
Progress Report
Bigraphical Location Models

Ebbe Elsborg

IT University Technical Report Series TR-2006-94

ISSN 1600–6100 September 2006

Copyright © 2006, Ebbe Elsborg

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-138-3

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web: www.itu.dk

Preface

This progress report was submitted in partial fulfilment of the part A requirements of the Ph.D. Curriculum of the 4-
year programme at the IT University of Copenhagen. It was prepared for my qualification exam, which is a prerequisite
for entering part B of the programme. It describes the core of my research in the first two of four years of my Ph.D.
studies and counts as my Master’s thesis. A part of the work, namely chapter 3, was done in collaboration with other
researchers as mentioned by that chapter’s introduction. The Ph.D. Curriculum requires the report to detail directions
for future work.

1

Bigraphical Location Models

Ebbe Elsborg

IT University of Copenhagen
Programming, Logic, and Semantics group

elsborg@itu.dk

6th September 2006

Contents

1 Introduction and Motivation 7
1.1 The setting . 7

1.1.1 Global ubiquitous computing: Design and science 7
1.1.2 Analysing movement in a sentient environment 8
1.1.3 Bridging theory and practice 8
1.1.4 Theory . 9

1.2 Narrowing the problem domain . 10
1.3 The hypothesis . 10
1.4 Our approach . 11
1.5 Outline of this report . 12

2 Location Models 13
2.1 Introduction . 13

2.1.1 Location systems . 13
2.2 Relationships, queries, and requirements 15

2.2.1 Basic properties of coordinates 15
2.2.2 Relationships wrt. locations and located-objects 16
2.2.3 Queries . 17
2.2.4 Location model requirements 18

2.3 Classification of location models 19
2.3.1 Geometric location models 19
2.3.2 Symbolic location models 20
2.3.3 Hybrid location models . 22
2.3.4 Views . 23
2.3.5 Location-aware systems 23

2.4 A model of a reflective building 23
2.5 Concluding remarks . 23

3 Bigraphical Models of Context-Aware Systems 25
3.1 Introduction . 27
3.2 Bigraphs and Bigraphical Reactive Systems 28
3.3 Naive Models of Location-aware Systems 30

3

3.4 Plato-graphical Models of Context-aware Systems 32
3.5 Examples . 34

3.5.1 A Simple Context-aware Printing System 34
3.5.2 A Location-aware Printing System 37

3.6 Discussion . 38
3.7 Conclusion & Future Work . 40
3.8 Acknowledgements . 40
A Bigraphs . 40
B Encoding of “find all devices” . 43
C Rigid control-sortings and RPOs 45

4 Encoding MiniML with References in Bigraphs 48
4.1 Purpose . 48
4.2 Non-interference of closed links 49
4.3 Encoding references via closed links 52

4.3.1 Encoding of natural numbers 57
4.3.2 An example exploring references 59

4.4 Dynamic correspondence . 63
4.5 Discussion . 64

5 A Bigraphical Location Model 65
5.1 Introduction . 65
5.2 A reflective building . 65
5.3 The model . 66

5.3.1 Design choices . 66
5.3.2 Introducing the model . 69
5.3.3 X as a Plato-graphical model 72
5.3.4 From Ξsugar to Ξ . 83
5.3.5 The model X is Plato-graphical 86
5.3.6 Relating our model to the location model classification . . . 87

5.4 Concluding remarks . 87
5.4.1 Conclusions on our modelling effort 88

6 Related Work 90
6.1 Introduction . 90

6.1.1 Method . 91
6.1.2 Context calculi versus process calculi 91

6.2 Context UNITY . 92
6.2.1 Report . 92
6.2.2 Evaluation . 96
6.2.3 Reasoning in practise . 97

6.3 Contextual reactive systems (CRSs) 97
6.3.1 Report . 97
6.3.2 Evaluation . 99

4

6.3.3 Reasoning in practise . 100
6.4 A calculus for context-awareness (CAC) 100

6.4.1 Report . 100
6.4.2 Evaluation . 101
6.4.3 Reasoning in practise . 102

6.5 A formal model for context-awareness (CONAWA) 102
6.5.1 Report . 102
6.5.2 Evaluation . 103
6.5.3 Reasoning in practise . 104

6.6 Other approaches . 105
6.7 Concluding remarks . 106

6.7.1 Evaluations . 106
6.7.2 Reasoning in practise . 106
6.7.3 Summa summarum . 106

7 Future Work 107
7.1 Possible directions for future work 107

7.1.1 Characterising context-awareness 107
7.1.2 Formalising realistic examples 109
7.1.3 A list of properties . 109
7.1.4 Tool support . 110
7.1.5 Formal reasoning . 110
7.1.6 Dynamic correspondence 111
7.1.7 Enhancing bigraph theory 112

7.2 Concluding remarks . 113

8 Conclusions 114

9 Acknowledgements 116

Bibliography 116

5

Abstract

In this progress report we begin evaluation of how well-suited Høgh
Jensen and Milner’s bigraphical reactive systems (BRSs) [JM04] are
for modelling context-aware computing in ubiquitous systems. In this
work we concentrate on the location aspect of context. First, we intro-
duce the setting, motivate our work, and state our hypothesis. Then we
present a digest of the research literature on location models forming a
knowledge base for the rest of the report. We continue by developing
bigraphical models of context-awareness and argue that these so-called
Plato-graphical models constitute a proper foundation for modelling
and simulating context-aware systems. A feature is that different cal-
culi or programming languages can be combined in one model. Subse-
quently we define and analyse an encoding of a MiniML-like calculus
with references in bigraphs (BRSs). This is needed for our implementa-
tion of a representative, minimalistic location model as a Plato-graphical
model. Finally, we compare our approach to related work within context
calculi, give directions for future work, and conclusions.

6

Chapter 1

Introduction and Motivation

1.1 The setting

This section aims to give an overall motivation for our work. Our work humbly tries
to contribute to the foothill project “Analysing Movement in a Sentient Environ-
ment”1, which is part of the UK Grand Challenges (GCs) of Computing Research2.

Describing how our work fits into a larger perspective serves as an argument that
our work is relevant. First, we use roughly three pages for presenting the setting
before turning toward our more specialised field of research.

We first sketch the GC of interest and then the foothill project.

1.1.1 Global ubiquitous computing: Design and science

The GC in question is that of “Global Ubiquitous Computing: Design and Science”
[CCK+05]. Ubiquitous computing (UC) is also called pervasive computing. UC was
envisioned by Mark Weiser [Wei93, Wei91] to be the third wave of computing (after
mainframes, and then personal computers), in which each person has many comput-
ers, receding into the background, at their disposal. An essential property of ubiq-
uitous computing systems (UCSs) will be extreme dynamics, i.e. a rapidly changing
network topology. The total aggregation of UCSs may be called the “Global Ubiq-
uitous Computer”. It is predicted that mobile devices will become more numerous,
much smaller, and deeply embedded in many of the objects in everyday life, e.g.
clothing or even in our bodies. We believe that this prediction will be realised. Thus,
we need scalable design principles. Analysing UCSs will be difficult because UCSs
will likely be distributed, mobile, and evolutionary. Furthermore, these devices can
perform computation and communicate with each other, while being context-aware
(location-aware). They may even be self-aware, thus exhibiting introspective be-
haviour. Imaginable is also for them to become self-organising and self-repairing.

1http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/Manifesto/fp-movement.html
2http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/

7

Finally, trust, privacy, security, and reliability will become very important to guar-
antee seeing how these pervasive devices will be “everywhere” doing “everything”.
The science, toolkits, and theories for global computing do not yet exist. Progress
has been made, but we shall need much more supportive science to really influence
engineering of the technologies and devices ensuring sufficiently correct behaviour.
We believe that without rigorous analysis of the possible interactions in a UCS be-
haviour will all too often be incorrect with fatal consequences. Theory and engi-
neering should be a combined effort to realise the potential of global ubiquitous
computing (GUC). More specifically, the aim is to define a set of design principles
for GUC, and to develop science whose concepts, calculi, theories, and automated
tools allow predictive analysis of GUC. These are the ideal goals of this GC.

1.1.2 Analysing movement in a sentient environment

The foothill project mentioned above is about sentient computing [ACH+01, Hop00]
where it is proposed that software applications can be made more responsive and
useful by observing and reacting to the physical world. Sensors (hardware) col-
lect context (e.g. location) information of physical objects such as mobile devices
and even other (mobile) sensors. We use the words sentient and context-aware in-
terchangeably. It is fair to say that context-aware computing is a facet of UC. The
foothill project aims to arrive at a conceptual framework in which to express a variety
of rules of motion and interconnection, allowing context-aware systems to be pro-
grammed conveniently, simulated, and analysed rigorously. We use the term “sys-
tem” broadly to mean a group of independent but interrelated elements comprising
a unified whole. We will detail this in chapter 2. The framework could consist of a
calculus and a derived programming language along with a programming method-
ology so that the language may be used and evaluated by people whose primary
interest is in applications. The ultimate goal of this foothill project is to unify theory
and practice in sentient computing. A step toward this goal could be to model and
program a sentient or “reflective” building, where sensors continually transmit data
to a monitor that maintains a data structure of the locations of physical objects. A
more advanced task could be to also model mobile virtual objects such as mobile
code moving from one software domain to another. We envision bigraphical reac-
tive systems (BRSs) due to Milner and Høgh Jensen [JM04], or some extension of
this theory, as a suitable framework for context-aware computing.

1.1.3 Bridging theory and practice

Recently, [Ter06] argued that combining theory and systems building (wrt. trust)
is important because we need to establish a basic understanding and an appropriate
level of abstraction. It is essential for systems builders and theoreticians to collabo-
rate successfully, and this requires consensus on definitions of core concepts in the
problem domain.

The importance of combining engineering with foundational work in realising

8

computing in space is also emphasised in [Mil02]. “Computing in space” is about
communication across space and actually considers the global computer as both a
physical and a virtual entity. The term infodynamics is used to describe the fact that
physical devices move in physical space but also in virtual space via their representa-
tions. Infostatics is the term used to state that software superposes virtual space upon
physical space. The conclusion is that joining the forces of software engineering and
software theory is necessary to achieve success with the global computer.

When programming context-aware systems the programmer needs commonly-
recognised abstractions and design patterns [Leo98]. Formal methods aid in under-
standing the essence of the programming task [JPR04].

Having given a very high-level motivation we next review the challenges for
theory in a little more detail. The purpose is to make the issues discussed so far
more concrete. There are also challenges for engineering, but in this introduction we
focus on the theoretical part, and refer the reader to [CCK+05] for an outline of the
challenges for engineering.

1.1.4 Theory

As mentioned we need a conceptual framework enabling rigorous analysis supported
by techniques and automated tools. Many topics can be discussed in this regard;
structure, information flow, mathematical analysis, and methodologies and tools.
We briefly sketch these.

Structure refers to the ways entities (e.g. devices) interact and move among
each other, as captured by structural theories of processes. Both physical and virtual
space is relevant, and three issues are important, namely placing, linking, and mo-
bility. [CCK+05] envisions that no later than the year 2010 will we have a calculus
or logic which allows for experimentation with modelling prototypical systems such
as a sentient building, or even more complex scenarios. We would like to take steps
towards this goal, and have begun to do so in the work presented in this report. We
expect that models for real-life systems will need to capture not only time as a con-
tinuous variable, but also continuous space; according to [CCK+05] one approach
is to use hybrid automata (modelling/representing both time and continuous space)
governed by differential equations. Also, stochastics (propabilistic) will probably be
needed to, e.g. faithfully model and simulate device movement in a sentient building,
because sensors are not perfect.

Regarding information flow, we find that the need to query distributed data is
paramount. As mentioned in [CCK+05], one can expect a merging of research on
semi-structured data and process models to handle that movement of data and pro-
cesses is becoming alike. An example of such work is Reactive XML [HNO06,
HNOW05], which is a bigraph-and-XML-based approach. Recently, modelling and
verification of protocols for communication in mobile ad hoc networks (MANETs)
has become a lively research area, where issues of trust and resource access chal-
lenge formal models.

Mathematical analysis of complex systems such as UCSs should be driven by

9

experimental research because it seems impossible to foresee all the potential and
problems of this new computing paradigm. Real systems should be modelled and
analysed, and hopefully theory can impact the way engineers build systems. A help
in understanding UCSs could be a graphical representation and reconfiguration of,
e.g. network topology. We would like to contribute here also by gradually formal-
ising and reasoning about increasingly realistic systems; a first step is taken in this
report. One could also imagine a family of models with consistency requirements
between them, where each model aids in reasoning about a certain level of a UCS.

This concludes the overall motivation. A motivation more specific to our work
will be given in the chapters 2 and 3. In the the following sections we narrow the
problem domain, state our hypothesis, and describe how we approach the task of
testing the hypothesis.

1.2 Narrowing the problem domain

GUC is a vision rather than a concrete research problem that we can solve or answer.
To obtain a more tangible problem to attack we narrow the domain of investigation.
An important facet of UC that has received much attention in the research literature
is context-aware computing, where entities (e.g. mobile devices) are aware of their
surroundings, i.e. adapt their behaviour depending on the context at hand [SAW94],
interpreting “context” to mean the situation in which the computation takes place
[DA00]. Context-aware systems typically have a component that maintains a model
of the current context, and such components are known as context models [HIR02].
The most commonly exploited instance of context is physical location, as witnessed
by the literature and the context-aware systems and toolkits that have been imple-
mented. Location-aware applications acquire information from sensors, which can
happen in a uniform way through a location model [BD05] that interprets sensor
information to maintain a model of the current locations (positions) of, e.g., mobile
devices. We delve into location models in chapter 2. Context models and location
models are concrete enough for us to study and they are an essential part of context-
aware systems.

1.3 The hypothesis

Our point of origin is the theory of bigraphs [JM04, Mil05a, JM03]. A principal aim
of BRSs is to model ubiquitous systems. In this report we begin evaluation of this
aim. Thus, the main hypothesis of our work is:

Hypothesis (main). BRSs are suitable for programming, simulating, and reasoning
rigorously about ubiquitous systems.

In this report we begin to test this hypothesis by ascertaining a more tangible hy-
pothesis that supports the main hypothesis:

10

Hypothesis (supporting). BRSs are suitable for modelling location-aware systems.

To ascertain this supporting hypothesis we endeavour modelling location-aware sys-
tem directly in bigraphs. (We overload the term “bigraphs” to mean the theory of
bigraphs including BRSs.) In the chapters 3 through 5 we find that:

1. It is awkward to model context-aware (location-aware) systems directly in bi-
graphs.

2. This awkwardness can be alleviated by using Plato-graphical models.

3. Location models can be modelled as Plato-graphical models using a bigraphi-
cal encoding of a MiniML-like calculus with references.

We argue that these findings ascertain our supporting hypothesis. To strengthen the
supporting hypothesis we propose to study the following two questions:

• Are Plato-graphical models useful for simulation of context-aware systems?

• Is there a need for a notion of bisimilarity between BRSs to support formal
reasoning about context-aware systems in Plato-graphical models?

We touch upon these two questions in this report, but leave their treatment for future
work.

1.4 Our approach

This section outlines our strategy for testing the supporting hypothesis stated above.
We take an experimental approach by comprehensive modelling of a concrete realis-
tic system. Our strategy for testing the supporting hypothesis is detailed as follows.

First, we study the literature on location models to gain understanding of the
models we wish to model bigraphically. (1) To test whether bigraphs are suited for
direct modelling of context-aware systems, we pick some queries on location-aware
systems to model. Such queries are concrete, and it is clear when a query has been
implemented faithfully. (2) Finding that this direct modelling is inconvenient mo-
tivates a more advanced modelling method; Plato-graphical models. We model a
context-aware printing example from the literature to test the Plato-graphical mod-
els. (3) Further, we use our gained knowledge of location models to formulate a
representative one, and model it as a Plato-graphical model. In doing this, we define
an encoding of a MiniML-like calculus into bigraphs, and analyse this encoding.

In short: In this report we essentially invent and challenge Plato-graphical mod-
els (and thus BRSs) by testing how suited they are for modelling location models.

11

1.5 Outline of this report

Having introduced and motivated our domain of work we proceed as follows. In
chapter 2 location models are investigated. Having this piece of background knowl-
edge in place we proceed to define Plato-graphical models for context-aware systems
in chapter 3. These models serve as basis for the chapters 4 and 5. In chapter 4 we
encode a calculus with references in bigraphs because this is needed for the bigraph-
ical location model presented in chapter 5. Chapter 6 presents related work in some
detail, and chapter 7 extensively discusses directions for future work. Finally, we
conclude in chapter 8.

We stress the fact that this is a progress report so some of the work presented here
is in progress. We remark that the chapter on related work takes up significant space
because becoming knowledgeable within the relevant research areas has been a pri-
ority in this study, and should serve as a basis (and catalyst) for our further research.

12

Chapter 2

Location Models

2.1 Introduction

It is well agreed upon that location is an important context-parameter [Sch95, Leo98],
but not the only one [SBG99] in context-aware computing, and that context-aware
computing will become increasingly important in the years to come. This chap-
ter serves as general background knowledge for chapter 3 on bigraphical models of
context-aware systems, and as basis for modelling a location model in chapter 5.

2.1.1 Location systems

First, we need a piece of terminology.

2.1.1.1 Located-objects

As mentioned earlier, there are (at least) two ways to think about location; namely
physical and virtual. In the present discussion we think of physical location, i.e. the
location of objects in the physical world. Typically, it is the location of real-world
entities such as mobile devices (e.g. mobile phones) that is interesting for location-
aware applications (which we explain shortly). Following [Leo98, ST94] we use
the term located-object to refer to a mobile object whose physical location can be
tracked.

2.1.1.2 The overall location system model

In this chapter we present a digest of the research literature on location models. We
say that a location model is constituted by (1) representations of static and mobile
real-world objects, (2) spatial relationships between these objects, (3) a collection
of rules that model object movement, and (4) a collection of location information
queries on the model. Location models are essential parts of location systems (see

13

[HB01] for a survey on location systems) because they provide a uniform way for
applications to obtain location information, which facilitates rapid development. Be-
fore delving into location systems we need to address how information about location
is presented in different formats. Geometric coordinates, as used by the Global Po-
sitioning System (GPS), refer to a point or geometric figure in a multi-dimensional
space. Symbolic coordinates are names and can refer to cell-IDs in cellular networks
such as the Global System for Mobile communications (GSM) or Wireless Local
Area Networks (WLANs), or to radio frequency tags (RFIDs). The distinction be-
tween these two coordinate types is fundamental and we will return to it shortly. For
now, please consider figure 2.1, which depicts the overall system model. We explain

Location model

Application

Actuators

Positioning system

Physical world

Sensed information

Position updates

Queries

Figure 2.1: Overall location system model.

figure 2.1 in a top-down fashion. A location-aware application (see [Leo98] for
examples) queries a location model for location information. By location-aware we
mean “the ability to adapt behaviour to the physical locations of users, resources, and
processes” [Leo98]. In some cases the application can update the location model; we
say that this is actuation. The different kinds of queries and actuators imply demands
on the internal structure and organisation of the location model. The location model
maintains a representation of the state of the physical world by receiving events
about updated position information on mobile objects from a positioning system (see
[HB01] for an overview of positioning systems). “A positioning system allows a
mobile object or tracking system to issue a position update with a coordinate iden-
tifying a location to the location model.” [BD05]. [Leo98] states that a positioning
system measures the location of the querying located-object (e.g. vehicle navigation
systems), whereas a tracking system measures the location of other located-objects

14

(e.g. the Active Badge system [WHFG92]). We do not wish to distinguish between
tracking and positioning because we need objects to enquire about both their own
and other objects’ locations. If different positioning systems are in play then there
is a need for sensor fusion, but that is out of the scope of this report so we refer
to [HBB02]. In the preceding explanation we have used the terms “location” and
“position”. Following [HB01] we distinguish between physical position and sym-
bolic location; a physical position is specified by a geometric coordinate, whereas
a symbolic location is specified by a symbolic coordinate. The positioning system
generates location information events on the basis of what its (hardware) sensors
sense in the physical world. The sensors track the movement of located-objects and
the sensed information is delivered to the location model. The physical world is
the world we live in, which is narrowed according to the geographical location of
interest, e.g. a sentient building.

We sometimes wish to speak of a geographical point or area without being spe-
cific as to whether we consider it from a geometric or symbolic point of view. We
overload the term “location” for this purpose.

2.1.1.3 Focus

We focus on a conceptual classification of the models. We do not discuss specific
location-aware applications, positioning systems or sensor technology any further,
except for a few comments later on.

2.2 Relationships, queries, and requirements

As mentioned earlier, location-aware applications query a location model. We intend
to identify types of common queries, and mention which demands they list for the
underlying location model. This requires us to first study coordinates and spatial
relationships between locations. We do not consider actuation in this chapter, but we
do return to it briefly during this report and in chapter 7.

We proceed to explain location models and their basis.

2.2.1 Basic properties of coordinates

We follow the definitions of [BD05]. A coordinate is an identifier specifying the
physical position of an object wrt. a given coordinate system, or the symbolic loca-
tion by a name (e.g. a cell-ID). A coordinate system is a set of coordinates. There
are essentially two different classes of coordinates, namely geometric and symbolic.
We discuss each class of coordinates in turn.

2.2.1.1 Geometric coordinates

Geometric coordinates refer to a point or geometric figure in a multi-dimensional
space and can be global or local. Geometric coordinates naturally support calcula-

15

tion of physical distance and containment relationships between positions (which are
described by one ore more coordinates), to which we return shortly. Through cal-
culation, geometric coordinates also support the following operations: Area overlap,
areas touching, and area containment.

GPS is an example of a system using global geometric coordinates, where coor-
dinates are triples of longitude, latitude, and elevation above main sea level. Many
applications use GPS – e.g. navigation systems in cars. An example of a system
using local geometric coordinates is the Active Bat system [ACH+01], which is a
high-resolution indoor positioning system providing three-dimensional coordinates
wrt. a local Cartesian coordinate system. In other words the physical space is de-
fined by a coordinate system, positions are identified by coordinate tuples, and the
location model is geometric, i.e. identifies pisitions by geometric coordinates.

2.2.1.2 Symbolic coordinates

Symbolic coordinates are names that refer to locations, e.g. a room, a cell ID, or an
IR identifier of a sensor. A reason for having symbolic coordinates is that they are
“human-readable” – it is often more useful to know that a person is in a particular
cell (e.g. a room), than at some given (set of) coordinate(s). Given only symbolic
coordinates, it is not possible to calculate distances via a distance function, but the
distance and containment relationships on locations (to be explained shortly) must
be represented explicitly in the location model. Furthermore, a symbolic notion
of nearness (or proximity) can be supported, i.e. located-object is close to another
located-object or location. We return to this below.

The Active Badge system [WHFG92] provides symbolic identifiers (coordinates)
for locations via fixed IR sensors registering users’ badges that transmit a unique
identifier. In other words the location space is defined by the placement of fixed
sensors, a location is defined by the symbolic name of the sensor, and the location
model is symbolic. Another application that uses symbolic coordinates is Active
Office system [WJH97] where locations are denoted “building”, “floor”, “room” and
so forth.

2.2.2 Relationships wrt. locations and located-objects

In the literature five relationships pertaining to locations and located-objects are em-
phasised as having practical importance; Contains (inclusion), connected-to, near
(proximity), range, and distance. These spatial relationships between locations are
relevant for queries and topologies of location models. We briefly discuss each one
in turn.

Contains Indicates whether a location is completely included in another. This
relation is supported naturally in models with a hierarchical location structure such
as trees and lattices. As mentioned, it can be calculated in geometric models. As an
example: A building can contain a room, but hardly vice versa.

16

Connected-to Refers to some linking between locations. This relationship is often
captured by introducing a graph-based location structure, as it can not be calculated
or derived. Examples: Two mobile devices can be connected, e.g. via Bluetooth.
Two rooms can be connected by a door.

Distance The distance relationship is defined on spatial objects and is usually ex-
pressed as a natural or real number. It can be calculated in geometric models, but
needs to be explicit in symbolic models. As an example: Two mobile devices can
be positioned ten meters from each other, but in different rooms. This raises the
question of how to calculate distance; by following a path via the connected-to rela-
tionship, or as the Eucledian distance. We return to this question in chapter 5.

Near For a located-object l to be near another, a notion of “distance function” is
required. The near relationship could contain the n located-objects closest to the
position of l. This relationship can be calculated in geometric models, but must be
explicitly represented in symbolic models. It can be seen as a specialisation of the
distance relationship. As an example: A user of a mobile device may want to find
the nearest printer.

Range The range relationship has the located-objects within a certain geographic
area of the located-object in question. To support this query located-object positions
must be known and the contains relationship modelled, i.e. it has to be defined
whether a coordinate lies within a spatial area. As an example: The sending of
messages to receivers in a certain geographic area, e.g. a room on (contained in) the
fourth floor (contained) in a building.

2.2.3 Queries

In [BD05] four different query types, which location models should support, are
identified. We present and explain them for future reference. When explaining the
queries we refer to the relationships.

Position queries: Determination of the position or location of a located-object like
a user’s mobile device, or a static object like a room. A position is defined by
local or global coordinates. It would, e.g., be relevant with a local coordinate
system for a moving train so that a traveller can be located in a compartment
instead of his or her position on the ground [BD05]. To compare positions
from local coordinate systems, mappings to a common global coordinate sys-
tem must be defined.

Nearest neighbour queries: A search for the located-object or location closest to a
certain position, e.g. a printer. Besides known located-object positions there is
need for a distance function to support this query. This function should output
the physical distance when supplied with two coordinate tuples.

17

Navigation: Finding paths between locations. There is a need to model the topo-
logical connected-to relationship, which describes interconnections between
neighbouring locations. This can, e.g., be used to find the shortest or fastest
path, or a path for a person in a wheel chair. One could imagine adding weights
to links for this purpose.

Range queries: Search for all located-objects within a certain geographic area. This
can, e.g., be used to send messages to receivers in a certain geographic area as
in Geocast protocols [DR03]. To this end, the model needs to be able to de-
termine the positions of the located-objects, and also the topological contains
relationship, i.e. whether a coordinate lies within a spatial area. Containment
is supported implicitly for geometric coordinates, but must be specified ex-
plicitly for symbolic coordinates.

These are the query types we will consider supporting in our bigraphical location
model in chapter 5. We should mention that [BD05] also has a requirement stating
that all information of the location model can be visualised, but we do not consider
that as a query as such.

2.2.4 Location model requirements

Having described these queries, the following model requirements, not all of which
need to be fulfilled at the same time, are derived in [BD05]. The requirements are
on general-purpose models that wish to support all four query types, and so a model
for a specific purpose need not necessarily fulfil these requirements to be of use.
We believe that our preceding treatment justifies these requirements without further
comments.

Object positions: Need geometric and symbolic coordinates to support a wide range
of applications that have been implemented. Can do with either geometric or
symbolic in some cases. Multiple local and global coordinate reference sys-
tems are desirable. This supports the position queries.

Distance function: Distances between spatial objects; Eucledian and desirably over
paths. This is required for the nearest neighbour and geometric range queries.
We argue that range can also be supported by location containment and can
thus make sense in symbolic models also.

Topological relations: Contains and connected-to. These are needed to support
range queries and navigation queries, respectively.

Orientation: Horizontal and vertical orientation is required for some applications,
e.g. to determine which situation a person is in.

According to [Leo98] co-location is another interesting relative relationship. We
consider this to be a range query where the range is exactly one’s own location.

18

[BD05] argues that minimal modelling effort should be considered when con-
structing a location model, i.e. wrt. accuracy (creation and updating of the model,
dynamics), level of detail (granularity of locations), and scope (the area covered; a
building, a room, a country). We agree, and return to this in chapter 5.

2.3 Classification of location models

When classifying location models we need to have a clear terminology. Unfortu-
nately, there is no clear consensus in the research literature regarding the terminology
of location model types. We proceed by synthesising the terminology of the litera-
ture. Some terms used are: Geometric, physical, symbolic, geographical, semantic,
metric, topological, and Cartesian [HB01, Rot03, Pra00, BS01, BD05, DRD+00,
BZD02, CK00]. We believe that these terms, in essence, cover two different types
of location models; symbolic and geometric. We group the terms as follows:

Symbolic includes geographical, semantic and topological.

Geometric includes physical, metric, and Cartesian.

Hybrid models are combinations of symbolic and geometric models.

We continue by giving explanations of geometric and symbolic location models fol-
lowing [Leo98], along with brief justifications of our grouping. We begin with the
geometric models and continue with the symbolic models.

2.3.1 Geometric location models

Geometric location models define the physical space by one or more multidimensio-
nal reference coordinate systems. Both positions and located-objects are represented
as points, areas, or volumes within these coordinate systems. This supports calcu-
lation of the relationships distance (which may not be accurate) and containment
between positions, and therefore also allows for calculation of area overlap, and
whether areas touch. The connected-to relationship is however not inherent. A geo-
metric location model is said to be unified if it has multiple coordinate systems, other-
wise simple. Often, uncertainty areas are used to capture the imprecision of sensors
(see e.g. [SBG99, HHS+02, HB01]) when positioning located-objects. Some geo-
metric systems use global coordinates, e.g. referring to the position on the Earth’s
surface like in GPS, while other systems (e.g. Active Bat [ACH+01, HHS+02]) use
local coordinates referring to a (smaller) Cartesian coordinate system with another
point of origin (typical for indoor positioning systems). Geometric models use ab-
solute positions, i.e. located-objects and locations are positioned with reference to
some common point of origin (within each coordinate system), and not relative to
each other.

19

2.3.1.1 Physical, metric, and Cartesian models

Physical, metric, and Cartesian denote exactly the same type of model as geometric.

2.3.2 Symbolic location models

In symbolic location models locations and located-objects are referred to by sym-
bols or names such as “Room 4C.16” or “Linus Torvald’s laptop”. Symbolic models
use relative locations meaning that each located-object has its own frame of refer-
ence because there are no underlying absolute positions. Locations can be organised
in different structures to support different queries. We review three different ap-
proaches: Set-based models, graph-based models, and hybrid models combining the
two approaches.

2.3.2.1 Set-based models

Locations can be modelled (naturally) as sets of located-objects which are repre-
sented by symbolic coordinates. A located-object is a member of a location when-
ever it is physically within the associated area or volume. Using sets, overlap of
locations L1 and L2 is represented by set intersection L1 ∩ L2 , ∅, and thus also the
containment relationship, if L1 ∩ L2 = L1 then L2 contains L1. This supports range
queries by subset construction. It should also be possible to test for equivalence on
locations. The support for queries related to spatial distances is naturally limited,
but a notion of qualitative distance on symbolic coordinates can be modelled via
set membership tests, we refer to [BD05] for the details. We mention two example
systems; Guide [CDMF00] and Active Badge [WHFG92].

Cell models This is the most basic and flexible set-based model, and thus named a
simple symbolic model. In this model the location space is described by cells so cells
are the symbolic locations. A cell is a well-defined geographical area, e.g. a room.
Cells can overlap, and need not cover the whole space. This is realistic wrt. sensor
systems. There is typically no containment relationship in cell models. An example
system is GPS, where the cell’s area is a circle defined by the sighting coordinates
and the accuracy margins [Leo98].

Zone models A zone model is a cell model with exclusive membership, i.e. non-
overlapping locations. In a cell model, cells may overlap. These overlaps are named
zones. Each zone is part of one or more cells. Now, zones are used as symbolic
locations. Imposing the constraint that locations must be non-overlapping yields
an exclusive symbolic model. A single zone space can accommodate an arbitrary
number of cells, which is useful if several sensor systems are in play. Since zones
do not overlap, a located-object can be in at most one zone at a time. As noted in
[Leo98] the movements of one located-object can be modelled by a single finite-
state machine making the zone space a natural framework for persistent tracking and

20

movement prediction. Imposing hierarchical locations via a partial order on a zone
model yields a location tree structure. An example is found in [HHS+02] where a
quadtree (a tree where all nodes have four children) is used. (Such structures support
multi-resolution and thus scalability of design.)

Domain models A domain model is a zone model where locations (zones) have
been partially ordered in a virtual hierarchy of domains. The aim is to enable multi-
resolution tracking. A zone is a member of at most one domain. Domains are par-
tially ordered, by the contains relationship, and can overlap. Thus, it is now possible
to relate some zones to “building B”, which is part of “Campus S” and also part of
“The computer science department”, for example. If “A” is a member of “B” then it
is also a member of the ancestors of “B” in the domain ordering. Changes in domain
membership should propagate through the model. Multi-resolution refers to the abil-
ity to, e.g., say that a located-object is situated in room “4C.16” or in “ITU” (where
“4C.16” is a member of “ITU”). See [DR03] for an example. If a lattice is imposed as
the ordering, then a simple notion of distance can be expressed: Given three locations
l1, l2, l3 we have that distance(l1, l2) < distance(l1, l3) if sup({l1, l2}) < sup({l2, l3}) in
the lattice. This may not be a very good metric, but hierarchical models do not
provide means to model interconnections between locations.

2.3.2.2 Graph-based models

In the graph-based approach symbolic coordinates define the vertices V of graph
G = (V,E). An edge e ∈ E is added between to vertices if a direct connection
between those two vertices exist in the physical world. An edge could be a door
between two rooms (vertices). Edges can be weighted (and oriented) to model dis-
tances. It is clear that this setup supports the connected-to and distance relation-
ships explicitly. It is therefore well-suited for navigation and distance queries. The
containment relationship is not supported, but can be simulated by linking from a
reference vertex to all other vertices which are considered to be within a partic-
ular range. This is not a general mechanism though. Furthermore, locations can
not consist of other locations. Examples can be found within “smart environments”
[RLU94, OJDA01].

2.3.2.3 Combined graph- and set-based symbolic models

As seen, the set-based models support range queries well whereas the graph-based
models support distance and connected-to. We wish to combine the two model types
to obtain all the benefits. The set-based part of this hybrid model is a set of symbolic
coordinates. Locations are sets of coordinates. Locations are connected by edges
if a connection between these locations exists in the physical world. For instance,
two rooms can be connected by a door, and two floors by a stairway. Edges can be
weighted to model distances. We can introduce more than one graph to represent

21

views, i.e. different aspects of the world. An example is the Active Map system
[Sch95].

2.3.2.4 Geographical, semantic, and topological models

Geographical models typically organise the location space hierarchically via iden-
tifiers such as “City of Copenhagen”, “IT University of Copenhagen”, and “The C
wing”.We consider these models to be a special case of symbolic models where the
symbols happen to carry geographical meaning, and the location space is, e.g., or-
ganised as a tree.

We believe the term semantic location model was coined in [Pra00], where places
(semantic locations) are represented by URIs and can have attributes indicating the
nature or purpose, or even physical or geographical information. In [Pra00] there are
three types of location; physical (grid based), geographical (hierarchical), and se-
mantic (web like). Like in [Rot03], we do not distinguish semantic and geographical
location. We consider semantic locations to be a special case of symbolic locations
because web-like structures can well be described using graphs to model location
space in a symbolic model. Topological [BS01] models are related to semantic mod-
els. Organising semantic locations in a hierarchy supports the containment relation-
ship. Still, the combined model remains a special case of symbolic models.

2.3.3 Hybrid location models

Hybrid location models are so called because they are combinations of the two model
types we have outlined above, namely symbolic and geometric. Symbolic and ge-
ometric models are orthogonal and can therefore be combined in numerous ways.
Hybrid models aim to possess the advantages of both types of models, i.e. basically
to provide applications with a high-level structured symbolic representation of lo-
cations while preserving the accuracy of location information inherent in geometric
coordinates. This combination supports the queries we considered in section 2.2.
The trade-off is a higher modelling effort.

In [BD05] it is suggested to add geometric information to a symbolic model.
This can be done either for each symbolic location, or for only some of them. It
is also possible to deduce symbolic locations from geometric locations, and relative
from absolute by the containment relation [HHS+02]. It is a matter of abstracting
certain geometric data into meaningful symbolic notions. Typically, a non-hybrid
model will be geometric and absolute, or symbolic and relative.

One example of a hybrid model is found in [JS02], where in a symbolic tree
model each node (location) has geometric information as an attribute, and queries
such as distance and containment are supported. Another example is found in [Rot03],
where a domain model is presented. This hybrid model has mappings between local
and global coordinates, and also between geometric and symbolic locations. Local
coordinates can be translated into global coordinates. Global geometric coordinates
can then be translated into global symbolic coordinates, which in turn can be trans-

22

lated into global geometric areas. Such mappings are widely adopted in practise
according to [BD05].

2.3.4 Views

An idea found in several papers [BD05, BBR02, BS01, Rot03] is that of having
views, i.e. having multiple hierarchies e.g. representing different views of an organ-
isation; the building, employee relationships, access control et cetera. This thought
also appears in theoretical work, which we treat in chapter 6.

2.3.5 Location-aware systems

Several location-aware systems (or location systems) have been implemented demon-
strating the feasibility of using location information in practise while challenging
existing and developing new technology. By location system we mean a computer
system that via hardware sensors can track the physical location of objects (to be ex-
plained shortly), and is able to output this information in some suitable format. See
[HB01] for a survey of location systems where they have been categorised according
to their properties geometric/symbolic and absolute/relative. Location systems as
such are not within the focus of this report so we refrain from further discussion.

2.4 A model of a reflective building

Describe a reflective building as “one equipped with sensors, which continually
transmit data of the building’s occupancy to a monitor that maintains a data structure
which faithfully records the occupancy.”1. This is a very loose description. We come
a little closer to more tangible properties in [Hop00], where a sentient building is said
to support containment, proximity (near), and coordinate systems. Except for the co-
ordinate systems it does seem that we can do with a very simple location model, e.g.
a symbolic tree model. This is the starting point for this report. We do, however,
wish to model more realistic (complex) examples in our work so coordinates should
be considered. We will come back to this in chapter 5.

2.5 Concluding remarks

We hope to have given the reader sufficient background knowledge for the next chap-
ters. The most important points are:

• Location models facilitate efficient development of location-aware applica-
tions.

1http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/Manifesto/fp-movement.html

23

• To support a broad range of applications a location model should support four
query types (position, near, navigation, range), and thus be a hybrid model
(geometric and symbolic). Queries rely on certain spatial relationships.

• We have briefly noted some thoughts about a location model for a reflective
building – namely that a symbolic tree model is a good starting point for a
reflective building.

We have tried to cover the literature on location models. Much can and has been
written about different implementations of location-aware applications. To limit our-
selves we have decided to leave those out of the focus in this report. The same goes
for positioning systems and sensor technologies underlying a location model. The
focus is on modelling of location models.

24

Chapter 3

Bigraphical Models of
Context-Aware Systems

This chapter consists of a conference paper [BDE+06] followed by the appendices
of a technical report [BDE+05]. The only changes made are minor typographical
ones, and adjustment of references to fit in this report. Both the conference pa-
per and the technical report were developed and produced in cooperation with Lars
Birkedal, Søren Debois, Thomas Hildebrandt, and Henning Niss. All authors con-
tributed equally.

The work in this chapter is foundational for chapter 5 where a bigraphical lo-
cation model is presented, in that it develops the modelling technique used, namely
bigraphical models of context-aware systems. Such models can be used to model
location models. It also supports chapter 4 with a gentle introduction to bigraphs.

25

Abstract

As part of ongoing work on evaluating Milner’s bigraphical reactive
systems, we investigate bigraphical models of context-aware systems,
a facet of ubiquitous computing. We find that naively encoding such
systems in bigraphs is somewhat awkward; and we propose a more so-
phisticated modelling technique, introducing Plato-graphical models,
alleviating this awkwardness. We argue that such models are useful
for simulation and point out that for reasoning about such bigraphical
models, the bisimilarity inherent in bigraphical reactive systems is not
enough in itself; an equivalence between the bigraphical reactive sys-
tems themselves is also needed.

26

3.1 Introduction

The theory of bigraphical reactive systems, due to Milner and co-workers, is based
on a graphical model of mobile computation that emphasizes both locality and con-
nectivity [JM04, Mil04c, Mil05c]. A bigraph comprises a place graph, representing
locations of computational nodes, and a link graph, representing interconnection of
these nodes. We give dynamics to bigraphs by defining reaction rules that rewrite
bigraphs to bigraphs; roughly, a bigraphical reactive system (BRS) is a set of such
rules. Based on methods of the seminal [LM00], any BRS has a labelled transition
system, the behavioural equivalence (bisimilarity) of which is a congruence.

There are two principal aims for the theory of bigraphical reactive systems:
(1) to model ubiquitous systems [Wei93], capturing mobile locality in the place
graph and mobile connectivity in the link graph; and (2) to be a meta-theory en-
compassing existing calculi for concurrency and mobility. To date, the theory has
been evaluated only wrt. the second aim: We have bigraphical understanding of
Petri nets [Mil04b], π-calculus [Jen06, JM04, JM03], CCS [Mil05c], mobile ambi-
ents [Jen06], HOMER [BH06], and λ-calculus [Mil04c, Mil05b].

The present paper initiates the evaluation of the first aim. We investigate mod-
elling of context-aware systems, a vital aspect of ubiquitous systems. A context-
aware application is an application that adapts its behaviour depending on the con-
text at hand [SAW94], interpreting “context” to mean the situation in which the
computation takes place [DA00]. The canonical example of such a situation is the
location of the device performing the computation; systems sensitive to location are
called location-aware. As an example, a location-aware printing system could send
a user’s print job to a printer close by. (For notions of context different from location,
refer to [SBG99]; for large-scale practical examples, see [ACH+01].)

To observe changes in the context, context-aware systems typically include a sep-
arate context sensing component that maintains a model of the current context. Such
models are known as context models [HIR02] or, more specifically, location models
[BD05]. The above-mentioned location-aware printing system would need to main-
tain a model of the context that supports finding the printer closest to a given device.
Such models are informal. There are only very few formal models of context-aware
computing (refer to [Hen04] for an overview). We point out Context Unity [RJP04];
in spirit, our proposal is somewhat closer to process calculi than Context Unity is.
However, bigraphs differ from traditional process calculi in that we get to write our
own reaction rules.

In overall terms, our contribution is two-fold.

• We find, perhaps surprisingly, that naively modelling context-aware systems
as BRSs is somewhat awkward; and

• we propose a more sophisticated modelling technique, in which the perceived
and actual context are both explicitly represented as distinct but overlapping
BRSs. We call such models Plato-graphical.

27

The remainder of this paper is organised as follows. In section 3.2, we intro-
duce bigraphs and bigraphical reactive systems. In section 3.3, we discuss naive
bigraphical models of location-aware systems. In section 3.4, we introduce our
Plato-graphical models of context-aware systems. In section 3.5, we present two
example models. In section 3.6, we discuss. Finally, in section 3.7, we conclude and
note future work.

3.2 Bigraphs and Bigraphical Reactive Systems

We introduce bigraphs by example (the reader can find the relevant formal definitions
of [JM04, Mil05c] in appendix A. Readers acquainted with bigraphs may skip this
section.

Here is a bigraph, A:

server
secret

office

pc pda pda

It has nodes (vertices), indicated by solid boxes. Each node has a control, written
in sans serif. Each control has a number of ports; ports can be linked by edges,
indicated by lines. Here, the controls secret and office have no ports, all other
controls have one port. Nodes can be nested, indicated by containment. The two
outermost dashed boxes indicate roots. Roots have no controls; they serve solely to
separate different nesting hierarchies.

The bigraph A ostensibly models two physically separate locations (because of
the two roots). The first contains a server, which in turn contains secret data; the
second contains an office, which in turn contains a PC and two PDAs. The server
and the PC are connected, as are the PDAs.

Here is another bigraph, B:

server

0

z
office

pc pda
1

B resembles A, except that the content of server has been replaced with a site−0, one
of the pdas has been replaced by a site −1, and there is an inner name z connected to
the remaining pda. Using sites and names, we can define composition of bigraphs.
For that, here is yet another bigraph C:

28

secret

z

pda

C has an outer name z. The bigraphs B and C compose to form A, i.e., A = B ◦ C.
Composition proceeds by plugging the roots of C into the sites of B (in order), and
fusing together the connections pda → z (in C) and z → pda (in B) removing the
name z in the process.

One cannot compose arbitrary bigraphs. For U ◦ V to be defined, U must have
exactly as many sites as V has roots, and the inner names of U must be precisely the
outer names of V. The sites and inner names are collectively called the inner face;
similarly, the roots and outer names are called the outer face. A has inner face 〈0, ∅〉
(no holes, no inner names) and outer face 〈2, ∅〉 (two roots, no outer names). We
write A : 〈0, ∅〉 → 〈2, ∅〉. Similarly, B : 〈2, {z}〉 → 〈2, ∅〉 and C : 〈0, ∅〉 → 〈2, {z}〉.

The graphical representation used above is handy for modelling, but unwieldy for
reasoning. Fortunately, bigraphs have an associated term language [DB05, Mil04a],
which we use (albeit in a sugared form) in what follows. The language is summarised
in Table 3.1. Here are, in order of increasing complexity, term representations of the

Term Meaning
U ‖ V Concatenation (juxtaposition) of roots.
U | V Concatenation (juxtaposition) of children. (collect

the children of U and V under one root.)
U ◦ V Composition.
U(V) Nesting. U contains V.
K~x(U) Ion. Node with control K of arity |~x|, ports con-

nected to the outer names of vector ~x. The node
contains U.

1 The barren (empty) root.
−i Site numbered i.
/x.U U with outer name x replaced by an edge.
x/y Connection from inner name y to outer name x.

Table 3.1: Sugared term language for bigraphs.

bigraphs A, B and C.

C = secret ‖ pdaz

A = /x./y.serverx(secret) ‖ office(pcx | pday | pday)
B = /x./y.serverx(−0) ‖ office(pcx | pday | −1) | y/z

Notice how, in B, edges are specified by first linking nodes to the same name, then
converting that name to an edge using the closure ‘/’.

We give dynamics to bigraphs by defining reaction rules. Example:

29

server

0

z

office

pc pda

1 _

server

0

z

office

pc pda

0 1

/x.serverx(−0) ‖ office(pcx | pdaz | −1)
. /x.serverx(−0) ‖ office(pcx | pdaz(−0) | −1)

This rule might model that if a PC in some office is linked to a server, a PDA in
the same office may use the PC as a gateway to copy data from the server. The rule
matches the bigraph A above, taking secret to the site −0 and pday to the site −1,
rewriting A to

A′ = /x./y.serverx(secret) ‖ office(pcx | pday(secret) | pday)

(We omit details on what it means to match connections; refer to one of [JM04,
Mil05c].)

It is occasionally convenient to limit the contexts in which a reaction rule ap-
plies [BP04], i.e., we might want to limit the above example reaction rule to apply
only in the left wing of the building. To this end, bigraphs can be equipped with a
sorting [Jen06, Mil05c, Mil04b]. A sorting consists of a set of sorts (or types); all
inner and outer faces are then enriched with such a sort. Further, a sorting must stip-
ulate some condition on bigraphs, we then restrict our attention to the bigraphs that
satisfy that condition, thus outlawing some contexts. Obviously, removing contexts
may ruin the congruence property of the induced bisimilarity; [Jen06] and [Mil05c]
give different sufficient conditions for a sorting to preserve that congruence property.

This concludes our informal overview of bigraphs. Now on to the models.

3.3 Naive Models of Location-aware Systems

In this section, we attempt to model location-aware systems naively in bigraphs. We
will find the naive approach to be somewhat awkward. Due to space constraints we
do not discuss other forms of context.

30

We use the place and link graphs for describing locations and interconnections
directly, and we use reaction rules to implement both reconfiguration of the context
and queries on the context. The former is simply a non-deterministic change in the
context; the latter is a computation on the context that does not change the context,
except for producing an answer to some question. In a location-aware system, a
device moving would be a reconfiguration, whereas computing the answer to the
question “what devices are currently at the location l” is a query.

We discuss the implementation of this query. (An implementation of the query
can be found in appendix B.) Incidentally, a query such as “find nearest neigh-
bour”, which conceptually is only slightly harder, is significantly harder to imple-
ment. (Other examples plagued by essentially the same difficulties can be found
in [DD05].)

Consider the following bigraph representing devices (e.g., PDAs) located at lo-
cations (e.g., offices, meeting rooms) within a building.

l = /w./x./y./z.loc
(

loc
(

loc
(

loc (deviw) | loc
(

devix | deviy
)))

| loc() | loc (deviz)
)

Off-hand, finding all devices, say, beneath the root, looks straightforward: We should
simply recursively traverse the nesting tree. Unfortunately, such traversal is quite
complicated for the following reasons.

• The bigraphical reaction rules do not support recursion directly, so we must
encode a runtime stack by means of additional controls.

• Bigraphical reaction rules can be applied in any context, but when implement-
ing an operation such as the query we consider now, we need more refined
control over when rules can be applied; one may achieve this more refined
control by again using additional nodes and controls, essentially implement-
ing what corresponds to a program counter. This still leaves great difficulty in
handling concurrent operations, though.

• As a special case of the previous item, it is particularly difficult to express that
a reaction rule is intended to apply only in case something is not present in the
context.

Summing up, the bigraphical rules that model physical action do not in general pro-
vide the power to compute directly with a model of that action (because of a lack of
control structures). The slogan is “reconfiguring is easy, querying is hard”.

In earlier work on evaluating bigraphs as a meta-theory (aim (2) mentioned in
the Introduction), reaction rules were used to encode the operational semantics of
a calculus or programming language. However, above we attempt to implement a
query directly as reaction rules. This seemingly innocuous difference will turn out
to have major implications for reasoning methods; more on this in subsection 3.6.

We imagine that adding more flexibility to the reaction rules might make it easier
to program directly with bigraphs. One possible attempt is to use spatial logics for
bigraphs [CMS05] in combination with sorting, to get control of the contexts in
which a particular reaction rule applies.

31

In the following sections, we propose another way to model context-aware sys-
tems in bigraphs, where the reaction rules are not used to program directly with, but
instead they are used (1) to represent transitions happening in the real world and (2)
to encode operational semantics of programming languages, within which one can
then implement queries on representations of the real world.

3.4 Plato-graphical Models of Context-aware Systems

The naive model of the previous section shares an important characteristic with
recent proposals of formal models for context-aware computation [BP04, NGP05,
RJP04] that comprise agents and contexts only: These models take the agent’s abil-
ity to determine what is the present context as given. We contend that for some
systems, it is natural to model not only the actual context but also the agent’s rep-
resentation of the actual context. We shall see that pursuing this idea will partially
alleviate the awkwardness seen in the previous section.

We shall need some notation and definitions.

NOTATION. We write B = (K ,R) to indicate that B is a bigraphical reactive system
with controlsK and rules R, and write f ∈ B to mean that f is a bigraph of B.

Definition 3.4.1 (Independence). Let B = (K ,R) and B′ = (K ′,R′) be bigraphical
reactive systems. Say that B and B′ are independent and write B ⊥ B′ iffK andK ′

are disjoint.

Definition 3.4.2 (Composite bigraphical reactive systems). Let B = (K ,R) and
B′ = (K ′,R′) be bigraphical reactive systems. Define the union B ∪ B′ point-wise,
i.e., B∪B′ = (K ∪K ′,R∪R′), whenK andK ′ agree on the arities of the controls
in K ∩K ′.

Be aware that there are two ways of taking the union of two sets of parametrised
reaction rules: (1) merge the rules and then ground them, or (2) first ground the rules
and then merge them. In general, the resulting rule set of (1) is a superset of the rule
set of (2). We use approach (1).

We propose a model of context-aware computing that comprises three bigraph-
ical reactive systems: the context C; its representation or proxy P; and the compu-
tational agents A. Drawing on classical work [PlaBC], specifically The Allegory of
the Cave, we call such a model Plato-graphical.

Definition 3.4.3 (Plato-graphical model). A Plato-graphical model is a triple (C,P,A)
of bigraphical reactive systems, such that M = C ∪ P ∪ A is itself a bigraphical
reactive system and C ⊥ A. A state of the model is a bigraph of M on the form
/~x.(C ‖ P ‖ A), where C ∈ C, P ∈ P, A ∈ A, and ~x is some vector of names.

We emphasise the intended difference between C and P: Whereas an element
of C models a possible context, an element of P models a model of a possible con-
text. The independence condition ensures that agents can only directly observe or

32

manipulate the proxy; not the context itself. (In the parlance of [RJP04], the inde-
pendence condition ensures separability.) To query or alter the context, agents must
use the proxy as a sensor and actuator.

Using bigraphs as our basic formalism gives us two things. First, we can write
our own reaction rules. We claim that because of this ability, models become re-
markably straightforward and intuitive; hopefully, the reader will agree after seeing
our example models in the next section. Second, we automatically get a bisimilarity
that is a congruence. Thus, bisimilarity of agents is a very fine equivalence: No state
of the context and proxy can distinguish bisimilar agents.

Proposition 3.4.1. Let ∼ denote the bisimilarity inM, and let A,A′ ∈ A with A ∼
A′. For any C ∈ C, P ∈ P, and ~x, we have /~x.(C ‖ P ‖ A) ∼ /~x.(C ‖ P ‖ A′).

To get a less discriminating equivalence we can consider agents under a particular
state of the context, or a particular state of the system.

Definition 3.4.4. Let ∼ denote the bisimilarity in M, and let A,A′ ∈ A, C ∈ C
and P ∈ P. We say A and A′ are equivalent wrt. P iff P ‖ A ∼ P ‖ A′, and we say A
and A′ are equivalent wrt. C,P iff C ‖ P ‖ A ∼ C ‖ P ‖ A′.

We conjecture that the above forms of derived equivalences will prove useful for
reasoning about a given Plato-graphical system.

Working within the Plato-graphical model, we are free to emphasise any of its
three components, perhaps modelling P in great detail, but keeping C and A abstract.

Definition 3.4.3 above does not impose any restriction on composition of states.
For example, assume that we have a Plato-graphical modelM = (C,P,A), that c, p
and a are controls of C, P and A, respectively, and that p is not a control of C. Then
the bigraphs

F = c(−0 | −1) ‖ p ‖ a(−2) and G = c ‖ p ‖ a

are both states ofM, but their composite F ◦ G = c(c | p) ‖ p ‖ a(a) is not a state
ofM. This example implies that bisimilarity of states of a Plato-graphical system
may be too fine a relation: Conceivably, when comparing two states s and s′, we may
wish to take into account only contexts C such that C ◦ s and C ◦ s′ are themselves
states, i.e., we might want to outlaw F as a possible context for G. We can achieve
this finer control using place-sorting. So, we define a place-sorted Plato-graphical
model. The intuition behind our sorting is that we want to keep controls of C, P and
A separate when composing contexts of form C ‖ P ‖ A.

NOTATION. Denote by Si≤m a vector m0, . . . ,mn−1 of sorts. We will write Si≤m for a
sorted interface 〈m,X, Si≤m〉 when we do not care about names.

Definition 3.4.5 (Sorted Plato-graphical model). LetM = C∪ P∪A be a Plato-
graphical model with C = (KC,RC), P = (KP,RP) and A = (KA,RA). Define a
sorting discipline onM by taking sorts Θ = {KC,KP,KA} and, for primes, sorting
condition Φ(f : Si≤n → S) = ctrl(f) ⊆ S ∧ ∀i ≤ n. Si = S, lifting to an arbitrary

33

bigraph f ′ by decomposing f into primes f ′ = f0 . . . fn−1 and declaring f ′ well-
sorted iff all the fi are. Let φ be an assignment of Θ-sorts to the rules of RC, RP,
and RA, such that every rule is well-sorted under Φ. Define M′ to be M sorted
by (Θ,Φ) (using φ to lift the reaction rules). In this case, we callM′ a sorted Plato-
graphical model, and define the states of M′ to be the well-sorted bigraphs with
outer face KC,KP,KA.

The conditionΦ essentially requires that (1) the controls of a prime (bigraph) are
elements of the sort of its outer face, and (2) the sort of the outer face is exactly the
sort of each of the sites. Under this sorting discipline and new definition of state, if G
is assigned a sort such that it is a state, then F cannot be assigned a sort that makes it
composible with G.

Is the bisimilarity in the sorted system M′ a congruence? The sorting disci-
pline of M′ is in general not homomorphic in the sense of Milner [Mil05c, Def-
inition 10.4]: we cannot give a sort to controls in KC ∩ KP. (If C, P and A are
pairwise independent, the sorting is homomorphic; however, such a model is patho-
logic.) Neither is the sorting safe in the sense of Jensen [Jen06, Definition 4.30];
condition (4) cannot be met. Counterexample: Suppose f : KC → KC is well-
sorted; take g = f ⊗ 1 : KC → KC,KA (recall that 1 : ε → 〈1, ∅〉 denotes the
barren root). Clearly, U(f) = (−0 | −1) ◦ U(f ⊗ 1). However, if KC , KA
then (−0 | −1) : KC,KA →KC is not well-sorted.

Nevertheless, the sorting of definition 3.4.5 does give rise to a bisimilarity that is
a congruence; we prove so in Appendix C.

3.5 Examples

3.5.1 A Simple Context-aware Printing System

We model the simple context-aware printing system of [BP04]. An office-building
contains both modern PCL-5e compatible printers and old-fashioned raw-printers.
Occasionally, the IT-staff at the building removes or replaces either type of printers.
Each printer can process only one job; queueing is done by a central print server. The
print server dispatches jobs to raw-printers only if it knows no PCL-printers; if there
are PCL-printers, but they are all busy, the job will simply have to wait. This system
is context-aware: The type and number of printers physically available determine the
meaning of the action “to print”. We give a model B of this system in Figure 3.1.
Looking at the controls of B, it is straightforward to verify that B is Plato-graphical.

Proposition 3.5.1. The model B of Figure 3.1 is Plato-graphical.

We take a detailed look at the model. A state of the context C consists of nested
physical locations loc, within which printers prt are placed. We distinguish between
PCL- and raw-printers by putting a token pcl and raw within them, respectively.
Each printer has a single port, intended to link the printer to the proxy. Here is a

34

Context C.

Control Activity Arity Comment
loc active 0 Nested location
prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer

loc(−0) . loc(−0 | /x.prtx(raw)) (3.1)

loc(−0) . loc(−0 | /x.prtx(pcl)) (3.2)

loc(−0 | prtx(−1)) . loc(−0) | x/ (3.3)

prtx(datz | −0) . prtx(−0) | z/ (3.4)

Proxy P.

Control Activity Arity Comment
prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer
prts passive 1 Known devices
jobs passive 0 Pending documents
doc atomic 1 Document

jobs(docz | −0) ‖ prtsy(pcl) ‖ prty(pcl) .

jobs(−0) ‖ prtsy(pcl) ‖ prty(pcl | datz)
(3.5)

jobs(docz | −0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw) .

jobs(−0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw | datz)
(3.6)

/x.prtx(pcl) ‖ prtsy(pcl) . prty(pcl) ‖ prtsy(pcl) (3.7)

/x.prtx(raw) ‖ prtsy(raw) . prty(raw) ‖ prtsy(raw) (3.8)

Agents A.
Control Activity Arity Comment
jobs passive 0 Pending documents
doc atomic 1 Document

jobs(−0) . jobs(−0 | /z.docz) (3.9)

Figure 3.1: Example Plato-graphical model B.

35

Context C Proxy P Agent A
(3.1) : KC (3.5) : KA,KP,KC (3.9) : KA
(3.2) : KC (3.6) : KA,KP,KC
(3.3) : KC (3.7) : KC,KP
(3.4) : KC (3.8) : KC,KP

Figure 3.2: Sorts for the rules of C, P, and A.

state of the context with a PCL-printer and a raw-printer at adjacent locations; the
PCL-printer is idle whereas the raw-printer is busy.

C = loc(loc(prtx(raw | datz)) | loc(/y.prty(pcl)))

Setting C in parallel with some proxy P will allow P access to the raw printer through
the shared link x, but not to the PCL-printer, because it is in a closed link. The
dynamics of C allow printers to appear (3.1, 3.2), disappear (3.3), and finish print-
ing (3.4).

A state of the proxy P consists of a pool of pending jobs jobs and two tables of
printers prts; one contains a token raw, the other a token pcl, indicating what type of
printer the table lists. The prts is a table in the sense that its only port is linked to all
the printers in the context that the table knows about. Here is an example state of the
proxy which knows one raw-printer, knows no PCL-printers and has two pending
jobs.

P = prtsx(raw) | /y.prtsy(pcl) | jobs(/z.docz | /z′.docz′)

Setting C and P above in parallel by ‖, and closing the link x, we get a system /x.C ‖
P, where the table prtsx(raw) and the physical printer prtx(raw | dat) are linked.
The dynamics of P state that if there is a job and a known, idle PCL-printer, the
proxy may activate this printer (3.5); that if there is a job, no known PCL-printer,
and an idle raw-printer, the context may activate that printer (3.6); and finally, that
the proxy may discover a previously unknown printer (3.7, 3.8).

The dynamics of A allow the agents to spontaneously spool documents (3.9).
Notice how the two printing rules (3.5) and (3.6) do not observe the context di-

rectly. Instead, the proxy observes the context (rules (3.7) and (3.8)) and records
its observations in the tables prtsx(raw) and prtsy(pcl); the printing rules (3.5)
and (3.6) then consults the tables. It is straightforward to determine whether there
are no known PCL-printers: simply check if the table of PCL-printers has the form
/y . prtsy(pcl).

As observed in section 3.3 and [BP04], it is generally very difficult, if not im-
possible, to observe the absence of something in the context directly. An interesting
but rather natural consequence of the indirect observation is that it becomes asyn-
chronous, i.e., it is possible that a PCL-printer exists but has not yet been observed.

This model B can be lifted to a sorted one by adding the sorts given in Figure 3.2;
the figure assigns sorts to the outer face of both the redeces and reactums of the
indicated rules. It is straightforward to verify that all of the rules are well-sorted.

36

Proposition 3.5.2. The model B with the sorting assignment of Figure 3.2 is a sorted
Plato-graphical model.

3.5.2 A Location-aware Printing System

Suppose we extend the printing system with location-awareness, by stipulating that
a print job is not printed until the printer and the device submitting the job are co-
located. To model this extended system, we introduce a new control devi for devices
(PCs or PDAs) with one port and change doc to include an extra port so we can
link submitted jobs to the devices submitting them. The linking is reflected in the
following modified rule (3.9) for spooling print jobs:

loc(devix | −0) ‖ jobs(−1) . loc(devix | −0) ‖ jobs(−1 | /z.docz,x) (3.9′)

We must also modify rules (3.5) and (3.6) to insist that the device and printer are
co-located. Rule (3.5) becomes

jobs(docz,x | −0) ‖ prtsy(pcl) ‖ loc(devix | prty(pcl)) .

jobs(−0) ‖ prtsy(pcl) ‖ loc(devix | prty(pcl | datz)).
(3.5′)

(We suppress the new Rule (3.6’).)
Modifying the system once again, instead of insisting that device and printer

have to be actually co-located, we just require the print job to end at a printer close
to the device. The print server will need to query the proxy for the printer nearest
a given device. We saw in subsection 3.3 that implementing such queries is awk-
ward, so we will need to use the proxy. In the preceding section, we did so directly
in bigraphs; this time around, we transfer the expressive convenience of a general-
purpose programming language to bigraphs for ease of implementation. We use bi-
graphs directly for modelling the actual context C, whereas we will exploit bigraphs
as a meta-calculus for modelling the proxy P.

In detail, the whole model is B = C ∪ P ∪ A, with P = S ∪ L. Here C is
intended to be a bigraphical model of the “real world”, the proxy P is comprised of
a location sensor S and a location model L and A is the location-based application
(the “computational agent”).

A state C of C could look like this:

C = loc(loc(loc(loc(deviw) | loc(devix | deviy))) | loc | loc(deviz))

Changes in the real world are modeled by reaction rules that reconfigure such states.
If we want to model, say, that a devices may move from one location to another, we
include the reaction rule

loc(devix | −0) ‖ loc(−1) . loc(−0) ‖ loc(devix | −1). (3.10)

To implement the proxy, encode as a BRS a programming languageL with data
structures, communication primitives, and concurrency, e.g., Pict [PT00] or CML

37

[Rep99]. (We return to this assumption below.) That is, define a translation from
terms of L to bigraphs, and add reaction rules encoding the operational semantics
of L. Then implement the location model, the sensor, and the agents in L and use
the encoding to transfer that model to bigraphs. In particular, a state of the location
model L will have a data structure representing the current state of C. IfL is an even
half-way decent programming language, it should be straightforward to implement
queries such as one of section 3.3 or the “find closest printer” we need above.

The sensor informs the location model about changes in C. We extend the above
rule (3.10) moving a device to

(loc(devix | −0) ‖ loc(−1)) | S | L . (loc(−0) ‖ loc(devix | −1)) | S′ | L, (3.10′)

where S′ is an L-encoding of “send a notification to L that device x has moved”.
Upon receiving the notification, L updates its representation of the world. Agents
of A can in turn query L when they need location information.

3.6 Discussion

We consider the following questions.

1. What languagesL can we encode?

2. How close are Plato-graphical models to real systems?

3. What challenges have we found for bigraphical models?

4. What uses do we envision for Plato-graphical models?

5. How do we reason about Plato-graphical models?

Ad. 1. As mentioned, there exist bigraphical encodings of various π-calculi
[Jen06, JM04, JM03] and of the λ-calculus [Mil04c, Mil05b]. Using ideas of the
latter encodings, we have encoded Mini-ML (call-by-value λ-calculus with pairs
and lists) in local bigraphs [Mil04c]. Based on our experiences with this encoding,
we find it palatable to encode CML or Pict1.

Ad. 2. The model closely reflects how some actual location-aware systems work,
for instance the one running at the ITU. Here, a sensor system (made by Ekahau)
computes every two seconds the physical location of every device on the WLAN.
The sensor system informs a location model about updates to locations; location-
aware services then interact with the location model. In our sketched Plato-graphical
model, the location model L may lag behind the actual C, if L’s representation of C
does not reflect some recent reconfiguration of C. But that also happens in the real
system at the ITU – when a location-aware service asks the location model for the
whereabouts of a device, it obtains not the position of the device, but the position of

1We are presently working on implementing an interpreter for bigraphical reactive systems; such an
interpreter will make it easier to experiment with these and other encodings.

38

the device the last time the sensor checked. In the mean time, the device may have
moved.

Ad. 3. When modelling the physical world, we have made use of both the
place and link graphs, the place graph modelling the location hierarchy of a building.
As argued in [BD05], DAGs or graphs are more natural models of location. Thus,
systems such as the ones we have considered here suggest generalising the place
graph part of bigraphs, or consider ways to encode DAGs or general graphs naturally
as place graphs.

Ad. 4. Given an implementation of bigraphical reactive systems, one could sim-
ulate the behaviour of a location-aware system, and thus allow for experimentation
with different designs of location-aware and context-aware systems. Likewise, one
could experiment with different choices for the L language of section 3.5.2. Such
simulation suggests further extensions of the bigraphical model: In actual context-
aware systems, one is generally interested in timing aspects (e.g., the sensor samples
only every two seconds), continuous space (e.g., the sensor really produces contin-
uous data), and probabilistic models (e.g., to accurately simulate sensors and sensor
failure).

Ad. 5. What about using Plato-graphical models for formal reasoning about
context-aware systems? One use of formal models is to prove an abstract specifica-
tion model equivalent to a concrete implementation model. In π-calculus, we come
with π-terms i, s, one for the implementation and one for the specification. The
terms i and s are themselves the models; we take (π-) bisimilarity as equivalence,
so to prove i and s equivalent, we merely prove them bisimilar. We can play the
same game within any BRS: Simply come up with a bigraph I (the implementation
model) and a bigraph S (the specification model), and prove them bisimilar within
the labelled transition system of the BRS. Because that bisimulation is a congruence,
such reasoning should be tractable, e.g. with the bisimulation in definition 3.4.4.

Unfortunately, bisimulation within a single BRS is not always enough wrt. Plato-
graphical models. Suppose we want a specification modelM with an abstract view
of the context, and an implementation modelM′ with a detailed view of the context.
We express this by havingM andM′ differ only in their context sub-BRSs, that is,

M = C ∪ P ∪A M′
= C′ ∪ P ∪A.

The trouble is that because C and C′ may have different controls and reaction rules,
bisimulation between their respective labelled transition systems is meaningless!
What we need is a notion of equivalence of BRSs, not just equivalence of bigraphs
of a single BRS. At the time of writing, we know of no such equivalence2. Thus, our
investigation of bigraphical models for context-aware systems suggests that equiva-
lence of BRSs is a key notion currently missing. One possible direction would be

2The reader may suggest that we just define a common language for modelling both the abstract and
detailed view, and define a translation from this language into a single BRS. However, in this case we
are no longer modelling a ubiquitous system directly in bigraphs (aim 1 of the Introduction), but using
bigraphs as a meta-calculus (aim 2 of the Introduction).

39

to try to recover from the notion of WRS-functor [LM00] – functors that preserve
reaction rules – a notion of a BRS implementing another BRS.

3.7 Conclusion & Future Work

We have initiated an evaluation of the use of bigraphical reactive systems for models
of context-aware computing in ubiquitous systems. We found that BRSs, in their
current form, are not suitable for directly modelling context queries, but on the other
hand suitable for modelling reconfigurations of the actual context.

In response, we proposed Plato-graphical models, where both state and dynam-
ics are logically divided in three parts: the actual context, the observed context (or
proxy), and the computational agents, respectively. The computational agents and
the actual context are separated, and interact only through the proxy. This separa-
tion into different BRSs makes it possible to encode different parts of the system
using domain-specific languages. Moreover, we have shown how the context-aware
printing system of [BP04] can be modeled straightforwardly in the Plato-graphical
model.

Further, we have argued that Plato-graphical models are useful for simulating
context-aware systems, and we are currently working on an implementation of BRSs
at ITU to allow such experimentation. Only through such experimentation will it
be clear how useful Plato-graphical models really are. For simulation purposes it
will be important to extend bigraphs with timing aspects, continuous space, and
probabilities.

Finally, we have pointed out that establishing a notion of equivalence between
BRSs, as opposed to bisimilarity within a BRS, is important future work.

3.8 Acknowledgements

We gratefully acknowledge discussions with the other members of the BPL group
at ITU, in particular Arne Glenstrup, Troels Damgaard and Mikkel Bundgaard; and
with Robin Milner. This work was funded in part by the Danish Research Agency
(grant no.: 2059-03-0031) and the IT University of Copenhagen (the LaCoMoCo
project).

A Bigraphs

We recite the identical relevant definitions of [JM04] and a few from [Mil05c].

Definition A.1 (pure signature). A (pure) signature K is a set whose elements are
called controls. For each control K it provides a finite ordinal ar(K), an arity; it
also determines which controls are atomic, and which of the non-atomic controls
are active. Controls which are not active (including the atomic controls) are called
passive.

40

Definition A.2 (prime interface). An interface I = 〈m,X〉 consists of a finite ordinal
m called a width, a finite set X called a name set. An interface is prime if it has width
1.

Definition A.3 (prime bigraph). A prime bigraph P : m→ 〈X〉 has no inner names
and a prime outer face.

Definition A.4 (place graph). A place graph A = (V, ctrl, prnt) : m → n has an
inner width m and an outer width n, both finite ordinals; a finite set V of nodes with
a control map ctrl : V → K; and a parent map prnt : m] V → V] n. The parent
map is acyclic, i.e. prntk(v) , v for all k > 0 and v ∈ V. An atomic node – i.e. one
whose control is atomic – may not be a parent. We write w >A w′, or just w > w′,
to mean w = prntk(w′) for some k > 0.

The widths m and n index the sites and roots of A respectively. The sites and
nodes – i.e. the domain of prnt – are called places.

Definition A.5 (precategory of place graphs). The precategory of place graphs
´PLG has finite ordinals as objects and place graphs as arrows. The composition
A1 ◦A0 : m0 → m2 of two place graphs Ai = (Vi, ctrli, prnti) : mi → mi+1 (i = 0, 1)
is defined when the two node sets are disjoint; then A1 ◦ A0

def
= (V, ctrl, prnt) where

V = V0] V1, ctrl = ctrl0] ctrl1, and prnt = (IdV0] prnt1) ◦ (prnt0] IdV1). The

identity place graph at m is idm
def
= (∅, ∅K , Idm) : m→ m.

Definition A.6 (tensor product, ´PLG). The tensor product ⊗ in ´PLG is defined as
follows: On objects, we take m⊗n = m+n. For two place graphs Ai : mi → ni (i =
0, 1) we take A0 ⊗ A1 : m0 + m1 → n0 + n1 to be defined when A0 and A1 have
disjoint node sets; for the parent map, we first adjust the sites and roots of A1 by
adding them to m0 and n0 respectively, then take the union of the two parent maps.

Definition A.7 (barren,sibling,active,passive). A node or root is barren it is has no
children. Two places are siblings if they have the same parent. A site s of A is active
if ctrl(v) is active whenever v > s; otherwise s is passive. If s is active (resp. passive)
in A, we also say that A is active (resp. passive) at s.

Definition A.8 (hard place graphs). A hard place graph is one in which no root or
non-atomic node is barren. They form a sub-precategory denoted by ´PLGh.

Presuppose a denumerable set χ of global names.

Definition A.9 (link graph). A link graph A = (V,E, ctrl, link) : X → Y has finite
sets X of inner names, Y of (outer) names, V of nodes and E of edges. It also has a
function ctrl : V →K called the control map, and a function link : X] P→ E] Y
called the link map, where P def

=
∑

v∈V ar(ctrl(v)) is the set of ports of A.
We shall call the inner names X and ports P the points of A, and the edges E and

outer names Y its links.

41

Definition A.10 (precategory of link graphs). The precategory ´LIG has name
sets as objects and link graphs as arrows. The composition A1 ◦ A0 : X0 → X2
of two link graphs Ai = (Vi,Ei, ctrli, linki) : Xi → Xi+1 (i = 0, 1) is defined when
their node sets and edge sets are disjoint; then A1 ◦ A0

def
= (V,E, ctrl, link) where

V = V0]V1, ctrl = ctrl0]ctrl1,E = E0]E1 and link = (IdE0] link1)◦(link0] IdP1).
The identity link graph at X is idX = (∅, ∅, ∅K , IdX) : X→ X.

Definition A.11 (tensor product, ´LIG). The tensor product ⊗ in ´LIG is defined
as follows: On objects, X ⊗ Y is simply the union of sets required to be disjoint. For
two link graphs Ai : Xi → Yi (i = 0, 1) we take A0 ⊗A1 : X0 ⊗X1 → Y0 ⊗ Y1 to be
defined when the interface products are defined and when A0 and A1 have disjoint
node sets and edge sets; then we take the union of their link maps.

Definition A.12 (parallel product). The parallel product ‖ in ´LIG is defined as
follows: On objects, X ‖ Y def

= X ∪ Y. On link graphs Ai : Xi → Yi (i = 0, 1) we
define A0 ‖ A1 : X0 ⊗X1 → Y0 ‖ Y1 whenever X0 and X1 are disjoint, by taking the
union of link maps.

Definition A.13 (concrete pure bigraph). A (concrete) pure bigraph over the sig-
nature K takes the form G = (V,E, ctrl,GP,GL) : I → J where I = 〈m,X〉 and
J = 〈n,Y〉 are its inner and outer faces, each combining a width (a finite or-
dinal) with a finite set of global names drawn from χ. Its first two components
V and E are finite sets of nodes and edges respectively. The third component
ctrl : V → K , a control map, assigns a control to each node. The remaining
two are: GP = (V, ctrl, prnt) : m→ n, GL = (V,E, ctrl, link) : X→ Y.

A place graph can be combined with a link graph iff they have the same node set and
control map.

Definition A.14 (Tensor product). The tensor product of two bigraph interfaces
is defined by 〈m,X〉 ⊗ 〈n,Y〉 def

= 〈m + n,X] Y〉 when X and Y are disjoint. The
tensor product of two bigraphs Gi : Ii → Ji(i = 0, 1) is defined by G0 ⊗ G1

def
=

〈GP
0 ⊗ GP

1 ,G
L
0 ⊗ GL

1〉 : Io ⊗ I1 → J0 ⊗ J1 when the interfaces exist and the node sets
are disjoint. This combination is well-formed, since its constituents share the same
node set.

Definition A.15 (precategory of pure concrete bigraphs). The precategory ´BIG(K)
of pure concrete bigraphs over a signature K has pairs I = 〈m,X〉 as objects
(interfaces) and bigraphs G = (V,E, ctrlG,GP,GL) : I → J as arrows (contexts).
We call I the inner face of G, and I the outer face. If H : J → K is another bigraph
with node set disjoint from V, then their composition is defined directly in terms of
the compositions of the constituents as follows: H◦G def

= 〈HP◦GP,HL◦GL〉 : I→ K.
The identities are 〈idm, idX〉 : I→ I, where I = 〈m,X〉.

The subprecategory ´BIGh consists of hard bigraphs, those with place graphs in
´PLGh.

42

Definition A.16 (tensor product, ´BIG). The tensor product of two bigraph in-
terfaces is defined by 〈m,X〉 ⊗ 〈n,Y〉 def

= 〈m + n,X ∪ Y〉 when X and Y are dis-
joint. The tensor product of two bigraphs Gi : Ii → Ji (i = 0, 1) is defined by
G0 ⊗ G1

def
= 〈GP

0 ⊗ GP
1 ,G

L
0 ⊗ GL

1〉 : I0 ⊗ I1 → J0 | J1 when the interfaces exist and the
node sets are disjoint. This combination is well-formed, since its constituents share
the same node set.

Definition A.17 (parallel product, ´BIG). The parallel product of two bigraphs is
defined on interfaces by 〈m,X〉 | 〈n,Y〉 def

= 〈m + n,X ∪ Y〉, and on bigraphs by
G0 | G1

def
= 〈GP

0 ⊗ GP
1 ,G

L
0 ‖ GL

1〉 : Io ⊗ I1 → J0 | J1 when the interfaces exist and the
node sets are disjoint.

Refer to [JM04] for the definition of ´BBG, ´BBGh, and l.

Definition A.18 (bigraphical reactive system). A bigraphical reactive system (BRS)
over K consists of ´BBG(K) equipped with a set ´Reacts of reaction rules closed
under support equivalence (l). We denote it – and similarly for ´BBGh(K) – by
´BBG(K , ´Reacts).

Refer to [Mil05c] for the definition of s-category.

Definition A.19 (place-sorted bigraphs). An interface 〈m,X〉 is Θ-(place-)sorted
if it is enriched by ascribing a sort to each place i ∈ m. If I is place-sorted we denote
its underlying unsorted interface byU(I).

We denote by ´BIGh(K ,Θ) the s-category in which the objects are place-sorted
interfaces, and each arrow G : I→ J is a bigraph G :U(I)→U(J). The identities,
composition and tensor product are as in ´BIGh(K), but with sorted interfaces.

Definition A.20 (place-sorting). A place-sorting is a triple Σ = (K ,Θ,Φ) where Φ
is a condition on the place graphs of Θ-sorted bigraphs over K . The condition Φ
must be satisfied by the identities and preserved by composition and tensor product.

A bigraph in ´BIGh(K ,Θ) is Σ(-place)sorted if it satisfies Φ. The Σ-sorted bi-
graphs form a sub-s-category of ´BIGh(K ,Θ) denoted by ´BIGh(Σ). Further, if ´R
is a set of Σ-sorted reaction rules then ´BIGh(Σ, ´R) is a Σ-sorted BRS.

B Encoding of “find all devices”

Consider the following simple bigraph representing a building consisting of locations
(e.g., rooms) and devices (e.g., PDAs) in these locations. (We have omitted the outer
names on the locations, and also sites.)

l = loca(loca(loca(loca(devi1) | loca(devi2 | devi3))) | loca() | loca(devi4))

Consider how to implement a query to return all the devices in the building by means
of bigraphical reaction rules. Observe that we have chosen to represent all locations
via the same control loca, rather than using different controls office, building, etc.,

43

for different locations – this is to avoid having to write reaction rules for every com-
bination of location controls.

Now, assume that a query occurs by some process introducing a node with con-
trol f into the system (in a unique3 in node), and that no other queries impose them-
selves while we calculate the answer to this one. The termination condition (observ-
able by the “input/output process”) is when in is empty (and nodes with control f′

appear in the node with unique control out). We can not handle concurrent queries
so that is why we wish to detect termination (so that we can begin the next query).

The idea is to do a depth-first search/collection while keeping track of where we
have already looked by placing these subtrees into “searched-nodes” (s). Controls:

Control Activity Arity Comment
in passive 0 Input node
f atomic 0 Controls find-all query
f′ atomic 1 Answer node
loca active 1 Nested location
out passive 0 Output node
g atomic 0 Dummy, just to keep in non-empty
devi atomic 1 Device, has link to id
s passive 0 Collects searched nodes

And now, for the rules. Initialization; move f into the top location (enclosing all the
others) to indicate “the point of control” in the structure, and add g to indicate that
we are not done with the query:

in(f) | locatop(locax(−0)) | out() . in(g) | locatop(locax(f | s() | −0)) | out()

If a device is found, add it to s, and add a representative for it to out:

locax(f | −0 | deviy | s(−1)) | out(−2)
. /y.locax(f | −0 | s(−1 | deviy)) | out(−2 | f′y)

Notice that the label (context) of this transition will include the bigraph top/x. This
rule can be used as long as there are devices in the current location being searched.
When done with this location f is moved up, since we assume that a location can only
contain either devices or other locations. (The query would have been significantly
harder without this assumption.) So, if a location containing location(s) is being
searched:

locax(f | locay(−1) | s(−2) | −0) . locax(locay(f | s() | −1) | s(−2) | −0)

Then, search deeper. A new s-node is created when going down, this is a trick to do
“on-line garbage collection” when climbing back up the tree. (The query has to leave
the bigraph as it was initially.) When a leaf is reached (an empty location) move f up,

3Certain properties can only be ensured by invariants of the reactive system, e.g. uniqueness of con-
trols.

44

merging s-nodes. This is more clever than doing a clean-up traversal because there
is no construction in reaction rules that can express “not”, i.e. one can not write a
rule saying “clean up until there are no more s-nodes in the tree”. The “climbing”
rule:

locax(locay(f | s(−2)) | s(−1) | −0) . locax(f | s(locay(−2) | −1) | −0)

Notice how the presented rules use sites to make themselves general. To clean up
when we have traversed the whole tree (and there is exactly one s):

in(g) | locatop(locax(f | s(−0))) . in() | locatop(locax(−0))

At this point out will have all representatives, in is emptied to indicate termination.
(The reader is encouraged to try out the rules on the example location model. It is
easiest doing it using the graphical bigraph notation.)

C Rigid control-sortings and RPOs

For a bigraph b (sorted or otherwise), we write b∗ for the function that takes each
place (site or root) or node of b to its uniquely determined root. In this appendix we
will generally omit writing down the link-graph part of interfaces when we do not
need them.

Definition C.1 (Rigid control-sorting). Let K be a set of controls. A sorting S =
(K ,Θ,Φ) is a rigid control-sorting ifΘ ⊆ P(K) and there exists a predicate φ, such
that

Φ

(

(m, sm)
f
−→ (n, sn)

)

iff

{

(i) sm(i) = sn(f ∗(i)) for i < m,
(ii) φ(ctrl f (v), sn(f ∗(v))) for v node in f .

In the sequel, we assume a fixed set of controls K , rigid control-sorting S =
(K ,Θ,Φ), a sorted signature ΣS and a corresponding unsorted signatureU(ΣS) =
Σ; following [Jen06], we write B̂IG(Σ) for the precategory of concrete bigraphs
over Σ and B̂IG(ΣS) for the corresponding precategory of sorted concrete bigraphs,
and we writeU for the forgetful functor from B̂IG(ΣS) to B̂IG(Σ); recall that this
functor is faithful.

In Theorem C.1 we state that B̂IG(ΣS) has RPOs; it follows that the standard
bisimulation on B̂IG(ΣS) is a congruence. To establish Theorem C.1, we will need
some lemmas to make precise just how closely B̂IG(ΣS) mimics B̂IG(Σ).

Lemma C.1. IfU(a) = p ◦ q, then there exists unique b, c s.t.U(b) = p,U(c) = q
and a = b ◦ c.

Proof. For existence, suppose a : (m, sm) −→ (n, sn) and cod(q) = dom(p) = l.
Define

sl(i)
def
= sn(p∗(i)). (3.11)

45

We claim that c = (m, sm)
q
−→ (l, sl) and b = (l, sl)

p
−→ (n, sn) are well-sorted.

Consider c. Condition (i) of Definition C.1 is satisfied by (3.11), Condition (ii)
is satisfied because the nodes of c is a subset of the nodes of a. Now consider b.
For i < n, we find

sm(i) = sn(a∗(i)) = sn(p∗(q∗(i))) = sl(q∗(i)),

satisfying Condition (i). Next, for v a node of q, we find

φ(ctrlq(v), sl(q∗(v))) = φ(ctrla(v), sn(p∗(q∗(v)))) = φ(ctrla(v), sn(a∗(v))).

But φ(ctrla(v), sn(a∗(v))) is satisfied by well-sortedness of a; thus Condition (ii) is
satisfied.

For uniqueness, it is sufficient to prove that sl is the only sorting making b and c
well-sorted. Suppose s′l is an alternate such sorting. If there is i < l s.t. s′l (i) , sl(i) =

sn(p∗(i)), then (l, s′l)
p
−→ (n, sn) is not well-sorted: contradiction. Thus s′l = sl. �

Lemma C.2. If a, b is a cospan andU(a) =U(b), then a = b.

Proof. BecauseU(a) =U(b), a and b must have the same inner width, m:

(m, sm)
a - (n, sn) � b

(m, s′m).

Suppose for a contradiction that there is i < m s.t. s′m(i) , sm(i). Then

sn(a∗(i)) = sm(i) , s′m(i) = sn(b∗(i)),

but that cannot be, because a∗(i) = b∗(i) follows fromU(a) = U(b): contradiction.
�

Theorem C.1. B̂IG(ΣS) has RPOs.

Proof. Consider the square (i) below.

b0
-

b1

�

a1

-

a0

�

(i)

h0 -

U(b0) -
h

6

� h1

U(b1)
�

U(a1)

-

U(a0)

�

(ii)

Apply U to get a similar square in B̂IG(Σ), and erect an RPO there, altogether
obtaining the diagram (ii). By Lemma C.1, there are c0 and c factoring b0 s.t.U(c0) =
h0 andU(c) = h; symmetrically, there are also c1 and c′ factoring b1 s.t.U(c1) = h1
andU(c′) = h. (See diagram (iii) below.)

46

c0
-

b0
-

c
6

c′
6

�
c1

b1

�

(iii)

But b0, b1 is a cospan, so also c, c′ is a cospan; thus c = c′ by Lemma C.2, and we
have a candidate RPO c0, c1, c.

Suppose d0, d1, d is an alternate candidate RPO. We must find unique e s.t. c =
d◦ e. BecauseU(c0),U(c1),U(c) is an RPO, we find unique p s.t.U(c) =U(d)◦p.
By Lemma C.1, there are unique d′, e s.t.U(d′) =U(d),U(e) = p and c = d′◦e. But
then d, d′ is cospan, so by Lemma C.2, d = d′. Thus, we have found e s.t. c = d ◦ e.
For uniqueness, suppose there is e′ with c = d ◦ e′. Then

h =U(c) =U(d) ◦ U(e′) =U(d) ◦ p

but then U(e′) = p = U(e) by uniqueness of p; but e′, e is also a cospan, so by
Lemma C.2, e = e′. �

Corollary C.1. Bisimulation on the standard transition-system of B̂IG(ΣS) is a
congruence.

Proof. By [Jen06, Theorem 3.16], possession of RPOs is a sufficient prerequisite for
the desiderata. �

We can now prove that the sorting of Definition 3.4.5 gives a congruential bisim-
ulation.

Theorem C.2. Let S be the sorting given in Definition 3.4.5. Then the bisimulation
over the standard transitions of B̂IG(ΣS) is a congruence.

Proof. By Corollary C.1, it is sufficient to show that S is a rigid control sorting.

Take φ(k,K) = k ∈ K. Clearly, Φ
(

(m, sm)
f
−→ (n, sn)

)

is equivalent to i < m =⇒

sm(i) = sn(f ∗(i)) and v ∈ f =⇒ φ(ctrl f (v), sn(f ∗(v))). �

47

Chapter 4

Encoding MiniML with
References in Bigraphs

4.1 Purpose

In this chapter we encode a MiniML-like calculus with references, Ξ, in bigraphs.
The motivation is two-fold: (1) We would like to be able to express some parts of our
bigraphical location model (see chapter 5) in Ξ utilising the Plato-graphical ability
to combine several languages. (2) It is an interesting study in itself to investigate
how one may model references in bigraphs, because to the best of our knowledge no
previous encodings of calculi with side effects have been studied in bigraphs.

Recall that we found it useful to be able to express some parts of our system
in a high-level language, chapter 3. We claim that Ξ is such a language. We need
references for the location model part L and the agent part A of our location model
in chapter 5. For now, we ask the reader to trust us when we say that references
are needed for encapsulating the state of the location model wrt. the agent and the
sensor.

We investigate the use of closed links in local bigraphs as defined in [Mil04c,
Mil04d]. This chapter aims to

• further investigate a question of chapter 3, namely which high-level languages
that can be encoded on bigraphs for use in Plato-garphical models,

• communicate a few humble insights about the behaviour of closed links (edges)
to readers with some knowledge of bigraphs,

• to experiment with and illustrate some non-trivial matches,

• and to show how references can be encoded in (local) bigraphs using closed
links.

48

First, we find that closed links can not interfere with outer names (open links) or
with each other, and that they behave as they do in binding bigraphs when they are
replicated as part of a parameter. Secondly, we find that a calculus with references
can be encoded in (local) bigraphs using closed links. There are some subtleties
associated with the encoding and the resulting reaction relation, which we address
as we go along.

4.2 Non-interference of closed links

Recall that the arity of a control K : b → f is a pair of finite ordinals, b is the
binding arity and f the free arity. Consider the following binding signature Σ with
a parametric reaction rule.

Control Activity Arity Comment
loca active 0→ 1 Nested location (e.g. a room)
devi atomic 0→ 1 Mobile device

locag(−0) . /x . locag(devix | −0) (4.1)

NOTATION. We introduce the operator /x . B as a generalisation of /x ◦ B, in the
sense that /x . B works for all widths of B, and it marks where identities are implicit
in a composition. It binds less than |, ‖, and /. | binds tighter than ‖ which binds
tighter than /.

By Def. 3.2 (parametric reaction rule) of [Mil04c] and the additional clarification in
section 3 of [Mil04d], our parametric reaction rule (4.1) is of the form

(R : I→ K,R′ : I′ → K, η,~ι)

where I = ~X and I′ = ~X′ are partitions (i.e. disjoint) with widths m and m′, and
η : m′ → m is a map of ordinals. The fourth component is a vector of bijections
~ι j : Xη(j) → X′j for each j ∈ m′.

A parametric rule generates ground rules of the form

((R ⊕ ω) ◦ a, (R′ ⊕ ω′) ◦ a′)

where I ⊕ H, I′ ⊕ H′ and K ⊕ L are interface extensions with H′ = η(H)1. Let
ω : H→ L and ω′ : H′ → L be wirings that agree on the names of H′ and have the
same support, i.e. |ω| = |ω′|. Then for any a : I ⊕ H, complete the ground rule by
defining a′ = η~ι(a) : I′ ⊕H′.

NOTATION. We follow the short-hand notation of [Mil04c] and write a local inter-
face as a vector of names. We omit the parentheses if the vector is of size one, and

1η is the instantiation map.

49

the curly brackets if the set is a singleton. We omit the empty inner face ε of ground
bigraphs.

The components of (4.1) are as follows.

R = locag(−0) : ∅ → g
R′ = /x . locag(devix | −0) : ∅ → g
η = Id1

~ι = (Id∅)

where Id1 is the identity function on the finite ordinal 1 = {0}, and ~ι is a vector of
isomorphisms relating located names in the parameters (none in this case). We see
that x , g since otherwise cod(R) , cod(R′). Thus, we could just as well have chosen
R′ = locag(/x . devix | −0), since these two terms denote the same bigraph, which
is apparent graphically, and justified by Prop. 2.7 (open decomposition) of [Mil04c].
In the term language, however, one must be careful when choosing names; if x = g,
then locag(/x . devix | −0) , /x . locag(devix | −0) = (idg ⊕ /x) ◦ locag(devix | −0)
because idg ⊕ /x is not defined when g = x. We see that when writing rules a closed
link can not “capture” outer names by accident.

Now consider, informally, the following situation: What happens if we apply
(4.1) twice consecutively? If we think of a device’s outer name as its identifier,
can we accidently reuse (the name of) a closed link and thereby identify two dif-
ferent devices? I.e. can we formally have the following sequence of reactions:
locap() . / f . locap(devi f) . / f . locap(devi f | devi f)? The answer is
no; the second reaction is not allowed. Let us convince ourselves by looking at an
example.

Consider a bigraph B1 = locap(), then B1 . B2 if and only if there exist
C, ω, a, ω′, a′ such that

B1 = C ◦ (R ⊕ ω) ◦ a
B2 = C ◦ (R′ ⊕ ω′) ◦ a′

where ω is a wiring and parameter a is discrete (for ∅ and g). Clearly, we must have

a = 1 : ∅
ω = id∅ : ∅ → ∅
C = p/g : g→ p
a′ = a
ω′ = ω

where B2 = / f . locap(devi f) = locap(/ f . devi f) for any f , p (forced by the rule).
Clearly, the choice of the name f is insignificant, because it does not appear in the
outer (or inner) face of B2 when closed, and since edges (closed links) do not have
identity in abstract bigraphs. Thus, / f . locap(devi f) = /k . locap(devik) for any
f , k , p.

50

We wish to apply (4.1) to B2. B2 can be matched by (4.1) in two ways depending
on whether the closure of f is done in the wirings ω,ω′ or in the context C. If
we close f in the context then the wirings ω,ω′ will be placings, and Prop. 3.5
(placings suffice) of [Mil04c] states that it suffices to consider such ground rules. To
accentuate this we write π, π′ for the wirings (placings), and we have

a = devi f : f
π = id f : f → f
C = p/g ⊕ / f : {g, f } → p
a′ = a
π′ = π

where B3 = /h . / f . locap(devih | devi f) for arbitrary f , h , p. Graphically, it is
clear that the order of closures is insignificant so this also holds in the term language.
Could we have chosen f = h? No, because that would render C undefined. We
conclude that closed links can not interfere with one another, which is apparent in
the graphical representation.

Now, let us consider replication of parameters involving closed links in local
bigraphs. To illustrate, we consider the “replication rule” of [JM04] (p. 78):

R = rep(−0) : ∅ → ∅
R′ = −0 | rep(−1) : (∅, ∅)→ ∅
η = {0, 1 7→ 0}
~ι = (Id∅, Id∅)

Notice how this rule does not say anything about linking. Applying this rule to the
bigraph B = /l . rep(ul | vl) we obtain B′ = /l . (ul | vl) | rep(ul | vl) because

a = ux | vy : {x, y}
π = id{x,y} : {x, y} → {x, y}
C = /l . (l/x | l/y) : {x, y} → ∅
a′ = (ux | vy) ‖ (ux | vy)
π′ = id{x,y} | id{x,y} : ({x, y}, {x, y})→ {x, y}

The closure resides in C so the global outer names of the two replicas are identified
(must point to the same edge). If one wishes each replica to have its own private
link, one should use binding ports or replicate using, e.g., the following rule, which
is a one-time replication rule for simplicity.

R = /x . rep(−0〈x〉) : {x} → ∅
R′ = /x . −0〈x〉 | /y . −1〈y〉 : (x, y)→ ∅
η = {0, 1 7→ 0}
~ι = (x 7→ x, x 7→ y)

51

With this rule we have B = /l . rep(ul | vl) . B′ = (/l . ul | vl) | (/l . ul | vl).
We show the components of the match to illustrate the “trick” of closing the links in
the rule so that the context can not identify outer names before closing them. The
intuition is that the context C has no handle on the links and thus can not manipulate
them; x is closed in R sp u and v in a can not have different outer names because C
can not reunite them.

a = ux | vx : x
ω = id∅ : ∅ → ∅
C = id∅ : ∅ → ∅
a′ = ux | vx ‖ ui | v j : (x, y)
ω′ = id∅ | id∅ : (∅, ∅)→ ∅

This concludes our treatment of closed link non-interference.

4.3 Encoding references via closed links

Consider the following MiniML-like call-by-value calculus Ξ with pairs and projec-
tions, references, datatype constructors and deconstructors, fixed-points, and natural
numbers. We need some notation.

NOTATION. Denote the dereferencing operation by ! (bang). n ranges over the set
N of natural numbers (including zero). x, f range over an infinite setV of variable
names with members x, y, z and so forth. l ranges over a set L of reference cells. D
ranges over an infinite setD of contructor names. C ranges over an infinite set C of
contructor names with members C0,C1,C2 and so forth. The setsV, L, D, and C
are pairwise disjoint. We use the shorthand notation ’case e of Ci xi ⇒ e i=0..n

i ’ for
’case e of C0 x0 ⇒ e0 | C1 x1 ⇒ e1 | . . . | Cn xn ⇒ en’. Likewise for data-type
declarations.

Here is the calculus Ξ in form of a BNF grammar with programs p, terms e, values
v, and evaluation contexts E.

p F datatype D = Ci of t i=0..n
i ; p 8 e

e F x 8 e1 e2 8 (e1, e2) 8 fst e 8 snd e 8 let x = e1 in e2 8

ref e 8 !e 8 e1 B e2 8 C e 8 case e of Ci xi ⇒ e i=0..n
i 8 v

v F λx.e 8 fix f (x) = e 8 (v1, v2) 8 unit 8 l 8 C v 8 n
E F [] 8 (E, e) 8 (v,E) 8 fst E 8 snd E 8 let x = E in e 8 let x = v in E 8

E e 8 v E 8 ref E 8 !E 8 E B e 8 v B E 8 C E 8

case E of Ci xi ⇒ e i=0..n
i

A program is a possibly empty sequence of data-type declarations followed by an
expression. When writing concrete programs we will typically omit ’;’. Concrete

52

cell constants (ranged over by l) only arise in terms that are the intermediate results
of evaluation; they are not in the language in which programmers write. We have
chosen to explicitly include several constructs in the calculus that could have been
encoded instead. This is done to avoid cluttering the presentation and use of the
calculus with encodings. Should we, however, wish to formally prove properties
about this calculus then encodings would be preferred to limit the number of cases
in inductive analyses.

We introduce a store to keep track of store cell values, and define dynamics via
a single-step evaluation relation −→ on configurations. We use the following nota-
tional conventions.

NOTATION. σ ranges over stores, i.e. partial functions from locations to values,
(σ, l 7→ v) denotes binding, and σ[l 7→ v] denotes updating.

We call the following rules basic.

〈fst (v1, v2), σ〉 −→ 〈v1, σ〉

〈snd (v1, v2), σ〉 −→ 〈v2, σ〉

〈let x = v in e, σ〉 −→ 〈e{v/x}, σ〉
〈ref v, σ〉 −→ 〈l, (σ, l 7→ v)〉 , l ∈ L f resh

〈!l, σ[l 7→ v]〉 −→ 〈v, σ[l 7→ v]〉
〈l B v′, σ[l 7→ v]〉 −→ 〈unit, σ[l 7→ v′]〉

〈(λx.e) v, σ〉 −→ 〈e{v/x}, σ〉
〈(fix f (x) = e) v, σ〉 −→ 〈e{v/x, (fix f (x) = e)/ f }, σ〉

〈case C j v of Ci xi ⇒ e i=0..n
i , σ〉 −→ 〈e j{v/x j}, σ〉 , i f j ∈ {0, . . . , n}

Notice that stores are not terms. We briefly explain the last rule. It allows evaluation
of a case construct provided that the expression to be matched is a value, and that it
matches one of the contructors declared. The result of the evaluation is a substitution
of v for x j in the jth branch of the case contruct. There is only one variable on the
left-hand side in each branch, which means that if one wishes to match a constructor
with a value that is, e.g., a pair then the variable x j has to be manually deconstructed
(in this case projected) on the right-hand side of the matching branch. We will see
an example of this in chapter 5. We close evaluation under contexts:

Definition 4.3.1. If 〈e, σ〉 −→ 〈e′, σ′〉 then there exists a unique E such that e = E[r],
〈r, σ〉 −→ 〈r′, σ′〉 is a reduction by one of the basic rules, and e′ = E[r′].

We encode Ξ in local bigraphs. The signature is shown in figure 4.1. For now,
let i0, i1, i2, . . . represent natural numbers. These are used instead of a more cum-
bersome bigraphical representation, which will be presented in subsection 4.3.1, of
natural numbers using only constants zero and successor. Binding ports are used to
delimit variable scope (see e.g. letb, lam, and casee). Some controls are passive
to prevent evaluation “under them”. The last six controls are not images of Ξ-terms,

53

Control Activity Arity Comment
var atomic 0→ 1 Variable
app active 0→ 0 Application
appl active 0→ 0 Left part of application
appr active 0→ 0 Right part of application
pair active 0→ 0 Pair
pairl active 0→ 0 Left component of pair
pairr active 0→ 0 Right component of pair
fst active 0→ 0 Left projection on pair
snd active 0→ 0 Right projection on pair
let active 0→ 0 Let construction
letd active 0→ 0 Declaration of ’let’
letb passive 1→ 0 Body of ’let’
ref active 0→ 0 Reference request
deref active 0→ 0 Dereference
assign active 0→ 0 Assignment
acell active 0→ 0 Cell component of assignment
aval active 0→ 0 Value component of assignment
case active 0→ 0 Case construct
casel active 0→ 0 Constructor to be matched of ’case’
casee passive 1→ 0 Case branch of ’case’
Cn active 0→ 0 A control for each member of C
val passive 0→ 0 Value
lam passive 1→ 0 Lambda abstraction
fix passive 2→ 0 Fixed-point construction
unit atomic 0→ 0 Unit, for side effects
i0, i1, i2 . . . atomic 0→ 0 Natural numbers
cell atomic 0→ 1 Generated reference cell (term)
cell’ passive 0→ 1 Generated store cell
store active 0→ 0 Store
exp passive 0→ 0 Delay evaluation
sub active 1→ 0 Term to undergo substitution
def active 0→ 1 Term to be inserted

Figure 4.1: Signature ΣΞ.

54

but are introduced to implement a store, call-by-value evaluation, and substitution.
cell denotes a reference cell generated by evaluation. cell′ denotes a store cell, i.e. it
resides in store, holding the value of a reference cell, which it refers to by a closed
link. As will become apparent when translating Ξ-terms into local bigraphs, exp is
used to delay evaluation certain places in terms to implement the call-by-value se-
mantics. sub and def are used to perform explicit substitution, sub holds the term
to undergo substitution for some x and def holds the value to be inserted instead of
x. The purposes of the other controls should be clear.

We provide a formal translation of Ξ into local bigraphs assuming well-formed
Ξ-programs. The semantic function L·M translates programs p, and the semantic func-
tion ~·� translates expressions e. The idea is to preserve the call-by-value semantics
by inserting passive exp controls to hinder premature evaluation. Binding ports are
used to limit the scope of variables, like lambda abstractions in the λ-calculus.

NOTATION. We write f ◦ g as f g, and composition binds tighter than prime product
(on the right-hand sides).

55

Ldatatype D = Ci of t i=0..n
i ; pMX = LpMX

Ldatatype D = Ci of t i=0..n
i ; eMX = ~e�X

~x�X]{x} = X ⊕ varx

~(e1, e2)�X = (pair ⊕ idX)
(

(pairl ⊕ idX)~e1�X |

(pairr ⊕ idX)(exp ⊕ idX)~e2�X
)

~fst e�X = (fst ⊕ idX)~e�X

~snd e�X = (snd ⊕ idX)~e�X

~let x = e1 in e2�X = (let ⊕ idX)
(

(letd ⊕ idX)~e1�X |

(letb(x) ⊕ idX)~e2�X]{x}
)

~λx.e�X = (val ⊕ idX)(lam(x) ⊕ idX)~e�X]{x}

~e1 e2�X = (app ⊕ idX)
(

(appl ⊕ idX)~e1�X |

(appr ⊕ idX)(exp ⊕ idX)~e2�X
)

~ref e�X = (ref ⊕ idX)~e�X

~!e�X = (deref ⊕ idX)~e�X

~e1 B e2�X = (assign ⊕ idX)
(

(acell ⊕ idX)~e1�X |

(aval ⊕ idX)(exp ⊕ idX)~e2�X
)

~C e�X = (C ⊕ idX)~e�X

~case e of Ci xi ⇒ e i=0..n
i �X = (case ⊕ idX)

(

(casel ⊕ idX)~e�X |

(casee(x1) ⊕ idX)(C1 ⊕ idX)
(exp ⊕ idX)~e1�X]x1

...

(casee(xn) ⊕ idX)(Cn ⊕ idX)

(exp ⊕ idX)~en�X]xn

)

~unit�X = (val | X) unit

~n�X = (val | X) in , ∀n ∈ N

The subscript set X on the translation includes the names of all free variables (fv) in

56

e. Thus, each term e has many bigraph images. All the images of ~·�X are ground so
they all have the empty inner face ε, and the subscript set as outer face. We require
λ-terms to be α-converted in such a way that the binding variables are all different.
α-convertible Ξ-terms have equal images, e.g. ~λy.y�∅ = ~λz.z�∅. Notice how we
do not translate configurations, merely terms. This is because the store is implicit in
the Ξ-world, but we need to model it explicitly in bigraphs. The store is assumed to
be empty at the start of evaluation.

The parametric bigraphical reaction rules corresponding to the dynamic single-
step semantics of Ξ are presented in figure 4.2. There is an informal dynamic cor-
respondence between −→ and . , namely that −→ can be mimicked by one or
more uses of . . During evaluation some variables and cells may disappear and
new cells may be created. We demand that fv(e) ⊆ X, which is an invariant. The
first rule we wish to emphasise is rule (4.6). Evaluation of a ’let’ expression results
in a substitution. We emphasise the fact that −0 in the redex can have x in its outer
face and maintain it in the reactum as explained earlier in this chapter. (4.7) needs
to be a wide rule because we wish to have the store at “top level” and not embedded
in the program as such. The link is closed outermost immediately upon creation to
only grant the freshly generated reference cell celll access to that store cell. Thus,
we know that l is not in cod(−0), cod(−1). Dereferencing and assignment also work
as one would expect, (4.8), (4.9) and (4.10), the extra outer name l being necessary
to maintain the outer face. This prime product is always defined because we know
that −0 is a value and thus has outer width 1 (like l/). l is closed, but this is not ex-
plicit in rules (4.8)-(4.10) because the context has to be able to identify the name l of
different regions. In the second assignment rule (4.10) we extend val(unit) with the
wiring {l} : ε → {l} to maintain l in the outer face of the first region of the reactum.
Applying the fixed-point construction to a value results in a nested substitution, as
one would expect. We have a rule pair (4.13) and (4.14) for each declared construc-
tor in the source program. In rule (4.15) we exploit local bigraphs by using a wide
reaction rule in connection with binding to substitute “at a distance” one occurrence
at a time2. Furthermore, notice how we have written two sites as −0 in R′ implicitly
defining ~ι = {0, 1 7→ 0}. (4.16) terminates the substitution when done; it can not
be used before we are actually done substituting because −0 can not contain x in its
outer face since in that case cod(R) , cod(R′). The rest of the rules should be clear.

4.3.1 Encoding of natural numbers

Here we present an encoding of natural numbers in bigraphs using a Peano-like
representation with zero and successor. We also encode rules implementing simple
operations like equality on these using an encoding of boolean constants True and
False. There should be no surprises in figure 4.3. The rules presented in figure
4.4 should be straightforward, but do notice that we use non-negative subtraction on
integers (so really we restrict ourselves to natural numbers) in rule (4.28) and that
multiplication is computed according to the formula (m+ 1) ∗ (n+ 1) = (n+ 1)+m ∗

2This does not work in binding bigraphs because here a name can not reside in multiple locations.

57

pair(pairl(val(−0)) | pairr(exp(−1)))
. pair(pairl(val(−0)) | pairr(−1)) (4.2)

pair(pairl(val(−0)) | pairr(val(−1)))
. val(pair(pairl(val(−0)) | pairr(val(−1)))) (4.3)

fst(val(pair(pairl(−0) | pairr(−1)))) . −0 (4.4)

snd(val(pair(pairl(−0) | pairr(−1)))) . −1 (4.5)

let(letd(val(−0)) | letb(x)(−1〈x〉))
. sub(x)(−1〈x〉 | defx(val(−0))) (4.6)

ref(val(−0)) ‖ store(−1)
. /l . val(celll) ‖ store(cell′l (val(−0)) | −1) (4.7)

deref(val(celll)) ‖ store(cell′l (−0) | −1)
. −0 | l/ ‖ store(cell′l (−0) | −1) (4.8)

assign(acell(val(celll)) | aval(exp(−0)))
. assign(acell(val(celll)) | aval(−0)) (4.9)

assign(acell(val(celll)) | aval(val(−0))) ‖ store(cell′l (−1) | −2)
. val(unit) ⊕ {l} ‖ store(cell′l (−0) | −2) (4.10)

app(appl(val(lam(x)(−0〈x〉))) | appr(val(−1)))
. sub(x)(−0〈x〉 | def(x)(−1)) (4.11)

app(appl(val(fix(f ,x)(−0〈 f , x〉))) | appr(val(−1)))
. sub(f)(sub(x)(−0〈x〉 | defx(val(−1))) |

def f (val(fix(f ,x)(−0〈 f , x〉)))) (4.12)

C(val(−0)) . val(C(val(−0))) (4.13)

case(casel(val(C(−0))) | (casee(x)(C(exp(−1〈x〉))) | −2))
. sub(x)(−1〈x〉 | defx(−0)) (4.14)

varx ‖ defx(val(−0)) . val(−0) | {x} ‖ defx(val(−0)) (4.15)

sub(x)(−0 | defx(−1)) . −0 (4.16)

Figure 4.2: Reaction rules for Ξ.

(n + 1) in rule (4.33). As mentioned in chapter 4 we introduce a shorthand notation
for natural numbers; i0 means z, i1 means s z, i2 means s (s z), and so forth.

In an implementation of a bigraphical rewrite engine, it is probably too inefficient
to work with bigraphical integers (and booleans) so one would perhaps choose to
work with the integers (and booleans) of the implementation language instead. Using
i−controls is a more human-readable representation.

58

Control Activity Arity Comment
true atomic 0→ 0 True
false atomic 0→ 0 False
z atomic 0→ 0 Zero (i0)
s active 0→ 0 Successor
argl active 0→ 0 Left argument
argr active 0→ 0 Right argument
eqi active 0→ 0 Equality operator
lti active 0→ 0 Less than operator
addi active 0→ 0 Addition operator
subi active 0→ 0 Subtraction operator
muli active 0→ 0 Multiplication operator

Figure 4.3: Signature for natual numbers encoding in local bigraphs.

4.3.2 An example exploring references

In this chapter we wish to explore the encoding of references, and this only uses a
fragment of Ξ. We shall return to the other parts of Ξ in chapter 5. Consider the
program shown in figure 4.5. It is written in Ξ, and translated into bigraphs. Clearly,
the result of evaluating this program should be the value 4 (i4). This program uses
aliasing, and we intend to see if the encoding behaves correctly. We have presented
the bigraph in short-hand notation leaving wirings implicit.

Denote by A0 the bigraph shown in figure 4.5. A0 rewrites to A14 = /l . val(i4) |
store(loc′l (val(i4))) via the reduction path (4.7) − (4.6) − (4.15) − (4.6) − (4.15) −
(4.16) − (4.9) − (4.10) − (4.2) − (4.15) − (4.16) − (4.8) − (4.3) − (4.5). The most
interesting steps are the uses of rules (4.7), (4.10), and (4.8), but we also show how
rules (4.6), (4.15), and (4.16) are matched because there are some subtleties here.
We only show the maps η,~ι in the matches where they are important and non-trivial.
The reader may want to look up these rules when inspecting the matches in what
follows.

NOTATION. We use S,T,U to denote certain sub-terms of a bigraph when these
sub-terms are not important for the particular match, to increase readability when
presenting the matches.

We begin to evaluate the declaration part of the outermost let; A0 matches (4.7)
because we find

a = i5 ‖ 1 : (∅, ∅)
ω = id2 : (∅, ∅)→ (∅, ∅)

C = let
(

letd(−2) | letb(z)(S)
)

| −3 : (∅, ∅)→ ∅

a = a′

ω′ = 1 ⊗ (id∅ | id∅) : (∅, ∅)→ (∅, ∅)

59

eqi(argl(z) | argr(z)) . true (4.17)

eqi(argl(s(−0)) | argr(s(−1))) . eqi(argl(−0) | argr(−1)) (4.18)

eqi(argl(z) | argr(s(−0))) . false (4.19)

eqi(argl(s(−0)) | argr(z)) . false (4.20)

lti(argl(z) | argr(z)) . false (4.21)

lti(argl(s(−0)) | argr(s(−1))) . lti(argl(−0) | argr(−1)) (4.22)

lti(argl(z) | argr(s(−0))) . true (4.23)

lti(argl(s(−0)) | argr(z)) . false (4.24)

addi(argl(z) | argr(−0)) . −0 (4.25)

addi(argl(−0) | argr(z)) . −0 (4.26)

addi(argl(s(−0)) | argr(s(−1)))
. s(addi(argl(s(−0)) | argr(−1))) (4.27)

subi(argl(z) | argr(−0)) . z (4.28)

subi(argl(−0) | argr(z)) . −0 (4.29)

subi(argl(s(−0)) | argr(s(−1))) . subi(argl(−0) | argr(−1)) (4.30)

muli(argl(z) | argr(−0)) . z (4.31)

muli(argl(−0) | argr(z)) . z (4.32)

muli(argl(s(−0)) | argr(s(−1)))
. addi(argl(s(−1)) | argr(muli(argl(−0) | argr(s(−1))))) (4.33)

Figure 4.4: Operations on integers in local bigraphs.

where S denotes the content of the outermost letb in A0. It is easy to convince
oneself that A0 = C ◦ (R ⊕ ω) ◦ a. Consider an A1 s.t. A0 . A1:

A1 = /l . let
(

letd(val(locl)) | letb(z)(S)
)

| store(loc′l (val(i5)))

Notice how in A1 the closure is done “outermost” whereas in the rule it is done in
R′. This situation is essentially the question whether

(

F(−0) | G(−1)
)

◦ /l . Hl | Il = /l . F(Hl) | G(Il)

for some ions F,G,H, I. Looking at how composition is defined in Def. 8.3 (precate-

60

let z = ref 5
in let y = z in
snd (y:=4,!z)

--

let(letd(ref(val(i5))) |
letb_(z)(

let(letd(var_z) |
letb_(y)(

snd(pair(
pairl(assign(

aloc(var_y) |
aval(exp(i4)))) |

pairr(exp(deref(var_z))))))))) |
store()

Figure 4.5: A Ξ-program and its translation into bigraphs.

gory of link graphs) of [JM04], we see that case one of the definition of the composite
link map applies so indeed the equation holds, and this also applies to our setting.
(It also holds for ‖.) Thus, A1 = C ◦ (R′ ⊕ ω′) ◦ a′ as required. Intuitively, it may
seem weird that one can plug in two link-connected regions (when ‖ is used) into
two separate holes and keep the connection intact – especially when one looks at the
graphical representation. However, the closed link is a visual deception – formally
the link map just maps the outer name l of H and I to an edge, and this relationship
is maintained during composition.

We continue by showing how A1 matches (4.6). We have η = Id2 and ~ι =
(Id∅, Idx). When matching we can wlog. rename z to x in A1 because the two terms
denote the same bigraph.

a = locl ‖ S : (l, x)
ω = idl | id∅ : (l, ∅)→ l
C = /l . idl | store(loc′l (val(i5))) : l→ ∅
a′ = a
ω′ = ω

A2 = /l . sub(z)

(

let(letd(varz) | letb(y)(S)) | defz(val(locl))
)

| store(loc′l (val(i5))).
Next up is application of the substitution rule, (4.15). We have η = {0, 1 7→ 0} and

61

~ι = (Id∅, Id∅).

a = locl : l
ω = l/ ‖ idl : l→ (l, l)

C = /l . sub(x)

(

let(letd(−2〈x, l〉) | letb(y)(S)) | −3〈x, l〉
)

| store(loc′l (val(i5)))

: ({x, l}, {x, l})→ ∅
a′ = locl ‖ locl : (l, l)
ω′ = idl ‖ idl : (l, l)→ (l, l)

A3 = /l . sub(z)

(

let(letd(val(locl)) | letb(y)(S)) | defz(val(locl))
)

| store(loc′l (val(i5))).
Now rewrite A3 with (4.6) and then (4.15) to obtain

A_5 = /l . sub_(z)(
sub_(y)(snd(pair(

pairl(
assign(
aloc(val(loc_l)) |
aval(exp(val(i4)))))

pairr(exp(deref(var_z)))))
def_y(val(loc_l))) |

def_z(val(loc_l))) |
store(loc’_l(val(i5)))

These two steps unfolded the innermost let to a sub, and then substituted in the
value of x for y. We see that there are no more free occurrences of the name y so we
can terminate that substitution with (4.16). η = Id0.

a = T ‖ val(locl) : ({z, l}, l)
ω = id{z,l} | idl : ({z, l}, l)→ {z, l}

C = /l . sub(z)

(

−2〈z, l〉 | defz(val(locl))
)

| store(loc′l (val(i5))) : {z, l} → ∅

a′ = T : {z, l}
ω′ = id{z,l} : {z, l} → {z, l}

where T denotes the sub-term snd(. . .) of A5. A6 = /l . sub(z)

(

T | defz(val(locl))
)

|

store(loc′l (val(i5))). Now, simply remove the exp from aval in T with (4.9) to obtain

A_7 = /l . sub_(z)(snd(pair(
pairl(assign(

aloc(val(loc_l)) |
aval(val(i4)))) |

pairr(exp(deref(var_z))))) |
def_z(val(loc_l))) |

store(loc’_l(val(i5)))

62

A7 can be rewritten with (4.10) as follows. η = {0 7→ 0, 2 7→ 2}.

a = i4 ‖ val(i5) ‖ 1 : (∅, ∅, ∅)
ω = id∅ ‖ (id∅ | id∅) : (∅, ∅, ∅)→ (∅, ∅)

C = /l . sub(z)

(

snd
(

pair(pairl(−3〈l〉) | pairr(U))
)

| defz(val(locl))
)

| −4〈l〉

: (l, l)→ ∅
a′ = val(i4) ‖ 1 : (∅, ∅)
ω′ = 1 ‖ (id∅ | id∅) : (∅, ∅)→ (∅, ∅)

A8 = /l . sub(z)

(

snd
(

pair(pairl(val(unit)) | pairr(U))
)

| defz(val(locl))
)

| store(loc′l (val(i4)))

Notice how the store has changed. It is here that we realise why the link l has to be
open in the definition of (4.10). Had it been closed we would not be able to supply
a proper context C because there would be no way to identify the location inside
defz with the locations inside R (that are plugged into the holes −3,−4), since these
would be in an already closed link, and thus not accessible (by composition) from
the outside. This is an important property of closed links. We may now rewrite A8
to

A11 = /l . snd
(

pair(pairl(val(unit)) | pairr(deref(val(locl))))
)

| store(loc′l (val(i4)))

by the non-controversial sequence (4.2) - (4.15) - (4.16). Finally, we may rewrite
using (4.8).

a = val(i4) ‖ 1 : (∅, ∅)
ω = 1 ‖ (id∅ | id∅) : (∅, ∅)→ (∅, ∅)
C = /l . snd(pair(pairl(val(unit)) | pairr(−3〈l〉))) | −4〈l〉 : (l, l)→ ∅
a′ = val(i4) ‖ val(i4) ‖ 1 : (∅, ∅, ∅)
ω′ = id∅ ‖ (id∅ | id∅) : (∅, ∅, ∅)→ (∅, ∅)

Again, the rule would not have worked with a closed link had there been a deref-
erence operation inside pairl of A11, for example. In this case, however, it works
out either way. We finish evaluation by trivially rewriting with (4.3) and then (4.5).
Thus, we have A14 = /l . val(i4) | store(loc′l (val(i4))) as promised.

4.4 Dynamic correspondence

We have argued by example that there is a dynamic correspondence between Ξ and
the encoding hereof in local bigraphs. Informally, we claim that every time we re-
duce a term in Ξ by −→ we can mimic that in the bigraphical reactive system with

63

one or more uses of . . To formally prove the dynamic correspondence we
would need a substitution lemma, a lemma allowing us to separate a context from a
redex, and a lemma corresponding to definition 4.3.1, but for bigraphs. Proving that
the correspondence holds both ways would likely require us to keep track of which
bigraphs are actually images of Ξ-terms. We leave this for future work.

We conclude that references can be encoded in local bigraphs using closed links,
that they seem to behave as desired, and conjecture that this can be proved formally.

4.5 Discussion

One may wonder, intuitively, why we chose to encode references via closed links
and not binders. We give such an intuition here. Closed links were included in the
bigraph theory to capture the notion of name restriction from theπ-calculus. Binding
ports likewise capture the π-calculus notion of prefix. In essence, the difference
between closed links and binding ports in (binding and local) bigraphs is locality
and the scope rule. All binders are located (while edges are not) and have to obey
the scope rule, i.e. all peers of a certain binder must be located beneath that binder
in the place graph, roughly said.3 This means that using binders is in general more
restrictive, which may be preferred in some situations like when modelling access
control. In our case we have a global store located at top level. Thus, in this case,
it should be possible to encode references via a top-level vertex acting like a store
by having a binding port for each created location. Summing up, we can say that
closed links were chosen because they do not have locality, which enables us to
avoid worrying about the locality of the store holding the references, which is the
natural way to think about a store, we believe. A reason for using binders could be to
investigate whether there is a simpler proof of the dynamic correspondence between
Ξ and the encoding, than with free closed links. The idea is to define a family of
controls storem, indexed by an ordinal m defining the set of (binding) ports on store.
The program resides within this control. Initially, we have store0(. . .) with no ports
meaning that no locations have been created. Then, every time a location is created
we replace the current storei with a new one, namely storei+1, and bind this new
location to the new port (keeping the old bindings). When binding a new location to
the store we also create a value node holding the value of the newly created location,
and link this to the new binding port of the store. This idea resembles one of Robert
Harper [Har00] (chapter 16), though in another setting.

3We aim to provide some intuition and thus refer the reader to [JM04] for precise definitions.

64

Chapter 5

A Bigraphical Location Model

5.1 Introduction

In this chapter we make more precise what is meant by the term “reflective” building.
Having a clear idea of what properties such a building should possess we move on
to exhibit a Plato-graphical model corresponding to such a building. Some parts
of the model are formulated directly in bigraphs, and some parts are expressed in
a slightly enhanced and sugared form of Ξ, named Ξsugar. In a sense, this chapter
brings together the work of the chapters 2, 3, and 4. This chapter presents work in
progress.

5.2 A reflective building

We define a reflective building in more detail. In [Hop00] on “sentient computing”
the following three “location categories” are stated as important.

• Containment

• Proximity

• Coordinate systems

Containment refers to an object being within a container (location). Proximity is the
notion of being close to something. Coordinate systems provide location in space
(subject to some error value). We have seen containment before as a spatial relation-
ship on locations. We interpret proximity to cover two situations: (1) Near measured
in physical distance, and (2) near as within the same symbolic range, i.e. within
the same container (at some level in the topology/hierarchy). Our starting point is a
symbolic model so we abstract away from coordinates in this treatment.

We do, however, add some additional properties to our list of reflective building
properties:

65

• Device positioning

• A fixed set of uniquely identifiable mobile devices

When considering a reflective building we think of located-objects as being mobile
devices (and henceforth refer to them as such) such a mobile phones and PDAs.

In our modelling effort we abstract the reflective building by abstracting over
location types (floors, wings, rooms etc.) and device types (PDA, mobile phone,
laptop etc.).

We capture systems where, e.g., a user arrives at a museum and receives a mobile
device to be used together with the positioning system and the location model at this
museum.

5.3 The model

Before the presentation of the Plato-graphical model it is instructive to explain the
key design choices made.

5.3.1 Design choices

Several choices have been made regarding the languages used, the representation of
locations and devices, and the location hierarchy. We treat these considerations in
turn.

5.3.1.1 Languages used

We have used two languages in the model. The parts C and S of the model are
written using the bigraphical term language, and parts L and A in a sugared version
Ξsugar of the calculus Ξ presented in chapter 4. We prefer to work within bigraphs
except when it becomes too inconvenient. We show that bigraphs are well-suited for
modelling C and S, and not just C as suggested in chapter 3. The location model
L is, however, sufficiently complicated to write natively in bigraphs for us to prefer
writing it in Ξsugar. A communicates with L so it makes sense to write A in Ξsugar,
apart from the fact that it is easier to program A in Ξsugar than natively in bigraphs,
as will become apparent. Thus, we have a real world C written in bigraphs, a proxy
P = S ‖ L spanning both bigraphs and Ξsugar, and a location-aware application
A written in Ξsugar. A key issue in this setup is how to realise the communication
between the “bigraph world” and the “Ξsugar world” in P. Later in this chapter we
explain how Ξsugar-programs correspond to Ξ-programs.

5.3.1.2 Representing locations and devices in C (and S)

We use one control loc : 0 → 0 to represent locations and one dev : 0 → 0 to
represent devices abstracting away different location types. Another option is to use
different controls for the “different” types of locations in a building; wing, floor,

66

room and so forth. The reasons for choosing one loc control are (1) to limit the
number of reaction rules to be written – we do not need to have a rule for each com-
bination of the different location (and device) types where one location is source and
the other target, and (2) identity and type of a location can be represented conve-
niently in another way (to which we return below). Devices are simply represented
by a device control.

5.3.1.3 Known devices

As mentioned in section 5.2 we consider a reflective building to have a fixed set of
known devices, which pertains to all parts of the model. Some may be in use and
some may not. A device is in use when it is in a location which is not the special
“unused devices” location. Initially, each device is either in this location or in one of
the locations of the location hierarchy (to be addressed next). This property should
be invariant under reaction. No new devices can appear. As mentioned in section
5.2 this is a realistic choice, and technically it significantly simplifies our task. This
is due to the fact that when a device is discovered in C we have to mirror this by
a discovery in L via S, and thus generate a corresponding fresh identifier for this
device in L. It is difficult to ensure this automatically.

5.3.1.4 A static tree-structured location hierarchy

It is a simplifying choice to work with a static location hierarchy as opposed to a
dynamic one. It is reasonable to have a static location hierarchy in this case because
a (reflective) building in the real world seldomly changes. Thus, the location hierar-
chy in the model needs to be altered only on rare occasions. According to [Leo98]
location hierarchies are typically static. Furthermore, we organise locations in a tree
utilising the structure of place graphs. This is a limiting choice, but not an uncom-
mon one. The same hierarchy is present in C and L, but represented differently.

5.3.1.5 Modelling the real world

For our purposes the following abstraction is suitable: Devices can enter, move
around in, and leave a (reflective) building which is observationally equivalent to
being turned off. These reconfigurations should be modelled in C.

5.3.1.6 Identification of locations and devices in C and L

A location in the bigraphical part of the model can be identified by a link or by an
embedded identity control. We assume that locations are uniquely identified which
requires an equality operation on their identifiers. Such identifiers could, e.g., be nat-
ural numbers or strings. We have chosen natural numbers for simplicity and to keep
our focus. Strings can also be encoded. The property that no two locations or devices
have the same identifier is invariant under reaction, i.e. maintained by every reaction
rule. Now consider the two approaches; identification via a link or an embedded

67

control. Links can be open (outer name) or closed (edge). Using closed links in C is
not a viable solution because they do not in fact reveal any identity information to the
context and thus can not be distinguished, which is required to support certain basic
queries. Open links could be used because the location hierarchy is static; location
identifiers are assumed to be unique initially, and new locations are not introduced
under reaction. Thus, there is no risk of an identifier (outer name) being reused, i.e.
two different locations being identified. As no new devices are introduced we are
safe. The same reasoning applies to device identifiers. Another option is to place a
unique identity control as a child of each location and device control, which is what
we choose. Our choice is supported by the following two considerations: (1) The
model becomes simpler. Had we chosen link identifiers in C we would have to relate
these links to location identifiers in L which could be natural numbers (or strings).
This can be done by “exporting” the location identifiers of L to top level of the Plato-
graphical system, which is not entirely straightforward as will become apparent later.
(2) Given the intuition that controls represent entities and links represent (wireless)
connections between entities it seems appropriate to model identity of an entity as
part of that entity (e.g. like a MAC address of a device or the name of a room), i.e.
via an identity control. Initially, C and L have the same location hierarchy (in their
respective languages). Next we discuss how closely coupled C and L should be.

5.3.1.7 Relating C and L via S

An argument for a high degree of coupling between C and L is a low modelling
effort, whereas a low degree of coupling implies stronger modularity, which is an
argument against a tight coupling. Let us consider the setup to decide on a design
choice here. The setup is that the initial configuration of the system is given, and in
particular that the location hierarchies in C and L are coherent. For simplicity, take
locations and devices to be identified byΞ-integers in L. Encoding integers (or rather
natural numbers) in bigraphs yields an easy correspondence, defined in S, between
identifiers in C and L. This is a rather tight coupling, but not an unreasonable one
since the user of the system is obliged to define the location hierarchy and the devices
in both C and L initially. Furthermore, decoupling C and L merely comes down to a
mapping in S.

5.3.1.8 Location systems as Plato-graphical systems

Consider figure 5.1. Location-aware applications (agents) are captured by the part
A. The location model including queries (and actuators) is part L. We have included
both queries and actuators in L because they are really interfaces to the location
model. The positioning system including sensors is part S. S informs L of location
updates. The physical world is part C.

68

Actuators

Sensed information

Position updates

Queries

Application

Location model

Positioning system

Physical world

A

L

S

C

L

L

S

Figure 5.1: Overall location system model seen as Plato-graphical.

5.3.2 Introducing the model

We begin by briefly recalling Plato-graphical models. Consider a Plato-graphical
model X = (CX,PX,AX) as defined in chapter 3. This model consists of a world
cX ∈ CX, a proxy PX with constituents sX ∈ SX (sensor) and lX ∈ LX (the location-
aware system’s representation of the world lX), and a location-based application aX ∈

AX. The overall intuition about the system is as follows: cX ∈ CX reconfigures as
it pleases. Essentially, we have three reconfigurations of cX; discovery of a device
in some location, movement of a device from a location to a parent or sub-location,
and loss of a device (the system loses track of the device). Much like in the real
world, changes in cX occur in an unpredictable and non-deterministic manner. The
system sX observing the state cX of the world tries as best it can to inform lX of
change to cX by invoking certain “interface functions” in lX to update its internal
representation of the world (building). sX has access to cX and lX by shared controls
(with cX) and an outer name (with lX). Due to the asynchronicity between cX and LX
we are likely to experience some discrepancy in the “states” of the two parts. This is
perfectly realistic wrt. real-life indoor positioning systems such as Ekahau. To make
our model even more realistic we envision introducing time so that events from sX to
lX can be timestamped and thus ordered. This should enable lX to update its internal
representation to more accurately match cX as observed by sX. aX can query lX via a
specific set of “interface functions”. Recall that CX and SX are native BRSs whereas
LX and AX are the BRSs resulting from a translation of Ξsugar-programs into local
bigraphs along with the bigraphical reaction semantics defined in chapter 4. Thus

69

utilising the “multi-lingual feature” of Plato-graphical models. Having briefly given
the intuition behind the workings of the model we proceed to define it as a Plato-
graphical model.

5.3.2.1 Our reflective building

We choose an example which holds the essential conceptual challenges arising from
the previous discussion, but is also kept simple for the sake of clarity. A more com-
plex building, e.g. the IT University of Copenhagen, can likely be modelled without
problems.

Introducing the simple reflective building We model a piece of ITU. Before
showing the building as a tree and a bigraph, we briefly state the intention. We
model the building, the atrium (in reality spanning all five floors) in the centre of the
building, two of the four wings, two of the six floors, a hallway, and two rooms. The
building (i1) contains the atrium (i2) and the wings B (i3) and C (i4). Wing C spans
two floors, namely the third floor (i5) and the fourth floor (i6). The fourth floor con-
tains a hallway (i7) which in turn contains two rooms, namely room 4C16 (i8) and
4C10 (i9). We assume six known devices numbered i10 through i15, all in use. One
device in the building, two devices are in the atrium, one is on the third floor, one
is in room 4C16, and one in room 4C10. We could have made other choices, which
we address shortly, but for now, we ask the reader to consider the informal graphical
representation in figure 5.2. Do notice that the id-controls around location identifiers
have been left out for simplicity. Some choices were made to arrive at exactly the
location hierarchy of figure 5.2, each one is addressed in turn.

• The ordering of wings and floors.

• Where devices can reside.

We could, of course, have included more wings, floors, rooms etc. easily. First of all,
notice how wings are considered to be above floors in the hierarchy. This indicates
that one has to be within a wing to move from one floor to another. At the ITU we
have stairways that allow this movement. However, it is also possible to move from a
wing to the building, into an elevator, and to another floor. This is not possible in this
model, but we consider it to a cosmetic problem that is irrelevant wrt. our purposes
at present. Switching the ordering of wings and floors would yield a similar problem.
Thus, we can either stick with an ordering and accept the limitation, or model the
location hierarchy using two trees (views), one with wings above floors and the other
with floors above wings. That would, however, complicate things because devices
would then have to be situated in both trees and make a movement in both trees at
once. This movement would be between siblings in one tree, but not in the other
tree. As we argue below, the movement between siblings is the most reasonable
and realistic having chosen a tree structure to organise locations. Alternatively, links
could be used to indicate paths between locations, but that would defeat the purpose

70

dev

i12

loc

loc

loc

loc

locloc

loc

locloc

dev dev

dev dev

i3

i1

i5

i6

i7

i8 i9

i10 i11

i13 i14

devs

i2 i4

dev

i15

Figure 5.2: The building β as a tree where the id-controls around location identifiers
have been left out, for simplicity.

of having imposed a structure on locations in the first place. A brief detour: The link
graph is usable for supporting the connected-to and distance relationships of chapter
2 that allow for nearest neighbour and navigation queries.

We have decided that devices can reside in any location, and that locations can
contain both devices and other locations. This is flexible and does not cause any
modelling problems.

For comparison, the building β is depicted as a bigraph in figure 5.3. Again,
notice that the id-controls around location identifiers have been left out for simplicity.
We briefly comment on figure 5.3. Identifiers (natural numbers) are represented by
nodes with atomic controls so we depict them as small black boxes. It should be
clear that the bigraph corresponds exactly to the tree of figure 5.2. We proceed by
presenting the model as a Plato-graphical system.

71

loc

i1

dev

i15

loc

i2

dev

i10

dev

i11

loc

i3

loc

i4

loc

i5
dev

i12

loc

i6

loc

i7

loc

i8

dev

i13

loc

i9

dev

i14

devs

Figure 5.3: The building β as a bigraph in graphical representation where the id-
controls around location identifiers have been left out, for simplicity.

5.3.3 X as a Plato-graphical model

We divide the presentation into four parts: The native bigraphical parts (1) CX and
(2) SX, and the Ξsugar-parts (3) LX and (4) AX.

Recall that we work in local bigraphs so the arity of a control is binding→ free.
Furthermore, we consider activity and atomicity to be integral parts of bigraphs, but
as shown in [Jen06] activity and atomicity could be considered place-sortings on
basic bigraphs. We refer to [Jen06] for the details.

72

5.3.3.1 The world part CX

We begin by showing the building β as a bigraph in our term language (as before,
omitting details such as identity wirings etc.), and then proceed to define the signa-
ture and dynamics of the BRS CX.

loc(i1 | dev(i15) |
loc(i2 | dev(i10) | dev(i11)) |
loc(i3) |
loc(i4 | loc(i5 | dev(i12)) |

loc(i6 | loc(i7 | loc(i8 | dev(i13)) |
loc(i9 | dev(i14))))))

| devs()

As mentioned, β is a tree. Having made that choice it is reasonable to model device
movement by allowing devices to move from a location l2 into a sub-location l3 of
l2, or into the parent location l1 of l2. To justify this claim, think of β; device i13
is situated in location 4C16 (i8), and the only doorway of 4C16 is into the hallway
(i7), and the hallway does allow movement into another office, namely 4C10 (i9).
All devices are in use in this start configuration. Remember that a device is either in
a location or in devs.

The signature and dynamics of CX are defined as follows in figure 5.4; CX =

(KCX ,RCX). First, notice how we have allowed ourselves to represent natural num-

Context CX.

Control Activity Arity Comment
id passive 0→ 0 Hosts identifier control
loc passive 0→ 0 Possibly nested location
dev passive 0→ 0 Mobile device
devs passive 0→ 0 Hosts mobile devices not in use
i0,i1,i2. . . atomic 0→ 0 Infinite family of identifiers

loc(−0) ‖ devs(−1 | dev(−2)) . loc(−0 | dev(−2)) ‖ devs(−1) (5.1)

loc(−0 | dev(−2)) ‖ devs(−1) . loc(−0) ‖ devs(−1 | dev(−2)) (5.2)

loc(−0 | loc(−1 | dev(−2))) . loc(−0 | loc(−1) | dev(−2)) (5.3)

loc(−0 | loc(−1) | dev(−2)) . loc(−0 | loc(−1 | dev(−2))) (5.4)

Sorts:
(5.1) : KCX ,KCX

(5.2) : KCX ,KCX

(5.3) : KCX

(5.4) : KCX

Figure 5.4: Part CX of the Plato-graphical model X, with sorts.

bers by i−controls instead of using the more low-level representation with zero and

73

successor. Equality and other basic operations can be implemented by an infinite
set of reaction rules, capturing all combinations. Rule (5.1) discovers a device by
moving it from devs to some loc. The rule is parametrised over the identity of the
location, its content before the discovery, the set of known devices, and the identity
of the device being discovered. Rule (5.2) performs the opposite operation, namely
to lose track of a device. Notice how a device can be discovered and lost in any
location which allows us to model a device being switched off (manually or because
the battery runs out, e.g.) and turned on again in another location by rule (5.1). The
rules (5.1) and (5.2) are dual in a sense. The rules (5.3) and (5.4) are likewise dual
and move a device up or down one step in the location tree. We argued earlier that
this is a fair representation of movement having chosen a tree structure as location
hierarchy. One may wonder why we do not simply have one rule to move a device
from one location to any other since we do not impose any restrictions on move-
ment. There are two reasons for that: (1) It contradicts the choice of a tree structure
of locations, and (2) we would need two rules. We believe the first point has been
covered already and proceed to justify the second. Consider the following rule.

loc(−0 | dev(−1)) ‖ loc(−2) . loc(−0) ‖ loc(−2 | dev(−1))

This wide rule is not what we want. It can, as expected, perform the following
reaction:

loc(−0 | loc(dev(−1))) | loc(−2) . loc(−0 | loc()) | loc(−2 | dev(−1))

More generally, it can move a device from one location into another location pro-
vided that there is a context which assigns them a common parent, which is not one
of the locations in question. However, it can not perform the following reaction:

B = loc(−0 | dev(−1) | loc(−2)) . loc(−0 | loc(−2 | dev(−1))) = B′

That is, it can not move a device from a location l1 to a sub-location of l1. To
realise this let us try to construct a match; it suffices to argue that for all C we have
B , C ◦ (R ⊕ ω) ◦ a:

R = loc(−0 | dev(−1) ‖ loc(−2)) : (∅, ∅, ∅)→ (∅, ∅)
a = i1 ‖ i2 ‖ i3 : (∅, ∅, ∅)
ω = (id∅ | id∅) ‖ id∅ : (∅, ∅, ∅)→ (∅, ∅)
C = id∅ | id∅ : (∅, ∅)→ ∅

Clearly, this is not a match, and can not be made so. The intuition is that the context
C must have two holes because R has two regions. Intuitively, the trouble is that the
context can not take something from one of these holes and put it into the other – it
sees the regions of R (and R′) from above, so to speak. One could try to circumvent
this mechanism by including one location in the other through a parameter a, but
that also fails, because the context can not get rid of either one of the parameters
it absorbs, and will thus have one location too many for the match. Thus, for the

74

scheme with the wide rule to work as intended, we must include another rule that can
move a device into a sub-location. We have such a rule above, namely (5.4) which
can be applied consecutively. We conclude that the two movement rules chosen,
(5.3) and (5.4), are the better choice.

With this analysis in mind, we remark that the suggested rule (3.10) of chapter 3
perhaps should be replaced by two rules.

This concludes our treatment of CX. We proceed with SX and then LX before
gluing together CX and LX via SX.

5.3.3.2 The sensor part SX

SX is the representation of a simple sensor system that can (1) observe (sense) that
a device is in a certain location (in cX), and (2) observe that a device is not located
(sensed), i.e. residing in “location” devs. There could be (at least) two reasons for
losing track of a device: (1) It was turned off, and (2) the positioning system sim-
ply did not pick up on the signal from the device (for a certain amount of time).
Recall that the set of devices is fixed and known. sX informs lX about these observa-
tions by invoking certain “interface functions” provided by lX. We will examine this
communication in subsubsection 5.3.3.3.

Because we have chosen a rather tight coupling between cX and lX, namely to
represent location and device identifiers by the same natural numbers in both worlds,
sX does not need to maintain a mapping from one world to the other. We do require
that Ξ-integers are represented in the same way as integers in CX – namely by i-
controls. sX is written in bigraphs, but also has access to bigraphical representations
of Ξ- terms.

The signature and dynamics of SX are defined as follows in figure 5.5; SX =

(KSX ,RSX). Rule (5.5) models the case where sX observes a device in a location, and
informs lX of this. This is done by “calling” the function in lX, exported by g as the
first component in a tuple, with the bigraphical representations of the device and the
location. invoke models a pool of pending function calls and must have name f uns
and be empty in the initial configuration of sX. In the rule we have that varg refers
to exactly the same name as invokeg to force the var-control to refer to precisely the
name exported from Lx. To fire the context of the rule must identify g and f uns.
We need to encapsulate the location identifier in a id-control to distinguish it from
sublocations and thus make the rule work for any location (identifier) −0. Rule (5.6)
applies when sX observes a device inside the devs control. We will show the relevant
functions in subsubsection 5.3.3.3.

Notice how sX merely observes cX (sensing) and informs lX (acquisition). This
may very well lead to discrepancy between cX and lX. To make the system more
precise, i.e. to ensure a tighter correspondence between cX and lX one could allow
sX to also observe lX, and then only inform lX of the location of a device cX when
cX and lX disagree. This is not the way positioning systems work in reality, but may
be useful for simulation purposes. For now, we leave sX as is. This concludes our
treatment of the positioning system SX.

75

Sensor SX.

Control Activity Arity Comment
id passive 0→ 0 Hosts identifier control
loc passive 0→ 0 Possibly nested location
dev passive 0→ 0 Mobile device
devs passive 0→ 0 Hosts mobile devices not in use
app active 0→ 0 Application
appl active 0→ 0 Left part of application
appr active 0→ 0 Right part of application
var atomic 0→ 1 Variable
exp passive 0→ 0 Delay evaluation
i0,i1,i2. . . atomic 0→ 0 Infinite family of identifiers
invoke active 0→ 1 Hosts “function calls”

loc(id(−0) | dev(−1) | −2) ‖ invokeg(−3)
.

loc(id(−0) | dev(−1) | −2) ‖
invokeg(−3 | app(appl(app(appl(fst(varg)) | appr(exp(−0))))

| appr(exp(−1)))) (5.5)

devs(−0 | dev(−1)) ‖ invokeg(−2)
.

devs(−0 | dev(−1)) ‖
invokeg(−2 | app(appl(fst(snd(varg))) | appr(exp(−1)))) (5.6)

Sorts:
(5.5) : KCX ,KSX

(5.6) : KCX ,KSX

Figure 5.5: Part SX of the Plato-graphical modelX, with sorts.

5.3.3.3 The location model part LX

This part is implemented in Ξsugar because writing it natively in bigraphs proved
too cumbersome. We saw the “findall” query in appendix B of chapter 3, and it is
significantly more involving to encode more advanced queries. Here we explain the
ideas involved in this part of the model, and in subsection 5.3.4 we explain how to
go from a Ξsugar-program to a Ξ-program automatically. The presentation of Lx is
divided into the following parts:

• Data-type declarations

• The building configuration

• The interface to SX; reconfigurations

76

• The interface to AX; location-based queries

• Communication between LX and SX

When these pieces are in place we glue them together to form a presentation of (the
structure of) Lx as a whole. To keep the discussion focused we take the liberty of
being very brief when treating auxiliary functions in aX – we are interested in the
reconfigurations of lX and the queries supplied to aX.

Data-type declarations are a convenient way to abstract away from the underlying
type when programming in (a fraction of) SML. In Lx we choose to work with just
one basic data-type for location and device identifiers; natural numbers. Natural
numbers and equality on them can be easily encoded in bigraphs, as seen in chapter
4. We could have used strings instead, but natural numbers are simpler and suffice
for our purposes.

The data-types used in Lx are as follows.

type lid = int
type dev = int
datatype hierarchy = (* id, devices, sublocations *)

Loc of lid * dev list * hierarchy list

A hierarchy represents the aforementioned location tree. A location has an iden-
tifier, a list of devices, and a list of sub-locations. Both types and data-types belong
to the set C. For now, we assume lists as a predefined data-type. We also assume
a few basic operations on lists, namely cons (’::’), append (’@’), reverse (’rev’),
and ’map’. We address how to encode lists and the associated operations in Ξ in
subsection 5.3.4.

The building configuration The building looks like this in Ξsugar and corresponds
exactly to the one in CX. The initial configuration lX is shown below along with
some enclosing Ξsugar code.

val funs =
let val state =

ref (Loc(1,[15],
[Loc(2,[10,11],[]),
Loc(3,[],[]),
Loc(4,[],

[Loc(5,[12],[]),
Loc(6,[],

[Loc(7,[],
[Loc(8,[13],[]),
Loc(9,[14],[])])])])]))

val devs = ref []

77

...
in ... end

As can be seen, we implement devs as (a reference to) a list. We use references to
update the internal representation of lX. The Ξ-locations are translated into bigraphs
by the translation given for constructors in chapter 4. The dynamics of LX, i.e.
reconfigurations of this configuration are implemented by Ξ-functions, to which we
will return later. Three dots signify place-holders, ignore them for now. We explain
what happens to the ’val’ declaration in subsection 5.3.4.

The interface to SX; reconfigurations LX supplies SX with some interface func-
tions. The purpose of these functions is to allow SX to inform LX of events (move-
ment of devices), which SX has observed in CX. As mentioned, SX can do two
things:

• Observe that a device is in a certain location, and inform LX.

• Observe that a device is not sensed in any location, i.e. currently not in use
and residing in “location” devs, and inform LX.

These two situations give rise to two reconfigurations, i.e. Ξsugar-functions.

fun sobserved d =
fn l =>

let val state’ = delete d (!state)
val devs’ = del_list d (!devs)
val state’’ = insert d l (!state)

in state:=state’’; devs:=devs’ end

fun slost d =
let val state’ = delete d (!state)

val devs’ = del_list d (!devs)
val devs’’ = d::devs’

in state:=state’; devs:=devs’’ end

The function sobserved is called by sX (we will return to what a “function
call” means) when sX observes that device d is in location l in cX. The function
makes sure to delete d everywhere from the state hierarchy lX, and then inserts it
in the (possibly) new location l. Like in cX this guarantees that d is either in exactly
one location or in devs at any point in time. This is under the assumption that
it is called with an existing location. The function slost is similar, but places d
in devs. The auxiliary functions delete, del list, and insert are functions
internal to lX, and state and devs are two private data structures in lX constituting
the current configuration. We show these functions below for completeness.

78

(* remove an element from a list *)
fun del_list e =

fn [] => []
| (x::xs) => if e=x then del_list e xs

else x :: del_list e xs

(* delete device ’dev’ from hierarchy ’id’ *)
fun delete dev =

fn (Loc(id,ds,ls)) =>
Loc(id, del_list dev ds, map (delete dev) ls)

(* insert device ’dev’ into location ’lname’
in hierarchy ’id’ *)

fun insert dev =
fn lname =>

fn (Loc(id,ds,ls)) =>
if lname=id then Loc(id,

dev::ds,
map (insert dev lname) ls)

else Loc(id, ds, map (insert dev lname) ls)

They should be straightforward and the comments sufficient. We do, however,
note that the functions are curried and thus take exactly one parameter. Also, notice
how sX does not know the internals of lX, but merely the names of the two interface
functions ’sobserved’ and ’slost’.

The interface to AX; location-based queries The interface to AX is currently
defined by two functions visible to AX, but with internal workings local to LX. It is
possible for the application (AX) to enquire to the whereabouts of a certain device,
and to enquire about all the devices to be found in a certain location.

fun awher d = whr d (!state)
fun afind lname = flocs (pickloc lname (!state))

These functions have no side effects, in particular they do not alter lX. The
function ’awher’ is based on the following auxiliary functions, which should be read
bottom-up.

(* find the identifier of a device’s location *)
fun whr dev =

fn l =>
case l of

(Loc(_,[],[])) => NONE
| (Loc(id,d::ds,ls)) =>
if dev=d then SOME(id)

79

else whr dev (Loc(id,ds,ls))
| (Loc(_,[],ls)) =>
let fun whr’ =

fn list =>
case list of

[] => NONE
| (loc::locs) =>

case whr dev loc of
SOME(i) => SOME(i)

| NONE => whr’ locs
in whr’ ls end

We believe that the comments are sufficient explanation. We address ’NONE’,
’SOME(x)’ (which can also be used in AX) and embedded functions in subsection
5.3.4. The function ’afind’ uses the following auxiliary functions.

(* find all devices in a hierarchy - depth first *)
fun fall (Loc(_,ds,[])) = ds

| fall (Loc(_,ds,l::ls)) =
let fun fall’ [] = []

| fall’ (loc::locs) = (fall loc) @ (fall’ locs)
in ds @ (fall l) @ (fall’ ls) end

(* pick the subtree with id ’loc’ from a hierarchy *)
fun pickloc lname =

fn (Loc(id,ds,ls)) =>
if lname=id then SOME(Loc(id,ds,ls))
else let fun pickloc’ [] = NONE

| pickloc’ (loc::locs) =
case pickloc lname loc of

SOME(l) => SOME(l)
| NONE => pickloc’ locs

in pickloc’ ls end

(* unpack option, return list of devices *)
fun flocs option =

case option of NONE => []
| SOME(l) => fall l

Again, we refer to the comments for explanation.

Communication between LX and SX We promised to address the question of what
it means to call a Ξsugar-function (in this case living in LX) from a native BRS (in this
case SX). We need to be able to somehow export selected function names from LX to

80

SX. Such a mechanism is not present in Ξ, so we introduce it by means of additional
syntax. The effect is that Lx has the following form:

export <name> from <exp>

The idea is to export the names of some functions from Lx to other parts of the
system. One can think of it as a special form of val f = exp known from SML.
This is done by making a particular name global in the Plato-graphical system (by
closure), and then to make sure that the translation of relevant functions in ’exp’ in
Lx refer to this name. The translation of this new syntactic construction is:

~export f from exp�X = def f (~exp�∅)

We emphasise the fact that we export one name f , which can possibly name a tuple
of function names (as is the case for lX). Thus, we can use projections on the name
(’val’) f to refer to the individual function names of the tuple (nested pairs). This
was done in SX where used an explicit projection on a name g that must match the
exported name f .

The Plato-graphical system with function export has the form

/ f . CX ‖ SX ‖ def f (~exp�∅) ‖ ~AX� f

where AX is the component AX before translation into bigraphs. Notice that exp
is translated from Ξsugar into bigraphs using an empty set. This ensures that f <
fv(exp). f will be referred to from SX. For example, f could be funs and export a
tuple of function names sobserved and slost.

It is important to be aware of the fact that SX accesses the function ’sobserved’
etc. by linking controls (vars in this case) to the projections on the exported name f .
As we saw in the treatment of SX above, SX can produce function calls in LX by in-
troducing applications of var controls to (bigraphical representations of) arguments.
We presented LX in a form where functions take exactly one argument to match the
way SX introduces function calls.

To sum up, Lx has the following form:

export funs from
let val ...

fun sobserved d = fn l => ...
fun slost d = ...
...

in (sobserved, slost, ...) end

This concludes our treatment of inter-component communication between SX
and LX.

81

LX collected We present the structure of Lx (~Lx� = LX) as a whole, but we leave
out (denoted by three dots) the auxiliary functions and comments, for readability.

export funs from
type lid = int
type dev = int
datatype hierarchy =

Loc of lid * dev list * hierarchy list
...
let val state =

ref(Loc(1,[15],
[Loc(2,[10,11],[]),
Loc(3,[],[]),
Loc(4,[],

[Loc(5,[12],[]),
Loc(6,[],

[Loc(7,[],
[Loc(8,[13],[]),
Loc(9,[14],[])])])])]))

val devs = ref []
fun sobserved d =

fn l =>
let val state’ = delete d (!state)

val devs’ = del_list d (!devs)
val state’’ = insert d l (!state)

in state:=state’’; devs:=devs’ end
fun slost d =

let val state’ = delete d (!state)
val devs’ = del_list d (!devs)
val devs’’ = d::devs’

in state:=state’; devs:=devs’’ end
fun awher d = whr d (!state)
fun afind lname = flocs (pickloc lname (!state))

in (sobserved,slost,awher,afind) end

5.3.3.4 The signatureKLX for LX

Apart from the controls given in figure 4.1 we obtain the following controls by the
translation given in chapter 4. They are shown in figure 5.6. This concludes out
treatment of LX.

5.3.3.5 Dynamic correspondence between CX and LX

CX and LX uphold the same invariants:

82

Model LX.

Control Activity Arity Comment
Loc active 0→ 0 Location hierarchy constructor
Nil passive 0→ 0 Empty list constructor
Cons active 0→ 0 List constructor
NONE passive 0→ 0 Empty option constructor
SOME active 0→ 0 Option constructor

Figure 5.6: Additional controls for the signature of LX.

• A device is either in devs or exactly one location at any time.

• Locations and devices are uniquely defined, and in one-to-one correspondence
between CX and Lx.

We remark that it is reasonable to extend Lx with a parent map without doing so in
CX because the internal representation and data structures in Lx are of no concern
to the real world as long as the invariants are kept. We stress the fact that these two
worlds must agree on the representation of location identifiers, i.e. natural numbers.
CX uses i−controls, and so does LX because of the translation defined. It is, however,
up to the specifier to make sure that the same numbers are given to corresponding
locations in both worlds.

5.3.3.6 The application part AX

This part should be a simple Ξsugar-program that utilises the queries supplied by Lx.
An example application could be “find the nearest printer” wrt. the current location
of my mobile device. We do not acutally give such a program here, but merely state
that such a program should be straightforward to construct given what we have done
in LX.

5.3.4 From Ξsugar to Ξ

Ξsugar is a sugared version of Ξ which additionally has a mechanism to export func-
tion names to top level of Plato-graphical systems, as explained earlier. Most con-
structs in Ξsugar can simply be unfolded to or encoded as Ξ-constructs, but we also
have the name-exporting enhancement adding modelling power to the calculus.

We begin with the enhancement. This is the main difference between Ξsugar
and Ξ. The effect is that Ξsugar-programs p′ are not just expressions, but are now
encapsulated:

p′F export f from p

The rest of the constructions are syntactic sugar. They are:

• Comments

83

• ’type’ and ’val’ constructs

• Nested ’let’ construct

• Tuples

• Anonymous and nominal function declarations

• ’if-then-else’ conditionals

• Basic operations on natural numbers

• Patterns

We treat each item in turn.

Comments are enclosed by ’(*’ and ’*)’ are simply discarded when translating Lx
into bigraphs.

’type’ and ’val’ are handled as follows. type declarations are treated as textual
substitution on the source program such that type dev = int is discarded and
dev is replaced by int everywhere in the source program, for example. This, of
course, requires that ’dev’ is not used a variable name, i.e. V∩C = ∅, as mentioned
earlier. This means that any constructor name from C is legal in a Ξsugar-program,
and that it is the programmers responsibility to use the so constructed terms correctly,
i.e. to make sure that case expressions on a custom constructor have the right number
of branches corresponding to the constructor.

Let us consider booleans and lists to see how the general constructor and case
terms of Ξsugar can be represented in Ξ. For booleans the following terms are legal:
True unit, False unit, and case e of True x1 ⇒ e1 | False x2 ⇒ e2. For lists:
Nil unit, Cons (x1, x2), and case e of Nil x⇒ e1 | Cons x⇒ let h = fst x in let t =
snd x in e2. We would want to introduce abbreviations for nullary constructors;
True, False, and Nil. Furthermore, we could introduce syntactic sugar for the case
construct on lists: case e of Nil ⇒ e1 | Cons (h, t)⇒ e2. As an example we show
the semantics of lists (inΞ andΞsugar), which are more interesting than for booleans,
would then be (leaving out the store since there is no side-effect):

case Nil of Nil⇒ e1 | Cons x⇒ let h = fst x in let t = snd x in e2

−→ e1

case Cons (v1, v2) of Nil⇒ e1 | Cons x⇒ let h = fst x in let t = snd x in e2

−→ (let h = fst x in let t = snd x in e2){(v1, v2)/x}

The operations (functions) in lists, namely ’::’, ’@’, ’rev’, and ’map’ can clearly be
coded in Ξsugar (and Ξ). The two functions ’::’ and ’@’ are used infix, but can easily
be made prefix.

84

We have just seen how to represent booleans and lists. Another used data-type in
Lx is options, i.e. ’NONE’ and ’SOME(x)’. Having presented lists we trust that the
reader is convinced that options can be represented similarly.

A ’val’ declaration inside a ’let’ expression is discarded, so let val x =
exp1 in exp2 becomes let x = exp1 in exp2.

Nested ’let’ constructs can simply be unfolded. Thus,

let val x = ...
val y = ...

in ... end

becomes

let val x = ... in
let val y = ... in ... end

end

where the ’val’ and ’end’ keywords are discarded under translation.

Tuples are simply nested pairs such that (a, b, c) = (a, (b, c)) and so forth.

Anonymous and nominal function declarations We use two different ways of
declaring functions in Lx; anonymous and nominal. The anonymous functions are of
form fn x => e and are translated into λx.e. Nominal functions on form fun f
x = e ..., where the dots signify the rest of the program, are translated into let
f = (fix f(x) = e) in ... because they can be recursive.

’if-then-else’ conditionals are simply unfolded using the ’case’ construct so if b
then e1 else e2 becomes case b of True => e1 | False => e2.

Basic operations on natural numbers are assumed to exist as primitives in Ξsugar
because we have already shown that we can encode them in bigraphs. The operations
used are ’=’, ’¡=’ (less than or equal to), and ’-’ (subtraction) on natural numbers.

Patterns are used heavily in Lx. It is perhaps easiest to see how patterns are un-
folded by seeing and example. Consider the function del list shown above:

fun del_list e =
fn [] => []
| (x::xs) => if e=x then del_list e xs

else x :: del_list e xs

85

First, unfold the ’fun’:

val del_listl = fix del_list(e) =
fn [] => []
| (x::xs) => if e=x then del_list e xs

else x :: del_list e xs

Then, unfold the pattern:

val del_listl = fix del_list(e) =
lambda y. case y of [] => []

| Cons z => let x = fst z in
let xs = snd z in
if e=x then del_list e xs
else x :: del_list e xs

where ’lambda’ signifies λ. This Ξsugar-expression can be translated into a Ξ-
expression by the methods shown above.

There are also more advanced patterns in use, i.e. patterns where we do not match
merely a constructor like ’List’, but a composite constructor such as ’Loc(5,Nil,Nil)’.
Consider this case:

case exp of Loc(5,Nil,Nil) => e

We unfold this into

case exp of Loc p =>
let a = fst p in
let b = fst (snd p) in
let c = snd (snd p) in
e

adhering to the restriction that the left-hand side of a ’case’ branch must consist of a
constructor and a variable.

This concludes our justification of the claim that Ξsugar-programs can be trans-
lated into local bigraphs.

5.3.5 The model X is Plato-graphical

Having explained the model we state and state that it is actually Plato-graphical. This
proposition relies on the fact that a given implementation of AX uses a subset of the
control of our LX as given above.

Proposition 5.3.1. The model X is Plato-graphical.

86

Proof. It is enough to observe that CX ⊥ AX, and that ~x = f uns.

This concludes our presentation of the bigraphical location model. We proceed by
relating the presented model to the location models of chapter 2.

5.3.6 Relating our model to the location model classification

In chapter 2 we introduced and classified location models. We justify our claim that
our model is representative for a class of the presented models presented in chapter
2. It is important for our model to be representative because that property renders our
work relevant for a wide range of location models, and thus a wide range of location
systems.

5.3.6.1 Classifying the model

Clearly, the modelX is symbolic, but not geometric. Thus, there is no notion of met-
ric distance. We have shown that the location model Lx supports location queries and
certain reconfigurations, and also the accumulating “find all” query, among others.
We have not shown how to support range and navigation queries, but these queries
can be easily programmed by introducing an explicit parent map to the location hier-
archy. A range query is then a little primitive in the sense that ranges are determined
by location containment. One could consider adding weights to edges and thereby
enable shortest-path navigation queries. We have implemented these queries, but
do not show them here because they do not add anything conceptual to this treat-
ment. Some non-trivial work still remains to support “nearest neighbour” queries,
namely to instrument the model with geometric information. To this end we could
perhaps instrument each location with a coordinate control holding an ordered triple
of integers.

We propose to look at the location hierarchy and queries supported for deciding
when a given model correctly implements a specification. We conclude that the
model is representative in the sense that it captures the essentials of an exclusive
symbolic location model.

5.4 Concluding remarks

First, we consider whether we are any closer to answering the five questions of chap-
ter 3:

1. What languagesL can we encode?

2. How close are Plato-graphical models to real systems?

3. What challenges have we found for bigraphical models?

4. What uses do we envision for Plato-graphical models?

87

5. How do we reason about Plato-graphical models?

Ad. 1. We have successfully encoded an extended version of MiniML, which should
to enable us to encode a wide range of location-aware applications. It turns out that
reaction rules are enough for CX (and SX).

Ad. 2. We have enough structure to represent an exclusive, symbolic location
model. We have found possible uses for DAGs, timed and probabilistic events, and
continuous space. Such extensions can be used to lift the model to real-life systems.

Ad. 3. We found that one may use closed links in a clever way (see chapter
3) to handle that something is not present in the context under reaction. We do,
however, envision that this so-called “negative” context information will be needed
in the bigraph theory in the long run, and conjecture that a safe sorting exists to
enforce this.

Ad. 4. We envision to implement Plato-graphical models according to specifica-
tions of location models (and also context models) when a tool allows us to perform
automated reactions. This is the basis of the simulation challenge.

Ad. 5. This is still an open question. One question is: To what extend can we
transfer Ξ reasoning to bigraphs? As an example we could mention contextual term
equality. That is if two Ξ-terms f and g are contextually equal, then are their images
under ~·� contextually equal? One could argue that this question should be studied
in a simpler and better understood framework than Plato-graphical systems. Another
questions is: What does it take for us to be able to substitute one component for
another in a Plato-graphical system (recall proposition 3.4.1 and definition 3.4.4 of
chapter 3)? This is indeed an important question for future work.

5.4.1 Conclusions on our modelling effort

We draw the following conclusions:

• We can encode an extended version of MiniML in (local) bigraphs.

• We can represent an exclusive symbolic location model and all the desired
query types on it in bigraphs. (We ask the reader to trust that we can pro-
gram a symbolic range and navigation query since we have not shown these
explicitly.)

• We can represent the world and a simple positioning/sensor system in bi-
graphs.

• We have taken one more step in evaluating Plato-graphical systems and thereby
bigraphs as modelling formalism for GUC.

• We have argued that Plato-graphical systems enable convenient modelling of
location-aware systems, i.e. facilitate programming of a location-aware appli-
cation in Ξsugar querying a location model.

88

• The modelling effort was not low, but we now have a fairly accurate base
system to support many other agents (location-aware applications).

89

Chapter 6

Related Work

6.1 Introduction

In this report we have taken an experimental approach to testing whether bigraphs
are useful for modelling and programming context-aware systems. In this chapter
we assess to what degree other formalisms can answer the challenge of modelling
and programming context-aware systems.

Bigraph theory has roots in process calculi and in particular reactive systems
(RSs), but is formulated in category theory. Thus, we consider formal approaches
to explicit context-awareness based on process calculi and reactive systems to be
closely related work. We also review a logic for specifying context-aware systems,
which has a tuple space-based middleware supporting it. Due to the completeness
(from theory to practice) of this approach we merit the presentation of it ample space.

We do not consider algebraic graph transformation in this report because there
has, to the best of our knowledge, not been attempts to formalise context-awareness
via algebraic graph transformation. It is, however, related work regarding bigraphs,
so relating bigraphs and Plato-graphical models to algebraic graph transformation
will be relevant, at least from a theoretical point of view, at some point. There are also
several toolkits and middlewares available to support the implementation of context-
aware systems, and some systems have such support built into them. We refer to
[JPR04] for an overview of these as we do not in this piece of research consider
implementations. Studying such systems in more detail could become relevant when
implementing a context toolkit on top of a bigraphical rewrite engine. In our work
we do not try to develop new location models and thus do not consider work in that
area to be related, i.e. relevant for this chapter. We have merely provided a digest of
that literature in chapter 2 of this report.

Having narrowed the scope of what we consider related work in this report, we
proceed to give a method for treating the selected works.

90

6.1.1 Method

We treat each piece of related work in turn. For each piece of related work we take
the following approach:

1. Report on the purpose/aim of the work and its strenghts and weaknesses. In-
clude in this report the aspects that are important for modelling and program-
ming context-aware and location-aware systems. We aim to be objective.

2. Evaluate the work wrt. how the formalism can be used to model and program
context-aware (location-aware) systems:

• Negative context information.

• Control structures.

• Representing a location topology.

• Queries on the topology.

• Interaction between a location-aware application and the location topol-
ogy.

• The modelling effort.

3. Reasoning in practise.

The first item is natural. We try to tailor the treatment of each piece of related work
such that we can draw on it when relating the work to our own. We have pinpointed
six items that are important to consider when estimating a formalism for modelling
and programming location-aware systems, and location models in particular. This
focus on the location aspect of context reflects the focus of our own work, and we
are aware of the fact that some of the related works treated here capture a more
general notion of context. The third item is about reasoning which is one of the
main reasons for taking a formal approach to the study of context-aware systems.
We emphasise that we wish to reason about concrete systems, i.e. really experiment
with and challenge the techniques to give guarantees about real systems. Admittedly,
this is a hard task.

At a later stage when more applications have been studied (and the formalisms
are perhaps more advanced) it would be interesting to try to estimate how well they
can be used for simulation, but for now we restrict ourselves to the evaluation above.

We proceed to treat each piece of related work in turn, and then we draw conclu-
sions based on the treatment.

6.1.2 Context calculi versus process calculi

In [RJP04] the difference between context calculi and process calculi is considered
to be the presence of constructs to explicitly model context interaction. Another way
to express the difference is given in [Bra03], where process calculi are described
as formal theories of concurrent, distributed systems taking advantage of algebraic

91

reasoning, and context calculi should separate process behaviour from the (multiple
notions of) computational context. This is our criterion for picking related calculi.
This rules out traditional process calculi such as the π-calculus.

6.2 Context UNITY

In this section we treat the Context UNITY framework of Roman, Julien, and Payton
[RJP04, JPR04].

6.2.1 Report

Context UNITY is a specialisation of Mobile UNITY [RM02, RMP97] to provide
constructs to reason about interaction with the context. There are two goals; (1) to
simplify development of context-aware applications, and (2) to gain a better under-
standing of the essential features of the context-aware computing paradigm. Con-
text UNITY programs can be translated into Mobile UNITY programs (with the
exception of non-deterministic assignment), which means that Context UNITY can
largely be considered a syntactically sugared version of Mobile UNITY. Underly-
ing the Mobile UNITY syntax is a translation into a first-order Hoare-style temporal
logic [RM02].

The next two subsubsections (6.2.1.2 and 6.2.1.3) give a quite detailed walk-
through of Mobile UNITY and the additions to obtain Context UNITY. We have
devoted ample space for this treatment, but the reader may be satisfied with the
resume given first.

6.2.1.1 Context UNITY, very briefly

“Context UNITY represents an application as a community of interacting agents.”
[RJP04]. Each agent is uniquely identified and its behaviour exclusively defined by a
program describing its interaction with variables. An agent interacts with its context
by reading and writing (actuation) special variables and can itself decide which parts
of the context that it finds interesting. The variables are governed by agent-specified
(guarded) rules, thus separating the management of an agent’s context from its in-
ternal behaviour. The unprecitability of context-aware systems is implemented by
non-deterministic assignment statements. Agents have a location implemented by a
special variable, which can be manipulated by the agent itself (subjective movement)
or by the operational environment (objective movement). Agents run concurrently.
A simple museum guide system was briefly sketched in [RJP04].

6.2.1.2 Mobile UNITY

We review Mobile UNITY as a basis for Context UNITY highlighting some im-
portant features to give the reader an intuition of the approach. Mobile UNITY
captures the notion of location and movement across logical spaces while providing

92

formal reasoning via assertions. To this end the formalism has a notation for express-
ing mobile computations and a logic for reasoning about their temporal properties.
Thus, Mobile UNITY can be said to extend the UNITY [CM88] model of concurrent
computation by adding constructs for component location and transient interactions
among components. Mobile UNITY aims to decouple a program’s internal function-
ality from its interaction with the computational context.

Here is an overview, which will be explained in more depth afterward, of a Mo-
bile UNITY program:

• A system consists of program declarations, a components section, and an in-
teractions section.

• A program has a location, declares local variables with their initial values,
and specifies clauses to control subsequent assignment to these variables. A
clause can be the asynchronous conditional when or the synchronous condi-
tional reacts-to. Assignments can also be enclosed in an inhibit-when state-
ment, which disallows assignment under certain conditions.

• The components section instantiates the programs.

• The interactions section defines how the programs can interact because it has
access to the variables of the programs.

In Mobile UNITY one specifies a system consisting of programs (processes) run-
ning in parallel, non-deterministically scheduled in a weakly-fair manner. The key
elements of program specification are variables and (labelled) conditional multiple
assignment statements. Programs are sets of conditional assignment statements, and
each program has a location, which is a variable outside the Mobile UNITYmodel
(and thus parametrises the model). Programs have declare and initially sections
much like imperative programs. The assign section defines a program’s behaviour.
The transient interactions in Mobile UNITY consist of four additions to UNITY:
Transactions (sequential critical regions), globally unique labels (on statements), in-
hibitors (strengthening of guards by predicates), and reactive statements which are to
be executed to fixed-point, interleaved, after any other executed statement including
those in transactions. One observes that the reactively augmented statements make
up the basic atomic state transitions of the Mobile UNITY model. The components
section defines which programs that make up the system and their initial locations.
The interactions section defines interaction between the programs. Programs interact
solely via shared variables. Regarding location it is worth remarking that programs
have subjective (or local) movement, i.e. that can access their own location variable.
This can, e.g., be used to enforce co-location during process communication. Shared
variables are transient in the sense that sharing is controlled by a predicate (when)
guarding the assignment. Comparing reactive statements and when-conditions, one
one can think of reactive statements as providing context information in an eager
manner, while when-conditions are lazy. The logic is used for reasoning, e.g. about

93

safety and liveness properties of the system, see [RM02] for a formal definition of
these properties.

As mentioned in [RM02], the Mobile UNITY notation is very expressive, but
should be restricted in practice to obtain, e.g., termination guarantees and more effi-
cient implementation.

6.2.1.3 From Mobile UNITY to Context UNITY

In [RJP04] it is stated that context models should have the following properties:

• Expansive: The scope of context of a particular agent should not have a priori
limits.

• Specific: It must be possible to specify tailor-made context definitions for an
agent – context definitions should be modifiable.

• Explicit: Agents control their contexts – this requires an explicit notion of
context.

• Separable: An agent’s context specification can be separated from its be-
haviour specification.

• Transparent: The agent should be freed from the operational details of discov-
ering its own context.

In Context UNITY context is defined from the perspective of a single component.
One can think of a component (agent) as a state transition system; state change (rep-
resenting change in context) occurs spontaneously without agent control (cf. the
weakly-fair scheduling). Behaviour (and state) of a program is defined exclusively
through its interaction with variables. There are three important variable types. In-
ternal: These are not accessible/visible outside the agent. Exposed: Public variables
that can be part of other agents’ context. (These have access control associated with
them.) Context: Variables that directly model, access, and modify context in a pro-
gram by getting and putting information from/to exposed variables of other agents
according to the agent-specific context rules (see below). In addition to context vari-
ables a program now has a context section, which provides rules to manage an agent’s
interaction with its desired context., i.e sensing of information from the operational
environment1, and affecting other agents by impacting their exposed variables. The
context section thus secures decoupling of an agent’s internal behaviour and manage-
ment of its context; it is said to allow projections, i.e. local change can imply global
change. An agent can also feed back information into its own context. We take
a short digression into exposed variables before continuing with non-deterministic
assignment. Exposed variables have an in-built access control policy; exposed vari-
ables consist of six components, one being a function from the reference agent’s2

1In Context UNITY, the operational environment consists of everything that could potentially effect a
program (computational agent), and the part that does is named context.

2By reference agent we mean the agent whose context we are considering [JR05].

94

credentials (see below) to a set of operations on that variable (e.g. read or write).
Four such exposed variables are built-in: Location, type, agent identifier, and cre-
dentials. The type variable holds the program’s name, while the agent identifier is
the unique global id of the agent. In the credentials variable a profile of attributes
for the program is stored for querying by other agents regarding access to their ex-
posed variables. Returning to non-deterministic assignment; to handle the lack of
a priori knowledge about the operational environment, Context UNITY introduces
non-deterministic assignment statements to be used in context rules. A context rule
governs the interactions associated with a certain context variable. The rule can
quantify over variables that are place-holders for other agents’ exposed variables
(via the uses construction), and define restrictions (via the given construction) and
interactions (via the where-becomes construction) with these. Context rules can be
declared reactive. Systems in Context UNITY also have a governance section, which
contains rules to capture behaviours that have universal impact across the system.
This happens through assignment to exposed variables, and governance rules are as-
sumed to be safe (and thus do not involve credentials). Objective (so-called global)
movement can, e.g., be implemented via governance rules.

6.2.1.4 Formal differences

Formally, there is only one difference between Mobile UNITY and Context UNITY,
namely an additional proof rule for non-deterministic assignment to context variables
modelling the unpredictable real world. It is claimed that the other constructs can be
translated into Mobile UNITY constructs [RJP04]. This sounds plausible.

6.2.1.5 Middleware support

Two middlewares have been used in conjunction with Context UNITY; EgoSpaces
and LIME.

EgoSpaces [JR02, JR05] is a middleware that provides context information to ap-
plications in an abstract form. EgoSpaces evolved from LIME. As the authors write
in [JR05]: “LIME requires strong assumptions about the operating environment that
fail to hold as the number of devices, connections, and the degree of mobility grows.”
EgoSpaces is claimed to overcome these weaknesses. EgoSpaces is compared to the
Context Toolkit in [JR05], and there EgoSpaces is found to be more suitable for sup-
porting development of context-aware applications (in an ad hoc network scenario)
because it addresses an application’s need to dynamically discover and operate over
a constantly changing context. An important notion in EgoSpaces is a view. A view
is a projection of all data available to the reference agent. Views can be created,
redefined, and deleted, and are defined over network, host, agent, and data con-
straints. Views are updated when agents access them, and thus provide asymmetric
coordination. EgoSpaces provides triggered reactions and also “migrate”, “dupli-
cate”, and “event” primitives, since these have been found common and useful in
practice. EgoSpaces is implemented in Java using tuple spaces (via Elights), the
CONSUL framework is used to collect context information from sensors and other

95

agents close by, and the SICC protocol for making a network tree and sending mes-
sages. There is, surprisingly, no discussion of whether such a location tree suffices
for these purposes, we would suspect not. Performance simulation has been done
via the OMNet++ discrete event simulator.

The LIME [MPR06] coordination middleware is an implementation of a LINDA-
like tuple space calculus supporting mobility, and it has been specified using Mobile
UNITY, and also in CRSs (see below). To demonstrate how LIME can be used
as a context-aware middleware supporting context-aware applications an example,
namely an application for tracking users via GPS called TULING [MP04], was
modelled. A lightweight version of LIME is Limone [FcRH04], which “...centers
the coordination tasks around acquaintances, and knowledge of specific coordinat-
ing partners is essential to Limone’s functionality.” [JR05]. Thus, it fails to capture
the unpredictability of ad hoc networks.

Numerous other middleware systems exist, but we refer to [MP04] for an over-
view of these, since middleware as such is not the focus of this report. We do, how-
ever, mention Klaim, which is a formalism (process calculus) to support computing
with mobile processes and explicit localities. It uses LINDA-like tuple spaces. Fur-
thermore, a modal logic has been developed. There is also a programming language
X-Klaim, based on Klaim, for programming distributed applications with mobile
code. A compiler from X-Klaim into Java using the Klava package (run-time system
for Klaim).

6.2.1.6 The Context UNITY logic

As mentioned, the logic underlying Context UNITY is a first-order Hoare-style
modal logic. Properties are proven by constructing proof trees.

6.2.2 Evaluation

Negative context information is represented by using inhibitors, i.e. guards on con-
text variables. Thus, rules only fire when the guards allow it.

There are different types of variables and guarded assignments to these. We also
have transactions, inhibitors, context rules, credentials et cetera. Context UNITY is
convenient for programming.

All agents are “on the same level” topologically, like in CRSs. Thus, it is not
clear how one would represent a hierarchical location topology.

If we implement a graph-based topology, then symbolic range queries are un-
suppported.

Probably, agents would interact with the topology via context variables. An agent
could then inform other agents of its movements.

The modelling effort may not be low because of the location topology problem,
but Context UNITY is well-suited for many other context aspects: Context interac-
tion (sensing and actuation) is sharply separated from internal program behaviour,

96

and is possible via context variables (in the context section). Non-deterministic as-
signment statements capture the a priori unpredictable operational environment.

To the best of our knowledge no location model has been formalised in Context
UNITY, but we imagine that formally it would resemble the approach of [Leo98],
because a first-order logic is used there also. However, some examples utilising
location information have been encoded.

6.2.3 Reasoning in practise

To the best of our knowledge, the logic has not been used to reason about the ex-
amples implemented. All Context UNITY constructs can be translated into logic
formulae, and it would then in principle be possible to build proof trees establishing
certain properties. It does seem cumbersome, and formally handling and proving
things about systems with non-determinism is notoriously hard.

This concludes our discussion of Context UNITY.

6.3 Contextual reactive systems (CRSs)

In this section we treat Braione and Picco’s theory of CRSs [Bra03, BP04].

6.3.1 Report

CRSs is a generalisation of Leifer and Milner’s RSs [LM00] in the sense that in-
teractions between computational agents (processes) and the context are disciplined.
In CRSs it is possible to specify the computational contexts under which a class of
behaviours is allowed, and the contexts under which it is not. CRSs is a category the-
oretical approach inspired by that of reactive systems and bigraphs [LM00, JM04].
The motivation for CRSs is two-fold:

• To separate the process behaviours from the computational context.

• To allow the specifier to define the notion of context and the rules governing
how it affects the processes.

The goal of CRSs is to devise a formalism for modelling real middleware, in partic-
ular LIME. It is claimed that process calculi have been successfully used for spec-
ifying the semantics of coordination models and languages, but that these do not
sufficiently address the modelling of a changing computational context; many such
calculi have a rather rigid built-in context notion, i.e. a tight coupling between con-
text and process. We agree.

In CRSs computational steps are described as transitions that rewrite terms and
thus change the state of the system. The trouble with RSs, in the scenario of context-
awareness, is that every computational context may host any interaction which makes
it difficult to represent dynamic, subjective behaviour. We think of reactive systems
as specifying the internal semantics of a system. In CRSs, it is possible to specify the

97

computational context under which a class of interactions is allowed (via enablers),
and under which it is not (via inhibitors). Context is a first-class element of the
formalism. We recite the relevant definitions (Def. 1, 2, 3, and 4) of [BP04] to make
the following discussion more clear.

Definition 6.3.1 (Reactive System). A reactive system (RS) is a (C, I,R,D) quadru-
ple, where C is a category, I ∈ ObC,R ⊆ ∪x∈ObCC(I, x) × C(I, x), and D ≤ C is
composition-reflecting, i.e., D0D1 ∈MoD =⇒ Di ∈MoD, i = 0, 1.

The morphisms of C are contexts (“terms with a hole”), and ground contexts are
processes (“terms where the hole is replaced by a compatible sub-term”, by mor-
phism composition), denoted by C(I, x). Notice that contexts have exactly one hole.
D specifies reactive contexts, i.e. contexts under which a rule may fire, and R is the
set of elementary rewrite rules on processes; rewrite rules are pairs (l, r) of ground
contexts, where l is named redex and r contractum. Extending (composing) ele-
mentary rules with reactive contexts, along with the following reaction relationship,
yields composite rules:

Definition 6.3.2 (Reaction relationship). The reaction relationship,→, is defined
as follows: a→ a′ ⇐⇒ ∃(l, r) ∈ R, D ∈MoD . a = Dl ∧ a′ = Dr.

This relationship contains both elementary and composite rules of the RS so
R ⊆→⊆ ∪x∈ObCC(I, x) × C(I, x). A motivating example of context-aware printing
is given and it is remarked that “it is not possible to forbid the reduction of a redex
based on the properties of the context it is immersed in” [BP04]. (It is this example
that we encoded in chapter 3.) To alleviate this, CRSs are proposed which allow
elementary rules to be extended only be some instead of any active contexts. The
following definition captures exactly this:

Definition 6.3.3 (Contextual reactive System). A contextual reactive system (CRS)
is a (C, I,R,D,D~l, r�) quintuple, such that (C, I,R,D) is a RS, and D~l, r� is a
function mapping any elementary rule (l, r) ∈ R to a composition-reflecting sub-
category ofD.

The reaction relationship is altered correspondingly:

Definition 6.3.4 (Reaction relationship for contextual reactive systems). The re-
action relationship,→, is defined as follows:
a→ a′ ⇐⇒ ∃(l, r) ∈ R, D ∈MoD~l, r� . a = Dl ∧ a′ = Dr.

We see that different elementary rules may have different contextual constraints
so some expressivity was gained. We remark that internal transitions performed by
a group of processes still does not affect the surrounding context, i.e. there is no
actuation.

Using enablers and inhibitors, for (elementary) rules, one can control what may
and may not be present in the context for a rule to fire. Essentially, an enabler is a
set, closed under morphism composition, which has as elements predicates on tuples.
Such a set precedes a rule and guards applications of this, so to speak. Likewise for

98

inhibitors. We refer to [Bra03, BP04] for the formal definitions, as we here merely
wish to pass on intuition. We do, however, recite an example from [BP04]. Here is a
rule printing on a ’raw’ printer, which does not fire if a PostScript printer is present,
assuming a print primitive and a simple tuple space process calculus (cf. Table 1 of
[BP04]):

{− | 〈v〉 . v , pr:ps}? print(txt).P | 〈pr:raw〉 −→ P | 〈job,txt,raw〉 | 〈pr:raw〉

where ’−’ denotes a hole in a context, and angle brackets denote tuples; 〈v〉 is a tuple
with value v, for example. This rule can be rewritten using an inhibitor:

{− | 〈pr:ps〉}c? print(txt).P | 〈pr:raw〉 −→ P | 〈job,txt,raw〉 | 〈pr:raw〉

The small c signifies that the tuples mentioned in the set must not be present in the
context if the rule is to fire. Further, an enabler can be specified:

{− | 〈pr:ps〉}c? {− | 〈pr:raw〉}; print(txt).P −→ P | 〈job,txt,raw〉

It looks simple, but is underpinned by a few technical contructions. What has hap-
pened in these two reformulation steps is essentially to move information from the
term to the context of a rule.

6.3.1.1 Application of CRSs

CRSs have been used to formalise the core of the LIME middleware [Bra03], and
also a tuple space process calculus based on Linda. The idea is to represent context
by a global tuple space, thus separating specification of behaviour from specification
of context where it may occur. In [MP04] there is a description of the TULING ap-
plication which shows how location context can be made available in LIME. Thus,
for location context information, LIME can be used much like a context toolkit, i.e.
facilitate programming of mobile applications that need access to location informa-
tion.

6.3.2 Evaluation

Negative context information can be represented by inhibitors.
CRSs can be thought of as a meta-calculus, like bigraphs. This has the advantage

that different domain-specific calculi can be encoded. There are no in-built control
structures to facilitate convenient programming. One can achieve control by repre-
senting calculi with control structures, but then the control structures depend on the
calculus that is formulated as a CRS. As an example: For a process calculus based
on Linda there will be operations for interacting with tuple spaces, and these will
provide some control of computation.

Only flat location topologies can be represented, if represented as a term, and it
is not feasible to have a hierarchical space reflected in the syntactic term structure in

99

the general case, as mentioned in [BP04]. This means that whichever calculus we
wish to represent as a CRS we can only have flat terms.

Considering this limitation we can not support range queries in a natural way,
nor nearest neighbour queries. Position and navigation queries do seem feasible, but
we lack structure and this is likely to render programming of queries harder than in
bigraphs and thus not convenient. As stated in [MP04], a query such as “find all
components within a radius r from point (x, y)” can not be performed because that
would require a range search inside the tuple space and LIME only provides value
matching [MP04].

How interaction between a location-aware application a and the location topol-
ogy t would be realised depends on the calculus represented as a CRS. No matter
the choice of calculus, terms will be flat and a will live in the same system and at the
same level as t.

The modelling effort would probably be high because we lack structure for our
specific purpose despite encoding a suitable calculus.

6.3.3 Reasoning in practise

It is unknown to what extend the techniques of [LM00] can be used in the setting
of CRSs, i.e. whether operational congruences can be derived automatically (from
a RS to a LTS, i.e. from internal to external semantics). In [Bra03] it was neces-
sary to restrict the definition of bisimulation to ensure that bisimilar processes have
sufficient contexts in common. Furthermore, assessing whether adding negative con-
text information increases expressiveness, needs to be explored. No logics exist for
CRSs.

Collecting these facts it is fair to say that reasoning in practise is not feasible yet,
and no such attempts have been made, to the best of our knowledge.

6.4 A calculus for context-awareness (CAC)

In this section we treat Zimmer’s calculus for context-awareness (CAC) [Zim05].

6.4.1 Report

CAC “is a process calculus, whose aim is to describe dynamic systems composed
of agents able to move and react differently depending on their location.” [Zim05].
CAC features a hierarchical term structure like Mobile Ambients [CG00], and a
generic multi-agent synchronisation mechanism inspired by the Distributed Join cal-
culus [FGL+96], we remark that locations are organised in a tree. One can think of
the calculus as a hybrid between the two calculi just mentioned, except that it also
features non-local process synchronisation. The motivation is to develop a calculus
that models how devices interact in a uniform way in wireless networks. Ambients
are called agents and these represent locations, which are either physical or logical

100

units of computation. Agents have definitions that enable enclosed processes to per-
form reductions. The main feature of CAC is multi-agent synchronisation of tuples
of values on named channels. Agents are not directly aware of their environment, but
inform it of their capabilities by asynchronously sending atoms. The environment
has definitions consisting of rules (think join patterns) to perform global synchroni-
sation on these captured atoms; this is novel wrt. the Distributed Join calculus, where
synchronisation happens locally and not across agent boundaries. There is a notion
of priority (or scope) of patterns, namely that the deepest rule (pattern) matches first.
Agents can move by the go primtive, but must give the explicit path to the destination
because movement happens one step (up or down in the tree) at a time. There is no
way to open or close agents, just like in Boxed Ambients [BCC01]. Definitions of
a particular agent are activated (by a reaction rule) by adding them to the enclosing
agent’s definitions. Reaction rules rewrite an agent if an enclosed process matches
one of the agent definitions (under some restrictions). We remark that contexts can
have any number of holes, and that parallel composition in CAC is not commuta-
tive, which according to [Bra03] is unusual. We agree. The reason for this is that the
names in the redex of a rewriting rule are bound pointwise in the process expressions
on the reactum of the rule.

6.4.1.1 Example encodings and expressiveness

A small location-dependent printing example is given to illustrate how a process
interacts with its enclosing agent. Further, a form of “remote procedure call” is
encoded via continuations, and also a small packet routing protocol.

Expresiveness is investigated by encoding a monadic asynchronous π-calculus
with replicated input, and a λ-calculus.

6.4.2 Evaluation

A basic model has been developed where agents may use different notions of com-
putation on different physical locations.

In the current version of CAC it is not possible to express negative context infor-
mation. The author suggests to add negated terms in pattern rules. This would be
like adding “not-controls” (or co-controls) to bigraphs, which is inelegant because
then there would have to always be one or the other. Introducing a notion of inhibitor
like in CRSs or a sorting like in bigraphs is preferable.

The control structures in CAC are somewhat like those in bigraphs; a tree hierar-
chy of terms (agent processes), and a way to link agents – namely by channels and
name restriction. Rules (patterns) are used to control reactions. These rules are part
of the agents so contexts are not really separated from processes, at least not to the
same extend as in CRSs or bigraphs. Anyhow, when programming with the calculus
these structures and the movement primitive are useful. We emphasise the fact that
each agent has its own set of rules, which can grow as other agents move into it so
that it can activate their definitions. This is the way a changing context is modelled.

101

The location topology is a tree just like in Ambients. In bigraphs there is a forest
of trees available.

Queries by an agent, for example a location-aware application, happen on the
structure in which it resides. Probably, one would want to program an auxiliary pro-
cess to traverse the tree and collect information. To do this the agent must know the
topology of the entire tree because the go primitive needs an explicit path. This is
incovenient and does not harmonise with the unpredictability of context in general,
but is reasonable for a location hierarchy like a building. Apart from that, program-
ming in CAC does resemble programming natively in bigraphs, and is thus likely to
be equally inconvenient. In principle, it should be possible to support three of the
four query classes discussed in chapter 2, but the nearest neighbour queries require
some notion of distance.

Interaction is between processes in the tree structure.
The modelling effort regarding the hierarchy is low, but high wrt. queries. We

find that encodings of larger examples are required to further test the modelling ca-
pabilities of the calculus.

6.4.3 Reasoning in practise

More work is needed wrt. the behavioural and equational theory of CAC. Thus, the
calculus is not yet ripe for reasoning about systems in practise.

6.5 A formal model for context-awareness (CONAWA)

In this section we treat Baun Kjærgaard and Bunde-Pedersen’s effort to define a
formal model for context-awareness [KBP06a, KBP06b].

6.5.1 Report

Like other approaches, [KBP06a, KBP06b] argue that we lack formal support for
realistic context-awareness. Furthermore, it is claimed that existing calculi [BP04,
RJP04] only deal with very limited notions of context, and that a flat space structure
does not suffice while being difficult to navigate. Also, context is not just physical
location, but also logical information.

The approach taken in CONAWA takes origin in the Ambient calculus, but in-
stead of having one tree representing space it has several so-called views, much like
the place graph of bigraphs. The intention is to have one tree (view) for each cat-
egory of context information needed by the application, e.g. locations and printer
types.

In CONAWA, ambients are divided into two syntactic classes: Context and refer-
ence ambients. Context ambients (views) have unique names, are static in the sense
that they can not move (navigate views), and can only be created (declared initially)
and opened (a standard capability). Reference ambients are embedded in context

102

ambients and navigate these by exercising the capabilities in, out, enter, exit, coen-
ter, coexit, and open. in and out are not observable by the context, whereas enter and
exit are. Using the co-capabilities requires the context to allow these movements.
Capabilities are instrumented with two pieces of information; a boolean expression
over contexts to define which contexts the owner of the capability can be performed
wrt., and the names of the reference ambients the owner of the capability can exer-
cise the capability on. A wildcard name is included to match all reference ambients.
Reference ambients can be replicated and can input/output names locally. A refer-
ence ambient will have a single (for consistency) presence in one ore more views
simultaneously by a reference, e.g. a printer ambient has a type and a location. The
capabilities in and out of the Ambient calculus are proposed extended to enable nav-
igation in several views at once. A reference ambient navigates views by explicitly
giving the path to collect context information. This reflects the idea that computation
is seen as embedded in a number of contexts at the same time. Communication is
local, i.e. an ambient (or rather a reference to an ambient) may communicate with
other ambients which are its siblings or father in the tree where it currently resides.
They communicate through the ether of each view, much like a tuple space, with
no channels involved. Actions and capabilities are restricted by boolean expressions
over contexts. Name scoping and general output paths have been left out of the
calculus for simplicity. This model is parametrised over the notion of “proximity”.

6.5.2 Evaluation

The authors evaluate their calculus by modelling examples of the four types of
context-aware applications described in [SAW94], to which we return in chapter
7. For now, it is enough to know that the four application types are categorised from
a user interface (UI) parspective according to whether they provide information or
supply commands, and whether they are invoked manually or as a reaction to the
current context. The authors find that representatives (in the domain of “pervasive
health-care”) of all four types could be modelled in CONAWA. Two thematic ex-
amples are “find the nearest available doctor” and “update a context/view using a
reference process”.

Contexts are special uniquely named ambients. Reference ambients may move
around in the contexts by exercising capabilities. These capabilities may be instru-
mented with a “boolean” expression stating which contexts they match and which
they do not, i.e. in which contexts the capability can be used. This is decided by
naming the matching contexts, and putting a negation sign in front of the names
of non-matching contexts. This is not the same type of negative information as for
example the inhibitors of CRSs. The difference is that inhibitors limit reaction to
certain contexts where something is not present, but “boolean” expressions discrim-
inate named contexts and not their contents. This is a gain of introducing views. We
also have views in bigraphs in that a place graph is a forest of trees that can be made
uniquely identified by requiring each tree to have a unique control on the root node.

There are some important control structures; views, (guarded) capabilities, and

103

agent references. Agent references allow the specifier to refer to an agent to partake
in different contexts, i.e. different views on the world/situation, simultaneously. The
guards can be used to control in which views a given capability can be exercised,
which resembles programming with conditionals.

The location topology is a forest of uniquely identified trees, i.e. a collection of
views.

The only query that lacks support is “nearest neighbour”. You have to consider
the entire system to formulate single ambients. Specifically, an agent has to explic-
itly give a path for moving, which may be an unreasonable assumption because it
requires detailed a priori knowledge of the whole operational environment and not
just the context at hand. This does not reflect the ad hoc nature of the real world, but
is reasonable enough for a location hierarchy.

Interaction between a location-aware application a and the location topology t
can happen by programming a to traverse t. An idea is to have an auxiliary agent col-
lect this information. The authors suggest to introduce designated reference agents
to update contexts, i.e. to act as carriers of sensor information. An example is given
in the discussion of [KBP06a], which requires the ability for reference agents to out-
put capabilities, and not just names. Having reference agents invoke these “sensor
agents” could be considered actuation. Still, there is no representation of the world
(like C in Plato-graphical systems).

We remark that reference ambients can not remove themselves from views, so a
device will always have some location once it has been located once. This is not a
problem for location models, as seen in chapter 5.

The modelling effort is probably on level with that of CAC since both are Ambient-
based process calculi, albeit with some differences (patterns versus guarded capabil-
ities and views).

6.5.3 Reasoning in practise

No behavioural or equational theory has been established for the calculus, nor any
expressivity results. There is no formal semantics of the calculus, merely a few
examples of what reduction rules could look like.

We conclude that much work is needed before any formal reasoning can be car-
ried out.

Here are some suggestions for corrections:

• Considering Table 1 of [KBP06a], presenting the syntax of CONAWA, it can
be seen that there is no base case for the syntactic categories C and R, thus the
inductive definition is not well-founded.

• The important example in Figure 11 is not syntactically correct because (1) a
reference agent ’FNDAP2’ is (illegally, see Table 1) used as prefix to a capa-
bility, and/or (2) the square brackets do not match.

It should, however, be possible to correct these errors.

104

6.6 Other approaches

We mention a work where a location model is formalised in first-order logic, two
works in progress, and one piece of research formalising context from the viewpoint
of artificial intelligence (AI).

• A formal location model in Z/Eves [Leo98].

• The Agent Distributed π-calculus (AgDpi) [Hen05, Hen04].

• The N] programming language effort [WBB06].

• “Formalizing Context” [MB97].

In appendix C of [Leo98] three location services are specified in the Z formalism,
which is a first-order logic [MS97]. Here, we merely give the reader a taste of the
approach. A service consists of a location hierarchy, updates on this hierarchy, and
some queries. We briefly consider the symbolic one. First, two object types are
declared; LOCATION and OBJECT. A location hierarchy is then declared as an
assymmetric and transitive inclusion ordering. Predicates in locations corresponding
to the relevant spatial relationships are also defined. Here is a parametrised location
query which for all located-objects at a given location:

target? : LOCATION ∧ result! : P(OBJECT) =⇒
result! = {x : OBJECT | (x, target?) ∈ locatedAt}

where ’locatedAt’ is a predicate which decides whether a given object is in a given
location, and P is the power set. A sighting operations is also defined, along with
some other queries. Thus, set theory is used as a programming language.

AgDpi is Distributed π-calculus (Dpi) with nominal agents. In AgDpi there is
mobile code running inside nominal agents. Dependent types are used to enforce
selective access (read/write capabilities) to resources. Locations are unique and or-
ganised in a flat structure. Communication is local and authenticated (via types). A
special kind of channel disc is used by agents to discover local resources, and then
the agents act accordingly. This work is worth following should it progress from the
current “work in progress” status, e.g. emerge as a full-fledged process calculus.

In [WBB06] a first step is taken toward a programming language for pervasive
applications based in the Ambient calculus. The language is called N] because its
syntax resembles C] or Java. Communication is between ambients and processes
is asynchronous. Named ports are adopted from the π-calculus to facilitate easy
message passing. A prototype compiler exists.

In [MB97] context is formalised as a first-class object, and can be thought of as
a generalisation of a collection of assumptions (in a Gentzen style logic). A context
may even correspond to an infinite and only partially known collection of assump-
tions. The point of origin is artificial intelligence, and the formalism used is a first-
order logic. There is no clear relation between this work and our field of research so
we refrain from further discussion of this work.

105

6.7 Concluding remarks

We structure our remarks according to the method above.

6.7.1 Evaluations

Negative context information, e.g. in the form of inhibitors is certainly a useful
feature. Whether it proves necessary for modelling ubiquitous systems in bigraphs
and Plato-graphical models is uncertain. We suggest more modelling experience for
deciding this.

Control structures decide how convenient the programming task is. In the calculi
where hardly any are available, it seems unrealistic to model and program realistic
systems.

Hierarchical location topologies should feature in calculi for location-awareness.
Considering how other aspects of context may very well be hierarchical in nature,
e.g. the organisation of a company, we conjecture that flat topologies are not suffi-
cient.

Like for location, queries on the context are best supported if the context is struc-
tured. Furthermore, control structures help.

Interaction between a location-aware application and the context topology can
become complicated if the application itself is part of the topology. Separating con-
cers, as in Plato-graphical models, is useful.

The modelling effort is high when programming directly in meta-calculi. One
can gain control structures by encoding other more domain-specific calculi though.
As far as we know, it is a novelty to explicitly represent the world as a system in its
own right, as done in Plato-graphical models. It is this feature that is the basis of our
simulation idea.

6.7.2 Reasoning in practise

None of the works considered here have been used for reasoning in practise. Nor
have bigraphs or Plato-graphical models. Tool support seems to be required to really
make progress in this area.

6.7.3 Summa summarum

On a high level we can say that further experimentation with large examples is
needed, and that tool support is essential in this effort. Much work in improving
the theories tools also persists.

106

Chapter 7

Future Work

7.1 Possible directions for future work

We have identified some directions for future work.

• Characterise context-awareness in terms of Plato-graphical models and enrich
our model to support this.

• Model a real-life system.

• Create a list of properties one wishes (to prove/guarantee) for context-aware
systems.

• Work on a tool for BRSs to enable experimentation with models formulated in
bigraphs, and simulation of systems – to really test how useful Plato-graphical
models are. (The first question of section 1.3.)

• Investigate formal reasoning about Plato-graphical systems, perhaps by study-
ing a form of bisimulation between BRSs. (The second question of section
1.3.)

• Formally state and prove a dynamic correspondence between Ξ programs and
their bigraphical images under ~·�X.

• Enhance bigraph theory.

We discuss each one in turn.

7.1.1 Characterising context-awareness

Motivated by the fact that the notion of context is still ill-defined [DA00], we strive
for a finer taxonomy of context with the purpose of a “context checklist” for applica-
tions, which could help to define needed components in a library for context-aware

107

programming. We believe that characterising the context types of [SAW94] in terms
of Plato-graphical models will aid in understanding of context-awareness as such
by sharpening the definitions. By formalising an application’s context interaction as
interaction between Plato-graphical components we gain precision.

We briefly recall the four types of context-aware applications that are mentioned
in [SAW94]. The types are along two axes: Manual vs. automatic, and information
vs. command. Manual and automatic refer to whether the user has to do something
to make the application either fetch information or perform an action specified by
the command. Proximate selection has to with finding or emphasising the located-
objects that are nearby, and is a manual information task. Automatic contextual
reconfiguration is an automatic information task that adds or removes components
(typically software) or alters connections (typically wireless) depending on the con-
text. Contextual information and commands are commands whose execution depend
on the context – printing to the nearest printer will have a different result depending
on the user’s location. Context-triggered actions are simple ’if-then’ rules used to
specify how context-aware systems should adapt, and context-triggered are invoked
automatically according to these rules. This is enough knowledge for our purposes.

Now, consider the following setup (suggested by Niss) depicted in figure 7.1.

C A
Ac
L

1

2

S 3

4

Figure 7.1: The four categories of context-aware applications as Plato-graphical in-
teraction.

We imagine the following four interactions:

1. The proxy P possesses a sensor S which senses reconfigurations in the context
C and informs the model L.

2. P is extended with an actuator component (Ac) which can affect C on behalf
of A, i.e. make it reconfigure.

3. The agent A is informed of relevant context change by P (L).

4. A affects L, i.e. makes it change its conception of the context information.

One can think of (2) as actuation, e.g. if the agent wished to turn on the light in a dark
room. (4) represents the ability to override the model if it, e.g. has an inaccurate or
wrong conception of the context. (3) can be either “manual” or “automatic” (to use
the terms of [SAW94]), with the manual case being the agent asking for information,
and the automatic case being some sort of event or call-back. (1) can likewise be
divided into manual and automatic.

108

We claim that this setup generalises [SAW94]. “Automatic contextual reconfigu-
rations” are handled entirely in C. “Context-triggered actions” is the call-back of (3)
mentioned above. “Proximate selection and contextual information” is the manual
version of (3). “Contextual commands” are more complicated. We think of this as a
sequence of interactions; first A asks P for the relevant context information and then
it issues a command by (2) and (4) above.

Once established the characterisation should be challenged by capturing other
informal characterisations of context-aware interactions. In [Sch95] the following
questions for determining situations are emphasised: Where the user is, who the
user is with, and what resources are nearby. The components are device agents (that
maintain status and capabilities of devices), user agents (that maintain user prefer-
ences), and active maps (that maintain location information of devices and users).
Another work to draw challenges from is [DA00] where the computing environment
consists of CPUs, devices, and network connectivity. There is also a notion of user
environment characterised by location and nearby people. Furthermore, the physical
environment such as lighting and noise level is important. The model requirements
here include interpretation, acquisition, and storage (history) of context.

This characterisation may serve as a framework for comparing concrete context-
aware models (of realistic systems).

7.1.2 Formalising realistic examples

We have identified the following directions:

• Model the whole of ITU.

• Model a real-life system.

• Model a protocol for delivering messages in MANETs such as Geocast [DR03].

Modelling ITU should be straightforward. Picking a suitable real-life system is not
easy, and requires more consideration. Modelling a protocol like Geocast seems
to require devices to contain messages, and some sort of reachability information
inherent in the topology.

7.1.3 A list of properties

We should create a list of properties we want (to prove/guarantee) for context-aware
systems. All properties should be relevant for real-life systems and also be provable
by the reasoning principles available. Some properties may not be provable with the
current techniques so they may give rise to research of new reasoning principles for
bigraphs or Plato-graphical models.

109

7.1.4 Tool support

In the bigraphical Programming Languages group at the IT University of Copen-
hagen, some members are currently working on a prototype implementation of BRSs.
Normalisation of binding bigraphs has been implemented. The next step is to imple-
ment an algorithm for matching (like the examples we saw in chapter 4) [BDGM06].
Perhaps, it is an idea to implement an add-on for local bigraphs. This tool will be
crucial for simulation purposes because realistic examples easily become too large
to handle manually, let alone reason about. We need tool support to truly conduct
experiments with real systems. We have already defined a translation from Ξsugar
into the implementation of binding bigraph terms. Assuming that we can implement
a simulator it will become relevant to look a location event generation – perhaps
inspired by the generic location event simulator of [SC02].

Despite not having written much about this direction for future work, we believe
it to be crucial for answering the first of the two open questions of section 1.3, in part
because it supports the preceding three directions, and also reasoning in practise.

7.1.5 Formal reasoning

Proving properties about the bigraphical location model could be desirable, but it is
unclear which properties we wish to prove and with which techniques. Certainly, one
possible direction is to make precise some criteria for when components of a Plato-
graphical system can be substituted (while maintaining properties of the system as a
whole). This has to do with bisimilarities between BRSs.

We may wish to prove properties such as, e.g., access control. This may involve
using BiLogics [CMS05], or perhaps access control could be ensured via sorting
(only allowing devices with a particular access token to enter a room with a matching
token), and then proving that the system can not place an illegal device inside a
protected room, by rule induction. Further studies in desirable properties of context-
aware systems are needed. We have uniqueness of device locality by invariant (rule
induction).

A technique for securing certain properties of our models could be to use sort-
ings further. We believe that Søren Debois is currently working on transferring the
work of [DBH06] from the setting of RSs to bigraphs. A clever thing about this,
from our viewpoint, is that it enables us to express negative context information, by
removing the unwanted bigraphs from the system. We could perhaps also impose a
building sorting to ensure that certain locations (perhaps identified by a internal type
control) are not within certain other locations, e.g. we do not wish for buildings to
be within rooms. To this end we envision using a predicate sorting as defined in
(Definition 15) of [DBH06]. In [DBH06] a sorting of a category B is a functor into
B that is faithful and surjective on objects (Definition 4 of [DBH06]). This allows
us to define decomposible predicates to filter out unwanted morphisms (bigraphs).
To combine sortings, Debois, intuitively, combines predicate sortings via conjunc-
tion by a pullback construction (Proposition 4 of [DBH06]), whereas Høgh Jensen

110

composes sorting functors. Thus, we can combine an additional sorting with the
Plato-graphical sorting.

7.1.6 Dynamic correspondence

Ξ-programs and their images under ~·�X evaluate in one-to-many correspondence,
i.e. the bigraphical representation takes one or more steps for each Ξ reduction step.
Thus, we would like to prove something like the following “conjecture”.

Conjecture 7.1.1.
∀e, σ,X, s, g. (∃ e′, σ′. 〈e, σ〉 → 〈e′, σ′〉 ∧ ~〈e′, σ′〉�X = /~Y . g | s) =⇒
(~〈e, σ〉�X .+ /~Y . g | s) , where fv(e) ∪ fv(e′) ⊆ Y ⊆ X, and .+ is the
transitive closure of . .

The idea of a proof should be: Analyse each of the cases of possible reaction in Ξ.
We need a substitution lemma for the cases where evaluation results in a substitution.
If we can prove such a lemma, then the result can be lifted to evaluation contexts by
the lemmas 7.1.1 and 7.1.2. However, a substitution lemma seems difficult to prove
because we may have to perform a substitution on a lambda abstraction, which is a
passive control in bigraphs! It seams that we need some sort of logical relation to
resolve this.

Lemma 7.1.1. For any evaluation context E, term e, and set X such that fv(E[e]) ⊆
X, it holds that ~E[e]�X = ~E�X ◦ ~e�X.

Proof. The proof should be by structural induction on E.

Lemma 7.1.2. This lemma should correspond to definition 4.3.1.

A proof should be by structural induction on evaluation contexts.

Conjecture 7.1.2. We conjecture that “the opposite direction” of Conjecture 7.1.1
can be proven, but it seems that we need some way to keep track of the bigraphs that
are images of Ξ-terms.

We emphasise the fact that the “conjecture” does not hold as stated, but is merely
stated to give the reader an idea of what we would like to prove. The reason that it
does not hold is that we can not perform substitution under passive controls. How-
ever, this does not make the encoding wrong, because when such a control, e.g.
a lambda abstraction, is applied eventually, it will become possible to perform the
substitution and thus “catch up”.

One could also consider studying other programming language issues in the set-
ting of bigraphs. It would probably be wise to do it in as simple a setting as possible.
We do, however, not see this as important for our endeavours.

111

7.1.7 Enhancing bigraph theory

Currently, the following extensions are on the wish list:

• DAGs: Replace the place graph (a forest of trees) with a DAG. The motivation
was given in chapter 5, where organising a building with rooms, wings etc.
was a little troublesome.

• Time: Timed automata may inspire, we think of [D’A99].

• Stochastics: We think that some inspiration can be found in [Pri95, Bra02,
D’A99, dAHJ01].

• Continuous space (hybrid systems): Possible works of inspiration (apart from
the ones mentioned just above): [AD94, ACHH93, Hen96, DB96].

We discuss each item in turn in a little more detail after considering the overall
purpose of them.

The visions mentioned in chapter 3 remain; DAGs, time, continuous space, and
probabilistic information. Enriching the theory of bigraphs with these aspects is a
demanding task, but certainly interesting.

7.1.7.1 DAGs

We decided to use the place graph for representing the location hierarchy instead of
merely by linking, On first thought, it might seem reasonable to hierarchically order
floors, wings, rooms, and devices in a building. Choosing one ordering has its draw-
backs, however. Should wings or floors be higher in the tree? If we choose floors
over wings then we could end up representing each wing on every floor, thereby in-
troducing redundancy. This can, however, be remedied by using DAGs instead of
trees. Furthermore, DAGs naturally support “shared locations” as, e.g., an audito-
rium residing on the floors simultaneously. If we shy away from altering the theory
of bigraphs then DAGs could be implemented using several trees (roughly one for
each “location sharing”), but navigating and keeping consistent several such views
would complicate the modelling effort. In chapter 6 we discussed a piece of related
work, where a sort of pointer is proposed to address this idea.

7.1.7.2 Time

A notion of time in the model is required to be able to order events, i.e. for ex-
ample for SX to be able to inform LX of the order of sightings to facilitate a closer
correspondence in the “states” cX and lX.

7.1.7.3 Probabilities

Probabilistic information is required to make the model more realistic, i.e. closer to
the way real-life positioning systems work. This is desired for simulation purposes.

112

The probability information should be attached to events – perhaps as a tag along
with a time stamp.

7.1.7.4 Continuous space

Continuous space has to do with geometric coordinates. It should be possible to
determine the geometric whereabouts of located-objects, and to compute metric dis-
tances.

7.1.7.5 Summing up: Enhancements

To conclude, it seems relevant to consider these four aspects both from a theoretical
and a practical point of view.

7.2 Concluding remarks

It seems that there are two roads to take.

• Continue on the experimental path.

• Delve into extensions of bigraph theory.

This concludes our suggestions for future work.

113

Chapter 8

Conclusions

In this report we have begun evaluation of our main hypothesis, which states that
BRSs are suitable for programming, simulating, and reasoning rigorously about
ubiquitous systems. To this end we have ascertained a more tangible hypothesis that
supports the main hypothesis, namely that BRSs are suitable for modelling location-
aware systems, specifically a sentient building. The supporting hypothesis has been
ascertained by establishing the following:

• Based on an investigation of the literature on location models we have been
able to come up with a representative example for our modelling effort; a
sentient building.

• It is awkward to model context-aware (location-aware) systems directly in bi-
graphs.

• This awkwardness can be alleviated by using Plato-graphical models.

• Location models, of e.g. a sentient building, can be modelled and programmed
conveniently as Plato-graphical models using a bigraphical encoding of a Mini-
ML-like calculus with references. We have shown that the physical world and
a simple positioning system can be conveniently model in bigraphs using re-
configurations. All this with an acceptable modelling effort.

The sentient building case study has helped us gain a better general understanding of
which requirements context-aware (location-aware) programming puts on the theory
used for the modelling.

This report has tried to take a step in bringing together the research on location
models with the formal theory of bigraphs. It is clear that if theoreticians are to truly
influence the way systems are built then we must try to work with the systems and
problems that designers face.

Our study of related work shows that even though some theories and tools ex-
ist for supporting context-aware modelling and programming, there is still much

114

work to be done. The theories and tools do not capture time, continuous space, or
stochastic behaviour. In addition, there are few frameworks supporting both theoret-
ical modelling and actual tool support. To the best of our knowledge no simulators
for context-aware systems exist, which we conjecture is an important challenge to
overcome to push forward theory and technology.

We have identified several avenues for future research. One avenue, from our
point of view, is to extend bigraph theory. Another avenue, which we intend to
follow, is to expand the modelling effort to more realistic systems with support from
a tool, which is to be developed simultaneously. The main goal is to be able to
simulate real systems in bigraphs. A tool will also help to reason about real systems
in practise.

We may be as bold as to say that our experimental endeavour has made research
contributions, and hope that this piece of work can inspire researchers to work on
realising the global ubiquitous computer. In the words of Professor Andy Hopper:
“...I want to extend the computer and information systems to observe the real world
and automatically modify the systems’ behaviour to suit the prevailing conditions.
Such ”sentient” computing systems will play a key part in ensuring the sustainability
of our planet.” Quote from http://www.cl.cam.ac.uk/Research/DTG/
˜ah12/aims-research.html.

115

Chapter 9

Acknowledgements

Foremost, I wish to thank my lovely wife Dagmar and my parents Vibeke and Erik
for being there for me always.

I would also like to thank the members of the Bigraphical Programming Lan-
guages group at the IT University of Copenhagen for constituting a very good re-
search environment, and the following people in particular: Mikkel Bundgaard for
being an excellent but pervasively bitter office mate, and for answering close to
a plethora of my questions. Søren Debois for enlightening discussions (primarily
about bigraphs), and his unique sense of humour. Troels Damgaard for conversa-
tions about bigraphs and life in general, and for making me realise when to say “no”.
My advisors Henning Niss and Lars Birkedal for working with me, and for their
good advice during this piece of research.

A special thanks goes to my “psychologist” Jakob Grue Simonsen for being
amenable to my feelings of inadequacy and general complaints. He certainly beats
the Emacs Psychiatrist.

I also wish to thank my friends Jakob Lemvig and Jesper Rasmussen for helping
me think about other things in life than work. Finally, I wish to thank Philip Bille
for always showing off and making me want to become a better researcher.

116

Bibliography

[ACH+01] Mike Addlesee, Rupert W. Curwen, Steve Hodges, Joe Newman, Pete
Steggles, Andy Ward, and Andy Hopper. Implementing a sentient com-
puting system. IEEE Computer, 34(8):50–56, August 2001.

[ACHH93] Rajeev Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems. Hybrid Systems, 736, 1993. LNCS.

[AD94] Rajeev Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[BBR02] Martin Bauer, Christian Becker, and Kurt Rothermel. Location mod-
els from the perspective of context-aware applications and mobile ad
hoc networks. Personal and Ubiquitous Computing, 6(5-6):322–328,
December 2002. ISSN:1617-4909.

[BCC01] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Boxed ambi-
ents. In In 4th International Symposium on Theoretical Aspects of Com-
puter Software (TACS), volume 2215 of LNCS, pages 38–63. Springer-
Verlag, 2001.

[BD05] Christian Becker and Frank Dürr. On location models for ubiqui-
tous computing. Personal and Ubiquitous Computing, 9:20–31, 2005.
Springer-Verlag.

[BDE+05] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas Hildebrandt, and
Henning Niss. Bigraphical Models of Context-aware Systems. Tech-
nical Report 74, IT University of Copenhagen, Rued Langgards Vej 7,
DK-2300 Copenhagen V, November 2005. ISBN: 87-7949-110-3.

[BDE+06] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas T. Hildebrandt,
and Henning Niss. Bigraphical Models of Context-aware Systems. In
Luca Aceto and Anna Ingólfsdóttir, editors, Proceedings of FoSSaCS,
volume 3921 of LNCS, pages 187–201, Vienna, Austria, March 2006.
Springer-Verlag. ISBN: 3-540-33045-3.

117

[BDGM06] Lars Birkedal, Troels C. Damgaard, Arne J. Glenstrup, and Robin Mil-
ner. Matching of bigraphs. Technical Report ITU-TR-2006-88, IT Uni-
versity of Copenhagen, June 2006.

[BH06] Mikkel Bundgaard and Thomas Hildebrandt. Bigraphical semantics of
higher-order mobile embedded resources with local names. In Arend
Rensink, Reiko Heckel, and Barbara König, editors, In Proceedings of
the Graph Transformation for Verification and Concurrency workshop
(GT-VC’05), volume 154 of Electronic Notes in Theoretical Computer
Science, pages 7–29. Elsevier, 2006.

[BP04] Pietro Braione and Gian Pietro Picco. On calculi for context-aware
coordination. In Proceedings of COORDINATION’04, volume 2949 of
LNCS, pages 38–54. Springer-Verlag, 2004.

[Bra02] Mario Bravetti. Specification and Analysis of Stochastic Real-Time Sys-
tems. PhD thesis, Università di Bologna, Padova, Venezia, February
2002.

[Bra03] Pietro Braione. On Calculi for Context-Aware Systems. PhD thesis,
Politecnico di Milano, Dipartimento di Electronica e Informazione, Pi-
azza Leonardo da Vinci 32, 2003.

[BS01] Barry Brumitt and Steven Shafer. Topological world modeling using
semantic spaces. In UbiComp 2001 Workshop on Location Modeling
for Ubiquitous Computing, October 2001.

[BZD02] Michael Beigl, Tobias Zimmer, and Christian Decker. A location model
for communicating and processing of context. Personal and Ubiquitous
Computing, 6(5-6):341–357, 2002.

[CCK+05] Dan Chalmers, Jon Crowcroft, Marta Kwiatkowska, Robin Milner,
Vladimiro Sassone, and Morris Sloman. Global ubiquitous computing:
Design and science. Final draft, a newer version of the document can
be found at http://www-dse.doc.ic.ac.uk/Projects/
UbiNet/GC/Manifesto/manifesto.pdf, June 26 2005.

[CDMF00] Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian Friday. Expe-
riences of developing and deploying a context-aware tourist guide: the
GUIDE project. In Proceedings of the 6th annual international confer-
ence on mobile computing and networking (Mobicom), pages 20–31,
Boston, Massachusetts, August 2000.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical
Computer Science, 240(1):177–213, 2000.

[CK00] Guanling Chen and David Kotz. A survey of context-aware mobile
computing research. Technical report tr2000-381, Department of Com-
puter Science, Dartmouth College, 2000.

118

[CM88] K. Mani Chandy and Jayadev Misra. Parallel program design: A foun-
dation. Addison-Wesley, 1988.

[CMS05] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. Spa-
tial Logics for Bigraphs. In Proceedings of ICALP’05, volume 3580 of
LNCS, pages 766–778. Springer-Verlag, 2005. ISBN: 3-540-27580-0.

[D’A99] Pedro R. D’Argenio. Algebras and Automata for Timed and Stochastic
Systems. PhD thesis, Department of Computer Science, University of
Twente, November 1999.

[DA00] Anind K. Dey and Gregory D. Abowd. Towards a better understanding
of context and context-awareness. In Workshop on The What, Who,
Where, When, and How of Context-Awareness, 2000. Part of the 2000
Conference on Human Factors in Computing Systems (CHI 2000).

[dAHJ01] Luca de Alfaro, Thomas A. Henzinger, and Ranjit Jhala. Composi-
tional methods for probabilistic systems. In Proceedings of the 12th
International Conference on Concurrency Theory, LNCS, pages 351–
365. Springer-Verlag, 2001.

[DB96] Pedro R. D’Argenio and Ed Brinksma. A calculus for timed au-
tomata. In Proceedings of the 4th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, volume 1135 of
LNCS, pages 110–129. Springer-Verlag, 1996. ISBN: 3-540-61648-9.

[DB05] Troels C. Damgaard and Lars Birkedal. Axiomatizing binding bigraphs
(revised). Technical Report TR-2005-71, IT University of Copenhagen,
2005.

[DBH06] Søren Debois, Lars Birkedal, and Thomas Hildebrandt. Sortings for
reactive systems. In Christel Baier and Holger Hermanns, editors, In
Proceedings of CONCUR, 2006. To appear.

[DD05] Søren Debois and Troels C. Damgaard. Bigraphs by example. Techni-
cal Report TR-2005-61, IT University of Copenhagen, March 2005.

[DR03] Frank Dürr and Kurt Rothermel. On a location model for fine-grained
geocast. In Anind K. Dey, Albrecht Schmidt, and Joseph F. McCarthy,
editors, In Proceedings of UbiComp 2003: Ubiquitous Computing,
LNCS, pages 18–35, Seattle, WA, USA, October 12-15 2003. Springer
Berlin. ISBN: 3-540-20301-X, ISSN: 0302-9743.

[DRD+00] Alan Dix, Tom Rodden, Nigel Davies, Jonathan Trevor, Adrian Friday,
and Kevin Palfreyman. Exploiting space and location as a design frame-
work for interactive mobile systems. ACM Transactions on Computer-
Human Interaction (TOCHI), 7(3):285–321, September 2000.

119

[FcRH04] Chen-Liang Fok, Gruia catalin Roman, and Gregory Hackmann.
A lightweight coordination middleware for mobile computing. In
Rocco De Nicola, Gian Luigi Ferrari, and Greg Meredith, editors, Pro-
ceedings of the 6th International Conference on Coordination Mod-
els and Languages (Coordination 2004), LNCS, pages 135–151, Pisa,
Italy, February 2004. Springer-Verlag.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget,
and Didier Rémy. A calculus of mobile agents. In Proceedings of the
7th International Conference on Concurrency Theory (COCNUR), vol-
ume 1119 of LNCS, pages 406–421. Springer-Verlag, 1996. ISBN:3-
540-61604-7.

[Har00] Robert Harper. Type systems for programming languages (draft).
Notes, Spring 2000. http://www.cs.cmu.edu/ rwh/misc/tspl.pdf.

[HB01] Jeffrey Hightower and Gaetano Borriello. A survey and taxonomy of
location systems for ubiquitous computing. Technical Report UW-CSE
01-08-03, University of Washington, Computer Science and Engineer-
ing, August 24 2001.

[HBB02] Jeffrey Hightower, Barry Brumitt, and Gaetano Borriello. The location
stack: a layered model for location in ubiquitous computing. In Pro-
ceedings of the 4th IEEE workshop on mobile computing systems and
applications (WMCSA), pages 22–28, Callicoon, New York, June 2002.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings
of the 11th Annual Symposium on Logic in Computer Science (LICS),
pages 278–292. IEEE Computer Society Press, 1996.

[Hen04] Matthew Hennessy. Context-awareness: Models and analysis. Talk
at 2nd UK-UbiNet Workshop, slides at www.cogs.susx.ac.uk/
users/matthewh/talks.html, May 2004.

[Hen05] Matthew Hennessy. Towards a calculus for nominal mobile
agents. Talk at Symposium on Trustworthy Global Computing in
Edinburgh, slides at http://www.cogs.susx.ac.uk/users/
matthewh/talks/tgc05.pdf, April 2005.

[HHS+02] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Web-
ster. The anatomy of a context-aware application. Wireless Networks,
8:187–197, February 2002.

[HIR02] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Mod-
eling context information in pervasive computing systems. In Proceed-
ings of Pervasive’02, volume 2414 of LNCS, pages 167–180. Springer-
Verlag, 2002.

120

[HNO06] Thomas Hildebrandt, Henning Niss, and Martin Olsen. Formalising
business process execution with bigraphs and reactive XML. In Paolo
Ciancarini and Herbert Wiklicky, editors, In Proceedings of Coordina-
tion Models and Languages: 8th International Conference (COORDI-
NATION 2006), volume 4038 of LNCS, pages 113–129, Bologna, Italy,
June 14–16 2006. Springer-Verlag. ISBN: 3-540-34694-5.

[HNOW05] Thomas Hildebrandt, Henning Niss, Martin Olsen, and Jacob Winther.
Distributed Reactive XML. In In Proceedings of the 1st International
Workshop on Methods and Tools for Coordinating Concurrent, Dis-
tributed and Mobile Systems (MTCoord05), 2005.

[Hop00] Andy Hopper. Sentient computing? Phil. Trans. R. Soc. Lond., A,
358:2349–2358, August 2000. An abridged and updated version of the
Royal Society Clifford Paterson Lecture 1999.

[Jen06] Ole Høgh Jensen. Mobile Processes in Bigraphs. PhD thesis, King’s
College, University of Cambridge, 2006.

[JM03] Ole Høgh Jensen and Robin Milner. Bigraphs and Transitions. In Pro-
ceedings of POPL’03, pages 38–49. ACM Press, 2003. ISBN 1-58113-
628-5.

[JM04] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes
(revised). Technical Report UCAM-CL-TR-580, University of Cam-
bridge – Computer Laboratory, February 2004. ISSN 1476-2986.

[JPR04] Christine Julien, Jamie Payton, and Gruia-Catalin Roman. Reasoning
about context-awareness in the presence of mobility. In Antonio Brogi,
Jean-Marie Jacquet, and Ernesto Pimentel, editors, In Proceedings of
the 2nd International Workshop on Foundations of Coordination Lan-
guages and Software Architectures (FOCLASA), volume 97 of Elec-
tronic Notes in Theoretical Computer Science, pages 259–276, Mar-
seille, France, September 2 2004.

[JR02] Christine Julien and Gruia-Catalin Roman. Egocentric context-aware
programming in ad hoc mobile environments. In Proceedings of the
10th International Symposium in the Foundations of Software Engi-
neering, pages 21–30, November 2002.

[JR05] Christine Julien and Gruia-Catalin Roman. Egospaces: Facilitating
rapid development of context-aware mobile applications. Technical Re-
port TR-UTEDGE-2005-004, The University of Texas, 2005.

[JS02] Changhao Jiang and Peter Steenkiste. A hybrid location model with a
computable location identifier for ubiquitous computing. In UbiComp
’02: Proceedings of the 4th international conference on Ubiquitous
Computing, pages 246–263. Springer-Verlag, 2002.

121

[KBP06a] Mikkel Baun Kjærgaard and Jonathan Bunde-Pedersen. A formal
model for context-awareness. Report Series RS-06-2, BRICS, February
2006. ISSN: 0909-0878.

[KBP06b] Mikkel Baun Kjærgaard and Jonathan Bunde-Pedersen. Towards a for-
mal model of context-awareness. In Presented at the International
Workshop on Combining Theory and Systems Building in Pervasive
Computing (CTSB). A Workshop of PERVASIVE 2006, Dublin, Ireland,
May 7th 2006.

[Leo98] Ulf Leonhardt. Supporting Location-Awareness in Open Distributed
Systems. Ph.d. thesis, Department of Computing, Imperial College of
Science, Technology and Medicine, University of London, May 1998.

[LM00] James J. Leifer and Robin Milner. Deriving bisimulation congruences
for reactive systems. In Catuscia Palamidessi, editor, Proceedings of
CONCUR’00, LNCS, pages 243–258. Springer-Verlag, 2000.

[MB97] John McCarthy and Saša Buvač. Formalizing context. In Atocha
Aliseda, Rob van Glabbeek, and Dag Westersthl, editors, Computing
Natural Language: Working papers of the AAAI Fall Symposium on
Context in Knowledge Representation and Natural Language, pages
99–135. Stanford University, 1997.

[Mil02] Robin Milner. Computing in space, May 1 2002. A lecture by Robin
Milner, for the opening of the Computer Laboratory’s William Gates
Building at the University of Cambridge.

[Mil04a] Robin Milner. Axioms for bigraphical structure. Technical Report
UCAM-CL-TR-581, University of Cambridge – Computer Laboratory,
February 2004. ISSN 1476-2986.

[Mil04b] Robin Milner. Bigraphs for Petri Nets. In Lectures on Concurrency
and Petri Nets: Advances in Petri Nets, volume 3098 of LNCS, pages
686–701. Springer-Verlag, 2004.

[Mil04c] Robin Milner. Bigraphs whose names have multiple locality. Techni-
cal Report UCAM-CL-TR-603, University of Cambridge – Computer
Laboratory, September 2004. ISSN 1476-2986.

[Mil04d] Robin Milner. Local bigraphs, confluence and λ-calculus. DRAFT,
October 29 2004.

[Mil05a] Robin Milner. Axioms for bigraphical structure. Mathematical Struc-
tures in Computer Science, 2005. To appear. Revised version of
UCAM-CL-TR-581.

[Mil05b] Robin Milner. Bigraphs: A tutorial. Slides, April 2005.
http://www.cl.cam.ac.uk/users/rm135/bigraphs-tutorial.pdf.

122

[Mil05c] Robin Milner. Pure bigraphs: Structure and dynamics. Information and
Computation, 2005. Submitted. Revision of UCAM-CL-TR-614.

[MP04] Amy L. Murphy and Gian Pietro Picco. Using coordination middle-
ware for location-aware computing: A lime case study. In In Proceed-
ings of the 6th International Conference on Coordination Models and
Languages (Coordination), Pisa, Italy, February 2004.

[MPR06] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime:
A coordination model and middleware supporting mobility of hosts and
agents. ACM Transactions on Software Engineering (TOSEM), pages
1–48, 2006.

[MS97] Irwin Meisels and Mark Saaltink. The Z/EVES reference
manual (for version 1.5). Technical Report TR-97-5493-03d,
ORA Canada, September 1997. http://www.ift.ulaval.ca/ jodeshar-
nais/glo21941/ZEves/ZEvesRefMan.pdf.

[NGP05] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observ-
ables for a calculus for global computing. In Proceedings of ICALP’05,
volume 3580 of LNCS, pages 1226–1238. Springer-Verlag, 2005.

[OJDA01] Thomas O’Connell, Peter Jensen, Anind K. Dey, and Gregory D.
Abowd. Location in the aware home. In Michael Beigl, Phil Gray, and
Daniel Salber, editors, Location Modeling for Ubiquitous Computing –
UbiComp 2001, Atlanta, Georgia, September 30 2001.

[PlaBC] Plato. The republic, book vii, 360 B.C. Translation by Benjamin Jowett.

[Pra00] Salil Pradhan. Semantic location. Personal and Ubiquitous Computing,
4(4):213–216, 2000. Springer-Verlag.

[Pri95] Corrado Priami. Stochastic pi-calculus. The Computer Journal,
38(6):578–589, 1995.

[PT00] Benjamin C. Pierce and David N. Turner. Pict: A programming lan-
guage based on the pi-calculus. In Proof, Language and Interaction:
Essays in Honour of Robin Milner, pages 455–494. MIT Press, 2000.

[Rep99] John H. Reppy. Concurrent Programming in ML. Cambridge Univer-
sity Press, 1999.

[RJP04] Gruia-Catalin Roman, Christine Julien, and Jamie Payton. A formal
treatment of context-awareness. In Proceedings of FASE’04, volume
2984 of LNCS, pages 12–36, 2004.

[RLU94] Mike Rizzo, Peter F. Linington, and Ian Utting. Integration of location
services in the open distributed office. Technical Report 14-94*, Uni-
versity of Kent, Computing Laboratory, University of Kent, Canterbury,
UK, August 1994.

123

[RM02] Gruia-Catalin Roman and Peter J. McCann. A notation and logic for
mobile computing. Formal Methods in System Design, 20(1):47–68,
January 2002. ISSN: 0925-9856.

[RMP97] Gruia-Catalin Roman, Peter J. McCann, and Jerome Y. Plun. Mo-
bile UNITY: Reasoning and specification in mobile computing. ACM
Transactions on Software Engineering Methodology, 6(3):250–282,
1997.

[Rot03] Jörg Roth. Flexible positioning for location-based services. IADIS In-
ternational Journal on WWW/Internet, 1(2):18–32, 2003. ISSN: 1645-
7641.

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. In Proceedings of IEEE Workshop on Mobile Computing
Systems and Applications, pages 85–90, 1994.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is
more to context than location. Computers & Graphics Journal, Else-
vier, 23(6):893–902, December 1999.

[SC02] Kumaresan Sanmugalingam and George Coulouris. A generic location
event simulator. In Gaetano Borriello and Lars Erik Holmquist, editors,
Proceedings of the 4th international conference on Ubiquitous Com-
puting (UbiComp), volume 2498 of LNCS, pages 308–315, Göteborg,
Sweden, 2002. Springer-Verlag. ISBN: 3-540-44267-7.

[Sch95] Bill N. Schilit. A Context-Aware System Architecture for Mobile Dis-
tributed Computing. PhD thesis, Columbia University, May 1995.

[ST94] Bill Schilit and Marvin Theimer. Disseminating active map information
to mobile hosts. IEEE Network, 8(5):22–32, September/October 1994.
ftp://ftp.parc.xerox.com/pub/schilit/AMS.ps.Z.

[Ter06] Sotirios Terzis. Combining theory and systems building – experi-
ences and challenges. In International Workshop on Combining Theory
and Systems Building in Pervasive Computing (CTSB), Pervasive 2006,
May 7 2006.

[WBB06] Torben Weis, Christian Becker, and Alexander Brändle. Towards a pro-
gramming paradigm for pervasive applications based on the ambient
calculus. In International Workshop on Combining Theory and Sys-
tems Building in Pervasive Computing (CTSB), Pervasive 2006, May 7
2006.

[Wei91] Mark Weiser. The computer for the 21st century. In Scientific American
Ubicomp Paper after Scientific American edititing. Scientific Ameri-
can, 1991.

124

[Wei93] Mark Weiser. Hot topics – ubiquitous computing. IEEE Computer,
26(10):71–72, October 1993.

[WHFG92] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons. The active
badge location system. ACM Transactions on Information Systems,
10(1):91–102, January 1992.

[WJH97] Andy Ward, Alan Jones, and Andy Hopper. A new location technique
for the active office. IEEE Personal Communications, 4(5):42–47,
1997.

[Zim05] Pascal Zimmer. A calculus for context-awareness. Report Series RS-
05-27, BRICS, August 2005. ISSN: 0909-0878.

125

