectively. The
congruence axioms were chosen to strengthen the relationship between

ÅÆÇÈ
and Proof Nets and we consider them

in the next section in terms of equivalence inåæBIG.
In the reduction rules, the notationïðñ ÙÎ Ú

, whereò and ó are finite lists (with no repetition) of distinct
variables and equal length, denotes the result of simultaneously replacing

Ñ ô ò in
Î

with ß ô ó where both
variables occur as theõö÷ variable in their respective lists. The meta-notation

×øù úû ü
and

Û ñ Ýý
ð denotes multiple

weakenings and contractions – the order is irrelevant up to congruencesþÿ �� andþÿ� .
Many of the reduction rules of

ÅÆÇÈ
(especially in System r) deal with pulling weakenings outwards and

pushing contractions inwards. Linearity of terms means that substitutions are not replicated during propagation

2Fernández and Mackie [FM99] used these notions in earlier work.
3Bigraph theory has used ideas from interaction nets. We refer the reader to Leifer and Milner’s arithmetic nets [LM04] and the bigraphical

nets of Fernández, Mackie, and Sinot [FMS06] for further links between the theories.

12

� � ��� �� 	 �
� �� �� � � � �
� �� 	 ��� �� �� if � �� � � ��
 �	� �� � � �� � 	 �
� �� ��
� �	 ��� ��
 �	� �� �� � �� �
 �	� ��
 � �	 ��� �� �� if � �� � � � � �� � � �� � � �� � ��
 �� �� �� �
 �� � �� ��� �� � ! "�� � # " $ � �� � # "�� � ! " if � %& '(�! �� � %& '(�# �� � �� ��
 �	� �� � �� � ! " �)*+� �
 �	� �� �� � ! "� if � �� , � � � � %& '(�! �

Figure 1.3: Congruences for-./0

�-� 1� �2 34 5 � �� � 2 "
System x

�-� 1� ��� � 2 " 34 �67 -� 1� �� � 2 "
�� 2 ��� � ! " 34 �88 � � �� � ! "2 � & '(�� ��� 2 ��� � ! " 34 �88� � 2 �� � ! " � & '(�2 �� �� � � " 34 9 :; �� � �� ��� � 2 " 34 < =:>� � ?@ AB C �� ��
 �� � �� � 2 " 34 < =:>� �
 �� �� � 2 "� � �� �
� �� � ! "�� � # " 34 �)D8 � �� � ! �� � # "" � & '(�! �
�
 �	� �� ��� � 2 " 34 �)*+� � E �FG �� �� � 2 �" �� � 2 � "� whereH � '(�2 �2 � � I GE �2 �2 � � I GF �2 �
System r

-� 1�
 �� � 34 < �67 �
 �-� 1� � � �� ��
 �� �2 34 < �88 � �
 �� 2 �� �
 �2 � 34 < �88� �
 �� 2 �� �� � �
 �2 �" 34 < $J67 �
 �� �� � 2 "��
 �	� ��
 �� �� 34 K =;L = I 	� �� ��
 �	� �� � �� �� 34 � ;)77 � � ��
 �	� �� �� � �� � � ��
 �	� �-� 1� � 34 � �67 -� 1�
 �	� �� ��
 �	� �� 2 � 34 � �88 � �
 �	� �� �2 � � � & '(�� ��
 �	� �� 2 � 34 � �88� � �
 �	� �2 � � � � & '(�2 ��
 �	� �� �� � 2 "� 34 � $J67 � �� � �
 �	� �2 �" � � � & '(�2 �

Figure 1.4: Reduction rules for-./0

13

through a term unless a contraction is reached in which case the substitution is duplicated and the copies renamed
to maintain linearityMN OPQ RS. Besides these rules, the main ones corresponding roughly to TUV are substitution
introductionMW S, copyingMX YZ S, and explicit garbage collectionM[\Y] RS. There is then one reduction rule for
explicit composition of substitutionsMN O^_ S. Note that this rule only takes care of the case` a bc Md S however,
the other casè a bc Me S is taken care of by thef g congruence (assuming linearity and the variable convention).
This allowshijk FCS.

The reduction relationlm nopq of hijk is the union of the reduction rules in Figure 1.4 modulo the congruences
in Figure 1.3. To tie in with our remarks in Section 2.2.2 on intersubstitution reduction inrstu , thehijk reduction
sequence below corresponds to therstu sequencevw TUV x yz {| } ~.

x yz {| �� ~ y� {| hY �N � ��� M��S~ y� {| h� �N � ��� M\� S~
lm �� ���� x yz {| M�� S y� {| hY �N ���� M��S~~ y� {| h� �N � ��� M\� S~
lm �� ���� x yz {| M�� S y� {| hY �N ���� M��S~ y� {| h� �N � ��� M\� S~~
lm ���� �� x yz {| M� y� {| hY �N ���� M��S~� S y� {| h� �N � ��� M\� S~~
lm ������ x yz {| � y� {| hY �N � ��� M��S~� y� {| h� �N � ��� M\� S~~
lm �� ��� x yz {| �hY �N � ��� M��S�� y� {| h� �N � ��� M\� S~~
lm �� ��� x yz {| �hY �N � ��� M��S� �h� �N � ��� M\� S�~

We write lm �nopq to denote the reflexive closure oflm nopq .
We again stress that we are only looking athijk as an explicit substitution calculus here and we refer the reader

to the original texts to get a full appreciation of its deeperconnections to other fields of research.

1.3.1 Comparing��� � and � BIG

In hijk, a weakening[¡ Me S states thatz does not occur free ine . In ¢rBIG, we may consider weakenings as
adding an idle name to a term. This is achieved by tensoring the bigraphz { £ m ¤z ¥ to the¢rBIG term represent-
ing e . Similarly, a contractionN ¦ �§¡ Me S could be represented by a substitution bigraph¨©ª « ¨©¬ composed with
the ¢rBIG term representinge . These observations suggest the translation below fromhijk to ¢r BIG which we
base on Milner’s translation fromrstu .

z®®� �¯ °¡ def| c±k�¡ ² ³hz �e ®®� �¯ def| Mi±´ ���¡� ² µ¶¯ S e ®®� �¯ °¡e · ®®� �¯ def| M±¸¸����� ² µ¶¯ S Me ®®� �¯ « · ®®� �¯ Se yz {| · ~®®� �¯ def| �¹º»� ���¡� ² µ¶¯ � �e ®®� �¯ °¡ « M¶¼b �¡ ��� ² µ¶¯ S · ®®� �¯ �[¡ Me S®®� �¯ °¡ def| Mz ½ µ¶� ² µ¶¯ S Me ®®� �¯ SN ¦ �§¡ Me S®®� �¯ °¡ def| M ¨©ª « ¨©¬ ½ µ¶� ² µ¶¯ S Me ®®� �¯ °¾¦ �§ ¿ S �
A ¢r BIG term arising from this translation may be considered to be linear as each occurrence of a variable

control will be tagged with a differenth-name. For example, theh-termhz �zz is translated as a (linear)hijk term
ashz �N ¦ �§¡ M` x S. The corresponding bigraph is then

i±´ ���¡� M ¨©ª « ©̈¬ ½ µ¶¾�¿ S M±¸¸ ����� ² µ¶¾¦ �§ ¿ S Mc±k�¦ ² x « c±k�§ ² ` S
which indeed looks linear. This bigraph may also be written (up to À) as

i±´ ���¡� M±¸¸ ����� ² µ¶¾¡¿ S Mc±k�¡ « c±k�¡ S
which represents the original non-linear term. In fact, examining the two bigraph terms above, we may also write

i±´ ���¡� M±¸¸ ����� ² µ¶ ¾¡¿ S Mµ¶ � « ¨©ª « ¨©¬ S Mc±k�¦ ² x « c±k�§ ² ` S
as an in-between term which has the ‘contraction’ pushed inside as far as possible.

14

Milner’s presentation of the Á rule [Mil04] is in terms of replacing a variableÂ in Ã where there is a
unique occurrence ofÂ in Ã i.e. Ã is linear inÂ . This may suggest that the translation ofÄÅÆÇ terms above to
‘linear’ ÈÉBIG terms may make it easier (in comparison to the

ÉÊËÌ
translation) to locate occurrences of redexes

in a ÈÉ BIG term.
If we consider the congruence axioms forÄÅÆÇ terms and the associated translations, we notice thatÍÎ ,ÍÏ ÐÑ , ÍÏ ÒÑ , ÍÏÓ , andÍÏ ÔÕÖÒ follow immediately inÈÉ BIG. The equivalenceÍ × which is used for composing

substitutions does not follow from the conventional equivalences on bigraphs. To account for this inÈÉ BIG, it may
be possible to 1) define an equivalence relation on the bigraphs in ÈÉBIG such that a bigraph is related to another
if they differ in the order of two adjacent substitutions and2) define a bisimulation between one bigraph and a
related bigraph. If we wished to simulateÍ × directly in ÈÉBIG, we would require two reaction rules to simulate
both directions of the equivalence which would trivially lead to infinite reaction sequences and break PSN. We
believe that wide substitution is a more natural method forÈÉBIG to achieve full composition of substitutions.

One may consider replacing the rules ofÈÉBIG with reaction rules corresponding to those inÄÅÆÇ rather
than

ÉÊËÌ
. To that end, we first observe that many reductions disappearthrough support equivalence. For

example, using our translation, the variableØ in the term ÙÂ Ú ÙÛ Ü ÙÃ ÚÚ is carried to the outer interface and
so ÝÝÙÂ Ú ÙÛ Ü ÙÃ ÚÚÞÞß àá âãÜ àä å æ ÝÝÛ Ü ÙÂ Ã ÚÞÞß àá âãÜ àä å. This eliminates the need for rules similar toÙÛ çèé êÚ,ÙÛ ë ìíÚ, ÙÛ ëîî ïÚ, ÙÛ ëîî êÚ, ÙÛ ð ñìíÚ, and Ùò óôííÚ in the modifiedÈÉBIG. The ruleÙÃ çóõ çÚ becomes a
casualty of composition. Similarly, rulesÙò ë ìíÚ, Ùò ëîî ïÚ, Ùò ëîî êÚ, andÙò ð ñ ìíÚ are no longer required. We
then consider the remaining rules. The ruleÙÛ çèé ïÚ would be similar to ö – the interface preservation is
required by bigraph theory. TheÙ÷ Ú rule already has its counterpart inø . This leaves the substitution propa-
gation rulesÙë ìíÚ ù Ùëîî ïÚ, andÙëîî êÚ, the local copy ruleÙú èó Ú, the composition ruleÙò ôûî Ú, and finally the
duplication ruleÙò ôüý ïÚ. The modifiedÈÉBIG system would now resembleÄÆþÿ with composition (ignoring the
linearity).

It would be interesting to see whether encoding this system as a Brs is possible or beneficial. The ‘linearity’
in the translation above seems forced and is ‘lost’ through composition (and hence equivalence of bigraphs). A
specific contraction control may be necessary to properly model contractions. Also, as noted above, non-local
substitution seems a better (or perhaps just more natural) way to achieve full composition of substitutions in a Brs.
The use of distributive rules and local substitution may either require losing PSN or FCS using our translation.

15

Chapter 2

Proofs of confluence and PSN

2.1 Proof of confluence for����
In this section we prove that the reduction relation in���� is confluent. The proof is based on Bloo and Rose’s
work on�	
� [BR95, Ros96a, Blo97]. This yields a proof of confluence for��BIG. The proofs are based on the
correspondences between� and � and between � and �� .

Milner [Mil04] has already given a proof of weak confluence for ���� . It follows from his bigraphical proof
in ��BIG. While we do not address his challenge of tackling (strong, open) confluence in the bigraphical setting,
we prove (strong, closed) confluence for���� yielding a proof for��BIG. Direct, bigraphical proofs of strong
confluence for��BIG remain unpublished to date.

The proof of PSN in Section 2.2 is also based on Bloo and Rose’swork and the reader may notice that some of
our proofs are quite verbose in comparison. One reason is that in working with ���� , we cannot use the inductive
property that a distributive rule like� enjoys. On the other hand, some proofs may also be shortened due to
the fact that substitution occurs ‘at a distance’. In place of the inductive reasoning of Bloo and Rose, we employ
contexts. Because of the existing verbosity, we have chosento present the propositions and proofs in this section
without much discussion. We refer the reader to Rose’s tutorial [Ros96a] for more details as we have taken the
proof structure directly from that work.

Notation. We let� ��� denote a context� where the hole is filled in with a variable� where this occurence of�
is free in� ���. We will sometimes annotate our proofs: the notation

� �� �
indicates that the congruence can be shown by an applicationof Lemma 3.

Propositions 1. �� � �� , � � � , ! � �� �� , " � �� #$, % � �� &�
Proof.

1. Each�� term has finitely many � -redexes. Each� -reduction decreases the number of� -redexes.
Hence, � �� .

2. � ' � . Hence � by [Ros96a, Proposition 1.1.10.2]1.

3. �� SN is shown by finding a map() �� * + such that for all
� �� � we have(,� - . (,� -. We

call this map a weighting. Before we define the weighting, we introduce a labelling of terms. This labelling
and proof of SN is adapted from [Bar84, Lemmas 11.12.17, 11.12.18].

For a term
�

in ��, we number the occurrences of variables (i.e. not the binders� in �� or /�)' � 0- in�
from the right to the left, depth-first, according to the abstract syntax tree, starting with the number 0.

Give the123 occurrence the index�4 . e.g.�5 ,,�6 �� - /�)' 7 8 0- becomes�9:5 ; ,,�6 ��< - /�)' 7 =8 9 0- �
1A bigraphical proof would consist of a case split over the possible overlappings. There are two non-trivial possibilities. Either both

redexes are independent or one lies entirely within the other. The first case yields the diamond property [Mil04]. It should be trivial to prove
the same for the second case using Milner’s theorems in that text.

16

We define the weighting as:> ?@A B C D E > ?F G B C > ?F B H > ?G B E > ?I@ JF B C > ?F BE > ?F K@ LC G MB C> ?F B H > ?G B i.e. > ?F B C the sum of all indices inF .

Next we state two properties on labelled terms

N OP ?F B defC Q@R S F E if @R is bound byK@ LC N M thenT U > ?N B EN OPV ?F B defC > ?N B U W for all subterms
N

of F J
We have the following properties.

(a) If
N OP ?F B and

N OPV ?F B then ifF XY F Z, > ?F B U > ?F ZB
(b)

N OP ?F B is preserved throughXY reduction:[In the Y case, the discarded substitution binds no variables.[For the X case, consider

F \]^ _]` _@a K@ LC N Ma X] ^ _]` _N a K@ LC N Ma \ F Z J
We only need consider the variables in the new copy of

N
– the proof follows by

N OPF . These
variables are either free inF Z or else bound by some abstraction or substitution above]` _N a K@ LCN M as variable capture does not occur. As

N OP ?F B, these variables satisfy the necessary condition
and so

N OP ?F ZB.
(c) Proving

N OPV ?F B amounts to proving that all variables have a positive, non-zero label. Thus,N OPV ?F B is preserved throughXY reduction.

(d) Label any termF with the initial labelling described above. We have
N OP ?F B and

N OPV ?F B and
so ifF XY F Z, > ?F B U > ?F ZB.

As > ?F B is finite for all termsF , the proof then follows.

4. XY LC can be proved by inspecting the cases of the proof ofbXY LC given in [Mil04, Propositions 5.8,
5.5]. XY SN and XY LC imply XY CR by Newman’s lemma [New42].

5. XY CR implies XY UN [Ter03, Theorem 1.2.2(i), p. 17].

We skipped past the proof ofXY LC above so we will briefly outline the important interactions between
the rules. As the reductionX is wide, the interactions are not similar toIcde where the critical pairs can be
determined as usual in term rewriting systems. Milner has classified the ways in which bigraphical rules may
overlap and has provided local confluence theorems for thosecases [Mil04]. The three interesting cases forfghi
are as follows.

1. A X or Y redex lies totally under anotherX or Y redex.

2. The most interesting case forfghi is when a redex is partly inside another. This occurs due to the wide
reaction rules that BRSs allow.X is a wide rule so it is possible that the variable@ to be replaced is not a
sibling of the substitution definition@ LC G – in fact this is only the case in terms of the form@ K@ LC G M.
Generally,@ is a subterm of some termF . The case occurs when@ lies under a XY redex inF , e.g.:jN ??Ik J@ B Kk LC G MBl K@ LC G ME k mC @
where a free@ lies under the underlinedY redex.

3. The last case is when two redexes partly overlap. A termF K@ LC G M cannot be both a X index and aY index as either@ n op ?F B or not. Thus, a X redex cannot partly overlap with aY redex. TwoY redexes which overlap must be the same redex. The only case ofpartly overlapping redexes is when
two X redexes overlap and in this case, the overlap must be on the substitution definition@ LC G . Milner
provides a general bigraphical proof for this situation. The essential property of theX reduction is that

17

the substitution definitionq rs t remains after a u reduction. Forvwxy , the following diagram explains
the resolution. z{ { { q { { { q { { { | }q rs t ~ u

u
z{ { { t { { { q { { { | }q rs t ~

uz{ { { q { { { t { { { | }q rs t ~ u
z{ { { t { { { t { { { | }q rs t ~

Notation. As in [Ros96a], we denote the uniqueu� -normal form of� as�u� z� |
. We say that� is pureif� ��u� z� | � v. We denote the unique� -normal form of� as�� z� |

. We say that� is garbage-freeif� ��� z� |
.

The following lemmas concerning unique normal forms will beuseful. They are required in some proofs
where we cannot avail of the inductive methods that were originally employed.

Lemmas 2 (normal forms). For all vwxy terms� and� ,

1. �u� z� �| ��u� z� | �u� z� |
2. �u� z�q �� | � �q � �u� z� |
3. �u� zz� �| }q � rs t �~ { { { }q� rs t� ~|��u� z� }q � rs t �~ { { { }q� rs t� ~| �u� z� }q � rs t �~ { { { }q� rs t� ~|
4. �u� �z�q �� | }q � rs t �~ { { { }q� rs t� ~���u� z�q �� }q � rs t �~ { { { }q� rs t� ~|� �q � �u� z� }q � rs t �~ { { { }q� rs t� ~|
5. 1,2, and 4 hold with�u� replaced by��.

Proof. We use the fact that reductions invwxy may be applied to any subterm of a term (this is realised in�vBIG by
the fact that all controls besides the atomic��� control are active). Specifically; for (1),� and� can not interact
via u� reductions. (1) then follows asu� UN. (4) follows by the variable convention (q �s q � � � � � � �)
and then an application of (2).

Lemma 3 (representation). For all terms� , t and variableq,

�u� z� }q rs t ~| ��u� z� | �q rs�u� zt |�
Proof. We induct over the number of symbols in� �t � � � � � t� and show that

�u� z� }q � rs t �~ { { { }q� rs t� ~| ��u� z� | �q � rs�u� zt �|� { { { �q� rs�u� zt� |�
We break the proof over the structure of� :

Case � � q � � s � r �u� zq| ��u� zq |

Case � � q � � � � r
if q �s q � then

�u� zq }q � rs t �~ { { { }q� rs t� ~|� �u� zq }q� rs t� ~ { { { }q� rs t� ~|��� �u� zq| �q � rs�u� zt � |� { { { �q� rs�u� zt� |� �u� zq| �q � rs�u� zt �|� { { { �q� rs�u� zt� |

18

if � � �� then ¡¢ £� ¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª« ¡¢ £¦ � ¤�¬ ¥� ¦ ¬ § ¨ ¨ ¨ ¤�© ¥� ¦© §ª®« ¡¢ £¦ �ª ¯� ¬ ¥� ¡¢ £¦ ¬ ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª« � ¯� ¥� ¡¢ £¦ � ª° ¯� ¬ ¥� ¡¢ £¦ ¬ ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª« ¡¢ £�ª ¯� � ¥� ¡¢ £¦ �ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª
Case ± « ² ³

 ¡¢ £± ¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª« ¡¢ ££² ³ª¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª¬ ´µ« ¡¢ £² ¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª ¡¢ £³ ¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª®« ¶ ¡¢ £² ª ¯� � ¥� ¡¢ £¦ �ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª° ¡¢ £³ ª ¯� � ¥� ¡¢ £¦ �ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª°·« £ ¡¢ £² ª ¡¢ £³ ªª ¯� � ¥� ¡¢ £¦ �ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª°¬ ´�« ¡¢ £² ³ ª ¯� � ¥� ¡¢ £¦ �ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª°ª
Case ± « ¸� ¹² ¡¢ £± ¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª« ¡¢ ££¸� ¹² ª ¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª¬ ´º« ¸� ¹ ¡¢ £² ¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª®« ¸� ¹ ¡¢ £² ª ¯� � ¥� ¡¢ £¦ �ª° ¨ ¨ ¨ ¯� � ¥� ¡¢ £¦© ª°£� »� � ¼ ½ ¾ ¿ À ¿ Á by the variable conventionª« ¡¢ £¸� ¹² ª ¯� � ¥� ¡¢ £¦ �ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª°
Case ± « ² ¤Â ¥� ³§2 ¡¢ £± ¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª« ¡¢ £² ¤Â ¥� ³ §¤� � ¥� ¦ �§ ¨ ¨ ¨ ¤�© ¥� ¦© §ª

(inductive case over the symbols in² ½ ³ ½ ¦ � ¹ ¹ ¹ ¦ ©
which has less symbols than² ¤Â ¥� ³§½ ¦ � ¹ ¹ ¹ ¦ ©)®« ¡¢ £² ª ¯Â ¥� ¡¢ £³ ª° ¯� � ¥� ¡¢ £¦ � ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª°ª

(use IH backwards over
 ¡¢ £² ª ¯Â ¥� ¡¢ £³ ª°

which has less symbols than² ½ ³ ½ ¦ � ¹ ¹ ¹ ¦©)®« ¡¢ £² ¤Â ¥� ³§ª ¯� � ¥� ¡¢ £¦ �ª° ¨ ¨ ¨ ¯�© ¥� ¡¢ £¦© ª°ª

Corollary 4 (substitution lemma [Ros96a]).

± ¤� ¥� ¦ §¤Â ¥� ² § ¡¢ ± ¤Â ¥� ² § ¤� ¥� ¦ ¤Â ¥� ² §§
Proof. Follows from previous lemma, thȩ-calculus substitution lemma

± ¯� ¥� ¦ ° ¯Â ¥� ² ° « ± ¯Â ¥� ² ° ¯� ¥� ¦ ¯Â ¥� ² °° £Ãª ½
2Thanks to Thomas Hildebrandt for explaining this case to me.

19

and the fact thatÄÅÆ ÇÈ É is a pure term for anyÈ . Explicitly;

ÄÅÆ ÇÊ ËÌ ÍÎ Ï ÐËÑ ÍÎ Ò ÐÉÓÔ ÄÅÆ ÇÊ É ÕÌ ÍÎÄÅÆ ÇÏ ÉÖ ÕÑ ÍÎÄÅÆ ÇÒ ÉÖ×ØÙÔ ÄÅÆ ÇÊ É ÕÑ ÍÎÄÅÆ ÇÒ ÉÖ ÕÌ ÍÎÄÅÆ ÇÏ É ÕÑ ÍÎÄÅÆ ÇÒ ÉÖÖÓÔ ÄÅÆ ÇÊ É ÕÑ ÍÎÄÅÆ ÇÒ ÉÖ ÕÌ ÍÎÄÅÆ ÇÏ ËÑ ÍÎ Ò ÐÉÖÓÔ ÄÅÆ ÇÊ ËÑ ÍÎ Ò Ð ËÌ ÍÎ Ï ËÑ ÍÎ Ò ÐÐ
and the corollary follows.

The following is slightly different to the corresponding proof for ÚÛÜÝ. In Þßàá , the only type of reduction
which reduces the set of free variables of a term isÆ . In ÚÛÜÝ, âã is not the only reduction with this property
– äåâã (a subrelation of ä) may also reduce the set of free variables. The statementÄÅÆ ÇÊ É ÔÄÅÆ ÇÏ É in
the first two propositions follows trivially byÅÆ UN.

Propositions 5. For anyÊ ,

1. If Ê Æ Ï thenæç ÇÊ É è æç ÇÏ É andÄÅÆ ÇÊ É ÔÄÅÆ ÇÏ É.
2. If Ê Å Ï thenæç ÇÊ É Î æç ÇÏ É andÄÅÆ ÇÊ É ÔÄÅÆ ÇÏ É.
3. If Ê é Ï thenæç ÇÊ É Î æç ÇÏ É
4. If Ê is garbage-free thenæç ÇÊ É Î æç ÇÄÅÆ ÇÊ ÉÉ.

Proof.

1. Æ may discard some free variables, henceæç ÇÊ É è æç ÇÏ É.
2. LetÊ Ô ê ë ìê ÕÌÖ ËÌ ÍÎ ÈÐí Å ê ë ìê ÕÈÖ ËÌ ÍÎ È Ðí Ô Ï . The occurrence ofÌ which is replaced was

bound inÊ so no free variables are lost. AnyÑ which is bound inÈ in Ê is bound withinÈ or by some
binder aboveÈ in Ê . The same is true of the copy ofÈ in Ï and so the set of free variables does not
increase andæç ÇÊ É Î æç ÇÏ É.

3. By definition,ÇÚÌ îÒ ÉÈ has the same set of free variables asÒ ËÌ ÍÎ ÈÐ.
4. There is a reduction path

Ê Ô Ê ëï ÅÆ Ê ð Æñ Ê ëð ÅÆ Ê ò Æñ Ê ëò ÅÆ ó ó ó Æñ Ê ëô ÔÄÅÆ ÇÊ É
where

- Êõöð Ô Ê ëõö ð if Ê ëõ ÅÆ Ê õöð is a Å step which does not substitute for the last free occurrence
of a variablei.e. it does not create garbage,

- Êõöð Æ Ê ëõö ð if Ê ëõ ÅÆ Ê õöð is a Å step which does substitute for the last free occurrence of
a variablei.e. it creates garbage,

- all Ê ëõ are garbage free.

We now show thatæç ÇÊ ëõ É Î æç ÇÊ ëõö ð É. For the first case of Å reduction, this follows by (2) above. For the
second case, theÆ discards some free variables but those variables were copied by the Å reduction and
avoided variable capture. The proof follows byÅÆ UN.

20

Proposition 6. For pure÷ , 1. ÷ ø
ù
ú ûü

ý
and 2. ÷ ù

ø
ú

ý ûü
Proof. There exists a pure contextþ such that÷ ÿ þ ���� �� ���

with
�

and
�

purei.e.
� ÿ	ûü �� �
 � ÿ	ûü

�� �
.

1. We have

þ ���� �� ���
ø þ �� �� � ���
ûü þ �	ûü �� �� � ����

�ÿ þ �	ûü �� � �� �	ûü �� ����
ÿ þ �� �� � ���

andþ ���� �� ��� ù þ �� �� � ���
.

2. Follows similarly.

Lemmas 7 (Projection).

1. For all ����-terms÷ , ÷ûü
ø �

ûü
	ûü �÷ � ù 	ûü �� �

2. For garbage-free÷ , ÷ûü
ø �

ûü
	ûü �÷ � �ù 	ûü �� �

Proof. We prove 2 by inducting over the structure of÷ :

Case ÷ ÿ ��� �� ��
 � ÿ � �� � �� �
	ûü �÷ �

�ÿ ��� � 	ûü �� �� 	ûü �� �
ù 	ûü �� � �� �	ûü �� ��
�ÿ 	ûü �� �� � ���

Case ÷ ÿ � �
� ÿ � ��

	ûü �÷ � � ��ÿ 	ûü �� � 	ûü �� � �ù �� 	ûü �� �� 	ûü �� � � ��ÿ 	ûü �� �

Case ÷ ÿ � �
� ÿ � � �
: As above

Case ÷ ÿ �� ��
 � ÿ �� �� �

	ûü �÷ � ÿ	ûü ��� �� � � ��ÿ �� � 	ûü �� � �ù �� �� � 	ûü �� � � � ��ÿ 	ûü ��� �� � �

Case ÷ ÿ � �� � � �
 � ÿ � � �� � ��
: Similar to the next case.

21

Case � � � � !" # $% & � � � !" # '$
By the inductive hypothesis, we know that()* +# , -. ()* +# ', and so

()* +� , / !"()* +# ,0 -. ()* +� , / !"()* +# ',0 1
since by the fact that� is garbage free we have that 2 34 +� , and by Proposition 5.4, it follows that 2 34 +()*
+� ,,.

Now, by application of Lemma 3 twice we have

()* +� , 5� ()* +� , / !"()* +# ,0 -. ()* +� , / !"()* +# ' ,0 5� ()* +& , 1
The proof of 1 is similar except that we do not know in the last case that 2 34 +()* +� ,, and so we have to

use . , allowing the reflexive closure to provide identity (�) i.e. we do a case split taking either 2 34 +� ,
(proof as above) or 62 34 +� , (in which case()* +� , �()* +& ,).

Proposition 6, Lemma 7, and)* UN prove that789: is a conservative extension of the;< -calculus, with
)* as translation.

Theorem 8. For pure terms� , & : � =)* & >? � . &
Proof.

Case> : Assume� . & ; we then prove by induction on the length@ of the< -reduction, using Proposition
6.2 in each step:

Case:@ " A Trivial

Inductive hypothesis (IH): @ " B � .C & "? � =)* &
Case:@ " B D E

� .C- F & ? � . � ' .C &
By Proposition 6.2 and IH, we have� =)* � ' =)* & .

Case? : We induct over the length of the=)* -reduction to prove

� =)* � F
=)*

)*
G G G =)* �HIF

=)*
)*

&

� . ()* +� F, . G G G . ()* +� HIF, . &

Each step in the top of each square above is one of* ,) , or = and so each square respectively
gives rise to one of the following diagrams:

� J)*
)*

� J-F
)*

()* +� J, ()* +� J- F ,

� J =
)*

� J-F
)*

()* +� J, . ()* +� J- F ,

which follow respectively by)* UN and Lemma 7.1.

22

Corollary 9. KLM NO
Proof. We prove the following diagrammatic proposition which states that KLM is strongly confluent. Strong
confluence impliesNO .

P LM Q
RP LM

KLM

KLM
Q R

R Q
P LM Q

R

We have shown that

1. R S KLM (by Proposition 6.2),

2. TU V WXYZ [U KLM \LM]U ^ V W ,

3. TU _` V WXYZ [U KLM ` a \LM]U ^ R \LM]` ^. This follows from the fact that aU KLM `
reduction is either aU K ` reduction or aU LM ` reduction. The former case is shown by Lemma
7.1 and the latter case fromLM UN.

The proof follows from the generalised interpretation method (GIM) [KR97] which was inspired by Hardin’s
interpretation method [Har89]. In the notation of [KR97],b is the set of terms inWXYZ , c is the set of pured

-terms,e f KLM _ e g f R andh f LM .

Explicitly; from 2 we can fill in the horizontal arrows below and by 3 we can fill in the diagonali arrows
below. P LM P

P LM
KLM

KLM
P R

R
P LM P

By the confluence of R we have

P LM P
R

KLM

P LM
KLM

KLM
P R

R P
P LM P

R

KLM
where, by 1, the dotted arrows can be filled in. Hence,KLM CR.

Corollary 10 (closed confluence ingWBIG). Confluence holds for every image of aWXYZ-term without metavari-
ables ingWBIG.

Proof. The result follows from Corollary 9 and [Mil04, Proposition5.5].

23

2.2 An inductive proof of PSN

In this section, we prove thatjkl preserves strong normalisation (PSN) ofm -reduction. PSN means that ifn o p
is strongly normalising form -reduction then it is strongly normalising forjkl reduction.

The proofs are based on Bloo and Rose’s work [BR95, Ros96a, Blo97] on methods of proving PSN for calculi
with explicit substitutions. We follow the inductive proofin [BR95], employing the technique of garbage-free
reduction to assist us. Bloo [Blo97] gives an alternative inductive proof and Bloo and Geuvers [Blo97, BG99] use
the recursive path ordering (RPO) technique. Our inductiveproof is inelegant and we present a better proof in
Section 2.4.4. We have not tried a proof using the RPO technique as we felt that the same complications may occur
as in the following inductive proof. We thought specificallythat the fact that the substitution definition persists
after a k reduction and remains in place may be a complication for an RPO proof.

In Section 2.2.1, we follow Rose and prove PSN for a calculus
pqrstl where reduction, called garbage-free

reduction, can be described as ‘do anj or a k followed by total garbage collection.’
Section 2.2.2 introduces two new calculi

pqrs ku and
pqrsk v . They are both weak versions of

pqrs
in that the

reduction relation is a subset ofjkl , respectively omitting all or some copying between substitutions. This
copying between substitutions effectivelyis compositions of substitutions in

pqrs
. We prove PSN for

pqrsk v
in this section by adapting Rose’s inductive proofs forwxyz. We show that as

pqrsk v allows some form of
composition of substitutions andwxyz does not3, the set of strongly normalising terms of

pqrsk v is a subset of the
set of strongly normalising terms ofwxyz.

Section 2.2.3 discusses why the property{|}~� used in the proof of PSN for
pqrsk v is not a sufficient property

for reasoning about infinite reduction paths inside garbagein
pqrs

. As might be expected, the problem is with
copying between substitutions. We show that these reductions (that we disallowed in

pqrs ku) conspire to make the
set of strongly normalising terms of

pqrs
a strict subset of that of bothwxyz and

pqrs ku . The issue is that more
cases of infinite reductions inside garbage can occur. We identify the set of strongly normalising terms of

pqrs
but do not have a neat characterisation as in

pqrsk v or wxyz.
Section 2.2.4 finally tackles the proof of PSN for

pqrs
.

2.2.1 PSN for������
Definition (body of a substitution [Ros96a]). We say� is a body of a substitution in

n
if for some� , �,

� �� �� � � is a subterm of
n

.

Notation (in(side), under a body of substitution). We say� is in a body of substitution� if � is a subterm of
� . We say� is under a body of substitution� if � is a subterm of

n
in

n �� �� � �.
Definition (top-level substitution). If a substitution�� �� � � in a term

n
does not lie inside any other substitu-

tion then it is called atop-level substitution. Top-level substitutions may lieunderother substitutions.

Definition (garbage-free reduction). jktl is � jk u l �, i.e., the union of the composition ofjk with

complete garbage collection. We denote the garbage-free reduction calculus
pqrstl .

Garbage-free reduction is reduction “where all garbage is removed as soon as possible”[Ros96a]i.e. as soon
as we perform anApplyor Copy, we immediately discard any garbage. This ensures that we donot ‘waste time’
reducing garbage.

Garbage-free reduction also has a theoretical advantage. Rose notes that forwxyz, “infinite reductions consist
mainly of reductions inside garbage”[Ros96a]. As we show in Section 2.2.4, this is true even more so for

pqrs
as jkl allows copying between substitutions. This leads to yet more cases of infinite reductions than inwxyz.
Garbage-free reduction removes garbage whenever it is created and so avoids these infinite reduction sequences.
We follow Rose by proving PSN first for

pqrstl and then reason about PSN for
pqrsk v and

pqrs
.

Remark. Our definition of garbage-free reduction is slightly different to that of Rose. Inwxyz, garbage-free
reduction was defined by

s�t�� � � s� u �� �. We have previously mentioned that the reduction relation�
is somewhat matched bykl – this would initially suggest that garbage-free reductionfor

pqrs
should be

defined as jkl u l . If we use that definition then the remaining proofs in this section still hold but it turns
out that we may instead use the smaller relation defined above. The reason is that in the following proofs, any

3There is an extension���� of ���� which has weak (i.e. conditional) composition of substitutions and retains PSN. See [BG99, Blo97]
and Section 2.3.5 for details.

24

garbage-free reduction path will begin at a garbage-free term � . Since� contains no garbage, a reduction path
� ��� � � � � must begin with an � or � reduction. As� is guaranteed to be garbage-free, the same
holds for� and so defining garbage-free reduction as��� � � is redundant for our purposes – in the proofs
of PSN, reduction paths start at pure terms.

We can also look at the issue from another angle. If� is garbage-free and� �� ¡¢ � such that

� � � � ¡¢ � then the real role of the � reduction is to seek and replace free occurences of a variable
with some body of a substitutioni.e. as� is garbage-free, a reduction� �£¡¢ � � is not possible. Such reduc-
tions� � � � ¡¢ � essentially worm down inside the term� until they hit paydirt with a free occurrence
of some sought-after variable. Any garbage encountered along the way is quietly discarded. The� relation
performs this seek-and-replace job of� from the outside (without the seeking). The� relation then removes
the garbage. This is our intuition as to why�� � suffices to replace�� ¡¢ in the following proofs.

We first prove confluence and then PSN for¤¥¦� � .

Lemmas 11.

1. For all¤¥¦� -terms� , � ���
�

�
�

§� ¨� © ª�� � §� ¨� ©

2. For garbage-free� , � ���

�� �

� �
§� ¨� ©

Proof.

1. When� � � , the proof follows from � «¬ . When� �� � and the reduction occurs inside garbage
then

§� ¨� © §� ¨� ©. Otherwise, for� � � we have two cases depending on whether the reduction
creates garbage or not. These are depicted below (using Lemma 2.5),

¨®¯ °± ©² �
�

± ³¯ ´µ ²¶
�

¨®¯ ° §� ¨± ©© §� ¨² © � §� ¨± © ³¯ ´µ§� ¨² ©¶ � §� ¨± ©
where the dotted reduction occurs when¯ ·̧ ¹º ¨§� ¨± ©©. So we reach

§� ¨� © from
§� ¨� © with one

�� � reduction.

A � � � reduction outside garbage means that a free occurrence of some variablē is not discarded. A
similar diagram sketches the proof.

» ¼¯½ ³¯ ´µ ²¶ �
�

» ¼²½ ³¯ ´µ ²¶
�

§� ¨» © ¼¯½ ³¯ ´µ§� ¨² ©¶ � §� ¨» © ¼§� ¨² ©½ ³¯ ´µ§� ¨² ©¶ � §� ¨» © ¼§� ¨² ©½
2. This follows as

� ���
�� �

� ¾
�

� � ¿
�

��� � À
�

� �Á
�

��� � � � � �
�

§� ¨� ¾© §� ¨� ¿ © ª�� �§� ¨� À © §� ¨� Á © ª�� �� � � §� ¨� ©
clearly holds – as� is garbage-free, the left triangle is given by the definitionof �� � . The first square
on the left is given by � «¬ , the next square is given by 1, and so on.

25

Theorem 12. ÂÃÄÅ CR.

Proof. ÂÃÄÅ CR when ÂÃÄÅ Æ [Ter03, Proposition 1.1.10.iv]. The latter is shown as follows. The diagram
on the left below can be filled in by noting thatÂÃÄÅ Ç ÂÃÅ and that ÂÃÅ CR (which implies that
ÂÃÅ Æ). The diagram on the right can then be filled in by applying Lemma 11.2 twice, noting that the terms at

the starting points of the triangles are garbage-free.

È
ÂÃÅ

È
ÂÃÄÅ

ÂÃÄÅ
É

È ÂÃÅ

È
ÂÃÅ

ÂÃÄÅ

È
ÂÃÄÅ

ÂÃÄÅ
È Å É

È ÂÃÅ
ÂÃÄÅ

Theorem 13 (PSN forÊËÌÍÄÅ). Pure terms that are Î -strongly normalising are also strongly normalising for
ÂÃÄÅ .

Proof. AssumeÏ is pure and strongly normalising forÎ . SinceÏ is pure it has no ÃÅ -redexes. Thus, ev-
ery ÂÃÄÅ -reduction (finite or not) starting withÏ is of the formÏ Ð ÏÑ Â Ï Ò ÃÅ Ï Ó Â Ï Ô ÃÅ Õ Õ Õ
where the “ ÃÅ ” reductions are really of the form Å Õ Ö Ã Õ Å × Õ Õ Õ Ö Ã Õ Å × as we are working in
ÂÃÄÅ .

Given any such reduction, we can construct the reduction graph as below:

Ï ÏÑ Â Ï Ò ÃÅ
ÃÅ

Ï Ó Â
ÃÅ

Ï Ô ÃÅ
ÃÅ

Õ Õ Õ

ØÃÅ ÖÏ Ñ × Î
Ù ØÃÅ ÖÏ Ò× ØÃÅ ÖÏ Ó × Î

Ù ØÃÅ ÖÏ Ô × Õ Õ Õ
where every second square starting from the leftmost squarefollows by Lemma 7.2 and where the other squares
follow from ÃÅ UN.

Ï is strong normalising for Î and so the lower reduction is finite. SinceÃÅ SN, the upper one must
also be finite.

2.2.2 PSN forÚÛÜÝÞß
Definition (inter-substitution reduction, ÃÕ , Ã à reduction).

1. Inter-substitution reductionis the contextual closure of the reduction generated by:

á â ãÏ äå æç á èéêëì äé æç í ë Ã á â ãÏ äå æç á èí êëì äé æç í ë

2. ÃÕ is the largest subrelation of Ã which excludes any inter-substitution reduction.

3. Ã à is the largest subrelation of Ã which excludes any inter-substitution reduction whose redex is not
entirely located in a body of substitution.

ÃÕ could also be described as excluding anyÃ reductions where the variable of the redex was located
inside a substitution. Ã à could be described as excluding anyÃ reductions where the substitution definition
is a top-level substitution and the variable of the redex lies inside another substitution. For example,

é äå æç î äï æç á èð êë äð æç ñ ëë ÂÃÅ é äå æç î äï æç á èñ êë äð æç ñ ëë

26

is not a òó reduction as the free occurence ofô is located inside a substitution definition. It is aò õ reduction

as the ò redex is entirely contained inside a body of substitutionö ÷ø ùú û üô ýþ ÷ô ùú ÿ þ4. The reduction

ö ÷ø ùú û üô ýþ ÷ô ùú ÿ þ �ò� ö ÷ø ùú û üÿ ýþ ÷ô ùú ÿ þ
is again not a òó reduction. It is also not aò õ reduction as the inter-substitution copy happens between two
top-level substitutions. Clearly,òó � ò õ � ò .

An inter-substitution reduction is a replacement of a free variable located inside a substitution definition with
some term. This form of reduction is related to the notion of composition of substitutions (see Section 2.3) which
has been known to break PSN in other calculi (see Sections 2.3.3, 2.3.4, and 2.3.6).

Definition (� òó � , �ò õ� , ����òó , ����ò õ). � òó � ú � �� � òó 	. �ò õ� ú � �� � ò õ 	. We denote their
respective calculi as����òó and����ò õ .
��

does not have a rule to compose substitutions. Therefore, itwould be reasonable to hypothesize that an
inductive proof of PSN for����òó would follow the inductive proof of PSN for

��
. We strongly believe this

but do not prove it here. Instead, we will use the inductive proof of PSN for

��

to prove PSN for the slightly
stronger����ò õ calculus. However, the reasoning at each stage should also hold for ����òó . The reason we are
able to reuse Rose’s inductive proofs whilst allowing some inter-substitution reduction is that the proofs rest on
a property����� (see below) which states that bodies of substitutions are strongly normalising for �ò� . This
property must be shown to be preserved by reduction on a subset of �� which includes the strongly normalising
pure terms. We will show that�ò õ� does indeed preserve this property on a suitable subset. As an intuition,
note that if����� �� 	 then as�ò õ� does not allow any inter-substitution reduction at top-level, any other inter-
substitution reduction preserves����� .

Lemma 14 (�ò�ú�ò õ�ú�òó �).

Proof. We prove�ò�ú� òó �which is sufficient. Given a term� , the innermost substitutions are subtermsÿ ÷� ùú
öþ of � such thatÿ andö are pure. Given such a subterm, reduce an innermost substitution:

� � û üÿ ÷� ùú öþý ò û üÿ �� ùú ö � ÷� ùú ö þý � û üÿ �� ùú ö �ý �
None of the ò reductions in the path are inter-substitution reductions.We may repeat this process until it ends
(as ò� SN). The proof follows by ò� UN.

Definition (��� � �� ���� � �� !"# � �� !"#$ õ). ��� is the set of strongly normalising

-calculus terms.�� ���� ,

�� !"# , and �� !"#$ õ are the sets of��
terms which are strongly normalising for���� , �ò� , and �ò õ�

respectively.

The next two definitions help us describe if the reduction paths of a term outside garbage (%�&
) or inside

substitutions (�����) are finite. The intuition is that a term is strongly normalising for �ò õ� if finite paths
always exist both outside garbage and inside substitutions(Theorem 19).

Definition (%�& ��). For all terms � ' ��, define%�& �� 	 to be the maximum length of garbage-free
(�ò(�) reduction paths starting in�� �� 	.
Definition (����� òó �� 	 � �����ò õ �� 	 � ����� ��). The predicates ����� òó �� 	, �����ò õ �� 	, and
����� �� 	 state that all bodies of substitutions in� are strongly normalising for� òó � -, �ò õ� -, and �ò�
respectively.5.

We will not discuss����� òó �� 	 or �����ò õ �� 	 much here. We hypothesize that the former is sufficient to
prove PSN for����òó but the latter is not sufficient to prove PSN for����ò õ – the term) ÷* ùú +, þ in Proposition
15 would be a counterexample to the main theorem of this section. For����ò õ , we need the stronger property
����� .

To demonstrate how%�&
and����� describe the finiteness of reduction sequences outside and inside garbage

respectively, let- � �
. �.. 	 �
ô �ôô 	; %�& �-	 ú / and����� �-	 is true (there are no substitutions) whereas
%�& �� ÷0 ùú - þ	 ú 1 and����� �� ÷0 ùú - þ	 is false, where� 2ú 0 .

Notation (properties of terms and subsets of��
). We typically use the same notation for a property of a term

and a subset of�� e.g. ����� �� 	 means that� satisfies����� whereas%�& 3 / denotes the subset of��
which satisfies this property.

4Put another way,45 67 8 9 is not a top-level substitution.
5In Bloo’s terminology [Blo97], we would say that: is decent.

27

Definition (;<= >). We define a subset;<= > of ;< as:

;<= > ? @A B ;< C DE F A G HIJ KE L B MNO P6

whereF denotes ‘subterm (non-strict) of ’.

The pure terms of;<= > are exactly the strongly normalising pure terms of theQ-calculus. As it excludes
some non-terminating;< terms, it seems a good starting point for the proof of PSN. In fact,;<= > characterises
MN RSTU [BR95] and we hypothesize that it also characterizesMNVWXY ZG . It does not characterizeMNVWXY (see
Section 2.2.4).

;<= > also does not characterizeMNVWXYZ[. Define \] as:

\] ^ _ `a b? cc d `c b? Qe fe e d g
where all variables are distinct. The set of subterms of\] are (up to equivalence):

h ? @e g ee g Qe fe e g _ `a b? cc d g \] Pf
Proposition 15. MNVWXYZ[i? MNRSTU .
Proof. Consider the termj `k b? \] d B ;<= > . By [BR95], \] B MNRSTU . However,

\] I [I [j `k b? _ `a b? ld `c b? Qe fe e dd
and Proposition 6.2 shows that\] is not strongly normalising formI [J .

Corollary 16. MNVWXYZ[n MN RSTU .
Proof. By definition, a;< term which is not in;<= > has a subterm whoseIJ normal form is not strongly
normalising foro -reduction. Any infiniteo -reduction sequence can be matched by an infinitemI [J sequence
(Proposition 6.2 and Lemma 14). AsMNRSTU ? ;<= > , the setMNVWXYZ[must be a subset ofMN RSTU . Proposition
15 proves that it is a strict subset.

We now define garbage-reduction which classifies all the ‘useless’ reductions which occur in garbage (and
may lead to infinite sequences).

Definition (Garbage-reduction).

1. Garbage-reductionis the contextual closure of the reduction generated by:

p If E mIJ E q and
a rB st KHJ KA LL thenA `a b? E d mIJ A `a b? E qd is garbage reduction.

p If
a rB st KA L thenA `a b? E d mIJ A is garbage-reduction.

p If
a rB st KHJ KA LL then

u vA `a b? f f f c f f fdw `c b? E d mIJ u vA `a b? f f f E f f fdw `c b? E d
is garbage reduction.

2. Reductionoutside garbageis any reduction that is not garbage-reduction.

The first type of garbage-reduction reduces the term that will replace
a

but any free instance of
a

in A is
contained inside garbage. The second type of garbage-reduction is simply garbage-collecting viaJ . The
third type is special to;xyz . It describes the wide substitution of a variable within garbage. The context

u
in

the definition is needed as the outer substitution may not be directly above the inner substitution. This garbage
reduction is always a I reduction and can lead to the infinite sequences in terms like

_ `a b? cc d `c b? Qe fe e d.
In ;xyz IG , this final type of garbage reduction does not occur. In;xyzI [, these reductions are a special case of the
first type as the redex must be located entirely in a body of substitution.

As any J reduction is garbage-reduction, reduction outside garbage only pertains to the m and I
reductionse.g. if E mI E q and

a B st KHJ KA LL thenA `a b? E d mI A `a b? E qd is outside garbage. Any
mI reduction whose redex is not totally or partially containedin a body of substitution is also outside garbage.

6Bloo denotes this set as{| } ~ – we use�| } ~ to keep our notation consistent.

28

Propositions 17.

1. If � ��� � is garbage-reduction then�� �� � ��� �� �.
2. If � ��� � is outside garbage then�� �� � ���� �� �� �. Furthermore,

(a) if � �� � then�� �� � �� � �� �� �,
(b) if � �� � then�� �� � � � � �� �� �.

Proof.

1. We split the proof on the three cases where garbage-reduction occurs:

� Let � ��� � � and� �� �� ��� �� ��. Given a garbage-reduction

� �� �� � � ��� � �� �� � �� �
the proof follows by � UN and the diagram

� �� �� �� ���
�

� �� �� � ��
�

�� �� � �� �� ��
�

�� �� � �� �� � ��
�

�� �� � �� �� � �
� Follows by � UN.
� Let � �� �� ��� �� ��. The proof follows by � UN and the diagram

� �� �� �� � � � � � � ��� �� �� � � ���
�

� �� �� �� � � � � � � ��� �� �� � �
�

� ��� �� � �� �� � � � � � � ��� �� �� � �
�

� ��� �� ��� �� � � � � � � ��� �� �� � �
�

� ��� �� �� �� �� � � � ��� �� �� �� �� � � �
2. A reduction� �� � outside garbage can be described as contracting a redex in� which exists in some

garbage-free form in�� �� �. More precisely, the redex of a reduction outside garbage ina term� has a
unique residual in the term�� �� �; there is at most one residual as no copying takes place and there is at
least one residual by the definition of reduction outside garbagei.e. the residual cannot be discarded.

The proof follows from the two diagrams in the proof of Lemma 11.1.

(a) If � �� � then the free occurrence of the variable (say�) in the redex does not lie under substitution.
In �� �� �, it still does not lie under substitution.

(b) If � �� � then the entire redex is a subterm of a body of substitution. This remains true for the
reduct of the redex in�� �� �.

The following proofs relate specifically to� ¡¢� � . We hypothesize that they also hold for� ¡¢ �� , replacing£¤¥¦§
with £¤¥¦§ �� .

29

Lemmas 18.

In ¨©ª«¬ ,
1. If ®¯°±² ³´ µ and´ ¶¬· ¸ is garbage-reduction, then®¯°±² ³¸ µ.
2. If ®¯°±² ³´ µ then´ is strongly normalising for garbage-reduction.

Proof.

1. This follows from the definition of garbage-reduction. For the first case, saý ¹ º »¼ ½¾ ¿À ¶¬· º »¼ ½¾
¿ ÁÀ ¹ ¸ . Since®¯°±² ³´ µ, ¿ is strongly normalising for¶¬· -reduction. Then¿Á is strongly normal-
ising for ¶¬· -reduction.

For the second case, saý ¹ º »¼ ½¾ ¿À ¶¬· º ¹ ¸ . Then the bodies of substitution of̧ are a subset
of those of́ and so®¯°±² ³¸ µ.
In ¨©ª«¬ , the third case is a special case of the first7. The proof follows by induction over the structure of
terms.

2. We begin by defining two interpretations for subSN-terms´ . Let ÂÃ ³´ µ be the maximum length of
¶¬· -reduction paths inside bodies of substitutions of´ . The valueÂÃ ³´ µ is well defined aś has a

finite number of substitutions and the body of each substitution is strongly normalising for¶¬· -reduction
by ®¯°±² ³´ µ. Let ÂÄ ³´ µ be the number of substitutions of top-level substitutions in ´ . Any garbage-
reduction reduct of́ will never have a greater number of top-level substitutionsthan´ as a garbage-
reduction of the form ¶ (which introduces new substitutions) will only occur undera substitution.

Let´ ¶¬· ¸ be garbage reduction occuring under a body of substitution of ´ . ThenÂÃ ³´ µ Å ÂÃ ³¸ µ as
if ÂÃ ³¸ µ Æ ÂÃ ³´ µ then there exists a¶¬· -reduction path starting froḿ which is longer thanÂÃ ³´ µ,
the maximum such path.

Let ´ ¶¬· ¸ be garbage reduction which does not occur under a body of substitution of ´ . By the defi-
nition of garbage reduction it must be that´ · ¸ and the reduction throws away a top-level substitution.
Hence, the number of top-level substitutions of´ is reduced by 1 andÂÄ ³´ µ Å ÂÄ ³¸ µ.
For any garbage reductioń ¶¬· ¸ either ofÂÃ ³´ µ or ÂÄ ³´ µ decreases while the other does not in-
crease. Hence, garbage reduction is strongly normalising for subSN-terms.

Theorem 19. If ÇÈÉ ³´ µ Ê Ë and®¯°±² ³´ µ then´ is strongly normalising for¶¬ · -reduction.

Proof. We induct overÇÈÉ ³´ µ.
Base caseÇÈÉ ³´ µ ¾ Ì. By Proposition 17.2, any reductioń ¶¬ · ¸ must be garbage-reduction. Now, for

any garbage reductioń ¶¬ · ¸ we have by Proposition 17.1 thatÍ· ³¸ µ ¹Í· ³´ µ. Hence,ÇÈÉ ³¸ µ ¾ Ì
and so by the same argument any reduction¸ ¶¬ · ¸ Á must also be garbage reduction. It follows that any
reduction path starting at́ contains only garbage reductions. As®¯°±² ³´ µ, it follows by Lemma 18.2
that´ is strongly normalising.

Induction hypothesis SupposeÇÈÉ ³´ µ Å Ì. We assume that ifÇÈÉ ³´ Áµ Ê ÇÈÉ ³´ µ and ®¯°±² ³´ Áµ then
´ Á is strongly normalising for¶¬ · . We call this induction hypothesis IH1.

Suppose there exists an infinite reduction path

´ ¹ ´Î ¶¬· ´ Ã ¶¬ · ´ Ä ¶¬ · ´ Ï ¶¬ · Ð Ð Ð
We have assumed that®¯°±² ³´ µ. By Lemma 18.2,́ is then strongly normalising for garbage reduction
and so there isÑ such that́ ¶¬ · ´Ò is garbage-reduction and́ Ò ¶¬· ´ÒÓÃ is reduction outside
garbage. By Propositions 17.1 and 17.2, we have

ÇÈÉ ³´ÒÓÃµ Ê ÇÈÉ ³´Ò µ ¾ ÇÈÉ ³´ µ Ê Ë Ô
7This is not true forÕ Ö×Ø and this case breaks the lemma for that calculus.

30

ÙÚÛÜÝ Þßà á by Lemma 18. If we can prove by induction on the structure ofßà that alsoÙÚÛÜÝ Þßàâãá
then we can invoke IH1 to show thatßàâã is strongly normalising foräå æç -reduction. We call the
new induction hypothesis IH2. We treat some cases below, noting thatßà äåæ ßàâã by definition of
reduction outside garbage.

Case ßà è Þéê ëì áí äå æç ì îê ïð í ñ è ßàâã. Bodies of substitutions inì andí are strongly normal-
ising since they are also bodies of substitutions inÞéê ëì áí è ßà and ÙÚÛÜÝ Þßà á. Also, òóô Þí á õ
òóô ÞÞéê ëì áí á and so by IH1í is strongly normalising, thusÙÚÛÜÝ Þì îê ïð í ñá.

Case ßà è ö ÷êø îê ïð í ñ äå æç ö ÷í ø îê ïð í ñ è ßàâã. We are inùúûüå æ so if this free occurence ofê is
located inside a body of substitution, then the definitionîê ïð í ñ is located inside the same body and the
next case addresses this situation.

Otherwise,ê is located outside of a body of substitution8. ê is replaced byí whose bodies of substitutions
are strongly normalising as they are also bodies of substitutions inßà . Otherwiseßà andßàâã have
identical bodies of substitution. Hence,ÙÚÛÜÝ Þö ÷í ø îê ïð í ñá.

Case ßà è ì îê ïð í ñ äå æç ì îê ïð í ýñ è ßàâã whereí äåæç í ý. We knowÙÚÛÜÝ Þßà á which impliesÙÚÛÜÝ Þì á. í is strongly normalising foräåç sinceÙÚÛÜÝ Þßà á. Hence,í ý is strongly normalising andÙÚÛÜÝ Þì îê ïð í ý ñá.
Case ßà è ì í äåæç ì ýí è ßàâã whereì äå æç ì ý. ThenÙÚÛÜÝ Þì ýá by IH2. As ÙÚÛÜÝ Þì í á, we haveÙÚÛÜÝ Þí á and soÙÚÛÜÝ Þì ýí á.
Case ßà è éê ëì äåæç éê ëì ý è ßàâã whereì äåæç ì ý. Similar to the last case.

Thus,ßàâã is strongly normalising foräå æç -reduction. This completes the proof asß äåæç ßàâã is a
finite sequence.

Corollary 20 (PSN for ùúûüå æ). äå æç PSN of þ .

Proof.

Caseÿ . If ß is pure then it has no substitutions and soÙÚÛÜÝ Þß á. If ß is strongly normalising for þ -

reduction then by Theorem 13,òóô Þß á õ � . We now apply Theorem 19.

Case� . By Proposition 6.2 and Lemma 14, infiniteþ -reductions induce infiniteäå æç -reductions.

We should remark that there is no bigraphical equivalent forùúûü å� or ùúûüå æ. There is no obvious way to
disallow inter-substitution reduction without changing the nature of activity of controls in a bigraphical reactive
system (and assuming a suitable notion of activity is definable).

2.2.3 The problem with inter-substitution reduction

The proof in the previous section does not hold forùúûü . This is because inter-substitution reduction in general
can introduce cases of infinite sequences inside substitution which do not occur iné�ó� or ùúûüå æ .
Proposition 21. ÜÝ���� 	ð ÜÝ
�� .
Proof. Consider�� from the last section.�� � ù�� � and so by [BR95],�� � ÜÝ
�� . However,�� å å � îê ïð � ñ î� ïð é� ë�� ñ è �� ý

and Proposition 6.2 shows that�� is not strongly normalising foräåç .

8This case breaks this theorem for���� – consider the term� �� �� !"# $# # %& � �� "' $'' & and the obvious (reduction which
does not preserve)*+,- .

31

Corollary 22. ./0123 4 ./012356 4 ./789: .
Proof. By definition, a;< term which is not in;<= > has a subterm whose?@ normal form is not strongly
normalising forA -reduction. Any infiniteA -reduction sequence can be matched by an infiniteB?@ sequence

(Proposition 6.2). As./ 789: C ;<= > , the set./0123 must be a subset of./ 789: . Proposition 21 proves
that it is a strict subset. AsDE is strongly normalising forB? 6@ , a similar argument and Corollary 16 finish the
proof.

Bloo proposed that the crucial step in the inductive proof ofPSN forF<GH was that it was provable that given
a termI in ;<= > , if JKL./ MI N then all O89: -reductsI P of I satisfiedJKL./ MI PN. In the proposition
above,JKL./ M DE N is true butJKL./ M DE P N is false and the inductive proof fails for;QRO .

The reason it fails is thatJKL./ MI N is not a strong enough predicate for;QRO . JKL./ is meant to capture
the property that all reduction sequences that occur insidesubstitutions are strongly normalising. However,;QRO
allows interactions between substitutions similar to composition of substitutions (see Section 2.3) which cannot
occur inF<GH. Specifically, these interactions are inter-substitutionreductions. Proposition 21 demonstrates how
substitution may alter another body of a substitution such that JKL./ no longer holds. In explicit substitution
calculi without composition of substitutions, this behaviour is not possible. For;QRO , we need a stronger property
similar to JKL./ to provide for this behaviour.

As our property will consider a body of substitution and all substitutions above it, we first introduce some
notation to make the remainder of the section more legible.

Notation (substitutions, superbody of substitution). When considering a subtermS of some termI , the termS TUV WC X VY TUZ WC XZ Y [[[TU\ WC X\ Y
includes all the substitutions aboveS in I (whereTU] WC X]Y lies belowTU]^ V WC X]^ VY). This is abbreviated toS TUV [[[U\ Y. WhenS is a body of substitution, we sayS TUV [[[U\ Y is a superbody of substitution.

Definition (_`a./). The predicate_`a./ MI N states that all superbodiesS of substitutions inI are strongly
normalising for B?@ ._`a./ M DE N does not hold asMU U N TU WC Fb [bb Y is not strongly normalising. The predicate seems strong butwe
do need to consider all inter-substitutions reduction. Forexample, the termI c MMS Td WC Ub Ye N TU WC f Yg NTf WC Fh [hh YTb WC Fi [iiY
does not satisfy_`a./ MI N and has an infinite reduction sequence inside substitutions.

Next, we redefine the proposed set of strongly normalising terms of ;QRO to account for inter-substitution
reduction.

Definition (;<QRO=>). We define a subset;<QRO=> of ;< as:;<QRO=> C jI k ;< l mS n I o p?@ MS TUV [[[U\ YN k ./q r
wheren denotes ‘subterm (non-strict) of ’.

Any termI k ./0123 satisfies both_`a./ MI N andI k ;<QRO=> . The pure terms in;<QRO=> are exactly
those which are strongly normalising forq . It is therefore a likely candidate for./0123 and the proof of PSN
but unfortunately it contains terms which are not strongly normalising.

Examples 23 (terms which are not strongly normalising).Here are some examples of terms which are not
strongly normalising but satisfy at least one ofsGt u v , _`a./ , or inclusion in;<QRO=> . All variables are
distinct.

1. f Td WC UU Y TU WC Fb [b b Y
This term only satifiessGt u v .

2. S Td WC Ub Y TU WC f Y Tf WC Fh [hh YTb WC Fi [iiY, d wk tx MS N
This term only satifiessGt u v .

32

3. yz{ |} ~� �� yz� |� � �{ �� yz� |�� � � � �� }
This term satisfies all three properties. However, it reduces via a � reduction to} ~� �� yz� |�� �{ � ~{ �� z� |���
where����� does not hold.

4. yz{ |} ~� �� yz� |� � �{ �� ~� �� � � yz� |��� � � �� }
This term satisfies all three properties. However, it reduces via a � reduction (discarding~� �� � �) to 3
above.

5. �z� |yz{ |} ~� �� yz� |�� �{ ��� � �z� |��� � � �� }
This term satisfies all three properties. However, it reduces as� ��z{ |} ~� �� yz� |�� �{ ��� � ~� �� z� |�� �� � 3

The important terms to note above are 3-5. In term 3, a� reduction breaks����� by creating a new
substitution above existing ones which introduces an infinite sequence. In term 4, a similar reduction occurs but
first a � reduction must unblock a� redex. In term 5, a copy enables a� redex to break����� .

However, it is encouraging that our examples which satisfy����� but may not terminate all arise from non-
terminating pure terms. For example, �z� |yz{ |} �� � � �z� |� � � ��� 1�z� | �z} | �z� |yz{ |� � y� � ��}� �z� |�� �� �z� |��� ��� 2�z{ |�z� |} � �yz� |�� �{ �� �z� |��� ��� 3�z� |z{ | �z� |} � �yz� |�� �{ �� �� � �z� |��� ��� 4�z� |z{ | �z� |} � �yz� |�� �{ �� � �z� |��� ��� 5

In their inductive proofs of PSN forz���, Bloo [Blo97] shows that����� is preserved by reduction for terms
in �� ¡ while Rose [Ros96b] shows that����� is preserved by reduction for terms where¢�£ ¤ ¥ . Unfor-
tunately, the examples above demonstrate that even with themore restrictive��¦§ ̈¡ , ����� is not preserved by
reduction.

As noted above, the problem is that a sequence of� reductions may introduce new substitutions above
existing ones and this can break����� . We could further constrain����� with the following definition.

Definition (�©����). The predicate�©���� yª � states that for all sequencesª � ª «, ����� yª « �.
However, � reductions may unblock � redexes as in Example 23.4 above. We would then require a

stronger definition in order that����� was preserved.

Definition (�©�����). The predicate�©����� yª � states that for all sequencesª �� ª «, ����� yª « �.
Clearly,�©����� is a necessary property for a term to be strongly normalising. However, now we have to

prove that it is preserved under��� reduction. We started this investigation by weakening the condition to only
consider reductions outside substitution.

Definition (Reduction inside substitution).

1. Reduction inside substitutionis the contextual closure of the reduction generated by:¬ If � ��� � thenª ~{ �� � � ��� ª ~{ �� � � is reduction inside substitution.¬ ® ¯ª ~{ �� | | | � | | |�° ~� �� � � ��� ® ¯ª ~{ �� | | | � | | |�° ~� �� � � is reduction inside substitution.

2. Reduction outside substitutionis any other reduction.

33

We explored these definitions and were able to prove the following lemmas (the proofs are in Appendix A.1):

Lemma 24 (±² SN).

Lemmas 25 (preservation, reflection of³´µ¶·).

1. If ³´µ¶· ¸¹ º and¹ ±² » is inside substitution then³´µ¶· ¸» º.
2. If ³´µ¶· ¸¹ º and¹ ² » is outside substitution then³´µ¶· ¸» º.
3. If ³´µ¶· ¸¹ º and¹ ¼ » then³´µ¶· ¸» º.
4. If ³´µ¶· ¸» º and¹ ± » is inside substitution then³´µ¶· ¸¹ º.
These lemmas allowed us to redefine½¾¿¶·±² as:

Definition (½¾¿¶·±²). The predicate½¾¿¶·±² ¸¹ º states that for all sequences¹ ±² ¹ À containing only
reductions outside substitution,³´µ¶· ¸¹ Àº.

and then prove the following lemmas:

Lemmas 26 (preservation of½¾¿¶·).

1. If ½¾¿¶·±² ¸¹ º and¹ ±² ¹ Á then½¾¿¶·±² ¸¹ Áº.
2. If ½¾¿¶·±² ¸¹ º and ¹ ¼ ¹ Á does not create any new ± redexes outside substitution then½¾¿¶·±² ¸¹ Áº.
However, although this eases the proof/counterproofof½¾¿¶·±² ¸¹ º for an arbitrary term¹ , it is not true that

eitherÂ¿Ã Ä Å Æ ½¾¿¶·±² or ÇÈÉÊËÌÍ Æ ½¾¿¶·±² is closed under reduction (Example 23.5 is a counterexample
for both). This unfortunately9 leads us to the following heavy-handed definition.

Definition (½¾¿¶·±¼²). The predicate½¾¿¶·±¼² ¸¹ º states that for all sequences¹ ±¼² ¹ À, ³´µ¶· ¸¹ À º.
It may be possible to weaken the definition to reductions outside substitution again but we do not attempt

this. It is rather unsatisfactory when compared to Bloo and Rose’s proofs forÎÈ¿Ï. Where they require a term
to satisfyÐÑ½¶· , we require a much stronger property – the preservation of³´µ¶· through reduction. Another
consequence of Example 23.5 is that¶·ÒÓÔÕ Ö ÇÈÉÊËÌÍ and we do not have a simple property to characterise¶·ÒÓÔÕ .

2.2.4 PSN for×ØÙÚ
Lemmas 27.

1. If ³´µ¶· ¸¹ º and¹ ±¼² » is garbage-reduction, then³´µ¶· ¸» º.
2. If ³´µ¶· ¸¹ º then¹ is strongly normalising for garbage-reduction.

Proof.

1. Proof by case split. Lemmas 25.1-25.3 cover all cases.

2. The proof proceeds as in Lemma 18.2. The only difference isthat we define the measureÛÁ ¸¹ º as the
maximum length of garbage-reduction paths where the redexes are at least partially contained inside sub-
stitution. The valueÛÁ ¸¹ º is well-defined as¹ has a finite number of substitutions and, in particular, for
each innermost body of substitutionÜ , Ü ÝÞÁ ß ß ß Þà á is strongly normalising.

9We feel thatÚâãäåæç is a preferable definition toÚâãäåæèç as æç SN.

34

We mentioned previously that Lemmas 18.1 and 18.2 do not holdfor éêëì . To illustrate this, consider the
sequence: í îï ðñ òò ó îò ðñ ôõ öõ õ ó÷øù í îï ðñ úôû öûû üò ó îò ðñ ôõ öõõ ó÷øù í îï ðñ ýóîò ðñ ôõ öõõ ó ö
This is a sequence of garbage-reductions inéêëì (but not inéêëìø þ). The second reduction disproves Lemma
18.1 inéêëì and the entire sequence disproves Lemma 18.2.

Theorem 28. If ÿ�� ú� ü � � and�����÷øù ú� ü then� is strongly normalising for ÷øù -reduction.

Proof. We use induction onÿ�� ú� ü.
Base caseÿ�� ú� ü ñ 	. By Proposition 17.2, any reduction� ÷øù
 must be garbage-reduction; if it was

reduction outside garbage then there would be a contradictory garbage-free reduction�ù ú� ü ÷ø�ù �ùú
 ü. Now, for any garbage reduction� ÷øù
 , �ù ú
 ü �ù ú� ü by Proposition 17.1. Hence,ÿ�� ú
 ü ñ	. It follows that any reduction path starting at� contains only garbage reductions. As����� ú� ü, it
follows by Lemma 27.2 that� is strongly normalising.

Induction hypothesis Supposeÿ�� ú� ü � 	. We assume that ifÿ�� ú� � ü � ÿ�� ú� ü and�����÷øù ú� � ü
then� � is strongly normalising for÷øù . We call this induction hypothesis IH1.

Suppose there exists an infinite reduction path� �� ÷øù � � ÷øù �� ÷øù �� ÷øù � � �
We have assumed that����� ú� ü. By Lemma 27.2,� is then strongly normalising for garbage reduction
and so there is a finite sequence� ÷øù �� of garbage-reductions and�� ÷øù ���� is reduction
outside garbage. By Propositions 17.1 and 17.2, we haveÿ�� ú���� ü � ÿ�� ú�� ü ñ ÿ�� ú� ü � � ö
�����÷øù ú���� ü as� ÷øù ����. Thus,���� is strongly normalising for ÷øù -reduction. This
completes the proof as� ÷øù ���� is a finite sequence.

Corollary 29. ������ ñ úÿ�� � � � �����÷øù ü
Proof. We must prove������ � úÿ�� � � � �����÷øù ü. The contrapositiveÿ�� ú� ü ñ � !�����÷øù ú� ü " � #$ ������
follows by ÷ø�ù � ÷øù .

The proof of Theorem 28 is simpler than the corresponding proofs for ô%�& or éêëìø þ as a consequence of
the fact that�����÷øù is a much stronger property than'(��� . As expected however, proving that a pure term
satisfies�����÷øù is much more complicated. We will need the following lemma.

Lemma 30 (delayed ÷ reduction).

� ÷øù)� *úôï ö+ ü,-
÷øù ÷øù)� *+

îï ðñ , ó- ÷øù)� *+ ��
îï ðñ ,� ó-

)� *úôï ö+ � ü,�- ÷øù)� *+ �
îï ðñ ,� ó-÷øù

Proof. The proof follows from the fact that all controls in�éBIG are active and reduction in�éBIG matches that oféêëì [Mil05b]. The key is that what happens inúôï ö+ ü, stays inúôï ö+ ü, – the only effect that firing the ÷
redex has is that it allows free occurrences ofï in + to be substituted which may lead to further reductions which
happen entirely inside+ .

35

In the reduction paths of the lemma; (1) the firing of the. redex does not affect/ i.e. any reductions totally
inside/ or involving the surrounding context can still fire and so/ .01 / 2 on both the top and bottom lines; (2)
neither345 67 8/ or 7 95 :; /< can affect the surrounding context and so=> is like =? except with changes in any
copied reducts of345 67 8/ or 7 95 :; /<; (3) on the bottom line,7 2 evolves from7 by a combination of internal
reductions and reductions involving the context. The bottom line joins the top line with a further combination
of internal reductions within7 , reductions involving the context, substitutions of/ for 5, and reductions in any
copies of345 67 8/ or 7 95 :; /<.
Corollary 31 (regression of terms).Given a reduct@A B = 2 C7 22 95 :; / 2<D of some term@ where i) an ancestor
of this substitution does not exist in@ and ii) 7 22 95 :; / 2< is not contained inside substitution in@A, we may
‘regress’ the term to@E B = 2 C345 67 2 8/ 2D where@ .01 @E .01 @ A.

This corollary will be needed in the proof of PSN to pull a bodyof substitution outside substitution to apply
the inductive hypothesis.

Corollary 32 (PSN for FGHI). .01 PSN of J .

Proof. CaseK . If @ is strongly normalising for J -reduction then by Theorem 13,LMN 3@ 8 O P . If we can

proveQRMST.01 3@ 8 then we can apply Theorem 28 to complete the proof.

We take as our induction hypothesis:

If @ is pure andUVWXYZJ 3@ 8 ; [thenQRMST.01 3@ 86
Note that by the induction hypothesis, if@ is pure andUVWXYZJ 3@ 8 ; [then@ is strongly normalising
(by Theorems 13 and 28).

If UVWXYZJ 3@ 8 ; \ thenQRMST.01 3@ 8 is trivially true. If UVWXYZJ 3@ 8 ;] then any .01 reduct
of @ will only contain one body of substitution7 which is pure such thatUVWXYZJ 37 8 ; \. Hence,QRMST.01 3@ 8. We will prove the inductive case by course-of-value induction.

AssumeQRMST.01 3@ 8 is false. There is then a finite sequence@ .01 @^ (depicted below) such that_XYST holds at every step and then a reduction@^ .01 @^`? such that_XYST 3@^`?8 is false. By
Lemmas 25.1, 25.2, and 25.3, this must be a. -reduction outside substitution.

@ . @ ? .0101
a a a .0101

@^
01 . @^`?

01b01 3@ 8 J b01 3@ ?8 J a a a J b01 3@^ 8 J b01 3@^`?8
Let @^ B = C345 c 6d 8e c D .01 = Cd 95c :; e c <D B @^`?.
Let 95 c` ? :; ec` ?< a a a 95f :; ef < be the substitutions above345c 6d 8e c. We have assumed that_XYST 3@^`?8 is false. Therefore, there exists some body of substitutione A g] h i h [such that its
superbodyeA 95 A` ? a a a 5f < is not strongly normalising. As_XYST 3@^ 8,] h i h j – the problematic body
of substitution isec or some body of substitution below it.

Assume thatec is not strongly normalising.LMN 3@^ 8 O P soLMN 3e c 8 O P and thereforeQRMST.01 3e c 8
is false so ec .01 = ? C34k 67 8/D . = ? C7 9k :; /<D and so

@^ .01 = l345 6d 8= ? C34k 67 8/Dm . = l345 6d 8= ? C7 9k :; /<Dm
such that_XYST 3= ? C34k 67 8/D8 is true and_XYST 3= ? C7 9k :; / <8 is false. We could then treat this case.
If the new body of substitution/ is again not strongly normalising, we repeat this process. Eventually, we
must reach a body which is strongly normalising as the term has a finite structure. Therefore, without loss
of generality, we assume thatec is strongly normalising.

We will break the proof over the casesi ; j andi O j. A proof thate A 95 A` ? a a a 5f < is strongly normalising
contradicts the assumption that_XYST 3@^`?8 is false, yielding a proof by contradiction.

36

Casen o p. As qr is strongly normalising, ifqr stru v w w w tx y is not strongly normalising, there must be
some substitution occuring betweenqr and stru v w w w tx y. Now, each body of a garbage substitutionz

in qr is also a body of substitution in{| . Hence, the superbody of
z

is strongly normalising
in {|uv by }~��� �{| �. As these substitutions

z
can only interact between themselves, we may

discard them and only consider the term�� �q r � st ru v w w w tx y to not be strongly normalising. Similarly,
any substitutions inq� � p � � � � � � which are garbage in�� �q r � st ru v w w w tx y may be discarded
and we need only consider the term�� �q r stru v w w w tx y�.
We may now spend the remaining substitutions (without losing free variables by Proposition 5) and
consider�� �� �q r st ru v w w w tx y�. Any infinite path inside the garbage of�� �� �q r stru v w w w tx y� can
be replicated outside of garbage as all bodies of substitutions have been copied. Therefore, we may
again discard all garbage and consider the term�� �� �� �q r stru v w w w tx y� ���� �q r st ru v w w w tx y�.
This is a subterm of��� �{| �, is pure, and has a� -reduction path less than that of{ . Therefore, by
I.H., it is strongly normalising for ��� which is a contradiction.

Casen � p. We have a term q � st �u v w w w t r�v y str �o q r y stru v w w w �x y
which we assume is not strongly normalising. If there existsgarbages� �o � y insideq � whose
superbody inq � is � s�v w w w �� y such that� � � s�v w w w �� y st �u v w w w tx y
is not strongly normalising then we consider that case, taking the superbody of the topmost subsitution
of
�

such that its superbody is not strongly normalising. We could repeat this process a finite number
of times.

Therefore, w.l.o.g., we assume that garbage inq � does not help the term reduce infinitely. As in the
previous case, we therefore consider the term

�� �q � st �u v w w w t r�v y st r o q r y stru v w w w �x y�
to not be strongly normalising. Again, we can spend and discard all substitutions and consider the
pure term � ���� �q � st �u v w w w t r�v y st r o q r y stru v w w w �x y� �
If t � � �� ��� �{| �� then

�
is a pure subterm of��� �{| � and hence is strongly normalising for��� . Otherwise, we need to pullq� out of the garbage by repeated application of Corollary 31.

If q � is a top-level substitution of{| then we apply Corollary 31 once to pullq � out of substitution
in some term{� such that{ � ��� { � ��� {| . The term��t � � �q � now lies under the
substitutionsst �u v w w w tx y and���q � st �u v w w w tx y ¡��� �{ � �. As¢£¤~�¥¦ �{ � � � ¢£¤~�¥¦ �{ �,���q � st �u v w w w tx y is strongly normalising by I.H.

If q � is more deeply nested inside substitution then we apply Corollary 31 once for each level of
nesting and the proof follows similarly.

Case§ . By Proposition 6.2, infinite ¦ -reductions induce infinite��� -reductions.

The author also attempted a proof based on replacing a� -redex��t �� �¨ in a pure term{ with ©¨ where©
was a fresh variable. The resulting term{ ª then has a smaller maximum� -reduction path. This was to be used
in conjunction with an inductive hypothesis over¢£¤~�¥¦ �{ �. Although the proof was abandoned, the idea of
origin tracking[BKdV00] would seem to be the correct formalism we were searching for.

37

2.3 PSN and composition of substitutions

Before we present our proof of PSN for«¬® by simulation, we will discuss how composing substitutionsin
explicit substitution calculi may affect the PSN property.

Consider thē -reduction path°±² ³´±µ ³²µ¶ · ´¸¹ ·º» ¼ ´±µ ³»µ¶ · ´¸¹ · ¼ » ´¸¹ ·¶ ³
In

±½¾¿
and«¬® , we have a reduction path °±² ³´±µ ³²µ¶ · ´¸¹ ·º»°´±µ ³²µ¶ · ´¸¹ ·º À² ÁÂ »Ã´²µ¶ · Àµ ÁÂ ¸¹ ÃÀ² ÁÂ »Ã ³

In
±½¾¿

, the outermost substitution
À² ÁÂ »Ã

cannot be applied while it is above
Àµ ÁÂ ¸¹ Ã

i.e. first
Àµ ÁÂ ¸¹ Ã

must be pushed inside the term
²µ¶

and either applied or garbage-collected. In other words, substitutions are
blockedby substitutions below them. It would be nice to allow substitutions to interact in some way by either
swapping them with a rule likeÄ À² ÁÂ Å ÃÀµ ÁÂ Æ Ã ÇÈ Ä Àµ ÁÂ Æ Ã À² ÁÂ Å Àµ ÁÂ Æ ÃÃ

(2.1)

or by allowing them to compose likeÄ À² ÁÂ Å Ã Àµ ÁÂ Æ Ã ÇÈ Ä À² ÁÂ Å Àµ ÁÂ Æ ÃÃ
if
µ ÉÊ ËÌ ´Ä ·10 (2.2)

which seems efficient if
² Ê ËÌ ´ÍÎÏ ´Ä ··

and
µ Ê ËÌ ´Å ·

. Substitution calculi with such rules are said to
allow composition of substitutions. The rules above are what we callexplicit composition. We define explicit
composition to be composition via a reduction rule whose only purpose is to compose substitutions. Rule (2.1)
above is obviously unsafe for PSN as it immediately allows infinite paths of explicit compositions. In this section,
we will demonstrate (using Bloo’s examples [Blo97]) how theexplicit nature of seemingly safe rules like (2.2)
may break PSN for certain calculi.

2.3.1 Weak/full composition

Bloo [Blo97] definesfull composition of substitutions(FCS) to mean that (i) any two adjacent substitutions can be
composed and (ii) that it is possible that the outermost substitution may be evaluated before the innermost. Simi-
larly, Kesner and Lengrand [KL05] define FCS to mean that any substitution in a term may always be immediately
applied. A reduction system with Rule (2.1) above has FCS. However, as this rule is unsafe for termination and
PSN, most calculi with FCS do not use it.

Weak composition of substitutions(WCS) is defined as conditional composition – composition may occur but
only if some condition is satisfied. A reduction system whereRule (2.2) above was the only rule for composition
would have WCS.±½¾¿

does not have any rule for composing substitutions. As we have seen, substitutions block substitutions
above them. Extensions to

±½¾¿
with FCS and WCS are discussed in the following sections. We also explain how«¬® has FCS but the composition is not explicit.

2.3.2 Breaking PSN

When
±Ð

and subsequent explicit substitution calculi were first introduced, it was assumed that they satisfied PSN.
Melliès’ counterexample [Mel95] for

±Ð
was surprising and demonstrated that this seemingly natural property

need not hold.
±Ð

allows substitutions to be explicitly and fully composed. This composition combined with
the distributive rules for pushing substitutions inside terms is the essence of Melliès’ counterexample.

±Ð
allows

parallel substitutions but Bloo notes that this parallelism is not what breaks PSN but rather:

“the essential property for losing PSN is the possibility ofmoving one substitution from outside a
second substitution to theinsideof the latter by means of a composition of substitutions.”[Blo97]

10The condition is necessary: considerÑÒÓ Ô ÕÓ Ö× Ø ÙÕÒ Ö× Ú Ù ÛÜ ÑÒÓ ÔÕÓ Ö× Ø ÕÒ Ö× Ú ÙÙ Ý
38

He shows this by first considering a similar calculusÞß àá with parallel substitutions and full composition and
demonstrating that PSN is broken. He then drops the parallelconstruct to define a calculusÞßá with weak com-
position. The counterexample for PSN inÞßá is similar to that ofÞß àá implying that parallel substitutions is not
the essential property for losing PSN.

We will revisit Bloo’s counterexamples forÞß àá andÞßá below, pointing out how the distributive rules and
explicit composition are crucial for breaking PSN. We informally discuss Melliès’ counterexample in the same
light and then return our attention toâãäå which has no distributive rules or explicit composition.

2.3.3 æç èé
Þß àá [BR95, Blo97] is an extension ofÞßêá with parallel substitutions and FCS. The terms are defined inductively
as: ë ììí î ï Þî ðë ï ë ë ï ë ñîò ó ð ð ð ó îô ìí ë ò ó ð ð ð ó ëô õð
The final term structure is an explicit parallel substitution whereö ÷ ø and the variable convention applies
e.g. the bound variables

îò ó ð ð ð ó îô
are assumed to be distinct. The substitution is interpretedas a simultaneous

substitution of
ëù

for
î ù

, ú û ü û ö in the term
ë

. The abbreviation
ë ñýî ìí ýë õ

denotes
ë ñîò ó ð ð ð ó îô ìíë ò ó ð ð ð ó ëô õ

.
The reduction relation inÞß àá is the union of å , þ ÿ , and ÿ� . å is as inÞßêá and þ ÿ is defined

similarly to þ . The new reduction is ÿ� , defined as the contextual closure ofë ñýî ìí ý� õ ñ ý� ìí ý� õ ÿ� ë ñýî ó ý� ìí � ò ñ ý� ìí ý� õ ó ð ð ð ó �ô ñý� ìí ý� õ ó ý� õ ð
This rule adds FCS toÞßêá.

We now aim to give an intuition as to why the simply typable term
ë

below, strongly normalising for� -
reduction, is not strongly normalising inÞß àá. We refer the reader to [Blo97] for an actual proof. In this example,
we forget the variable convention to concentrate on the pattern of reduction. The reader may consider all bound
variables in the terms to be subscripted with unique numbers.

ë � Þ� ð�Þî ð�Þî ð�	�
 ��Þî ð�	�
å Þ� ð��Þî ð�	�
 ñî ìí �Þî ð�	� õ �ú	þ ÿ Þ� ð�Þî ð� ñî ìí �Þî ð�	� õ	 �� ñî ìí �Þî ð�	� õ	 ��	å Þ� ð� ñî ìí �Þî ð�	� õ ñî ìí � ñî ìí �Þî ð�	� õõ ��	ÿ� Þ� ð� ñî ó î ìí ��Þî ð�	�
 ñî ìí � ñî ìí �Þî ð�	� õõ ó � ñî ìí �Þî ð�	� õõ �� 	
The reduction sequence can be described as follows. The substitution in (1) is pushed inside the term by the

distributive rule þ ÿ . The pushing of the substitution inside the application/å -redex
�Þî ð�	� duplicates the

substitution (2). The å redex then fires, leaving the both copies of the substitutionside by side (3). Note that
the outer copy contains the original substitution. The copies are then composed (4).

The underlined subterm in (4) has an infinite reduction path which follows a similar pattern – the substitution
is pushed inside the å redex – copying itself, the redex fires, the substitutions are repeatedly composed until
one lies just outside a å redex, and the process repeats.

It is important to note that the infinite path above is made possible by the interplay between the distributive
rules (which duplicate substitutions), theå rule which places a substitution beside its descendant, andthe
composition rule which places a substitution inside its descendant. This last feature seems essential for losing
PSN in calculi with explicit composition [Blo97, p.60].

We note that these infinite paths do not involve any substitutions being performed or garbage collected. It is
the distributive nature of theþ ÿ and þ rules which require substitutions to be needlessly copied which can be
dangerous. By ‘needlessly copied’ we mean that more copies of a substitution

ñî ìí � õ
can be made than free

occurrences of
î

exist or that copies of a substitution are made whether or notfree occurrences of
î

exist below all
copies. Wide substitution therefore seems an important concept as its use avoids this creation of needless copying
and local bigraphs are an appropriate test-bed for such research. Another solution to this problem is to always have
exactly one free occurrence of a variable below a substitution so that the substitution is never needlessly copied.
This is the approach taken inÞ �ß� (see Section 1.3) which uses this linearity to keep PSN and FCS.

39

2.3.4 ���
We have seen above that composition of substitutions can lead to infinite paths involving the distributive rules
and substitution creation. However, the parallelism of substitutions in�� �� does not seem to be the important
factor for losing PSN. Bloo and Rose [BR95, Blo97] made this intuition precise by introducing���, which can be
viewed as�� �� without parallelism.��� shares the same set of terms as����. The reduction relation of��� is the union of ���� and � ,
where � is defined as the contextual closure of� � !" # $�% !" &$ � � � !" # �% !" & $$ if % '()* +� ,-
This rule adds WCS to���� and is in fact the rule (2.2) introduced at the beginning of this section. It seems an
efficient rule for the case where ()* +.��� +� ,, / % ()* +# ,

.
Bloo [Blo97] shows that PSN is broken in��� in a similar fashion to�� ��.� 0 �1 -2� -+� -1 ,13 2+� -1 ,13� �1 - 2+� -1 ,13 � !" +� -1 ,1$ +4,

� 5 �1 -+� -1 � !" +� -1 ,1 $, +1 � !" +� -1 ,1$, +6,
� �1 -1 � !" +� -1 ,1 $ � !" 1 � !" +� -1 ,1 $$ +7,
� �1 -1 � !" 2+� -1 ,13 � !" 1 � !" +� -1 ,1$$$ +8,

The infinite reduction begins in the underlined subterm in a similar manner. Again, the interplay between�9: / �9� / � , and the composition rule breaks PSN.
This counterexample leads one to believe that in order to have PSN, an explicit substitution calculus should

not create subterms inside substitutions which cannot be created outside substitutions. Bloo notes this in his
dissertation and this intuition was the essence of our proofof PSN for;<=� . Armed with this intuition, Bloo and
Geuvers [BG99] further constrained the composition of��� and were able to show that the new calculus���>
satisfied PSN.

2.3.5 ���?
���> shares the same set of terms as����. The reduction relation of���> is the union of ���� and �@ ,
where �@ is defined as the contextual closure of� � !" # $�% !" &$ �@ � � !" # �% !" &$$ if ()* +.� +� ,, / % '()* +� ,-
This calculus is confluent, preserves strong normalisation, and has WCS. See [BG99] for details.

2.3.6 �A
We will not detail Melliès’ counterexample for�B as we would have to introduce too much notation at this late
stage. However, the counterexample may be described as follows, where all rules are in�B .

Applications of theC DEF rule (akin to the � rule) create explicit substitutions. TheGHH andGIJ rules
distribute these substitutions inside the term as in the examples above. AC DEF rule then creates a new substitution
above the original one. The rulesKLMJ , N FH , andGJJ then compose these two substitutions. Reduction sequences
of this form continue indefinitely.

Again, the same interplay of similar rules yields the counterexample.

2.3.7 OPQR
As ;<=� satisfies PSN, it seems natural to investigate how it allows composition of substitutions. Although there
is no explicit composition rule, it has FCS – a substitution can always be performed whenever a free occurrence
of a variable lies beneath the substitution definition regardless of what lies between. Two adjacent substitutions
may also beimplicitly composed.

By implicit, we mean the following. In����, we could read
� � !" S $�% !" # $ as ‘replace with S in�

then% with # in the result’ as the inner substitution must be applied or discarded before the outer substitution

40

can be performed. InTUVW , we can read the same term as ‘replaceX with Y in Z or [with \ in Z or Y .’
Composition is allowed but not via an explicit reduction rule – it is allowed as] is a wide or non-local rule.

In TUVW , we also have reduction sequences like:

Z ^X _` Y a^[_` \ a] Z b[c\ d^X _` Y b[c\ da ^[_` \ ae Z b[c\ d^X _` Y b[c\ da
whereZ b[c\ d means ‘theTf termZ with all free occurences of[replaced by\ ’. This sequence demonstrates
how Rule (2.1) can be mimicked via wide substitution whilst avoiding the obvious infinite reductions.

Wide substitution is a very useful feature as it avoids the copying of a substitution definition using a distributive
rule like ghi . This removes “the possibility of bringing a substitution into a descendant of itself” [Blo97] which
leads to the counterexamples above. In fact, in the examplesabove PSN was broken without substitutions ever
being perfomed. This is impossible inTUVW as je SN. This substitution ‘at a distance’ allowsTUVW to have FCS
and PSN.

2.3.8 Confluence, PSN, and FCS

Bloo’s dissertation contains a table of explicit substitution calculi [Blo97, Table 1.1] which summarises the prop-
erties of explicit substitution calculi at the time. The four properties are: level of confluence (closed/open)11,
termination of the substitution calculus12, PSN, and level of substitution composition (none/WCS/FCS).

Out of the calculi in the table, only five satisfy closed confluence, PSN, and WCS. They arekflm (above),k n
[Kes96],k no [Kes96],k p [Kes96, FKP96], andkq [Muñ96]. None of the calculi have FCS and the challenge of
finding a calculus with closed confluence, PSN, and full composition seemed to be unanswered until recently when
Kesner and Lengrand introducedkrfs [KL05, KL] 13. We have shown here thatTUVW also shares these properties.krfs andTUVW seem to represent a big step forward for the field of explicit substitution14 but although they
share many similarities, they are based on different methods of substitution –krfs uses distributive rules on linear
terms whereasTUVW uses wide substitution. We spend the next section re-proving PSN forTUVW by using properties
of krfs.

11Open confluence means that the reduction system is confluent on terms with or without metavariables (open terms). Closed confluence
means that the reduction system is confluent on terms withoutmetavariables. Section 2.1 proves closed confluence fort uvw .

12The substitution calculus oft uvw is xy which is terminating (Proposition 1.3).
13The former reference also contains a summary of calculi which have PSN (although not FCS), the methods of retaining PSN, and the

limitations that these methods impose.
14For historical reasons, we note that they were created independently around the same period (the draft paper in whicht uvw originated

was circulated in 2004).

41

2.4 Proof of PSN by simulation

We now prove PSN forz{|} by introducing a translation fromz{|} to ~��� and then showing that a reduction step
in z{|} corresponds to a non-empty reduction sequence in the translation. The translation will be the composition
of an encoding ofz{|} terms in~��� and a normal form of~���. Our initial idea for the encoding is archived in
Section 3.2. It is simpler than the one presented below but isinsufficient for a proof of PSN via simulation.

2.4.1 The encoding of���� terms in ����
We begin with a slight alteration of the encoding of pure terms into ~��� terms (up to the congruences in
Figure 1.3) given in [KL05]. We alter their encoding by indexing translations� �� � with a set� of names
which must include the free variables of� and none of the bound variables. This indexing is inspired byMilner’s
encoding ofz{|} into �zBIG and is needed for our simulation ofz{|} in ~��� as the latter calculus remembers free
variables which are discarded (interface preservation) whereas the former does not.

Definition (Encoding of pure terms in ~���).
� ���� �� �� �� ���� �~� �� �� �� �� ��� �� � �~� �� �� �� if � � � �� �� �~� �� �� �� �� ��� �� � �~� ��� �� �� �� if � ¡� � �� �� �� ¢ �� �� �� ���� �� �£�� �¤ �� ¥¦ § ¨©ª ¥«ª§ �� �� �� «ª© �� �¢ ��¬¬

where �� � �� � ® � �¢ �
When a translation is not tagged,� is assumed to bē.

The weakening in the second encoding of~� �� is used to enforce linearity. It also blocks any garbage arising
from an encoding of an ° -redex�~� �� �¢ , � ¡� � �� � from propagating through the term. The encoding of
an application also enforces the linearity constraint – anyfree names shared in an application are renamed to be
distinct. Contractions then explicitly bind them to their original names.

We now wish to extend this encoding to terms inz{|} . The remaining case is the term� ±� �� ¢ ². This
term can arise from a ° reduction�~� �� �¢ ° � ±� �� ¢ ². We want our translation to be preserved by
reduction inz{|} and so we first take the� � in � ��~� �� �¢ � ³´µ � � as our translation. We get the following
(dropping the indices) when� � � �� �:

� ��~� �� �¢ �� ¦ § ¨©ª ¥«ª§ �� �~� �� ��� «ª© �� �¢ ��¬�where �� � �~� �� � ® � �¢ ��� ¦ § ¨©ª ¥«ª§ �~� �� �� �� «ª© �� �¢ ��¬ if � � � �� ��� ¡� �� ¦ § ¨©ª ¶¥~� �«ª§ �� �� ��¬ ¥«ª© �� �¢ ��¬·
³´µ ¦ § ¨©ª ¶ ¥«ª§ �� �� ��¬ ±� �� «ª© �� �¢ ��² · �

The term inside the contractions reads as ‘� �� �±� �� � �¢ �² where the shared free variables of� �� � and� �¢ � are renamed to be distinct’. The contractions then explicitly bind the renamed variables to their original
names. This seems a sensible (linear) encoding of� ±� �� ¢ ².

However, a problem arises. In order to simulate wide substitution ¸ in ~��� which has local substitution
rules, we will need to employ a normal form in our translationwhich pushes all substitutions down to vari-
ables. We will explain why in more detail in Section 2.4.2 – for now, you could try to simulate the reduction�� ����� ±� �� ¹ ² ¸ �� ��¹ �� ±� �� ¹ ² in ~��� using only the suggested encoding above. Now, if we let our
translation be the composition of the encoding above composed with such a normal form then the reduction graph
below can not be filled in (here we also assume that the translation of garbage±¹ �� º² introduces a weakening

42

»¼
to enforce linearity).½¾¿À Á ÂÃ ÄÅ Æ Ç ÂÆ ÄÅ ÈÇ É

Ê
Á ÂÆ ÄÅ ÈÇ

ÊËÌÍÎ Ï» Ð Á Ñ ÂÃ ÄÅ Æ Ç ÂÆ ÄÅ Ò ÏÈÑÇ
ÓÔ Õ Ö×ØÙ

Ï» ¼ Á ÑÂÆ ÄÅ Ò ÏÈÑÇ
ÓÔ

Ï» Ð Á Ñ ÂÃ ÄÅ Æ ÂÆ ÄÅ Ò ÏÈÑÇÇ Ï» ¼ Á ÑÂÆ ÄÅ Ò ÏÈÑÇ
The top square is easily filled in but the outer square can not be filled. This means that while the encoding should
be sufficient to simulate

É
, the composition of the encoding and the normal form fails. The problem is that

the outer subsitution
ÂÆ ÄÅ ÈÇ is pushed inside the inner one during the translation and anydiscarding of the

composed substitution inÚÓÔ ÛÒ loses both.
So, in order to simulateÜÝÉ in

ËÌÍÎ
, we need substitutions to be both pushed inside terms duringthe

translation so that Ý may be simulated, and also left outside so that they are not unfairly garbage-collected.
This is the classic problem of trying to be in two places at once! To solve this dilemma, we create two different
kinds of substitution in the encoding – one which may propagate through terms and one which cannot.

Definition (Encoding of
½¾¿À

terms in
ËÌÍÎ

). The encoding of
½¾¿À

terms in
ËÌÍÎ

is defined on pure terms asÒ ÏÃÑÞ ßÐ ÄÅ »Þ ÏÃ ÑÒ ÏËÃ àá ÑÞ ÄÅ »Þ âÔã äå æ ÏËÃ àÒ Ïá ÑÑ
if Ã ç èé Ïá ÑÒ ÏËÃ àá ÑÞ ÄÅ »Þ âÔã äå æ ÏËÃ à»Ð ÏÒ Ïá ÑÑ
if Ã êç èé Ïá ÑÒ Ïá ë ÑÞ ÄÅ »Þ âäÔã äå æìÔã äí ææ îï ð ñòó îôóð ÏÒ Ïá ÑÑ ôóò ÏÒ Ïë ÑÑõõ

whereö ÄÅ èé Ïá Ñ ÷ èé Ïë Ñ
and on non-pure terms asÒ Ïá ÂÃ ÄÅ ë ÇÑÞ ÄÅ » ø ï ò ñù úó ï ûü ñùüýâó î» Ðþ ï ð ñû úò îÒ Ïôóð Ïá ÑÑ ÂÃ ÄÅ ë

Ù
Çõ ÂÃ ÿ ÄÅ ë � Çõ

whereÃ ç èé Ïá Ñ �ëÙ
Å Ò Ïôýâóûü ôóû ú Ïë ÑÑ �ë � Å Ò Ïôýâóùü ôóù ú Ïë ÑÑ

Ò Ïá ÂÃ ÄÅ ë ÇÑÞ ÄÅ » ø ï ð ñòó î î»Ðôóð ÏÒ Ïá ÑÑõ ÂÃ ÄÅ ôóò ÏÒ Ïë ÑÑÇ õ
whereÃ êç èé Ïá Ñ

whereö Å Ïèé Ïá Ñ � �Ã �Ñ ÷ èé Ïë Ñ
, � Å èé Ïë Ñ

, � Å � � Ïèé Ïá Ñ � èé Ïë ÑÑ
, andÃ ÿ is a fresh name.

When a translation is not tagged,� is assumed to be	.
Example. The

�Á � Æ �
 �-indexed encoding of
ÏÃÃÆ Ñ ÂÃ ÄÅ ÁÆ Ç is» �ï ¼ �ú ñ¼ ¼ ï � ú ñ� ü� �»Ðþï ¼ú ñ¼ü¼ �ú ÏÏï Ðú ñÐüÐ ÏÃ

Ù
Ã � ÑÆ

Ù
Ñ ÂÃ ÄÅ Á

Ù
Æ� ÇÑ ÂÃ ÿ ÄÅ Á �Æ Ç� à

In the case whereá andë have no common free variables (Ã êç èé Ïë Ñ
by convention), the encoding of

non-pure terms reads:Ò Ïá ÂÃ ÄÅ ë ÇÑÞ ÄÅ »ø ï û ñùý î» Ðþ îÒ Ïá ÑÂÃ ÄÅ ë
Ù
Çõ ÂÃ ÿ ÄÅ ë � Çõ

whereÃ ç èé Ïá Ñ �ëÙ
Å Ò Ïôýû Ïë ÑÑ �ë � Å Ò Ïôýù Ïë ÑÑ

Ò Ïá ÂÃ ÄÅ ë ÇÑÞ ÄÅ »ø î î» Ð ÏÒ Ïá ÑÑõ ÂÃ ÄÅ ÏÒ Ïë ÑÑÇ õ
whereÃ êç èé Ïá Ñ

where� Å èé Ïë Ñ
, � Å � � Ïèé Ïá Ñ � èé Ïë ÑÑ

, andÃ ÿ is a fresh name.

The encoding of pure terms makes sense – it forces linearity and nothing else. For non-pure terms, the encoding
is more complicated. When translating a termá ÂÃ ÄÅ ë Ç whereÃ ç èé Ïá Ñ

, two substitutions are created in theËÌÍÎ
term,

ÂÃ ÄÅ ë
Ù
Ç and

ÂÃ ÿ ÄÅ ë � Ç. The second substitution with fresh nameÃ ÿ as binder is garbage and sits

43

��� �� ��
��� � � � �� !!" #$ �� %� &' (� �)�* %� + &' (��)*

��, -./0 � � �� !"� �� %� &' (� �)�*
�� 12 -34 - (� �� %� &' (� �)�5 �� %� &' �)�

Figure 2.1: Garbage collection of an idle substitution in
�6789

awaiting garbage collection. We call this theidle substitution as it can never propagate through the term. Thefirst
substitution may be pushed through the term to the free occurrences of

�
and so we call this themobilesubstitution.

Note that as: copies non-garbage substitutions, the encoding of terms with nested substitutions tends to get quite
large. However, as we are only interested in proving a simulation, this is not of too much concern.

Idle and mobile substitutions will be used to simulate;<= reduction. The translation will push the mobile
substitution down into the term until a copy is at each free occurrence of the variable

�
(these occurrences will be

uniquely named but ‘mean
�
’) whilst the idle substitution waits up top. In this way, mobile substitutions emulate

the linking of a substitution to free variables as in
+>

BIG whereas the idle substitution sits at top level, emulating the
actual structure of the

+>
BIG term. < reductions are then mimicked by firing

�? @A �
reductions which destroy

a copy of the mobile substitution. When all these are performed, the idle substitution is garbage collected with a�" B@C D�
reduction, mimicking a = reduction.

We must also alter the reduction rules of
�789

to create mobile and idle substitutions the moment a substitution
is introducedi.e. in the��� rule. We define the following new rule to replace��� .

Definition 33 (��� �). The reduction��� � is defined as the contextual closure, modulo5, of the rule��� �� �� ��� � � � �� !!"#$ �� %� &' (� �)�* %� + &' (��)*
whereE ' FG �� �

and
� +

is a fresh name.

Definition (
�6789

). We let
�6789

denote the calculus obtained from
�789

by replacing
�H �

with
�H I�

. We let��JKLMN denote the reduction relation of
�6789

. ��1JKLMN denotes the reflexive and transitive closure of��JKLMN.
Notation (creates garbage).We that that a reduction

� ��� � � +
creates garbagewhen the abstraction in the

redex binds a weakening rather than an occurrence of a variable.

Note that an idle substitution
%� + &' �O)

may always be garbage collected as in Figure 2.1 such that���
can be mimicked in

�6789
but we will not do so in our simulation unless no corresponding mobile substitutions%� &' � 0) exist.

To aid our proof, we define labelled contexts for
>PQK and

�6789
. The next two definitions are included for

formality and should not be necessary in order to read the proof.

Definition. A labelled
>PQK context� R ST is a term with a hole in it where

FG �R ST � ' U
. The term� R� ST is

defined as long as
FG �� � ' U

by filling the hole with
�

. Similarly, alabelled
�6789

context� R S VT is a term withW holes which may be filled by a vector ofW terms XY ' Y0 Z [[[Z Y\ where
Y] ' (^_ `2 aT b �Y � Z U] c Ud ' e

forD f g f h f W.

We define
�6789

contexts in this way for our proof of PSN where each
Y]

will be a copy of an encoding
of a

>PQK redex, the copies being generated by encodings of non-garbage substitutions. We finally extend: to
encoding contexts, in the appropriate manner.

Definition (extending: to contexts). The encoding of
>PQK contexts in

�789
is defined as

: ��� �R Si �T &' "T ji ��� �R Si � if
� k FG �� �

: ��� �R Si �T &' "T ji ��� �" # �R Si � if
� lk FG �� �

: �R Si � �T &' "T j`i m^_ `n aa !� o �pq !(qo �R Si � (qp �: �� ��**
: �� R Si �T &' "T j`i m^_ `n aa !� o �pq !(qo �: �� �� (qp �R Si �**

wherer &' s c FG �� �
44

and on non-pure terms as:t uv wx yz {| } ~�� {| � � � � �� �� � �� ������ �� �� � � �� �� ���� uv wx � yz {| } �~� yz � {| }� ~�
where

z � � � } � | t u������ ��� � u} �� � } � | t u������ ��� � u} ��
t uv wx yz {| } ~�� {| � � � � ��� � ������ uv wx �� yz {| ��� ut u} ��~ �
where

z �� �
where� | u� � �z �� � � u} �

, ¡ | � u} �
, ¢ | £ � u� ¤ � u} ��

, and
z �

is a fresh name andt u¥ yz {| v wx ~�� {| � � � � �� �� � �� ���x �� ���� � � �� �� �t u��� u¥ �� yz {| v wx � ~� yz � {| v wx� ~�
where

z � � u¥ �� v wx � | �x ���� ��� � uv wx � � v wx� | �x ���� ��� � uv wx �t u¥ yz {| v wx ~�� {| � � � � ��� � ������ ut u¥ ��� yz {| ��� uv wx �~ �
where

z �� � u¥ �
where� | u� u¥ � � �z �� � �

, ¢ | £ � u� u¥ � ¤ � �
, and

z �
is a fresh name. When a translation is not tagged,£

is assumed to be¦.
Given a§¨©ª term

� v¥ w�
, we have

t u� v¥ w� � | t u� � v¥ � �¥ � � « « « � ¥ ¬ w � where
¥ ® | t u�¯° ±² ³� ´ u¥ ��

as the encoding may copy substitutions. In practice, we willonly be interested in one copy of
¥

and writet u� � v¥ ®w
, omitting the other copies and indexing.

Lemma 34 (properties of
t

).

1.
� u¥ � | � ut u¥ ��

2.
� ut u¥ �� � | £

3.
t u��� u¥ �� | ��� ut u¥ ��

From now on, we will adopt a convention for labelling the variables in contractions. The convention is ex-
plained in Appendix A.4 along with a graphical representation for the contraction structure ofµ¶·¸ terms. Briefly,
we index the variables which correspond to

z
in a linear term from the innermost to outermost, left to right and

label the contractions accordingly.
We will also forget the indexing in the translation until Section 2.4.4. It will be required when considering the

only rule of§¨©ª which loses free variables,¹ . The sections until then will focus on the problem of simulating
wide substitution inµº¶·¸ and the indices will just confuse the discussion.

2.4.2 A normal form and the translation

We now reason whether the encoding
t

is a suitable translation for simulating»¼¹ -reduction inµº¶·¸. Consider¥ ½ uz uzz�� yz {| ¾ ~ ¼ uz uz¾ �� yz {| ¾ ~ ½ } «
We have

t u¥ � | � ¿À� �¿Á¿ ���� �� �� ��À�� uz �� �� ��Â�À� uz�zÃ �� yz {| ¾ Ä� ~� yz � {| ¾Å ~�
and we wish to reduce this

term to reach a term which is equivalent to
t u} �

. As we must replace a free occurrence of
z

with
¾
, we be-

gin with the following reduction path:Æ ÇÈ É| Ê ËÌ� ÍËÁË ÎÏ Ð� ÑÊ Ð� ÍÐÌ�Ð ÇÒ ÓÊ Ð� ÍÐÂÐÌ� ÇÒ ÔÒÕ ÉÉ ÖÒ ×Ø Ù ÚÓ ÛÜ ÖÒ Ý ×Ø ÙÞ Ûß
àªáâã Ê Ë Ì� ÍËÁË ÎÏ Ð� ÑÊ Ë� ÍË Ì�Ë Ì� ÇÒ Ó ÖÒ Ó ×Ø Ù ÓÛÊ Ë� ÍËÂË Ì� ÇÒ Ô ÖÒ Ô ×Ø ÙÔ ÛÒÕ ÖÒÕ ×Ø ÙÕ ÛÉÉÜ ÖÒ Ý ×Ø ÙÞ Ûß
ä åæ Ê Ë Ì� ÍËÁË ÎÏ Ð� ÑÊ Ë� ÍË Ì�Ë Ì� ÇÒ Ó ÖÒ Ó ×Ø Ù ÓÛÊ Ë� ÍËÂË Ì� ÇÒ Ô ÖÒ Ô ×Ø ÙÔ ÛÙÕ ÉÉÜ ÖÒ Ý ×Ø ÙÞ Ûß½ È Ý

However,
t u} � ½ � ¿À� �¿Á¿ �� �� �� ¿Â �¿ À�¿ À� u� �� ���� uz � uz�¾Ã �� yz {| ¾ Ä� ~�� yz � {| ¾Å ~�

and there is no reduction
path

¥ � çèàªáâã t u} �
as the mobile copies of

yz {| ¾ ~
have been pushed inside the term in

¥ �
to allow

the
ué êë �

reduction to take place. This suggests that our translationshould be
t

composed with a normal form.

45

We wish to define a normal form which pushes substitions in faras possible so thatì may be simulated iníîïð
. If we try this approach with the example above, we get:ñ òó ô

õ ö ÷øù ú÷û÷ üý þÿ üö ÷� ú÷ ø�÷øù òö þù úþ�þ ò�� ò���� ôô �� �õ � 	�
ô� �� � �õ �
�
���� ö ÷øù ú÷û÷ üý þÿ üö ÷� ú÷ ø�÷øù òö ÷ù ú÷�÷ ø� ò� � �� � �õ � �
 ò�� ��� �õ ��
�� ôôô� �� � �õ �
�
� ó �

This almost matches� �
except that the contractions are out of place. To fix this, we push the contractions inside

as far as possible: ó ��� ú� �� ö ÷øù ú÷û÷ üýþÿ üö ÷ù ú÷ ø�÷øù òö ÷� ú÷�÷ø� ò�� �� � �õ ��
 ò�� ��� �õ ��
�� ôôô� �� � �õ �
�
������ � ö ÷øù ú÷û÷ üýþÿ üö ÷ù ú÷ ø�÷øù ò� � �� � �õ � �
ö ÷� ú÷�÷ø� ò�� ��� �õ ��
�� ôô� �� � �õ �
�� � �

This example leads us to the following definitions.

Definition (Normal form and the translation).� ��� �� is defined to be the union of
ò�� ô

,
ò�!! "ô

,
ò�!! #ô

,
òý $%&#ô

,
òö '() "ô, and

òö '*! ô
.� ��� +, is defined to be the union of

òö�� ô
,
òö�!! "ô

,
òö�!! #ô

,
òö -.� ô

, and
òö /' ô.� ��012 ò� ô

is defined as the composition � �� � +, .� 3012 ò� ô
is defined as the normal form (up to�) of ��012 ò� ô

.� The translation4 from 5678 to
í9 îï ð

is defined on5678 terms� as4 ò� ô: defõ 3012 òñ ò� ô: ô
.

The relation3012 can be described as ‘push one substitution inside and then push all contractions in as far as
possible.’ We prove it has a unique normal form in the next section.

Perhaps surprisingly (as it involves contractions), the
ò� $/; $ô reduction rule is omitted in the normal form.

This is because the encoding only introduces weakenings bound by an explicit substitution or abstraction but not
contractions. Therefore, the rule cannot be applied to a��012-reduct of an encoding.

We now try the translation4 on the problematic square at the beginning of this section toget:ò�� ô �� �õ �

< ì ò�� ô �� �õ �

<
4 òò�� ô �� �õ �
ô = >? 4 òò�� ô �� �õ �
ô

2.4.3 Contractions in the translation

All branches of the abstract syntax tree (AST) of a
íîïð

term occur at applications and substitutions. For any
íîïð

term� , 3012 ò� ô
has all substitutions lying directly above either a weakening

ýþ
or a free occurrence of

�
and

all contractionsö ÷ ú@A pushed in as far as possible so that 1) at the first brancing in the AST below the contraction,
the left branch of the application (resp. substitution) below the contraction contains a free occurrence of

�
or B

and the right branch contains a free occurrence of the other or 2) both variables occur below the contraction and
before any branch split.

Definition (contractions at their most efficient). We say that the contractions in a
íîïð

term areat their most
efficientwhen if

� �
and

��
represent a variable

�
, there is a contractionö þù úþ�þ C

just above (up to congruence) the
split in the abstract syntax tree where

��
is in one branch and

��
in the other.

46

For example, considerD EF GEHFE IJD EK GELEHF MMN ONP QNR QS which representsJ MMNNQNQ. This term does not have its
contractions at their most efficient whereasT MJ MMNN QN QQ U J ID EHF GELE MD EF GEKEHF MN ONP QQN R S does. The former term
can reduce to the latter however. It would appear that aVWX YZ-normal form of any[\]^ term has its contractions
at their most efficient but we require a weaker statement to aid our proof of simulation.

Proposition 35. Given a_`ab termc , anyVWdef-reductc g of T Mc Q has its contractions at their most efficient.

Proof. We induct over the lengthh of theVWdef path fromT Mc Q to c g which is finite asVWdef iVWjk .

Base case:l m n o We must show that the encodingT Mc Q has the contractions at their most efficient. The proof
follows by the definition ofT and induction over the term structure (I.H.2).

The cases of abstractions and variables follow trivially.

In the encodings ofp qN rm s t whereN uv wx Mp Q andps , the contractions ofT MpQ andT Ms Q are at
their most efficient by I.H.2. The contractionsD y Gz{ in the encoding are then at their most efficient as| } wx MT M~{y Mp QQQ and� } wx MT M~{z Ms QQQ.
In the encoding ofp qN rm s t whereN v wx Mp Q, the contractions ofT M~{y Mp QQ, sO U T M~��{�K ~{� F Ms QQ,
andsP U T M~��{�K ~{� F Ms QQ are at their most efficient by I.H.2. In the two outside contractionsD z G� F{ andD �K G�K� �{ , the set� � �P binds names in the left branch whereas�O � �P binds names in the right branch.
The inner contraction, binds the names of

|
in the left branch and� O in the right branch. Therefore, all

contractions are at their most efficient.

Inductive case:l m � � �o Let T Mc Q VW �def c gg VWdef c g. We assume that the contractions ofc gg are at
their most efficient and prove the same forc g. We only need consider the case where

c gg m D y Gz{ Mp qN rm s tQ � � m Mwx Mp Q � �N �Q � wx Ms Q � N v wx Mp Q
and the substitutionqN rm s t is pushed inside the termp . The proof follows by induction over the term
structure. As contractions inc gg are at their most efficient,

| } wx Mp Q and� } wx Ms Q. As qN rm pt
is a mobile substitution, no weakening�E lies beneath it. We break the proof over the possibleVW� ��
reductions.

Case:M� ��Q, p U [J op g
The contractions follow the substitution withVWX��� reductions.

D y Gz{ MM[J op gQ qN rm s tQVW� �� D y Gz{ MM[J op g qN rm s tQQX YZ [J oD y Gz{ Mp g qN rm s tQ
The contractions ofs andpg remain at their most efficient.

Case:M� ����Q, p U M�� p gQ � J �m N
As we are consideringVWdef-reducts ofT Mc Q, any weakening�� is bound by an abstraction[J or
an explicit substitutionqJ rm t. Therefore,J uv | � � . The contractions follow the substitution withVWX ¡¢�� reductions.

D y Gz{ MM� � p gQ qN rm s tQVW� �� D y Gz{ M� � Mp g qN rm s tQQX YZ � � MD y Gz{ Mp g qN rm s tQQ
The contractions ofs andpg remain at their most efficient.

Case:M�££ ¤Q and M�££ �Q, p U O P
Let

| m |O ¥ |P such that
|O } wx M OQ and

|P } wx M P Q. We then writeD y Gz{ asD yK Gz K{K D y F Gz F{ F .
We treat the case whereN v wx M O Q. The contractions follow the substitution withVWX��� O reduc-
tions.

D yK Gz K{K D y F Gz F{ F MM O P Q qN rm s tQVW� �� D yK Gz K{K D y F Gz F{ F M O qN rm s t P QX YZ D yK Gz K{K IMD y F Gz F{ F M O qN rm s tQQ P S
47

The contractions of¦ , §¨, and§© remain at their most efficient.

Case:ª« ¬® ¯, ° ± §¨ ²³ ´µ §© ¶
As above, let· µ ·¨ ¸ ·© such that·¨ ¹ º» ª§ ¨¯ and·© ¹ º» ª§© ¯ and we write the contractions
as« ¼½ ¾¿ ½À½ « ¼ Á ¾¿ ÁÀ Á .
The contractions can follow withÂÃÄÅÆÇÈ reductions.

« ¼ Á ¾¿ ÁÀ Á « ¼½ ¾¿ ½À½ ª§ ¨ ²³ ´µ §© ¶ ²É ´µ ¦ ¶¯ÂÃÊ ÈË « ¼ Á ¾¿ ÁÀ Á « ¼½ ¾¿ ½À½ ª§ ¨ ²³ ´µ §© ²É ´µ ¦ ¶¶¯Ä ÌÍ « ¼ Á ¾¿ ÁÀ Á ª§ ¨ ²³ ´µ « ¼½ ¾¿ ½À½ ª§© ²É ´µ ¦ ¶¯¶¯
The contractions of¦ , §¨, and§© remain at their most efficient.

Case:ª« ¬ÎÏÐ¯, ° ± « ÑÁ ¾Ñ½Ñ ª° Ò ¯É is bound by the substitution and soÉ ÓÔ · Õ Ö . Let × µ º» ª¦ ¯. As Ö ¹ º» ª¦ ¯ µ ×, we write the
contractions created by theÂÃÄ ØÍÌ reduction as below.

« ¼ ¾¿À ª« ÑÁ ¾Ñ½Ñ ª° Ò ¯ ²É ´µ ¦ ¶¯ÂÃÊ ÈË « ¼ ¾¿À « ¿ Á ¾¿ ½¿ « Ù Á ¾Ù½ÙÚ¿ ª° Ò ²É ¨ ´µ ¦ ¨¶ ²É© ´µ ¦© ¶¯
where¦¨ ± ÛÙÚ¿Ù Á Û¿¿ Á ª¦ ¯ and¦© ± ÛÙÚ¿Ù½ Û¿¿½ ª¦ ¯. This last term is congruent to

« ¿½ ¾¿À « Ù Á ¾Ù½ÙÚ¿ ª« ¼ ¾¿ Á¿ ª° Ò ²É ¨ ´µ ¦¨ ¶¯ ²É © ´µ ¦© ¶¯
and

« ¿Á ¾¿À « Ù Á ¾Ù½Ù Ú¿ ª« ¼ ¾¿ ½¿ ª° Ò ²É© ´µ ¦© ¶¯ ²É ¨ ´µ ¦¨¶¯ Ü
Corollary 36. For all ÝÞßà termsá , the contractions ofâ ªá ¯ are at their most efficient.

Corollary 37. ã -images ofÝÞßà terms have a uniqueÂÃäåæ normal forms (up to congruence).

Lemma 38. Let á be inÂÃäåæ-normal form and let each weakening bound by an abstraction lie directly under
(up to±) that abstraction. Ifá ÂÃçàèéê ë is not aÂÃ ì í reduction which does not create garbage thenë is inÂÃäåæ-normal form.

Proof. We break the proof over the possible reductions, proving that the reductions do not create aÂÃÊ ÈË redex
which is sufficient.

Let á ÂÃî È ë create garbage. All substitutions iná are directly above (up to congruence) the weakening
or the variable that they bind. This is true also of these substitutions inë . The reduction creates two substitutions.
The idle one cannot move inside the term as it binds a weakening directly below it. As the reduction creates
garbage, the mobile substitution binds a weakening which byassumption lies directly below it. Hence, it cannot
move inside the term either.

The ªï ðñ ¯ case is trivial.
In the ªò óôí¯, ªò ó®® Ð¯, ªò ó®® õ¯, ªò ö÷ôí¯, and ªá øñù ø¯ cases, the weakenings explicit in the redex

and reactum are not bound by any substitution (asá is in ÂÃäåæ-normal form). In theªò øðú Ð¯ case, only the
weakening explicit in the redex is bound by a substitution which is discarded through the reduction. Thus, the
firing of these rules do not create any newÂÃÊ ÈË redexes.

As á is in ÂÃäåæ-normal form, no substitutions bind the free variable of anycontraction. Therefore, noª« ó ôí¯, ª« ó®® Ð¯, ª« ó®® õ¯, ª« ö÷ôí¯, or ª« ñ¬íí¯ reduction creates any newÂÃÊ ÈË redexes.

Corollary 39. Let â ªá ¯ ÂÃûçàèéê ë for someÝÞßà term á . Unless the reduction sequence contains aªì í¯
reduction which does not create garbage or aª« óôí¯ reduction,ë is in ÂÃäåæ-normal form.

Proof. It can be shown by induction thatã ªá ¯ has any weakening bound by an abstraction lying directly under
that abstraction. This is also true ofâ ªá ¯. The result follows by Lemma 38 noting that only aª« ó ôí¯ reduction
can come between a weakening and its binding abstraction (upto ±) as ªó ôí¯ redexes do not occur during the
sequence.

48

2.4.4 Proof of PSN by simulation

It seems reasonable to theorise thatüýþÿ � has the PSN property as it differs fromüþÿ � only in the ��� � rule
which creates two substitutions; one as normal and one whichis ‘garbage’ and can not propagate through the term.
This behaviour does not seem dangerous. It does not introduce new cases of infinite reductions as the garbage
substitution may only interact with substitutions above itas the normal substitution can. Kesner and Lengrand
[KL] prove that encodings of strongly normalisingü-terms inüþÿ� are strongly normalising using Lengrand’s
methods [Len05]. In other work, we have used those methods toprove the same forüýþÿ�.
Theorem 40 (üýþÿ � satisfies PSN [O’C06]).For any pure term

�
, if

� � ��	
then
 �� � � ������

.

Before we introduce our proof of simulation, we will give examples of the different cases, showing how a
reduction step in���� may be matched by a non-empty sequence inüýþÿ�. We omit the indexing in all cases but
the � case, where variables may be lost. In all the examples, the redex occurs inside a non-garbage body of
substitution so that we may demonstrate how bodies of substitution are copied in the translation. We will also
bend the variable convention for the purposes of demonstration.

For the � case, there are two subcases depending on whether the new substitution is garbage or not.

Example 41 (� simulation without garbage). Let� � � �� �� �ü� �� �� � ��� � � �� �� �� �� � �� �� �� � � !
with all variables distinct," � #� $ � % $ " & � #�& $ �& %, and"' � #�' $ �' %.

(�� �
�) *+,+ -*. ,.*, /0 12 �� �� �� �ü� �� &) 3+3.3 �� &�' ���& � �� 4 �� �ü� ��') 3+3.3 �� &�' ���' 5
� �') 6+ -6.6 /0 12 �� �� ��) ,7,8, + �0 43 ��� &) 3+3.3 �� &�' �� �� �� �9 � �� 4 �� �: � �

�� 4 ��) ,;,<,. �0 43 ���') 3+3.3 �� &�' �� �� �� �= � �� 4 �� �> � 5�
 �! �
��?@AB) 6+ -6.6 /0 12 �� �� ��) ,7,8, + �0 43 �� &) ,C ,D,7 �� & �� & �� �E �' ��' �� �F �� �� 4 �� �: � ��� 4 ��) ,; ,<,. �0 43 ��') ,G ,H,; �� & �� & �� �I �' ��' �� �J �� �� 4 �� �> � 5� (�! �

The first line of reductions fires the��� �-redexes. The translation creates two copies of the� redex so
there are two corresponding��� �-reductions. In this example, we have now reached the term
 �! �

. In general,
we would now push the contractions created by the��� �-reductions to their most efficient points to reach a�� K@AB-reduct of
 �! �

– the reduct where all substitutions except copies of the newly created one are pushed
completely through the term. To match the term

(�! �
, these new mobile substitutions are finally pushed inside

the term.

Example 42 (� simulation with garbage). Let� � � �� �� �ü� �� �LL ��� � � �� �� �� �LL �� �� �� � � !
with all variables distinct," � #L $ � $ � % $ " & � #L & $ � & $ �& %, and"' � #L' $ �' $ �' %. This case is covered by the
reduction sequence in Figure 2.1.(�� �

�) 6+ -6.6 /0 12 �� �� �� �ü� �0 3 �� &) M7M8M + �L 9L: ����& ��� 4 �� �ü� �0 3 ��') M;M<M. �L =L > ����' 5
� �') 6+ -6.6 /0 12 �� �� ��) ,7,8, + �0 32 �0 3 �� &) M7M8M + �L 9L: �� �� �� �9 � �� 4 �� �: � �

�� 4 ��) ,;,<,. �0 32 �0 3 ��') M;M<M. �L =L > �� �� �� �= � �� 4 �� �> � 5
N OPQ&') 6+ -6.6 /0 12 �� �� ��) ,7,8, + �0 ,8 �0 3 �� &) M7M8M + �L 9L: �� �� �� �9 �� �

�� 4 ��) ,;,<,. �0 ,< �0 3 ��') M;M<M. �L =L > �� �� �� �= �� 5
R OST O' U&) 6+ -6.6 /0 12 �� �� �� 03 �� &) M7M8M + �L 9L: �� �� �� �& ��� 4 �� 0 3 ��') M;M<M. �L =L> �� �� �� �' 5� (�! �

49

The first line of reductions fire theVWX Y-redexes. The translation creates two copies of theZ redex so
there are two correspondingVWX Y-reductions. The encoding of garbage only creates one substitution so we now
immediately garbage collect all the newly-created ‘idle’ substitutions. To reach[\] ^, we merge the resulting
weakenings with contractions.

Observe that each term in this sequence is inVW_`a-normal form (as expected from Corollary 39).

Example 43 (b simulation). We will pick up where Example 41 ended. Let

] c d ed fg \h \ii ^^ ei fg j kk b d ed fg \h \ji ^^ ei fg j kk c l
with all variables distinct,m g nh o j p o m q g nhq o jq p, andmr g nhr o jr p.

[\] ^
c s tu vtwt

xy z{ \d ed fg s |}|~| u \y �� \h qs |� |�|} \i q ei q fg j� kir eir fg j� k^^ ei � fg j� k^k^ed � fg s |� |�|w \y �� \hrs |� |�|� \i q ei q fg j� kir eir fg j� k^^ ei � fg j� k^k�
� ��r s tu vtwt

xy z{ \d ed fg s |}|~| u \y �� \h qs |� |�|} \j�ir eir fg j� k^^ ei � fg j� k^k^
ed � fg s |� |�|w \y �� \hrs |� |�|� \j�ir eir fg j� k^^ ei � fg j� k^k�c [\l ^

This case is easier to explain. In a translated term, the substitutions are pushed in as far as possible. The variable
being replaced has a substitution directly above it in the translation (for each copy of the variable). The sequence
consists of twoVW � �� reductions, one for each copy of the variable due to the translation. By Corollary 39, each
term in this sequence is inVW_`a-normal form.

Definition. VW� � is defined to be the union of\y ����^, \y ���^, \y ��� �^, \y ��� �^, \y ����^, \s ����^,
and \ ��¡ �^.
Example 44 (¢ simulation). Let

 c h eh fg d ei fg j £ k ej fg � kk ¢ h eh fg d ej fg � kk c]
with all variables distinct.

We must explicitly state the translation indexing now. The index set must at least contain the free variables
of , so we choose it to be¤ g nd o £ o� p. We partition the index set into two sets,¥ g nd o� p and¦ g n£ p
such that¥ contains free variables of , occurrences of which are discarded in the reduction but which persist in] and¦ contains the free variables of which do not occur in] (the lost variables). The sequence begins as
below.

[\ ^§
c s § u v§ w§ xy ¨{ xh eh fg s ©}©~© u \y |{ \y � \d q ^ ei fg j ej fg � ª k£q k^ ej � fg � � k^k�eh � fg s ©�© �© w \y |{ \y � \dr ^ ei fg j ej fg � « k£r k^ ej � fg � � k^k�

� ¬��qr s u vw s z
u© u v

z
w© wz©

xy ¨{ xh eh fg s ©}©~© u \y |{ \y©} u \d q ^^ ej � fg � � k^k�
eh � fg s ©�© �©w \y |{ \y©� w \dr ^^ ej � fg � � k^k�

� � s u vw
y u w s

z
u© u v

z
w© wz©

xy ¨{ xh eh fg s ©}©~© u \y |{ \y©} \d q ^^ ej � fg � � k^k�
eh � fg s ©�©�© w \y |{ \y©� \dr ^^ ej � fg � � k^k�

® ¬�¯ ¬ y s
z
u© u v

z
w© wz©

xy ¨{ xh eh fg s ©}©~© u \y |{ \y©} \d q ^^ ej � fg � � k^k�
eh � fg s ©�© �© w \y |{ \y©� \dr ^^ ej � fg � � k^k�

We start by simulating the°±²³ garbage collection with someVW � ¬��q reductions, one for each copy of the
discarded substitution that the translation introduces. This garbage collection generally creates weakenings which
are then pulled upwards through the term, either to top-level or until they merge with contractions. For our
demonstration, we first choose to pull up the weakenings

yu and
yw corresponding to the free variable£ lost in

the°±²³ reduction. After the merge, the weakening
y may be pulled up to the top of the term.

50

´µ¶ ·¸¹ ¸ º·»¹ »·¹ ¼´ ½¾ ¼¿ À¿ ÁÂ ¶ ¹Ã¹Ä¹ ¸ Å´ Æ¾ Å´¹Ã ÅÇ ÈÉÉ ÀÊ Ë ÁÂ Ì Í ÎÉÎÏÀ¿ Ë ÁÂ ¶ ¹Ð¹ Ñ¹ » Å´ Æ¾ Å´¹Ð ÅÇÒ ÉÉ ÀÊ Ë ÁÂ Ì Ó ÎÉÎÏ
Ô Õ ´ µ ¶ ·¸¹ ¸ º·»¹ »·¹ ¼´ ½¾ ¼¿ À¿ ÁÂ ¶ ¹Ã¹Ä¹ ¸ ´¹Ã Å´ Æ¾ ÅÇ È É ÀÊ Ë ÁÂ Ì Í ÎÉÎÏ

À¿ Ë ÁÂ ¶ ¹Ð¹ Ñ¹ » ´¹Ð Å´ Æ¾ ÅÇ Ò É ÀÊ Ë ÁÂ Ì Ó ÎÉÎÏ
Ö ×ØÙ × ´ µ ¶ ·¸¹ ¸ º·»¹ »·¹ ¼´ ½¾ ¼¿ À¿ ÁÂ ´Æ¾ ÅÇ È É ÀÊ Ë ÁÂ Ì È ÎÎÏ À¿ Ë ÁÂ ´Æ¾ ÅÇÒ É ÀÊ Ë ÁÂ Ì Ò ÎÎÏ

Ú Û ÅÜ ÉÝ
Next, we pull up the weakeningś¹Ã and

´¹Ð corresponding to the variableÌ which is discarded in theÞß Ô ×àÕÈ
reductions but which occurs freely above the discarded subsitution in Ü . After more merges, the final term is
equivalent toÛ ÅÜ ÉÝ .

Examples 41 to 44 hint at how substitutions are copied in the translation of a term depending on their level
of nesting in other substitutions. In theencodingá Åâ É of a term, there will beãÙäå

copies of a substitutionÀÇ ÁÂ æ Î, whereç Â è if the substitution is garbage orç Â é otherwise andê is the number of non-garbage
subsitutions thatÀÇ ÁÂ æ Î is contained inside (not under). However in atranslationÛ Åâ É of a term, the matter is
further complicated as substitutions are themselves duplicated by theÞßë ìí¹ rule. For this reason, the following
proof concentrates on one copy of a redex in a translated term.

Proposition 45. If â îïð Ü thenÛ Åâ ÉÝ Þßäñòóôõ Û ÅÜ ÉÝ .

Proof. Proof by case split. We writeÀö ÁÂ Þß÷ Î to denote a sequence of nested substitutionsÀø È ÁÂ ÷ ÈÎ ù ù ù Àøú ÁÂ÷ú Î and drop the indexing in the translation except for theð case. Figures 2.2–2.5 depict the reduction graphs
corresponding to the cases, whereû is the number of copies of the redex generated by the translation as explained
above.

Caseâ Ú ¶ üÅýÇ ùæ Éþÿ î ¶ üæ ÀÇ ÁÂ þÎÿ Ú Ü , Ç � �� Åæ É
Figure 2.8 displays the general term15 for Û Åâ É followed by a series of reductions. Figure 2.11 displays
the general term forÛ ÅÜ É. The pathá ÅÜ É Þß ���� Ü Ë involves pushing all substitutions in besides the
substitutions which arise fromÀÇ ÁÂ þÎ. The renaming�Ý� arises from the encoding. The substitutions
with binders	 Ë bind variables in encodings of bothæ andþ , the substitutions with binders
� andö�
bind variables ofæ or þ respectively. We do not label the context – �� ÅÅýÇ ùæ Éþ É Â �� Åæ ÀÇ ÁÂ þÎÉ and
the same holds for the encodings by Lemma 34.1.

We must show that the final terms in both figures are equivalent. This can be shown by proving thatþ È ÚþËËËÈ andþÒ Ú þËËËÒ . These can easily be shown by unwrapping their definitions and renaming variables. For
example,

þÒ
Ú �� ¸� ¸� »� » � Ã� Ã� Ä� Ä Å���� Å���� Å�� ¸� ¾Ý� ¸� ¾� Åá Åþ ÉÉ Àö� ÁÂ Þß�� ÎÉ À� Ë ÁÂ Þß÷� ÎÉÉ
Ú �� »� »� Ã� Ã Å���� Å���� Å�� ¸� ¾� ¸� ¾� Ä� Ä Ý� Åá Åþ ÉÉ Àö� ÁÂ Þß�� ÎÉ À� Ë ÁÂ Þß÷� ÎÉÉ
Ú �� »� »� Ã� Ã Å���� Å���� Å�� ¸� ¾� ¸� ¾� Ä� Ä Ý� Åá Åþ ÉÉ Àö� ÁÂ Þß�� ÎÉ À� Ë ÁÂ �� »� » ÅÞß÷ ÉÎÉÉ
Ú ���� Å���� Å�� ¸� ¾� ¸� ¾� Ä� Ä Ý� Åá Åþ ÉÉ Àö� ÁÂ Þß�� ÎÉ À� Ë ÁÂ Þß÷� ÎÉ
Ú� ���� Å���� Å�� ¸� ¸� ¾� ¾���� � Ä� Ä Ý� Åá Åþ ÉÉ Àö� ÁÂ Þß�� ÎÉ À� Ë ÁÂ Þß÷� ÎÉ
Ú þ ËËËÒ

15Well, almost. We have omitted some contractions concerningfree variables in the substitutions with binders��, �� , and�� for clarity
but Proposition 35 can justify this decision.

51

�
!

"
!# $� %

&'(

$" %
&'(")
&'(* $� % + ,- . /- * $" %

Figure 2.2: Reduction diagram for simulating01
which does not create garbage

�
2

"
2

* $� % + ,- 3 4567- 8 49: 4 * $" %

Figure 2.3: Reduction diagram for simulating01
which does create garbage

� ;
2

"
2

* $� % < 59- * $" %

Figure 2.4: Reduction diagram for simulating01;
� =
2

"
2

* $� % 3 4567- 3 6 * $" %

Figure 2.5: Reduction diagram for simulating01=

Case
� > ? @$AB CD %EF ? @D GB HI EJF > "

,
B KL MN $D %

This case is similar to the last one. Figure 2.14 displays thegeneral term for
* $� %

followed by a series of
reductions. Figure 2.17 displays the general term for

* $" %
. The renamingOPQ and the substitutions with

bindersR), ST , andUV arise as before.

Case
� > ? @?) @BF GB HI EJF ; ? @?) @EF GB HI EJF > "

.

We treat the case where the the term
B

to be replaced is not the only free occurrence of
B

in
?W @BF

. The
reduction sequences are shown in Figures 2.19 and 2.20.

The two underlined subterms in those figures reduce to almostthe same term – in both, the substitution with
binder

B
is distributed through the subterms. Both subterms are subterms of the translations

? X YZ [\ ?]^ YZ^_`\ $a bc $d&'($? e c[Y] c[X c $f g @B h GB h HI D h %JF%%% GB) HI DW J%
and ? X [YZ [\ ? X^ YZ^_`\ $a)b $d&'($? e [Y] [X [? e^ Y]^X ^ $f)W @D)h F GB HI D)7 J%%% GB) HI DW J%
of ijkl terms. Ignoring linearity and contractions for a moment, the two terms above are identical except
that one has a subterm

D
where the other has

B GB HI D J
. By Proposition 35, the contractions of both

52

mn o p qr o s t tu v w x v y x z { x | }mn o p qr o ~ t t u v w x v y x � � x �mn o � �� { tu | � mn o � �� tu v � � �� �u p � �� � o � �� t � �� �u p � �� � o � �� t

Figure 2.6: Sets of free variables

�� ~ yu p � � � � q� � � � r o � o ~ t t s yu p � � � � q� � � � r o � o s t t

�� ~ y yu �� � � o ~ y � � � �u � �� � � t s y yu �� � � o s y � z { �u � �� { � t�� ~ y y yu �� � � o ~ y y � � y �u � �� � � t s y y yu �� � � o s y y � | y �u � �� � � t�� s w u p � ��� � ��� � ��� � ��� o s y y y t s �u p � �� � � �� � � �� � � �� � o s y y y t

Figure 2.7: Abbreviations in Figure 2.8

 o ¡ ¢ o £ ¤� ~ t s ¥ t

¦ �� � � o � o ¡ t ¢ p qr o � o o £ ¤� ~ t s t t ¥ t

o � t
¦ § ¢ �� � � o ¡ � �̈ � �� � ¡ � � �̈ �� � o o £ ¤� ~ y t s y t � v y �u � �� � � � � �u � �� � � � z { �u � �� { � ¥o � t

¦ § ¢ �� � � o ¡ � �̈ � �� � ¡ � � �̈ �� � o o £ ¤� ~ y y t s y y t � v y �u � �� � ¥

¦ § ¢ ¡ � �̈ � �� � ¡ � �̈ � �� � o o £ ¤� �� � � o ~ y y � � y �u � �� � � t t �� � � o s y y � | y �u � �� � � t t ¥o � t
¦ § ¢ ¡ � � � �̈ � � � �� � � � o o £ ¤� ~ y y y t s y y y t ¥

o � t
© ª § ¢ ¡ � � � �̈ � � � �� � � � ¡ �� ��̈ � � � �� � � � ¡ �� ��̈ � � � }� � � � o � « � o ~ y y y � ¤ �u s w � t � ¤ y �u s � � t ¥

¬ ® § ¢ ¡ � � � �̈ � � � �� � � � ¡ �� ��̈ � � � �� � � � o � « � o ¡ � � � �̈ �� ��� � � � o ~ y y y � ¤ �u s w � t � ¤ y �u s � � t

� �̄ � � � § ¢ ¡ � � � �̈ � � � �� � � � ¡ �� ��̈ � � � �� � � � o � « � o �� � � o ¡ � � � �̈ �� ��� � � � o ~ y y y � ¤ �u s w � t t t � ¤ y �u s � � t ¥

Figure 2.8: Translation for

¡ ¢ o £ ¤� ~ t s ¥

, ¤ a free variable of

~

5
3

°± ² ³́ µ ² ¶ · ·¸ ¹ º » ¹ ¼ » ½ ¾ » ¿ À°± ² ³́ µ ² Á · ·¸ ¹ º » ¹ ¼ » Â Ã » Ä°± ² Å ÆÇ ¾ ·¸ ¿ È Å ÆÇ Ȩ́ ³ Ê ËÉ Ë ² Å ÆÇ ¾ · Å ÆÇ Ì̧ ³ Ê ËÌ Ë ² Å ÆÇ ¾ ·°± ² Å ÆÍ ·¸ ¹ Î Å ÆÍ Ȩ̂ ³ Ï ÐÊ Ð ² Å ÆÍ · Å ÆÍ Ì̧ ³ Ï ÐÌ Ð ² Å ÆÍ · Å ÆÍ Ȩ́ ³ Ï ÐÉ Ð ² Å ÆÍ · Å ÆÍ Ņ̃ ³ Ï ÐÑ Ð ² Å ÆÍ ·

Figure 2.9: Sets of free variables

ÒÓ Á ¼¸ ³ Ï Ô Ï ṌÑ Ô Ñ Õ µ ² Ö ² Á · · ¶ ¼ º̧ ³ Ï ÔÉ Ô Ï ÕÉ Õ × Ø× Ù Ê ÚÉ Ú ´ µ ² Ö ² ¶ · · ¶ ¼ Î̧ ³ Ï ÔÌ Ô Ï ÕÌ Õ × Ø× Û Ê ÚÌ Ú ´ µ ² Ö ² ¶ · ·

ÜÓ Á ¼ ¼¸ ÝÞ ß à ² Á ¼ á Â Ã â̧ Å ÆÇ Ã ã ·äÓ ¶ ¼ ¼º̧ ÝÞ ß à ² ¶ ¼ º á ½ É â̧ Å ÆÇ É ã · ¶ ¼ ¼Î̧ ÝÞ ß à ² ¶ ¼ Î á ½ Ì â̧ Å ÆÇ Ì ã · ·åÓ Á ¼ ¼ ¼¸ ÝÞ ß à ² Á ¼ ¼ á æ ¼ â̧ Å ÆÍ Ñ ã · ¶ ¼ ¼ ¼º̧ Ý Þ ß à ² ¶ ¼ ¼º á ç ¼ â̧ Å ÆÍ É ã · ¶ ¼ ¼ ¼Î̧ ÝÞ ß à ² ¶ ¼ ¼Î á è ¼ â̧ Å ÆÍ Ì ã ·

Figure 2.10: Abbreviations in Figure 2.11

é ² ê ë Á á ì â̧ ¶ ã í ·

î ÝÞ ß à ² Ö ² ê · ë ³́ µ ² Ö ² Á á ì â̧ ¶ ã · · í ·

² Ò ·
î ï ë ÝÞ ß à ² ê Ê Ô Ê Õð Ì Ô Ì ÕÏ Ô Ï Õ ê × Ù É Úð × Û Ì Ú× Ø Ê Ú ² Ä ñ Õ ² ê Ñ Ô Ñ Õð É Ô É ÕÊ Ô Ê Õ ² Á ¼ á ì â̧ ¶ ¼ º ã · · á ì ¼ â̧ ¶ ¼ Î ã · · á ¹ ¼ â̧ Å ÆÍ ã á Â Ã â̧ Å ÆÇ Ã ã á ½ ¾ â̧ Å ÆÇ ¾ ã í ·² Ü ·

î ï ë ÝÞ ß à ² ê Ê Ô Ê Õð Ì Ô Ì ÕÏ Ô Ï Õ ê É Ë É Úð Ì Ë Ì ÚÊ Ë Ê Ú ² Ä ñ Õ ² ê Ñ Ô Ñ Õð É Ô É ÕÊ Ô Ê Õ ² Á ¼ ¼ á ì â̧ ¶ ¼ º á ½ É â̧ Å ÆÇ É ã ã · · á ì ¼ â̧ ¶ ¼ Î á ½ Ì â̧ Å ÆÇ Ì ã ã · · á ¹ ¼ â̧ Å ÆÍ ã í ·² ä ·
î ï ë ÝÞ ß à ² ê Ê Ô Ê Õð Ì Ô Ì ÕÏ Ô Ï Õ ê É Ë É Úð Ì Ë Ì ÚÊ Ë Ê Ú ² Ä ñ Õ ² ê Ñ Ô Ñ Õð É Ô É ÕÊ Ô Ê Õ ² Á ¼ ¼ á ì â̧ ¶ ¼ ¼º ã · · á ì ¼ â̧ ¶ ¼ ¼Î ã · · á ¹ ¼ â̧ Å ÆÍ ã í ·

î ï ë ÝÞ ß à ² ê Ê Ô Ê Ðð Ì Ô Ì ÐÏ Ô Ï Ð ê É Ë É Úð Ì Ë Ì ÚÊ Ë Ê Ú ² Ä ñ Õ ² ê Ñ Ô Ñ Õð É Ô É ÕÊ Ô Ê Õ ² Á ¼ ¼ á ì â̧ ¶ ¼ ¼º ã · á ¿ ¼ â̧ Å ÆÍ Ê ã · á ì ¼ â̧ ¶ ¼ ¼Î á è ¼ â̧ Å ÆÍ Ì ã ã · · í ·

î ï ë ÝÞ ß à ² ê Ê Ô Ê Ðð Ì Ô Ì ÐÏ Ô Ï Ð ê É Ë É Úð Ì Ë Ì ÚÊ Ë Ê Ú ² Ä ñ Õ ² ê Ñ Ô Ñ Ðð É Ô É ÐÊ Ô Ê Ð ² ÝÞ ß à ² Á ¼ ¼ á æ ¼ â̧ Å ÆÍ Ñ ã · á ì â̧ ÝÞ ß à ² ¶ ¼ ¼º á ç ¼ â̧ Å ÆÍ É ã · ã · · á ì ¼ â̧ ÝÞ ß à ² ¶ ¼ ¼Î á è ¼ â̧ Å ÆÍ Ì ã · ã · · í ·² å ·
î ï ë ê Ê Ô Ê Ðð Ì Ô Ì ÐÏ Ô Ï Ð ê É Ë É Úð Ì Ë Ì ÚÊ Ë Ê Ú ² Ä ñ Õ ² ÝÞ ß à ² ê Ñ Ô Ñ Ðð É Ô É ÐÊ Ô Ê Ð ² Á ¼ ¼ ¼ á ì â̧ ¶ ¼ ¼ ¼º ã · · · á ì ¼ â̧ ¶ ¼ ¼ ¼Î ã · í

Figure 2.11: Translation for

ê ë Á á ì â̧ ¶ ã í

, ì a free variable of

Á

5
4

òó ô õ ö÷ ô ø ù ùú û ü ý û þ ý ÿ � ý � �òó ô õ ö÷ ô � ù ù ú û ü ý û þ ý � � ý �òó ô � �	 � ùú �
 òó ô � �� ùú û � � �� ú õ � � � ô � �� ù � �� �ú õ � �� � ô � �� ù

Figure 2.12: Sets of free variables

�� � þú õ � � � � ö � � ÷ ô � ô � ù ù ø þú õ � �� � � �� � ö ÷ ô � ô ø ù ù

�� � þ þú �� � � ô � þ � � � �ú � �	 � � ù ø þ þú �� � � ô ø þ � ÿ � �ú � �	 � � ù�� � ü ú �� � � ô � þ þ � � þ �ú � �� � ù ø ü ú �� � � ô ø þ þ � � þ �ú � �� � � ù
Figure 2.13: Abbreviations in Figure 2.14

 ô ! " ô # $� � ù ø % ù

& �� � � ô � ô ! ù " õ ö÷ ô � ô ô # $� � ù ø ù ù % ù

ô � ù
& ' " �� � � ô ô ! � �(� � � �� � � � ô ô # $� �) ô � þ ù ù ø þ ù ù � û þ �ú � �� � � � � �ú � �	 � � � ÿ � �ú � �	 � � ù %ô � ù

& ' " �� � � ô ô ! � �(� � � �� � � � ô ô # $� �) ô � þ þ ù ù ø þ þ ù ù � û þ �ú � �� � ù %

& ' " ! � �(� � � �� � � � ô ô # $� �� � � ô �) ô � þ þ � � þ �ú � �� � ù ù ù �� � � ô ø þ þ � � þ �ú � �� � � ù ù %ô � ù
& ' " ! � �(� � � �� � � � ô ô # $� �) ô � ü ù ù ø ü ù %

* + ' " ! � �(� � � �� � � � ô ! ,(-./ 0 � � 1 ô �) � ô �) ô � ü ù � $ �ú õ ./ 0 � � 1, ô ø ü ù � ù � $ þ �ú õ ./ 0 � � 1- ô ø ü ù � ù ù %

2 3 4 5 ü ' " ! � �(� � � �� � � � ô ! ,(-./ 0 � � 1 ô � - ô �) ô � ü ù � $ �ú õ ./ 0 � � 1, ô ø ü ù � ù ù ù %

6 3 7 8 3 ' " ! � �(� � � �� � � � ô �) ô � ü ù � $ �ú ø ü � ù %

Figure 2.14: Translation for

! " � � $ �ú ø � %

, $ not a free variable of

�

5
5

9: ; < => ; ? @ @A B C D B E D F G D H I9: ; < => ; J @ @A B C D B E D K L D M9: ; N OP @ A B Q N OP RA < S TR T ; N OP @ N OP UA < S TU T ; N OP @

Figure 2.15: Sets of free variables

VW J EA < S X S Y =R X R Y > ; Z ; J @ @ ? EA < S XU X S YU Y = > ; Z ; ? @ @

[W J E EA \]̂ _ ; J È K L aA N Ob L c @ ? E EA \]̂ _ ; ? È F G aA N Ob G c @dW J C A \]̂ _ ; J E È e E aA N OP R c @ ? C A \]̂ _ ; ? E È H E aA N OP U c @
Figure 2.16: Abbreviations in Figure 2.17

f ; g h J̀ i aA ? c j @

k \]̂ _ ; Z ; g @ h < = > ; Z ; J̀ i aA ? c @ @ j @

; V @
k l h \]̂ _ ; ; g R X R Ym U X U YS X S Y ; M n ; J E @̀ i aA ? E c @ @̀ B E aA N OP c̀ K L aA N Ob L c̀ F G aA N Ob G c @ j; [@

k l h \]̂ _ ; ; g R X R Ym U X U YS X S Y ; M n ; J E E @̀ i aA ? E E c @ @̀ B E aA N OP c @ j

k l h ; g R X R Tm U X U TS X S T ; M n ; \]̂ _ ; J E È e E aA N OP R c @ @̀ i aA \]̂ _ ; ? E È H E aA N OP U c @ c @ @ j; d @
k l h g R X R Tm U X U TS X S T ; M n ; J C @̀ i aA ? C c @ j

Figure 2.17: Translation for

g h J̀ i aA ? c j

, i not a free variable of

J

5
6

op q r st ur v t w xy z { | xy } q ~ q r s s

Figure 2.18: Free variables and abbreviations for Figures 2.19 and 2.20

� q � � � � v �� � � � �t r � � s

� �� � � q ~ q � � s � w �� q ~ q � v �� � � � �t r � s s � s

� �� � � q � � � w �� q q � � z � y zx � � } � y }{ | x q � � � q � � z � � z� z q � v �� � � � � �t r � � s s � � � �t r v � s s � s

� �� � � q � � � w �� q � � z � y zx � � } � y }{ | x q � � � q � � � z � � � z� � z q � � �� � � � � �t r � s � � s s � � � �t r v � s s � s

� �� � � q � � � w �� q � � � y zx � � } � y }{ | x q � � � q �� � � q � � � z � � � z� � q � � �� � � � � �t r � s � � s s s � � � �t r v � s s � s

� �� � � q � � � w �� q � � � y zx � � } � y }{ | x q � � � q � �� � � � � �t r � � � s � � � �t r v � s s � s

� � �� � � � � �t r � � �

Figure 2.19: Translation for

� � � � v �� � � � �t r � �

� q � � � � � v � r � � � �t r � � s

� �� � � q ~ q � � s � w �� q ~ q � � v � r � � � �t r � s s � s

� �� � � q � � � w �� q � � z � y zx � � } � y }{ | x q � � � q � � z � � z� z � � } � � }� } q � � v � r �� � � � �t r �� � s s � � � �t r v � s s � s

� �� � � q � � � w �� q � � z � y zx � � } � y }{ | x q � � � q �� � � q � � z � � z� z � � } � � }� } q � � v � r �� � � � �t r �� � s s s � � � �t r v � s s � s

� �� � � q � � � w �� q � � z � y zx � � } � y }{ | x q � � � q � � r � � s � � � �t r v � s s � s

� � � r � �

Figure 2.20: Translation for

� � � � v � r � � � �t r � �

, � a free variable of

� v � r �

� q � � � � � v � r � � � �t r � � s

� �� � � q ~ q � � s � w �� q ~ q � � v � r � � � �t r � s s � s

� �� � � q � � � w �� q � � z � y zx � � } � y }{ | x q � � q � � v � r �� � s � � �t r v � s s � s

� �� � � q � � � w �� q � � z � y zx � � } � y }{ | x q � � q �� � � q � � v � r �� � s s � � �t r v � s s � s

� �� � � q � � � w �� q � � z � y zx � � } � y }{ | x q � � q � � r � � s � � �t r v � s s � s

� � � r � �

Figure 2.21: Translation for

� � � � v � r � � � �t r � �

, � not a free variable of

� v � r �

5
7

� � �� � ¡ ¢ � �� � £ ¡ ¤ �� � ¡�� � ¥ ¦§ ¨© � ¡ ¡ª �� � ¥ ¦§ � ¡ ¡ª « ¬ « ® ̄ ° ��� � ¥ ¦§ ¨© � £ ¡ ¡ª « ¬ « ® ± ² ³́ ³ µ¢ � ± ² ³́ ³ µ¶ ·̧ ª � ¹ º » ¼ ½ ¾ ¿ · À � Á ·̧ ¡Â ¸Ã

is the set of free variables of

£

not bound in

Ä

or not occuring free above the hole in

Á ·̧

or in

(the lost variables)¶ ® ·̧ ª � Å ¶ Æ ·̧Á ® ·̧ ª Á ·̧

except that the free variables of the hole in

Á ® ·̧

do not contain

Ã³ µª ¥̈ © � Ã ¡�� � Ç ÈÉ ² ¡ª ³ Ê �� � Ç ÈË ¡ª « Æ Ç ÈË Ìª ¥ Í ÎÌ Î � Ç ÈË ¡ Ç ÈË Ïª ¥ Í ÎÏ Î � Ç ÈË ¡

Figure 2.22: Free variables and abbreviations for Figures 2.23 and 2.24

À � Á · Ð Ñ Òª £ Ó̧ ¡ ¹Ô ÕÖ × Ø � Ù � Á ¡ ¹ · ¥ ¦§ ¨© � Ù � Ð Ñ Òª £ Ó ¡ ¡̧ ¡

Ô ¶ · ÕÖ × Ø � � Á Ì Ú Ì ÛÜ Ï Ú Ï ÛÍ Ú Í Û � � Ý � Ù � ¥ Í ÚÌ Ú Í ÛÌ Û ¦ § � ¡ ¡ ¡ Ð Ñ Òª Ù � ¥ Í ÚÏ Ú Í ÛÏ Û ¦ § ¨© � £ ¡ ¡ Ó ¡ ¡ Ð « ® Òª Ç ÈË Ó Ð̄ ° Òª Ç ÈÉ ° Ó Ð ± ² Òª Ç ÈÉ ² Ó ¡̧

Ô ¶ · Á Ì Ú Ì ÎÜ Ï Ú Ï ÎÍ Ú Í Î � � Ý � ÕÖ × Ø � Ù � ¥ Í ÚÌ Ú Í ÛÌ Û ¦ § � ¡ ¡ Ð Þ ® Òª Ç ÈË Ì Ó Ð̄ ° Òª Ç ÈÉ ° Ó ¡ ¡ Ð Ñ Òª ÕÖ × Ø � Ù � ¥ Í ÚÏ Ú Í ÛÏ Û ¦ § ¨© � £ ¡ ¡ Ð ³ ® Òª Ç ÈË Ï Ó Ð ± ² Òª Ç ÈÉ ² Ó ¡ Ó ¡̧

¦ ß à á ¬ ¶ · Á Ì Ú Ì ÎÜ Ï Ú Ï ÎÍ Ú Í Î � � Ï Ú Ï Î Ï â Ï ã Ï ä � ÕÖ × Ø � Ù � ¥ Í ÚÌ Ú Í ÛÌ Û ¦ § � ¡ ¡ Ð Þ ® Òª Ç ÈË Ì Ó Ð̄ ° Òª Ç ÈÉ ° Ó ¡ ¡̧

¾ ß å æ ß ¶ · ¥ Ì Ú Ì ÎÍ Ú Í Î � � Ï â Ï ã Ï ä � ÕÖ × Ø � Ù � ¥ Í ÚÌ Ú Í ÛÌ Û ¦ § � ¡ ¡ Ð Þ ® Òª Ç ÈË Ì Ó Ð̄ ° Òª Ç ÈÉ ° Ó ¡ ¡̧

Ô ¶ · � Ï â Ï ã Ï ä � ÕÖ × Ø � Ù � ¥ Í ÛÌ Û ¦ § � ¡ ¡ Ð Þ ® Òª Ç ÈË Ó Ð̄ ° Òª Ç ÈÉ ° Ó ¡̧

Ô ç ¶ · � Ï â Ï ã Ï ä � ÕÖ × Ø � Ù � ¥ ¦§ � ¡ ¡ Ð « ® Òª Ç ÈË Ó Ð̄ ° Òª Ç ÈÉ ° Ó ¡̧Ô Ä ¬

¦ á � Å ¶ ¬ · � Ï â Ï ã � ÕÖ × Ø � Ù � ¥ ¦§ � ¡ ¡ Ð « ® Òª Ç ÈË Ó Ð̄ ° Òª Ç ÈÉ ° Ó ¡̧Ô Ä Æ

¦ á Ä Ê

Figure 2.23: Translation for
Á · Ð Ñ Òª £ Ó̧

, Ñ not a free variable of

À � Á ® · ̧ ¡ ¹Ô ÕÖ × Ø � Ù � Á ¡ ¹ · ¥ ¦§ � Ù � ¡ ¡̧ ¡

Ô ¶ ® · ÕÖ × Ø � Ù � ¥ ¦§ � ¡ ¡ Ð « ® Òª Ç ÈË Ó Ð̄ ° Òª Ç ÈÉ ° Ó ¡̧

Ô � Å ¶ Æ · ÕÖ × Ø � Ù � ¥ ¦§ � ¡ ¡ Ð « ® Òª Ç ÈË Ó Ð̄ ° Òª Ç ÈÉ ° Ó ¡̧

Figure 2.24: Translation for

Á · ̧

5
8

terms are at their most efficient. Therefore, we can write both underlined subterms with the same contextè
as

è éê ëì
and

è éí îí ïð êë ñì
respectively. The final lines in both sequences then follow and we haveò óô õ ö÷øù úû ò óü õ

, one reduction for each copy of the redexýþ éíì îí ïð ê ñ
.

Case
ô ÿ ý éê îí ïð � ñì � ý éê ì ÿ ü � í �� �� óê õ

.

Figure 2.23 displays the general term for
ò óô õ

followed by a series of reductions. Figure 2.24 displays the
general term for

ò óü õ
.

The terms
ô �

and
ò óü õ

appear very similar. One difference is that
ò óü õ

has the weakenings� ù corre-
sponding to the variables lost in the	
�� term at top-level. We first pull the weakenings � and their copies
(for each copy of the	
�� redex induced by the translation) upwards through the term,merging them to
reach

ôþ.ôþ now closely resembles
ò óü õ

except for two differences: i)
ôþ contains extra weakenings such as� � �

and� �� for each copy of the	
�� redex and ii) it also contains contractions involving such sets of variables � and � . We pull all of these weakenings up, merging them with the extra contractions to reach a
ö÷ � �

normal form
ô �. Ignoring the placement of contractions,

ô � is now equivalent to
ò óü õ

.

Finally, we can conclude that this term
ô � is equivalent to

ò óü õ
: as

ò óô õ
has its contractions at their

most efficient, so does
ô � by Corollary 39.

Corollary 46 (PSN for 	
��). ���
PSN of � .

Proof.

Case� . Let
ô

be any pure term which is strongly normalising for� . As
ô

is strongly normalising for

� ,
ò óô õ ð ó���� ó� óô õõ

is strongly normalising for
ö÷ �� !" by Conjecture 40. By Proposition 45,

any infinite ���
sequence starting from

ô
induces an infinite reduction sequence starting from

ò óô õ
.

By contrapositive,
ô

is strongly normalising for ���
.

Case# . By Proposition 6.2, infinite � -reductions induce infinite���
-reductions.

At the time of writing, this proof strategy (simulating���
in another explicit substitution calculus) could

not work with any other explicit substitution calculus except $%&' as both PSN and FCS are required.

2.4.5 Sketch of proof of PSN by translation to()
We have proved PSN by simulating���

-reduction with$*%& ' reduction and using the fact that$*%& ' has this
property. The proof of PSN for$*%&' follows Lengrand’s approach of simulating reduction in	 + [Len05]. If we
combine these simulations, we have a simulation of���

-reduction in	 + as in Figure 2.25.

	
��
,-

ô
,-

��� ü
,-

$*%& '
.

ò óô õ/
.

ø�� !" ò óü õ/
.

	 + 0 ø� 1 2
Figure 2.25: Simulation of

ö÷���
-reduction in	 +

This immediately suggests that a proof of PSN for	
�� may be given by using a translation to	 + directly.
We hope to explore this approach in future work. The composition of

ò
and3 seems overkill as the translation

duplicates substitutions and adds weakenings corresponding to the index set4 .

59

Instead, we initially propose16 the relation5 defined in Figure 2.26.5 relates6 789 terms with explicit sub-
stitutions to:; terms where the substitutions have been finished. The “memory operator” keeps track of garbage
substitutions which are otherwise discarded in the relation. This is necessary in6 789 which does not have the
linearity property (which:<= > enjoys) that all binders bind a free occurrence of a variable.

? 5 ? @ 5 A ? B CD E@ F:? G@ 5 :? GA
@ 5 A ? HB CD E@ F

:? G@ 5 :? GIA J ?K
@ 5 A L 5 M@ L 5 A M

@ 5 A N B 6 ;@ 5 IA JN K
@ 5 A L 5 M ? B CD E@ F@ O? PQ L R 5 @ S? T M U

@ 5 A L 5 M ? HB CD E@ F@ O? PQ L R 5 I@ J MK

Figure 2.26: Relating6 789 terms with:; terms

16Stéphane Lengrand has since suggested a relation with less rules, replacing the conditionV W XY Z[\ in two of the rules withV W XY Z] \
and removing the two rules with the conditionV Ŵ XY Z[\.

60

Chapter 3

Extensions and other ideas

We finish with some ideas which presented themselves during our exploration of_ `ab andc_ BIG.

3.1 Proposed extension tod efg
The composition rule ofhi j k,

l mn op q r ms op t r u v l mn op q ms op t rr if n w xy z{|}u zl ~~ � s �w xy zl ~ �
does not break PSN. It seems natural to assume that an extension of _ `ab with this rule would also retain PSN.
However, it is not clear how to specify the conditionn w xy z{ �� zl ~~

in the bigraphical encoding. We therefore
propose that_ `ab may be extended with the more general rule (which breaks PSN for hi � j) from hi j:

l mn op q r ms op t r u l mn op q ms op t rr if s �w xy zl ~ �
This rule can be naturally encoded in the bigraphical setting. The conditions �w xy zl ~

is captured by the inner
interface of the parametric reaction rule depicted below.

Figure 3.1: An explicit composition rule forc_ BIG.

We hypothesize that the extension is confluent and satisfies PSN but do not attempt a proof here. It does not
seem to break PSN as it does not allow any new substitutions totake place – any frees in � can be replaced byq
in the original_ `ab . Another reason we believe the extension to be safe is that the composition seems to preserveg�� �� ���

.
However, it would seem that this extension is not very usefulin the presence of wide substitution – ifs �wxy zl ~

then it would seem that a reduction sequence starting from
l mn op q r ms op t r could be mimicked byl mn op q ms op t rr.

61

3.2 Initial translation to � �� �
Our initial encoding of� ��� into ��� � did not create mobile and idle copies of substitutions and was considerably
simpler:

Definition (Encoding of � ��� terms in ����). The encoding� of � ��� terms in���� is defined on pure terms as

� �� �� �� �� � � �� �
� ��� ¡ �� �� � � ¢£¤ ¥¦ § ��� � �¡ �� if � ¨ ©ª �¡ �
� ��� ¡ �� �� � � ¢£¤ ¥¦ § ��� � � �� �¡ �� if � «̈ ©ª �¡ �
� �¡ ¬ �� �� � ®¯ ° ±²³ ®´ ³° �� �¡ �� ´ ³² �� �¬ ��µµ¶ ·¸ ¹º »¼ ½ ¾¿À »¼ Á Â Ã Ä ÅÆÇ È¶ ·É ÇÄ ·¸ ¿¿ ¹º »¼ ¶ ·É ÇÆ ·½ ¿¿¾Ê

if
º Ë ÌÍ ·¸ ¿¶ ·¸ ¹º »¼ ½ ¾¿À »¼ Á Â Ã Ä ÅÆÇ ÈÁ Î ·¶ ·É ÇÄ ·¸ ¿¿¿ ¹º »¼ ¶ ·É ÇÆ ·½ ¿¿¾Ê

if
º ÏË ÌÍ ·¸ ¿

whereÐ ¼ Ñ Ò ·ÌÍ ·¸ ¿ Ó ÌÍ ·½ ¿¿ Ô Õ »¼ ÌÍ ·¸ ¿ Ö ÌÍ ·½ ¿ Ô × ¼ ·ÌÍ ·¸ ¿ Ò Øº Ù¿ Ö ÌÍ ·½ ¿ Ú
When a translation is not tagged,Û is assumed to beÜ.

The encoding of explicit substitutions falls directly out of the other encodings and theÝÞ ß rule. This en-
coding does not duplicate substitutions and is easier to reason about. As we now explain, it was insufficient to
simulate àáâ reduction in����.

First, this alternate encoding also required altering���� to achieve simulation. Take� as the translation
between� ��� and��� � and consider the square:

� ���
ã

� ä� �� å æ
ã á å ä� �� å æ

ã
���� � ä� �� å æ çèéê ¯ ëì ±ëíë ®�� � �å î �� ä� �� åï æµ

There is no series of��� � reductions to fill in the dotted arrow. We require a substitution to be performed but aÝÞ ð ñò reduction would automatically garbage collect the substitution. Our solution was to break up theÝÞ ð ñò
reduction so that the substitution was not discarded after reduction. We defined the rule

� ä� �� ¡ æ ÝÞ ¥ð ñòó § ¯ ° ±²³ ®®� � ´ ³° �¡ �µ ä� �� ´ ³² �¡ �æµ whereô � ©ª �¡ �
A ÝÞ ð ñòõ ÝÞ ö ÷ñøî ÝÞ ù¦ ÷òú ÷ sequence then performs aÝÞ ð ñò reduction.

Next, for similar reasons to our current encoding, a translation from � ��� to ��� � required a normal form
(again �� ��� �� ä� �� å æ á �� �å � �� ä� �� å æ demonstrates this). The first ‘normal form’ we tried was similar
to û ü but it also pulled weakenings out as far as possible (although this may be implicit in the translation).
However, the union of� ýþþ ÿ andýþþ ÿ is not confluent. Consider:

�� �� � å � ä� �� þ æ���� ï �Ý �� �� � å �� ä� �� þ æ ÝÞ ö ��� ï � � ��å � ä� �� þ æ
This lead us to use the currentû ü form.

Finally, the problem with this encoding was demonstrated inSection 2.4.1. Take the reduction� äå �� � æ ä� ��þ æ â � ä� �� þ æ. Without using a normal form in the translation, the encoding �� ë �� � äå �� � æ� ä� �� þ æ can
reduce to�� � � � ä� �� þ æ but when using the normal form, we find that� ë �� � äå �� � ä� �� þ ææ cannot reduce
to �� � � � ä� �� þ æ. So if we use the normal form, we can simulateá but not â whilst if we simply use
the encoding, the reverse is true. This problem is depicted in Figure 3.2, whereÝÞ ö ø is the union of the rules
for pulling weakenings upwards and merging them with contractions. This problem lead us to the idea of using
mobile and idle copies of substitutions in the encoding.

This initial encoding was simpler yet insufficient. However, it may be possible to formulate an alternative
translation using this encoding where substitutions are only duplicated prior to pushing inside garbage (to simulate
the â rule properly). This would involve splitting the�¯ ��þ � reduction as below.

¡ ä� �� � æ äå �� 	 æ ÝÞ
 ��� ì ¡ ä� �� � äå �� 	 ææ
whereå ¨ ©ª �� � � ¨ ©ª �¡ �

¡ ä� �� � æ äå �� 	 æ ÝÞ
 ��� í ¯ ° ±²³ ®� ë � �¡ ä� �� � äå �� 	 î ææ� äå � �� 	 ï æµ
whereå ¨ ©ª �� � � «̈ ©ª �¡ �

62

����
�

�
�

�
� �����

� � � � � �
� �� ! �

� �" �#
Figure 3.2: Problems with initial translation and normal form

We would also require the$% &'() rule. PSN needs to be proved for this new calculus but it seemslikely.
�*���

has PSN and it duplicates substitutions in much the same way,by creating garbage copies of existing substitutions
which cannot propagate through the term. This translation may yield a simpler proof than the current one as less
duplication of substitutions would occur.

3.3 Alternative encodings of the+-calculus

This was work explored with Martin Elsman who had an idea for an alternative encoding of the
�
-calculus using

explicit environments. The aims were to have an encoding with a notion similar to pointer/reference passing where
all free occurrences of a variable could be replaced in one reaction step. To this end, we tried encoding variables
as links. An encoding of explicit environments was never realised however.

Among the reasons why the encoding we did try (without explicit environments) did not work was that (i)
reduction could destroy occurrences of terms and (ii) with this encoding, it was not possible to give an inductive
encoding of

�
-terms via composition – in general, this should probably bea bad indication when encoding a

calculus where the terms are defined inductively.
Another attempt (by the author) at an alternative encoding was by using a flattened structurei.e. all controls

were atomic and nesting was encoding via linking. Variableswere represented as controls again. This had many
of the same ideas as,�BIG including explicit substitution and garbage collection. As controls were atomic, this
implied that terms would be built from ground up via prime products and fusions of wiring – again this might
have been a warning sign. The problem here was to do with the binding of names – on closer inspection, we are
almost redefining,�BIG without the benefits of being able to employ binding ports. While sorting the links may
have solved this problem, it is unclear whether anything would have been gained by this approach. In fact, we
were completely ignoring the place graph structure in the bigraphs which naturally lends itself to calculi with an
inductive definition for terms.

3.4 A new property of controls

During early explorations of,�BIG, we considered attempting to add a new property to controls in bigraphical
signatures. We named this propertyexclusivewith the idea that in a bigraph with exclusive controls, reaction may
only occur under these controls. We were motivated by the idea of restricting reaction in,�BIG so that all reduction
sequences were of the form�� - �� - �� - This would give an immediate correspondence
between,�BIG and the

�
-calculus.

The questions of whether this idea adds anything new to bigraph theory, whether it could be encoded using
existing means (e.g. as a reaction rule covering controls and sites with passive controls) or whether it would
require extensions to the theory, or whether there are any suitable applications have not been addressed.

However, besides these questions, there is also the question of whether this restriction would be beneficial for,�BIG. This type of restriction was applied to
�/

by Goubault-Larrecq [GL96] to prove that simply-typed terms
were strongly normalising under this reduction subrelation. However, Kesner and Lengrand point out that this
restriction does not benefit from the possibilities that explicit substitution calculi offer – to delay substitutions or
to partially apply them [KL05]. Another argument against this restriction is that one could also imagine imple-
mentations where terms were distributed over different processors and reduction was performed concurrently.

63

Chapter 4

Summary

4.1 Conclusions and related work

The first aim of this report was to prove that01BIG is confluent. Milner proved weak confluence in [Mil05b] and
left open the challenge to prove strong confluence. Althoughour proof is not bigraphical and does not advance the
understanding of confluence in bigraphical systems, it doesshow that01BIG has this desirable property on closed
terms (terms without metavariables).

The question of whether01BIG or
1234

has open confluence – confluence on terms with metavariables –re-
mains unanswered and would be more interesting to the bigraphical community than closed confluence, which
only represents confluence on ground terms. In related work in explicit substitutions, David and Guillaume
[DG01] state that composition of substitutions is necessary for open confluence. They point out that5 6 [Kes96]
and578 [Rit99] have weak composition of substitutions which is notenough to get open confluence.

It is possible that much of our proof of closed confluence could be rewritten in01BIG using Milner’s proofs for
deciding weak confluence. For example, in Propositions 1, the proofs of diamond property and local confluence
could be proved using Milner’s theorems in [Mil05b] whereasthe proofs of strong normalisation might be done
by labelling the bigraph terms. The proofs of propositions involving free names (e.g. Proposition 5) should
follow from the translation from

1234
to 01BIG. The proof of confluence is based on the three main properties;

(1) confluence of the original calculus, (2) that the substitution calculus is a conservative extension, and (3) the
generalised interpretation method [KR97]. Bloo and Rose’sapproach may be useful for proving closed confluence
of bigraphical encodings with explicit substitution of other calculi besides the5-calculus.

Our proof of confluence was achieved by identifying the strong connection between
1234

and59:;. Proving
PSN – our other main aim – using their inductive proofs has proven trickier. The proof for

1234< =
was straight-

forward but composition of substitutions makes the inductive proof of PSN for
1234

much more involved. The
intersection of>?:@AB<C

andD:E identify the subset of strongly normalising terms of
1234

but do not yield a
simple characterisation. Intersection types [CDC78, CDC80] may provide such a characterisation. Lengrand et
al. [LLDF04] have successfully used intersection types to characterise the strongly normalising terms of59:;.

We identified various subsets of
19 which are relevant to the different reduction relations we have studied.

Figure 4.1 combines many of our examples and proofs by depicting how these subsets are related, where the solid
arrows denote subset inclusion. The proofs of the implications are denoted in the figure: all are either proof by
definition, contrapositive, or example. Each subset excludes some

19 terms which are not strongly normalising
for B<C

or G -reduction. From the diagram, we can see that the addition oflevels of inter-substitution reduction
(composition of substitutions) decreases the set of strongly normalising terms. We also restate our hypothesis
that if we disallow any inter-substitution reduction (i.e.

1234 <H) then the resulting calculus is extremely similar to59:;. This may be investigated in future work but we think that theproofs should follow from Section 2.2.2.
We explored the relationship between

1234
, 01BIG, and5I9J and introduced a modified (and less efficient)

calculus5>I9J based on the5I9J calculus of Kesner and Lengrand. We then gave a proof of PSN for
1234

by
translating

1234
terms into5>I9J and simulating B<C

reduction using the translation. Our novel idea was the
duplication of substitutions (mobile and idle copies). Theproof of simulation is somewhat involved but we feel
that it is simpler than the inductive method, which relied on‘regressing’ terms. As we have remarked, this form
of proof could not have been achieved with any other calculusas5I9J is the first published calculus with PSN and
FCS. It may also be possible to prove PSN for

1234
directly by relating terms of

1234
terms with terms of5K and

64

LMNOP QRST
regarding reductions

inside/between substitutions UVW X Y
regarding reductions

outside garbage

LMNOPZ[def.

LMNOPdef. \]^ _ ` OPQRST

contrapositive contrapositive

abcOPdef.

NdVOPedef. OPfghij[
Cor. 16

contrapositive

contrapositive

NdVOPekdef. \]lmn̂ _conjecture

def.

NdVOPeZk

Hypothesis:opqghi jr s fR t u
, Corollary:

lmnop jr s lmnop vwxy

def.

OPfghi
Example 23.3

z

Figure 4.1: Relationship between properties of
\]

terms

then applying Lengrand’s techniques [Len05].

In this report, we study how the reduction relation of
\lmn

matches that of the{-calculus. We are concerned
here about properties such as confluence and termination in the presence of explicit substitution. From a process
calculus perspective, Bundgaard and Hildebrandt [BH05] have encoded theHigher-Order Mobile Embedded Re-
sources(Homer) calculus as a Brs with explicit substitution and garbage collection. They base their presentation
on |\BIG and in [ibid.], they prove an operational correspondence between Homer and their encoding.

There seems to be some overlap between the theories of interaction nets, the}-calculus, and bigraphs. Some
overlaps are by design – for example, interaction nets inspired aspects of bigraph theory [JM04] – but others may
be interesting to explore and we briefly mention them now.

In recent work [FMS06], Fernández, Mackie, and Sinot introduced an encoding of the}-calculus in bigraphical
nets. Bigraphical nets add the notion of locality (via a nesting structurei.e. place graph) to interaction nets. The
encoding takes advantage of wide reaction.

Kesner and Lengrand use{~]b to demonstrate the connection between higher-order substitution and proofs
in linear logic proofs by translating{~]b into proof-nets [Gir87]. The anonymous referees of our HOR 2006
submission based on Section 2.4 suggested that we should explore the relationship between

\lmn
and proof-nets.

The notion of wide/external substitution appears in the cyclic {-calculus of Ariola and Klop [AK97]. The}S -
calculus of Bertolissi et al. [Ber05, BBCK05] extends the}-calculus to handle graph-like structures with cycles
and sharing and is a natural extension of the cyclic{-calculus of Ariola and Klop [AK97]. The}S -calculus allows
non-local orexternalsubstitution as do bigraphs and is confluent under linearityconditions [Ber05]. Again, it
remains an open problem to find sufficicent conditions for confluence in general bigraphical systems.

65

In conclusion, we claim that��BIG is a very natural encoding of the�-calculus, with step-by-step simulation
of � -reduction and closed confluence. Besides����, it is the only explicit substitution calculus to date whichalso
preserves strong normalisation of� -reduction and enjoys full composition of substitutions.

4.2 Acknowledgements

The work arose from work with Martin Elsman and Thomas Hildebrandt during a stay, kindly facilitated by Lars
Birkedal and Annette Hjort Knudsen, with the Bigraphical Programming Languages group at the IT University of
Copenhagen.

Many thanks are due to Martin Elsman and Thomas Hildebrandt from whom I was offered much help and
many remarks on this document. The visit was also made possible by the support of my supervisor, Mícheál Mac
an Airchinnigh. This research and that visit was partially supported by funding from the Irish Research Council
for Science, Engineering and Technology: funded by the National Development Plan.

Many thanks are due to Stéphane Lengrand for taking time to step through some of my technical details with
me. I also wish to thank Kristoffer Rose and François-Régis Sinot for their helpful correspondence and references,
Malcolm Dowse for many helpful conversations about this work, and the anonymous referees of my submission
to the 3rd International Workshop on Higher-Order Rewriting (HOR 2006) for their useful comments and for
pointing out a technical error.

66

Bibliography

[ACCL91] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions.
Journal of Functional Programming, 1(4):375–416, 1991.

[AK97] Zena M. Ariola and Jan Willem Klop. Lambda calculus with explicit recursion. Information and
Computation, 139(2):154–233, 1997.

[Bar84] H. P. Barendregt.The Lambda Calculus: Its Syntax and Semantics, volume 103 ofStudies in Logic
and the Foundations of Mathematics. North-Holland, revised edition, 1984.

[BBCK05] Clara Bertolissi, Paolo Baldan, Horatiu Cirstea,and Claude Kirchner. A rewriting calculus for cyclic
higher-order term graphs.Electronic Notes in Theoretical Computer Science, 127(5):21–41, 2005.

[Ber05] Clara Bertolissi. The graph rewriting calculus : confluence and expressiveness. In Mario Coppo, Elena
Lodi, and G. Michele Pinna, editors,9th Italian conference on Italian Conference on Theoretical
Computer Science (ICTCS 2005), Siena, Italy, volume 3701 ofLecture Notes in Computer Science,
pages 113–127. Springer Verlag, Oct 2005.

[BG99] Roel Bloo and Herman Geuvers. Explicit substitution: on the edge of strong normalization.Theoret-
ical Computer Science, 211(1–2):375–395, 1999.

[BH05] Mikkel Bundgaard and Thomas Hildebrandt. Bigraphical semantics of higher-order mobile embedded
resources with local names. In Reiko Heckel, Barbara König,and Arend Rensink, editors,Proceed-
ings of GT-VC ’05 (Graph Transformation for Verification andConcurrency), number 05–34 in CTIT
Technical Reports. Centre for Telematics and Information Technology, University of Twente, 2005.

[BKdV00] Inge Bethke, Jan Willem Klop, and Roel C. de Vrijer.Descendants and origins in term rewriting.
Information and Computation, 159(1-2):59–124, 2000.

[Blo97] Roel Bloo.Preservation of termination for explicit substitution. PhD thesis, Eindhoven University of
Technology, 1997.

[BR95] Roel Bloo and Kristoffer Høgsbro Rose. Preservationof strong normalisation in named lambda calculi
with explicit substitution and garbage collection. InCSN-95: Computer Science in the Netherlands,
November 1995.

[CDC78] Mario Coppo and Mariangiola Dezani-Ciancaglini. Anew type assignment for�-terms.Archiv f ur
mathematische Logik und Grundlagenforschung, 19:139–156, 1978.

[CDC80] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality theory for
the�-calculus.Notre Dame Journal of Formal Logic, 21(4):685–693, October 1980.

[DG01] René David and Bruno Guillaume. A lambda-calculus with explicit weakening and explicit substitu-
tion. Mathematical Structures in Computer Science, 11(1):169–206, 2001.

[FKP96] Maria C. F. Ferreira, Delia Kesner, and Laurence Puel. Lambda-calculi with explicit substitutions
and composition which preserve beta-strong normalization. In Michael Hanus and Mario Rodríguez-
Artalejo, editors,ALP, volume 1139 ofLecture Notes in Computer Science, pages 284–298. Springer,
1996.

67

[FM99] Maribel Fernández and Ian Mackie. Closed reductionsin the lambda-calculus. In Jörg Flum and Mario
Rodríguez-Artalejo, editors,Computer Science Logic, volume 1683 ofLecture Notes in Computer
Science, pages 220–234. Springer, 1999.

[FMS06] Maribel Fernández, Ian Mackie, and François-RégisSinot. Interaction nets vs. the�-calculus: Intro-
ducing bigraphical nets.Electronic Notes in Theoretical Computer Science, 154(3):19–32, 2006.

[Gir87] Jean-Yves Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.

[GL96] Jean Goubault-Larrecq. A proof of weak termination of typed lambda-sigma-calculi. In Eduardo
Giménez and Christine Paulin-Mohring, editors,TYPES, volume 1512 ofLecture Notes in Computer
Science, pages 134–153. Springer, 1996.

[Har89] Thérèse Hardin. Confluence results for the pure strong categorical logic CCL:�-calculi as subsystems
of CCL. Theoretical Computer Science, 65(3):291–342, 1989.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.
Journal of the ACM, 27(4):797–821, 1980.

[JM04] Ole Høgh Jensen and Robin Milner. Bigraphs and mobileprocesses (revised). Technical Report
UCAM-CL-TR-580, Computer Laboratory, University of Cambridge, February 2004.

[Kes96] Delia Kesner. Confluence properties of extensionaland non-extensional�-calculi with explicit sub-
stitutions (extended abstract). In Harald Ganzinger, editor, RTA, volume 1103 ofLecture Notes in
Computer Science, pages 184–199. Springer, 1996.

[KL] Delia Kesner and Stéphane Lengrand. Explicit operators for lambda-calculus. Available at
“http://www.pps.jussieu.fr/�kesner/papers/”.

[KL05] Delia Kesner and Stéphane Lengrand. Extending the explicit substitution paradigm. In Jürgen Giesl,
editor,RTA, volume 3467 ofLecture Notes in Computer Science, pages 407–422. Springer, 2005.

[Klo95] Jan Willem Klop. Term graph rewriting. In Gilles Dowek, Jan Heering, Karl Meinke, and Bernhard
Möller, editors,Higher-Order Algebra, Logic, and Term Rewriting, volume 1074 ofLecture Notes in
Computer Science, pages 1–16. Springer, 1995.

[KR97] Fairouz Kamareddine and Alejandro Ríos. Extending a�-calculus with explicit substitution which
preserves strong normalisation into a confluent calculus onopen terms.Journal of Functional Pro-
gramming, 7(4), July 1997.

[Laf90] Yves Lafont. Interaction nets. InPOPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 95–108, New York, NY, USA, 1990.
ACM Press.

[Lei01] James J. Leifer.Operational congruences for reactive systems. PhD thesis, Computer Laboratory,
University of Cambridge, 2001. Available in revised form asTechnical Report 521, Computer Labo-
ratory, University of Cambridge, 2001.

[Len05] Stéphane Lengrand. Induction principles as the foundation of the theory of normalisation: Con-
cepts and techniques. Technical report, PPS laboratory, Université Paris 7, March 2005. available at
http://hal.ccsd.cnrs.fr/ccsd-00004358.

[LLD �04] Stéphane Lengrand, Pierre Lescanne, Dan Dougherty, Mariangiola Dezani-Ciancaglini, and Steffen
van Bakel. Intersection types for explicit substitutions.Information and Computation, 189(1):17–42,
2004.

[LM04] James J. Leifer and Robin Milner. Transition systems, link graphs and petri nets. Technical Report
UCAM-CL-TR-598, Computer Laboratory, University of Cambridge, August 2004.

[Mel95] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate. InProceed-
ings of the Second International Conference on Typed LambdaCalculi and Applications, Edinburgh,
number 902 in Lecture Notes in Computer Science, pages 328–334, 1995.

68

[Mil90] Robin Milner. Functions as processes. Technical Report RR-1154, INRIA Sophia-Antipolis, February
1990.

[Mil01] Robin Milner. Bigraphical reactive systems: basictheory. Technical report, Computer Laboratory,
University of Cambridge, 2001.

[Mil04] Robin Milner. Local bigraphs, confluence and�-calculus (draft), 2004.

[Mil05a] Robin Milner. Bigraphs: A tutorial, 2005.

[Mil05b] Robin Milner. Pure bigraphs. Technical Report UCAM-CL-TR-614, Computer Laboratory, Univer-
sity of Cambridge, 2005.

[Muñ96] César Muñoz. Confluence and preservation of strong normalisation in an explicit substitutions calcu-
lus (extended abstract). InProc. Eleventh Annual IEEE Symposium on Logic in Computer Science,
pages 440–447, New Brunswick, New Jersey, July 1996. IEEE Computer Society Press.

[New42] M.H.A. Newman. On theories with a combinatorial definition of ‘equivalence’.Annals of Mathemat-
ics, 43(2):223–243, 1942.

[O’C06] Shane O’Conchúir. Proving PSN after ruining a perfectly good calculus. Technical Report TCD-CS-
2006-49, Trinity College Dublin, September 2006.

[PV98] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and symmetry in mobile
processes. InProceedings of LICS ’98. IEEE, Computer Society Press, June 1998.

[Rit99] Eike Ritter. Characterising explicit substitutions which preserve termination. In Jean-Yves Girard,
editor,TLCA, volume 1581 ofLecture Notes in Computer Science, pages 325–339. Springer, 1999.

[Ros92] Kristoffer Høgsbro Rose. Explicit cyclic substitutions. In M. Rusinowitch and J.-L. Rémy, editors,
CTRS ’92–3rd International Workshop on Conditional Term Rewriting Systems, number 656 in Lec-
ture Notes in Computer Science, pages 36–50, Pont-a-Mousson, France, 1992. Springer-Verlag.

[Ros96a] Kristoffer Høgsbro Rose. Explicit substitution –tutorial & survey, 1996.

[Ros96b] Kristoffer Høgsbro Rose.Operational Reduction Models for Functional Programming Languages.
PhD thesis, DIKU, University of Copenhagen, Denmark, Universitetsparken 1, DK-2100 København
Ø, February 1996. Available as DIKU report 96/1.

[Ter03] Terese.Term Rewriting Systems, volume 55 ofCambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

69

Appendix A

Appendices

A.1 Lemmas for inductive proof of PSN for ����
Lemma 47 (�� SN).

Proof. � reductions preserve the number of variable occurrences in aterm whereas � reductions decrease
this number. The proof follows from the finiteness of terms and � -SN.

Lemmas 48 (preservation, reflection of�����).

1. If ����� �� � and� �� � is inside substitution then����� �� �.
2. If ����� �� � and� � � is outside substitution then����� �� �.
3. If ����� �� � and� � � then����� �� �.
4. If ����� �� � and� � � is inside substitution then����� �� �.

Proof.

1. Let�� �� � �� be the reduction inside some substitution� � ¡¢ �� £. We must show that

(a) � �� � �¤ ¥ ¦ ¦ ¦ § £ is strongly normalising. As����� �� �, �� � �¤ ¥ ¦ ¦ ¦ § £ is strongly normalising. As�� � �¤ ¥ ¦ ¦ ¦ § £ �� � �� � �¤ ¥ ¦ ¦ ¦ § £, the case is proved.

(b) for any body of substitution� ¨ below � � ¡¢ �� £,� ¨ � ¨¤ ¥ ¦ ¦ ¦ � ©¥ £ � � ¡¢ � �� £ � �¤ ¥ ¦ ¦ ¦ § £ is strongly normalising.
Again, as ����� �� �, �¨ � ¨¤ ¥ ¦ ¦ ¦ � ©¥ £ � � ¡¢ �� £ � �¤ ¥ ¦ ¦ ¦ § £ is strongly normalising and� ¨ � ¨¤ ¥ ¦ ¦ ¦ � ©¥ £ � � ¡¢ �� £ � �¤ ¥ ¦ ¦ ¦ § £ �� � ¨ � ¨¤ ¥ ¦ ¦ ¦ � ©¥£ � � ¡¢ � �� £ � �¤ ¥ ¦ ¦ ¦ § £.

2. Let �ª ¡¢ « £ be the discarded substitution. For any body of substitution¬ in � , ¬ is either outside of,
above, or below�ª ¡¢ «£ in � . In the first two cases,¬ � ¥ ¦ ¦ ¦ § £ is strongly normalising in� by����� �� �. In the third case, let�ª ¡¢ «£ lie below � ¨ ¡¢ � ¨£. By ����� �� �, ¬ � ¥ ¦ ¦ ¦ ¨©¥£ �ª ¡¢«£� ¨ ¦ ¦ ¦ § £ is strongly normalising. Hence,¬ � ¥ ¦ ¦ ¦ § £ is strongly normalising.

3. Let ®ª¯ �ª ¡¢ ° £ be the � redex.

If ª lies inside a body of substitution,����� �� � by ����� �� �.
Otherwise, if° does not contain any substitutions then����� �� � again by����� �� �. Say° contains
substitutions�±¥ ¡¢ « ¥£ ¦ ¦ ¦ �±² ¡¢ «² £. Let � ¥ ¡¢ � ¥£ ³ ¦ ¦ ¦ ³ � ¨©¥ ¡¢ � ¨©¥ £ be the substitutions aboveª in . We must prove«¥ �±´ ¦ ¦ ¦ ±² £ � ¥ ¦ ¦ ¦ ¨©¥ £ �ª ¡¢ ° £ � ¨ ¦ ¦ ¦ § £ is strongly normalising. Variable
capture does not occur and soµ ¥ ³ ¦ ¦ ¦ ³ ¨©¥ ³ ª ¶ are not free names of«¥ �±´ ¦ ¦ ¦ ±² £. It remains to show
that:· « ¥ �±´ ¦ ¦ ¦ ±² £ � ¨ ¦ ¦ ¦ § £, and· � ¥ � ´ ¦ ¦ ¦ ¨©¥ £ �ª ¡¢ ° £ � ¨ ¦ ¦ ¦ § £

70

(where¸¹ º » » » ¹¼ ½ are the substitutions above¸¾ ¿À Á ½ in Â andÃ) are strongly normalising. These follow
from ÄÅÆÇÈ ÉÂ Ê.

4. Assume thatÄÅÆÇÈ ÉÂ Ê is false. Then there exists a body of substitutionË in Â such thatË ¸¹º » » » ¹¼ ½ is
not strongly normalising. There are two cases.

(i) Ë Ì Ë Í andÎ Ï Ë Í ¸¹ º » » » ¹¼ ½ is strongly normalising or

(ii) Ð Ñ Ì Ð ÍÑ andÎ Ï Ë ¸¹º » » » ¹ ÑÒº ½ ¸¹Ñ ¿À Ð ÍÑ ½ ¸¹ ÑÓ º » » » ¹¼ ½ is strongly normalising

In either case, the graph below shows that any infinite reduction sequence starting fromË ¸¹ º » » » ¹¼ ½ can be
matched by a reduction sequence fromÎ .

Ë ¸¹º » » » ¹¼ ½ ÌÔÕ
Ì

ÌÔÕ
Ì

ÌÔ
Ì

Ö Ö Ö
Î ÌÔÕ ÌÔÕ ÌÔÕ Ö Ö Ö

Each square can be filled as follows. If the top reduction isÌ , then either the square is filled byÌ ×,
or else the top and left reductions are the same in which case the bottom line has joined the top.

If the top reduction is Ô then there are three subcases identified by Milner which are filled in as in Lemma
49.2.

If the top reduction is Õ then there are three subcases.Ø The redexes are independent. we have one-step confluence [Mil04].Ø The Ì redex lies beneath theÕ redex. It is either discarded and the top line joins the bottom, or
else one vertical Ì reduction completes the square.Ø The Õ redex lies beneath theÌ redex. One vertical Ì reduction completes the square.

Hence,ÄÅÆÇÈ ÉÃ Ê is false which is a contradiction. Thus,ÄÅÆÇÈ ÉÂ Ê.
Definition (Ô reduction creates new Ì redexes). A reductionÂ Ô Â Í is said tocreate new Ì
redexeswhen Â Ï Ù ÚÉÃ ÎÊÛ ¸¾ ¿À Ë ½ Ô Ù ÚÉÃ ÍÎ ÊÛ ¸¾ ¿À Ë ½ Ï Â Í
whereÜÕ ÉÃ Ê Ï ¾, ÜÕ ÉË Ê Ï ÉÝ¹ »Ë Í Ê, and the reduction replaces a free¾ in Ã which perseveres asÜÕ ÉÃ Ê. The
same is said of any such reduction which occurs under some context.

These Ô reductions do not preserveÞßàÇÈÌÕ in general (see Example 52). An alternative description
would be: for a reductionÂ Ô Â Í which creates a newÌ redex, there is a pathÂ Í Õ Â ÍÍ such that there
is a Ì redex inÂ ÍÍ which is not a residual of any Ì redex inÂ . The general form of these reductions
(omitting outer contexts) is:áÉ¾ ¸â º » » » â¼ ½Ê ÉÂ Êã ¸¾ ¿À ÉÝ¹ »Ã Ê ¸ä º » » » äå ½½

Ô æáÉÝ¹ »Ã Ê ¸ä º » » » äå ½ ¸â º » » » â¼ ½ã áÂ ãç ¸¾ ¿À ÉÝ¹ »Ã Ê ¸ä º » » » äå ½½ è
where¾ éÀ â Ñ è ê ë ì ë í è äî ïð ñò ÉÝ¹ »Ã Ê è ê ë ó ë ô . The last term can then reduce:Õ áÉÝ¹ »Ã Í Ê ÉÂ ÍÊã ¸¾ ¿À ÉÝ¹ »Ã Ê ¸ä º » » » äå ½½ õ
(whereÃ Õ Ã Í andÂ Õ Â Í) and contains a newÌ redex.

The normal-forms in the definition account for the cases whenthe new ‘ Ì redex to be’ is blocked by
garbage. When this garbage is collected, theÌ redex is then enabled to fire as above.

In the following proofs, we use the following definition ofÞßàÇÈÌÕ .

Definition (ÞßàÇÈÌÕ). The predicateÞßàÇÈÌÕ ÉÂ Ê states that for all sequencesÂ ÌÕ Â Ñ containing only
reductions outside substitution,ÄÅÆÇÈ ÉÂ ÑÊ.

71

Lemmas 49 (preservation ofö÷øùúûü).

1. If ö÷øùúûü ýþ ÿ andþ ûü þ � thenö÷øùúûü ýþ � ÿ.
2. If ö÷øùúûü ýþ ÿ andþ � þ � does not create any newû redexes outside substitution thenö÷øùúûü ýþ � ÿ.

Proof.

1. We induct over������ûü ýþ ÿ. The base case is when� 	
. We need to prove that���ùú ýþ � ÿ. If the
reduction is outside substitution then the follows by definition. If it is inside substitution then it follows by
Lemma 48.1.

In the inductive case, ifþ ûü þ � is a reduction outside substitution then the proof follows by defini-
tion. Let þ ûü þ � be a reduction inside substitution andþ � ûü � a reduction outside substitution.���ùú ýþ � ÿ by Lemma 48.1. Provingö÷øùúûü ý� ÿ will complete the proof.

The redex ofþ � ûü � is a residual of an redex outside substitution inþ asþ ûü þ � cannot move
the redex outside substitution. There is then a reductionþ ûü þ outside substitution corresponding toþ � ûü � .

Whenþ û þ �, there are three cases (see [Mil04]) depicted below:

þ �
out

û
bigSNþ

out

ûin
û

�
þ

bigSN

in

û
þ �

out

ü
bigSNþ

out

üin
û

�
þ

bigSN

in

û
þ �

out

ü
bigSNþ üin

û
�

(a) (b) (c)

(a) þ � û � . Thenþ û � by û � . As þ û þ is outside substitution,ö÷øùúûü ýþ ÿ by
definition. By the induction hypothesis,ö÷øùúûü ý� ÿ.

(b) þ � ü � and the redexesþ û þ � andþ ü þ are independent. The proof then follows the
last case.

(c) þ � ü � and the reactum ofþ û þ � lies inside the substitution of the redex ofþ � ü � (it is
discarded). By definition,ö÷øùúûü ý� ÿ.

Whenþ ü þ �, there are three cases (see [Mil04]) depicted below:

þ �
out

ûü
bigSNþ

out

ûüin

ü
�

þ
bigSN

in

ü
þ �

out

û
bigSNþ

out

ûin
ü

�
þ

bigSN

in

ü
þ �

out

ü
bigSNþ üin

ü
�

(a) (b) (c)

(a) þ � ûü � with the redexes ofþ ü þ � andþ ûü þ independent. By [Mil04], we have one-
step confluence. Asþ û þ is outside substitution,ö÷øùúûü ýþ ÿ by definition. By the induction
hypothesis,ö÷øùúûü ý� ÿ.

(b) þ � û � and the redex ofþ ü þ � lies under the redex ofþ � û � . It should be clear that the
reduction graph is as depicted. The proof then follows the last case.

(c) þ � ü � and the reactum ofþ ü þ � lies under the redex ofþ � ü � (it is discarded). By
definition,ö÷øùúûü ý� ÿ.

72

2. ����� �� �� by Lemma 48.3. For any reduction�� �� � outside substitution, proving������� �� � will
complete the proof.

Our general strategy is to join the sequences� � � � �� � and� �� � � (where the �� redex in�� is a residual of the redex in�) knowing that !"��#�� �� � � $!"��#�� �� � and������� �� � �
by 1 above. We induct over !"��#�� .

If !"��#�� �� � % &, ������� �� �, and� � � � does not create
any new � redexes outside substitution then������� �� ��. (I.H.)

For the base case,& % ' and as�� has no �� redexes outside substitution,����� �� �� then implies������� �� ��.
As each �� redex outside substitution in�� is a residual of a redex in� , we break the inductive case
down over the ways in which the�� and � redexes in� can overlap. These subcases were identified
by Milner in the bigraphical setting of()BIG [Mil04].

Let * +,- ., /% 0 1 be the � redex and�23 45 �6 or
5 .3 /% 61 be the �� redex. We will omit some)789

contexts in the cases below for clarity.

case 1 Independent redexes. Theorem 4.3 [Mil04] proves that thereis a reduction graph as in Figure A.1(a). !"��#�� �� � � $!"��#�� �� � and������� �� � �. As� � � � does not create any new�
redexes, neither does�� � � . Thus,������� �� � by the induction hypothesis.

case 2One redex lies beneath the other. There are two possibilities.: The � redex is a subterm of0 in the � redex. We then have a reduction graph as in Figure
A.1(b). !"��#� �� � � $!"��#� �� � and������� �� � �. As � � � � does not create any new� redexes outside substitution (both displayed redexes are residuals) neither does�� � � ;.
Thus,������� �� ; � by the induction hypothesis. By Lemma 48.4,����� �� �. To complete
the proof, we need to show that if the path� < � � �� �= contains only reductions outside
substitution then����� ��= �. Our strategy is to join up the paths in the diagram below where�= � ��>= is the residual of the redex�� � � ;.

� � ��?� �=�@A�� ; ��? � �>=
Each step in the top path may be joined to the bottom path as oneof the following three cases.

� B �� � B> ��� �> B � � ;>B
� B �� � B> ��� �>B � � ;>B

� B �� � B> �
� �>B � � ;>B

The first follows by � C. The second case is when the� and � redexes are independent.
In the third case, the � redex discards the� substitution.
As ������� �� ; � D ������� �� �>= �. By Lemma 48.4,����� ��= �.: The � redex lies beneath the� redex either as a subterm of

5
or 6 . We prove the former

subcase – the latter is similar.
Let

5 < * (E* +,- ., /% 0 1F. We have a reduction graph as in Figure A.1(c). !"��#� �� � � $!"��#� �� � and������� �� � �. As� � � � does not create any new� redexes, neither
does�� � � . Thus,������� �� � by the induction hypothesis.

case 3The variable, of the � redex lies beneath the� redex. The substitution definition, /% 0
lies outside.
Let , lie beneath

5
so
5 < * +,-. We have a reduction graph as in Figure A.1(d). The remainderof

the proof follows the previous case and the proof for, beneath6 is similar.

73

GH IJ
GIJ
K L

GMK
(a) Case 1

GN OPQ RP ST N U OVWX YZ [\Q] KI
G HN ^N U OVWX YZ [\Q_ RP ST N U OVWX YZ [\Q]I

N OPQ RP ST N U OZ RX ST \]Q]G MK
N ^N U OZ RX ST \]Q_ RP ST N U OVWX YZ [\Q]LI

N N̂ U OZ RX ST \]Q_ RP ST N U OZ RX ST \]Q]G `
(b) Case 2 (i)

GaWX YN U ^N OPQ RP ST b]_c\ KI
G HaWX YN U N̂ Ob Q RP ST b]_c\I

N U N̂ OPQ RP ST b]_ RX ST \]G M K N U ^N Ob Q RP ST b]_ RX ST \]L
(c) Case 2 (ii)

GN U ^VWX YN OPQ[_ RP ST b] KI
G HN U ^VWX YN Ob Q[_ RP ST b]I

N U N̂ OPQ RX ST \]_ RP ST b]G M K N U ^N Ob Q RX ST \]_ RP ST b]L
(d) Case 3

Figure A.1: Reduction graphs for Lemma 49.2.

case 4This case cannot occur between aK and a
IJ

redex (see [Mil04]).

case 5This case cannot occur between aK and a
IJ

redex (see [Mil04]).

74

A.2 Properties of reduction in defg
This section contains examples of properties inhijk relevant to the proof of PSN.

Example 50 (l is necessary for some infinite sequences.).All variables below are distinct.mnop qor qr r st u mov qvv uw mnor qr r s xp yz t {u mov qv v u
l nor qrr s nov qvv s

Example 51 (l does not preserveg|}~�w .). All variables below are distinct.�mor qnop qt su� � ���
w mnop qt s xr yz � {u m�u � �
l mnop qt su m�u � � �w t xp yz �{

���~� n� s
and since

�
has no w redexes,g|}~�w n� s

. However, the l reduction creates a w redex
outside substitution in

� �
such thatg|}~�w n� �s

is false.

Example 52 (� does not preserveg|}~�wl .). Consider the sequence� � mnp s n� su xp yz o� qr {
� mno� � qr s n� su xp yz o� qr {w r x� � yz �{ xp yz o� qr { q

with distinct variables.g|}~�wl n� s
, but the � reduct of

�
does not satisfyg|}~�wl . What happens here is

that a subterm of
�

which is not strongly normalising is moved inside a substitution by a combination of a �
creating a w redex followed by the firing of the latter redex. If we replace

o� qr
with

no� qr s x� yz � {
,
� �z r

,
then the � reduction creates an outerl redex leading to a similar situation. These situations are analogous
to the sequence � � nop q� s n�sk � xp yz �{ q
in
o�}� which shows thatefg~� is not generally preserved byk��� .

75

A.3 Interleaving � -reductions in ����
Take the term��� ���� ��� �� �� with two -redexes. It has the reduction graph in Figure A.2.

��� �� � ��
��� ���� ��� �� �� � �

��� ��� ��
Figure A.2: Reduction graph of��� ���� ��� �� �� in the�-calculus

In ¡¢£¤ , a -reduction corresponds to a sequence of reductions. These reductions may interleave as in Figure
A.3. In the figure, the outer reduction paths correspond to the firing of one -reduction after the other. The terms
on the inside of the graph are terms where both -reductions have been partially completed.

� �
�� � � ¥� ¦§ � ¨

©
�� � � ¥� ¦§ � ¨

©

�� � � ¥� ¦§ � ¨
ª

�� � � ¥� ¦§ � ¨ ¥� ¦§ � ¨
© ©

��� � ¥� ¦§ � ¨
ª

��� �� � �� �
«
�� � � ¥� ¦§ � ¨ ¥� ¦§ � ¨

© ª
��� � ¥� ¦§ � ¨ ¥� ¦§ � ¨

ª ©
��� ��� ��

«

���� �� � �� � ¥� ¦§ � ¨
© «

��� � ¥� ¦§ � ¨ ¥� ¦§ � ¨
ª ª

��� ��� ¥� ¦§ � ¨��
« ©

���� ��� �� � ¥� ¦§ � ¨
ª «

��� ��� ¥� ¦§ � ¨��
« ª

��� ���� ��� �� ��
««

Figure A.3: Reduction graph of��� ���� ��� �� �� in ¡¢£¤

76

A.4 Contraction graphs¬®¯
has three explicit constructors – explicit substitutions,weakenings, and contractions. The first is familiar

and the second is uncomplicated. Contractions are not complicated but we found that a graphical representation
aided our initial reasoning by providing some visual proofs. In this section, we present this representation of the
contractions of a

¬®¯
term.

Contractions are used to provide linearity when multiple occurrences of a free variable° exist in a term
by renaming the occurrences and then ‘aliasing’ them to°. For example, the

¬
-term °° is encoded in

¬®¯
as± ²°° ³ ´ µ ¶· ¸¶¹¶ ²° º°» ³. In general,¼ ½ ¾ contractions are needed to ‘linearise’¼ free occurrences of some

variable. For example, ± ²²²°° ³° ³° ³ ¿ µ ¶À· ¸¶Á¶ Âµ ¶À¹ ¸¶Ã¶À· ²µ ¶· ¸¶¹¶À¹ ²° º Ä °» ³°Å ³°Æ Ç Ä± ²²°°³ ²°° ³³ ¿ µ ¶À· ¸¶À¹¶ Âµ ¶· ¸¶¹¶À· ²° º°» ³µ ¶Ã ¸¶Á¶À¹ ²° Å°Æ ³Ç È
We have adopted some conventions in the examples above whichwe typically use in this document. We

label the contractions in such a way that the variables whichstand for° (which we callaliaseshere) are indexed
numerically from innermost to outermost, left to right. There are special labels which tie the contractions together
which we label as°É indexed with some integer. We adopt these conventions for our graphical representation
below.

A contractionµ ¶· ¸¶¹¶ may be represented as a tree°° º °»
with the ‘real’ variable on top, the first alias below to the left, and the second alias below to the right. In any termÊ

, there is an obvious nesting structure to contractions given by the abstract syntax tree of
Ê

. For example, in
the encoding of

²²°°³° ³° above,µ ¶À· ¸¶Á¶ lies aboveµ ¶À¹ ¸¶Ã¶À· . µ ¶À· ¸¶Á¶ is also connected in some way toµ ¶À¹ ¸¶Ã¶À·– ° Éº is a free name of the second contraction which is bound in the first contraction. We can therefore directly
represent the contraction substructure of a term graphically using forests of binary trees where the root node of a
tree represents an ‘actual’ variable name°, the leaf nodes represent variables in

Ê
, and the other nodes link these

variables ultimately to°. We call these forest representationscontraction graphs.
For example, the contraction graph of

± ²²²°° ³°³° ³ may be visualised as°
° Éº

° É»° º °» Ä ° Å
°Æ

and the contraction graph of
± ²²°°³ ²°° ³³ as °

°Éº° º °» °É»°Å °Æ È
We call the nodes which are neither leaves nor the rootlinks.

We find it useful to depict when contractions lie directly beneath each other. For example, in the term± ²²Ë ²°° ³³ ²°° ³ ³ ¿ µ ¶À· ¸¶À¹¶ Â²Ëµ ¶· ¸¶¹¶À· ²° º°» ³³µ ¶Ã ¸¶Á¶À¹ ²°Å°Æ ³Ç Äµ ¶Ã ¸¶Á¶À¹ lies directly underµ ¶À· ¸¶À¹¶ whereasµ ¶· ¸¶¹¶À· does not. When a contraction lies directly under its parent
contraction in a term, we indicate this in the graph by decorating the free variable of the inside contraction with a
hat (Ì) so that the contraction graph of this example is°

°Éº° º °»
Í°É»°Å °Æ È

77

ÎÏ Ð ÑÒ ÓÔ ÎÐ Ï ÕÖÎÐ Ï × ÑØ ÕÖÎÐ ×
Ï

Figure A.4: Graphical representations ofÑÒ ÓÔ andÑØ
Using this representation, we can depict the congruencesÑÒ ÓÔ andÑØ as in Figure A.4. The congruenceÑÒ ÓÔis visualised by swapping the branches belowÎ. The congruenceÑØ is visualised by swapping the labels of
leaf nodes one generation apart (when the parent of the younger nodes is wearing its hat). The congruenceÑÒ ÙÔinvolves contractions in different trees of the forest and so is not explicitly represented in a contraction graph.

These representations of the congruences may allow easily understood visual proofs involvingÑØ andÑÒ ÓÔ.For example, the proof of the equivalence Ú ÛÜ ÝÛÞÜÛ Ú Ûß ÝÛàÛÞÜ áÎ Ó
áÎÙÎâ ããÑÒ ÓÔ

Ú ÛÞÜ ÝÛ ÜÛ Ú Ûß ÝÛàÛÞÜ áÎ Ó
áÎÙÎâ ããÑØ

Ú ÛÞÜ ÝÛàÛ Ú Ûß ÝÛÜÛÞÜ áÎ Ó
áÎÙÎâ ããÑÒ ÓÔ

Ú ÛÞÜ ÝÛàÛ Ú ÛÜ ÝÛßÛÞÜ áÎ Ó
áÎÙÎâ ãã

can be read off the diagram below.ÎÎÓ
äÎåÓÎÙ Îâ Ñ ÎäÎåÓÎ Ó ÎÙ

Îâ
Finally, we can extend this representation to depict how a substitution propagates down through contractions

in a term via theæçÒ èéêÓ rule as in Figure A.5, where the first three right hand side graphs correspond to the
left hand side graphs after aæçÒ èéêÓ reduction and the last two graphs represent a ‘tidying up’ ofthe contraction
graph.

Using this representation, the contraction graphs of the reduction sequenceÚ ÛÜ ÝÛÞÜÛ ëÎ Ó
Ú Ûß ÝÛâÛÞÜ áÎÙÎâ ãì íÎ îï ð ñ

áòã
æçÒ èéêÓ

Ú óÜ ÝóÞÜó ëëÎ Ó
Ú Ûß ÝÛâÛÞÜ áÎ ÙÎâ ãì íÎ Ó îï ð Óñ íÎ åÓ îï ð åÓñìæçØôô Ó

Ú óÜ ÝóÞÜó ëëÎ Ó íÎ Ó îï ð Óñ
Ú Ûß ÝÛâÛÞÜ áÎÙÎâ ãì íÎ åÓ îï ð åÓñìæçØôôÙ

Ú óÜ ÝóÞÜó ëÎ Ó íÎ Ó îï ð Óñ
Ú Ûß ÝÛâÛÞÜ áÎÙÎâ ã íÎ åÓ îï ð åÓñì

áõã
æçÒ èéêÓ

Ú óÜ ÝóÞÜó ëÎ Ó íÎ Ó îï ð Óñ
Ú óß ÝóàóÞÜ ëáÎ ÙÎâ ã íÎÙ îï ðÙ ñ íÎâ îï ð â ñìì

áöã
æç ÷

Ú óÜ ÝóÞÜó ëÎ Ó íÎ Ó îï ð Óñ
Ú óß ÝóàóÞÜ áÎÙ íÎÙ îï ðÙ ñÎâ íÎâ îï ð â ñãì

are given in Figure A.6.

78

ø ù úø ûü ýþøÿ� øÿ�
�

� ÿ�
ø ÿ� ù úøÿ� ûü ýÿ� þ

� ÿ�
øÿ� ù úøÿ� ûü ý ÿ� þ

ø ù úø ûü ýþø � øÿ�
�

�� � ÿ�
øÿ� ù úøÿ� ûü ýÿ� þ

ø ù úø ûü ýþø � ø �
�

�� ��

...

��

��

...

...

��

...

Figure A.5: Substitutions propagating through contraction graphs

ø ù úø ûü ýþø � øÿ�ø � ø �
�

�� � ÿ�
øÿ� ù úøÿ� ûü � ÿ� þø � ø �

�

�� � ÿ�
�� ��

(1) (2) (3)

where
� ü �� �� 	
 � � ü ��� �
 � ÿ� ü �����

� ÿ� ü �� �� ÿ� 	
 � � ü ����� ���� � ü ���� �
 � � ü ���� � �

Figure A.6: A substitution distributing through some contractions

79

