.-ﬁ
=

The IT University

of Copenhagen

Agup @S an explicit substitution calculus

Shane O’'Conchduir

This work was partially supported by funding from the Irish R esearch

Council for Science, Engineering and Technology: funded bthe National
Development Plan.

IT University Technical Report Series TR-2006-95
ISSN 1600-6100

9 2006

Copyright (© 2006, Shane O’Conchuir

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600-6100

ISBN 87-7949-139-1

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7,
DK-2300 Kgbenhavn S
Denmark

Telephone: +45 721850 00
Telefax: +45 72 18 50 01
Web WWW. i tu. dk

Agur, @s an explicit substitution calculus

Shane O’'Conchuir

Abstract

This work explores confluence and termination in Milner's@ding of thel-calculus as a bigraphical reactive
system. In that work, th&-calculus was extended with explicit subsitutions and thierssion (\s,) Was encoded
as a bigraphical reactive system.

We prove that the reduction relation of the extension is c@mfl on ground terms and preserves strong nor-
malisation (PSN) of-reduction. This gives us corresponding proofs for thedpdical encoding. The proofs are
based on the strong relationship betwdgg, and the calculudxgc of Bloo and Rose. The notion of composition
of substitutions imMy,1, and the problems it raises when attempting to prove PSN aceised.

We then exploit similarities betweet,;, and the\lxr calculus of Kesner and Lengrand to present a translation
from A4y to @ modified version oklxr. We show that reduction in the former may be simulated indtted which
leads to a clearer proof of PSN fAg,;,.

Contents

1 Introduction to the calculi 5
1.1 Thecalculud\g,, anditsencoding e 5
1.2 ThecalculuSxge 10
1.3 Thecalculudlxr e e e 12

1.3.1 Comparindlxr and’/ABIG e e 14

2 Proofs of confluence and PSN 16
2.1 Proofofconfluencefakg,, L e e 16
2.2 Aninductive proof of PSN e 24

2.2.1 PSN forAsubi,D .. 24
222 PSNTOMGpat -« v o v v e e e e 26
2.2.3 The problem with inter-substitutionreduction 31
224 PSNTOMAgup - - - o o o e e 34
2.3 PSN and composition of substitutions 38
2.3.1 Weak/fullcomposition e 38
2.3.2 BreakingPSN e 38
2.3.3 AX||C . 39
234 AXC . . e e 40
2.3.5 AXCT . e 40
2.3.6 AG . . . e 40
237 Agub - v o o e e 40
2.3.8 Confluence,PSN,andFCS e 41
2.4 Proofof PSN by simulation 42
2.4.1 Theencoding digyp termsindlxr oL L 42
2.4.2 Anormalformandthetranslation 45
2.4.3 Contractionsinthetranslation 46
2.4.4 Proof of PSN by simulation e 49
2.4.5 Sketch of proof of PSN by translationAe 59

3 Extensions and other ideas 61
3.1 Proposed extensionMQub - -« « v v e e e e e e e e e e e e 61
3.2 Initialtranslationto\lxr L 62
3.3 Alternative encodings ofthecalculus 63
3.4 Anewpropertyofcontrols 63

4 Summary 64
4.1 Conclusionsandrelatedwork L e e 64
4.2 Acknowledgements L e 66

A Appendices 70
A.1 Lemmas forinductive proof of PSNfag,, o o o oo 70
A.2 Propertiesofreductionifgyn, . . . - e 75
A.3 Interleaving3-reductions iMgyp . . . - . . . L e e 76
A.4 Contraction graphs e e 77

Introduction

This report concerndg,p, a A-calculus with explicit substitutions inspired by the calculus of Abadi et al.
[ACCL91] and presented by Milner [Mil04] The calculus has been used to present an encothiBgs, of
the A-calculus in the bigraphical framework of Milner, LeifendiJensen [Mil01, Lei01, JIM04, Mil05b] but we
concentrate here on the properties thal, has when viewed as an explicit substitution calculus.

Section 1.1 introduces the explicit substitution calculyg,. We describe aspects of the bigraphical encoding
and compare the encoding and its reduction strategy toquswork in ther-calculus [Mil90] and the fusion
calculus [PV98]. We also show thatBIG encodes the full reduction strategy for thealculus.

Section 1.2 describes the calculisge of Bloo and Rose [BR95] and compares itAg,,. Although the
calculi were developed independently afig,;, was based oo, we find that Milner's calculus more closely
resembles\xgc. The main difference as we will see is in how substitutioreserformed.

The similarities betweeng,, andAxgc led us to ask whether the proofs of confluence and presenvatio
strong normalisation (PSN) forxge could be applied to\g,,. We investigate this in Sections 2.1 and 2.2. In
Section 2.1, we prove that the rewrite relatiomgfy, is confluent. Section 2.2 contains proofs that certain sgbse
of the rewrite relation preserve strong normalisatiofpefduction. The proofs rest heavily on previous work by
Bloo and Rose [BR95] where these two properties were prawelikige, a calculus inspired b¥o. We use their
proof strategy for our proofs.

In Section 2.2.2, we prove PSN for a subcalculud\gfi, without certain interactions between substitutions.
We identify the subse$N,_ , of strongly normalising terms akg,, and show it to be a strict subset of the
strongly normalising terms ofxgc. We then give a somewhat complicated, inductive proof of PSN

Milner's calculus allows ‘inter-substitution reductiom reduction related to the notion of composition of sub-
stitutions which allows free occurences of variables inssitilitions to be substituted for. This form of reduction
is discussed throughout Section 2.2. It is explicit in thduetion rules which do not require a free occurrence of
a variable to be located ‘near’ the substitution definitidifis is possible ifABIG due to the bigraphical link-
ing structure (with multiple locality) and wide reactiorles. The wide substitution rule is unusual compared to
traditional explicit substitution calculi which typicglhave a set of distribution rules which serve to distribute
substitution through a term to the variable level. In Setfa3, we note thadg,;, manages to mimic full com-
position of substitutions. In Section 3.1 we propose anresita toAg,, (based omxc™) which allows a direct
weak composition of substitutions. We propose that thensidm retains confluence and PSN but do not support
that here.

The bigraphical encoding df,1, shares similarities to thelxr calculus of Kesner and Lengrand [KLO5, KL]
which is worth investigating aslxr is the first explicit substitution calculi with confluencegpervation of strong
normalisation (PSN), and full composition of substitusorWWe review the similarities in Section 1.3. We then
introduce a modified version afxr which retains PSN. A translation frof,;, to this modified calculus is given
which results in a neater proof of PSN.

This work does not directly concern bigraph theory. Milnetraduced his bigraphical encoding of the
calculus both as an application of local bigraphs and asrérgigpoint for studying confluence in bigraphical
reactive systems (BRSs). Although we prove closed confriéomnfluence on terms without metavariables) of
'ABIG, this work does not add to a general theory of confluence faph theory. However, the technical tools
employed by Bloo and Rose in their proofs of closed confluenpeojection and the generalised interpretation
method — may be helpful in proving this property in other bjgrical explicit substitution encodings of confluent
calculi.

This report is (probably overly) long. An interest-oriethteading order is shown in Figure 1.

Terminology and notation

We will assume that the reader is familiar with bigraph ttyddM04, Mil05b], theA-calculus [Bar84], and rewrite
systems [Ter03]. All the required background reading fartork can be found in [Mil05b, Mil04] and [Ros964].
The main technical work (Sections 2.1, 2.2, and 2.4) can &@ wéthout much knowledge of bigraph theory.
The notation used here follows [Ros96a] and [Mil04]. Forrbjghs,=~ denotes support-equivalence and
denotes composition\ denotes the set df-calculus terms and we useto denotex-equivalence oh-terms.
The bulk of the notation concerns rewrite systems and rewwies. We call these concepesluctionsystems
andreductionrules respectively as does Rose [Ros96a] following Hueepf]. We will mainly be working with

1At the time of writing, this work was being revised.

Section 1.1

Section 2.3
Section 1.2 Section 1.3
Section 2.1 Section 2.2 Section 2.4

| N

Appendix A.1 Section 3.2 Appendix A.4

Inductive proofs of confluence and PSN PSN via simulation

Figure 1: Interest-oriented reading order

variants of the\-calculus and will usé/, N, P,), and R to denote termsy, v, w, z, y, andz to denote variables,
andC andD to denote contexts. In both,;, andAxgc, the set of terms (which is identical for both, assuming a
variable convention introduced in the next section) is detbyAx.

When a reduction relation— has a unique normal form, we wrifg M) for the — -normal form of term
M. The symbol ;> denotes: consecutive reductions of—. The transitive closure of— is denoted by *,
its reflexive closure is denoted by=, and its transitive and reflexive closure is denoted by. When —
has unigue normal forms,— denotes ‘reduction to normal form’. We write— SN when —; is strongly-
normalising, — CR when it has the Church-Rosser property; LC when it has weak confluence— ¢ when
it has the diamond property, and-> UN when it has unique normal forms.

We only consider confluence on terms without metavariabldesed confluence — in this work and typically
omit ‘closed’ from now on. The following diagrams depict tieeminology we use when discussing confluence.

| | |
/ P / e /T‘ =
(] O (] O [| (] O
N : N T Cuow N T
] | | |
diamond weak/local Church- (strong)
property confluence Rosser confluence

Weak confluence states that when a tergan reduce to two other ternbg andb, then there exists a common
reduct,c, of the latter pair wheré;, —» ¢ andb, —» ¢. The other properties are defined similarly. Milner [Mil04]
calls the diamond properggne-step confluen@nd local confluence has also been calledk Church-Rosser
weak confluenceAny relation is confluent if and only if it has the Church-Resproperty (see [Ros96a] for a
proof) and so we will use these terms interchangeably.

We will make one change from the presentationAgf;, in [Mil04], representing an explicit substitution
with angle brackets as opposed to square brackets. We mealsathe change for the presentation of explicit
substitutions imlxr. This choice of notation was made both to match that used by 8hd Rose fokxgc and to
avoid confusion with substitution in the pukecalculus.

Chapter 1

Introduction to the calculi

1.1 The calculusAg,, and its encoding

We will briefly introduceAg,, and then comment on its encodif§BIG, into bigraphs. We refer the reader to
[Mil04] for a full introduction to Ag,1, and’ABIG. We do not discus4BiG much here. We will start by giving the
inductive definition of the sekx of Ag,1, terms as:

M:=2z | XM | MN | M(z:=N)

where the notatiofx := N) represents an explicit substitutioa. M {(z := N) is aterm constructiorand should
not be confused with the substitution meta-operation of\tiwalculus. We will refer to this set of terms As. It
is also the set of terms dfkgc.

The definition of free variables of terms is given as part @& ttanslation ofAg,;, into 'ABIG and so we
introduce that first.

Definition (A-terms into bigraphs [MilO5b]).
def

[x]]a,XLﬂz = varg, & X
def

ﬂ)\m-M]]a,X = (lama(bz) @ idx)[[M]]b,sz
[MN]a,x £ (aPPagse) © idx)([M]o,x | [N]e,x)
[M(z:=N)ax = (suba(paa) ®idx) ([M]s,xwe | (defas(e) ® idx)[N]e,x)-

The second index of a translatipi/], x is a set which must at least contain the free variablegof Agy,p.
X may contain other names. This is necessary for technicabrsain a bigraphical reactive system, the reactum
of a rule must have the same set of free names as the redeefditeeif a rule discards some free variables, the
names of those variables persist through the reductioneXamnple, in the reduction

H:w<y = Z)]]a,{z,z} F> [x]]a,{w,z}

with all variables distinct, the reduct retains the free pam
The translation allows us to derive the set of free variabfesAx term inAgyp, as:

fv(z) = {z}

tv(Az. M) = fv(M)\{z}
ftv(MN) = fv(M)Ufv(N)
x)

tv(M{(z:=N)) = ({EM)Utv(N)\ {z}

The last definition may be misleading. The translation friyg, to ‘ABIG highlights an implicit variable conven-
tion in Agyp. If we examine the translation, we see that the set of freablas of V is disjoint from{z}. This
last definition can therefore be written

fy(M(z == NY) = (fv(M)\ {z}) Utv(N)

asz ¢ fv(NN). This convention is important to avoid variable capture (selow).
The reduction rules ok, which we name after their encodingsSA®BIG, are presented below in the manner
of [Ros96a].

Definition (Reduction rules for Agyp). Define the following reductions on the set\qQf;;, terms (more precisely,
their contextual closure modula).

1. 2, Apply(substitution generation)
(A.M)N — M{z := N) (A)

2. ¢, Copy(wide/non-local/distant/external (explicit) substiturt)
M(x:=N)— M'(z:=N) ifzefv(M) (C)

whereM = C[z] andM' = C[N] for someAx-contextC' where
this occurrence af is free.

3. D1’, Discard(garbage collection)

M{z:=N)—>M ifxé¢iv(M) (D)

As in [Ros96a], the subterdW in M (z := N) is calledgarbageif = ¢ fv(M). This rule also exists inxgc
and is calledexplicit garbage collection.

4. Agup-reductionis acp’ = A’ U ¢’ U b’ . We will also study the relationcp” = ¢* U 5 and
other combinations in later sections.

We choose to callz” wide substitutioras the corresponding parametric reaction rulé\efc is wide — it
takes a bigraph with width two as its parameter. Milner dbssrsuch rules ason-local[Mil05a], and ¢~ as
substitution acting ‘at a distance’ [MilO5b]. .1, the upshot is that in ac” redex, the free occurrence of the
variable may be located apart from the substitution dedinitiThis is in contrast to the distributiiecal rules of
most traditional explicit substitution calculi. Non-Ideaactions allow full composition of substitutions Mg,

a feature which we will discuss particularly in the proof &N. Klop has called similar non-local substitutions in
term graph rewrite systenexternal substitutiong<lo95].

In Agqup, @ singles-reduction is imitated witlw + 2 reductions (where is the number of free occurrences of
the variable to be substituted for) so that

if M 57 NthenM 1~ %> o N.

As with most explicit substitution calculi, the reductiomkich combine to imitatg-reduction may overlap (see
Appendix A.3 for an example). This behaviour can lead towdalghere confluence or PSN is not guaranteed.
Melliés’ counterexample to PSN fow [Mel95] was unexpected and led to the study of other calchictvsatisfy
PSN. The work of Bloo, Rose, and Geuvers [BR95, Ros96a, Rpg8697, BG99] was instrumental in this line
of research and is the basis for the proofs in Sections 2.2ahd

The rest of this section will discuss how bigraph theory captare some of the important notions of the
A-calculus and howABIG relates to previous work. Some of the following also appi@ethe encoding of other
calculi in bigraphs.

Variable convention In the 3 reduction below, the free occurencewih (Az.Ay.z) is replaced by the argument
y. To avoid variable capture, one typically employs a vagatdnvention where the bound variables of a term are
chosen to be different and distinct from the free variabfah@term.

Az Xy.z)y 57 =a A2y

If (Az.A\y.x)y was a validAg,;, term then we would have the reduction sequence:

Az Xy.x)y 2’ Myz)z:=y) ¢ Owy)lz:=y) D’ (Ayy).

However, if we follow the translation rules, we get:

[(Az-Ay-z)yla,yoy
= (apPu(be) ® idx)([Az.Ay-2]p,ywy | (varey ®Y))
where
[Az.Ay.2]s,yuy
(lamy(gz) © idywy) [Ay-2]ayeyws
= (lamb(dz) &) idywy)(lamd(ey) @ idywy@m)ﬂm]]f’ywy@mwy
= (lamy(gy) ® idywy) (lamg(eyy ® idyuyus) (vars, ® (WY wy)).

Sincey can not be disjoint from itself, we therefore assume thatgp,, the bound names of a term are distinct
from the free names.

This variable convention implicit in the translation frokg,;, to ABIG also means that the set of free variables
of a termis preserved by, reduction. Consider the following translation.

[(Az.M)N]a,x
= (aPPq(pe) ®1dx) o ([(Az.M)]p,x | [N]e,x)
= (apPu(pe) @ idx) o ((lamy(ge) © idx)[M]a, xwa | [N]e,x)

As z is disjoint from.X, it is not a free variable oV. This term reduces to

T> (SUba(dbz) 2] ldX) o (l[M]]d,XL’er | (desz(c) ® ldX)llN]]c,X)
= [M{z:=N)].x

where the entire term\/, andN respectively have the same set of free variables &s4n\/) N .

Similarly, one can show thghz.\x.M) is not a valid term iM\g,;, and we can therefore assume that nested
abstractions or substitutions must have different bourdeza We could take the stance that bound variables in
a term do not have to be distinct as the terfhs.z)(Az.z) and M{(z := Az.M) both have valid translations.
However, ase-equivalent terms have equivalent translations and m@adti ‘ABIG matches reduction ifgyy,
[Mil04], we assume the following convention, following Bardregt [Bar84].

Convention (bound variables inAg,,). When working inAg,;,, we assume that the bound names of a term are
distinct and different from the free names of the term.

Bound variables Ina’ABIG term, a variable: is bound by linking a\-port from avar- or def-node to a (binding)
A-port of alam- or sub-node. This binding ensures that the variable cannot besaedeoutside of the node on
which the binding port lies.e. we have a sort of name-scoping. This feature of bigraphs é&&ly with the
A-calculus.

Further, this bound link is andge An edge in a bigraph forms part of the support set of the pigralwo
bigraphs are said to be support-equivalent when they areaime up to an isomorphism of their support sets.
Hence, support-equivalence naturally encaglesjuivalence for tha-calculus.

Instantiation Replication of terms in the\-calculuse.g. (Az.zz)N —57 NN and destruction of terme.g.
((Az.\y.y)M)N —57 N can be encoded in bigraphs via the notion of instantiatiasugRly speaking, instanti-

ation is the bigraphical mechanism which allows the paramsatf the redex in a parametric reaction rule to be
discarded or copied in the reactum. It is also crucial foioeliteg ther-calulus as it allows replication.

Abstract syntax tree A bigraph may be partially represented by a sort of abstratbs tree based on the place
graph, where composition represents nesting and primeauptoepresents branching. For example, the encoding
of a A-term in’ABIG can be represented as in Figure 1.1. The dotted lines limkdeeurrences to names (at the
top of the figure) or represent a binding (the curved line).

With this representation, the abstract syntax tree aftarm closely matches this ‘abstract syntax tree of
composition’ inABIG, suggesting that the encoding is indeed very natural antbnoed.

@ /app
/ \ /! \\
Ay z lam, var,
7’
Q@ app\
/ \, m/ e

Figure 1.1: Abstract syntax trees f@ky.xy)z and a representation of the corresponding bigrapp, ;.. ©

(lamy(gy) © apPy(ep) © (Vares | varyy) | var.)

Explicit substitution Explicit substitution iABIG is represented with the help of a pair of contrelsf and
sub. A g-reduction(Az.M)N — M|z := N]is encoded as a three-part reduction sequence. First, diciexp
substitution is generated, introducingef node and aub node into the bigraph. Théf node encompasses the
term N, representing ‘this is to be copied.” Theb node both takes a hold of all free occurrences af M and
encompasses bofif and thedef node. Next, all the free variablasin M are substituted wittv, one at a time.
Informally, thesub node picks one of its frees, throws it away and puts the contents of &€ node (V) in its
place. Finally, the explicit substitution is discardedr{ggge-collected)e. thesub node is thrown away and the
def node and its contents are thrown away. We are left with a plgrapresentind/[z := N]. This description
is simplistic as these non-atomic (in the sensg-oéduction) reductions may interleave (see Appendix A.3).

The termM (z := N) can also be described a&/* placed in a substitution context whetds defined to be
N’. This description is represented in the encoding by pigfi] inside asub node where all frees in M are
connected to def node containingV].

The combination of names with multiple locality, wide reeetrules, and active controls means that a free
occurrence of anywhere below a substitutiqe := N) may be replaced biV. Specifically, this allows substi-
tutions to replace such occurrences in substitutions btieme.g.

N{z:=y)(y:=P) o N{z:=P){y:=P).

This behaviour is known asomposing substitutionss not present in all explicit substitution calculi, andyma
break PSN. For example, this behaviour breaks PSMdoand is not allowed irhkxge (which has PSN). Calculi
exist which have both PSN and composition of substitutiarsoime form but few have both PSN afadl compo-
sition of substitutionasAg,1, has (see Section 2.3). We will show that,, and’ABIG both have full composition
of substitutions, can simulaf&reduction, are confluence, and have PSN. To date and to owl&dge, the only
other explicit substitution calculus which has these pro@eisAlxr, introduced later.

Relating ‘ABIG to previous work in the -calculus There are — perhaps unsurprisingly — some nice similarities
between the encoding of the laxycalculus in ther-calculus [Mil90] andABIG.
In the former, abstractions are encoded as:

[Ae. M]u £ u(z).u(v).[M]v

where the names andv are bound. In this encoding, the namesndv are used as a means of tagging terms and
passing them around.
In'ABIG, abstractions are encoded as:

[[)\.’L'.M]]U’X e (lamu(m) D idX)[[M]]v,XH—Jz

where agairz andv are bound. In this encoding, the namesndv are called tag-names ards called aA-name.

For the encoding of variables; in thecalculus,[z]u £ Zu while in ’ABIG the translation isar,, & X for
some sefX. In both cases, the namesandzx are free.
The encoding of an ‘environment entry’ used for substitutiother-calculus is:

[z := M] £ lz(w).[M]w

This replicated term keeps the substitution definitionegliwithin the scope of the substitution, until no more
substitutions may be performed. Then, the replicated teay Ine garbage-collected through strong bisimilarity.
This is similar to the case itABIG where instantiation keeps the explicit substitution aliyecopyingM and
garbage-collection is represented with an explicit reidmatule.

An interesting point is that variables of thecalculus are treated as controlsSAmIG whereas in the bigraph-
ical encoding of the asynchronomscalculus [JM04], names are treated as names in the encodhig would
appear quite sensible as a variable of Mealculus is also a-term while the same is not true ofracalculus
name and the two calculi are built around different paradighiowever, we feel it is helpful to collect intuitions
on these encoding choicés.

Reduction strategies Another interesting feature diBIG, arising from the general bigraph theory, is that re-
ductions may be applied to any subterm of a term. This indude withAxge, substitution inside an explicit
substitution.e.

if N — N'thenM{z := N) — M{z := N').

Aside from the full evaluation strategy [Bar84] of thecalculus (Figure 1.2), other strategies include the lazy

M — M
(\z.M)N — M[z := N] MN —M'N
(B) (v)
M —M N —N'
(\e.M) — (\z.M) MN — MN’
€3 (1)

Figure 1.2: Full evaluation strategy for thecalculus

reduction strategy, having the rul8sandv, and the strong lazy reduction strategy, having the rlJesand¢.
Milner [Mil90] showed that ther-calculus could encode the laaycalculus and the call-by-valuecalculus.
Parrow and Victor [PV98] later showed that the fusion calsudould encode the strong laxycalculus through a
slight modification of the encoding in [Mil90], utilising ¢hsymmetry in their calculus.
Since bigraphs build on ideas from both of these calculi, weld like it to be able to encode at least the
strong lazy\-calculus. It turns out thatg,;,, and hencé\BIG, encodes the full evaluation strategy. This is shown
in Theorem 8, Section 2.1, which states: fetermsM and N,

M ACD>N<=>M T»N

so that3-reduction may be simulated step-by-step\iBIG.

1This idea of ‘design patterns for bigraphs’ is something thraels C. Damgaard has discussed on several occasions.

1.2 The calculusixgc

Axge [BR95, Ros96b, Blo97], due to Bloo and Rose, is a refinemerth@f\-calculus in the tradition oAc
[ACCL91]. Itis an explicit substitution calculus with (eligit) garbage collection.

The motivation behind comparingls,, and Axgc is as follows. Agy, Uses explicit substitution, names as
opposed to de Bruijn notation in its inference rules, andrmfof explicit garbage collection [Ros92] so it seems
sensible to compark,,;, to a version of the\-calculus which has these propertiespagc has.

Ao [ACCL91] has the first of these properties but lacks the motbexplicit garbage collection inherent in
Axge [Ros96a]. A variant ol using names was discussed in section 3.3 of [ACCL91] but basescompli-
cations as described in that work and in [Ros96a]. As a rdAMCLI91] concentrates mostly on a presentation
using de Bruijn notation.

There are some immediate similarities betwdgg, andAxge. They both have the same set of terms (assum-
ing variable conventions). The definition of free variabilegentical. In terms of reaction/reduction relations,
’ and 1 respectively match s and e’ from [Ros96a] exactly. Further, ikxgc, reductions are allowed

inside explicit substitutions.

One crucial difference between the calculi is thagc propagates explicit substitutions to the variable level of
a term (see the definition below), inducting over the stgtwhereas substitution can act at a distanckjf .
Asub also allows full composition of substitutions whereaszc does not allow substitutions to be composed
(although extensions digc do — see Sections 2.3.3-2.3.5). We will see later that thispmsition inAg,, means
that its set of strongly normalising terms is a subset of tfidtxgc.

Both calculi share a rule for garbage collection at a distanexplicit garbage collectiomxgc has a local
garbage-collection rulexvge” which begs the question why a non-local rule is useful. Orssvanis that —gc*
allows for short-cuts where a useless substitution (gapdges not propagate through a term but is discarded
immediately. However, Rose [R0os9643] states that the mahmieal reason for the existence of explicit garbage
collection inAxgc is that it greatly eases the proof of PSN. It seemed reasemalble able to adapt their work to
prove these properties fdi,1,, especially since the proof of PSN rested upg@a” .

The reduction rules ofxgc are as follows.

Definition (Axgc reduction). =7, explicit substitution, is the contextual closure (modsl)oof the union of

z{z:=N)> N (xxv)
z{y:=N)—>z, ifzx#y (xvgc)
(Az.M){y := N) = Az.M(y := N) (xab)
(M1 Ms){y := Ny = My{y := N)My(y := N) (xap)
Axge-reductionis bxge’ = B’ U x’ U g’ Where 5’ = x’and g’ = p’.

The condition that: # y is implicit in the (xab) rule as the variable convention is also employediogc.
The main differences betweeRcp’ and bxge are that:

(i) ¢’ enables substitutions to be performed without migratimgetkplicit substitutions inside terms asgc
does via the xab and xap rules. This wide substitution is npadsible partly due to the linking structure
of bigraphs which connects a substitution to free occuren€éhe variable to be replaced. This is certainly
a nice feature of bigraphs but it also prevents us from usimgesinductive techniques that Bloo and Rose
employed in their proofs. As a result, some of our proofs iatidas 2.1 and 2.2 are necessarily different or
more verbose from the originals.

(i) o7 allows inter-substitution reduction (composition of stitisions)e.g.
N(z :=y)y := P) ¢’ N(z := P){y := P).

This form of reduction is not possible ikxge which can only push substitutions inside applications or
abstractions. This has consequences for the proof of P&NHdat for now we will just remark that the set
of strongly normalising terms ofycp’ is smaller than that of bxge .

(iii) Given a termz(z := N), A\xgc may perform a single xv step to reach the teNnwhereasAg,, must
perform aC step followed by & step — =’ automatically garbage collects having replaced the omlg fr

10

occurrence of a variable whereas C does not garbage codiéctthe general case there may be more free
occurrences af under the substitution.

(iv) The xvgc rule becomes redundantfigy;, since if M xvge’ N in Axge thenM —gc” N in Agyp (@ndAxgce).

For an intuition into comparing substitutions in the caicobte that given a term/ such thatM <" N we

have thatM 5 NV alsoi.e. the normal forms of x* and ¢p’ coincide.

Finally, Martin Elsman shared this intuition with me:

“Informally, one can think of reductions inxgc involving explicit substitutions to encode some kind of
‘reference counting’ whereas ifg,},, garbage collection is closer to ‘reference tracing’ asuotidns involve
finding all free variable$v(N) of a termN in N{(z := M).

“On the other hand, substitution distribution Atgc also involves traversing the term, although this is done
lazily!”

11

1.3 The calculus\lxr

Alxr [KLO5, KL] is an explicit substitution calculus which is awoed and complete computational counterpart to
the intuitionistic part of the Proof Nets of Linear Logic [87]. It is also the first published explicit substitution
calculus to enjoy the properties of confluence, PSN, andcuhposition of substitutions. We concentrate on
these properties here and do not review the typing systexixofor its connection to linear logic.

Alxr builds partly on work by David and Guillaume on thg, calculus [DGO1]. The\,,s calculus allowed
a level of composition of substitutions whilst retainingNP&nd was one of the first explicit substitution calculi
which satisfied step-by-step simulation@®feduction, confluence on terms with metavariables, and. PSN

The set of terms oklxr is similar to that of\xgc. It is defined (with a slight change of notation) by:

M:u=x | Xe.M | MN | M{z:=N) | Wo(M) | C¥*(M)

The two new constructors al&, (M), anexplicit weakeningandC¥-#, anexplicit contraction The sets of free
variables are as before for the old constructarss free inW, (M) andC¥* whereagy andz are bound in the
latter. Again, we follow a variable convention where eachrmbname of a termd/ is distinct and different from
any free names itV .

We now discuss three important features\inr — weakenings, contractions, and linearity of tefms

The termW,, (M) is an annotated form a¥/ which states that the free varialtedoes not occur free in/.

As it is explicitly part of the syntax, it can play a réle in theduction relation of\lxr and weakenings are in
fact used to provide an explicit garbage collection ruler &le, consider the terf, (M){xz := N). As

x does not occur free i/, we may want to garbage collect the substitution. The (Uleakl) in Figure 1.4
does precisely this. Kesner and Lengrand note that weagiemlxr may always be pulled out to the top level
allowing efficient garbage collection wherelg, cannot pull its labels out to the top-level. We note thaAmiG,
substitutions are never propagated through terms and gadmdlection is always at its most efficient.

Substitution inAlxr is defined as a set of distributive rules. Weakenings alswadifficient propagation of
substitutions. For example, propagating the substitutios N throughW, (M) is pointless as no substitution
can take place. Indeed, the reduction rules do not perrsiptitipagation.

Another interesting property of weakenings is that thepvalfree variables to be kept through reduction.
The two destructive rules ard’ar) and (Weakl). As expected, the substitution ru{® ar) does not lose
free variables. Interestingly, the garbage collectioe (W eak1) remembers the free variables of the discarded
substitution via a weakening. Kesner and Lengrand compmasepteservation of free variables to “interface
preserving”[Laf90] in interaction nets This property is also present iiBIG where, due to the preservation of
outer interfaces through reduction, free variables areerabered through reaction.

Contractions in\lxr allow the linearity of terms discussed below. The teff*(M) may be read asM
wherey andz arez.’

Terms inAlxr may always be assumed to be linear. A te¥nis linear if “in every subterm, every variable
has at most one free occurrence, and every binder binds abfrthat does have a free occurrence (and hence
only onej [KLO5]. It is possible to translate every-term to a (linear\lxr term. This linearity appears to be
a large factor in allowing\lxr to retain PSN whilst having full composition of substitutsd(FCS). The xap
rule in Axgc duplicates substitutions unconditionally and possiblpesessarily — free occurrences of the bound
variable may not exist in either branch of the applicatiomisTunconditional copying of substitutions features
in the counterexamples of PSN in Section 2.3. T8entl) rule which copies substitutions iklxr does so
conditionally and out of necessity — there is always gu&ahto be exactly two free occurrencesyoéind z
below the contractiod’?>*.

The congruence axioms and reduction rulesXbsr can be found in Figures 1.3 and 1.4 respectively. The
congruence axioms were chosen to strengthen the relaijoipstweemixr and Proof Nets and we consider them
in the next section in terms of equivalenceAs|G.

In the reduction rules, the notatid®® (M), where® and A are finite lists (with no repetition) of distinct
variables and equal length, denotes the result of simuitasie replacingc € ® in M with y € A where both
variables occur as th#&" variable in their respective lists. The meta-notafitp) andC’q?’rI denotes multiple
weakenings and contractions — the order is irrelevant upmgruencescs, and=c,, .

Many of the reduction rules oklxr (especially in System r) deal with pulling weakenings outigaand
pushing contractions inwards. Linearity of terms means ghastitutions are not replicated during propagation

2Fernandez and Mackie [FM99] used these notions in earliek.wo
3Bigraph theory has used ideas from interaction nets. We tieéereader to Leifer and Milner’s arithmetic nets [LMO4}kthe bigraphical
nets of Fernandez, Mackie, and Sinot [FMSO06] for furthekdibetween the theories.

12

Cr(Cr(M) =
cy* ,M) =c1
Cy” (CP*(M)) =2
Wo (Wy(M)) =C,
M{z = P)(y :=Q) =g

if z#y,v
ifz#y,2&' #y,2
if y ¢ tv(P)&z ¢ v(Q)

&r#y
if x # wky,z ¢ v(P)

Figure 1.3: Congruences faixr

()\.Z'M)N —B
System x

(My.M){z := N) — Abs
(MN){z := P) — Appl
(MN){z := P) — App2
.’L'(IL' = M) —Var
WZ‘(M)<:E = N) ——Weakl
Wy(M) (.T = N) —Weak2
Mz =P}y = Q) —+comp
Cg’z (M) (CL‘ = N) —Contl
Systemr

Az. Wy (M) —W Abs
Wy(M)N ——W Appl
MWy(N) ——W App2
M(.’E = Wy (N)) ——W Subs
Cg)’Z(Wy(M)) —>Merge
Cz%z (Wl' (M)) —>Cross
ng{),z ()\:L'M) —C Abs
Cy*(MN) —C Appl
Cy*(MN) —C App2
Cglv’z (M<'Z. = N)) ——C Subs

x € tv(M)
z € fv(N)

TF#Y,2

Y,z € tv(M)
y,z € fv(N)
y,z € fv(N)

Figure 1.4: Reduction rules foixr

13

through a term unless a contraction is reached in which ¢essubstitution is duplicated and the copies renamed
to maintain linearityfCont1). Besides these rules, the main ones corresponding roughiyt,’ are substitution
introduction(B), copying(Var), and explicit garbage collectiqii¥ eak1). There is then one reduction rule for
explicit composition of substitution®omp). Note that this rule only takes care of the cgse fv(P) however,
the other casg € fv(M) is taken care of by the s congruence (assuming linearity and the variable conveptio
This allowsAlxr FCS.

The reduction relatior— y1x, Of Alxr is the union of the reduction rules in Figure 1.4 modulo thegraences
in Figure 1.3. To tie in with our remarks in Section 2.2. 2 oreisubstitution reduction ing,p, the Alxr reduction
sequence below corresponds to thgy, sequence& Ao’ z{z := Q).

wo)(u := Aa.C2¢(be)) (v := Ad.CS7 (ef))
= (wv)(u == Aa.Co°(be))) (v := Md.CS7 (ef))
= (uv)(u = 2a.CH*(be))(v := Ad.Cg' (ef)))
= (w(u = Aa.Cy°(bo))v) (v := Ad.C57 (ef)))
x := u(u == Aa.CY°(be))v{v == Ad.C7 (ef)))
()\a CY¢(be))v(v := Ad.C57 (ef)))
= (Aa.C%*(be)) (M.CE7 (ef)))

N
8
|I

8
I

—(Comp) #

a

?(Comp) Z

(z:
(
(z:
—(app1) 2(T:
(
(2 :
(@

H

—(App2) *

H

—(Var) <

H

—(Var) z

We write — 7., to denote the reflexive closure 6 yix:.
We again stress that we are only looking\air as an explicit substitution calculus here and we refer tadee
to the original texts to get a full appreciation of its deep@nnections to other fields of research.

1.3.1 ComparingAlxr andABIG

In Alxr, a weakenind¥V, (M) states that does not occur free if/. In’ABIG, we may consider weakenings as
adding an idle name to a term. This is achieved by tensoripitraphe : ¢ — {z} to the’ABIG term represent-
ing M. Similarly, a contractior”’?>*(M) could be represented by a substitution bigragh z/, composed with
the’ABIG term representing/. These observations suggest the translation below Kbmto 'ABIG which we
base on Milner’s translation from,, .

def

[m]]a,X&JJ: = vare, ®X
PeM]ox = (lamggpy) ®idx)[M]s xwe
[MN]ax £ (apPagse) ® idx)([M]s,x | [N]e,x)

[M(z = N)]ox = (subg(paz) ® idx) ([M]s,xwa | (defaz(e) @ idx)[N]e,x)
[We(M)la,xwe = (2 ®ide @ idx)([M]a,x)
[CY*(M)]axwe = (%y|%, ®@ide ®idx)([M]a,xwiy,-})-

A 'ABIG term arising from this translation may be considered to bedi as each occurrence of a variable
control will be tagged with a differert-name. For example, thetermAz.zz is translated as a (lineak)xr term
asAz.C¥*(yz). The corresponding bigraph is then

lam bz (%y | /> ® idgpy)(@PPy(ca) D 1dgy,2}) (Varey @ 2 | vara: & y)
which indeed looks linear. This bigraph may also be writigmtpo =) as
lama(bz)(appb(cd) @ idg,))(vare, | vargs)
which represents the original non-linear term. In fact,reiang the two bigraph terms above, we may also write

lama(bw)(appb(cd) @ id{z})(idl | %y | 2/,) (vare, @ z | varg. ©y)

as an in-between term which has the ‘contraction’ pushddeérss far as possible.

14

Milner’s presentation of the'c” rule [Mil04] is in terms of replacing a variablg in M where there is a
unique occurrence af in M i.e. M is linear iny. This may suggest that the translation\dtr terms above to
‘linear’ 'ABIG terms may make it easier (in comparison to Mg, translation) to locate occurrences of redexes
in a’ABIG term.

If we consider the congruence axioms fixr terms and the associated translations, we notice=hgt
=01., =02,y =c,» aNd=cont2 follow immediately inABIG. The equivalencesg which is used for composing
substitutions does not follow from the conventional eqi¢maes on bigraphs. To account for thisABIG, it may
be possible to 1) define an equivalence relation on the bigragABIG such that a bigraph is related to another
if they differ in the order of two adjacent substitutions @)ddefine a bisimulation between one bigraph and a
related bigraph. If we wished to simulats; directly in ‘ABIG, we would require two reaction rules to simulate
both directions of the equivalence which would triviallateto infinite reaction sequences and break PSN. We
believe that wide substitution is a more natural methodXerc to achieve full composition of substitutions.

One may consider replacing the rules’&81G with reaction rules corresponding to thoselkxr rather
than Agyp. To that end, we first observe that many reductions disapibeaugh support equivalence. For
example, using our translation, the variablen the term(y)(W,(M)) is carried to the outer interface and
SO [(y) (Wa(M)]a, xw{zyy = [Wa(yM)]a xefa,y}. This eliminates the need for rules similar (@ eak2),

(W Abs), (W Appl), (W App2), (W Subs), and(Cross) in the modifiedABIG. The rule(Merge) becomes a
casualty of composition. Similarly, rulé¢€’ Abs), (C Appl), (C App2), and(C'Subs) are no longer required. We
then consider the remaining rules. The r@i#€eak1) would be similar to 5~ — the interface preservation is
required by bigraph theory. THéB) rule already has its counterpart iry ” . This leaves the substitution propa-
gation ruleg Abs), (Appl), and(App2), the local copy ruléV ar), the composition ruléComp), and finally the
duplication rule{Cont1). The modifiedABIG system would now resemblecgc with composition (ignoring the
linearity).

It would be interesting to see whether encoding this system Brs is possible or beneficial. The ‘linearity’
in the translation above seems forced and is ‘lost’ throumhpmosition (and hence equivalence of bigraphs). A
specific contraction control may be necessary to properlgiehoontractions. Also, as noted above, non-local
substitution seems a better (or perhaps just more natuagijmachieve full composition of substitutions in a Brs.
The use of distributive rules and local substitution makegitrequire losing PSN or FCS using our translation.

15

Chapter 2

Proofs of confluence and PSN

2.1 Proof of confluence forAgy,,

In this section we prove that the reduction relatiomif, is confluent. The proof is based on Bloo and Rose’s
work on Axgc [BR95, Ros96a, Blo97]. This yields a proof of confluence’i®iG. The proofs are based on the
correspondences betweergc ' and 1 and betweenx" and ¢g".

Milner [Mil04] has already given a proof of weak confluence 1q,;,. It follows from his bigraphical proof
in ABIG. While we do not address his challenge of tackling (stropgnd confluence in the bigraphical setting,
we prove (strong, closed) confluence foy,;, yielding a proof for'ABiIG. Direct, bigraphical proofs of strong
confluence fofABIG remain unpublished to date.

The proof of PSN in Section 2.2 is also based on Bloo and Res#k and the reader may notice that some of
our proofs are quite verbose in comparison. One reasontiftharking with Ag,,, Wwe cannot use the inductive
property that a distributive rule likex” enjoys. On the other hand, some proofs may also be shortereetbd
the fact that substitution occurs ‘at a distance’. In placthe inductive reasoning of Bloo and Rose, we employ
contexts. Because of the existing verbosity, we have chtmspresent the propositions and proofs in this section
without much discussion. We refer the reader to Rose’siltfiRos96a] for more details as we have taken the
proof structure directly from that work.

Notation. We letC[z] denote a contex@ where the hole is filled in with a variable where this occurence af
is free inC[x]. We will sometimes annotate our proofs: the notation
MEN
indicates that the congruence can be shown by an applicafidlemma 3.
Propositions 1. 1. 7SN, 2. 27<$, 3. ©p’SN, 4. ¢p’CR, 5. ¢p’ UN
Proof.

1. EachAz term has finitely many ;" -redexes. Eacl, ” -reduction decreases the numberqf” -redexes.
Hence, 17 SN.

2. A’ = Tb’.Hence 1< by[Ros96a, Proposition 1.1.10%2]

3. ¢p’ SN is shown by finding a map : Az — N such that for alll/ ¢p’ N we haveh(M) > h(N). We
call this map a weighting. Before we define the weighting, meoiduce a labelling of terms. This labelling
and proof of SN is adapted from [Bar84, Lemmas 11.12.17,2118].

For a termM in Az, we number the occurrences of variablies. (not the binders; in Az or (z := N)) in
M from the right to the left, depth-first, according to the adst syntax tree, starting with the number 0.
Give then!® occurrence the inde¥. e.g.

zy((\z.2){x := wv)) becomes:'®y®((\z.2?)(z := w?ol)).

1A bigraphical proof would consist of a case split over thesille overlappings. There are two non-trivial possikgliti Either both
redexes are independent or one lies entirely within therofftee first case yields the diamond property [Mil04]. It stibbe trivial to prove
the same for the second case using Milner’s theorems indkiat t

16

We define the weighting a&i(z™) = n, (M N) = h(M) + h(N),h(Az.M) = h(M),h(M{z := N)) =
h(M) + h(N) i.e. h(M) = the sum of all indices i/

Next we state two properties on labelled terms

Prp(M) = Vz' C M, if 2’ is bound by(z := P) theni > h(P),
PrpH(M) = h(P) > 0 for all subtermsP of M.

We have the following properties.
(@) If Prp(M) andPrpH (M) thenif M cp’ M', h(M) > h(M")
(b) Prp(M) is preserved throughcp’ reduction:

e Inthe ;7 case, the discarded substitution binds no variables.
e Forthe ¢ case, consider

M = 01[02[117](31' = P>] F>01[CQ[P]<.CL' = P)] =M

We only need consider the variables in the new cop¥ ef the proof follows byPrpM . These
variables are either free ' or else bound by some abstraction or substitution aBByE](z :=

P) as variable capture does not occur. Pip(M), these variables satisfy the necessary condition
and soPrp(M").

(c) Proving PrpH (M) amounts to proving that all variables have a positive, nem-4abel. Thus,
PrpH (M) is preserved throughcp” reduction.

(d) Label any termi/ with the initial labelling described above. We hakep(M) and PrpH (M) and
soif M op” M', h(M) > h(M').

As h(M) is finite for all termsM , the proof then follows.

4. op’ LC can be proved by inspecting the cases of the proofigfy’ LC given in [Mil04, Propositions 5.8,
5.5]. ¢p’SNand ¢p’ LCimply ¢p’ CR by Newman’s lemma [New42)].

5. ¢p’ CRimplies ¢p’ UN [Ter03, Theorem 1.2.2(i), p. 17].
|

We skipped past the proof ofcn” LC above so we will briefly outline the important interactobetween
the rules. As the reductiong” is wide, the interactions are not similar kagc where the critical pairs can be
determined as usual in term rewriting systems. Milner hassified the ways in which bigraphical rules may
overlap and has provided local confluence theorems for tbases [Mil04]. The three interesting casesAgy,
are as follows.

1. A &7 or o~ redex lies totally under anothelz” or T, redex.

2. The most interesting case fdg,;, is when a redex is partly inside another. This occurs duedontide
reaction rules that BRSs allow.c” is a wide rule so it is possible that the variableo be replaced is not a
sibling of the substitution definitiom := N — in fact this is only the case in terms of the fourfx := N).
Generallyg is a subterm of some terd. The case occurs whenlies under acp’ redexinM, e.g:

(P(Ay-2)(y == N))){z:=N), y#uz
where a freer lies under the underlinedp™ redex.

3. The last case is when two redexes partly overlap. A t&ffa := N) cannot be both a¢” index and a

D index as either: € fv(M) or not. Thus, a ¢ redex cannot partly overlap with a5 redex. Two
" redexes which overlap must be the same redex. The only casetbf overlapping redexes is when

two G redexes overlap and in this case, the overlap must be onlisétstion definitionz := N. Milner
provides a general bigraphical proof for this situationeEssential property of theg” reduction is that

17

the substitution definitiom := N remains after a' ¢~ reduction. For\gy,, the following diagram explains
the resolution.

(- N)z=N)—5=(-N---N--)(z:=N)

Notation. As in [Ros96a], we denote the uniqugp’ -normal form of M as|cp(M). We say thad/ is pureif
M =lcp(M) € A. We denote the uniquey” -normal form ofM as|p(M). We say thail/ is garbage-freé
M =|p(M).

The following lemmas concerning unique normal forms will deeful. They are required in some proofs
where we cannot avail of the inductive methods that werdrmally employed.

Lemmas 2 (normal forms). For all Ag,p, termsP and @,
1. len(PQ) =lep(P) dep(Q)
2. ¢CD(AxP) = \z. ~LCD(P)

3. lep((PQ){x1 := N1) - - - {my, := Np))
EJ«CD(P<IE1 = Nl) . (-'En = Nn)) JrCD(Q(II}l = Nl) . (xn = Nn))

4. ¢CD((Ax P)<£U1 = N1>)
=lop(Az.P{z1 := Ny) -+ (mn = N))
= Az. Llop(P{x1 := N1) - (2, := Np))

5. 1,2, and 4 hold withop replaced byl

Proof. We use the fact that reductionsAg,, may be applied to any subterm of a term (this is realisédBnG by
the fact that all controls besides the atowie control are active). Specifically; for (1), and@ can not interact
via ¢p’ reductions. (1) then follows asgp’ UN. (4) follows by the variable convention (4 z;,1 < 1 < n)
and then an application of (2).

|
Lemma 3 (representation). For all termsM, N and variablex,
Lep(M(z == N)) =lep(M)[e :=lep(N)]
Proof. We induct over the number of symbolsM, Ny, ... N, and show that
dep(M (@1 := Ni) -+« (T := Np)) =lep(M)[21 :=lcp(N)] - - [£n :=)cp(Nn)]

We break the proof over the structure/df:
Case M=z,n=0: dep(z) =lep(x)

Case M=z,n>0:

if z # 1 then
lep(z(@y := Ny) -+ (@ := Np))
len(z(ze == No) - - (z, := Np))

Jon(@)[@2 :=lon (V)] -+ [:=lep
lon(@)[@1 :=lon(V1)] - [:=lop

HE

18

if £ = z1 then

lep(z(zy == Ni) - - (zy := Np))
lep(Ni(za := Na) - -+ (zp := Ny))
lop(V1)[z2 :=lcp(NV2)] - - - [T :=dcD(Nn)
z[z :==lcp(N1)][z2 :=lcp(N2)] - -+ [#r :=dcD(Nn)
dep(@)[z1 :=lcp(N1)] - - - [2n :=lep(Vn)

Hne e

Case M = PQ
lep(M(zy := Ni) -+ (2 1= Ny))

= lep((PQ) (@1 := Ni) - -+ (zn := Np))
2 Lop(Play = N1) -+ (@n == Np)) Lop(Q(ay i= N1) -+ (@ =
= (Jen(P)[wy =lcn(N1)] -+ [#n =lcn(Na)]

lep(@)[z1 :=lep(N1)] -+ [2n ==lcn(Ny)))
= ({op(P) Len(@))[z1 :=len(V1)] - - - [#n :=)cD(Nn)]
2.1

]]

Ien(PQ)[z1 :=dcp(N1)] - - [#n :=lcp(Nn)])

Case M = Xz.P

lop(M(zy := Ny) - (@ := Ny))
~LCD(()\$P)<$’1 = Nl) e <xn = Nn))
Az. lep(P{zy := Ni) -+ (@, := Ny))

Az. Lep(P)[z1 :=lcp(N1)] - -« [#1 :=)op(Nn)]
(z # z;,1 < i < n by the variable conventign

lop(Az.P)[z1 :=lcp(N1)]- - [#n :=)cD(Nn)]

I
=

e

Case M = Py :=Q)?

Jon(M{zy := Ny) - - {z,, := N,))
lep(P(y := Q){z1 := N1) - - - (1= Ny))
(inductive case over the symbolsi @, NV, ... N,
which has less symbols thdXy := Q), Ny ... Ny,)

len(P)ly :=lep(@)][z1 :=lop(N1)] -+ - [z :=lcp(N)])
(use IH backwards oveiop (P)[y :=lcp(Q)]
which has less symbols thdh Q, Ny ... N,,)

dep(Ply == @))[z1 :=dcp(MN1)] - - - [#n :=lcp(Nn)])

1=

1=

Corollary 4 (substitution lemma [Ros964a]).
M(z := N)(y := P)“cp” M(y := P){(z := N{y := P))
Proof. Follows from previous lemma, the-calculus substitution lemma

Mlz := Nlly := P] = M[y := Pl]lz := N[y := P]] (%),

2Thanks to Thomas Hildebrandt for explaining this case to me.

19

Nx))

and the fact thaicp(Q) is a pure term for ang). Explicitly;

lep(M{z := N){y := P))

= len(M)[z =4en(N)]ly :=ten(P)]
Y LoDy ==en(P)]lr ==4en(N)ly ==ben(P)]]
2 lop(M)ly =Lep(P)][z :=len(N(y := P))]
= len(M(y = P){z := N(y := P))
and the corollary follows. O

The following is slightly different to the correspondingoprf for Axgc. In Agp, the only type of reduction

which reduces the set of free variables of a terniis . In Axge, ¢’ is not the only reduction with this property
— vge' (asubrelation of x”) may also reduce the set of free variables. The statefrgntd/) =lcp (V) in
the first two propositions follows trivially bycp” UN.

Propositions 5. For any M,
1. If M 7 N thenfv(M) D fv(N) andlcp(M) =lcp(N).
2. If M & N thenfv(M) = fv(N) and {cp(M) =lcp(N).
3. If M 17’ N thenfv(M) = fv(N)
4. If M is garbage-free thefw(M) = fv({cp(M)).
Proof.
1. 5’ may discard some free variables, hefio@\/) D fv(NV).

2. LetM = C'[Clz){z := Q)] ¢’ C"[C[Q)(z := Q)] = N. The occurrence af which is replaced was
bound inM so no free variables are lost. Agywhich is bound in) in M is bound within@) or by some
binder above) in M. The same is true of the copy ¢ in N and so the set of free variables does not
increase anfv(M) = fv(N).

3. By definition,(Az.P)Q has the same set of free variable4s := Q).

4. There is a reduction path

M =M, oo’ My 5" M{ oo’ My 57" Mj op’ -+ b M), =lcp(M)
where
- Miy, = My, if Mj oo’ M;y1isa ¢’ step which does not substitute for the last free occurrence

of a variabléa.e. it does not create garbage,

- Mip1 7 M, if M] cp” M;y1isa o7 step which does substitute for the last free occurrence of
a variable.e. it creates garbage,

- all M} are garbage free.

We now show thafv(M[) = fv(M[,). For the first case of ¢ reduction, this follows by (2) above. For the
second case, thep” discards some free variables but those variables were cdyyie¢he =7 reduction and
avoided variable capture. The proof follows layp” UN. O

20

Proposition 6. For pure M, 1. M ~® oo and2. ¥ —— 1

B x

v)
g >|:| A }D CD

Proof. There exists a pure contegtsuch thatV/ = C[(Az.P)Q] with P and@ purei.e. P =|cp(P),Q =lcp
(@Q).

1. We have

Cl(A\z.P)Q]
A C[P(z := Q)]
ek Cllen(P(z := Q))]

2 Cllen(P)[z :==lcp(@)])]

ClP[z :=Q]]
andC[(\z.P)Q] 5 C[P[z := Q]).
2. Follows similarly.
O
Lemmas 7 (Projection).
1. Forall Agyp-termsM, M—2 N

2. Forgarbage-fred/, M—2 N

LCD LCD

lep(M) ; » dep(IV)
Proof. We prove 2 by inducting over the structure/df.

Case M = (A\z.P)Q,N =P(z:=Q):

len(M)

(Az. Jcp(P)) $op(@Q)
len(P)[z :=len(Q)]

Yop(P{z = Q)

e | e
1

Case M = PQ,N =P'Q
2.1 + 2.1
len(M) = Len(P) den(@) 57 ™ len(P') Len(Q) = len(N)
Case M = PQ,N = PQ'": As above
Case M = \z.P,N = \z.P'
lon(M) =lop(Oa.P) E Az. lep(P) %> H 2 lon(P) E Lop(Oa.P)
Case M = P{z:=(Q),N = P'{z := @): Similar to the next case.

21

Case M = P(aj = Q),N = P(.’L’ — Q/)
+
By the inductive hypothesis, we know thaip(Q) 5~ lcp(Q') and so

Len(Plz =Len(@)] 5 en(P)lz =len(@)]

since by the fact thal/ is garbage free we have that fv(P) and by Proposition 5.4, it follows thate fv({cp
(P)).

Now, by application of Lemma 3 twice we have

Len(M) £ Len(P)z =Len(@)] 57 Len(P)lz :=4en(@)] 2 Lop (V).

The proof of 1 is similar except that we do not know in the lagtecthatr € fv({cp(P)) and so we have to
use ~5”, allowing the reflexive closure to provide identit)i.e. we do a case split taking eithere fv(P)

(proof as above) ar ¢ fv(P) (in which case,.cp(M) =lcp(N)). O

Proposition 6, Lemma 7, andsp” UN prove thatAgy, iS a conservative extension of thg-calculus, with
<o as translation.

Theorem 8. For pure termsM, N: M 3c5’ N <= M 3" N
Proof.

Case<«: AssumeM ~;” N; we then prove by induction on the lengthof the 8-reduction, using Proposition
6.2 in each step:

Case:n =0 Trivial
Inductive hypothesis (IH):n =k M %>N = M acg’ N
Casen=k+1
MESN=M 5 M N
By Proposition 6.2 and IH, we havl 7 o' M' acn’ N.

Case=: We induct over the length of the,c’ -reduction to prove

u ACD M, ACD ACD M,_, ACD N
e IS
M 5 » Jop(M1) 5 Soee s 5 » Jop(Mp—1) 5 » N

Each step in the top of each square above is one®f, 7, or ' and so each square respectively
gives rise to one of the following diagrams:

CD A

M; ———— M1 M; ————— M1
iCD lCD lcn lCD
lep(M;) = lcp(Mi41) lop(M;) -5 lep(Miy1)

which follow respectively by cp” UN and Lemma 7.1.

22

Corollary 9. xcp’ CR

Proof. We prove the following diagrammatic proposition which sgathat scp’ is strongly confluent. Strong
confluence implie€R.

CD
ACV | M
=
B B
| » O O
CD B B =
| oD » O

We have shown that
1. 57 C acp (by Proposition 6.2),
2. VM € Agp : M aci” lep(M) € A,

3. VM,N € Aguwp : M acn’ N= lop (M) 57 lep (V). This follows from the fact that &7 acp’ N

reduction is either &/ " N reduction or aM ¢p’ N reduction. The former case is shown by Lemma
7.1 and the latter case frorgp” UN.

The proof follows from the generalised interpretation noetl{GIM) [KR97] which was inspired by Hardin’s
interpretation method [Har89]. In the notation of [KR94,is the set of terms in\g,},, B is the set of pure
AMterms,R = xcp’,R' = 57 andf = op'.

Explicitly; from 2 we can fill in the horizontal arrows beloma by 3 we can fill in the diagond arrows

below.
CD

ACD/?I—/?:I

N~ N
ACD
| T»‘ |
By the confluence of 5 we have
ACD m CD [ACD
/ /; A
H— N |
s g .
CcD ACD
where, by 1, the dotted arrows can be filled in. Henggp’ CR. O

Corollary 10 (closed confluence ifABIG). Confluence holds for every image of\g,;,-term without metavari-
ables inABIG.

Proof. The result follows from Corollary 9 and [Mil04, Propositiéib]. O

23

2.2 An inductive proof of PSN

In this section, we prove thaticp’ preserves strong normalisation (PSN)®feduction. PSN means that if
M e A is strongly normalising fog-reduction then it is strongly normalising fogcp” reduction.

The proofs are based on Bloo and Rose’s work [BR95, Ros968,/Bbn methods of proving PSN for calculi
with explicit substitutions. We follow the inductive proof [BR95], employing the technique of garbage-free
reduction to assist us. Bloo [BIo97] gives an alternativaiictive proof and Bloo and Geuvers [Blo97, BG99] use
the recursive path ordering (RPO) technique. Our indugiie®f is inelegant and we present a better proof in
Section 2.4.4. We have not tried a proof using the RPO tecierag we felt that the same complications may occur
as in the following inductive proof. We thought specificalhat the fact that the substitution definition persists
after a ¢ reduction and remains in place may be a complication for a@ R®of.

In Section 2.2.1, we follow Rose and prove PSN for a calcAliys,p where reduction, called garbage-free
reduction, can be described as ‘do ag” ora ¢ followed by total garbage collection.’

Section 2.2.2 introduces two new calcl,,e andA,,,c». They are both weak versions Afy, in that the
reduction relation is a subset ofgp’, respectively omitting all or some copying between substihs. This
copying between substitutions effectivéycompositions of substitutions ifg,,. We prove PSN fol\y, s
in this section by adapting Rose’s inductive proofs leigc. We show that as\y,,c» allows some form of
composition of substitutions andgc does nat, the set of strongly normalising terms &f,,; » is a subset of the
set of strongly normalising terms akgc.

Section 2.2.3 discusses why the propeulySN used in the proof of PSN fok,,;,c» iS not a sufficient property
for reasoning about infinite reduction paths inside garbage,.,. As might be expected, the problem is with
copying between substitutions. We show that these rechgftbat we disallowed idg,,) conspire to make the
set of strongly normalising terms df;,;, a strict subset of that of bothxgc andAgy,e. The issue is that more
cases of infinite reductions inside garbage can occur. Wifgiehe set of strongly normalising terms af,;,
but do not have a neat characterisation a&f,c» or Axgc.

Section 2.2.4 finally tackles the proof of PSN flog,.

2.2.1 PSN forAsub¢D

Definition (body of a substitution [Ros96a]). We sayN is a body of a substitution in/ if for someP, «z,
P{z := N) is a subterm of\{.

Notation (in(side), under a body of substitution). We sayN is in a body of substitutiorP if NV is a subterm of
P. We sayN is under a body of substitutioR if N is a subterm of\/ in M (z := P).

Definition (top-level substitution). If a substitution{z := P) in atermM does not lie inside any other substitu-
tion then it is called aop-level substitutionTop-level substitutions may liederother substitutions.

Definition (garbage-free reduction). ac;p’ is(ac’ - 1), i.e., the union of the composition of " with
complete garbage collection. We denote the garbage-fidigctéon calculushgypp.

Garbage-free reduction is reduction “where all garbagerisaved as soon as possible”[Ros9%@] as soon
as we perform a\pply or Copy, we immediately discard any garbage. This ensures that wetdavaste time’
reducing garbage.

Garbage-free reduction also has a theoretical advantarge fotes that fakxgc, “infinite reductions consist
mainly of reductions inside garbag¢Ros96a]. As we show in Section 2.2.4, this is true even mof®sAg,n
as acp’ allows copying between substitutions. This leads to yetenwaises of infinite reductions thanisgc.
Garbage-free reduction removes garbage whenever it itecread so avoids these infinite reduction sequences.
We follow Rose by proving PSN first foks,,,p and then reason about PSN for, ,,» andAgyp.

Remark. Our definition of garbage-free reduction is slightly difet to that of Rose. In\xgc, garbage-free
reduction was defined by, & = (5t - g'). We have previously mentioned that the reduction relation
<’ is somewhat matched by’ — this would initially suggest that garbage-free reducfimmA,,;, should be
defined asacp’ - . If we use that definition then the remaining proofs in thistiga still hold but it turns
out that we may instead use the smaller relation defined abblve reason is that in the following proofs, any

3There is an extensiokxc ™~ of Axgc which has weakife. conditional) composition of substitutions and retains PSék [BG99, Blo97]
and Section 2.3.5 for details.

24

garbage-free reduction path will begin at a garbage-free fd. SinceM contains no garbage, a reduction path
M xcp’ M' 5 N must beginwith an3” or ¢ reduction. AsN is guaranteed to be garbage-free, the same
holds for N and so defining garbage-free reduction@sp” - 5 is redundant for our purposes — in the proofs
of PSN, reduction paths start at pure terms.

We can also look at the issue from another angle. Mfis garbage-free and/ m>N such that

M <" M' 5" N then the real role of thex” reduction is to seek and replace free occurences of a variabl
with some body of a substitutidre. asM is garbage-free, a reductidd xvge’ M' is not possible. Such reduc-
tions M ' M' —gc N essentially worm down inside the terid until they hit paydirt with a free occurrence
of some sought-after variable. Any garbage encounteretyalze way is quietly discarded. Theg” relation
performs this seek-and-replace job af” from the outside (without the seeking). Thg™ relation then removes
the garbage. This is our intuition as to why ¢~ suffices to replace,, . in the following proofs.

We first prove confluence and then PSN Qg p.

Lemmas 11.

1. ForallAgy,-termsM, M _ACD N

N

(M) ;5o dn(V)
2. For garbage-fred/, M AGD, N
D

EZ

ACID 5 Ip(N)
Proof.

1. WhenM 7 N, the prooffollows from 57 UN. WhenM ¢’ N and the reduction occurs inside garbage
then|p (M) =|p(N). Otherwise, forM 57 N we have two cases depending on whether the reduction
creates garbage or not. These are depicted below (using ket

(Az.P)Q 4 Pz := Q)
gl gl
(Az. Ip(P)) 4n(Q) —— In(P){@ :=Ip(Q)) -+ In(P)

where the dotted reduction occurs when¢ fv({p (P)). So we reachp (N) from |p (M) with one
“acup reduction.

A M ¢~ N reduction outside garbage means that a free occurrencenaf gariabler is not discarded. A
3|m|lar diagram sketches the proof.

Clzl(z = Q) ———— C[Q)(z == Q)

g 2|

In(O)z)(z :={p(Q)) —= In(C)In(Q){z :=Ip(Q)) > In(C)In(Q)]

2. This follows as

o ACD M, D M, ACD M, D M, ACD, D N

. D D D D D

ACID " ¥ ¥ _ ¥
In(M) = iD(Mz)ACLﬁiD(MQ = ¢D(M4)Ac_fD' == Ip(N)

clearly holds — ad/ is garbage-free, the left triangle is given by the definitén 5o, " . The first square
on the left is given by 77 UN, the next square is given by 1, and so on.

25

Theorem 12. 2c;p’ CR.

Proof. “ac;p’ CR when 2a;p” ¢ [Ter03, Proposition 1.1.10.iv]. The latter is shown asdots. The diagram
on the left below can be filled in by noting thatyc;p* C acp’ and that 2cp” CR (which implies that

acn). The diagram on the right can then be filled in by applying bearl 1.2 twice, noting that the terms at
the starting points of the triangles are garbage-free.

ACID
| | ‘
AC,LD/! ACD ACiD/z ACD
X% \\g <
| O |] » O
X / b 5
ACU;\Q ACD ACJ,D\\A/ ACD
| |)
ACID

O

Theorem 13 (PSN forAgu,,p). Pure terms that are 5 -strongly normalising are also strongly normalising for
_—
ACID " -

Proof. Assume) is pure and strongly normalising forz . SinceM is pure it has nocp” -redexes. Thus ev-
ery “acyp” -reduction (finite or not) starting with/ is of the formM = My 2’ My ¢’ My A’ M3 ¢op
where the “cg” " reductions are really of the formp™ - (7 - ©?)---(¢’ - Dp")aswe are workmg in
—_—
AClD
Given any such reduction, we can construct the reductiophgaa below:

M == M, A My CcD M A Ms cD
- e -
+ A X A
lep(Mo) 4 » dop(My) lep(Ms) p » dop(Ms)

where every second square starting from the leftmost sdologvs by Lemma 7.2 and where the other squares
follow from p’ UN.

M is strong normalising for 5~ and so the lower reduction is finite. Sincgp” SN, the upper one must
also be finite. 0

2.2.2 PSN forAg,cs

Definition (inter-substitution reduction, 7, ¢’ reduction).
1. Inter-substitution reductiois the contextual closure of the reduction generated by:
C'[M({y = Clz))](z = N) 5 C'[M{y := C[N])](z := N)
2. @’ isthe largest subrelation of g which excludes any inter-substitution reduction.

3. ¥’ is the largest subrelation of 7 which excludes any inter-substitution reduction whosexed not
entirely located in a body of substitution.

@ could also be described as excluding ary” reductions where the variable of the redex was located
inside a substitution. ¥ could be described as excluding ang~ reductions where the substitution definition
is a top-level substitution and the variable of the redexiliside another substitution. For example,

2ly = Q(z = Clul){w := P)) 505’ 2y := Q{2 := C[P)(w := P))

26

isnota ¢ reduction as the free occurencewfs located inside a substitution definition. It isg” reduction
as the o7 redex is entirely contained inside a body of substitutipz := C[w]){w := P)*. The reduction

Q{z := Clw])(w := P) xcp Q(z := C[P]){w := P)

is again not a g reduction. It is also not g’ reduction as the inter-substitution copy happens betwaen t
top-level substitutions. Clearly,c” C & C G-

An inter-substitution reduction is a replacement of a fragable located inside a substitution definition with
some term. This form of reduction is related to the notionarfposition of substitutions (see Section 2.3) which
has been known to break PSN in other calculi (see Sectior,2.3.4, and 2.3.6).

Definition (aep’, Ac’D » Asubes Aguper)- aep = (ap’ U @'). acb = (ap’ U &). We denote their
respective calculi ad,pe andAg, oo -

Axgc does not have a rule to compose substitutions. Therefomeuitd be reasonable to hypothesize that an
inductive proof of PSN for\s,ne would follow the inductive proof of PSN fokxge. We strongly believe this
but do not prove it here. Instead, we will use the inductiveopiof PSN forAxgc to prove PSN for the slightly
strongerA,,,c» calculus. However, the reasoning at each stage should aeldddr Ag,be. The reason we are
able to reuse Rose’s inductive proofs whilst allowing sonterisubstitution reduction is that the proofs rest on
a propertysubSN (see below) which states that bodies of substitutions avegity normalising for xcp’ . This
property must be shown to be preserved by reduction on asabde which includes the strongly normalising
pure terms. We will show thaticry does indeed preserve this property on a suitable subsetn Aguation,
note that ifsubSN (M) then as 3cP5 does not allow any inter-substitution reduction at topeleany other inter-
substitution reduction preservasbSN.

Lemma 14 ((cp=|cp=4eD)-

Proof. We prove|cp=|epwhich is sufficient. Given a term/, the innermost substitutions are subted®{s :=
Q) of M such thatP and@ are pure. Given such a subterm, reduce an innermost suiostitu

M = C[P(z := Q)] & ClP{z = Q}(z = Q)] B’ C[P{z = Q}].

None of the =7 reductions in the path are inter-substitution reductidds.may repeat this process until it ends
(as op’ SN). The proof follows by cp” UN. O

Definition (SN, SNxge, SNA, > SNA_ b ,)- SNy is the set of strongly normalisink-calculus termsSN e,
SNA...» andSNy_ - are the sets ox terms which are strongly normalising foTbxgec ', acp’, and AcPs
respectively.

cb

The next two definitions help us describe if the reductiorhgatf a term outside garbagg#gf) or inside
substitutions fubSN) are finite. The intuition is that a term is strongly normalgsfor A if finite paths
always exist both outside garbage and inside substitu(ibimsorem 19).

Definition (#gf(M)). For all terms M € Az, definef#tgf(M) to be the maximum length of garbage-free
("acyp ') reduction paths starting igp(M).

Definition (subSNe(M),subSN¢s (M),subSN(M)). The predicatessubSNe (M), subSNq (M), and
subSN (M) state that all bodies of substitutions M are strongly normalising foryep’ -, Ac’s -, and acp

respectively.

We will not discussubSN e (M) or subSN s (M) much here. We hypothesize that the former is sufficient to
prove PSN forAgybe but the latter is not sufficient to prove PSN fby,,c» — the termp(u := Z) in Proposition
15 would be a counterexample to the main theorem of this@ectorA,,;,c», We need the stronger property
subSN.

To demonstrate howtgf andsubSN describe the finiteness of reduction sequences outsidesiaigarbage
respectively, lef2 = (Av.vv)(Aw.ww); #gf(2) = oo andsubSN() is true (there are no substitutions) whereas
#ef(z(y := Q) = 0 andsubSN(z(y := 1)) is false, where: # y.

Notation (properties of terms and subsets ofAx). We typically use the same notation for a property of a term
and a subset ohx e.g. subSN(M) means thaf\/ satisfiesubSN whereas#tgf < oo denotes the subset dfk
which satisfies this property.

4Put another way{w := P) is not a top-level substitution.
5In Bloo’s terminology [Bl0o97], we would say thatf is decent

27

Definition (Ax< *°). We define a subsdtx<* of Ax as:
Ax<® ={M € Ax|VYN C M - |cp(N) € SNg}°
whereC denotes ‘subterm (non-strict) of’.

The pure terms oAx<* are exactly the strongly normalising pure terms of Mealculus. As it excludes
some non-terminatingx terms, it seems a good starting point for the proof of PSNatt, Ax< > characterises
SN xge [BR95] and we hypothesize that it also characterighg_, .. It does not characterizeN,,,, (see
Section 2.2.4).

Ax= " also does not characterig®ly . DefineZ as:

Z = 2{(z := yy)y := lv.wv),
where all variables are distinct. The set of subterm& afre (up to equivalence):
S = {v,vv, v, 2(z := yy), Z}.
SNxge-
Proof. Consider the termp(u := Z) € Ax<*. By [BR95], Z € SN). However,

Proposition 15. SNa_

ubCP

Z o o plu=z{z = Q)(y := lv.ov))

and Proposition 6.2 shows th&tis not strongly normalising forycr . O
Corollary 16. SNAsubcb C SNxge-

Proof. By definition, aAx term which is not inAx<* has a subterm whose” normal form is not strongly
normalising for3-reduction. Any infinite3-reduction sequence can be matched by an infifigeg sequence
(Proposition 6.2 and Lemma 14). Ay, = Ax<*°, the seBN,y_, , must be a subset 6N y,.. Proposition
15 proves that it is a strict subset. O

We now define garbage-reduction which classifies all thelésséreductions which occur in garbage (and
may lead to infinite sequences).

Definition (Garbage-reduction).

1. Garbage-reductiois the contextual closure of the reduction generated by:

e If N acp’ N'andz ¢ fv({n(M)) thenM (z := N) acp’ M(z := N') is garbage reduction.
o Ifz ¢ fv(M)thenM(z := N) acp’ M is garbage-reduction.
o If z ¢ fv({p(M)) then

CIM{z:=...y..){y:=N) acp’ C[M{z :=...N..){y:= N)
is garbage reduction.
2. Reductioroutside garbagis any reduction that is not garbage-reduction.

The first type of garbage-reduction reduces the term thatreplacez but any free instance af in M is
contained inside garbage. The second type of garbagetienus simply garbage-collecting viap”. The
third type is special to\g,;,. It describes the wide substitution of a variable withinlggaye. The contex® in
the definition is needed as the outer substitution may notifeetty above the inner substitution. This garbage
reduction is always a¢~ reduction and can lead to the infinite sequences in terms {ike= yy)(y := Av.vv).

In Asube, this final type of garbage reduction does not occunJg, -+, these reductions are a special case of the
first type as the redex must be located entirely in a body astiulion.

As any T~ reduction is garbage-reduction, reduction outside ga¥lwady pertains to the > and &~
reductionse.g.if N 3¢’ N’ andz € fv({p(M)) thenM{xz := N) xc” M{x := N') is outside garbage. Any

ac’ reduction whose redex is not totally or partially contaiivee body of substitution is also outside garbage.

6Bloo denotes this set @< > —we useAx < > to keep our notation consistent.

28

Propositions 17.
1. If M xcp’ N is garbage-reduction theiy (M) =|p(N).
2. If M acp’ N is outside garbage them (M) acyp’ Jp(V). Furthermore,

(@) if M g’ N thenlp(M) " D" Ip(N),
(b) if M @7 N then|p(M) " " Ip(N).

Proof.
1. We split the proof on the three cases where garbage-iedwticurs:
e LetQ xcp’ Q' andz ¢ fv({p(P)). Given a garbage-reduction
Pz := Q) acp’ Pz :=Q'"),

the proof follows by 15 UN and the diagram

Pz = Q) —ACD .
) Dl
In(P)(z == Q) (z:=Q")
D Dl
Ip(P) =——=——== |p(P).

o Follows by 57 UN.
e Letz ¢ fv({p(M)). The proof follows by 57 UN and the diagram

Iy := N) 2B oMz :

KN K
L |

ClM(z :

Clin(M){x =My == N) Clip(M)(z

D D

p(M)(y := N) == Clin(M)]{y := N).

2. AreductionM 2’ N outside garbage can be described as contracting a redexvitnich exists in some
garbage-free form igp (M). More precisely, the redex of a reduction outside garbagetermM has a
unique residual in the teryy (M); there is at most one residual as no copying takes place ane ihat
least one residual by the definition of reduction outsidéggei.e. the residual cannot be discarded.

The proof follows from the two diagrams in the proof of Lemniall
(@) If M &7 N then the free occurrence of the variable (shin the redex does not lie under substitution.
In |p(M), it still does not lie under substitution.

(b) If M o N then the entire redex is a subterm of a body of substitutiomis Temains true for the
reduct of the redex igp(M).

O

The following proofs relate specifically th,,,,c» . We hypothesize that they also hold fog, @, replacingsubSN
with subSN¢.

29

Lemmas 18.
In Agynes s
1. If subSN(M) andM cvg N is garbage-reduction, thenbSN (V).
2. If subSN(M) thenM is strongly normalising for garbage-reduction.

Proof.

1. This follows from the definition of garbage-reductionr B first case, say/ = P(z := Q) acp’ Pz :=
Q') = N. SincesubSN(M), Q is strongly normalising for ycp’ -reduction. TherQ’ is strongly normal-
ising for acp’ -reduction.

For the second case, s3y = P{z := Q) acp’ P = N. Then the bodies of substitution 8f are a subset
of those ofM and sasubSN (V).

In Agp
terms.

o, the third case is a special case of the fir§the proof follows by induction over the structure of

2. We begin by defining two interpretations for subSN-terbfis Let hi (M) be the maximum length of
acD’ -reduction paths inside bodies of substitutions\of The valueh; (M) is well defined as\ has a
finite number of substitutions and the body of each subditus strongly normalising foracp’ -reduction
by subSN(M). Let ho(M) be the number of substitutions of top-level substitutiond/. Any garbage-
reduction reduct of\/ will never have a greater number of top-level substitutithem M as a garbage-
reduction of the form 37 (which introduces new substitutions) will only occur undesubstitution.

LetM xcp’ N be garbage reduction occuring under a body of substitufidd oThenh, (M) > hy(N) as
if h1(N) > hi(M) then there exists aycp’ -reduction path starting frod/ which is longer thark; (1),
the maximum such path.

Let M xcp’ N be garbage reduction which does not occur under a body ofisuttos of M. By the defi-
nition of garbage reduction it must be thidt 5 N and the reduction throws away a top-level substitution.
Hence, the number of top-level substitutions\éfis reduced by 1 antls (M) > ha(N).

For any garbage reductiaW xcp’ N either ofhy (M) or hy(M) decreases while the other does not in-
crease. Hence, garbage reduction is strongly normalisingufboSN-terms.

O

Theorem 19. If #gf(M) < oo andsubSN(M) thenM is strongly normalising forycr g -reduction.
Proof. We induct overitgf(M).

Base case#gf(M) = 0. By Proposition 17.2, any reductio xc¢g N must be garbage-reduction. Now, for
any garbage reductialf sy N we have by Proposition 17.1 thas(N) =|p(M). Hence#gf(N) = 0
and so by the same argument any reducibgcrg N’ must also be garbage reduction. It follows that any
reduction path starting @i/ contains only garbage reductions. A&SN (M), it follows by Lemma 18.2
that M is strongly normalising.

Induction hypothesis Suppose#gf(M) > 0. We assume that #tgf(M') < #gf(M) andsubSN(M') then
M is strongly normalising forycr . We call this induction hypothesis IH1.

Suppose there exists an infinite reduction path

M = My xchs M1 AcB M2 acs M3 Acis -+

We have assumed thaitbSN(M). By Lemma 18.2M is then strongly normalising for garbage reduction
and so there isn such thatM xcrd M,, is garbage-reduction ant,,, ac’s M1 is reduction outside
garbage. By Propositions 17.1 and 17.2, we have

#ef (Mmq1) < #gf(Mm) = #gf(M) < oo.

“This is not true forAg,1, and this case breaks the lemma for that calculus.

30

subSN(M,,) by Lemma 18. If we can prove by induction on the structurd®f that alscsubSN (M, 11)
then we can invoke IH1 to show thaf,,, is strongly normalising for yc5 -reduction. We call the
new induction hypothesis IH2. We treat some cases belovngittat M,, acs’ M,,.1 by definition of
reduction outside garbage.

Case M,, = (\z.N)P jcig N{z := P) = M,,1. Bodies of substitutions itV and P are strongly normal-
ising since they are also bodies of substitutiongn.N)P = M,,, andsubSN(M,,). Also, #gf(P) <
#gf((Az.N)P) and so by IH1P is strongly normalising, thusibSN (N (z := P})).

Case M,,, = Clz]{z := P) ac'p C[P){z := P) = M, 1. We are inAy,,c» SO if this free occurence of is
located inside a body of substitution, then the definitipn= P) is located inside the same body and the
next case addresses this situation.

Otherwise is located outside of a body of substitutfor is replaced byP whose bodies of substitutions
are strongly normalising as they are also bodies of sultistitsiin 1/,,,. OtherwiseM,,, and M,,; have
identical bodies of substitution. HeneabSN(C[P]{z := P)).

Case M,, = N{z := P) xc'g N{(z := P') = M,, 1 whereP xcrg P'. We knowsubSN(M,,,) which implies
subSN(N). P is strongly normalising forycp’ sincesubSN(M,,,). Hence P is strongly normalising and
subSN(N(z := P")).

Case M,;, = NP jc'g N'P = M,;, 11 whereN xcig N'. ThensubSN(N') by IH2. AssubSN(N P), we have
subSN(P) and sasubSN(N'P).

Case M,, = \z.N xcrg Az.N' = M1 whereN xcrg N'. Similar to the last case.

Thus, M, 1 is strongly normalising forycrg -reduction. This completes the proof &6 xcvg M,,41 is @
finite sequence. O

Corollary 20 (PSN for A pc). acip PSNof 5.
Proof.

Case=>. If M is pure then it has no substitutions andsabSN(M). If M is strongly normalising for 5 -
reduction then by Theorem 1&gf(M) < oo. We now apply Theorem 19.

Case<. By Proposition 6.2 and Lemma 14, infinite; * -reductions induce infiniteycr 3 -reductions.

O

We should remark that there is no bigraphical equivalentM@k,e or Ay,,co. There is no obvious way to
disallow inter-substitution reduction without changiig thature of activity of controls in a bigraphical reactive
system (and assuming a suitable notion of activity is defejab
2.2.3 The problem with inter-substitution reduction

The proof in the previous section does not hold Agg;,. This is because inter-substitution reduction in general
can introduce cases of infinite sequences inside substituthich do not occur itxge or Ag,,cs -

Proposition 21. SNy, 7 SNaxgec-
Proof. ConsiderZ from the last sectionZ € Ax< > and so by [BR95]Z € SN yg. However,
Z <o o 2z = Q) y = Ivww) = Z'

and Proposition 6.2 shows th&tis not strongly normalising foracp’ . O

8This case breaks this theorem fhg,;, — consider the ternd/ (y := z(A\v.vv)){z := dw.ww) and the obvious G reduction which
does not preservbSN.

31

Corollary 22. SNj_., C SNy C SNxge-

sub

subCP

Proof. By definition, aAx term which is not inAx<° has a subterm whosgp’ normal form is not strongly
normalising forg-reduction. Any infinites-reduction sequence can be matched by an infinjtey” sequence
(Proposition 6.2). ASNjxzc = Ax<, the setSN,,,, must be a subset &N xgc. Proposition 21 proves
that it is a strict subset. AZ is strongly normalising forscr , a similar argument and Corollary 16 finish the
proof. O

Bloo proposed that the crucial step in the inductive prod?8N forAxgc was that it was provable that given
atermM in Ax<°, if subSN (M) then all bxge -reductsM’ of M satisfiedsubSN(M'). In the proposition
abovesubSN(Z) is true butsubSN(Z') is false and the inductive proof fails fdr,p.

The reason it fails is thatubSN(M) is not a strong enough predicate fby,,. subSN is meant to capture
the property that all reduction sequences that occur irgithstitutions are strongly normalising. Howewiy,,
allows interactions between substitutions similar to cosifion of substitutions (see Section 2.3) which cannot
occur in\xge. Specifically, these interactions are inter-substitutexfuctions. Proposition 21 demonstrates how
substitution may alter another body of a substitution siettsubSN no longer holds. In explicit substitution
calculi without composition of substitutions, this behawiis not possible. Faks,;,, we need a stronger property
similar tosubSN to provide for this behaviour.

As our property will consider a body of substitution and albstitutions above it, we first introduce some
notation to make the remainder of the section more legible.

Notation (substitutions, superbody of substitution). When considering a subteri of some term\/, the term

Ny := Ri){y2 :== Ra) ... (yn := Rn)

includes all the substitutions aboyéin M (where(y; := R;) lies below(y; 1 := R;11)). This is abbreviated to
N{y1 ...yn). WhenN is a body of substitution, we s&¥(y, . ..y,) is asuperbody of substitution

Definition (preSN). The predicatepreSN(M) states that all superbodig¥ of substitutions inM/ are strongly
normalising for acp’ .

preSN(Z) does not hold a§yy){(y := Av.vv) is not strongly normalising. The predicate seems strongvieut
do need to consider all inter-substitutions reduction.&s@mple, the term

M = ((N{z := yv) P){y := 2)Q){z := dw.ww){v := \u.uu)

does not satisfpreSN(M) and has an infinite reduction sequence inside substitutions
Next, we redefine the proposed set of strongly normalisingdeof Ag,, to account for inter-substitution
reduction.

Definition (Axg,>°). We define a subsdtx,, ;> of Ax as:
AXsub<OO = {M € Ax | VN CM - ~LCD(N<:U1 .. yn)) (S SNﬂ}

whereC denotes ‘subterm (non-strict) of .

Any termM € SN, _,, satisfies botlpreSN(M) andM € Axgu*°. The pure terms ithxg,;°° are exactly
those which are strongly normalising for; . Itis therefore a likely candidate &N, , and the proof of PSN

but unfortunately it contains terms which are not strongiymalising.

Examples 23 (terms which are not strongly normalising).Here are some examples of terms which are not
strongly normalising but satisfy at least one#gf < oo, preSN, or inclusion inAxg,>°. All variables are
distinct.

1. z{z := yy){y := l.vv)
This term only satifieggf < oc.

2. N{z :=yu)(y := 2){z := dw.ww){v := du.uu), z ¢ fv(N)
This term only satifieggf < oc.

32

3. (Az.z{y := (Ww.wv)z))(Au.uu),y # 2
This term satisfies all three properties. However, it redunia a 7 reduction to

2{y := (Aw.wv)z)(z = du.uu)
wherepreSN does not hold.

4. Az.2(y := (Awov)z))(w := p)Au.uu),y # 2
This term satisfies all three properties. However, it redda a 1 reduction (discardingw := p)) to 3
above.

5. (Aw.(Az.2(y := (.wv)z))w) (Auvuu),y # 2
This term satisfies all three properties. However, it reduas

2 ((zz(y == (wov)z))w) (w := Au.uw)

¢’ D 3

The important terms to note above are 3-5. In term 3;;@ reduction breakpreSN by creating a new
substitution above existing ones which introduces an itgfiséquence. In term 4, a similar reduction occurs but
firsta 7 reduction must unblock az redex. In term 5, a copy enables@’ redex to brealpreSN.

However, it is encouraging that our examples which satishSN but may not terminate all arise from non-
terminating pure terms. For example,

N
>
<

—~
>
Q
P
>~
<
/‘\
>
8
&
N—
~—N
<
<
S—
SN—r
N
~
——~
>
g
g
S

N
>
S
<
S

SN——
g
Q
o

v
N

roun)
>
8
—
>
N
N
~—
—
—~~
>
N
<
<
~—
8
~—
N——
>
IS
IS
S

In their inductive proofs of PSN fakxgc, Bloo [Blo97] shows thatubSN is preserved by reduction for terms
in Ax<°° while Rose [Ros96b] shows thaibSN is preserved by reduction for terms whetgf < oo. Unfor-
tunately, the examples above demonstrate that even witindine restrictive\x,,;°°, preSN is not preserved by
reduction.

As noted above, the problem is that a sequencepf reductions may introduce new substitutions above
existing ones and this can brepdeSN. We could further constraipreSN with the following definition.

Definition (bigSN). The predicatéigSN , (M) states that for all sequencéd —x" M;, preSN(M;).

However, 57 reductions may unblockz” redexes as in Example 23.4 above. We would then require a
stronger definition in order thateSN was preserved.

Definition (bigSN o). The predicatéigSN s, (M) states that for all sequencéd 23" M;, preSN(M;).

Clearly, bigSN , is a necessary property for a term to be strongly normaliskhowever, now we have to
prove that it is preserved undefcp’ reduction. We started this investigation by weakening telition to only
consider reductions outside substitution.

Definition (Reduction inside substitution).
1. Reduction inside substitutida the contextual closure of the reduction generated by:

e If N acp’ N'thenM(z := N) xcp’ M{z := N') is reduction inside substitution.
o C[M{z:=...y..))y :==N) acp C[M{z :=...N..){y := N) is reduction inside substitution.

2. Reduction outside substitutiasm any other reduction.

33

We explored these definitions and were able to prove theviollplemmas (the proofs are in Appendix A.1):
Lemma 24 (ap’ SN).
Lemmas 25 (preservation, reflection opreSN).

1. If preSN(M) and M 3p’ N is inside substitution thepreSN(N).

2. If preSN(M) and M 57 N is outside substitution themreSN (V).

3. If preSN(M) andM 7 N thenpreSN(N).

4. IfpreSN(N) andM 1 N is inside substitution thepreSN (A1),

These lemmas allowed us to redefliigSN, , as:

Definition (bigSN). The predicatebigSN 4, (M) states that for all sequenced A’ M; containing only
reductions outside substitutiopreSN (1/;).

and then prove the following lemmas:

Lemmas 26 (preservation obigSN).
1. If bigSNp (M) and M xp” M; thenbigSN, (My).

2. If bigSN,p(M) and M ¢7 M; does not create any new,’ redexes outside substitution then
bigSN sy (M7).

However, although this eases the proof/counterprobig8N , , (M) for an arbitrary termd/, it is not true that
either#gf < 0o bigSN sp Or Axsur-"° N bigSN A, is closed under reduction (Example 23.5 is a counterexample
for both). This unfortunateRieads us to the following heavy-handed definition.

Definition (bigSN ,p). The predicatéigSN - (M) states that for all sequenc@d xcp’ M;, preSN(M;).

It may be possible to weaken the definition to reductionsidetsubstitution again but we do not attempt
this. It is rather unsatisfactory when compared to Bloo ande®s proofs forxxge. Where they require a term
to satisfysubSN, we require a much stronger property — the preservatiggre8N through reduction. Another
consequence of Example 23.5 is t8at,, , C Axg,-* and we do not have a simple property to characterise
SN

sub *

2.2.4 PSN forAgy,
Lemmas 27.

1. If preSN(M) andM jcp’ N is garbage-reduction, thgmeSN (V).

2. If preSN(M) thenM is strongly normalising for garbage-reduction.
Proof.

1. Proof by case split. Lemmas 25.1-25.3 cover all cases.

2. The proof proceeds as in Lemma 18.2. The only differenteaswe define the measuhg (M) as the
maximum length of garbage-reduction paths where the redaseat least partially contained inside sub-
stitution. The valuéi; (M) is well-defined adV/ has a finite number of substitutions and, in particular, for
each innermost body of substitutigh Q(y: - . . y») is strongly normalising.

O

9We feel thabigSN s, is a preferable definition tbigSN ,op as ap’ SN.

34

We mentioned previously that Lemmas 18.1 and 18.2 do not fooldg,,. To illustrate this, consider the
sequence:

z{x = yy)y := lv.ov)
aco z{z = QAw.aww)y)(y := Iv.ov)

aco z{x = Q){y = lv.ov).

This is a sequence of garbage-reductiondjg, (but not inAy,c+). The second reduction disproves Lemma
18.1 inAgyp and the entire sequence disproves Lemma 18.2.

Theorem 28. If #gf(M) < oo andbigSN 4 (M) thenM is strongly normalising for 3cp’ -reduction.

Proof. We use induction ogtgf(M).

Base case#gf(M) = 0. By Proposition 17.2, any reductiolf acp” N must be garbage-reduction; if it was
reduction outside garbage then there would be a contragligarbage-free reductiaf (M) acip’ b
(N). Now, for any garbage reductidd acp’ N, Ip(N) =lp(M) by Proposition 17.1. Hencesgf (N) =

0. It follows that any reduction path starting &£ contains only garbage reductions. AsSN(M), it
follows by Lemma 27.2 that/ is strongly normalising.

Induction hypothesis Supposeftgf(M) > 0. We assume that ftgf(M') < #gf(M) andbigSNop(M')
then' is strongly normalising for zcp’ . We call this induction hypothesis IH1.

Suppose there exists an infinite reduction path

M = My acp’ M1 aco’ M2 acp’ Ms acp’ -+

We have assumed thpieSN(M). By Lemma 27.2)1 is then strongly normalising for garbage reduction
and so there is a finite sequent& xcg’ M, of garbage-reductions ant,,, acp’ M1 is reduction
outside garbage. By Propositions 17.1 and 17.2, we have

#8E (M y1) < #gf(Mm) = #gf(M) < oco.

bigSNacp(Mm+1) @aSM xcn Mpt1. Thus,M,, 1 is strongly normalising for 3cp’ -reduction. This
completes the proof al acp’ M,,41 is a finite sequence.

O
Corollary 29. SNj_,, = (#gf <oo N bigSN,cp)
Proof. We must provéN,_, C (#gf <oo N bigSNcp). The contrapositive
#gf(M) = oo V —bigSNpcp (M) = M ¢ SNa_,,
follows by acip’ € acp - O

The proof of Theorem 28 is simpler than the correspondingfgrtor Axge or A, ,c» as a consequence of
the fact thabigSN ,p is @ much stronger property thaabSN. As expected however, proving that a pure term
satisfieshigSN 4 op is much more complicated. We will need the following lemma.

Lemma 30 (delayed 1 reduction).

M — 57 Cil(A2.P)Q] — o5 CilP(z == Q)] — 5 CQ[P"@i =Q")]
. AACD
M a0e P GIP (@ = Q)]

ACD

Proof. The proof follows from the fact that all controls ikBIG are active and reduction iABIG matches that of
Asub [MilOSh]. The key is that what happens {Az.P)Q stays in(Az.P)Q — the only effect that firing the s *
redex has is that it allows free occurrences @fi P to be substituted which may lead to further reductions which
happen entirely insid®. O

35

In the reduction paths of the lemma; (1) the firing of thg” redex does not affe€ i.e. any reductions totally
insideQ or involving the surrounding context can still fire and@osc’ Q' on both the top and bottom lines; (2)
neither(Az.P)Q or P(z := Q) can affect the surrounding context andgis like C; except with changes in any
copied reducts ofAz.P)Q or P{z := Q); (3) on the bottom lineP’ evolves fromP by a combination of internal
reductions and reductions involving the context. The bottime joins the top line with a further combination
of internal reductions withiP, reductions involving the context, substitutionst@for z, and reductions in any
copies of(Az.P)Q or P(z := Q).

Corollary 31 (regression of terms). Given areduci/; = C'[P"(z := Q'}] of some ternd/ where i) an ancestor
of this substitution does not exist M and ii) P"'(z := Q } is not contained inside substitution ii;, we may
‘regress’ the term taf; = C'[(Az.P')Q"l whereM acn’ M; act M.

This corollary will be needed in the proof of PSN to pull a baxfysubstitution outside substitution to apply
the inductive hypothesis.

Corollary 32 (PSN for Agup). acp’ PSNof 5.

Proof. Case=>. If M is strongly normalising for 5 -reduction then by Theorem 18gf(M) < co. If we can
provebigSN , op (M) then we can apply Theorem 28 to complete the proof.

We take as our induction hypothesis:
If M is pure andnaxredg(M) = n thenbigSN ycp (M).

Note that by the induction hypothesis M is pure andnaxreds(M) = n thenM is strongly normalising
(by Theorems 13 and 28).
If maxredg(M) = 0 thenbigSN o (M) is trivially true. If maxreds(M) = 1 then any 4cp’ reduct

of M will only contain one body of substitutio® which is pure such thahaxredg(P) = 0. Hence,
bigSNacp (M). We will prove the inductive case by course-of-value indaret

AssumebigSN, «p (M) is false. There is then a finite sequerMeﬁCgM (depicted below) such that

preSN holds at every step and then a reductidhy, xcp” M1 such thatpreSN(M,, 1) is false. By
Lemmas 25.1, 25.2, and 25.3, this must bexd -reduction outside substitution.

M . M M
A 1 7"AcD ACD m A m+1

o Tl a7l

lep(M *NLCD(MI)?» *»J/CD()*>~LCD(Mpy1)

LetM,, = [(/\.Z'IN)RI] AciD> C[N(.Z‘l = Rl>] = Mp1.

Let (x;11 := Ri41)---{z, := R,) be the substitutions abov@\z;.N)R;. We have assumed that
preSN(M,,+1) is false. Therefore, there exists some body of substituigil < ¢ < n such that its
superbodyR;{(x; 1 - - -) is not strongly normalising. AgreSN(M,,), 1 < i < I —the problematic body
of substitution isRk; or some body of substitution below it.

Assume thaR; is not strongly normalising#gf (M,,) < oo so#gf(R;) < oo and therefor®igSN -, (R;)
is false so
Ry aep’ Cil(Mw-P)Q] a7 C1[P(y := Q)] and so

My, acs C[(Az.N)Ci[(My-P)Q]] 2’ C[(Az.N)Ci[P{y := Q)]]

such thapreSN(C4 [(Ay.P)Q]) is true ancbreSN(C4 [P(y := Q)) is false. We could then treat this case.
If the new body of substitutio)) is again not strongly normalising, we repeat this processnkially, we
must reach a body which is strongly normalising as the tersnahiinite structure. Therefore, without loss
of generality, we assume th&j} is strongly normalising.

We will break the proof over the casés- | andi < I. A proof thatR;{z;4+1 - - - z,,) is strongly normalising
contradicts the assumption thatSN(M,,,+1) is false, yielding a proof by contradiction.

36

Casei = 1. As R, is strongly normalising, ifR;{(z; 41 - - -) is not strongly normalising, there must be
some substitution occuring betwe&p and(z; 1, - - - x,,). Now, each body of a garbage substitution
S in Ry is also a body of substitution id/,,,. Hence, the superbody &f is strongly hormalising
in M,+1 by preSN(M,,). As these substitutionS can only interact between themselves, we may
discard them and only consider the tefg{R;) (11 - - - ,,) to not be strongly normalising. Similarly,
any substitutions iR, I + 1 < p < n which are garbage ifip(R;)(xi+1 - - -) may be discarded
and we need only consider the te¢i(R (41 - - - Zn)).

We may now spend the remaining substitutions (without p$iee variables by Proposition 5) and
consider,clp(Ri{(zi41 - - - z,)). Any infinite path inside the garbage & (Ri{zi+1 - - - ,)) can

be replicated outside of garbage as all bodies of substitsithave been copied. Therefore, we may
again discard all garbage and consider the t¢gcdp (Ri{zi11 - - Zn)) =dop (Ri{Tig1 - -+ Tn)).
This is a subterm afcp(M,,), is pure, and has @-reduction path less than that af . Therefore, by
I.H., it is strongly normalising for z;cp’ which is a contradiction.

Case: < I. We have aterm
Ri(ziy1 - zi—1){xi := R) (@141 - - yn)

which we assume is not strongly normalising. If there exigtebage(y := P) inside R; whose
superbody inR; is P(z; - - - zp) such that

T =Pz 2p){Tig1 - Tp)

is not strongly normalising then we consider that casentattie superbody of the topmost subsitution
of T such that its superbody is not strongly normalising. We doepeat this process a finite number
of times.

Therefore, w.l.0.g., we assume that garbag®&jrdoes not help the term reduce infinitely. As in the
previous case, we therefore consider the term

WD(Ri{Tiv1 - zi—1){z1 = Ri){Ti41 - - Yn))

to not be strongly normalising. Again, we can spend and disall substitutions and consider the
pure term

V =lep(Ri@ig1 - -1){x = Ri) (@11 -+ - Yn))-

If z; € fv({p(My)) thenV is a pure subterm ofcp (M,,) and hence is strongly normalising for
acp’ - Otherwise, we need to pult; out of the garbage by repeated application of Corollary 31.
If R; is a top-level substitution af/,,, then we apply Corollary 31 once to pull; out of substitution
in some termM, such thatM 7 aco My aco Mm. The term(Az;.U)R; now lies under the
substitutiongz;+1 - - - &) and}cpRi(Tit1 - - -) Clon(My). Asmaxredg(My,) < maxreds(M),
JepRi{xiy1 - - - ®y,) is strongly normalising by I.H.
If R; is more deeply nested inside substitution then we apply Boyo31 once for each level of
nesting and the proof follows similarly.

Case<. By Proposition 6.2, infinite 5 7 -reductions induce infiniteéxcp’ -reductions.
([l

The author also attempted a proof based on replacigelex(Az.P)Q in a pure termM with w@ wherew
was a fresh variable. The resulting te#fi then has a smaller maximugireduction path. This was to be used
in conjunction with an inductive hypothesis owaaxredg (/). Although the proof was abandoned, the idea of
origin tracking[BKdV00] would seem to be the correct formalism we were seiagfor.

37

2.3 PSN and composition of substitutions

Before we present our proof of PSN fdg,;, by simulation, we will discuss how composing substitutiams
explicit substitution calculi may affect the PSN property.
Consider theg-reduction path

(Az.(Ay.zyv)(zw))u 57 (Ay.uyv)(zw) 5 u(zw)v.
In Axgc andAg,1,, We have a reduction path

(Az.(Ay.zyv) (zw)) u
— ((\g.zyv)(zw)) (z = u)
— (zyv){y = 2w){z = u).

In Axgc, the outermost substitutiofxr := u) cannot be applied while it is abogg := zw) i.e. first (y := zw)
must be pushed inside the terpv and either applied or garbage-collected. In other wordssti#utions are
blockedby substitutions below them. It would be nice to allow suistns to interact in some way by either
swapping them with a rule like

M{z := N){y := P) — M({y := P){z := N{y := P)) (2.1)
or by allowing them to compose like
M{z := N){y := Py — M({x := N{y := P)) if y ¢ fv(M)© (2.2)

which seems efficient it € fv({cp (M)) andy € fv(NN). Substitution calculi with such rules are said to
allow composition of substitutionsThe rules above are what we calplicit composition We define explicit
composition to be composition via a reduction rule whoseg puirpose is to compose substitutions. Rule (2.1)
above is obviously unsafe for PSN as it immediately alloviiite paths of explicit compaositions. In this section,
we will demonstrate (using Bloo’s examples [Blo97]) how theplicit nature of seemingly safe rules like (2.2)
may break PSN for certain calculi.

2.3.1 Weak/full composition

Bloo [Blo97] definedull composition of substitution&CS) to mean that (i) any two adjacent substitutions can be
composed and (ii) that it is possible that the outermosttfuien may be evaluated before the innermost. Simi-
larly, Kesner and Lengrand [KLO5] define FCS to mean that aipgttution in a term may always be immediately
applied. A reduction system with Rule (2.1) above has FCSvaer, as this rule is unsafe for termination and
PSN, most calculi with FCS do not use it.

Weak composition of substitutiol&/'CS) is defined as conditional composition — compositiosy mecur but
only if some condition is satisfied. A reduction system wHeuode (2.2) above was the only rule for composition
would have WCS.

Axgc does not have any rule for composing substitutions. As we saen, substitutions block substitutions
above them. Extensions dxgc with FCS and WCS are discussed in the following sections. Méeexplain how
Agup has FCS but the composition is not explicit.

2.3.2 Breaking PSN

When\o and subsequent explicit substitution calculi were firsddticed, it was assumed that they satisfied PSN.
Melliés’ counterexample [Mel95] fohe was surprising and demonstrated that this seemingly rigtusaerty
need not hold. Ao allows substitutions to be explicitly and fully composedhisT composition combined with
the distributive rules for pushing substitutions insiderte is the essence of Melliés’ counterexample.allows
parallel substitutions but Bloo notes that this paralielis not what breaks PSN but rather:

“the essential property for losing PSN is the possibilitynabving one substitution from outside a
second substitution to thesideof the latter by means of a composition of substitutidBés9o7]

10The condition is necessary: considgtr)(x := N){(y := P) — (yz)(z := N{y := P)).

38

He shows this by first considering a similar calcubug|c with parallel substitutions and full composition and
demonstrating that PSN is broken. He then drops the pacalfedtruct to define a calculuscc with weak com-
position. The counterexample for PSNJArc is similar to that of\x||c implying that parallel substitutions is not
the essential property for losing PSN.

We will revisit Bloo’s counterexamples forx||c and Axc below, pointing out how the distributive rules and
explicit composition are crucial for breaking PSN. We imfaily discuss Mellieés’ counterexample in the same
light and then return our attention fq,,;, which has no distributive rules or explicit composition.

2.3.3 Xx||c

Ax||c [BR95, Blo97] is an extension ofxgc with parallel substitutions and FCS. The terms are definddidtively
as:
M=z | XM | MM | M(xi,...,zm:=Mi,...,My).

The final term structure is an explicit parallel substitntiwherem > 0 and the variable convention applies

e.g.the bound variables,, ..., z,, are assumed to be distinct. The substitution is interpraseal simultaneous
substitution ofM; for z;, 1 < i < m in the termM. The abbreviatiod/(Z := M) denotesM{x1, ..., %y =
My, ..., M,).

The reduction relation inx]|c is the union of 57, 7, and Jc’. &’ isasinixgc and L’ is defined
similarly to <. The new reductionisjc”, defined as the contextual closure of

—

M(Z:=P)(j:= Q) o’ M(Z7:=Pui:=Q),-..,Pn(7:= Q), Q).

This rule adds FCS taxgc.

We now aim to give an intuition as to why the simply typablerte¥/ below, strongly normalising foB-
reduction, is not strongly normalising ix||c. We refer the reader to [BI0o97] for an actual proof. In thiample,
we forget the variable convention to concentrate on theepattf reduction. The reader may consider all bound
variables in the terms to be subscripted with unique numbers

M = . (Az.(Az.w)u) (Az.u)u)
o . ((Az.w)u) (z := (Az.u)u) (1)
BT Au.(Az.u{r = (A\z.u)u))(u(x (Az.u)u)) (2)
B Az = (Azw)u)(z = u(z = (Az.u)u)) 3)
Tt Az, 2’ = ((Azau)u){z = u(= (Az.w)u)), u{z := (Az.u)u)) (4)

The reduction sequence can be described as follows. Thétstibs in (1) is pushed inside the term by the
distributive rule %j”. The pushing of the substitution inside the applicatian/ -redex(Az.u)u duplicates the
substitution (2). The " redex then fires, leaving the both copies of the substitigide by side (3). Note that
the outer copy contains the original substitution. The esjgire then composed (4).

The underlined subterm in (4) has an infinite reduction pdittvfollows a similar pattern — the substitution
is pushed inside then ” redex — copying itself, the redex fires, the substitutiorsrapeatedly composed until
one lies just outside an * redex, and the process repeats.

It is important to note that the infinite path above is madesjids by the interplay between the distributive
rules (which duplicate substitutions), thes” rule which places a substitution beside its descendanttend
composition rule which places a substitution inside itscdaglant. This last feature seems essential for losing
PSN in calculi with explicit composition [BIo97, p.60].

We note that these infinite paths do not involve any subgiitstbeing performed or garbage collected. It is
the distributive nature of the,” and <" rules which require substitutions to be needlessly copieidiwcan be
dangerous. By ‘needlessly copied’ we mean that more coffiasubstitution(z := N) can be made than free
occurrences af exist or that copies of a substitution are made whether direetoccurrences af exist below all
copies. Wide substitution therefore seems an importardeqatras its use avoids this creation of needless copying
and local bigraphs are an appropriate test-bed for suchmaseAnother solution to this problem is to always have
exactly one free occurrence of a variable below a subgiitgd that the substitution is never needlessly copied.
This is the approach taken Mixr (see Section 1.3) which uses this linearity to keep PSN arfsl FC

39

2.3.4 Mxc

We have seen above that composition of substitutions cahttefinite paths involving the distributive rules
and substitution creation. However, the parallelism ofssitiltions inAx||c does not seem to be the important
factor for losing PSN. Bloo and Rose [BR95, Blo97] made thigition precise by introducingxc, which can be
viewed as\x||c without parallelism.

Axc shares the same set of terms)agc. The reduction relation ofxc is the union of bxge and <,
where <’ is defined as the contextual closure of

M{z :=P){y:=Q) < M{z:=Ply:=Q)) ify¢ftv(M).

This rule adds WCS taxgc and is in fact the rule (2.2) introduced at the beginning & fection. It seems an
efficient rule for the case whenee fv(|xz.(M)),y € fv(P).
Bloo [Blo97] shows that PSN is broken kxc in a similar fashion to\x||c.

M = du.(Az.(Az.w)u) (Az.u)u)

o M. ((Azu)u) (@ := (Az.u)u) (1)
7 Azl = (Aza)u))(u(z = Azw)u) (2)
B vz = Qza)u)(z = ulz = Qz.u)u)) (3)
< = (Aza)u)(z = u(z = Qzu)u))) (4)

The infinite reduction begins in the underlined subterm ininailar manner. Again, the interplay between
>ap’, xab’, b ,andthe composition rule breaks PSN.

This counterexample leads one to believe that in order te RSN, an explicit substitution calculus should
not create subterms inside substitutions which cannot éated outside substitutions. Bloo notes this in his
dissertation and this intuition was the essence of our ppbBfSN forAgy,. Armed with this intuition, Bloo and
Geuvers [BG99] further constrained the compositio\of and were able to show that the new calculus —
satisfied PSN.

235 Axc™

Axc~ shares the same set of termshagc. The reduction relation okxc™ is the union of T5xge* and =7,
where ¢=" is defined as the contextual closure of

Mz :=P){y:=Q) = M{z:=Ply:=Q)) ifzefv(x(M)),y¢fv(M).

This calculus is confluent, preserves strong normalisasiod has WCS. See [BG99] for details.

2.3.6 Mo

We will not detail Mellies’ counterexample foto as we would have to introduce too much notation at this late
stage. However, the counterexample may be described aw/flvhere all rules are iko.

Applications of theBeta rule (akin to the &% rule) create explicit substitutions. Thépp and Abs rules
distribute these substitutions inside the term as in thengkas above. ABeta rule then creates a new substitution
above the original one. The rulé8os, Map, andAss then compose these two substitutions. Reduction sequences
of this form continue indefinitely.

Again, the same interplay of similar rules yields the cotetample.

2.3.7 Asw

As A, satisfies PSN, it seems natural to investigate how it allawsposition of substitutions. Although there
is no explicit composition rule, it has FCS — a substitutian always be performed whenever a free occurrence
of a variable lies beneath the substitution definition rdtgems of what lies between. Two adjacent substitutions
may also baemplicitly composed.

By implicit, we mean the following. I\xgc, we could readV/ (x := N){y := P) as ‘replacer with N in
M theny with P in the result’ as the inner substitution must be applied scatided before the outer substitution

40

can be performed. I, we can read the same term as ‘replaceith N in M ory with P in M or N
Composition is allowed but not via an explicit reductionerelit is allowed as¢~ is a wide or non-local rule.
In Asup, We also have reduction sequences like:

M(x := N)(y := P)
<" M{y/P}z:= N{y/P}){y = P)
D’ M{y/P}z:= N{y/P})

whereM {y/P} means ‘the\x term M with all free occurences af replaced byP’. This sequence demonstrates
how Rule (2.1) can be mimicked via wide substitution whilgiding the obvious infinite reductions.

Wide substitution is a very useful feature as it avoids theyomy of a substitution definition using a distributive
rule like ~ap’. This removesthe possibility of bringing a substitution into a descentizfitself’ [Blo97] which
leads to the counterexamples above. In fact, in the exanaplege PSN was broken without substitutions ever
being perfomed. This is impossible My, as ap” SN. This substitution ‘at a distance’ allovs,, to have FCS
and PSN.

2.3.8 Confluence, PSN, and FCS

Bloo’s dissertation contains a table of explicit substitntcalculi [Blo97, Table 1.1] which summarises the prop-
erties of explicit substitution calculi at the time. The fquroperties are: level of confluence (closed/opgn)
termination of the substitution calcufi#3sPSN, and level of substitution composition (none/WCS/FCS
Out of the calculi in the table, only five satisfy closed coafiuae, PSN, and WCS. They axec~ (above) \4
[Kes96], A4, [Kes96], A, [Kes96, FKP96], and([Mufi96]. None of the calculi have FCS and the challenge of
finding a calculus with closed confluence, PSN, and full cositipm seemed to be unanswered until recently when
Kesner and Lengrand introducatkr [KLO5, KL] 3. We have shown here that,;, also shares these properties.
Alxr and Ag,;, Seem to represent a big step forward for the field of expliditssitutiort* but although they
share many similarities, they are based on different metbddubstitution -Alxr uses distributive rules on linear
terms wheread,,;, uses wide substitution. We spend the next section re-pgd®8N forAg,;, by using properties
of Alxr.

110pen confluence means that the reduction system is conflnetlerms with or without metavariables (open terms). Closatflaence
means that the reduction system is confluent on terms withetavariables. Section 2.1 proves closed confluencafgs.

12The substitution calculus 0¥y}, is Gy Which is terminating (Proposition 1.3).

13The former reference also contains a summary of calculi lwvhimve PSN (although not FCS), the methods of retaining P& fee
limitations that these methods impose.

14For historical reasons, we note that they were created emiEmtly around the same period (the draft paper in whigh, originated
was circulated in 2004).

41

2.4 Proof of PSN by simulation

We now prove PSN foAgy;, by introducing a translation from,;, to Alxr and then showing that a reduction step
in Agsyp cOrresponds to a non-empty reduction sequence in theatanrsl The translation will be the composition

of an encoding of\y,;, terms inAlxr and a normal form oAlxr. Our initial idea for the encoding is archived in

Section 3.2. Itis simpler than the one presented below bosidficient for a proof of PSN via simulation.

2.4.1 The encoding of\g,;, terms in Alxr

We begin with a slight alteration of the encoding of pure terimto Alxr terms (up to the congruences in
Figure 1.3) given in [KLO5]. We alter their encoding by indlex translations4(A/) with a setX of names
which mustinclude the free variables@f and none of the bound variables. This indexing is inspireiithiyer’s
encoding ofA4,, into 'ABIG and is needed for our simulation &f,;, in Alxr as the latter calculus remembers free
variables which are discarded (interface preservatior®reds the former does not.

Definition (Encoding of pure terms in Alxr).

A(m)X&Ja) = WX (JE)

AQeM)x = Wi goaany Az A(M) if & € fv (M)
.A()\JJM)X = WX\fV(M) ()\.CEWE (.A(M)) if z §§ fV(M)
AMN)x = Wx\@vanuray) (Co ™ (RE(AM)) RE(A(N))))

where® := fv(M) Nfv(N)

When a translation is not tagged; is assumed to b

The weakening in the second encoding\af/ is used to enforce linearity. It also blocks any garbageérayis
from an encoding of an; ” -redex(Az.M)N, z ¢ fv(M) from propagating through the term. The encoding of
an application also enforces the linearity constraint —fa@g names shared in an application are renamed to be
distinct. Contractions then explicitly bind them to theiiginal names.

We now wish to extend this encoding to termsAig,,. The remaining case is the terid(z := N). This
term can arise from a;’ reduction(Az.M)N 27 M{x := N). We want our translation to be preserved by
reduction inAgy, and so we first take th&f’ in A((Az.M)N) —p M’ as our translation. We get the following
(dropping the indices) when € fv(M):

A((Az.M)N)

= Cp"(RR(AQw.M))) RE(A(N)))
(where® := fv(Az.M) N{v(N))

= CyM(RX(\x.A(M)) RE(A(N))) if z € fv(M)
(z ¢ @)

= " (R (AM))) (RR(ANY))

—s Cp™((RR(AMM))) (@ = REAW)))).

The term inside the contractions reads d$M){z := A(N)) where the shared free variables.4{M) and
A(N) are renamed to be distinct’. The contractions then explibind the renamed variables to their original
names. This seems a sensible (linear) encoding ¢f := N).

However, a problem arises. In order to simulate wide suligtit = in Alxr which has local substitution
rules, we will need to employ a normal form in our translatishich pushes all substitutions down to vari-
ables. We will explain why in more detail in Section 2.4.2 + fmw, you could try to simulate the reduction
(z(zz)){z = y) o’ (z(zy)){z := y) in Axr using only the suggested encoding above. Now, if we let our
translation be the composition of the encoding above coetbasth such a normal form then the reduction graph
below can not be filled in (here we also assume that the triémislaf garbagdy := Q) introduces a weakening

42

W, to enforce linearity).

Asub w(z = y)y = Q) 5 w(y == Q)
_____________ R P
Alxr (We w)(z = y)(y := A(Q)) —om Wy w)(y = A(2))

nf nf

The top square is easily filled in but the outer square can@fditibd. This means that while the encoding should
be sufficient to simulate;”, the composition of the encoding and the normal form failee Problem is that
the outer subsitutioy :=) is pushed inside the inner one during the translation andd&suoarding of the
composed substitution if},s oA loses both.

So, in order to simulatexcp” in Alxr, we need substitutions to be both pushed inside terms dtiiag
translation so that'z” may be simulated, and also left outside so that they are rfatrlyngarbage-collected.
This is the classic problem of trying to be in two places atedno solve this dilemma, we create two different
kinds of substitution in the encoding — one which may propagaough terms and one which cannot.

Definition (Encoding of Ay, terms in Alxr). The encoding oA, terms inAlxr is defined on pure terms as

A(x)X&Jz - WX(Z')

A(Az. M) x == Wx\ty(m) (Az. A(M)) if z € fv(M)
AQe.M)x = Wiy (e We (A(M) if ¢ fv(M)
AMN)x = Wx\wanunny (Cp (RR(A(M)) RE(AN))))

)
whered := fv(M)ﬂfv(N)

and on non-pure terms as

AM(z == N))x := Wy Cg¥'Cgiy ™ (War C™ (A(RR (M) (m := N1)) (' 1= N,))
wherez € fv(M), N, = A(Rp R (N)), N, = A(Rg.* RS (N))

A(M(z := N))x := Wy Cg""' ((WoRR (A(M)))(z := RE(AN))))

wherez ¢ fv(M)

where® = (fv(M) \ {z}) Nfv(N), @ =fv(N), Y = X\ (fv(M) U tv(IV)), andz’ is a fresh name.
When a translation is not tagged;, is assumed to b

Example. The{w,y, z}-indexed encoding dfczy){z := wy) is

chgh,wcgjn,wz (W Cy1:y2 ((C;ﬁuzz (1'11‘2)1111)(-1' — w1y2)) <:L_/ — w2y3>))

yh

In the case wherd/ and N have no common free variables ¢ fv(IN) by convention), the encoding of
non-pure terms reads:

AM (z := N))x := Wy O (W (A(M){z := N1)){z' := Na))
wherez € fv(M), N; = A(RR(N)), Ny = A(R@ (N))
A(M({x :== N))x := Wy ((WZ(A
wherex ¢ fv(M)

where® = fv(N),Y = X \ (fv(M) Ufv(N)), andz’ is a fresh name.

The encoding of pure terms makes sense — it forces lineaxityathing else. For non-pure terms, the encoding
is more complicated. When translating a telf{z := N) wherez € fv(M), two substitutions are created in the
Alxr term, {z := N;) and(z’ := N,). The second substitution with fresh nanfeas binder is garbage and sits

43

(M. M)N
—ps Cg" (W (M(z := REN))) (2’ := RYN))
—wear1 Cg" (We(M{z := REN)))
—Merge Ro(M({z:= REN))
= (M (z := N))

Figure 2.1: Garbage collection of an idle substitutiodixr

awaiting garbage collection. We call this tiode substitution as it can never propagate through the termfifidie
substitution may be pushed through the term to the free oecoes ofr and so we call this theobilesubstitution.
Note that as4 copies non-garbage substitutions, the encoding of terisneisted substitutions tends to get quite
large. However, as we are only interested in proving a sitimrathis is not of too much concern.

Idle and mobile substitutions will be used to simulajgp’ reduction. The translation will push the mobile
substitution down into the term until a copy is at each freeuo@nce of the variable (these occurrences will be
uniquely named but ‘meari) whilst the idle substitution waits up top. In this way, migbsubstitutions emulate
the linking of a substitution to free variables asABI1G whereas the idle substitution sits at top level, emulatireg t
actual structure of thBIG term. ¢ reductions are then mimicked by firir{§ ar) reductions which destroy
a copy of the mobile substitution. When all these are peréatnthe idle substitution is garbage collected with a
(Weak1) reduction, mimicking a5~ reduction.

We must also alter the reduction rulesidtr to create mobile and idle substitutions the moment a sulistit
is introduced.e. in the — g rule. We define the following new rule to replaces .

Definition 33 (— ;). The reduction— g, is defined as the contextual closure, modsalof the rule
(Az.M)N —sps Cg" (W (M{z := REN)))(z' := RYN))

where® = fv(NN) andz’ is a fresh name.

Definition (Ablxr). We letAblxr denote the calculus obtained frokixr by replacing(B) with (Bs). We let
— xbixr denote the reduction relation ablxr. —3, . denotes the reflexive and transitive closure-of ypixr.

Notation (creates garbage).We that that a reductiod/ — g M’ creates garbagehen the abstraction in the
redex binds a weakening rather than an occurrence of a végiab

Note that an idle substitutiofx’ := N») may always be garbage collected as in Figure 2.1 such-that
can be mimicked in\blxr but we will not do so in our simulation unless no correspogdirobile substitutions
(x := Ny) exist.

To aid our proof, we define labelled contexts fog,;, and Ablxr. The next two definitions are included for
formality and should not be necessary in order to read thefpro

Definition. A labelledAgy, contextC|]x is a term with a hole in it wherév([]x) = X. The termC[M]x is
defined as long a&/ (M) = X by filling the hole withA/. Similarly, alabelledAblxr contextC[] ; is a term with
n holes which may be filled by a vectorotermsP = Py,---,P, whereP; = Rf"(M)(P), X;nX; = 0for
1<i<j<n.

We defineAblxr contexts in this way for our proof of PSN where eahwill be a copy of an encoding
of a Agyp redex, the copies being generated by encodings of non-garhastitutions. We finally extend to
encoding contexts, in the appropriate manner.

Definition (extending .4 to contexts). The encoding oA, contexts in\lxr is defined as

AAz] Jy)x == Wx\y(Az.[]y) if z € fv(M)
AAz.[Jv)x = Wx\y(Az. W ([]v) ifx ¢ fV()
Al ly N)x == Wx\vurny) (Co ™ (RX ([ly) N))))
AN yv)x == Wx\vunny (Co™ (R (AN v)))
where<1> = Y ﬂ fv()

44

and on non-pure terms as:
A([1z(@ = N))x := Wy Cg "' Cely® (W O (RR ([12)(@ := 1)) (&' := No))
wherez € Z, N, = A(Rp*RE (N)), N> = A(RG.* RS (N))

A([Jz{e = N))x = Wy C3"" ((WeRR ([12)) (2 := RE(AWN))))
wherez ¢ Z

where® = (Z \ {z}) Nfv(N), 0 =1fv(N),Y = X \ (Z Ufv(N)), andz’ is a fresh name and

AM(z = [12))x = Wy Cg™*O35” (Wo O (ARR (M) := []2)) &' = [1))
wherez € fv(M),[|z, = Rt, " RE,([12).] |z = R3," R}, (12)
AM(z := []2))x := Wy Cg"" ((WoRR(A(M))) (= := R{([12)))
wherez ¢ tv(M)
where® = (fv(M)\{z})NZ,Y = X \ (fv(M) U Z), andz’ is a fresh name. When a translation is not tagged,

X is assumed to bé.

Given aAy, termC[M]x, we haveA(C[M]x) = A(C)[Mi, Ms, ..., M, whereM; = A(RY™ (01))
as the encoding may copy substitutions. In practice, we avily be interested in one copy @ and write
A(C)[M;], omitting the other copies and indexing.

Lemma 34 (properties of A).
1. tv(M) = tv(A(M))
2. tv(AM)x) =X
3. A(RX (M)) = RX(A(M))

From now on, we will adopt a convention for labelling the @fies in contractions. The convention is ex-
plained in Appendix A.4 along with a graphical represeptafor the contraction structure afxr terms. Briefly,
we index the variables which corresponditdn a linear term from the innermost to outermost, left to tighd
label the contractions accordingly.

We will also forget the indexing in the translation until $ea 2.4.4. It will be required when considering the
only rule of Ay, Which loses free variables” . The sections until then will focus on the problem of simulgt
wide substitution imblxr and the indices will just confuse the discussion.

2.4.2 A normal form and the translation

We now reason whether the encodidgg a suitable translation for simulatingcp’ -reduction imblxr. Consider

M = (a(22))(z := y) G (a(zy))(e == y) = N.

We have A(M) = C¥lvs (W, (C2020 (2, C2 " (wa3)) (= yl1)) (¢’ := y4)) and we wish to reduce this
term to reach a term which is equivalent4{ N). As we must replace a free occurrencerolith y, we be-
gin with the following reduction path:

A(M)
= Cgl1,y4 (Wm’ (C:1mll(zlcm2,m3 (z223)) (T = Z/h)) (2’ = y4>)
/\blxr> 0511,1,'4 (le (Cglll’yl2 (581 <£C1 =)Cglzzya (582(.’,62 = yz)zg(l‘g = yg)))) (w’ = y4))
Var’ Cylve (Wm’ (CYLY2 (@1 (21 1= y1)CY2 Y8 (wa (w2 = y2)y3))) (2 = y4))
= M’

However, A(N) = Cylva (W, (CU2:¥'2(C21%2 (2 (w2y3))(w = yla))) (2’ := ya)) and there is no reduction
pathM' — \pir A(N) as the mobile copies gt := y) have been pushed inside the termliff to allow

the (Var) reduction to take place. This suggests that our translationld be4 composed with a normal form.

45

We wish to define a normal form which pushes substitions imégpossible so thatc” may be simulated in
Alxr. If we try this approach with the example above, we get:

A(N)
= CYUs (W, (CYV2(C22 (w1 (mays)) @ = yla))) (2 = ya))
N Oy (W (CU2V2 (CULY2 (21 (w1 1= y1) (22 (@ == 9)13)))) (2 = pa))
= N!

This almost matches!’ except that the contractions are out of place. To fix this, ughghe contractions inside
as far as possible:

NI
=ac01e CYyvs (W, (05;;”’2 (05122’113 (2121 = y1) (@222 == y2)y3)))) (2" = y4))

——CAppl Cgll’M((ngll’ylz) (x1{z1 == yl)C;’f;” (za{z2 = y2)y3))) (' 1= ya))
= M’

This example leads us to the following definitions.
Definition (Normal form and the translation).
e —>pyy, is defined to be the union @fibs), (Appl), (App2), (Weak2), (Contl), and(Comp).
e —> 04y, IS defined to be the union 6€' Abs), (C Appl), (C App2), (CSubs), and(Cross).
o —pc (M) is defined as the composition- ps, — cin.

® |pic (M) is defined as the normal form (up#) of —, 1 (M).
e The translatior]” from Ag,p, to Ablxr is defined on\g,, termsM asT (M) x & dpic (AM) x).

The relation|,. can be described as ‘push one substitution inside and th&nallcontractions in as far as
possible.” We prove it has a unique normal form in the nextisec

Perhaps surprisingly (as it involves contractions),(th&erge) reduction rule is omitted in the normal form.
This is because the encoding only introduces weakeningsdiy an explicit substitution or abstraction but not
contractions. Therefore, the rule cannot be applied-tesq .-reduct of an encoding.

We now try the translatioff on the problematic square at the beginning of this sectigeto

v W)z
J J
z)(z = y)) —— T((yz){z

2.4.3 Contractions in the translation

All branches of the abstract syntax tree (AST) oflar term occur at applications and substitutions. For Slxy
term M, |, 10 (M) has all substitutions lying directly above either a weakgfiV, or a free occurrence af and

all contractions”¥* pushed in as far as possible so that 1) at the first brancingiAST below the contraction,
the left branch of the application (resp. substitutionlethe contraction contains a free occurrence of 2
and the right branch contains a free occurrence of the oth2) leoth variables occur below the contraction and
before any branch split.

Definition (contractions at their most efficient). We say that the contractions in)axr term areat their most
efficientwhen ifz, andz, represent a variable, there is a contractioi71**2 just above (up to congruence) the
split in the abstract syntax tree whete is in one branch and- in the other.

46

For example, consider2::# (yC22% ((zy22)x3)) which representg((zz)z). This term does not have its

xlq
contractions at their most efficient whered§) ((xz)z)) = y(C2'*2(Cy} " (x122))x3) does. The former term
can reduce to the latter however. It would appear thatar,-normal form of anyAlxr term has its contractions
at their most efficient but we require a weaker statementd@ai proof of simulation.

Proposition 35. Given aAqy,, termM, any—p, .-reductM’ of A(M) has its contractions at their most efficient.
Proof. We induct over the length of the — . path fromA(M) to M’ which is finite as—c C—x:

Base casen = 0. We must show that the encodinf(M) has the contractions at their most efficient. The proof
follows by the definition of4 and induction over the term structure (1.H.2).

The cases of abstractions and variables follow trivially.

In the encodings 0f)(x := P) wherez ¢ fv(Q) and@P, the contractions 0f4(Q) and . A(P) are at
their most efficient by 1.H.2. The contractio Lin the encoding are then at their most efficient as

A C fv(A(RR(Q))) andII C fv(A(Rg(P))).
In the encoding of)(z := P) wherex € fv(Q), the contractions afl(R% (Q)), P, = A(R?,Z\@Rl‘l)1 (P)),
andp, = A(R@‘bl’%ﬁ‘}’;1 (P)) are at their most efficient by I.H.2. In the two outside cocliiu&ns(i’g"l’1 and

C;i;’{ the sefll U T’y binds names in the left branch wheraasu ¥, binds names in the right branch.
The inner contraction, binds the names®fin the left branch and'; in the right branch. Therefore, all
contractions are at their most efficient.

Inductive case:n =k + 1. Let A(M) —* = M" — . M'. We assume that the contractionsidf’ are at

their most efficient and prove the same fdf. We only need consider the case where

M" = Cp"(Q(z = P)), ®=(v(Q)\{z}) N(P),z € V(Q)

and the substitutiofr := P) is pushed inside the ter@. The proof follows by induction over the term
structure. As contractions if/" are at their most efficienth C fv(Q) andIIl C fv(P). As (z := Q)

is a mobile substitution, no weakening, lies beneath it. We break the proof over the possiblep,y,
reductions.

Case:(A4bs), Q = \y.Q'
The contractions follow the substitution with— ¢ 45, reductions.
C3"™ (My.Q)(x := P))
—psn Cp " (My-Q'(z := P)))
—om MA-Ce(Q'(z == P))
The contractions o and@’ remain at their most efficient.
Case:(Weak2),Q = (W, Q"),y #x
As we are considering—.-reducts ofA(A/), any weakeningV, is bound by an abstractioxy or

an explicit substitutiorfy := T'). Thereforey ¢ A UTI. The contractions follow the substitution with
—cross reductions.

Ca" (W, Q')(z = P))
—pan Cp™ (W (Q'(a =P
— Cin Wy(Cﬁ’H(Q’(m =P
The contractions o’ and@’ remain at their most efficient.
Case:(Appl) and(App2), Q = T1 T
LetA = Ay & A, such that; C fv(Ty) andA, C fv(T3). We then writeC'y " asCp>™Cpt ™.

We treat the case wheree fv(T7). The contractions follow the substitution with—¢ app1 reduc-
tions.

CorCp M (T Ty) (@ == P))
—rpar, Cp22CeV ™ (Ty(z = P)Tb)

—% Ctn C§22,H2 ((C§11,H1 (T1<.Z’ = P)))Tg)

47

The contractions o, T}, andT; remain at their most efficient.
Case:(Comp), Q = Ti(y :=T>)
As above, leA = A; W A, such thatd; C fv(Ty) andA, C fv(T>) and we write the contractions
Ag,Ila ~A1,II
asCq. " 2Cg .
The contractions can follow with— ¢ 5.5 reductions.

C§11,H10§22,H2 (Ty{y := Tu){z := P))
—Psh C§1,H10§22,H2 (Tl (y = T2<x = P)))

1

o Col™(Tily = Cp>™ (Ty(z == P))))

The contractions of, Ty, andT> remain at their most efficient.

Case:(Contl), Q = C*1*2(Q")
x is bound by the substitution and sof A UTI. Let® = fv(P). AsII C fv(P) = O, we write the
contractions created by the—¢,,; reduction as below.

Cp™(C31 (@) o = P))
—Psh Cg,ncgl,nzcg<ﬁ92 (Q'(x1 = P1)(zs := Py))

whereP, = Rg}nRgl(P) andP, = Rg;HREZ (P). This last term is congruent to

Co O (O™ (Q (w1 == P1))(ws := Py))
and

Ca OGP (Ch™(Q' (@2 = Po)) e := P1)).

Corollary 36. For all Ay, termsM, the contractions of (M) are at their most efficient.
Corollary 37. A-images of\y,, terms have a unique— . normal forms (up to congruence).

Lemma 38. Let M be in—.-normal form and let each weakening bound by an abstracteditectly under
(up to=) that abstraction. M — yp1x: IV is Not a— Bs reduction which does not create garbage théis in
—>pyc-normal form.

Proof. We break the proof over the possible reductions, provingttiereductions do not create-a» ps, redex
which is sufficient.

Let M — g, N create garbage. All substitutionsd are directly above (up to congruence) the weakening
or the variable that they bind. This is true also of these tiultions in N'. The reduction creates two substitutions.
The idle one cannot move inside the term as it binds a weagatinectly below it. As the reduction creates
garbage, the mobile substitution binds a weakening whicadsyimption lies directly below it. Hence, it cannot
move inside the term either.

The(Var) case is trivial.

In the (W Abs), (W Appl), (W App2), (W Subs), and(Merge) cases, the weakenings explicit in the redex
and reactum are not bound by any substitutionia$ in —, .-normal form). In thgWeak1) case, only the
weakening explicit in the redex is bound by a substitutionciwhis discarded through the reduction. Thus, the
firing of these rules do not create any news p,;, redexes.

As M is in —,c-normal form, no substitutions bind the free variable of apytraction. Therefore, no
(CAbs), (CAppl), (CApp2), (CSubs), or (Cross) reduction creates any new- pgp, redexes. O

Corollary 39. Let T (M) —¥,,,, N for someAg,, term M. Unless the reduction sequence containd3a)
reduction which does not create garbage df@Abs) reduction,V is in — c-normal form.

Proof. It can be shown by induction that(A/) has any weakening bound by an abstraction lying directlyeund
that abstraction. This is also true’d{ /). The result follows by Lemma 38 noting that only@Abs) reduction
can come between a weakening and its binding abstractioto() as(Abs) redexes do not occur during the
sequence. |

48

2.4.4 Proof of PSN by simulation

It seems reasonable to theorise thaixr has the PSN property as it differs frohixr only in the — g, rule
which creates two substitutions; one as normal and one vidiigarbage’ and can not propagate through the term.
This behaviour does not seem dangerous. It does not inteodex cases of infinite reductions as the garbage
substitution may only interact with substitutions abovastthe normal substitution can. Kesner and Lengrand
[KL] prove that encodings of strongly normalisingterms inAlxr are strongly normalising using Lengrand’s
methods [Len05]. In other work, we have used those methopioie the same fokblxr.

Theorem 40 Ablxr satisfies PSN [O’CO06]).For any pure term, if M € SNg then A(M) € SNpixe-

Before we introduce our proof of simulation, we will give exgles of the different cases, showing how a
reduction step in\g,;, may be matched by a non-empty sequenckhilxr. We omit the indexing in all cases but
the o case, where variables may be lost. In all the examples, thexreccurs inside a non-garbage body of
substitution so that we may demonstrate how bodies of gutieti are copied in the translation. We will also
bend the variable convention for the purposes of demoistrat

Forthe 2 case, there are two subcases depending on whether the nstitigidn is garbage or not.

Example 41 (2 simulation without garbage). Let
M = z(z = (\y(yy))z) a oz = (v(yy)(y ==2)) =N
with all variables distinct® = {v, z}, ®1 = {v1, 21}, and®y = {v2, 22}.
T (M)
Cr#0222 (W (z(z = (My.01CY¥2 (y1y2))21)) (@' := (Ay.v2CY¥2 (y1y2))22))

s Cal™ (Wl = Coo (W (n Gy 2 (y19))(y 1= 23)){y' = 2)))
(2" = C22%e (W (020 (192))y 1= 25) (' = %))

S|

A(N)

—ie Cat ™ (W (a(@ = C234 (Wi (01 CZ™ (y1 (g1 = 20)y2(y2 := 28))) (¥ := 24))))
(z" = C2* (W, (Uzcz‘m(yl(yl = 20)y2(y2 == 20)))(y' = 26))))
= T(N)

The first line of reductions fires the— p,-redexes. The translation creates two copies of tgé redex so
there are two corresponding~ gs-reductions. In this example, we have now reached the #fM). In general,
we would now push the contractions created by theg,-reductions to their most efficient points to reach a
—pc-reduct of A(V) — the reduct where all substitutions except copies of thelynereated one are pushed
completely through the term. To match the tefflV), these new mobile substitutions are finally pushed inside
the term.

Example 42 (4 simulation with garbage). Let
M = z{z := Ayw(ww))z) a' z{z = (v(ww)){y :=2)) =N

with all variables distinct® = {w, v, 2}, ®; = {wy,v1,21}, and®, = {ws, v2, 22}. This case is covered by the
reduction sequence in Figure 2.1.

T(M)
= OV (Wa(a(z = Ny Wy (01 C23% (wswy))
(@' == (Ay. Wy (v2Cpz™s (wswe))
B Cat™ (W (a(z := C2% (W (W (01 Cis(
(2" == C7 (Wy (Wy(v2C 50 (w

)z1))
)22))

g &
[« S
NN
— =
/\/\
Q@

N

K&
~ <
— —
o~ ~
RSN
~ o~
N W
[= 3N
=
~— —
<
~— —

Weakt Cat®* (Wer (w(x := C25 (W, (W, (v CL % (w3wy
(o = C25% (W (W, (12 Cl " (s

2X1> D1,P2 waw.
Merge C<I> (Ww’ (.’L'(.TL' = Wy(vlcwf 4(11)311}4))(3/ =21
(@ := Wy (02 O3 (ws we))(y := 22

)
)

~—_ — — ~—

= T(N)

49

The first line of reductions fire the— g,-redexes. The translation creates two copies of tjé redex so
there are two correspondirg— gs-reductions. The encoding of garbage only creates oneiitlist so we now

immediately garbage collect all the newly-created ‘idlebstitutions. To reacf (IV), we merge the resulting
weakenings with contractions.

Observe that each term in this sequence is+#,.-normal form (as expected from Corollary 39).

Example 43 (¢ simulation). We will pick up where Example 41 ended. Let

N =z(z = (v(yy)){y == 2)) o z(x = (v(29)){y = 2))
with all variables distinct® = {v, z}, ®; = {v1, 21}, and®, = {va, 22}.
T(N)

Cat®* (W (w(x = C295 (W) (01 CZ7 (y1 (y1 == 27)ya a2 = 28)))(y' 1=
(¢" := C2* (W, (Uzcz"z"(1{y1 = 20)y2(y2 := 20)))(Y' := 26))))

Var> C¢17¢2 (Wz’ ('7"('%. = ij“(Wé(Ule;n (Z7y2 <y2 = ZS)
(' == CZ7 (W, (020727 (20y2(y2 == 20))

P

= T(P)

This case is easier to explain. In a translated term, thetitutins are pushed in as far as possible. The variable
being replaced has a substitution directly above it in taedlation (for each copy of the variable). The sequence

consists of two— v, reductions, one for each copy of the variable due to thelatios. By Corollary 39, each
term in this sequence is i—p.-normal form.

Definition. —yy, is defined to be the union WV eak2), (W Abs), (W Appl), (W App2), (W Subs), (Cross),
and(Merge).

Example 44 (1 simulation). Let

M =v{v:=2(y :=2¢){z :=p)) p'v(v:=x{2:=p)) =N

with all variables distinct.

We must explicitly state the translation indexing now. Thdex set must at least contain the free variables
of M, so we choose it to b& = {z,q,p}. We partition the index set into two sel§, = {z,p} andZ = {q}
such thalt” contains free variables @, occurrences of which are discarded in the reduction buthvpérsist in

N and Z contains the free variables & which do not occur inV (the lost variables). The sequence begins as
below.

T (M)x

Cx** (W (v(v := CPP* (Wor (W (21)(y = 2(z := pa)@))(2’ = p4))))
(V' := CPsPe (W (W(2)(y == 2(2z := p5)g2)) (2" :
Wfaki 01(111,1120;11)1)1,3621)2 (W (U<U _Cp3p4(((33'1)
(v' == Cpzre(W. (Wpsqg(m))(z’ = ps))))
e (o0 2= O (W (Wos () 2=
(v := CBaPe (W (Wips (22)) (2" := ps))))

Merge WeCEaPt2P2 (W (v(v = CB3P4 (Wor (W, (21))(2" := pa))))

(v 2= CFaPe (W (ps(wz))< _Pe))))

We start by simulating thég,, garbage collection with some—yy .11 reductions, one for each copy of the
discarded substitution that the translation introducéss §arbage collection generally creates weakenings which
are then pulled upwards through the term, either to toptleveintil they merge with contractions. For our
demonstration, we first choose to pull up the weakenifigsandiW,, corresponding to the free varialgléost in

the Agy, reduction. After the merge, the weakeniilg may be pulled up to the top of the term.

50

W, CopPt 2P (W (v{v := CBP4 (War (W, (21))(2' == pa))))
(v" = CBPe (W (Wi (w2))(2" == ps))))

Wi W, CZpPr2r (Wv’ (U<U = O W, (War (1) (2" = p4))>)
(v' == CBP Wy (War (22)(2" := pe))))
Merge WqCZapro2p2 (W (v{v := W (21)(2" := p1))) (V' := W (22)(2" := pa)))
= T(N)X

Next, we pull up the weakenindg®,, and¥,,, corresponding to the variabenhich is discarded in the—wcqr1
reductions but which occurs freely above the discardedisuio® in N. After more merges, the final term is
equivalent toT (N) x.

~—
~

Examples 41 to 44 hint at how substitutions are copied in rituestation of a term depending on their level
of nesting in other substitutions. In te&coding.A(M) of a term, there will be29+9 copies of a substitution
(z := P), whereg = 0 if the substitution is garbage @r = 1 otherwise and! is the number of non-garbage
subsitutions thafz := P) is contained inside (not under). However itranslation7 (M) of a term, the matter is
further complicated as substitutions are themselves caigld by the— ¢, rule. For this reason, the following
proof concentrates on one copy of a redex in a translated term

Proposition 45. If M 3cp’ N thenT (M)x —¥, .. T(N)x.

Proof. Proof by case split. We writg® := 7) to denote a sequence of nested substitutigns= T1) ... (y, ==

T,y and drop the indexing in the translation except for tiig" case. Figures 2.2-2.5 depict the reduction graphs
corresponding to the cases, wheris the number of copies of the redex generated by the tramslas explained
above.

CaseM = C[(A\z.P)Q] A’ C[P(z := Q)] = N, z € fv(P)
Figure 2.8 displays the general téfhfior 7 (M) followed by a series of reductions. Figure 2.11 displays

the general term fo7 (V). The pathA(N) —5 . N’ involves pushing all substitutions in besides the

substitutions which arise frorf := Q). The renaming?;¢ arises from the encoding. The substitutions
with binders®’ bind variables in encodings of bofh andQ, the substitutions with bindeSp and®©¢
bind variables ofP or) respectively. We do not label the contdXt-fv((Az.P)Q) = fv(P{z := @Q)) and
the same holds for the encodings by Lemma 34.1.

We must show that the final terms in both figures are equivaléris can be shown by proving th@t, =

Q7" and@-, = Q4'. These can easily be shown by unwrapping their definitiods@naming variables. For
example,
Q2
= RE0 0 (nte Upic (RERA (AQ)(Og = S (I := i)
= RN (ose (ose (RE T B (AQ)(0q = SO := T)))
= R (pse (pse (REH A (AQ)(Oq = So)(IT" := R (T))))

oo (bpte (BEE X (A(Q))(0q 1= Su))(II' = Ty)
o dpte(pie (RS 209X (4(0))(@y 1= Se))(¥' :=Ty))

"
- 2

15Well, almost. We have omitted some contractions concerfiegvariables in the substitutions with bind&s =p, and© for clarity
but Proposition 35 can justify this decision.

51

A
|4 |4
A(M) A(N)
lpic
NI
plc / ipw
T(M) —5— 7" T(N)
Figure 2.2: Reduction diagram for simulatinrg> o which does not create garbage
M A N
g g
T(M) 5 0 T(N)

Bs Weakl Merge

Figure 2.3: Reduction diagram for simulatinrgs o which does create garbage
M——N

Pk

T(M) —"— T(N)

Figure 2.4: Reduction diagram for simulatirg+c

M 5 N
" r
TM) " s T(N)

Figure 2.5: Reduction diagram for simulatirg+p

CaseM = C[(A\z.P)Q] A’ C[P(z:= Q)] =N, z ¢ fv(P)

This case is similar to the last one. Figure 2.14 displayg#reeral term foff (M) followed by a series of

reductions. Figure 2.17 displays the general ternfffN). The renaming?; and the substitutions with
binders®’, Zp, and®g arise as before.

CaseM = C[C'[z)(z := Q)] ¢’ C[C"[Q](x := Q)] = N.

We treat the case where the the tetnto be replaced is not the only free occurrencecof Cy[z]. The
reduction sequences are shown in Figures 2.19 and 2.20.

The two underlined subterms in those figures reduce to althesiame term — in both, the substitution with
binderz is distributed through the subterms. Both subterms areesnistof the translations

Ca™" Cgty* (War (bpue (Cip ™" (Dslai(s := PP (@’ = P2))

and
Co* ™ gt Wi (bpse (i Cip2 ™ (D3[P} := P))))(a' = Pa))

of Agup terms. Ignoring linearity and contractions for a momeng, tivo terms above are identical except
that one has a subterf where the other has{(x := P). By Proposition 35, the contractions of both

52

€9

fV(RY (Q)) =21 WP W Og Wiy
fv(}i{’f(P)) =d, WP WEp Lﬂgf .
tv(Sg) =1 fv(T)=®, TA=R%(T) Ty=RE(T)

Figure 2.6: Sets of free variables

P = RUAY(AP) Q' =REHF(AQ)
P =lpe(PEp = 52) Q" =1pic(@(Oq == 50))

P" =l (PA = TR)) Q" =lpye (Q"(I := Ti1))

11 I IT3 11 " I1; 1o 1311 "
Qi = Rp/pyrirs (@ Q@2 = Ry yiuiws (@)

Ll S

Figure 2.7: Abbreviations in Figure 2.8

T(Cl(.P)Q))
Ipte (AC) BE (A(O.P)Q))))
(1)
Dllpie (Co1 M C2 ™ (M. P)Q)(@' = T)(Ep := 5p)(Og = 50)]
@)
Dllpye (CAMCA (A2.P")Q") (@ = T)]
DCAM™ O3 (A, Lpje (P"{A! i= TR))) dpye (Q(IT' := Ty1)))]
3)
= D[Caa, " (e P")Q™)]

(@)
Ba’ D[Caia ORI O Y (W (P (2 1= Qu)) (o' = Qa))]
G D[Cyla Y OR Y (We (CRIEZT T2 (P (2 = Qu))(a' = Q2))

—te DO 2 OR Y Y (W (bpe (CRIRZTT2 (P (2 2= Q1)) (2’ = Q1))

Figure 2.8: Translation fof'[(Az.P)Q], = a free variable oP

2]

Il

fv(}i%((P)) = ‘I’L}ﬂ ! &JEP_EJ W_) .,
fv(Sg) =13 St =R(*(Sq) Sw = Ry’(Sq)

T) =9 To=RS(T) To-RRT) T =BT TS = RE(T
tV(T')=® Tn=Ryp(T) Tw=Ry(T) Tr=Rp(T) Ta=R\(T)

Figure 2.9: Sets of free variables

— RS X(A(Q)) Q= RYEIX(4(Q))

S W N
L
=3
I
(_
o
<+~
(e}
—~
Q
—_
@
~
I

Figure 2.10: Abbreviations in Figure 2.11

T(C[P(z = Q)))
Yot (AC)RY (A(P(z = Q)))])
(1)

Dldpyc (CIHIN01Y' 0ErTa®a sy, (CAIA" T (P! (o = Q1)) (' := Q4)))(®' = T)(Ep := Sp)(Oq = 5o)))
(2)
D[y (CHII 1Y glsla oW (OB (prl(y = Q1 (O = SE) (o' = Qb(Ou := Sy))))(@' == T)))
(3)

Dldpye (CEHIY' ghale vaWa (MBI (i (g . Qi) (a! = QY))(@' := T)])
Dllpje (Cilla¥1¥2glala¥aa (AWML (p1 (g . QUY(IT = Ti7)) (2! 1= Q4T := Ta))))))
= =
Dllpyc (Cara2 M2 ORt Y ¥ (W (CRAe2 " (Upye (P"(A := TR)) (@ :=dpyc QYT = TEN)Na' i=dpie (Q5(T' =

(4)
D[CY 132 P2 O I YA (W (e (CRI2 T T2 (P 1= QY)))) (2" = Q4"))]

Figure 2.11: Translation faP'[P(z := Q)], z a free variable o

qg

>
Bs

>
Weakl

—
Merge

fV(RE(Q)) =®1 W' WO Wiy
(@((P)) =3, WP WEpWW

WE) =1 f(T) =8 T2 =R%(T) T =R (T)
Figure 2.12: Sets of free variables

1 P'=RUIV(AP) Q =RyHF(AQ)

2. P =lpic (P "(Ep = S—P>>) Q" —~Lp¢C(Q (Oq %))

3. Py =lpe(P"(A :=TR)) Q1 =lpse (Q"(I' := Ti1))

Figure 2.13: Abbreviations in Figure 2.14

T(C[(Az.P)Q))
bosc (A RE(A((M2.P)Q))])
1)
Hpie (CRIA" (0. W, (P')Q)(@ := T)(Ep := Sp)(Oq = So))]
2)

Dllpic (Cala ™™ (AW, (P")Q")(@' = T))]

CLIR2II (\g | (Wo (P(A 1= TR)))) dpie (Q(IT := Ti1)))]

U/\

—~

’cBb

[

)
DICE e (A2 We (P1)) Q1))
D[Caie ™ (Chtty,y War (We (P) := RY DV (Q))(a' = RV (Qu)))]
D[Cg e ™M (CF) (Wa (Wa (P) (@ = RY9V(Q1))))]

DICpla2 ™ 2 (W, (P)(z = Q1))

Figure 2.14: Translation faf[P(z := Q)], = not a free variable oP

99

):(I)]&J(I)I&JGQH‘JH4
fv():<I>_1>L¢J<I>’&JEP&JW_>
tv(T) =@ Ta-= Riz(?) Tn = Rf*ﬁ(?)

Figure 2.15: Sets of free variables

1. P'=RYYX(APP) Q' =RYEI(AWQ)

2. P =l (P'Er=51) Q" =lpie(Q'(Oq := 50))
3. Py =lpie(P(A :=TR)) Q1 =lpie (Q"(I' := Tiy))

Figure 2.16: Abbreviations in Figure 2.17

T(C[P(z = Q)])

Ipte (AC) RE (A(P(z = Q)))])

(1)

Dldpye (CH8 (W, (P') (@ := Q')))(@' := T)(Ep := 5p)(Oq = So))]
@)

Dldpie (CAA M (W, (P") (@ := Q"))(@' = T))]

D[(CA2=MT2 (17, (11 (P"(A = TAN) @ =Lpie (Q(IT = Ti)))))]

3)

D[C3 > ™2 (W, (P){z = Q1))]

Figure 2.17: Translation faf'[P(z := Q)], z not a free variable oP

LS

fv()=0
= RY 5.7 (A(P))

Figure 2.18: Free variables and abbreviations for Figurés and 2.20

T(C1[Calal(w == P))
= pie (A(C)[RY (A(Calz)(a := P)))))
= Lpie(D1RY (Co " CGy > (War (CRIT (Ds[zil(m == Pi))) (e’ = P2)))])
= Lpie DRY (C" Co? W (Cip ™ (Dslzi(zs := P)))))(a' = Pa)))))
= Lpie (Di[RY (CH ™ CRLa (War (pse (C " (Dsli (s := P)))a' = P)))))
= Lt (D1RY (CH" O3y (W (Dlzi{ms = P)]){a' = P)))])
= Elzi{z; = F)]

Figure 2.19: Translation fat [C2[z]{z := P)]

T(C1[Cy[P)(z := P)])

Upse (A(C1)[RY (A(C[P)(z = P)))))

bpse (Di[RY (Cy* Cgta * (Wi (Cpyt* CR2 P2 (DY [Pl == P)))(a' = Py)))])
Ypie (DU[RY (Co "1 Cg2a ™ (W) (Jpse (CHVT O™ (D4 [P)(x := P)))) (2’ = P2)))])
Ipie (D1[RY (C5 ' Coiy > (Wa(D[P)]) (2 := P2)))])

E[P;]

Figure 2.20: Translation fat [C3[P]{z := P)], z a free variable o€[P]

T(C1[Cs[P(z := P)])
ol (A(C)[RY (A(C3[P)(z == P)))))
Ypie (Di[RY (C3™"" Cgly > (Wa(Dy[P])) (@ = P2)))))

(

= pic (D1[RY (C3""" Cga > Walpie (D4[P]])) (@ = P2)))))
(
]

e (D1[RY (Cg "' Cgiy * (Wa (D[P (@ := Py)))])
E[P;

n 1

Figure 2.21: Translation fat: [C2[P]{z := P})], z not a free variable of’s[P]

>
Weakl

89

—
Merge

Q

§l I

Ei Il

W Civ(P) Y Ctv(Q)\fv(P)

fv(RY L (P) =tv(RY (P)) = @10 WEp W W

V(RY L (Q)) =16 d' WOg Wil Wil;

Y COguwlly Wil

D[] = Worsian[T(C[o]

V is the set of free variables @f not bound inM or not occuring free above the hole@] or in P (the lost variables)
D'[]=WyD,[]

C'[] = C[] except that the free variables of the hol&lf]] do not contairl/

s = Ry (V)

85 =1y (T)=0, I =R2(T) Ti=rE(T)

Figure 2.22: Free variables and abbreviations for Figur23 and 2.24

T(CIP(z == Q)))u

Lpie (AC)u[R¥ S (A(P(z = Q)))])

Dlpic (Cala ™ (Wa (AR X

D[Cpla2™ ™ (W, (Ipse (ARR X,

DIC3 ™™ (Wit, ttattattarts (bpie (AR X W (P))(A' -
(

D[R3!8? (Witymai; (pie (A(RR: & ¥ (P)(A' := Ta)(Ep := Sp)))]
D[Wityamty (bpye (AR W (P)A” := T)Ep = Sp))]

D[Witya1t, (pye (ARY (P))(®' = T)(Zp := Sp))]
M,

Wy Dy Wity (4pye (A(RY (P))(@ = T)(Ep := S1))]
M,

M;3

Figure 2.23: Translation fa€'[P(z := Q)], z not a free variable oP

T(C'[P)y
Lpse (AC)u RY (A(P)))

D'[lpye (AR (P)(@' := T')(Ep := 5p))]

= Wy Dallpie (ARY (P)(® := T)(Ep == Sp)]

Figure 2.24: Translation faf'[P]

terms are at their most efficient. Therefore, we can writd bmiderlined subterms with the same context
D asD[P;] andD[z(x := P;)] respectively. The final lines in both sequences then follod we have
T (M) —7,,,. T(N), one reduction for each copy of the redéx{z](z := P).

CaseM =C[P{z:=Q)] ' C[P]=N, z¢fv(P).
Figure 2.23 displays the general term oM) followed by a series of reductions. Figure 2.24 displays the
general term fofl ().

The termsM; and7T (V) appear very similar. One difference is tlfat/V) has the weakeninddy corre-
sponding to the variables lost in thg,,;, term at top-level. We first pull the weakenins and their copies
(for each copy of the\g,;, redex induced by the translation) upwards through the temarging them to
reachM,.

M> now closely resembleg(N) except for two differences: i)/, contains extra weakenings suchidg,
andWr, for each copy of thé g, redex and ii) it also contains contractions involving suets ®f variables
I3 andIl,. We pull all of these weakenings up, merging them with thesegdntractions to reach-a— w4,
normal formA3. Ignoring the placement of contractiordd; is now equivalent tg” (V).

Finally, we can conclude that this terfds is equivalent to7 (NV): as7 (M) has its contractions at their
most efficient, so doek/s by Corollary 39.

([l
Corollary 46 (PSN for Agyb). acp’ PSNof 5.
Proof.

Case=>. Let M be any pure term which is strongly normalising fo; 7. As M is strongly normalising for
5 T(M) = (Ipie (A(M)) is strongly normalising for— xpix by Conjecture 40. By Proposition 45,
any infinite acp’ sequence starting from/ induces an infinite reduction sequence starting ffo(7).
By contrapositive M is strongly normalising foracp’ .
Case<. By Proposition 6.2, infinite 5 -reductions induce infinitescp’ -reductions.
O

At the time of writing, this proof strategy (simulatingcp” in another explicit substitution calculus) could
not work with any other explicit substitution calculus egtalxr as both PSN and FCS are required.

2.4.5 Sketch of proof of PSN by translation ta\,;

We have proved PSN by simulatingcp” -reduction withAblxr reduction and using the fact thablxr has this
property. The proof of PSN foxblxr follows Lengrand’s approach of simulating reductiomiip [Len05]. If we
combine these simulations, we have a simulatiorn@fp’ -reduction inA; as in Figure 2.25.

Asub M——ep N
Tx Tx Tx
Ablxr T(M)x ——— T(N)x
I I I
Ar m +> n

Figure 2.25: Simulation of—scp-reduction inA;

This immediately suggests that a proof of PSN Agg;, may be given by using a translation Ag directly.
We hope to explore this approach in future work. The comjmsitf 7 andZ seems overkill as the translation
duplicates substitutions and adds weakenings correspgialthe index sek .

59

Instead, we initially proposé the relationZ defined in Figure 2.267 relatesAq,;, terms with explicit sub-
stitutions to); terms where the substitutions have been finished. The “meopmrator” keeps track of garbage
substitutions which are otherwise discarded in the refatibhis is necessary ing,, which does not have the
linearity property (which\lxr enjoys) that all binders bind a free occurrence of a variable

MIm MTm
fv(M
zT z Az.M T dxz.m v € fv(M) Az. M T Azx.[m, z] z ¢ (M)
MTIm NTIn MTIm
A
MNT mn M T [m,p] pei
MIm __ NIn _ . ¢y MIm ___NIn_, ¢ (M)

M(z:=N)Z M{z\n} M{z:= N)T [M,n)

Figure 2.26: Relatind\g,;, terms withA; terms

16stéphane Lengrand has since suggested a relation withuless replacing the conditian € fv(M) in two of the rules withe € fv(m)
and removing the two rules with the conditieng fv(M).

60

Chapter 3

Extensions and other ideas

We finish with some ideas which presented themselves dutingxploration ofAg,, and’ABIG.

3.1 Proposed extension td.,,
The composition rule okxc—,
M{z:=P)y:=Q) " M(z:=Ply:=Q)) ifzetv(lg(M)),y¢v(M).

does not break PSN. It seems natural to assume that an exterisig,;, with this rule would also retain PSN.
However, it is not clear how to specify the conditiore fv({cp(M)) in the bigraphical encoding. We therefore
propose that\;,, may be extended with the more general rule (which breaks BBMxEc) from Axc:

M{z :=P){y:=Q) < M{z:=Ply:=Q)) ify¢ftv(M).

This rule can be naturally encoded in the bigraphical sgttithe conditiory ¢ fv(M) is captured by the inner
interface of the parametric reaction rule depicted below.

Figure 3.1: An explicit composition rule fakBIG.

We hypothesize that the extension is confluent and satisBékHRit do not attempt a proof here. It does not
seem to break PSN as it does not allow any new substituticiakégplace — any fregin N can be replaced b¥
in the originalAgyy,. Another reason we believe the extension to be safe is thatdimposition seems to preserve
bigSN scp-

However, it would seem that this extension is not very usifuhe presence of wide substitution —jif¢
fv(M) then it would seem that a reduction sequence starting ftb(m := P)(y := Q) could be mimicked by

M(z = Py := Q)).

61

3.2 Initial translation to Alxr

Our initial encoding of\4y;, into Alxr did not create mobile and idle copies of substitutions ansl wemsiderably
simpler:

Definition (Encoding of Agyp, terms in Alxr). The encoding of Ag,p, terms inAlxr is defined on pure terms as

(@) xwe == Wx(z)

()\.’E.M)X = WX\fV(M) ()\.’L' (M)) if x € fV(M)
(A\z.M)x := WX\fV(M) (Az. W, (L(M)) if z ¢ fv(M)
(MN)x =Wy (Cy"" (RR(L(M)) RE(L(N))))

(M{z = N))x := Wy Cg’ F(ﬁ(Rg(M)) z:= L(RR(N)))) if z € fv(M)
(M(z := N))x := Wy Cg" (Wa(L(RS(M)))(x := L(RR(N)))) if x ¢ fv(M)

whereY = X \ (fv(M) U fv(N)), ® := fv(M) Nfv(N),0 = (fv(M) \ {z}) Nfv(N).
When a translation is not tagged; is assumed to bi.

The encoding of explicit substitutions falls directly outtbe other encodings and the— g rule. This en-
coding does not duplicate substitutions and is easier tworeabout. As we now explain, it was insufficient to
simulate xcp’ reduction in\lxr.

First, this alternate encoding also required alterkigr to achieve simulation. Tak€ as the translation
between\g,;, andlxr and consider the square:

Asub 'Z.('T = y) c y('r = y)
Jﬁ JL Jﬁ
Alxr z(x :=y) T Cyrove (We(y1)){(z == y2)).

There is no series oflxr reductions to fill in the dotted arrow. We require a substituto be performed but a
—var reduction would automatically garbage collect the sulbsstih. Our solution was to break up thesy
reduction so that the substitution was not discarded agguction. We defined the rule

2(z = M) —vars) Cp" (WoRE(M))(z := RE(M))) whered = fv(M).

A —Vars—Weakl —}ferge SEJUENCE then performs-as v, reduction.

Next, for similar reasons to our current encoding, a traimsiafrom Ag,;, to Alxr required a normal form
(again(z(zz)){z := y) ¢ (z(yx)){z := y) demonstrates this). The first ‘normal form’ we tried was &mi
to e’ butit also pulled weakenings out as far as possible (althdbig may be implicit in the translation).
However, the union oV App2 and App?2 is not confluent. Consider:

(v(Way)(z := p)) app2 <— (v(Way))(z := p) —wapp2 W (vy)(z = p).

This lead us to use the currenge” form.

Finally, the problem with this encoding was demonstrateBigntion 2.4.1. Take the reductiofy := 2)(z :=
p) D’ z{z := p). Without using a normal form in the translation, the encgdiW, (z){(y := 2)){z := p) can
reduce to(W,z)(z := p) but when using the normal form, we find tHat, (z)(y := 2(z := p)) cannot reduce
to (W,x){z := p). So if we use the normal form, we can simulatg” but not 7 whilst if we simply use
the encoding, the reverse is true. This problem is depictdtgure 3.2, where—yy, is the union of the rules
for pulling weakenings upwards and merging them with cartioas. This problem lead us to the idea of using
mobile and idle copies of substitutions in the encoding.

This initial encoding was simpler yet insufficient. Howeviermay be possible to formulate an alternative
translation using this encoding where substitutions aheduplicated prior to pushing inside garbage (to simulate

the 1 rule properly). This would involve splitting th&'omp) reduction as below.

M(z:= P)(y:=Q) —Comp M(z:=P(y:=Q))
wherey € fv(P), z € fv(M)

M(z:=P)(y:=Q) —rComp Cp' (Wy(Mz:=Ply:=Q){y =Q2))
wherey € tv(P),z ¢ fv(M)

62

C D
L L L L
,,,,,,, >><
Alxr Weakl Wk
pc pc pc pc
_— s - X
Var

Figure 3.2: Problems with initial translation and normahfio

We would also require thé/ ars) rule. PSN needs to be proved for this new calculus but it sdi&eig. Ablxr

has PSN and it duplicates substitutions in much the samebyaygating garbage copies of existing substitutions
which cannot propagate through the term. This translatiap yield a simpler proof than the current one as less
duplication of substitutions would occur.

3.3 Alternative encodings of the\-calculus

This was work explored with Martin Elsman who had an idea foakernative encoding of thie-calculus using
explicit environments. The aims were to have an encodinig atotion similar to pointer/reference passing where
all free occurrences of a variable could be replaced in oaetien step. To this end, we tried encoding variables
as links. An encoding of explicit environments was nevelised however.

Among the reasons why the encoding we did try (without expéinvironments) did not work was that (i)
reduction could destroy occurrences of terms and (ii) with €ncoding, it was not possible to give an inductive
encoding ofA-terms via composition — in general, this should probablyab®ad indication when encoding a
calculus where the terms are defined inductively.

Another attempt (by the author) at an alternative encodiag ly using a flattened structure. all controls
were atomic and nesting was encoding via linking. Variableee represented as controls again. This had many
of the same ideas d&BIG including explicit substitution and garbage collections éontrols were atomic, this
implied that terms would be built from ground up via prime guots and fusions of wiring — again this might
have been a warning sign. The problem here was to do with tidiry) of names — on closer inspection, we are
almost redefining\BIG without the benefits of being able to employ binding ports.il&/korting the links may
have solved this problem, it is unclear whether anythingldidnave been gained by this approach. In fact, we
were completely ignoring the place graph structure in tigeagihs which naturally lends itself to calculi with an
inductive definition for terms.

3.4 A new property of controls

During early explorations ofABIG, we considered attempting to add a new property to contnolsgraphical
signatures. We named this propeeclusivewith the idea that in a bigraph with exclusive controls, teacmay
only occur under these controls. We were motivated by the adeestricting reaction itABIG so that all reduction
sequences were of the forrgp” 27 oo” A’ oo’ a’ ---. This would give an immediate correspondence
betweerABIG and theX-calculus.

The questions of whether this idea adds anything new to piigtlaeory, whether it could be encoded using
existing meansg.g. as a reaction rule covering controls and sites with passivgrals) or whether it would
require extensions to the theory, or whether there are atgbdeiapplications have not been addressed.

However, besides these questions, there is also the ques$tichether this restriction would be beneficial for
'ABIG. This type of restriction was applied f&r by Goubault-Larrecq [GL96] to prove that simply-typed tarm
were strongly normalising under this reduction subretatiBlowever, Kesner and Lengrand point out that this
restriction does not benefit from the possibilities thatligipsubstitution calculi offer — to delay substitutions o
to partially apply them [KLO5]. Another argument againgsttestriction is that one could also imagine imple-
mentations where terms were distributed over different@ssors and reduction was performed concurrently.

63

Chapter 4

Summary

4.1 Conclusions and related work

The first aim of this report was to prove tHABIG is confluent. Milner proved weak confluence in [Mil05b] and
left open the challenge to prove strong confluence. Althaugtproof is not bigraphical and does not advance the
understanding of confluence in bigraphical systems, it dbes thatABIG has this desirable property on closed
terms (terms without metavariables).

The question of whethéABIG or A4, has open confluence — confluence on terms with metavarialvkes —
mains unanswered and would be more interesting to the Bigralpcommunity than closed confluence, which
only represents confluence on ground terms. In related worxplicit substitutions, David and Guillaume
[DGO1] state that composition of substitutions is necgsgaropen confluence. They point out thaj [Kes96]
andAo, [Rit99] have weak composition of substitutions which is anbugh to get open confluence.

Itis possible that much of our proof of closed confluence ddval rewritten ifABIG using Milner’s proofs for
deciding weak confluence. For example, in Propositionsel ptbofs of diamond property and local confluence
could be proved using Milner’s theorems in [MilO5b] wherélas proofs of strong normalisation might be done
by labelling the bigraph terms. The proofs of propositiomelving free nameseg.g. Proposition 5) should
follow from the translation from\g,;, to ‘ABIG. The proof of confluence is based on the three main propgrties
(1) confluence of the original calculus, (2) that the substin calculus is a conservative extension, and (3) the
generalised interpretation method [KR97]. Bloo and Roapfgroach may be useful for proving closed confluence
of bigraphical encodings with explicit substitution of etrcalculi besides th&-calculus.

Our proof of confluence was achieved by identifying the sfroonnection betweef,;, andxge. Proving
PSN — our other main aim — using their inductive proofs hasegmdrickier. The proof for\y,,» was straight-
forward but composition of substitutions makes the indecpiroof of PSN forAg,, much more involved. The
intersection obigSN, ~p and#gf identify the subset of strongly normalising terms/af,;, but do not yield a
simple characterisation. Intersection types [CDC78, COJG8ay provide such a characterisation. Lengrand et
al. [LLD*04] have successfully used intersection types to chaiaettite strongly normalising terms dfgc.

We identified various subsets df which are relevant to the different reduction relations a&éhstudied.
Figure 4.1 combines many of our examples and proofs by degibbw these subsets are related, where the solid
arrows denote subset inclusion. The proofs of the impbecetiare denoted in the figure: all are either proof by
definition, contrapositive, or example. Each subset exxdisbme\x terms which are not strongly normalising
for acp’ or B-reduction. From the diagram, we can see that the additidevefs of inter-substitution reduction
(composition of substitutions) decreases the set of slyamgrmalising terms. We also restate our hypothesis
that if we disallow any inter-substitution reductidre(Asup @) then the resulting calculus is extremely similar to
Axge. This may be investigated in future work but we think thatpheofs should follow from Section 2.2.2.

We explored the relationship betwedg,;,, 'ABIG, and Alxr and introduced a modified (and less efficient)
calculusAblxr based on thelxr calculus of Kesner and Lengrand. We then gave a proof of PEM{g, by
translatingAgy;, terms intoAblxr and simulating xcp’ reduction using the translation. Our novel idea was the
duplication of substitutions (mobile and idle copies). Teof of simulation is somewhat involved but we feel
that it is simpler than the inductive method, which relied'@gressing’ terms. As we have remarked, this form
of proof could not have been achieved with any other calcatxr is the first published calculus with PSN and
FCS. It may also be possible to prove PSNAgy;, directly by relating terms ol,;, terms with terms of\; and

64

regarding reductions regard_ing reductions
inside/between substitutions outside garbage

SubSN xxgc #ef < 0

def. contrapositive contrapositive

subSN s

def.

subSN Ax< % = SN)ge

contrapositive
def.

Cor. 16

preSN

def. .
contrapositive

bigSN , SN

subCP

def.

def. conjecture

bigSNp Axgui>®

def.

blgSNACD Example 23.3

@ SNy

sub

HypothesisSN z = Ax<*, Corollary:subSNe = subSNxgc

sub@

Figure 4.1: Relationship between propertiedafterms

then applying Lengrand’s techniques [Len05].

In this report, we study how the reduction relation\gf;, matches that of tha-calculus. We are concerned
here about properties such as confluence and terminatitwe ipresence of explicit substitution. From a process
calculus perspective, Bundgaard and Hildebrandt [BHOS¢lencoded théligher-Order Mobile Embedded Re-
sourcegHomey calculus as a Brs with explicit substitution and garbadkection. They base their presentation
on’ABIG and in [ibid.], they prove an operational corresponden¢eden Homer and their encoding.

There seems to be some overlap between the theories ofdtiteraets, the-calculus, and bigraphs. Some
overlaps are by design — for example, interaction netsiiadg@spects of bigraph theory [JM04] — but others may
be interesting to explore and we briefly mention them now.

In recent work [FMS06], Fernandez, Mackie, and Sinot inticetl an encoding of thecalculus in bigraphical
nets. Bigraphical nets add the notion of locality (via a mgsstructurd.e. place graph) to interaction nets. The
encoding takes advantage of wide reaction.

Kesner and Lengrand uséxr to demonstrate the connection between higher-order suisti and proofs
in linear logic proofs by translatinglxr into proof-nets [Gir87]. The anonymous referees of our HOR&
submission based on Section 2.4 suggested that we shoutateipe relationship betweey,;, and proof-nets.

The notion of wide/external substitution appears in thdicyccalculus of Ariola and Klop [AK97]. The,-
calculus of Bertolissi et al. [Ber05, BBCKO05] extends ftealculus to handle graph-like structures with cycles
and sharing and is a natural extension of the cytllculus of Ariola and Klop [AK97]. The,-calculus allows
non-local orexternalsubstitution as do bigraphs and is confluent under lineadtyditions [Ber05]. Again, it
remains an open problem to find sufficicent conditions forflc@mce in general bigraphical systems.

65

In conclusion, we claim th&ABIG is a very natural encoding of thecalculus, with step-by-step simulation
of B-reduction and closed confluence. Besidkg, it is the only explicit substitution calculus to date whlso
preserves strong normalisation@feduction and enjoys full composition of substitutions.

4.2 Acknowledgements

The work arose from work with Martin Elsman and Thomas Hildetlt during a stay, kindly facilitated by Lars
Birkedal and Annette Hjort Knudsen, with the Bigraphicab§tamming Languages group at the IT University of
Copenhagen.

Many thanks are due to Martin Elsman and Thomas Hildebraodt fvhom | was offered much help and
many remarks on this document. The visit was also made gedsilihe support of my supervisor, Micheal Mac
an Airchinnigh. This research and that visit was partiallppgorted by funding from the Irish Research Council
for Science, Engineering and Technology: funded by theddatiDevelopment Plan.

Many thanks are due to Stéphane Lengrand for taking timesfptirough some of my technical details with
me. | also wish to thank Kristoffer Rose and Francois-RéumistSor their helpful correspondence and references,
Malcolm Dowse for many helpful conversations about thiskyand the anonymous referees of my submission
to the 3rd International Workshop on Higher-Order Rewgt{tHOR 2006) for their useful comments and for
pointing out a technical error.

66

Bibliography

[ACCLO1]

[AK97]

[Bar84]

[BBCKO5]

[Ber05]

[BG9Y9]

[BHOS]

[BKAV0O]

[Blo97]

[BROS]

[CDC78]

[CDC80]

[DGO1]

[FKP96]

Martin Abadi, Luca Cardelli, Pierre-Louis Curieand Jean-Jacques Lévy. Explicit substitutions.
Journal of Functional Programmind.(4):375-416, 1991.

Zena M. Ariola and Jan Willem Klop. Lambda calculustiiexplicit recursion. Information and
Computation139(2):154-233, 1997.

H. P. BarendregtThe Lambda Calculus: Its Syntax and Semantiotume 103 ofStudies in Logic
and the Foundations of Mathematids$orth-Holland, revised edition, 1984.

Clara Bertolissi, Paolo Baldan, Horatiu Cirstaad Claude Kirchner. A rewriting calculus for cyclic
higher-order term graph&lectronic Notes in Theoretical Computer Scient27(5):21-41, 2005.

Clara Bertolissi. The graph rewriting calculus nflaence and expressiveness. In Mario Coppo, Elena
Lodi, and G. Michele Pinna, editorSth Italian conference on Italian Conference on Theordtica
Computer Science (ICTCS 2005), Siena, ltalflume 3701 ol ecture Notes in Computer Science
pages 113-127. Springer Verlag, Oct 2005.

Roel Bloo and Herman Geuvers. Explicit substitution the edge of strong normalizatiofiheoret-
ical Computer Scien¢®11(1-2):375—-395, 1999.

Mikkel Bundgaard and Thomas Hildebrandt. Bigragthsemantics of higher-order mobile embedded
resources with local names. In Reiko Heckel, Barbara Kéamg, Arend Rensink, editorBroceed-
ings of GT-VC '05 (Graph Transformation for Verification aBdncurrencyynumber 05-34 in CTIT
Technical Reports. Centre for Telematics and Informatiechhology, University of Twente, 2005.

Inge Bethke, Jan Willem Klop, and Roel C. de VrijeRescendants and origins in term rewriting.
Information and Computatiqri59(1-2):59-124, 2000.

Roel Bloo.Preservation of termination for explicit substitutioRhD thesis, Eindhoven University of
Technology, 1997.

Roel Bloo and Kristoffer Hogsbro Rose. Preservatifstrong normalisation in named lambda calculi
with explicit substitution and garbage collection. @$N-95: Computer Science in the Netherlands
November 1995.

Mario Coppo and Mariangiola Dezani-Ciancaglininéw type assignment fo-terms. Archiv f ur
mathematische Logik und Grundlagenforschuify139-156, 1978.

Mario Coppo and Mariangiola Dezani-Ciancaglinn éxtension of the basic functionality theory for
the A-calculus.Notre Dame Journal of Formal Logi@1(4):685-693, October 1980.

René David and Bruno Guillaume. A lambda-calculughweixplicit weakening and explicit substitu-
tion. Mathematical Structures in Computer Scient#(1):169-206, 2001.

Maria C. F. Ferreira, Delia Kesner, and Laurencel.Pl@ambda-calculi with explicit substitutions
and composition which preserve beta-strong normalizatioMichael Hanus and Mario Rodriguez-
Artalejo, editorsALP, volume 1139 of ecture Notes in Computer Scienpages 284—298. Springer,
1996.

67

[FM99]

[FMS06]

[Gir87]
[GL96]

[Har89]

[Hue80]

[IMO4]

[Kes96]

[KL]

[KLO5]

[KI095]

[KR97]

[Lafo0]

[Lei01]

[Len05]

[LLD *04]

[LMO4]

[Mel95]

Maribel Fernandez and lan Mackie. Closed reductintise lambda-calculus. In J6rg Flum and Mario
Rodriguez-Artalejo, editorsComputer Science Logizolume 1683 ofLecture Notes in Computer
Sciencepages 220-234. Springer, 1999.

Maribel Fernandez, lan Mackie, and Francgois-R&gi®t. Interaction nets vs. thecalculus: Intro-
ducing bigraphical netElectronic Notes in Theoretical Computer Scient®4(3):19-32, 2006.

Jean-Yves Girard. Linear logid-heoretical Computer Science0:1-102, 1987.

Jean Goubault-Larrecq. A proof of weak terminatidrityped lambda-sigma-calculi. In Eduardo
Giménez and Christine Paulin-Mohring, editof¥,PES volume 1512 of ecture Notes in Computer
Sciencepages 134-153. Springer, 1996.

Thérese Hardin. Confluence results for the puregtoategorical logic CCLA-calculi as subsystems
of CCL. Theoretical Computer Scienog5(3):291-342, 1989.

Gérard Huet. Confluent reductions: Abstract progernd applications to term rewriting systems.
Journal of the ACM27(4):797-821, 1980.

Ole Hagh Jensen and Robin Milner. Bigraphs and magtiteesses (revised). Technical Report
UCAM-CL-TR-580, Computer Laboratory, University of Caridige, February 2004.

Delia Kesner. Confluence properties of extensiandl non-extensional-calculi with explicit sub-
stitutions (extended abstract). In Harald Ganzinger,oedRTA volume 1103 ofLecture Notes in
Computer Scien¢g@ages 184-199. Springer, 1996.

Delia Kesner and Stéphane Lengrand. Explicit opemtéor lambda-calculus. Available at
“http://www.pps.jussieu.fitkesner/papers!

Delia Kesner and Stéphane Lengrand. Extending thi@ksubstitution paradigm. In Jirgen Giesl,
editor,RTA volume 3467 of.ecture Notes in Computer Scienpages 407-422. Springer, 2005.

Jan Willem Klop. Term graph rewriting. In Gilles Dak, Jan Heering, Karl Meinke, and Bernhard
Moller, editors,Higher-Order Algebra, Logic, and Term Rewritingplume 1074 of_ecture Notes in
Computer Scieng@ages 1-16. Springer, 1995.

Fairouz Kamareddine and Alejandro Rios. Extending@alculus with explicit substitution which
preserves strong normalisation into a confluent calculuspen terms.Journal of Functional Pro-
gramming 7(4), July 1997.

Yves Lafont. Interaction nets. IROPL '90: Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges 95-108, New York, NY, USA, 1990.
ACM Press.

James J. LeiferOperational congruences for reactive systen®hD thesis, Computer Laboratory,
University of Cambridge, 2001. Available in revised formTaxhnical Report 521, Computer Labo-
ratory, University of Cambridge, 2001.

Stéphane Lengrand. Induction principles as thendation of the theory of normalisation: Con-
cepts and techniques. Technical report, PPS laboratoiyetsité Paris 7, March 2005. available at
http://hal.ccsd.cnrs.fr/ccsd-00004358.

Stéphane Lengrand, Pierre Lescanne, Dan Doughertyaipaola Dezani-Ciancaglini, and Steffen
van Bakel. Intersection types for explicit substitutiolformation and Computatiqri89(1):17-42,
2004.

James J. Leifer and Robin Milner. Transition systeifit&k graphs and petri nets. Technical Report
UCAM-CL-TR-598, Computer Laboratory, University of Caridge, August 2004.

Paul-André Mellies. Typed lambda-calculi with diqit substitutions may not terminate. Rroceed-
ings of the Second International Conference on Typed Larffadizuli and Applications, Edinburgh
number 902 in Lecture Notes in Computer Science, pages 3231395.

68

[Mil90]

[Mil01]

[Mil04]
[Mil05a]
[MilO5b]

[Mufi96]

[New42]

[0’CO6]

[PV98]

[Rit99]

[Ros92]

[Ros964a]
[Ros96b]

[Ter03]

Robin Milner. Functions as processes. Technicgd&&RR-1154, INRIA Sophia-Antipolis, February
1990.

Robin Milner. Bigraphical reactive systems: basieory. Technical report, Computer Laboratory,
University of Cambridge, 2001.

Robin Milner. Local bigraphs, confluence anecalculus (draft), 2004.
Robin Milner. Bigraphs: A tutorial, 2005.

Robin Milner. Pure bigraphs. Technical Report UMIACL-TR-614, Computer Laboratory, Univer-
sity of Cambridge, 2005.

César Mufioz. Confluence and preservation of stramgalisation in an explicit substitutions calcu-
lus (extended abstract). Proc. Eleventh Annual IEEE Symposium on Logic in Computemse
pages 440-447, New Brunswick, New Jersey, July 1996. IEER@Titer Society Press.

M.H.A. Newman. On theories with a combinatorial défon of ‘equivalence’ Annals of Mathemat-
ics, 43(2):223-243,1942.

Shane O’Conchir. Proving PSN after ruining a petifegood calculus. Technical Report TCD-CS-
2006-49, Trinity College Dublin, September 2006.

Joachim Parrow and Bjorn Victor. The fusion calculixpressiveness and symmetry in mobile
processes. IRroceedings of LICS 'Q8EEE, Computer Society Press, June 1998.

Eike Ritter. Characterising explicit substituti® which preserve termination. In Jean-Yves Girard,
editor, TLCA volume 1581 ot.ecture Notes in Computer Scienpages 325-339. Springer, 1999.

Kristoffer Hagsbro Rose. Explicit cyclic substitins. In M. Rusinowitch and J.-L. Rémy, editors,
CTRS '92-3rd International Workshop on Conditional TermvRiing Systemsnumber 656 in Lec-
ture Notes in Computer Science, pages 36-50, Pont-a-MouBSsance, 1992. Springer-Verlag.

Kristoffer Hagsbro Rose. Explicit substitutiotutorial & survey, 1996.

Kristoffer Hagsbro RoseOperational Reduction Models for Functional Programmirenguages
PhD thesis, DIKU, University of Copenhagen, Denmark, Ursitetsparken 1, DK-2100 Kgbenhavn
@, February 1996. Available as DIKU report 96/1.

Terese.Term Rewriting Systemsolume 55 ofCambridge Tracts in Theoretical Computer Science
Cambridge University Press, 2003.

69

Appendix A

Appendices

A.1 Lemmas for inductive proof of PSN for Ag,

Lemma 47 (ap’ SN).

Proof.

' reductions preserve the number of variable occurrencesemawhereas 5’ reductions decrease

this number. The proof follows from the finiteness of termd af ” -SN. O

Lemmas 48 (preservation, reflection opreSN).

1.
2.
3.
4.
Proof.

1.

If preSN(M) and M »p’ N is inside substitution thepreSN (V).
If preSN(M) and M 5~ N is outside substitution thegsreSN(N).
If preSN(M) and M 7 N thenpreSN(NV).

If preSN(N) and M 17 N is inside substitution thepreSN(M).

LetR; ap’ R} be the reduction inside some substitutign := R;). We must show that

(@) Rj{yj+1---yn) is strongly normalising. ApreSN(M), R;(yj+1 - - -ya) is strongly normalising. As
Rj(Yjt1---Yn) aD Rj(Yjt1---yn), the case is proved.

(b) for any body of substitutio®; below(y; := R;),
Ri(Yit+1---yj—1){y; = R;){Yj+1- - -Yn) is strongly normalising.
Again, aspreSN(M), Ri(yit1---y;-1)(y; = R;){yj+1---yn) is strongly normalising and
Riyiy1 -y 1)y := Rj)Wjs1---yn) AD" Rilyir1 -y 1) = R} (yjs1---yn).

2. Let(z := @) be the discarded substitution. For any body of substituRon N, P is either outside of,

above, or belowz := Q) in M. In the first two casesP(y; ...y,) is strongly normalising inV by
preSN(M). In the third case, lefz := Q) lie below (y; := R;). By preSN(M), P{y; ...yi—1){z :=
Q){y; - - . yn) is strongly normalising. Henc®(y; . ..y,) is strongly normalising.

. LetClz]{z :=T) be the " redex.

If z lies inside a body of substitutiopreSN (V) by preSN(M).

Otherwise, ifT" does not contain any substitutions theeSN(N) again bypreSN(M). SayT contains
substitutiongz; := Q1) ... {2m := Qm). Let{y1 := R1),...,{y;—1 := R;_1) be the substitutions above
z in C. We must prove(zz ... 2m){Y1 - .- ¥i—1){x := T)(y; ... yn) is strongly normalising. Variable
capture does not occur and @y, . ..,y;—1, 2} are not free names @i {22 ...z,). It remains to show
that:

o Qi{za...2m){y;---yn), and
e Ri(ys...yimi)z :=T)Yi---Yn)

70

(where(y; .. .y,) are the substitutions aboye := T') in M andN) are strongly normalising. These follow
from preSN(M).

4. Assume thapreSN(M) is false. Then there exists a body of substitut®m M such thatP(y; .. .yy) is
not strongly normalising. There are two cases.

(i) P a7 P'andQ = P'(y; ...yx») is strongly normalising or
(i) R; a’R;and@ = P{yi ...yi—1){y;i := Ri)(yit1 -..yn) is strongly normalising

In either case, the graph below shows that any infinite réslusequence starting frof(y; .. .y,) can be
matched by a reduction sequence frgm

ACD ACD AC
Plyy---yn)

Al Al Ai
ACD ACD ACD

Q

Each square can be filled as follows. If the top reductionfs , then either the square is filled byy” ¢,
or else the top and left reductions are the same in which badedttom line has joined the top.

If the top reductionis o7 then there are three subcases identified by Milner whichléed fin as in Lemma
49.2.

If the top reduction is T, then there are three subcases.

e The redexes are independent. we have one-step confluenfd]Mi

e The 7 redex lies beneath they” redex. Itis either discarded and the top line joins the mottor
else one vertical,* reduction completes the square.

e The 57 redex lies beneath they” redex. One vertical 5 reduction completes the square.
HencepreSN(N) is false which is a contradiction. Thus;eSN(M).
O

Definition (= reduction creates new ' redexes). A reductionM ¢’ M’ is said tocreate new
redexesvhen
M = C[(NQ)|{z := P) &’ C[(N'Q)|(z := P) = M’

where|p(N) = z, |p(P) = (\y.P’), and the reduction replaces a fraein N which perseveres as(N). The
same is said of any such reduction which occurs under sontexton

These ¢” reductions do not presentggSN,, in general (see Example 52). An alternative description
would be: for areductiod —=* M’ which creates a new, * redex, there is a pathf’ 7 M" such that there
isa 7 redex inM" which is not a residual of anyy” redex inM. The general form of these reductions
(omitting outer contexts) is:

(@ - .. un)) (M) (@ := (Ay.N) (w1 vm))
o (M) @1 om) - un)) (M))@ = OgN) o v),
wherez # u;,1 <i <n,v; ¢ fv(Ay.N),1 < j <m. The last term can then reduce:
D7 (AN (M) (2 = \y-N) (o1 - .. vm));

(whereN |57 N' andM " M') and contains a new, ’ redex.

The normal-forms in the definition account for the cases wihennew ‘ 1~ redex to be’ is blocked by
garbage. When this garbage is collected, thg’ redex is then enabled to fire as above.

In the following proofs, we use the following definition bigSN s .

Definition (bigSN,p). The predicatebigSN ,, (M) states that for all sequenced 1y’ M; containing only
reductions outside substitutiopreSN(1/;).

71

Lemmas 49 (preservation obigSN).
1. IfbigSNAp(M) and M xp” M; thenbigSN s (M7).

2. IfbigSN (M) andM =7 M, does not create any new, * redexes outside substitution thisigSN , , (M1).

Proof.

1. We induct ovemaxredap(M). The base case is when= 1. We need to prove thatreSN(M,). If the
reduction is outside substitution then the follows by ddifimi. If it is inside substitution then it follows by
Lemma 48.1.

In the inductive case, i ap’ M, is a reduction outside substitution then the proof followsdefini-
tion. Let M ap’ M, be a reduction inside substitution and, 2p’ N a reduction outside substitution.
preSN(M;) by Lemma 48.1. ProvinbigSN s (N) will complete the proof.

The redex ofM; ap’ N is a residual of an redex outside substitutiomihas M p’ M; cannot move
the redex outside substitution. There is then a redugionp’ M- outside substitution corresponding to
M; ap’N.

WhenM 17 M;, there are three cases (see [Mil04]) depicted below:

M1 Ml Ml

A \A A \D A \1‘)
bigSN n out N bIgSN in out N bIgSN out N
M A A M b A M D

N N

M2 M2

bigSN bigSN

(@) (b) (©

(@ My A’N. ThenMy 5" N by a7<$. As M A7 M, is outside substitutiorbigSN ,, (M>) by
definition. By the induction hypothesisigSN 5 (V).

(b) M; p” N and the redexed! 17 M; andM T M- are independent. The proof then follows the
last case.

(c) M; ©’ N and the reactum off " M, lies inside the substitution of the redex&f, 5 N (itis
discarded). By definitiorbigSN s (V).

WhenM 57 M, there are three cases (see [Mil04]) depicted below:

5 M, 5 M, 5 M,
AD A P D
blgSN4 °N bigSN4 °N bigsN " °h‘
M N N
AD D/ A D/
out in out\‘ in
M,
b|gSN bigSN
(a) (b) (c)

(a) M; ap’ N with the redexes oM T M, andM »p’ M, independent. By [Mil04], we have one-
step confluence. A8 5 M- is outside substitutiorhigSN o, (M>) by definition. By the induction
hypothesisbigSN s (V).

(b) M; 5’ N and the redex oM T M, lies under the redex dff; 5 N. It should be clear that the
reduction graph is as dep|cted The proof then follows thedase.

(c) My '’ N and the reactum ol 1 M; lies under the redex aff; ' N (it is discarded). By
definition,bigSN o p (V).

72

2. preSN(M;) by Lemma 48.3. For any reductidd; p’ N outside substitution, provirigigSN ,, (V) will
complete the proof.

Our general strategy is to join the sequenkesc’ M; ap’ N andM xp’ M, (where the 1p’ redex in
M is a residual of the redex i) knowing thatmaxredap(M2) < maxredap (M) andbigSN (M)
by 1 above. We induct ovenaxredp.

If maxredap (M) = n, bigSN (M), andM ¢ M; does not create
any new " redexes outside substitution thlaigSNAD(Ml) (LH.)

For the base case, = 0 and asM; has no ap’ redexes outside substitutiopreSN (A7) then implies
bigSN s p (M1).

As each ap’ redex outside substitution i, is a residual of a redex i, we break the inductive case
down over the ways in which the.p” and 57 redexes i/ can overlap. These subcases were identified
by Milner in the bigraphical setting diBiG [Mil04].

Let C[z](z := R) be the ¢ redex and\y.P)Q or P{y := Q) be the 2p’ redex. We will omit some
Agup contexts in the cases below for clarity.

case 1Independentredexes. Theorem 4.3 [Mil04] proves that tisexeeduction graph as in Figure A.1(a).
maxredap(Ms) < maxredap (M) andbigSN s (Mz). As M ¢ M; does not create any nev
redexes, neither doéd, =7 N. Thus,bigSN () by the mductlon hypothesis.

case 20ne redex lies beneath the other. There are two possibilitie

e The .7 redexis a subterm d& in the = redex. We then have a reduction graph as in Figure
A.1(b).
maxreda (M>) < maxreda (M) andbigSN,p(M2). As M ¢ M; does not create any new

' redexes outside substitution (both displayed redexeseamwrals) neither dogd, 7 Ms.

Thus, bigSN s (M3) by the induction hypothesis. By Lemma 48pteSN(N). To complete
the proof, we need to show that if the path= N; 2’ N,, contains only reductions outside
substitution thempreSN(V,,,). Our strategy is to join up the paths in the diagram below wher
Ny a7 Msy ., is the residual of the redeX; 17 Ms.

n
—_

Al o1)a
M; A';) » Maoym
Each step in the top path may be joined to the bottom path aefahe following three cases.
Ni———Nit1 Ni——F—=Nipt Ni——F— Nina
] [4] [+] |

Moy — M3y My —5 My Moy —05 Ms;

The first follows by 1 ¢. The second case is when thg” and T, redexes are independent.
In the third case, the;” redex discards the ;7 substitution.
AS bigSN o (M3), bigSN o (Ma4m). By Lemma 48.4preSN(N,,).

e The &7 redex lies beneath they” redex either as a subterm Bfor). We prove the former
subcase — the latter is similar.
Let P = C'[C[z](z := R)]. We have a reduction graph as in Figure A.1(@hxred (M) <
maxreda (M) andbigSN,, (Msz). As M ¢ M; does not create any new, * redexes, neither
doesM, 7 N. ThusbigSN (V) by the induction hypothesis.

case 3The variablexr of the ¢
lies outside.
Let z lie beneathP so P = Clz]. We have a reduction graph as in Figure A.1(d). The remaiofler
the proof follows the previous case and the proofifdreneath() is similar.

redex. The substitution definitian := R

73

C[CO'[Ply = Q)][{z := C'[Ply == Q)))
M;

(b) Case 2 (i)

M c M,
(Ay.C'[Clzl(z :== R)])Q — (\y.C'[C|R]{z := R)])Q

AJ lA
C'[Cla){z == R)|{y == Q) —_, C"[C[R]{z = R)]{y == Q)
M, © N

(c) Case 2 (ii)

M c M,
C'[(M\y-Cla))Q)(x := R) — C"[(\y.C[R])Q](z := R)

A JA
742@] (z:=R) _c. C'[C[R|(y :TVQ)](:Ic := R)

(d) Case 3

Figure A.1: Reduction graphs for Lemma 49.2.

case 4 This case cannot occur betweerr@” and a ap’ redex (see [Mil04]).
case 5This case cannot occur betweerr@” and a ap’ redex (see [Mil04]).

74

A.2 Properties of reduction in Ag

This section contains examples of propertiedjg, relevant to the proof of PSN.

Example 50 (1 is necessary for some infinite sequencesAll variables below are distinct.

((Az.Ay.yy)z) (Av.ov)
2 ((yayy) (e = 2)) (Av.ov)
B (M) (w.aw)

Example 51 (p’ does not preservebigSN.). All variables below are distinct.

2 ((Az2)(y =)) (Q) =M
b ((A22)(Q)

A z(r=Q)

preSN(M) and sinceM has no 1~ redexeshigSN 4 (M). However, the 57 reduction creates a;* redex
outside substitution i’ such thabigSN 4 (M) is false.

Example 52 (¢’ does not preservebigSN . ,.). Consider the sequence

with distinct variablesbigSN ,, (M), but the = reduct of M does not satisfisigSN , ;. What happens here is
that a subterm of\f which is not strongly normalising is moved inside a subsitituby a combination of a
creating a . redex followed by the firing of the latter redex. If we replaeey with (Aw.y)(u := P), u # v,
then the > reduction creates an outery” redex leading to a similar situation. These situations aralagous
to the sequence

M = (eM)Q)
B Mz :=Q).

in Axgc which shows thatubSN is not generally preserved bybxge -

75

A.3 Interleaving g-reductions in Ay,

Take the term{Az.(\y.zy)z)w with two 3-redexes. It has the reduction graph in Figure A.2.

(Ay.wy)z
/ \
Az.(Ay.zy)z)w wz
\ /

(A\z.zz)w

Figure A.2: Reduction graph ¢Az.(Ay.zy)z)w in the A-calculus

In Agupb, @B-reduction corresponds to a sequence of reductions. Tkdsetions may interleave as in Figure
A.3. In the figure, the outer reduction paths correspondediting of ones-reduction after the other. The terms
on the inside of the graph are terms where btieductions have been partially completed.

/ \
(wz){y == 2) (wz)(z := w)
) \ /]
(wy)(y = z) (wz)(y := 2)(z := w) (z2){z := w)
: / \ :
D C e D
(Aywy)z) (wy)(y == 2){(z := w) (@2)(y := 2)(z :=w) (Az.z2)W
D A N 2 A D
(Aywy)z)(z :==w) (zy)(y =20 z:=w) (Az.22(y = 2))w
C / \ C

(Az.(Ay.zy)z)w

Figure A.3: Reduction graph ¢fz.(Ay.zy)z)w in Agyp

76

A.4 Contraction graphs

Alxr has three explicit constructors — explicit substitutioneakenings, and contractions. The first is familiar
and the second is uncomplicated. Contractions are not écagdl but we found that a graphical representation
aided our initial reasoning by providing some visual prodfsthis section, we present this representation of the
contractions of a\lxr term.

Contractions are used to provide linearity when multipleusoences of a free variabte exist in a term
by renaming the occurrences and then ‘aliasing’ them.td-or example, the\-term zz is encoded in\lxr as
A(zz) = C¥*2(z122). In generaln — 1 contractions are needed to ‘linearisefree occurrences of some
variable. For example,

A((zz)z)z) = CZ= (Co> (Co™ (w1, 72)T3)34)

wl1 wlz

A((zz)(zz)) = C=2 (C2172 (31 22) CZ27 (z324)).

zly zl2
We have adopted some conventions in the examples above wigidlipically use in this document. We
label the contractions in such a way that the variables wéiiahd forz (which we callaliaseshere) are indexed
numerically from innermost to outermost, left to right. Thare special labels which tie the contractions together
which we label ast! indexed with some integer. We adopt these conventions fogmphical representation
below.
A contractionC%*-*> may be represented as a tree

x
P
1y T2
with the ‘real’ variable on top, the first alias below to thé land the second alias below to the right. In any term
M, there is an obvious nesting structure to contractionsgiyethe abstract syntax tree &f. For example, in
the encoding of (zz)z)x above,C2'1:%4 lies aboveC?;>*. C2l1:*4 is also connected in some way @;>**
—zl is a free name of the second contraction which is bound in teeddntraction. We can therefore directly
represent the contraction substructure of a term grapyigsing forests of binary trees where the root node of a
tree represents an ‘actual’ variable naméhe leaf nodes represent variabledn and the other nodes link these
variables ultimately ta:. We call these forest representati@ositraction graphs
For example, the contraction graph{((zz)z)x) may be visualised as

x

TN

zly T4

N

.Z'lQ I3
N
1 T2,
and the contraction graph of((zz)(zz)) as

X
.’L‘l1 .’L'l2
P PN
I Io I3 X4.
We call the nodes which are neither leaves nor the lioks.
We find it useful to depict when contractions lie directly bath each other. For example, in the term

A(y(zz))(zz)) = "2 ((yCpy ™ (2122)) Cpy ™ (w324)),

zly zl2
Cy™ lies directly underC#!v*> whereasC;; > does not. When a contraction lies directly under its parent
contraction in a term, we indicate this in the graph by detbogehe free variable of the inside contraction with a
hat (*) so that the contraction graph of this example is
T
xly zlsy

s PN
1 T2 T3 T4.

77

T =C1c T w =a w
Yy 2 Z Y T v T Y
PN P
Z Y zZ

Figure A.4: Graphical representationsmof; . and=4

Using this representation, we can depict the congrueaegs and=4 as in Figure A.4. The congrueneg;

is visualised by swapping the branches belawThe congruence=4 is visualised by swapping the labels of

leaf nodes one generation apart (when the parent of the pounogles is wearing its hat). The congruesge,.

involves contractions in different trees of the forest amdsanot explicitly represented in a contraction graph.
These representations of the congruences may allow easirstood visual proofs involvirg 4 and=¢1..

For example, the proof of the equivalence

Cov™ Oon™ (1 (2223))
=01 Oy O™ (w1 (223))
(z1(z223))
(1 (z223))

=4 th,zs Cl‘z, 1

.TL‘l1 .Z']_

T2T3

— zl1,z T1,T2
=C1c C b SCzll, Z1(T2x3

can be read off the diagram below.

x = T
T xly xly T3
T2 T3 1 T2

Finally, we can extend this representation to depict howtst#ution propagates down through contractions
in a term via the— ¢, rule as in Figure A.5, where the first three right hand sidglgsecorrespond to the
left hand side graphs aftera—c,n,s1 reduction and the last two graphs represent a ‘tidying uphefcontraction
graph.

Using this representation, the contraction graphs of ttacton sequence

O (21057, ™ (w223)) (& := N) (1)
—>Cont1 Cd)l’q)ll((C:fl’w (za23)) (21 := N1){zly == Nly))
—appt OV (121 = Nl)C;ffl’w(mgm))(xll = Nly))
—appe CtH (z1(z1:= Ny Cffl’w(xzam)(:vll := N1y)) (2)
—scontt Cg" ™ ({21 == N1)Cgi™ ((w2ws) (@2 := No){ws := Na))) (3)
— c‘h"”l (z1(z1 = N1)Cg2®® (w2{z2 == Na)zs(zs := N3)))

are given in Figure A.6.

78

x4+ (z:=0Q))

/\
xly xzly /\
I
| |

zly + (zly == Qly) xly + (xly := Qla)

A

z (z:=Q) i
N /\
I .’L'l2 q>1 q>l2

A £E|l2 <~ (Ili'lz = le)

z 4+ (z:=Q) i
PN PN
I D) (I)l (1)2
| |
(I)i (I)l
| |
®;
|

Figure A.5: Substitutions propagating through contractjcaphs

z 4+ (z:=Q) o Lo
/\ PN /\
I1 .’L'll (I>1 @ll (I)l (I>l1
PN | PN
T2 3 zly + (zly := Nly) ¢, &5
PN
o I3
1)) 3)

where® = fv(N), Ny = R N,Nl; = R, N,
®ly = fv(Nly), N, = R Ry N = R N,N; = R} N.

Figure A.6: A substitution distributing through some ceawtions

79

