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Abstract

We analyze the matching problem for bigraphs. In particular, we present an axiomatization of the static
theory ofbinding bigraphs, a non-trivial extension of the axiomatization of pure bigraphs developed by Milner
(2004a). Based directly on the term language resulting fromthe axiomatization we present a sound and complete
inductive characterization of matching of binding bigraphs. Our results pave the way for an actual matching
algorithm, as needed for an implementation of bigraphical reactive systems.

1 Introduction

Over the last decade, Robin Milner and co-workers have developed a theory of bigraphical reactive systems (Høgh
Jensen and Milner, 2004; Milner, 2004a, 2005). Bigraphicalreactive systems (BRSs) provide a graphical model
of computation in which both locality and connectivity are prominent. In essence, abigraphconsists of aplace
graph; a forest, whose nodes represent a variety of computationalobjects, and alink graph, which is a hyper graph
connecting ports of the nodes. Bigraphs can be reconfigured by means ofreaction rules. Loosely speaking, a
bigraphical reactive systemconsists of set of bigraphs and a set of reaction rules, whichcan be used to reconfigure
the set of bigraphs. BRSs have been developed with principally two aims in mind: (1) to be able to model
directly important aspects of ubiquitous systems by focusing on mobile connectivity (the link graph) and mobile
locality (the place graph), and (2) to provide a unification of existing theories by developing a general theory,
in which many existing calculi for concurrency and mobilitymay be represented, with a uniform behavioural
theory. The latter is achieved by representing the dynamicsof bigraphs by reaction rules from which a labelled
transition system may be derived in such a way that an associated bisimulation relation is a congruence relation.
The unification has recovered existing behavioural theories for theπ-calculus (Høgh Jensen and Milner, 2004),
the ambient calculus (Jensen, 2005), and has contributed tothat for Petri nets (Leifer and Milner, 2004). Thus the
evaluation of the second aim has so far been encouraging. Birkedal et al. (2005) initiate an evaluation of the first
aim, in particular it is shown how to give bigraphical modelsof context-aware systems.

As suggested and argued by Høgh Jensen and Milner (2004); Birkedal (2004); Birkedal et al. (2005) it would
be very useful to have an implementation of the dynamics of bigraphical reactive systems to allow experimentation
and simulation. In the Bigraphical Programming Languages research project at the IT University, we are working
towards such an implementation. The core problem of implementing the dynamics of bigraphical reactive systems
is thematching problem, that is, to determine for a given bigraph and reaction rule whether and how the reaction
rule can be applied to rewrite the bigraph. The topic of the present paper is to analyze the matching problem.

The abstract semantic definition of matching, as defined in the theory of bigraphs (Høgh Jensen and Milner,
2004), is roughly as follows (omitting many details): Givena reaction rule with redexR and reactumR′ (with R
andR′ both bigraphs), and a bigraphA (the agent to be rewritten), ifA = C ◦ R ◦ d, then it can be rewritten to
C ◦ R′ ◦ d. Here◦ denotes composition of bigraphs. In other words, if the reaction rulematchesA, in the sense
thatA can be decomposed into a contextC, redexR and a parameterd, thenA can be rewritten.

An implementation of bigraphical reactive systems must, ofcourse, work on some data structure representing
bigraphs. An obvious possibility is to represent bigraphs by bigraphical expressionsthat denote bigraphs. This is
particularly useful if (1) the bigraphical expressions aredefined inductively (by a grammar, say), such that algo-
rithms may operate inductively on the representation, and (2) there are normal forms for bigraphical expressions
and axioms for determining when two bigraphical expressions denote the same bigraph, such that a matching algo-
rithm may operate on normal form representations. Luckily,thereis an axiomatization of so-calledpurebigraphs
with these properties (Milner, 2004a). The equations in theaxiomatization include all the equations for strict
symmetric monoidal categories. In the present paper we extend the axiomatization for pure bigraphs tobinding
bigraphssuch that one can use binding bigraph expressions for matching of binding bigraphs.
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Phrased in terms of binding bigraphexpressions, the decision problem for matching is then roughly the fol-
lowing. Given binding bigraph expressionsR, A, C, andd, determine whether� A = C ◦ R ◦ d holds, that is,
whether the two expressions on both sides of the= sign denote the same bigraph. In the present paper we provide
an inductive characterizationof when� A = C ◦ R ◦ d holds, by induction onA andR (the input to a matching
algorithm). It is a precise characterization in the sense that it is both sound and complete. This provides a de-
tailed analysis of the matching problem, and paves the way for developing and proving correct an actual matching
algorithm (which, givenA andR, must find aC andd such that� A = C ◦ R ◦ d holds).

Our inductive characterization is non-trivial, maybe evenfairly intricate. This is mainly due to the fact that it is
baseddirectly on the grammar for normal form expressions, which could be anadvantage for an implementation.
Other characterisations exist, notably that of Birkedal etal. (2006).

We have thus decided to present the matching of binding bigraph in two steps: we first consider place graphs
(bigraphs without any linking), and then deal with binding bigraphs.

In summary, the technical contributions of the present paper include

• an axiomatization of the static theory ofbindingbigraphs, a non-trivial extension of the axiomatization of
pure bigraphs developed by Milner (2004a),

• a sound and complete inductive characterization of matching of binding bigraph expressions.

The remainder of this paper is organized as follows. In Section 2 we discuss matching of place graphs. We first
(Section 2.1) recall the definition of place graphs and the discrete normal form theorem for place graphs. Then
we recall the definition of place graph expressions, the discrete normal form for place graph expressions, and
the sound and complete axioms for equality of place graph expressions. In Section 2.4 we recall the notion of
reaction and matching for place graphs. Finally, in Section2.5, we embark on the presentation of our inductive
characterization of matching of place graph expressions. It consists of some preliminaries on permutations and
a so-called splitting relation, which are used to express the degrees of freedom in matching, followed by a set of
inference rules that comprise the inductive characterization. Soundness and completeness of the characterization
is proved.

In Section 3 we then discuss matching of binding bigraphs. The outline of this section follows the same pattern
as the section for place graph matching, but we include more details on the binding discrete normal form (Sec-
tion 3.2), and binding bigraph expressions and axioms (Section 3.3), which are new and part of our contribution.
The inductive characterization of matching of binding bigraphs is presented in Section 3.4.

In Section 4 we discuss the results of the paper and related work and in Section 5 we conclude and give some
directions for future work.

The proofs of soundness and completeness of the inductive characterization of matching are included in Ap-
pendix A and B. We have omitted many of the proofs of soundnessand completeness of the axiomatization
of binding bigraphs; the overall structure of the proofs mostly follow the proofs in Milner’s axiomatization for
pure bigraphs (Milner, 2004a). Detailed proofs of this can be found in an other technical report (Damgaard and
Birkedal, 2005).

2 Place Graph Matching

In Sections 2.1–2.4 we recall the definition of place graphs,discrete normal forms, axioms for place graphs, and
the definition of reactions and matching for place graphs. Weclosely follow the presentations by Høgh Jensen
and Milner (2004); Milner (2004a), so readers who are familiar with loc.cit. may skip these brief sections. In
Section 2.5 we present our inductive characterization of matching for place graph expressions.

2.1 Definition of Place Graphs

We begin by calling to mind the definition of the category of place graphs. Furhter details and explanations can
be found elsewhere (Høgh Jensen and Milner, 2004).

Definition 2.1. A signatureK is a set whose elements are calledcontrols. For eachK ∈ K, it tells whetherK is
activeor passive.

Definition 2.2. An interface I is simply a finite ordinalm.
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Definition 2.3 (place graph). A (concrete) place graphover signatureK G = (V, ctrl, prnt) : m → n has an
inner width m and anouter width n, both finite ordinals; a finite setV of nodes with a control mapctrl : V → K;
and aparent map prnt : m⊎V → V ⊎ n. The parent map isacyclic, i.e.,prntk(v) 6= v, for all k > 0 andv ∈ V.

The parent mapprnt represents a forest ofn unordered trees. The widthsm andn of G : m → n index its
sites0, . . . ,m− 1 androots 0, . . . , n− 1, respectively. We useǫ to denote the width0. A place graph with inner
width ǫ is called anagent.

Place graphs are composed as follows. LetGi = (Vi, ctrli, prnti) : mi → mi+1 (i ∈ {0, 1}) be place
graphs withV0 ∩ V1 = ∅; thenG1 ◦ G0

def
= (V, ctrl, prnt), whereV = V0 ⊎ V1, ctrl = ctrl0 ⊎ ctrl1, and

prnt = (idV0 ⊎ prnt1) ◦ (prnt0 ⊎idV1).
The identity place graph atm is idm

def
= (∅,∅, idm) : m→ m.

The tensor productI ⊗ J of two interfacesI = m and J = n is simplym+ n, and the tensor product of two
place graphsF : k → l andG : m → n with disjoint node sets isF⊗ G : k+m → l + n. It consists of placing
the two forests side-by-side (see Høgh Jensen and Milner (2004, Definition 7.5) for a formal definition). Note that
ǫ = 0 is the unit for⊗, in the sense thatF⊗ ǫ = ǫ ⊗ F = F, for all place graphsF. Thus, an interated tensor
productF0 ⊗ · · · ⊗ Fk−1 equalsidǫ = id0 in casek = 0.

A place graphG : m→ n is active if, for all sitess ∈ m, all ancestor nodes ofs in G (obtained via the parent
function, of course) have an active control.

Two concrete place graphsG0 andG1 are said to besupport equivalent, G0 ≏ G1, if they differ only by
a bijection between their nodes. Anabstract place graphconsists of an≏-equivalence class of concrete place
graphs. Composition and identity of abstract place graphs is given by composition and identity of concrete place
graphs, and this provides a well-definedcategory of place graphswith interfaces as objects and abstract place
graphs as morphisms. The induced tensor product on abstractplace graphs, defined by[F]≏ ⊗ [G]≏

def
= [F⊗G]≏,

makes it into a strict symmetric monoidal category.

2.2 Discrete Normal Form

A placing is a place graphm → n with no nodes. All placings can be expressed (by compositionand tensoring)
in terms of three kinds of placings (see Figure 1):

1 : 0→ 1 a barren root
join : 2→ 1 join two sites

γm,n : m+ n→ n+m swapm with n places

0 1

0

n
. . .

m− 1

p

m

0
. . .

p

n− 1

Figure 1:1, join, andγm,n (using the abbreviationp = m+ n− 1)

We useπ to range overpermutations, those placings generated from theγm,n.

Definition 2.4 (merge). For allm ≥ 0 we definemergem : m→ 1 recursively, by

merge0
def
= 1

mergem+1
def
= join(id1 ⊗mergem).

Note thatmerge1 = id1 and thusmerge2 = join.
A discrete ionK : 1→ 1 is a place graph with a single node with controlK, see Figure 2.

Definition 2.5 (prime, discrete). An interfaceI = m is prime if m = 1. We then say that it hasunit width . A
place graphG : I → J is prime if J is prime. All place graphs arediscrete.
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0K

0

Figure 2: An ion

A discrete moleculeM is a prime discrete place graph having a single outermost node.1

The following is part of Theorem 4.5 from the work of Milner (2004a), restricted to place graphs.

Theorem 2.6(discrete normal form).

1. A discrete moleculeM may be uniquely expressed asKP, whereP is a discrete prime.

2. A discrete prime may be expressed asP = mergen+k(idn⊗M0⊗ · · · ⊗Mk−1)π, where eachMi : mi → 1
is a discrete molecule. Any other such expression ofP takes the formmergen+k(idn⊗M

′
0⊗ · · ·⊗M′

k−1)π′,
where there exist permutationsν onn, κ onn, andµi onmi (i ∈ k) such that

M′
i = Mκ(i)µi and (ν ⊗ κ′)π = (idn ⊗ µ0 ⊗ · · · ⊗ µk−1)π′,

whereκ′ = κ~m is defined in terms ofκ and~m.

3. A discrete place graph with outer widthn may be expressed as(P0 ⊗ · · · ⊗ Pn−1)π, where eachPi is
discrete prime. Any oter such expression ofD takes the form(P′0 ⊗ · · · ⊗ P′n−1)π ⊗ α, whereP′i = Piπi
and(π0 ⊗ · · · ⊗ πn−1)π′ = π for certain permutationsπi.

4. A place graphB with outer widthn may be uniquely expressed asidnD, whereD is a discrete place graph.

2.3 Place Graph Expressions and Axioms

The set ofplace graph expressionsis defined as the smallest set of terms built by composition and tensor product
from the identities and the following constants:

1 join γm,n K.

Each expressionE has two interfaces; we writeE : I → J, whereI and J are simply numbers. The interface for
an expression is determined in the standard way by induction. Hence it is clear exactly which place graph a place
graph expression denotes. We write� E = F when the equationE = F is valid, i.e., when the expressions denote
the same place graph.

There are the following equational axioms over place graph expressions:

CATEGORICAL AXIOMS:
AidI = A = idJA (A : I → J)
A(BC) = (AB)C

A⊗ idǫ = A = idǫ ⊗ A
A⊗ (B⊗ C) = (A⊗ B)⊗ C

idI ⊗ idJ = idI⊗J
(A1A0) ⊗ (B1B0) = (A1 ⊗ B1)(A0 ⊗ B0)

γI,ǫ = idI
γJ,IγI,J = idI⊗J

γI,K(A⊗ B) = (B⊗ A)γH,J (A : H → I, B : J → K)
PLACE AXIOMS :

join(1⊗ id1) = id1
join(join⊗id1) = join(id1 ⊗ join)

joinγ1,1 = join .

1Since all place graphs are discrete we could omit the word discrete; we have included it here to make the transition to binding bigraphs in
subsequent sections easier.
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We write⊢ E = F if the equation isprovable, that is, if it can be derived from the axioms above.

Definition 2.7. (discrete normal form) There are four kinds of discrete normal form expressions:

MDNF M ::= KP
PDNF P ::= mergen+k(idn ⊗M0 ⊗ · · · ⊗Mk−1)π
DDNF D ::= (P0 ⊗ · · · ⊗ Pn−1)π
BDNF B ::= idnD.

Proposition 2.8. (provable normal forms) LetE be a place graph expression.

1. If E denotes a molecule, then⊢ E = M for someMDNF M.

2. If E denotes a prime, then⊢ E = P for somePDNFM.

3. If E denotes a place graph, then⊢ E = D for someDDNF M.

4. If G is any place graph expression, then⊢ G = B for someBDNF B.

Remark 2.9. We note that the proof is constructive and thus defines an algorithm for transforming place graph
expressions into discrete normal form.

Theorem 2.10. (Soundess and completeness) For all place graph expressionsE andF, ⊢ E = F iff � E = F.

2.4 Reactions and Matching of Place Graphs

We recall the notion of reaction of place graphs defined by Høgh Jensen and Milner (2004).
A ground reaction rule is a pair of place graphs(r, r′), wherer andr′ are ground with the same outer face.

Given a set of ground reaction rules, thereaction relation over agents is the least relation, closed under support
equivalence (≏), such thatC ◦ r−→C ◦ r′, for each activeC and each ground rule(r, r′).

A parametric reaction rule has aredexR and areactum R′, and takes the form

(R : I → J, R′ : I′ → J, ρ),

where the third component is a so-calledinstantiation(for the formal definition, see Høgh Jensen and Milner
(2004)). For every discrete place graphd : I, the parametric rule generates the ground reaction rule

(R ◦ d, R′ ◦ (ρ(d))),

whereρ(d) is the application of the instantitation tod (we again omit the formal definition, seeloc.cit.).
The matching of place graphs problemthus is to determine, given a redexR : I → J and a place graph

agentA, the set of all pairs(C, d), with C active andd : I a discrete place graph, such thatC ◦ R ◦ d = A. (For
each such pair(C, d), we then know how to rewrite the agentA.)2

Note that this definition is at a “semantic” level, involvingactual place graphs. In the next section we present a
syntactic formulation using place graph expressions, which we believe is more suitable for implementing matching
algorithms.

2.5 Matching of Place Graph Expressions

Thematching of place-graph expressions problemis to determine, given a place graph expressionR : I → J
and a place graph agent expressionA, the set of all pairs(C, d), with C an active place graph expression and
d : 0→ I a discrete place graph expression such that� C ◦ R ◦ d = A.

The decision problem for matching of place-graph expressionsis to determine, givenR : I → J, A,
C, andd (all as above), whether� C ◦ R ◦ d = A. We define the relationR, A → C, d to hold just in case
� C ◦ R ◦ d = A. In this section we present aninductivecharacterization of this relation. Our characterization is
by induction over the structure of the place graph expressionsR andA. Thus it provides a precise characterization
of what a matching algorithm should satisfy by induction onR andA, the input to the matching algorithm.

2Of course, there are variations of the problem, where one, e.g., seeks to find only one pair(C, d) such thatC ◦ R ◦ d = A. In the following
we will be interested in giving acompletedescription, i.e., in describingall possibly pairs, and thus we focus on the version of the problem
defined here.

5



Our inductive characterization uses the discrete normal forms for place graph expressions. It suffices to give
a characterization of the relationR, A → C, d for R andA in discrete normal form since given any otherR and
A, we may compute the discrete normal formR′ of R andA′ of A (see Remark 2.9) and then use our inductive
characterization to determine whetherR′, A′ → C, d, since then we, of course, also haveR, A→ C, d.

We present our inductive characterization by means of inference rules. To express them we make use of some
notation for particular permutations and mappings, which we introduce in the next two subsections before pre-
senting the inference rules themselves. We do include some intuitive comments in the next two subsections, but
the permutations and mappings are probably best understoodin connection with the inference rules in Subsec-
tion 2.5.3.

We now give an overview of the ideas used for the inductive characterization of the relationoR, A → C, d,
whereR, A, C, andd are (possibly wide) place graph expressions. First, the characterization eliminates the
wideness ofA : n by dividingR into n redexesR0, · · · , Rn−1, each of which can possibly (again) be wide. Thus,
to establishR, A → C, d, essentially, the characterization first establishesRi, Ai → Ci, di for eachi ∈ n, and
thereafter constructsC andd from Ci anddi, i ∈ n. Once the wideness ofA is eliminated, the characterization
works inductively on each of the treesAi, by eliminating one level of the tree at a time. At each step, aset
of so-calledν functions, which have to satisfy a certain relation (calledthe splitting relation), determine which
molecules at top-level inAi should be matched by a molecule or a site at top-level inRi, and which molecules
at top-level inAi should contribute to the induced context and possibly lower-level matching of redexes. At each
level, a context and a parameter (both possibly wide) are induced from the contexts and parameters induced at
lower levels.

In the following we use→ to denote total functions and⇀ to denote partial functions. Moreover, we write⊗n
i=0 Bi to meanB0 ⊗ · · · ⊗ Bn. Givenν : m → n, we define

⊗
ν(i)=k Bi to mean

⊗n−1
i=0 B

′
i, whereB′i = Bi if

ν(i) = k andB′i = id0, otherwise.

2.5.1 The permutationπν

Given a functionν : n → n′, define a permutationπν : n → n by πν(j) = ν̂(j) + ν̃(j), where ν̂(j) =
|{j′ | ν(j′) < ν(j)}| and ν̃(j) = |{j′ | ν(j′) = ν(j) ∧ j′ < j}|. Further, for anyn-permutationπ andn-

vector of natural numbers~m, we defineπ̄~m

(
j + ∑

i−1
i′=0mπ−1(i′)

)
= j + ∑

π−1(i)−1
i′=0 mi′, where0 ≤ i < n and

0 ≤ j < mπ−1(i). We writeπν
~m asπ̄ν

~m.
For instance, if~m = [3, 0, 1, 2, 2, 2, 0, 1] and

ν = {0 7→ 1, 2 7→ 1, 4 7→ 1, 1 7→ 3, 5 7→ 3, 3 7→ 4, 6 7→ 4, 7 7→ 4},

then we have

πν = {0 7→ 0, 2 7→ 1, 4 7→ 2, 1 7→ 3, 5 7→ 4, 3 7→ 5, 6 7→ 6, 7 7→ 7}

and a correspondinḡπν
~m, as illustrated by the diagram in Figure 3. The intention is that whenν maps redex prime

indices to bigraph molecule indices,πν maps the prime indices to context site indices.

Lemma 2.11. Assume
⊗

ν(i)=i′′ orders thei’s in ascending order and let primesPi : Ii → 1 for i ∈ n be
given. Definemi′′ = |{i | ν(i) = i′′}|. If the inner face ofB′′i′′ ismi′′, then(B′′0 ⊗ · · · ⊗ B′′n′′−1)πν(P0 ⊗ · · · ⊗

Pn−1)π̄ν
~m =

⊗n′′−1
i′′=0 B

′′
i′′(
⊗

ν(i)=i′′ Pi)

Given a list of bigraphsB0 : m0 → J0, . . . , Bn′−1 : mn′−1 → Jn′−1 with n = ∑i∈n′ mi and a permutation
π : n→ n, we defineνπ : n→ n′ by νπ(j) = i, where0 ≤ π(j) − ∑

i−1
i′=0mi′ < mi.

Lemma 2.12. GivenB0, . . . , Bn′−1 andπ, then

1. νπ is well-defined

2. νπν
= ν

3. there existπ0, . . . ,πn′−1 such that(π0 ⊗ · · · ⊗ πn′−1)πνπ
= π.
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0 1 2 · · · 3 4 · · · 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

1 3 4






ν





πν





π̄ν
~m

Figure 3: Constructingπν andπ̄ν
~m from ν. Vector~m = [3, 0, 1, 2, 2, 2, 0, 1].

2.5.2 The Splitting Relation

The degrees of freedom in the matching characterization is encapsulated in a relation between a series ofν func-
tions, called asplit. We say that two vectors of functions~ν and~̄ν and two additional functions,ν : n → k and
ν̄ : k′′ → k, satisfy the split relation, writtensplit(~ν,~̄ν, ν : n → k, ν̄ : k′′ → k), if the following conditions are
satisfied:

~ν = (ν1 : k1 → k, . . . , νn′ : kn′ → k) ~̄ν = (ν̄1 : k⇀ n1, . . . , ν̄n′ : k⇀ nn′)
∀i ∈ n′ : νi, ν̄ injective

k′′ = k− (∑i∈n′ ki + |preimg(ν̄i)|) − | img(ν)|⊎
i∈n′ img(νi) ⊎

⊎
i∈n′ preimg(ν̄i) ⊎ img(ν) ⊎ img(ν̄) = k

At every level in the inference, theν functions determine how nodes of the redex are matched to nodes of the
bigraph in question, as illustrated in Figure 4.

R : · · · M0 M1 0 1 · · · · · · · · ·

0 1

A : M0 M1 M2 M3 M4 M5 M6

νi νiν̄i ν̄i ν ν

ν̄ ν̄

P′i Pi Pj

Figure 4: At each level ofA, theν functions determine how the nodes ofA are matched

Whereas eachνi function maps molecules in thei’th prime in the redex to molecules in the agent, eachν̄i function
maps molecules in the agent to molecules in thei’th prime in the redex. Moreover, theν function maps primes
in the redex to molecules in the agent. Theν̄ function points at those molecules in the agent that are to be
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considered part of the enclosing context (and not part of theredex). For theν functions to satisfy the split relation,
each molecule at top-level in the redex primes must be accounted for exactly once. Similarly, each molecule at
top-level in the agent must be accounted for exactly once.

2.5.3 Inductive Characterization of Place Graph Expression Matching

We now present an inductive characterization of place graphexpression matching in the form of a set of inference
rules. The first rule we present allow inferences of sentences of the formBR, BA →֒ BC, d, whereBR andBA

denote the redex and the agent, respectively (in discrete normal form), whereBC is the context in which the match
occurs, and whered is the parameter of such a match. Whereas the first rule deals with both the BDNF and the
DDNF cases of discrete normal form, the remaining rules dealwith the PDNF and MDNF cases, individually.

Top-level BDNF/DDNF Matching BR, BA →֒ BC, d

B

∀i ∈ n : Pi : mi → 1 ~m = [m0, . . . ,mn−1]

∀i′ ∈ n′ : πi′
(⊗

ν(i)=i′ Pi

)
, P′i′

c
→֒ P′′i′ , di′ ν : n→ n′

d′0 ⊗ · · · ⊗ d′m−1 = d0 ⊗ · · · ⊗ dn′−1 ∀j ∈ m : d′j prime π̃ = (π̄ν
~m)−1π

idn(P0 ⊗ · · · ⊗ Pn−1)π : m→ n, idn′(P
′
0 ⊗ · · · ⊗ P′n′−1)id0 : n

′

→֒ idn′(P
′′
0 π0 ⊗ · · · ⊗ P′′n′−1πn′−1)πν : n→ n′, d′

π̃(0) ⊗ · · · ⊗ d′
π̃(m−1) : m

Notes:

• From the definition of discrete normal form, the redexBR takes the formidn(P0 ⊗ · · · ⊗ Pn−1)π : m→ n
andBA takes the formidn′(P

′
0 ⊗ · · · ⊗ P′n′−1)id0 : n

′ (agents are ground).

• The notationπi′
(⊗

ν(i)=i′ Pi

)
is a shorthand for “Pi0⊗ · · ·⊗ Pili

wherePi0⊗ · · ·⊗ Pili
= πi′

(⊗
ν(i)=i′ Pi

)
”.

• The rule splits the redex inton′ subredexes, where the subredex with indexi′ ∈ n′ is defined byπi′
(⊗

ν(i)=i′ Pi

)
.

Given a redex and an agent, different derivations may be possible with different choices ofν andπ0, . . . ,πn′−1.

• The final numberm of prime parameters in the rule may be either smaller than, identical to, or larger than
the number of induced parameter bigraphsd0, . . . , dn′−1, each of which are not necessarily prime. The
width of eachdi′ , wherei′ ∈ n′, depends on the number of sites in the subredex with indexi′.

• For j /∈ img(ν), we will getP′′j = P′j anddj = id0, due to the following rules.

The remaining four rules of the inductive characterizationare mutually recursive. The first two of these rules

allow inferences of sentences of the formsPR0 ⊗ · · · ⊗ PRn−1, P
A c
→֒ PC, d andPR0 ⊗ · · · ⊗ PRn−1,M

A c
→֒MC, d,

respectively. These rules serve to build up the surroundingcontext of a redex match and to propagate potential
parameters of such a match.

PDNF Context Matching PR0 ⊗ · · · ⊗ PRn−1, P
A c
→֒ PC, d
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Pctx

π′(P′0 ⊗ · · · ⊗ P′n′−1 ⊗ P0 ⊗ · · · ⊗ Pn−1)π = P′′0 ⊗ · · · ⊗ P′′n′′−1 ~m = [m0, . . . ,mn−1]

∀i ∈ n′ : P′i = mergeni+ki(idni ⊗M
0
i ⊗ · · · ⊗Mki−1i )πi : li → 1 ∀i ∈ n : Pi : mi → 1

split((ν1 : k1 → k, . . . , νn′ : kn′ → k), (ν̄1 : k ⇀ n1, . . . , ν̄n′ : k ⇀ nn′), ν : n→ k, ν̄ : k
′′ → k)

k′′′ = | img(ν)|

∀i ∈ n′, j ∈ ki : M
j
i ,Mνi(j)

r
→֒ d

ni+j
i ∀i ∈ n′, j ∈ ni : d

j
i = merge0+|ν̄−1i (j)|

(
id0 ⊗

⊗
ν̄i(j

′)=jMj′
)

id0

∀i ∈ n′ : d′0i ⊗ · · · ⊗ d′li−1i = d0i ⊗ · · · ⊗ dni+ki−1i ∀i ∈ n′, j ∈ li : d
′j
i prime

∀i ∈ k :
(⊗

ν(j′)=i Pj′
)
,Mi

c
→֒M′

i ,Dn′+i ∀i ∈ n′ : Di = d
′πi(0)
i ⊗ · · · ⊗ d

′πi(li−1)
i

D0 ⊗ · · · ⊗ Dn′−1 : m d′0 ⊗ · · · ⊗ d′m′′−1 = D0 ⊗ · · · ⊗ Dn′+k−1 ∀j ∈ m′′ : d′j prime

π′′ = (idn′ ⊗ πν)(π′)−1 π̃ = (idm ⊗ π̄ν
~m)−1π

P′′0 ⊗ · · · ⊗ P′′n′′−1 : m
′′ → n′′, merge0+k(id0 ⊗M0 ⊗ · · · ⊗Mk−1)id0 : 1

c
→֒ mergen′+k′′+k′′′(idn′ ⊗Mν̄(0) ⊗ · · · ⊗Mν̄(k′′−1) ⊗

⊗
j∈img(ν)M

′
j)π′′ : n′′ → 1,

d′
π̃(0)

⊗ · · · ⊗ d′
π̃(m′′−1)

: m′′

Notes:

• P′0 ⊗ · · · ⊗ P′n′−1 are the redex primes that are mapped at this level (i.e., toPA); P0 ⊗ · · · ⊗ Pn−1 are the
redex primes that are mapped at deeper levels (i.e., insideMi’s). The permutationsπ andπ′ facilitates the
necessary reordering for placing the redex primes matched at this level as the firstn′ primes of the totaln′′

redex primes.

• Each of then′ redex primes matched at this level of the induction are on PDNF form and can thus be written
asP′i = mergeni+ki(idni ⊗ M

0
i ⊗ · · · ⊗Mki−1i )πi : li → 1, wherei is the index of the prime in question.

Here theidni represents sites at this level and theM0i ⊗ · · · ⊗ Mki−1i represents molecules that must be
matched at this level against molecules in the agent.

• The split condition on theν functions ensures that each molecule at top-level in the redex primes is ac-
counted for exactly once and that each molecule at top-levelin the agent is accounted for exactly once.

• Theνi functions determine how to match (top-level) nodes ofP′i to nodes ofPA.

• Theν̄i functions determine how to match (top-level) sites ofP′i to nodes ofPA.

• Theν function determines in which (top-level) nodes ofPA eachPi should be matched.

• The ν̄ function determines which remaining (top-level) nodes ofPA have not been matched by any part of
the redex.

•
(⊗

ν(j′)=i Pj′
)
,Mi

c
→֒Mi, id0 if the tensor product is empty, i.e., ifν−1(i) = {}.

• In total,Σi∈n′ki molecules in then′ redexes are matched directly against molecules in the agentat this level.

• If a moleculeM at this level in the agent is not matched against a molecule ora site in a redex at this level,
eitherM is matched against a molecule or a site at a deeper level in a redex orM is mathed by the context.

• The resulting parameter has outer widthm′′, which equals the number of sites in (the inner width of) the
redex.

MDNF Context Matching PR0 ⊗ · · · ⊗ PRn−1,M
A c
→֒MC, d
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Mctx
P0 ⊗ · · · ⊗ Pn−1, P

′ c→֒ P′′, d K is active orn = 0

P0 ⊗ · · · ⊗ Pn−1,KP
′ c→֒KP′′, d

The last two rules allow inferences of sentences of the formsMR,MA
r
→֒ d andPR, PA

r
→֒ d, respectively.

These rules serve to pinpoint explicitly which part of the agent are matched by a part of redex and which parts
serve as parameters.

MDNF Redex Matching MR,MA
r
→֒ d

Mrdx
P, P′

r
→֒ d

KP,KP′
r
→֒ d

Notes:

• This rule reads that an agent molecule with controlK matches a redex molecule with controlK′, resulting
in a parameterd, only if K = K′ and matching of the content of the agent molecule against thecontent of
the redex molecule results in the parameterd.

PDNF Redex Matching PR, PA
r
→֒ d

Prdx

ν : k→ k′ injective ∀j ∈ n : ν̄j : kj → k
′ injective img(ν) ⊎

⊎
j∈n img(ν̄j) = k′

∀j ∈ n : dj = merge0+k j(id0 ⊗M
′
ν̄j(0)

⊗ · · · ⊗M′
ν̄j(k j−1)

)id0 ∀i ∈ k : Mi,M
′
ν(i)

r
→֒ dn+i

d′0 ⊗ · · · ⊗ d′m−1 = d0 ⊗ · · · ⊗ dn+k−1 ∀j ∈ m : d′j prime

mergen+k(idn ⊗M0 ⊗ · · · ⊗Mk−1)π : m→ 1, merge0+k′(id0 ⊗M
′
0 ⊗ · · · ⊗M′

k′−1)id0 : 1
r
→֒ d′

π(0) ⊗ · · · ⊗ d′
π(m−1) : m

Notes:

• Here theν function specifies which molecules in the redex are matched against which molecules in the
agent.

• The three conditions on theν function and thēνj functions (j ∈ n, wheren is the number of sites at this
level in the redex) ensures that a molecule in the redex is either matched directly by a molecule in the agent
or is matched by a site at this level in the redex.

Lemma 2.13. For any discrete prime place graph expressionsPR andPA,

PR, PA
r
→֒ d iff PR : m→ 1, PA : 1, d : m is discrete, and� PA = PRd

Proof. See Appendix A.

Lemma 2.14. If id0, P
A c
→֒ PC, d then� PC = PA and� d = id0.

Proof. As n′′ = 0, we getn = n′ = k′′′ = 0 and k′′ = k; further, ν̄ is a permutation onk, and π′′ =
(id0 ⊗ id0)id

−1
0 = id0, so

PC = mergen′+k′′+k′′′(idn′ ⊗Mν̄(0) ⊗ · · · ⊗Mν̄(k′′−1) ⊗
⊗
j∈img(ν)M

′
j)π′′

= merge0+k(id0 ⊗M0 ⊗ · · · ⊗Mk−1)id0 = PA.

Finally, d = id0 is shown by induction on the inference tree height.

Lemma 2.15. For any discrete prime place graph expressionsPR0 , . . . , P
R
n′′−1, P

A we havePR0 ⊗ · · · ⊗ PRn′′−1, P
A

c
→֒ PC, d iff PR0 ⊗ · · · ⊗ PRn′′−1 : m

′′ → n′′, PC : n′′ → 1 is an active discrete prime expression,d : m′′ is discrete

expression, and� PA = PC(PR0 ⊗ · · · ⊗ PRn′′−1)d.

10



Proof. See Appendix A.

Theorem 2.16(Characterization of place graph expression matching). For any redexBR : m → n and place

graph expressionBA : n′′ we haveBRBA
c
→֒ BC, d iff BC : n → n′′ is active, d : m is discrete, and� BA =

BCBRd.

Proof. See Appendix A.

3 Matching of Binding Bigraphs

We begin this section by recalling the definition of binding bigraphs (Høgh Jensen and Milner, 2004) in Subsec-
tion 3.1. We then go on in Subsection 3.2 to present our analysis of binding bigraphs at the “semantic level”
and arrive at a binding discrete normal form theorem (Theorem 3.13), which is a generalization of Milner’s cor-
responding theorem for pure bigraphs (Milner, 2004a). The main technical novelties are that we generalize the
definition of ion and that we use name-discreteness as our notion of discreteness — name-discreteness and bind-
ing ions allow for arbitrary wiring ofboundedges and provide the basis for an inductive definition of normal
form. See Subsection 3.2.6 for more discussion of this issue. The semantic analysis is then used in the subsequent
Subsection 3.3 as the basis for a definition of binding bigraph expressions, a syntactic definition of normal form,
and sound and complete axioms for equality of binding bigraph expressions. It also contains a subsubsection with
a long list of examples of normal forms and their corresponding graphical representation. Finally, we present our
inductive characterization of matching of binding bigraphexpressions in Subsection 3.4 together with a worked
example of a derivation exemplifying most of the intricacies of the inference rules.

3.1 Definition of Binding Bigraphs

We recall the definition of binding bigraphs (Høgh Jensen andMilner, 2004).

Definition 3.1 (binding signature). A binding signature K is a set ofcontrols. For eachK ∈ K it provides
a pair of finite ordinals: thebinding arity arb(K) = h and thefree arity arf(K) = k. We write ar(K) =
arb(K) + arf(K).

Further, it determines a simplekind for K; K can beatomic or (for the non-atomic controls)activeor passive.
If K is passive thenh is 0. We writeK : kind(h → k) to mean thatK has kindkind, binding arityh and free arity
k. When we are not concerned with the kind part of the control, we writeK : h→ k .

Definition 3.2 (binding interface). A binding interface I = 〈m, loc,X〉, consists of awidth m, a finite set of
namesX, and alocality map loc : X → m ⊎⊥, which associates some of the names inX with a location inm;
if loc(x) = i ∈ m, we sayx is locatedat i or local to i. Whenloc(x) = ⊥ we sayx is global.

As is standard, for an interfaceI = 〈m, loc,X〉 we shall typically represent the locality map by a vector of
disjoint subsets~X = (X0, . . . ,Xm−1), whereXi is the set of names local toi ∈ m. If I is global, meaning that all
names inI are global, then we may writeI simply as〈m,X〉, or justm, if X = ∅, orX, if m = 0.

We call I prime if m = 1. In that case, we shall sometimes writeI as〈(X),Y〉 or just (X) if it is local, or
〈Y〉 if it is global.

We useǫ to denote the interface〈0, (),∅〉.

A binding bigraph will have two binding interfaces and will be a pairing of aplace graph as defined in
Definition 2.3, and alink graph following a simple structural requirement, thescope rule.

We start by briefly calling to mind the definition of link graphs.

Definition 3.3 (link graph). A (concrete) link graph G over a signatureK, is a tuple(V, E, ctrl, link) : X → Y
with finite sets of nodesV, edgesE, inner namesX, andouter namesY. As place graphs it has a control map
ctrl : V → K assigning controls to nodes. The functionlink : X ⊎ P → E ⊎Y mapspoints, i.e., inner namesX
and portsP = ∑v∈V ar(ctrlV) of G to links, i.e., outer namesY and edgesE.

We call a linkidle if it has no preimage underlink. An outer name is anopen link, and an edge is aclosed
link. A point is calledopen if its link is open, otherwise closed. Further, we call two distinct points on the same
link peers.
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The composition of two link graphsGi = (Vi, Ei, ctrli, linki) : Xi → Xi+1 (i ∈ {0, 1}) is defined when
V0 ∩ V1 = ∅ andE0 ∩ E1 = ∅; and is thenG1 ◦ G0

def
= (V, E, ctrl, Flink) : X0 → X2; whereV = V0 ⊎ V1,

E = E0 ⊎ E1, ctrl = ctrl0 ⊎ ctrl1, andlink = (idE0 ⊎ link1) ◦ (link0 ⊎ idP1).
The identity link graph atX is idX

def
= (∅,∅,∅, idX) : X → X.

The tensor product of two link graph interfacesX andY is just disjoint union,X ⊎ Y. Tensor product of
link graphsGi = (Vi, Ei, ctrli, linki) : Xi → Yi is simply the disjoint union of the underlying constituents
G0 ⊗ G1

def
= (V0 ⊎V1, E0 ⊎ E1, ctrl0 ⊎ ctrl1, link0 ⊎ link1) : X0 ⊗ X1 → Y0 ⊗ Y1.

Definition 3.4 (binding bigraph). A (concrete) binding bigraph G = (V, E, ctrl,GP,GL) : I → J over a
signatureK has aninner interface (or inner face) I = 〈m, locI ,X〉 and anouter interface (or outer face)
J = 〈n, locJ,Y〉. HereV, E andctrl are finite sets of nodes, edges, and a control mapctrl : V → K, exactly as
for link graphs.

The fourth componentGP = (V, ctrl, prnt) : m→ n is a place graph, while the fifthGL = (V, E, ctrl, link) :
X → Y is a link graph.

We require thatG adheres to thescope rulebelow.

Definition 3.5 (scope rule). Let thebinders of G be the binding ports of nodes inV and the local names of its
outer faceJ.

If p is a binder located at a node or rootw, then for all peersp′ of p, loc(p′) = w′ must implyw′ =
prntk

GP
(w), for somek > 0.

We say that a link isbound if it contains a binder, otherwisefree. As usual, we extend this terminology to the
points in the link. Binding bigraphsG : I → J are said to befree if its outer faceJ is global, i.e., the image oflocJ
is ⊥.

A binding bigraphG is given entirely by its underlying placeGP and link graphGL and its binding interfacesI
andJ. We writeG = 〈GP,GL〉 : I → J. We shall sometimes use a variant of the 5-tuple notation where we inline
the components unique to the place graph and link graph components, i.e.,G = (V, E, ctrl, prnt, link) : I → J.

Furthermore, we shall need notation for ports on nodes with binding controls to precisely specify concrete link
maps. For a nodev with controlK : b → f , we let pv0, . . . , p

v
f−1 denote the free ports ofv, andpv

(0)
, . . . , pv

(b−1)
denote the binding ports ofv.

Composition and tensor product of concrete binding bigraphs Gi = 〈GPi ,G
L
i 〉 : Ii → Ji are given by

composition and tensor product of their underlying place and link graphs, and by the tensor product of binding
interfaces. We have only to explain the latter: Tensor product of binding interfacesIi = 〈mi, ~Xi,Xi〉 is I0 ⊗ I1

def
=

〈m0 +m1, ~X0~X1,X0 ⊎ X1〉 (letting juxtaposition denote vector concatenation).
Hence, if the bigraphs above have disjoint node and edge sets, G1 ◦ G0

def
= 〈GP1 ◦ G

P
0 ,G

L
1 ◦ G

L
0 〉 : I0 → J1

is defined ifI1 = J0; andG1 ⊗ G0
def
= 〈GP1 ⊗ G

P
0 ,G

L
1 ⊗ G

L
0 〉 : I0 ⊗ I1 → J0 ⊗ J1 if the tensor products of the

interfaces are defined. (See Høgh Jensen and Milner (2004, Chapter 11) for more details.)
Not surprisingly, the identity for composition is given by apairing of the identities for composition for place

graphs and link graphs. IfI = 〈m, loc,X〉 thenidI
def
= 〈idm, idX〉 : I → I.

The identity for tensor isidǫ; thus, an iterated tensor productF0 ⊗ · · · ⊗ Fk−1 equalsidǫ in casek = 0.
We say that two concrete binding bigraphsG0 andG1 are lean-support equivalent, denotedG0 ≎ G1, iff

they differ only by a bijection between their nodes and theirnon-idle edges; idle edges are disregarded entirely.
Abstract binding bigraphs are≎-equivalence classes of concrete binding bigraphs. Composition, tensor and

identity of abstract binding bigraphs are given by composition, tensor and identity of the underlying concrete bi-
graphs. Taking interfaces as objects and abstract binding bigraphs as morphisms we have a well-definedcategory
of binding bigraphs.

We conclude this section by introducing some more properties and terminology for binding bigraphs. A
ground bigraph is a bigraph with inner faceǫ. We shall also refer to such a bigraph as anagent. A bigraph
G : I → J is calledprime, if I is local andJ is prime.

We shall need to consider and distinguish several forms ofdiscreteness, which we define below.

Definition 3.6 (Variants of discreteness).

• We say that a bigraph isdiscrete iff every free link is an outer name and has exactly one point.

• A bigraph isname-discreteiff it is discrete and every bound link is either an edge, or (if it is an outer name)
has exactly one point.

12



0 1

0. . .

Xn

n

Xn

. . .

m− 1. . .

Xp

p

Xp

m. . .

X0

0

X0

. . .

p. . .

Xn−1

n− 1
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Figure 5:1, join, andγ
m,n,(~X,~Z) (using the abbreviationp = m+ n− 1)

• A bigraph is inner-discrete iff every inner name has exactlyone peer.

Note that name-discrete implies discrete. Discreteness and name-discreteness share several nice properties.

Lemma 3.7. If A andB are discrete, thenA⊗ B, (Y)A, andAB are also discrete. The same holds for name-
discrete bigraphsA andB.

3.2 Binding Discrete Normal Form

3.2.1 Placings

To accommodate the local names introduced in binding bigraphs, we extend theplacingsalready introduced for
place graphs:

1 : ǫ → 1 a barren root,
join : 2→ 1 join two sites,

γm0,m1,( ~X0, ~X1)
: 〈m0 +m1, ~X0 ~X1,X0 ⊎ X1〉 → 〈m0 +m1, ~X1 ~X0,X0 ⊎ X1〉

swapm with n places preserving names.

Compared to the swap bigraph defined for place graphs,γ
m,n,(~X,~Z) lets a set of local names for each site follow

the site they stem from, in the only way allowed by the scope rule.
We shall continue to useπ to range overpermutations, placings generated by composition and tensor product

from γ
m,n,(~X,~Z).

For Ii = 〈mi, ~X
i
B,X

i
B ⊎ XF〉 (i ∈ {0, 1}) we define

γI0,I1
def
= γ

m0,m1,(
~X0B,

~X1B)
⊗ idXF .

We definemergei recursively fromjoin and1 as for placings.

3.2.2 Linkings

A linking is a (pure) link graphX → Y, that has no nodes. All linkings can be expressed in terms of the following
two kinds:

/x : x → ǫ closure,
y/X : X → y substitutionx 7→ y (for all x ∈ X).

A closure closes a single link. ForX = {x0, . . . , xk−1} andk > 0 we define a multiple closure/X
def
= /x0 ⊗

. . . ⊗ /xk−1. ForY = {y0, . . . , yk−1}, k > 0, and disjoint setsX0, . . . ,Xk−1 we define a multiple substition
~y/~X

def
= y0/X0 ⊗ . . . ⊗ yk−1/Xk−1. Note that a substitution need not be surjective (i.e., we allow X = ∅),

thus the dual of closure – name introductiony : ǫ → y – is a substitution. Arenaming is a bijective (multiple)
substitution, i.e., eachXi above is a singleton. Awiring is a bigraph with zero width (and hence no local names)
generated by composition and tensor of/x andy/X.

As in the work by Milner (2004a), we letω range over wirings,σ range over (multiple) substitutions andα
andβ range over renamings.
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3.2.3 Concretions

A simple concretion is a discrete prime which maps a setX of local inner names severally to equally named
global names.

pXq : (X) → 〈X〉 concretion.

Note that a special case of a simple concretion isid1 = p∅q.

0

. . .

X

0

X

Figure 6:pXq

3.2.4 Abstractions

An abstraction is a construction defined for every primeP, which localizes a subset of the global names ofP.
For every primeP : I → 〈(YB),Y〉, let

(X)P : I → 〈(YB ⊎ X),Y〉 abstraction onP,

whereX ⊆ Y \YB.
Note that the scope rule is necessarily respected since the inner face ofP is required to be local asP is prime.

Abstractions are in some sense the dual to concretions, and the axioms concerning abstraction and concretion
reflect this (see Table 1).

Using abstraction we can express concretions in the sense done by Høgh Jensen and Milner (2004). As we
will need them later, we introduce a special notation to distinguish such concretions from the simple ones. We
define a general concretionpYqX : 〈1, (X ⊎ Y),X ⊎ Y〉 → 〈1, (X),X ⊎ Y〉 in terms of a simple concretion and
abstraction aspYqX

def
= (X) pX ⊎Yq.

With the help of linkings we getlocal wirings — bigraphs that by composition can change the linkage of local
names. We define alocal renaming (for vectors of names~y and~x s.t. |~y| = |~x|) by (~y)/(~x)

def
= (~y)((~y/~x ⊗

id1)p~xq). We extend this notation to multiple substitutions, and define(~y)/(~X)
def
= (~y)((~y/~X ⊗ id1)pXq).

Just as plain substitutions can introduce idle global names, local substitutions can introduce idle local names
when their underlying global substitution is not surjective (e.g. as in(y)/(∅)).

We extend the naming convention for global renamings and substitutions, and letαloc andσloc range over
local renamings and substitutions, respectively. Further, towards stating the axioms succinctly, we shall need to
applya local substitutionσloc to a vector of namesets~X. Formally:

Definition 3.8 (Applying a local wiring). Let σlocu be the function underlyingσloc. Wlog. assume thatσloc =

(~u)/(~Z); thenσlocu = [. . . ,Z0i 7→ ui, . . . ,Z|Zi| 7→ ui, . . .].

Defineσloc(X) to be the imageσlocu (X).
We defineσloc(~X) as the vector of namesets resulting from applyingσloc pointwise to each set in~X.

We can generate all isomorphisms in the category of binding bigraphs using permutations, renamings, and
local renamings (cf. Høgh Jensen and Milner (2004, Proposition 9.2b)):

Proposition 3.9. Every binding bigraph isomorphism,ι : 〈m,~Z,Z ⊎ U〉 → 〈m, ~X,X ⊎ Y〉 (of widthm) may
be expressed in the following form

ι = (π ⊗ α)(ν0⊗ . . .⊗ νm−1 ⊗ idU)

where these requirements hold:

• m = |~X| = |~Z|,

• α : U → Y,

• ∀i ∈ m : νi = (~xi)/(~zi) for ~X = (x0, . . . , xm−1), and~Z = (z0, . . . , zm−1).
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3.2.5 Binding ion

For a non-atomic controlK : b → f ∈ K, let~y be a sequence of distinct names, and~X a sequence of sets of
distinct names, s.t.|~X| = b and|Y| = f .

Thebinding ion K
~y(~X) : 〈1, (X),X〉 → 〈1, (∅),Y〉 is a prime bigraph with a single node of controlK with

free ports linked severally to global outer names~y, and each binding porti ∈ b linked to all local inner names in
Xi.

K
~y(~X) : (X) → 〈Y〉 a binding ion

0

y0 . . . y f−1

K

0

X0 . . . Xb−1

Figure 7: A binding ion

Figure 7 shows an (abstract) binding ion.
This definition of binding ion is a straightforward generalization of thefree discrete iondefined by Høgh

Jensen and Milner (2004, Chapter 11). We can recapture the latter by requiring every set inX to be a singleton.
When~X = ({x0}, . . . , {xb−1}), we overload our notation and writeK~y(~x) to mean a free discrete ion.

It is useful to take the slightly more complex binding ion as aconstant, when stating the axioms and proving
completeness of the derived theory. For a further discussion on this topic, see Section 3.2.6.

As a derived form we definemoleculesfor binding bigraphs.

Definition 3.10. For any name-discrete primeP : I → 〈1, (X),X ⊎ Z〉 and ionK
~y(~X), we define afree discrete

moleculeas

(K
~y(~X) ⊗ idZ)P : I → 〈1, (∅),Y ⊎ Z〉

Note that even though we use the more general binding ion in the definition above, our definition of free
discrete molecules are equal to the one given by Høgh Jensen and Milner (2004, Chapter 11), in the sense that it
covers the same set of bigraphs.

As P is discrete and prime it is easily seen thatM is also discrete and prime. In fact,

Proposition 3.11. A free discrete molecule is a name-discrete, prime bigraph with a single outermost node.

This relies on the fact that both name-discreteness and discreteness is preserved under composition and tensor
(Lemma 3.7). Further, every free discrete bigraph is also name-discrete.

Vice versa,

Proposition 3.12. Any free discrete prime bigraph with a single outermost nodeis a free discrete molecule.

3.2.6 Binding discrete normal form

In this section we present our binding discrete normal form theorem. It is used in the following section as a
basis for the definition of binding bigraph expressions and for a corresponding syntactic normal form theorem.
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Our discrete normal form theorem is based on name-discreteness rather than simply discreteness, as in Milner’s
corresponding normal form theorem for pure bigraphs. The reason we use name-discreteness here is that simple
discreteness is not preserved under abstractions and concretions, as needed forbindingbigraphs. Indeed, consider
a discrete bigraphD with width n. Thn (

⊗
i<npXiq)D is not discrete, ifD is not name-discrete. Given a

nondiscrete primeP : I → 〈(X),X ⊎Y〉, (Y)P : I → (X ⊎Y) is discrete. Our use of name-discreteness allows
us to impose nearly the same level of constraints on local linkage and on global linkage. As a consequence, it
is easy to verify that both abstraction and composition withconcretions preserves both name-discreteness and
non-name-discreteness. Name-discreteness still allows arbitrary wiring of boundedges, though. Exactly for that
reason, we have chosen to take the binding ion as a constant inour term language. Syntactically, this allows us to
restrict the usage of substitutions and to define a simple inductive property that characterizes name-discreteness.
We simply use the binding ion, and the fact that it is not inner-discrete to add arbitrary bound linkage.

We proceed by defining four forms of binding bigraph expressions that generate all binding bigraphs up to
certain specified isomorphisms. Based on the considerations above, the normal form is based on name-discrete
forms.

Theorem 3.13(binding discrete normal form).

1. Any free discrete moleculeM : I → 〈1, (∅), y⊎ Z〉 can be expressed as

M =
(
K

~y(~X) ⊗ idZ

)
P

whereP : I → 〈1, (X),X⊎ Z〉 is a name-discrete prime.

Any other such expression forM takes the form

(
K

~y(~X′)
⊗ idZ

)
P′

where the following requirements hold:

• there exists a local renamingαloc : (X′) → (X) s.t.K
~y(~X)α

loc = K
~y(~X′)

, and

• P = (αloc ⊗ idZ)P
′.

2. Any name-discrete primeP : I → 〈1, (YB),Y〉 may be expressed as

P = (YB)
((
mergen+k⊗idY

)
((α0 ⊗ id1)pX0q⊗ . . .⊗ (αn−1 ⊗ id1)pXn−1q⊗M0 ⊗ . . .⊗Mk−1) π

)

where everyMi : Ji → 〈1, (∅),YMi 〉 is a free discrete molecule, everypXiq is a simple concretion, andπ
is a permutation.

The renamingsαi have the interfaces :Xi → Y
C
i , where

⊎
i∈nY

C
i ⊎

⊎
YMi = Y

Any other such expression forP takes the form

(YB)
((
mergen+k⊗idY

) (
(α′0 ⊗ id1)pX

′
0q⊗ . . .⊗ (α′n−1⊗ id1)pX

′
n−1q⊗M

′
0 ⊗ . . .⊗M

′
k−1

)
π′
)

where the following requirements hold:

• There exist permutationsρ, ρi (i ∈ k), ρ′, s.t.

– (α′0 ⊗ id1)pX
′
0q = (αρ(0) ⊗ id1)pXρ(0)q

– M′
i = Mρ(i)ρi,

– (id(X′
0)
⊗ . . .⊗ id(X′

n−1)
⊗ ρ0 ⊗ . . .⊗ ρk−1)π′ = ρ′π.

• Furthermore, let~l denote the vector of inner widths of the product
((α0 ⊗ id1)pX0q⊗ . . .⊗ (αn−1⊗ id1)pXn−1q⊗M0 ⊗ . . .⊗Mk−1), let ~X′ = (X′

0, . . . ,X
′
k−1), and

let ~X = (X0, . . . ,Xn−1).

Thenρ′ is determined uniquely byρ,~l, ~X, and ~X′ asρ′ = ρ~l,~X′~X
as defined in Lemma 3.15.
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3. Any name-discrete bigraphD (of outer widthn) can be expressed as

D = ((P0 ⊗ . . .⊗ Pn−1) π) ⊗ α

where everyPi is a name-discrete prime,α is a renaming, andπ is a permutation.

Any other such expression ofD takes the form

((
P′0 ⊗ . . .⊗ P

′
n−1

)
π′
)
⊗ α

where there exists permutationsρi, (i ∈ n), s.t.P′i = Piρi, and(ρ0 ⊗ . . .⊗ ρn−1)π′ = π.

4. Any bigraphG : I → 〈n,~YB,YB ⊎YF〉 can be expressed as

G =

(
⊗

i<n

(~yi)/(~Xi) ⊗ ω

)
D

whereD : I → 〈n, ~X,X ⊎ Z〉 is name-discrete,ω : Z → YF is a wiring, and
⊗
i<n(~yi)/(~Xi) : (~X) →

(~YB) is a local substitution of widthn on the bound names ofD.

Any other such expression ofG takes the form

(
⊗

i<n

(~yi)/( ~X′
i) ⊗ ω′

)
D′

where there exists a renamingα s.t. ω′ = ωα, and n local renamingsαloci : (~X′
i) → (~Xi), s.t.

(
⊗
i<n(~yi)/(~Xi))

⊗
i<n αloci = (

⊗
i<n(~yi)/( ~X′

i)), and
(⊗
i<n αloci ⊗ α

)
D′ = D.

Furthermore, for every class of expressions the given BDNF-expression is well defined and generatesonly bi-
graphs of the appropriate type.

See Damgaard and Birkedal (2005) for a proof of the theorem.

3.3 Binding Bigraph Expressions and Axioms

The set ofbinding bigraph expressionsis defined as the smallest set of expressions built by composition, tensor
product and abstraction (on primes) from identities and theconstants we have just introduced:

1 join γm0,m1,( ~X0, ~X1)
/x y/X pXq K

~y(~X)

Each expression has two interfaces of the form〈m, ~X,Y〉 which determines when tensor product, composition,
and abstraction are well defined. As for place graph expressions the interface for an expression can be determined
by induction. Similarly, we can determine the binding bigraph denoted by an expression by induction. As usual,
we write� E = F to mean that the expressionE = F is valid; and⊢ E = F if the equation isprovable.

Milner (2004a) stated and proved a set of axioms complete forpure bigraph expressions. We extend that result
and prove the set of axioms in Table 1 complete for binding bigraph expressions
Note that, as tensor product is defined only when name sets of the interfaces are disjoint, and as abstraction is

defined only on prime bigraphs with the abstracted names in the outer face, we only require the equations to hold
when both sides are defined.

Below, we shall prove this set of axioms complete for the category of abstract binding bigraphs. We build
upon the work on aximatizing pure bigraphs published by Milner (2004a). Principally, we have extended the set
with 5 new axioms concerned with binding. We have, however, also altered Milner’s axioms for ions, because
ions in binding bigraphs have names on both faces. The remaining axioms are straight transfers (or very minor
adjustments in the case of swap bigraphs).
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Categorical axioms
(C1) AidI = A = idJA (A : I → J)
(C2) A(BC) = (AB)C
(C3) A⊗ idǫ = A = idǫ ⊗ A
(C4) A⊗ (B⊗ C) = (A⊗ B)⊗ C
(C5) idI ⊗ idJ = idI⊗J
(C6) (A1 ⊗ B1)(A0 ⊗ B0) = (A1A0)⊗ (B1B0)
(C7) γI,ǫ = idI
(C8) γJ,IγI,J = idI⊗J
(C9) γI,K(A⊗ B) = (B⊗ A)γH,J (A : H → I, B : J → K)

Global link axioms
(L1) x/x = idx

(L2) /y ◦ y/x = /x
(L3) /y ◦ y = idǫ

(L4) z/(Y ⊎ y) ◦ (idY ⊗ y/X) = z/(Y ⊎ X)

Global place axioms
(P1) join(1⊗ id1) = id1
(P2) join(join⊗id1) = join(id1 ⊗ join)
(P3) joinγ1,1,(∅,∅) = join

Binding axioms
(B1) (∅)P = P
(B2) (Y)pYq = id(Y)

(B3) (pXqZ ⊗ idY)(X)P = P (P : I → 〈1, (Z),Z ⊎ X ⊎Y〉
(B4) ((Y)(P))⊗ idXG = (Y)(P⊗ idX)G
(B5) (X ⊎Y)P = (X)((Y)P)

Ion axioms
(N1) (id1 ⊗ α)K

~y(~X) = K
α(~y)(~X)

(N2) K
~y(~X)σloc = K

~y(σloc(~X))

Table 1: Axioms for binding bigraphs
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3.3.1 Preliminaries

Lemma 3.14(Wiring commutes with all binding bigraph expressions). For all bigraph expressionsG : I0 → I1
(whereI0 = 〈m,~Z,Z ⊎U〉 and I1 = 〈n, ~X,X ⊎Y〉), and for all wiringsω : 〈0, (),Y0〉 → 〈0, (),Y1〉 = J0 → J1

⊢ G⊗ ω = ω ⊗ G

Lemma 3.15(The push-through lemma). For primesPi where

Pi : 〈mi, ~Xi,Xi〉 → 〈1, (YBi ),Y
B
i ⊎Y

F
i 〉,

and π : 〈n, ~YB,Y〉 → 〈n,π( ~YB),Y〉

and

YF =
⊎

i<n

YFi ,
~YB = (YB0 , . . . ,Y

B
n−1),

Yi = Y
B
i ⊎Y

F
i , Y =

⊎

i<n

Yi,

Xi =
⊎

j<mi

(~Xi)j, ~X = (X0, . . . ,Xn−1).

There exists a permutationπ
m,~X

which depends solely onπ,m, and~X, s.t.

⊢ π ◦ (P0⊗ . . .⊗ Pn−1) = (Pπ−1(0) ⊗ . . .⊗ Pπ−1(n−1)) ◦ π
m,~X

We extend the place merging constructionmerge to local interfaces.

Definition 3.16. Let bmerge(X0,X1) thebindingmerge bigraph be defined as

bmerge(X0,X1)
def
= (X0 ⊎ X1)((merge⊗idX0⊎X1) ◦ (pX0q⊗ pX1q))

We also define an inductive derived formbmerge
m,~X

bmerge0,()
def
= 1

bmergem,~X
def
= bmerge(X′,Xm−1)

◦ (bmerge
m−1,~X′ ⊗ idXm−1)

where ~X = (X0, . . . ,Xm−2,Xm−1),

~X′ = (X0, . . . ,Xm−2),

X =
⊎

i<m

Xi,

X′ =
⊎

i<m−1

Xi.

We proceed by stating a few useful properties ofbmerge(X0,X1).

Lemma 3.17.

⊢ bmerge(X1,X0) ◦ γ1,1,(X0,X1) = bmerge(X0,X1),

⊢ bmergem,π(~X) ◦ π = bmergem,~X,

⊢ bmergek,~X ◦ (
⊗
i<k bmergemi,~Xi

) = bmergem,~X,

where in the last equationm = ∑i<kmi and~X = ~X0 . . . ~Xk−1.
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3.3.2 PlaceL id
expressions

We define the subclassPlaceL id
of bigraph expressions as all expressions in the term language, which are gen-

erated by identities,◦, and⊗ from bmerge
m,~X

andγI,J . ThusPlaceL id
consists of all place bigraph expressions

extended only with identies on local names. (Recall that special cases ofbmerge
m,~X

instantiate to elements1 and
merge.)

We aim to prove that the theory is complete forPlaceL id
expressions.

Note that, in a strict symmetric monoidal category the categorical axioms are known to be complete for◦ and
⊗ of the symmetriesγI,J - hence the theory is complete for permutations.

We start by showing a normal form forPlaceL id
expressions.

Lemma 3.18(Normal form forPlaceL id
expressions). For everyPlaceLid

expressionE

⊢ E = (bmerge
m0, ~X0

⊗ . . .⊗ bmerge
mk−1, ~Xk−1

) ◦ π

for somek ≥ 0 and permutation expressionπ s.t. the composition is well defined.

Now we are ready to state completeness forPlaceL id
expressions.

Lemma 3.19(Completeness forPlaceL id
expressions). If ⊢ E =

⊗
i<k bmergemi,~Xi

◦ π and

⊢ F =
⊗
j<l bmergenj,~Yj

◦ π′ and|= E = F, then⊢ E = F.

3.3.3 LinkG expressions

We consider next the class of global link expressions, thosebigraph expressions generated by closure and substi-
tution. We will refer to this collection of expressions asLink G. Note, that we have transfered exactly the global
link constructs used by Milner (2004a).

As we also have the exact same axioms for global link expressions, it is easily seen that we can straightfor-
wardly adapt also the proof that the axiomatic theory (for the binding bigraph term language) is complete for
global link expressions.

Proposition 3.20(Link completeness). The theory is complete for link expressions.

3.3.4 A syntactic analogue of name-discreteness

We definelinearity for binding bigraph expressions:

Definition 3.21(Linearity). A binding bigraph expression is linear iff it contains only wiring of the formaty/x.

In other words, in linear expressions all substitutions arerenamings – an inductive property with respect to
the term language, which we will utilize to full effect in thefollowing sections. We shall see that any name-
discrete bigraph has a linear expression.

Having establish linearity, we can proceed along the same lines as set out by Milner (2004a) using structural
induction as our governing proof principle.

We start by establishing a few basic properties of linear expressions.

Lemma 3.22. If E is linear, then⊢ E = E′ ⊗ α, for someE′ andα with E′ linear with local innerface.

Lemma 3.23. If E : 〈m, ~U,U〉 → 〈n,~Y,Y ⊎V〉 is linear with local innerface, then

⊢ E ◦
⊗

i<m

(~ui)/(~Zi) = (
⊗

i<n

(~yi)/(~Xi) ⊗ idV) ◦ E′,

for ~yi, ~Xi, andE′ with E′ linear with local innerface.

We shall use the following lemma to help show completeness for ionfree expression in the following section.
Importantly, it also constitutes a step toward a syntactic normal form for all expressions, analogous to the normal
form we established in Theorem 3.13.

Proposition 3.24(Underlying linear expression). For any expressionG denoting a bigraph of outer widthn, there
exists a wiringω, a linear expressionE, and a local renaming

⊗
i<n(~yi)/(~Xi), s.t.

⊢ G = (
⊗

i<n

(~yi)/(~Xi) ⊗ ω) ◦ E
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3.3.5 Ionfree expressions

With the help of the following lemmas, as a corollary of the established properties for linear expressions, we find
that the theory is complete for ionfree bigraphs expressions.

Lemma 3.25. If E = E1 ◦ E2 is linear, ionfree, and with local inner and outer face, thenE1 andE2 are also linear
and ionfree with local inner and outer face.

Same forE = E1 ⊗ E2.

Lemma 3.26. If E is linear and ionfree of widthn with local inner and outer face, then⊢ E =
⊗
i<n(~yi)/(~xi) ◦

GP, whereGP ∈ PlaceLid
.

Lemma 3.27. If E is linear and ionfree, then there exists conretionsE′, andα s.t.⊢ E = (
⊗
i<npXiq

Zi ◦ E′)⊗ α,
with E′ linear and ionfree and local inner and outer face.

Lemma 3.28(A normal form for ionfree expresssions). For all ionfree epxressionsG of widthn

⊢ G = ωg ⊗

(
⊗

i<n

(Yi)
(
(ωli ⊗ id1) ◦ pXiq

))
◦ GP.

whereGP ∈ PlaceLid
.

With the help of the lemmas above, we have established a normal form for ionfree expressions based on
PlaceL id

expressions andLink G expressions with necessary abstractions and concretions.Completeness for
ionfree expressions follows easily.

Corollary 3.29 (The theory is complete for ionfree expressions).

3.3.6 Syntactic Normal Form

Corresponding to the four classes of normal forms in Theorem3.13 we define four classes of syntactic normal
forms for binding bigraph expressions:

Definition 3.30(syntactic binding discrete normal form (BDNF)).

MDNF M ::= (K
~y(~X) ⊗ idZ)P

PDNF P ::= (Y)
((
mergen+k⊗idY

)
(
⊗
i<n((αi ⊗ id1)pXiq) ⊗

⊗
i<kMi) π

)

DDNF D ::= ((P0⊗ . . .⊗ Pn−1)π) ⊗ α

BDNF B ::= (
⊗
i<n(~yi)/(~Xi) ⊗ ω)D.

We omit the proofs for the following lemmas, which go by mathematical induction on the number of ions.
As we have established completeness for ionfree expressions, we have the base case. The inductive steps are
analogous to the proofs for the similar lemmas for pure bigraphs (Milner, 2004a, Lemma 5.11).

Lemma 3.31(All BDNF forms are closed under composition with isos).

We also need thatDBDNF expressions are closed under composition.

Lemma 3.32(DBDNF is closed under composition). For all composableDBDNF’s C,D, there exists aDBDNF D′,
s.t.⊢ D ◦ C = D′.

Now we state formally the proposition that establishes the correspondence between our semantic normal form
and the syntactic normal form above. Also, we formally statethat linearity is, in fact, a syntactic correspondent to
name-discreteness (item 3 in the following proposition):

Proposition 3.33(provable normal forms). LetE be a linear expression, andG any expression.

1. If E denotes a discrete free molecule, then⊢ E = M for someMDNF.

2. If E denotes a name-discrete prime, then⊢ E = P for somePDNFP.

3. ⊢ E = D for someDDNF D.
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4. ⊢ G = B for someBDNF B.

We are now able to state the formal completeness proposition, using our results for linear expressions to bridge
the gap to the full binding bigraph term language.

The proofs are similar to the ones for pure bigraph expressions (Milner, 2004a, Prop. 5.13 and Theorem 5.14),
as we have laboured to establish properties, forms, and axioms that allow us similar manipulations.

Proposition 3.34(Linear completeness). If E andE′ are linear expressions andE = E′, then⊢ E = E′.

Theorem 3.35(soundness and completeness). For all binding bigraph expressionsE andF, � E = F iff ⊢ E = F.

3.3.7 Examples of Syntactic Normal Forms

In this section we present a series of examples of binding bigraphs and their syntactic normal form. They will
be used subsequently in the following section on matching. To ease readability, we write1 to mean(∅)((id∅ ⊗
merge0)idǫidǫ); identity permutations are omitted, and whenever clear from the context, we omit the interfaceI
from idI .

MA5 = (Q[y4]
⊗ id∅)1,

MA4 = (P[e4,y3]
⊗ id∅)1,

MA3 = (O[y22,y
2
1,o3]

⊗ id∅)1,

MA2 = (N[e1,e2,y11]
⊗ id∅)1,

PA2 = (∅)(merge2⊗id)(MA2 ⊗MA3 ),
MA1 = (M[e3,y12]

⊗ id∅)PA2 ,

PA1 = (∅)(merge1⊗id)MA1 ,
MA0 = (L[z11,z

2
1,l
3,l4]

⊗ id∅)PA1 ,

PA0 = ({y3, y4, z
1
1, z
2
1})(merge3⊗id)

(
MA4 ⊗MA5 ⊗MA0

)
,

BA =
(
/{e1, e2, e3, e4} ⊗ /{o3, l3} ⊗ /{l

4, y12, y
2
2} ⊗ y1/{y

1
1, y
2
1}︸ ︷︷ ︸

ω

⊗ (y3, y4, z)/({y3}, {y4}, {z
1
1, z
2
1})︸ ︷︷ ︸

σloc

)
◦
(
(PA0 ) ⊗ id

)

These terms are illustrated in Figures 8–12.

0

y4

Q 0

e4 y3

P 0

y22 y21 o3

O

Figure 8:MA5 ,MA4 , andMA3

PR2 = (∅)
(
(merge1⊗id{e1,e2,y1,y

2
2}

)(((y1/x3 ⊗ y
2
2/x4) ⊗ id1)p{e

1, e2, x3, x4}q)id
)
,

MR2 = (M[e3,y12]
⊗ id{e1,e2,y1,y

2
2}

)PR2 ,

MR1 = (P[e4,y3]
⊗ id)1,

PR1 = ({y3, y4})
(
(merge2⊗id)(MR1 ⊗ ((y4/x5 ⊗ id1)p{x5}q))id

)
,

PR0 = ({y12, y
2
2})
(
(merge1⊗id)MR2 id

)
,

BR =
(
(id{y1} ⊗ /{e})(e, y1/{e

1, e2, e3, e4}, {y1})⊗

(y2)/({y
1
2, y
2
2}) ⊗ (y3, y4)/({y3}, {y4})

)
(
id⊗ ((PR0 ⊗ PR1 )id)

)
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Figure 10:PA2 , PA1 = MA1

0

z11 z
2
1 l

3 l4 e3 y12 y
2
2 y

2
1
o3 e1 e2 y

1
1

L

M

O N

Figure 11:MA0
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Figure 12:PA0
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PC0 = (∅)
(
(merge1⊗id)((id⊗ id1)p∅q)id

)
,

MC0 = (L[z11,z
2
1,l3,l4]

⊗ id)PC0 ,

PC1 = ({z11, z
2
1, y3, y4})

(
(merge2⊗id)((id⊗ id1)p{y3, y4}q⊗M

C
0 )π

)
,

BC =
(
(y1/y1 ⊗ /{o3, l3} ⊗ /{l4, y2}) ⊗ (y3, y4, z/({y3}, {y4}, {z

1
1, z
2
1}))

)
(
id{o3,y1} ⊗ (PC1 idid)

)

whereπ swaps two holes .

d00 = (id⊗ (x5)/({y4}))({y4})
(
(merge1⊗id)((Q[y4]

⊗ id∅)1)id
)
,

PD0 = (∅)
(
(merge2⊗id)((N[e1,e2,y11]

⊗ id∅)1⊗ (O[y22 y
2
1,o3]

⊗ id∅)1)id
)
,

D0 =
(
o3/o3 ⊗ (e1, e2, x3, x4)/({e

1}, {e2}, {y11, y
2
2}, {y

2
1})
)
PD0 ,

D = D0 ⊗ d
0
0

3.4 Matching of Binding Bigraph Expressions

In this section we present our inductive characterization of matching of binding bigraph expressions by means
of inference rules. They follow the same overall structure as for matching of place graph expressions. The main
technical complication for matching of binding bigraph expressions is that we have to ensure that all links in an
agent are accounted for either in the context or in the redex.The accounting is done with the help of a mapλ,
which, at each level in the matching derivation, maps links in the agent to links in the context or the redex. Several
of the inference rules contain side-conditions relating toλ; they express how theλ mappings for subderivations
combine to aλ mapping for a whole derivation. The actual conditions relate, of course, to the wiring and renaming
present in the agent and redex. In the following we use the notation n

i=0 and ν(i)=k, which is defined as
⊗n
i=0

and
⊗

ν(i)=k, using|| instead of⊗.
We now present the rules along with associated notes. The rules are slightly complicated, so we urge the reader

to also look at (1) the following lemmas and theorems, which qua soundness and completeness statements express
the key invariants to keep in mind, and (2) the example in the following subsection.

Top-level BDNF/DDNF Matching BR, BA →֒ BC, d,Z
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B

∀i ∈ n :Wi = {~Wi} ∀i ∈ n : Pi : 〈mi, ~Xi〉 → 〈(Wi),Wi ⊎Ui〉 U =
⊎
i∈nUi ω : U → Y

ω = (idY ⊗ /Ȳ)~y/~V V̄ = U \ ω−1(Y) ∀i ∈ n : ωi : Ui → Yi ∀i ∈ n : ωi = ~y/~V ↾ Ui

∀i ∈ n′ :W ′
i = {~W ′

i } ∀i ∈ n′ : P′i : 〈(W
′
i ),W

′
i ⊎U

′
i〉 W ′ =

⊎
i∈n′W

′
i U′ =

⊎
i∈n′ U

′
i

ω′ : U′ → Y′ ∀i ∈ n′ :W ′′
i = {~W ′′

i } W ′′ =
⊎
i∈n′W

′′
i U′′ = λ(U′) \ V̄ ω′′ : U′′ → Y′

λ :W ′ ⊎U′−→W ′′ ⊎U′′ ⊎Y ⊎ Ȳ ⊎ Z mapping(λ,ω,ω′, V̄,U′,W ′
ij) ∀i ∈ n′ : λi = λ ↾W ′

i ⊎U
′
i

ω′′ = {λ(u′) 7→ ω′(u′) | u′ ∈ U′ ∧ λ(u′) ∈ U′′} ν : n−→ n′

∀i′ ∈ n′ : Ŷi′ =
⋃

ν(i)=i′ Yi ∀i′ ∈ n′ : Bi′ =
(
id
Ŷi′

⊗ π′
i′

)
ν(i)=i′(ωi ⊗ (~yi)/(~Wi))Pi

∀i′ ∈ n′ : λi′ , Bi′ , P
′
i′
c
→֒ P′′i′ : Ii′ → 〈(W ′′

i′ ),W
′′
i′ ⊎U

′′
i′ 〉, di′,Zi′

∀i ∈ n′ : ~W ′
i = [W ′

i0, . . . ,W
′
iki

] ∀i ∈ n′ : ~W ′′
i = [W ′′

i0, . . . ,W
′′
iki

] ∀i ∈ n′, j ∈ ki :W
′′
ij = λ(W ′

ij)

Z =
⊎
i∈n′ Zi d′0 ⊗ · · · ⊗ d′m−1 = d0 ⊗ · · · ⊗ dn′−1 ∀i ∈ m : d′j prime

~m = [m0, . . . ,mn−1] π̃ = (π̄ν
~m)−1π

(
ω ⊗ (~y0)/(~W0) ⊗ · · · ⊗ (~yn−1)/(~Wn−1)

)(
ǫ ⊗ ((P0⊗ · · · ⊗ Pn−1)π)

)
: 〈m, ~X〉 → 〈n,~Y, {~Y} ⊎Y〉,(

ω′ ⊗ (~y′0)/(
~W ′
0) ⊗ · · · ⊗ (~y′n′−1)/(

~W ′
n′−1)

)(
ǫ ⊗ ((P′0⊗ · · · ⊗ P′n′−1)id0)

)
: 〈n′,~Y′, {~Y′} ⊎Y′〉

→֒
(
ω′′ ⊗ (~y′0)/(

~W ′′
0 ) ⊗ · · · ⊗ (~y′n′−1)/(

~W ′′
n′−1)

)(
idZ⊎Y ⊗ ((P′′0 π′

0 ⊗ · · · ⊗ P′′n′−1π
′
n′−1)πν)

)

: 〈n,~Y, {~Y} ⊎Y ⊎ Z〉 → 〈n′,~Y′, {~Y′} ⊎Y′〉

d′
π̃(0)

⊗ · · · ⊗ d′
π̃(m−1)

: 〈m, ~X, {~X} ⊎ Z〉,

Z

wheremapping(λ,ω,ω′, V̄,U′,W ′
ij) is a relation defining the constraints onλ, given by

∀u1, u2 ∈ U
′ : ω′(u1) 6= ω′(u2) ⇒ λ(u1) 6= λ(u2)

∀i1, i2 ∈ n
′, j1 ∈ ki1 , j2 ∈ ki2 ,w1 ∈W

′
i1 j1
,w2 ∈W

′
i2 j2
: i1 6= i2 ⇒ λ(w1) 6= λ(w2)

∀u′1, u
′
2 ∈ U

′ : ω′(u′1) = ω′(u′2) ∧ λ(u′1) ∈ Ȳ ⇒ ω′(u′1) /∈ Y
′ ∧ λ(u′2) = λ(u′1).

The first two constraints ensure that two distinct links inBA are not merged inBC—this makesω′′ and
⊗n′−1
i=0 (~y′i)/(

~W ′′
i ) well-defined. The last ensures that internal edges inBR are matched with internal edges inBA.

Notes:

• V̄ contains the points of internal free edges ofBR.

• Ûi′ contains all global outer names for redex primes matched inPi′.

• For j /∈ img(ν), we will getP′′j = P′j , dj = id0 andZj = {}, due to the following rules.

• We must account for all the links in the agent; some of them mayend up in the context, others occur in the
redex. Considering the outermost wiring of the agent, the context, and the redex,λ maps the inner names of
the agent wiring to either an inner name of the context wiringor a link of the redex wiring. The conditions
onλ, expressed by themapping relation ensure that points in the agent that are linked together are mapped
to points that are linked together similarly.

PDNF Context Matching λ, (ω0 ⊗ (~y0)/(~X0))P
R
0 || · · · || (ωn−1⊗ (~yn−1)/(~Xn−1))P

R
n−1, P

A c
→֒ PC, d,Z
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Pctx

(idY ⊗ π′)
((

i∈n′(ω′
i ⊗ (~y′i)/(

~W ′
i ))P

′
i

)
|| i∈n(ωi ⊗ (~yi)/(~Wi))Pi

)
π = i∈n′′(ω′′

i ⊗ (~y′′i )/(
~W ′′
i ))P′′i

∀i ∈ n : ωi : Ui → Yi ∀i ∈ n′ : ω′
i : U

′
i → Y

′
i Y′ =

⊎
i∈n′ Y

′
i

~Y′ = [~y′0, . . . ,~y
′
n′−1]

∀i ∈ n′ : P′i = (W ′
i )
(
(mergeni+ki ⊗id)((α0i ⊗ id1)pX

0
i q⊗ · · · ⊗ (α

ni−1
i ⊗ id1)pX

ni−1
i q

⊗M0i ⊗ · · · ⊗Mki−1i )πi
)
: 〈li, ~X

′
i , {

~X′
i}〉 → 〈(W ′

i ),W
′
i ⊎U

′
i〉

∀i ∈ k : Mi : 〈Vi〉 ∀i ∈ n′, j ∈ ki : M
j
i : 〈m

ni+j
i , ~X

ni+j
i , {~X

ni+j
i }〉 → 〈V

j
i 〉 V =

⊎k−1
i=0 Vi

∀i ∈ n : Pi : 〈mi, ~Xi, {~Xi}〉 → 〈(Wi),Wi ⊎Ui〉

split(k, k′′, k′′′, ki, νi, ν̄i, ν, ν̄, ni, n, n
′) Vc = (

⊎
i∈ν̄(k′′) Vi) ⊎ (

⊎
i∈img(ν)V

′
i ) ⊎

⊎
i∈n′{~y

′
i}

∀i ∈ n′ : ~W ′
i = [W ′

i0, . . . ,W
′
ipi

] ∀i ∈ n′ : ~y′i = [y′i0, . . . , y
′
ipi

]

∀i ∈ n′, j ∈ ki : λ
r
νi(j)
: Vνi(j)

−→V
j
i

∀i ∈ n′, j ∈ ki, v
A ∈ Vνi(j)

, j′ ∈ pi : λ(vA) = α′i(y
′
ij′) ⇔ λr

νi(j)
(vA) ∈W ′

ij′

∀i ∈ n′, j ∈ ki, v
A ∈ Vνi(j)

: λ(vA) ∈ Y′ ⇔ (ω′
iλ
r
νi(j)

)(vA) = λ(vA)

∀i ∈ n′, j ∈ ki, v
A ∈ Vνi(j)

: λ(vA) ∈ Z ⇔ λr
νi(j)

(vA) = λ(vA)

W ′′ = λ(W ′) U′′ = λ(U′) ∀i ∈ n′, j ∈ ni : V̄
j
i =

⊎
ν̄i(j

′)=jVj′

∀i ∈ k′′ : λ
∣∣
Vν̄(i)

= id ∀i ∈ n′, j ∈ ni : β
j
i : V̄

j
i \W

j
i → Z

j
i ∀i ∈ n′, j ∈ ni : β

j
i = λ

∣∣
V̄
j
i \W

j
i

∀i ∈ n′, j ∈ ni,w ∈W
j
i , j

′ ∈ qi : w ∈W
j
ij′
∧ α
j
i

(
y
j
ij′

)
= v

⇒ (v ∈W ′
ii′ ∧ α′i(y

′
ii′) = λ(w)) ∨ (v ∈ U ′

i ∧ ω′
i(v) = λ(w))

λci = λ
∣∣
Vi

∀i ∈ n′, j ∈ ki : λ
r
νi(j)
,M
j
i ,Mνi(j)

r
→֒ d

ni+j
i ,Z

ni+j
i

∀i ∈ n′, j ∈ ni : d
j
i =

(
β
j
i ⊗ (~y

j
i)/(

~W
j
i )
)

(
(W
j
i )
(
(merge

0+|ν̄−1i (j)|⊗ id
V̄
j
i

)(
⊗

ν̄i(j
′)=jMj′)id0

))
id0 : 〈(X

j
i ),X

j
i ⊎ Z

j
i 〉

∀i ∈ n′, j ∈ ni : ~W
j
i = [W

j
i0, . . . ,W

j
iqi

] ∀i ∈ n′, j ∈ ni : ~y
j
i = [y

j
i0, . . . , y

j
iqi

]

∀i ∈ n′ : d′0i ⊗ · · · ⊗ d′li−1i = d0i ⊗ · · · ⊗ dni+ki−1i ∀i ∈ n′, j ∈ li : d
′j
i prime

∀i ∈ k : λci ,
(

ν(j)=i(ωj ⊗ (~yj)/(~Wj))Pj
)
,Mi

c
→֒M′

i ,Dn′+i,Z
′
n′+i

∀i ∈ n′ : Di = d
′πi(0)
i ⊗ · · · ⊗ d

′πi(li−1)
i ∀i ∈ n′ : Z′i =

⊎
j∈ni+ki

Z
j
i

∀i ∈ k : M′
i : I

′
i → V

′
i Z =

⊎
i∈n′+k Z

′
i

D′
0 ⊗ · · · ⊗ D′

m−1 = D0 ⊗ · · · ⊗ Dn′+k−1 ∀j ∈ m : D′
j prime

m′ = ∑i∈n′ li π′′ = (id〈n′,~Y′〉 ⊗ πν) ◦ (π′)−1 ~m = [m0, . . . ,mn−1] π̃ = (idm′ ⊗ π̄ν
~m)−1π

λ : V →W ′′ ⊎U′′ ⊎ Z ⊎ Ȳ,(
(ω′′
0 ⊗ (~y′′0 )/(

~W ′′
0 ))P′′0 || · · · || (ω′′

n′′−1 ⊗ (~y′′n′′−1)/(
~W ′′
n′′−1))P

′′
n′′−1

)
: 〈m, ~X〉 → 〈n′′, ~Y, {~Y} ⊎Y〉,

(W ′)
(
(merge0+k ⊗ idV)(M0 ⊗ · · · ⊗Mk−1)id0

)
: 〈(W ′),W ′ ⊎U′〉

c
→֒(W ′′)

(
(mergen′+k′′+k′′′ ⊗ idW ′′⊎U′′)
((α′0 ⊗ id1)p{~y

′
0}q⊗ · · · ⊗ (α′n′−1 ⊗ id1)p{~y

′
n′−1}q

⊗Mν̄(0) ⊗ · · · ⊗Mν̄(k′′−1) ⊗
⊗
i∈img(ν)M

′
i)π′′

)

: 〈n′′,~Y〉 → 〈(W ′′),W ′′ ⊎U′′〉,

D′
π̃(0)

⊗ · · · ⊗ D′
π̃(m−1)

: 〈m, ~X, {~X} ⊎ Z〉,Z

Notes:

• The use of|| permits the wiringsω′′
0 , . . . , ω′′

n′′−1 to share outer names. (See an example thereof in the
following example subsection.) Formally, for twoBDNF expressionsB1 andB2 with interface〈I1〉 →

〈n, ~X,X⊎U〉 and〈I2〉 → 〈m,~Y,Y⊎V〉, the expressionB1 || B2 is a shorthand forσ(B1⊗ τB2), where the
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substitutionsσ andτ are defined as follows (Høgh Jensen and Milner, 2004, Prop. 9.14): If ui ∈ U ∩V, and
wi /∈ X ⊎Y ⊎ (U ∪V) are fresh names in bijection with theui, thenτ(ui) = wi andσ(wi) = σ(ui) = ui.

• λr
νi(j)

is a restriction ofλ adjusted relative to the wiring in the redex and the renamingin the context. The

conditions onλr
νi(j)

ensure that

– local redex names are correctly connected; note thatα′i is the renaming in the context that maps local
inner names to outer names

– global redex names are correctly connected; note thatY′ consists of the global redex names andω′
i is

a wiring of the redex with codomainY′.

– context-parameter connections are connected correctly; recall thatZ is the set of names that connect
the parameter with the context.

• The setsW ji are determined via the conditions ofλ: if λ maps a namey to an outer name in redex, theny

should be a member ofW ji since redex always has a local inner face by definition; if insteadλ maps a name

y to an element inZ, theny should remain global and thus should not be included inW ji .

• As for place graph matching, part of the agent can be matched at this stage, see the equation fordji, and there

can be subderivations for redex-matching,
r
→֒, and for context-matching,

c
→֒. The example in the following

section shows all three possibilities.

• In the codomain ofλ, Ȳ refers to the set of free internal redex edges determined in rule B.

MDNF Context Matching λ, (ω0 ⊗ (~y0)/(~W0))P
R
0 || · · · || (ωn−1⊗ (~yn−1)/(~Wn−1))P

R
n−1,M

A c
→֒MC, d,Z

Mctx

λ(Y) = Y′ ⊎V ⊎ Z λ′ : {~X} ⊎Y → {~X′} ⊎Y′ ⊎V ⊎ Z λ′
∣∣
Y
= λ

∣∣
Y

K is active orn = 0 λ′,
n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi, P

′ c→֒ P′′, d,Z λ~y = ~y′ λ′~X = ~X′

λ : {~y} ⊎Y → {~y′} ⊎Y′ ⊎V ⊎ Z,
n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi, (K~y(~X) ⊗ idY)P

′

c
→֒(K

~y′(~X′) ⊗ idY′)P
′′, d,Z

Notes:

• The use of|| permits sharing of outer names, see the notes to rule Pctx above.

• The conditions onλ ensure that (1) the outer names of an ion in the agent are mapped to the corresponding
outer names of the corresponding ion in the context, and (2) that the outer names of the primeP in the agent
are mapped to the corresponding outer names of the primeP′′ in the context.

MDNF Redex Matching λ,MR,MA
r
→֒ d,Z

Mrdx

λ(Y) = Y′ ⊎ Z λ′ : {~X} ⊎Y−→{~X′} ⊎Y′ ⊎ Z λ′
∣∣
Y
= λ

∣∣
Y

λ′, P, P′
r
→֒ d,Z λ~y′ = ~y λ′~X′ = ~X

λ : {~y} ⊎Y → {~y′} ⊎Y′ ⊎ Z, (K
~y(~X) ⊗ idY)P, (K~y′(~X′) ⊗ idY′)P

′ r→֒ d,Z

PDNF Redex Matching λ, PR, PA
r
→֒ d,Z
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Prdx

ν : k−→ k′ injective ∀i ∈ n : ν̄i : ki−→ k
′ injective img(ν) ⊎

⊎
i∈n img(ν̄i) = k′

∀i ∈ k : Mi : Ii → 〈Vi〉 ∀i ∈ k′ : M′
i : I

′
i → 〈V′

i 〉 V =
⊎k−1
i=0 Vi V′ =

⊎k′−1
i=0 V

′
i

X =
⊎n−1
i=0 Xi ∀i ∈ n : V̄′

i =
⊎
j∈ν̄i(ki)

V′
j ∀i ∈ k′ : λi = λ

∣∣
V ′
i

λ(W ′) =W λ(U ′) = U

∀i ∈ n : Xi = {~xi} ∀i ∈ n : ~xi = [xi0, . . . , xili] ∀i ∈ n : ~Wi = [Wi0, . . . ,Wili ]

∀i ∈ n, yA ∈ V̄′
i : λ(yA) = αi(xij) ⇔ y

A ∈Wij Wi = {~Wi}

∀i ∈ n : βi : V̄i \Wi → Zi ∀i ∈ n : βi = λ
∣∣
V̄ ′
i \Wi

∀i ∈ n : di=
(

βi ⊗ (~xi)/(~Wi)
) (

(Wi)
(
(merge0+ki ⊗idV̄ ′

i
)(M′

ν̄i(0)
⊗ · · · ⊗M′

ν̄i(ki−1)
)id0

))

: 〈(Xi),Xi ⊎ Zi〉

∀i ∈ k : λν(i),Mi,M
′
ν(i)

r
→֒ dn+i,Zn+i

d′0 ⊗ · · · ⊗ d′m−1 = d0 ⊗ · · · ⊗ dn+k−1 ∀i ∈ m : d′i prime Z =
⊎
i∈n+k Zi

λ :W ′ ⊎U′ →W ⊎U ⊎ Z,
(W)

(
(mergen+k ⊗ idX⊎V)((α0 ⊗ id1)pX0q⊗ · · · ⊗ (αn−1 ⊗ idn−1)pXn−1q⊗M0 ⊗ · · · ⊗Mk−1)π

)

: 〈m, ~X〉 → 〈(W),W ⊎U〉,
(W ′)

(
(merge0+k′ ⊗ idV ′)(M′

0 ⊗ · · · ⊗M′
k′−1)id0

)
: 〈(W ′),W ′ ⊎U′〉

r
→֒ d′

π(0) ⊗ · · · ⊗ d′
π(m−1) : 〈m,

~X, {~X} ⊎ Z〉,Z

Notes:

• Whenk = 0 the rule can be used to infer a conclusion without any subderivations. (See examples thereof
in the following example subsection.)

• EachWij, j ∈ li is determined via the conditions onλ in line 5.

• The name setWi consists of the bound names of the molecules in the agent thatshould go into hole number
i in the redex. In other words, a name should be inWi if the link in redex to which it is connected, is bound.
If it is not bound, then it should be linked viaidZ—recall that the redex by definition has a local inner face
and thus the parameter cannot be connected to redex via global names.

We extend Lemma 2.11 to nondiscrete primes with global names:

Corollary 3.36. Assume
⊗

ν(i)=i′′ orders thei’s in ascending order and let primes(ωi ⊗ (~yi)/(~Xi))Pi : Ii →

〈(Yi),Yi ⊎Wi〉 for i ∈ n be given, withW =
⊎
iWi. Definemi′′ = |{i | ν(i) = i′′}|, W ′

i′′ =
⊎

ν(i)=i′′Wi,

Xi′′ =
⊎

ν(i)=i′′ Yi and ~Xi′′ = ++ν(i)=i′′
~Yi, where++ appends its arguments. If the inner face ofB′′i′′ is

〈mi′′ , ~Xi′′ ,Xi′′〉, then

(idW ⊗ (B′′0 ⊗ · · · ⊗ B′′n′′−1)πν)(
n−1
i=0 (ωi ⊗ (~yi)/(~Xi))Pi)π̄ν

~m

= n′′−1
i′′=0 (idW ′

i′′
⊗ B′′i′′)( ν(i)=i′′(ωi ⊗ (~yi)/(~Xi))Pi)

We now define a prime bigraphΩλ
W ′ that maps local inner namesW ′ and inner namesU′ according toλ:

Definition 3.37. For any mapλ : (W ′ → W) ⊎ (U ′ → U), we define a bigraphΩλ
W ′ : 〈(W ′),W ′ ⊎U′〉 →

〈(W),W ⊎U〉 by ω ⊗ (~y)/(~W) where

1. ~y = [y0, . . . , yk] is a list of all the elements inW, andWi = {w ∈W ′ | λ(w) = yi},

2. ω = ~y′/~V, where~y′ = [y′0, . . . , y
′
l] is a list of all the elements inU, andVi = {v′ ∈ U′ | λ(v′) = y′i}.

Note that(W)Ωλ
∅
B = Ωλ

W ′(W)B and(merge⊗idU)
⊗
iΩ

λ|U′
i = Ωλ

∅
(merge⊗idU′) forU′ =

⊎
iU

′
i .

Lemma 3.38. LetM = (K
~y(~X) ⊗ idY)P, M′ = (K

~y′(~X′) ⊗ idY′)P
′, λ : {~y} ⊎ Y → {~y′} ⊎ Y′ ⊎U, λ~y = ~y′,

λ(Y) = Y′ ⊎U, λ′ : {~X} ⊎Y → {~X′} ⊎Y′ ⊎U, λ′~X = ~X′ andλ′
∣∣
Y
= λ

∣∣
Y

. Then� (idU ⊗ P′)B = Ωλ′

{~X}
P

iff (idU ⊗M′)B = Ωλ
∅M.
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Proof. See Appendix B.

Lemma 3.39. For any mapλ : (W ′ → W) ⊎ (U ′ → U ⊎ Z), primeR = (W)((mergen+k⊗idX⊎V)((α0 ⊗

id1)pX0q⊗ · · · ⊗ (αn−1⊗ idn−1)pXn−1q⊗M0 ⊗ · · · ⊗Mk−1 : 〈m, ~X〉 → 〈(W),W ⊎U〉, and discrete prime

A = PA : 〈(W ′),W ′ ⊎ U′〉 we haveλ, R, A
r
→֒ d,Z iff d : 〈m, ~X, {~X} ⊎ Z〉 is discrete, and� Ωλ

W ′A =
(idZ ⊗ R)d.

Proof. See Appendix B.

Lemma 3.40. For any mapλ : (W ′ → W ′′) ⊎ (U′ → U′′ ⊎ Y ⊎ Z), parallel product of bigraphsR =

(ω′′
0 ⊗ (~y′′0 )/(

~W ′′
0 ))PR0 || · · · || (ω′′

n′′−1 ⊗ (~y′′n′′−1)/(
~W ′′
n′′−1))P

R
n′′−1 : 〈m,

~X〉 → 〈n′′,~Y, {~Y} ⊎Y〉, and discrete

primeA = PA : 〈(W ′),W ′ ⊎U′〉 we haveλ, R, A
c
→֒C, d,Z iff C : 〈n′′,~Y〉 → 〈(W ′′),W ′′ ⊎U′′〉 is active,

d : 〈m, ~X, {~X} ⊎ Z〉 is discrete, and� Ωλ
W ′A = (idZ⊎Y ⊗ C)(idZ ⊗ R)d.

Remark 3.41.

W ′′ is the set of local outer names of the context

U′′ is the set of global outer names of the context

Y is the set of global outer names of the redex

Z is the set of global outer names of the parameter

Proof of Lemma 3.40.See Appendix B.

Theorem 3.42(Characterization of binding bigraph expression matching). For any bigraphsBR : 〈m, ~X〉 →

〈n,~Y, {~Y} ⊎ Y〉 and BA : 〈n′,~Y′, {~Y′} ⊎ Y′〉 we haveBR, BA →֒ BC, d,Z iff BC : 〈n,~Y, {~Y} ⊎ Z ⊎ Y〉 →

〈n′,~Y′, {~Y′} ⊎Y′〉 is active,d : 〈m, ~X, {~X} ⊎ Z〉 is discrete, and� BA = BC(BR ⊗ idZ)d.

Proof. See Appendix B.

3.4.1 Example of Matching Binding Bigraph Expressions

In Figure 13 we present an example derivation ofBR, BA →֒ BC,D,Z, with BR, BA, BC, andD defined in
Subsection 3.3.7. The side conditions have been omitted, leaving just the conclusion of each inference step,
illustrating the overall structure of the inference.

The same example is shown graphically in a succint form in Figure 14, which illustrates howλ is adjusted
when going from one level of the inference to the next. The components below the solid horizontal line give an
“exploded” view of the levels that comprise the bigraphs above the line.

To understand the example in detail, it is useful to refer to both figures, and to the graphical representation of
the examples in 3.3.7.

We now give some explanatory comments to the example derivation.
In the example, we have chosen the names in such a way that the mappingλ is given by “forgetting the

superscript,” i.e., theλ mappings map namesxij to xj, namesxi to x, and is otherwise the identity (maps names
xj to xj). Thus we do not distinguish notationally between the different λ-mappings in the inference trees in
Figure 13 and simply writeλ for all of them.

In the application of the B rule, we use the following instantiations of variable sets:

U0 = {e1, e2, e3, y1},
U1 = {e4},
U = {e1, e2, e3, e4, y1},
V = {y1},
Y = {y1}.

Note that in the application of the B rule, the wiring

ω = (id{y1} ⊗ /{e})(e, y1/{e
1, e2, e3, e4}, {y1})
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is split into a closure and two wirings

ω̄ = (id{y1} ⊗ /{e})

ω0 = (e, y1/{e
1, e2, e3}, {y1}),

ω1 = (e/{e4}).

such thatω = ω̄(ω0 || ω1); only ω0 andω1 are used in the subderivation. The reader should observe that the
outer face ofω0 andω1 share a name,e, which stands for the closed link in the agent. Hence the needfor || (rather
than⊗) in rule Pctx.

Note that in the first (counting from the bottom) applicationof the Pctx rule,PA0 andPR1 are decomposed, to
allow derivations based onMR1 together withMA4 andPR0 together withMA0 , and, moreover, to allow us to find
thatD = d00 ⊗ D0, where, recall,

d00 = (id⊗ (x5)/({y4}))({y4})
(
(merge1⊗id)((Q[y4]

⊗ id∅)1)id
)
.

The latter is obtained because of the hole in the context, specifically the following part ofPR1 :

((y4/x5 ⊗ id1)p{x5}q).

In each leaf of the derivation we have shown, in square brackets, the values of some of the variables in that
particular application of the rule Prdx.

B

Pctx

Mrdx

Prdx
[k = 0, n = 0, k′ = 0,m = 0]

λ, 1, 1
r
→֒ idǫ,∅

λ,MR1 ,M
A
4

r
→֒ idǫ,∅

Mctx

Pctx

Mrdx

Prdx
[k = 0, n = 1, k′ = 2]

λ,
PR2 = (∅)

(
(merge1⊗id{e1,e2 ,y1,y

2
2}

)(((y1/x3 ⊗ y
2
2/x4) ⊗ id1)p{e

1, e2, x3, x4}q)id
)
,

PA2 = (∅)(merge2⊗id)(MA2 ⊗MA3 ),
r
→֒
D0 =

(
o3/o3 ⊗ (e1, e2, x3, x4)/({e

1}, {e2}, {y11, y
2
2}, {y

2
1})
)
PD0 ,

Z = {o3}

λ,MR2 = (M[e3,y12 ]
⊗ id{e1,e2 ,y1,y

2
2}

)PR2 ,M
A
1 = (M[e3,e4 ] ⊗ id∅)PA2 ,

r
→֒D0, Z

λ, (e, y1/{e
1, e2, e3}, {y1} ⊗ (y2)/({y

1
2, y
2
2}))P

R
0 , P

A
1

c
→֒ PC0 ,D0, Z

λ, (e, y1/{e
1, e2, e3}, {y1} ⊗ (y2)/({y

1
2, y
2
2}))P

R
0 ,M

A
0

c
→֒MC0 ,D0, Z

λ, (id⊗ id)
(
(e, y1/{e

1, e2, e3}, {y1} ⊗ (y2)/({y
1
2, y
2
2}))P

R
0 || (e/{e4} ⊗ (y3, y4)/({y3}, {y4}))P

R
1

)
, PA0

c
→֒ PC1 ,D,Z

BR =
(
(id{y1} ⊗ /{e})(e,y1/{e

1, e2, e3, e4}, {y1})⊗ (y2)/({y
1
2, y
2
2})⊗ (y3, y4)/({y3}, {y4})

)(
id⊗ ((PR0 ⊗ PR1 )id)

)
,

BA =
(
/{e1, e2, e3, e4} ⊗ /{o3, l3} ⊗ /{l

4, y12, y
2
2} ⊗ y1/{y

1
1, y
2
1} ⊗ (y3, y4, z)/({y3}, {y4}, {z

1
1, z
2
1})
)(

id⊗ (PA0 id0)
)

→֒
BC =

(
(y1/y1 ⊗ /{o3, l3} ⊗ /{l4, y2})⊗ (y3, y4, z/({y3}, {y4}, {z

1
1, z
2
1}))

)(
id{o3,y1}

⊗ (PC1 idid)
)
,

D = D0 ⊗ d
0
0,

Z = {o3}

Figure 13: Example derivation

4 Discussion and Related Work

We believe that the present work has brought us significantlycloser to defining (and proving sound and complete)
algorithms for bigraph matching. Although this claim can betruly justified only by providing an actual matching
algorithm, it can be argued that the syntactic inductive nature of the matching specifications of Sections 2 and 3
provide a good first step in the direction of defining a matching algorithm.

In particular, the degrees of freedom in matching have been made explicit in the rules (in the form of permuta-
tions), which may help an algorithm designer in the process of eliminating the degrees of freedom. In fact, a naïve
top-down algorithm may search for matches by trying different permutations at each step in turn (back-tracking in
case no match can be found.)

Making the degrees of freedom in matching explicit also enables sound definitions of canonical matches and
of ordering of matches, which could be of import for definingfair bigraphical reduction systems.

An important property of our characterization of matching is that whether algorithms are bottom-up (e.g.,
based on algorithms for subtree isomorphism), top-down, depth-first, breadth-first, eager, or lazy, they will all
need to satisfy the characterization provided here.
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Figure 14: Graphical rendering of example derivation
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Another property of the matching characterization is that it may help an algorithm designer in making restric-
tions that may lead to simpler and/or more efficient matchingalgorithms for bigraphical reactive systems. For
example, the so-calledsimplereaction rules (Høgh Jensen and Milner, 2004) clearly eliminate some degrees of
freedom in the matching characterization.

Gardner et al. (2000) describe a tool for implementing action graphs. Action graphs are a predecessor of
bigraphs. The tool contains an implementation of matching,which, however, is not proved correct. It is mentioned
that such a proof would require “a formal characterization of graphical contexts and their link with the syntax”.
This is part of what we have provided here for bigraphs.

5 Conclusion and Future Work

We have extended Milner’s axiomatization of the statics of pure bigraphs to binding bigraphs and given a sound
and complete characterization of matching of binding bigraph expressions.

There are several possibilities for future work. First, thework here allows for experimenting with different
matching algorithms and for proving such algorithms correct with respect to the underlying bigraph theory.

It is not obvious that different applications of bigraphs lead to the same requirements for the efficiency of
matching. One of the key properties of the work presented here is that the results can be used for different
matching algorithms with different efficiency properties.We are currently working on defining a general matching
algorithm, which we will report on in subsequent papers. We plan to use this matching algorithm for several
purposes, including bigraph reduction simulation (e.g., system modeling) and bigraph reduction checking (e.g.,
using bigraphs as a runtime monitor technology).

In the present work we have focused on binding bigraphs as defined by Høgh Jensen and Milner (2004). There
are other variants of binding bigraphs, notably the so-called local bigraphs (Milner, 2004b). It is too early to tell
which is the “right” definition of binding bigraphs. We conjecture that our characterization of matching can be
adapted to other variants of binding bigraphs without too much difficulty.
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A Proofs for Place Graph Matching

Proof of Lemma 2.13.
“⇒” by induction on the inference tree height.
Base case:We must havek = 0 and thusm = n. As PA is discrete, allM′

i′ ’s are discrete, and thus alldj’s,
makingd discrete.

We now find

PRd = mergen idnπ(d′
π(0)

⊗ · · · ⊗ d′
π(m−1)

)

= mergen(d
′
0 ⊗ · · · ⊗ d′n−1)

= mergen

((⊗n−1
i=0 mergeki(M

′
ν̄i(0)

⊗ · · · ⊗M′
ν̄i(ki−1)

)
)

and due to the constraints onν̄j in rule Prdx, this is equal tomergek′(M
′
0 ⊗ · · · ⊗M′

k′−1) = PA.
Inductive step:Using rule Mrdx and by the induction hypothesis, we find thatdn+i is discrete, so as above,

we concluded is discrete.
We now find

PRd = mergen+k(idn ⊗M0 ⊗ · · · ⊗Mk−1)π(d′
π(0)

⊗ · · · ⊗ d′
π(m−1)

)

= mergen+k(idn ⊗M0 ⊗ · · · ⊗Mk−1)(d
′
0 ⊗ · · · ⊗ d′m−1)

= mergen+k(idn ⊗M0 ⊗ · · · ⊗Mk−1)(d0 ⊗ · · · ⊗ dn+k−1)
= mergen+k(d0 ⊗ · · · ⊗ dn−1 ⊗M0dn ⊗ · · · ⊗Mk−1dn+k−1)

By the rule Mrdx and the induction hypothesisM′
ν(i)

= Midn+i, so we get

= mergen+k(d0 ⊗ · · · ⊗ dn−1 ⊗M
′
ν(0) ⊗ · · · ⊗M′

ν(k−1))

= mergen+k
(⊗n−1
i=0 mergeki(M

′
ν̄i(0)

⊗ · · · ⊗M′
ν̄i(ki−1)

)
)
⊗M′

ν(0) ⊗ · · · ⊗M′
ν(k−1))

and due to the constraints onν andν̄j in rule Prdx, this is equal tomergek′(M
′
0 ⊗ · · · ⊗M′

k′−1) = PA.

We prove “⇐” by induction on the expression depth ofPR:
Inductive step:AssumePR : m → 1, PA : 1, d : m is discrete, andPA = PRd. We can now expressPR, PA

andd as normal forms

PR = mergen+k(idn ⊗M0 ⊗ · · · ⊗Mk−1)π

PA = merge0+k′(id0 ⊗M
′
0 ⊗ · · · ⊗M′

k′−1)id0
d = (d′

π(0) ⊗ · · · ⊗ d′
π(m−1))id0

for somen, k, k′,Mi,M′
i ,π and discrete primesd′i. We then find that

PRd = mergen+k(idn ⊗M0 ⊗ · · · ⊗Mk−1)π(d′
π(0)

⊗ · · · ⊗ d′
π(m−1)

)

= mergen+k(idn ⊗M0 ⊗ · · · ⊗Mk−1)(d
′
0 ⊗ · · · ⊗ d′m−1).

For the composition of the two parentheses to be possible, the suffix of the list of primesd′j must be groupable

according to the inner widths of the moleculesMi. We call the tensor product ofd′j’s that compose withMi for
dn+i, getting

d′0 ⊗ · · · ⊗ d′m−1 = d0 ⊗ · · · ⊗ dn+k−1,

and

PRd = mergen+k(id1d0 ⊗ · · · ⊗ id1dn−1 ⊗M0dn ⊗ · · · ⊗Mk−1dn+k−1)
= merge0+k′(id0 ⊗M

′
0 ⊗ · · · ⊗M′

k′−1)id0
= PA.

As the second equality, given by the assumption, holds, normal form properties imply that there must be a 1-
1 correspondence betweenMidn+i’s and a subset of theM′

j’s, and that the remainingM′
j’s are divided into

d0, . . . , dn. Express the correspondence by an injectiveν : k → k′ so thatMidn+i = M′
ν(i)

, and the division
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of M′
j’s by injective ν̄j : kj → k′ so thatdj = merge0+k j(id0 ⊗ M

′
ν̄j(0)

⊗ · · · ⊗ M′
ν̄j(k j−1)

)id0 and img(ν) ⊎
⊎
j∈n img(ν̄j) = k′.

We now haveKPidn+i = Midn+i = M′
ν(i)

= KP′
ν(i)

and thusPidn+i = P′ν(i)
for someK, Pi, P

′
ν(i)

, so by the

hypothesis we getPi, P′ν(i)

r
→֒ dn+i and by MrdxMi,M′

ν(i)

r
→֒ dn+i for i ∈ k.

The above results combined with̄νi : 0 → k′ for i > 0 constitute all the premises of Prdx that allow us to

concludePR, PA
r
→֒ d.

Base case:We must havek = 0, so the above proof applies, as the hypothesis is not used fork = 0.

Proof of Lemma 2.15.
“⇒” by induction on inference tree height.
Inductive case:Consider rule Pctx; AsPA is discrete, and by the induction hypothesis via Mctx, all the

molecules comprisingPC are discrete, soPC is discrete. In the inference of rule Mctx, ifK is active, then by the
hypothesisP′′ is active, soM′

i of rule Pctx is active. IfK is not active,n = 0, and thus by the hypothesisP′′ has
no sites and is trivially active.

Using Lemma 2.11 and the induction hypothesis via Mctx, we find that

(
⊗
j∈img(ν)M

′
jπ

′
j)πν(P0 ⊗ · · · ⊗ Pn−1)π̄ν

~m(
⊗
j∈img(ν) Dn′+j)

= (
⊗
j∈img(ν)M

′
jπ

′
j

⊗
ν(i)=j Pi)(

⊗
j∈img(ν) Dn′+j)

=
⊗
j∈img(ν)M

′
jπ

′
j(
⊗

ν(i)=j Pi)Dn′+j
=

⊗
j∈img(ν)Mj.

(1)

Further,

⊗n′−1
i=0 mergeni+ki(idni ⊗M

0
i ⊗ · · · ⊗Mki−1i )πi(d

′πi(0)
i ⊗ · · · ⊗ d

′πi(li−1)
i )

=
⊗n′−1
i=0 mergeni+ki(idni ⊗M

0
i ⊗ · · · ⊗Mki−1i )(d′0i ⊗ · · · ⊗ d′li−1i )

=
⊗n′−1
i=0 mergeni+ki(idni ⊗M

0
i ⊗ · · · ⊗Mki−1i )(d0i ⊗ · · · ⊗ dni+ki−1i )

=
⊗n′−1
i=0 mergeni+ki(d

0
i ⊗ · · · ⊗ dni−1i ⊗M0i d

ni
i ⊗ · · · ⊗Mki−1i d

ni+ki−1
i ),

and by Lemma 2.13 we then get

=
⊗n′−1
i=0 mergeni+ki(d

0
i ⊗ · · · ⊗ dni−1i ⊗Mνi(0)

⊗ · · · ⊗Mνi(ki−1)
)

=
⊗n′−1
i=0 mergeni+ki

(
(
⊗ni−1
j=0 merge|ν̄−1i (j)|

⊗
ν̄i(j′)=j

Mj′) ⊗Mνi(0)
⊗ · · · ⊗Mνi(ki−1)

)
.

(2)

We now calculate

π′′π′(P′0 ⊗ · · · ⊗ P′n′−1 ⊗ P0 ⊗ · · · ⊗ Pn−1)π(d′
(idm⊗π̄ν

~m
)−1π(0)

⊗ · · · ⊗ d′
(idm⊗π̄ν

~m
)−1π(m′′−1)

)

= (idn′ ⊗ πν)(π′)−1π′(P′0 ⊗ · · · ⊗ P′n′−1 ⊗ P0 ⊗ · · · ⊗ Pn−1)(idm ⊗ π̄ν
~m)(d′0 ⊗ · · · ⊗ d′m′′−1)

Pctx
= (idn′ ⊗ πν)(P′0 ⊗ · · · ⊗ P′n′−1 ⊗ P0 ⊗ · · · ⊗ Pn−1)(idm ⊗ π̄ν

~m)(D0⊗ · · · ⊗ Dn′+k−1)
Pctx
= (idn′ ⊗ πν)

((⊗n′−1
i=0 mergeni+ki(idni ⊗M

0
i ⊗ · · · ⊗Mki−1i )πi

)
⊗ P0 ⊗ · · · ⊗ Pn−1

)

(idm ⊗ π̄ν
~m)
((⊗n′−1

i=0 d
′πi(0)
i ⊗ · · · ⊗ d

′πi(li−1)
i

)
⊗ Dn′ ⊗ · · · ⊗ Dn′+k−1

)

Lem 2.14
=

(⊗n′−1
i=0 mergeni+ki(idni ⊗M

0
i ⊗ · · · ⊗Mki−1i )πi(d

′πi(0)
i ⊗ · · · ⊗ d

′πi(li−1)
i )

)

⊗πν(P0 ⊗ · · · ⊗ Pn−1)π̄ν
~m(
⊗
j∈img(ν) Dn′+j)

(2)
=

⊗n′−1
i=0 mergeni+ki

(
(
⊗ni−1
j=0 merge|ν̄−1i (j)|

⊗
ν̄i(j

′)=jMj′) ⊗Mνi(0)
⊗ · · · ⊗Mνi(ki−1)

)

⊗πν(P0 ⊗ · · · ⊗ Pn−1)π̄ν
~m(
⊗
j∈img(ν) Dn′+j)

(3)

because by Lemma 2.14,Dn′ ⊗ · · · ⊗ Dn′+k−1 =
⊗
j∈img(ν) Dn′+j.
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Using this result, we are now able to calculate

PC(PR0 ⊗ · · · ⊗ PRn′′−1)d
= mergen′+k′′+k′′′(idn′ ⊗Mν̄(0) ⊗ · · · ⊗Mν̄(k′′−1) ⊗

⊗
j∈img(ν)M

′
jπ

′
j)

π′′π′(P′0⊗ · · · ⊗ P′n′−1 ⊗ P0 ⊗ · · · ⊗ Pn−1)π(d′
(idm⊗π̄ν

~m
)−1π(0)

⊗ · · · ⊗ d′
(idm⊗π̄ν

~m
)−1π(m′′−1)

)

(3)
= mergen′+k′′+k′′′(idn′ ⊗Mν̄(0) ⊗ · · · ⊗Mν̄(k′′−1) ⊗

⊗
j∈img(ν)M

′
jπ

′
j)(

⊗n′−1
i=0 mergeni+ki

(
(
⊗ni−1
j=0 merge|ν̄−1i (j)|

⊗
ν̄i(j′)=j

Mj′) ⊗Mνi(0)
⊗ · · · ⊗Mνi(ki−1)

)

⊗πν(P0 ⊗ · · · ⊗ Pn−1)π̄ν
~m(
⊗
j∈img(ν) Dn′+j)

)

= mergen′+k′′+k′′′

(
(idn′ ⊗Mν̄(0) ⊗ · · · ⊗Mν̄(k′′−1))

(⊗n′−1
i=0 mergeni+ki

(
(
⊗ni−1
j=0 merge|ν̄−1i (j)|

⊗
ν̄i(j

′)=jMj′) ⊗Mνi(0)
⊗ · · · ⊗Mνi(ki−1)

))

⊗(
⊗
j∈img(ν)M

′
jπ

′
j)πν(P0 ⊗ · · · ⊗ Pn−1)π̄ν

~m(
⊗
j∈img(ν) Dn′+j)

)

(1)
= mergen′+k′′+k′′′

((⊗n′−1
i=0 mergeni+ki(

⊗ni−1
j=0 merge|ν̄−1i (j)|

⊗
ν̄i(j

′)=jMj′)⊗Mνi(0)
⊗ · · · ⊗Mνi(ki−1)

)

⊗Mν̄(0) ⊗ · · · ⊗Mν̄(k′′−1) ⊗ (
⊗
j∈img(ν)Mj)

)

Due to the conditions in thesplit relation, this is equal tomergek(M0 ⊗ · · · ⊗Mk−1) = PA.
Base case:We must haven = 0 andimg(ν) = {}, and thusk′′′ = 0, so the above reasoning applies, as the

hypothesis is not used forimg(ν) = {}.

We prove “⇐” by induction over the expression depth ofPA:
Inductive step:AssumeP′′0 ⊗ · · · ⊗ P′′n′′−1 : m

′′ → n′′, PC : n′′ → 1 is an active discrete prime,d : m′′ is

discrete, andPA = PC(P′′0 ⊗ · · · ⊗ P′′n′′−1)d. These bigraphs can be expressed in normal form, for anyν : n→ k

with | img(ν)| = k′′′:

PA = merge0+k(id0 ⊗M0 ⊗ · · · ⊗Mk−1)id0
d = (d′

π̃(0) ⊗ · · · ⊗ d′
π̃(m′′−1))id0

PC = mergen′+k′′+k′′′(idn′ ⊗ (
⊗
j∈k′′ M

′′
j )⊗

⊗
j∈img(ν)M

′
j)π′′

whereM′′
j has no sites, whileM′

j has at least one site.

Leaving the specification ofν till later, we let π′ = (π′′)−1(idn′ ⊗ πν), and find thatπ′′ = (idn′ ⊗
πν)(π′)−1. Now find a π such thatπ′(P′0 ⊗ · · · ⊗ P′n′−1 ⊗ P0 ⊗ · · · ⊗ Pn−1)π = P′′0 ⊗ · · · ⊗ P′′n′′−1, and
calculate:

(
idn′ ⊗ (

⊗
j∈k′′ M

′′
j )⊗

⊗
j∈img(ν)M

′
j

)
π′′(P′′0 ⊗ · · · ⊗ P′′n′′−1)(d

′
π̃(0) ⊗ · · · ⊗ d′

π̃(m′′−1))

=
(
idn′ ⊗ (

⊗
j∈k′′ M

′′
j )⊗

⊗
j∈img(ν)M

′
j

)

(idn′ ⊗ πν)(π′)−1π′(P′0 ⊗ · · · ⊗ P′n′−1 ⊗ P0 ⊗ · · · ⊗ Pn−1)π(d′
(idm⊗π̄ν

~m)−1π(0)
⊗ · · · ⊗ d′

(idm⊗π̄ν
~m)−1π(m′′−1)

)

=
(
idn′ ⊗ (

⊗
j∈k′′ M

′′
j )⊗

⊗
j∈img(ν)M

′
j

)
(idn′ ⊗ πν)(P′0 ⊗ · · · ⊗ P′n′−1 ⊗ P0 ⊗ · · · ⊗ Pn−1)(idm ⊗ π̄ν

~m)(d′0 ⊗ · · · ⊗ d′m′′−1)

=
(
(P′0 ⊗ · · · ⊗ P′n′−1)⊗ (

⊗
j∈k′′ M

′′
j ) ⊗ (

⊗
j∈img(ν)M

′
j)πν(P0 ⊗ · · · ⊗ Pn−1)

)
(idm ⊗ π̄ν

~m)(d′0 ⊗ · · · ⊗ d′m′′−1)

We can express eachP′i in normal form byP′i = mergeni+ki(idni ⊗M
0
i ⊗ · · · ⊗Mki−1i )πi for all i ∈ n′, and

group thed′i’s according to the primes and molecules they compose with, so thatd′0⊗ · · · ⊗ d′m′′−1 = D0⊗ · · · ⊗
Dn′+k′′′−1. This yields

=
((⊗n′−1

i=0 mergeni+ki(idni ⊗M
0
i ⊗ · · · ⊗Mki−1i )πi

)
⊗ (

⊗
j∈k′′ M

′′
j )⊗ (

⊗
j∈img(ν)M

′
j)πν(P0 ⊗ · · · ⊗ Pn−1)

)

(idm ⊗ π̄ν
~m)(D0 ⊗ · · · ⊗Dn′+k′′′−1)

Writing for all i ∈ n′ eachDi as a tensor product of discrete primesDi = d
′πi(0)
i ⊗ · · · ⊗ d

′πi(li−1)
i , we
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continue with

=
(⊗n′−1
i=0 mergeni+ki(idni ⊗M

0
i ⊗ · · · ⊗Mki−1i )πi(d

′πi(0)
i ⊗ · · · ⊗ d

′πi(li−1)
i )

)

⊗ (
⊗
j∈k′′ M

′′
j )

⊗ (
⊗
j∈img(ν)M

′
j)πν(P0⊗ · · · ⊗ Pn−1)π̄ν

~m(Dn′ ⊗ · · · ⊗ Dn′+k′′′−1)

=
(⊗n′−1
i=0 mergeni+ki(idni ⊗M

0
i ⊗ · · · ⊗Mki−1i )(d′0i ⊗ · · · ⊗ d′li−1i )

)

⊗ (
⊗
j∈k′′ M

′′
j )

⊗ (
⊗
j∈img(ν)M

′
j(
⊗

ν(j′)=i Pj′)Dn′+i),

using Lemma 2.11 with an appropriateν. Groupingd′ji ’s according to each factor of(idni ⊗M
0
i ⊗ · · · ⊗Mki−1i )

so thatd′0i ⊗ · · · ⊗ d′li−1i = d0i ⊗ · · · ⊗ dni+ki−1i for all i ∈ n′, we get

=
((⊗n′−1

i=0 mergeni+ki(d
0
i ⊗ · · · ⊗ dni−1i ⊗M0i d

ni
i ⊗ · · · ⊗Mki−1i d

ni+ki−1
i )

)

⊗ (
⊗
j∈k′′ M

′′
j )

⊗ (
⊗
j∈img(ν)M

′
j(
⊗

ν(j′)=i Pj′)Dn′+i)
)
,

where by normal form∀j ∈ ni : d
j
i = mergekji

(
id0 ⊗

⊗
j′∈k

j
i

M
j
ij′

)
id0 for all i ∈ n′.

In total, we have

PC(P′′0 ⊗ · · · ⊗ P′′n′′−1)d
= mergen′+k′′+k′′′(idn′ ⊗ (

⊗
j∈k′′ M

′′
j )⊗

⊗
j∈img(ν)M

′
j)π′′(P′′0 ⊗ · · · ⊗ P′′n′′−1)(d

′
π̃(0) ⊗ · · · ⊗ d′

π̃(m′′−1))

= mergen′+k′′+k′′′

((
⊗n′−1
i=0 mergeni+ki

((⊗
j∈ni
merge

k
j
i

(
⊗
j′∈k

j
i

M
j
ij′

)
)

⊗M0i d
ni
i ⊗ · · · ⊗Mki−1i d

ni+ki−1
i

))

⊗ (
⊗
j∈k′′ M

′′
j )

⊗
(⊗

j∈img(ν)M
′
j(
⊗

ν(j′)=i Pj′)Dn′+i
)
)
,

The assumption states that this is equal tomerge0+k(id0 ⊗ M0 ⊗ · · · ⊗ Mk−1)id0 = PA, but normal form
properties imply that this only can be possible if there is a 1–1 correspondence between the molecules of each
expression. Let this correspondence be given bysplit(~ν,~̄ν, ν : n → k, ν̄ : k′′ → k) with ~ν = (ν1 : k1 →
k, . . . , νn′ : kn′ → k) and~̄ν = ν̄1 : k ⇀ n1, . . . , ν̄n′ : k ⇀ nn′) so that

∀i ∈ n′, j ∈ ni : mergekji
(
⊗
j′∈k

j
i

M
j
ij′

) = merge
|ν̄−1i (j)|

(
id0 ⊗

⊗
ν̄i(j′)=j

Mj′
)

∀i ∈ n′, j ∈ ki : M
j
id
ni+j
i = Mνi(j)

∀i ∈ k′′ : M′′
i = Mν̄(i)

∀i ∈ img(ν) : M′
i(
⊗

ν(j′)=i Pj′)Dn′+i = Mi

By rule Mrdx and Lemma 2.13 we now get∀i ∈ n′, j ∈ ki : M
j
i ,Mνi(j)

r
→֒ d

ni+j
i . As PC is active, so

is M′
i and thusKP′′ of rule Mctx, soK is active and the induction hypothesis applies, yielding∀i ∈ k :(⊗

ν(j′)=i Pj′
)
,Mi

c
→֒M′

i ,Dn′+i. We now have all the premises required by rule Pctx to conclude thatP′′0 ⊗

· · · ⊗ P′′n′′−1, P
A c
→֒ PC, d.

Base case:We havek = 0 and thusPA = 1, n = 0, k′′ = 0, n′ = n′′, andki = 0 for i ∈ n′. The redex
must be a tensor product ofmerge bigraphs, and by checking the premises, we can conclude by rule Pctx that

PR0 ⊗ · · · ⊗ PRn′′−1 : m
′′ → n′′, 1 : 1

c
→֒mergen′′ : n

′′ → 1, 1⊗ · · · ⊗ 1 : m′′.

Proof of Theorem 2.16.
“⇒”: AssumeBRBA

c
→֒ BC, d. The conclusion of rule B shows thatBC : n → n′′ is active, as it consists of

active components, and as all factors of the tensor product constitutingd are discrete by Lemma 2.15,d : m is
discrete.
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We then find using Lemma 2.11 and Lemma 2.15 that

BCBRd
= idn′′(P

′′
0 π′
0 ⊗ · · · ⊗ P′′n′′−1π

′
n′′−1)πνidn(P0 ⊗ · · · ⊗ Pn−1)π(d′

(π̄ν
~m
)−1π(0)

⊗ · · · ⊗ d′
(π̄ν

~m
)−1π(m−1)

)

= (P′′0 π′
0 ⊗ · · · ⊗ P′′n′′−1π

′
n′′−1)πν(P0⊗ · · · ⊗ Pn−1)π̄ν

~m(d′0 ⊗ · · · ⊗ d′m−1)

= (
⊗n′′−1
i′′=0 P

′′
i′′π

′
i′′(
⊗

ν(i)=i′′ Pi))(d0 ⊗ · · · ⊗ dn′′−1)

=
⊗n′′−1
i′′=0 P

′′
i′′π

′
i′′(
⊗

ν(i)=i′′ Pi)di′′

=
⊗n′′−1
i′′=0 P

′
i′′

= BA

“⇐”: AssumeBC : n → n′′ is active, d : m is discrete, andBA = BCBRd. We can express these bigraphs
by their normal forms

BR = idn(P0⊗ · · · ⊗ Pn−1)π

BA = idn′′(P
′
0 ⊗ · · · ⊗ P′n′′−1)id0

BC = idn′′(P
′′
0 ⊗ · · · ⊗ P′′n′′−1)π′′

d = d′
π̃(0) ⊗ · · · ⊗ d′

π̃(m−1),

where eachP′′i is active, and then calculate

BCBRd = idn′′(P
′′
0 ⊗ · · · ⊗ P′′n′′−1)π′′idn(P0 ⊗ · · · ⊗ Pn−1)π(d′

(π̄ν
~m
)−1π(0)

⊗ · · · ⊗ d′
(π̄ν

~m
)−1π(m−1)

)

= (P′′0 ⊗ · · · ⊗ P′′n′′−1)π′′(P0 ⊗ · · · ⊗ Pn−1)π̄ν
~m(d′0 ⊗ · · · ⊗ d′m−1)

Expressing(d′0 ⊗ · · · ⊗ d′m−1) as(d0 ⊗ · · · ⊗ dn′′−1) and lettingν = νπ′′
, Lemma 2.11 allows us to continue

with

= (P′′0 ⊗ · · · ⊗ P′′n′′−1)(π0 ⊗ · · · ⊗ πn′′−1)πν(P0 ⊗ · · · ⊗ Pn−1)π̄ν
~m(d0 ⊗ · · · ⊗ dn′′−1)

= (P′′0 π0 ⊗ · · · ⊗ P′′n′′−1πn′′−1)πν(P0⊗ · · · ⊗ Pn−1)π̄ν
~m(d0 ⊗ · · · ⊗ dn′′−1)

= (
⊗n′′−1
i′′=0 P

′′
i′′πi′′(

⊗
ν(i)=i′′ Pi))(d0 ⊗ · · · ⊗ dn′′−1)

=
⊗n′′−1
i′′=0 P

′′
i′′πi′′(

⊗
ν(i)=i′′ Pi)di′′

The assumption states that this is equal toidn′′(
⊗n′′−1
i′′=0 P

′
i′′)id0, but this must implyP′′i′′πi′′(

⊗
ν(i)=i′′ Pi)di′′ = P′i′′

for all i′′ ∈ n′′, which by Lemma 2.15 gives usπi′′(
⊗

ν(i)=i′′ Pi), P
′
i′′
c
→֒ P′′i′′ , di′′. Now we have all the premises

that allow us to concludeBR, BA →֒ BC, d using rule B.

B Proofs for Binding Bigraph Matching

Proof of Lemma 3.38.
We find

(idU ⊗M′)B = Ωλ
∅
M

⇔ (idU ⊗ (K
~y′(~X′) ⊗ idY′)P

′)B = ((~y′)/(~y)⊗ λ
∣∣
Y
)(K

~y(~X) ⊗ idY)P

⇔ (K
~y′(~X′) ⊗ idY′⊎U)(idU ⊗ P′)B = (K

~y′(~X) ⊗ idY′⊎U)((~X)/(~X) ⊗ λ
∣∣
Y
)P

⇔ (K
~y′(~X′) ⊗ idY′⊎U)(idU ⊗ P′)B = (K

~y′(~X′) ⊗ idY′⊎U)((~X′)/(~X)⊗ λ′
∣∣
Y
)P

⇔ (K
~y′(~X′) ⊗ idY′⊎U)(idU ⊗ P′)B = (K

~y′(~X′) ⊗ idY′⊎U)Ωλ′

{~X}
P

⇔ (idU ⊗ P′)B = Ωλ′

{~X}
P

Proof of Lemma 3.39.
“⇒” by induction over inference tree height:

Inductive step:Assumeλ, R, A
r
→֒ d,Z. By construction, rule Mrdx and the hypothesis, all constituents ofd

are discrete, sod is discrete.
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We now calculate:

(idZ ⊗ R)d

=

(
idZ ⊗ (W)

(
(mergen+k ⊗idX⊎V)

(
(
⊗n−1
i=0 (αi ⊗ id1)pXiq)⊗

⊗k−1
i=0 Mi

)
π
))⊗m−1

i=0 d
′
π(i)

=

(
idZ ⊗ (W)

(
(mergen+k ⊗idX⊎V)

(
(
⊗n−1
i=0 (αi ⊗ id1)pXiq)⊗

⊗k−1
i=0 Mi

)
π
))

(idZ ⊗ π−1)
⊗m−1
i=0 d

′
i

=

(
idZ ⊗ (W)(mergen+k ⊗idX⊎V)

(
(
⊗n−1
i=0 (αi ⊗ id1)pXiq) ⊗

⊗k−1
i=0 Mi

)
ππ−1

)
⊗n+k−1
i=0 di

=

(
(W)(mergen+k ⊗idX⊎V⊎Z)

(
(
⊗n−1
i=0 idZi ⊗ (αi ⊗ id1)pXiq)⊗

⊗k−1
i=0 idZn+i ⊗Mi

))⊗n+k−1
i=0 di

= (W)(mergen+k ⊗idX⊎V⊎Z)
(
(
⊗n−1
i=0 (idZi ⊗ (αi ⊗ id1)pXiq)di) ⊗

⊗k−1
i=0 (idZn+i ⊗Mi)dn+i

)

Lem. 3.38, hyp.
= (W)(mergen+k ⊗idX⊎V⊎Z)((⊗n−1

i=0 (idZi ⊗ (αi ⊗ id1)pXiq)
(

βi ⊗ (~xi)/(~Wi)
) (

(Yi)
(
(merge0+ki ⊗idV̄ ′

i
)
⊗ki−1
j=0 M

′
ν̄i(j)

)))

⊗
⊗k−1
i=0 Ω

λν(i)

∅
M′

ν(i)

)

= (W)(mergen+k ⊗idX⊎V⊎Z)((⊗n−1
i=0 (idZi ⊗ (αi ⊗ id1)pXiq)

(
βi ⊗ (~xi)/(~Wi)

)
(
(Yi)

(
(merge0+ki ⊗idV̄ ′

i
)
⊗ki−1
j=0 Ω

idV̄ ′
i

∅
M′

ν̄i(j)

)))

⊗
⊗k−1
i=0 Ω

λν(i)

∅
M′

ν(i)

)

Due to normal form properties, the conditions onν andν̄i, and by pointwise inspection of what points of the
inner faces of theΩ bigraphs are mapped to, this is equal to

= (W)(mergek′ ⊗idX⊎V⊎Z)
⊗k′−1
i=0 Ω

((
⊎n−1
i=0 βi)⊎

⊎k−1
i=0 λν(i))|V′

i
∅

M′
i

= (W)Ω
(
⊎n−1
i=0 βi)⊎

⊎k−1
i=0 λν(i)

∅
(mergek′ ⊗idV ′)

⊗k′−1
i=0 M

′
i

= Ωλ
W ′(W ′)(mergek′ ⊗idV ′)

⊗k′−1
i=0 M

′
i

= Ωλ
W ′A

Base case:We must havek = 0, in which case the above reasoning applies, as the inductionhypothesis ys not
needed.

We prove “⇐” by induction over the expression depth ofA:
Inductive step:Assumeλ, R, A and discreted given with Ωλ

W ′A = (idZ ⊗ R)d. We can express these
bigraphs by normal forms:

R = (W)
(
(mergen+k ⊗ idX⊎V)((α0⊗ id1)pX0q⊗ · · · ⊗ (αn−1⊗ idn−1)pXn−1q

⊗M0 ⊗ · · · ⊗Mk−1)π
)
: 〈m, ~X〉 → 〈(W),W ⊎U〉

A = (W ′)
(
(merge0+k′ ⊗ idV ′)(M′

0 ⊗ · · · ⊗M′
k′−1)id0

)
: 〈(W ′),W ′ ⊎U′〉

d = d′
π(0) ⊗ · · · ⊗ d′

π(m−1) : 〈m,
~X, {~X} ⊎ Z〉,

Mi : Ii → 〈Vi〉
M′
i : I′i → 〈V′

i 〉

whereX =
⊎n−1
i=0 Xi andV =

⊎k−1
i=0 Vi, for somen, k, k′,Mi,M′

i , αi,Xi,W,W
′,V′ and discrete primesd′i. We

also note that we must haveλ(W ′) =W andλ(U ′) = U, and then find that

(idZ ⊗ R)d

=

(
idZ ⊗ (W)

(
(mergen+k⊗idX⊎V)

(
(
⊗n−1
i=0 (αi ⊗ id1)pXiq) ⊗

⊗k−1
i=0 Mi

)
π
))⊗m−1

i=0 d
′
π(i)

=

(
idZ ⊗ (W)

(
(mergen+k⊗idX⊎V)

(
(
⊗n−1
i=0 (αi ⊗ id1)pXiq) ⊗

⊗k−1
i=0 Mi

)
π
))

(idZ ⊗ π−1)
⊗m−1
i=0 d

′
i

We group the primes of the parameter according to the interfaces of thepXiq andMi bigraphs they compose with,
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so thatd′0 ⊗ · · · ⊗ d′m−1 = d0 ⊗ · · · ⊗ dn+k−1, and continue with

=

(
idZ ⊗ (W)(mergen+k⊗idX⊎V)

(
(
⊗n−1
i=0 (αi ⊗ id1)pXiq) ⊗

⊗k−1
i=0 Mi

)
ππ−1

)
⊗n+k−1
i=0 di

=

(
(W)(mergen+k⊗idX⊎V⊎Z)

(
(
⊗n−1
i=0 idZi ⊗ (αi ⊗ id1)pXiq) ⊗

⊗k−1
i=0 idZn+i ⊗Mi

))⊗n+k−1
i=0 di

= (W)(mergen+k⊗idX⊎V⊎Z)
(
(
⊗n−1
i=0 (idZi ⊗ (αi ⊗ id1)pXiq)di) ⊗

⊗k−1
i=0 (idZn+i ⊗Mi)dn+i

)
(4)

whereZ =
⊎
i∈n+k Zi. By assumption, this is equal to

Ωλ
W ′(W ′)

(
(merge0+k′ ⊗ idV ′)(M′

0 ⊗ · · · ⊗M′
k′−1)

)

= (W)
(
Ωλ

∅
(merge0+k′ ⊗ idV ′)(M′

0 ⊗ · · · ⊗M′
k′−1)

)

= (W)
(
(merge0+k′ ⊗ idW⊎U)(Ω

λ|V′0
∅
M′
0 ⊗ · · · ⊗ Ω

λ|V′
k′−1

∅
M′
k′−1)

)

Normal form properties imply that there must be a 1-1 mappingbetween theM′
i ’s and the molecules in (4); let

this be given by functions

ν : k
fin
−→ k′ injective ∀i ∈ n : ν̄i : ki

fin
−→ k′ injective img(ν) ⊎

⊎

i∈n

img(ν̄i) = k′

such that

∀i ∈ n : di =
(

βi ⊗ (~xi)/(~Wi)
) (

(Wi)
(
(merge0+ki ⊗idV̄ ′

i
)(M′

ν̄i(0)
⊗ · · · ⊗M′

ν̄i(ki−1)
)id0

))
: 〈(Xi),Xi ⊎ Zi〉

where ∀i ∈ n : Xi = {~xi} ∧Wi = {~Wi} ∧ V̄
′
i =

⊎
j∈ν̄i(ki)

V′
j ∧ βi = λ

∣∣
V̄ ′
i \Wi

and∀i ∈ n : ~xi = [xi0, . . . , xili] ∧
~Wi = [Wi0, . . . ,Wili ] ∧ y

A ∈ V̄′
i : λ(yA) = αi(xij) ⇔ y

A ∈Wij

∀i ∈ k : Ω
λν(i)

∅
M′

ν(i)
= (idZn+i ⊗Mi)dn+i where ∀i ∈ k′ : λi = λ

∣∣
V ′
i

By the induction hypothesis and Lemma 3.38, the last equation implies thatλν(i),Mi,M
′
ν(i)

r
→֒ dn+i,Zn+i. We

now have all the premises that allow us by rule Prdx to concludeλ, R, A
r
→֒ d,Z.

Base case:In this casek′ = 0 impliesk = 0, so the above argument applies as the induction hypothesis is not
used.

Proof of Lemma 3.40.
“⇒” by induction over inference tree height:

Inductive step:Assumeλ, R, A
c
→֒C, d,Z. Thend is discrete because all the constituents ofd are discrete by

construction, Lemma 3.39, rule Mctx and the hypothesis.
We now calculate

(idY ⊗ C)(idY ⊗ π′)

=
(
idY ⊗ (W ′′)(merge⊗id)

(
(
⊗n′−1
i=0 α′ip{~y

′
i}q) ⊗

(⊗k′′−1
i=0 Mν̄(i)

)
⊗
⊗
i∈img(ν)M

′
i

)
π′′
)
(idY ⊗ π′)

= idY ⊗
(
(W ′′)(merge⊗id)

(
(
⊗n′−1
i=0 α′ip{~y

′
i}q)⊗

(⊗k′′−1
i=0 Mν̄(i)

)
⊗
⊗
i∈img(ν)M

′
i

)
(id〈n′,~Y′〉 ⊗ πν)π′−1

)
π′

= idY ⊗ (W ′′)(merge⊗id)
(
(
⊗n′−1
i=0 α′ip{~y

′
i}q)⊗

(⊗k′′−1
i=0 Mν̄(i)

)
⊗
(⊗
i∈img(ν)M

′
i

)
πν
)
π′−1π′

= (W ′′)(merge⊗id)
(
(
n′−1
i=0 idY′

i
⊗ α′ip{~y

′
i}q) ||

(⊗k′′−1
i=0 Mν̄(i)

)
|| id⊎n−1

i=0 Yi
⊗
(⊗
i∈img(ν)M

′
i

)
πν
)
,

(5)

and then
(( n′−1

i=0

(
ω′
i ⊗ (~y′i)/(

~W ′
i )
)
P′i
)
||
( n−1
i=0

(
ωi ⊗ (~yi)/(~Wi)

)
Pi
))

ππ̃−1

=
(( n′−1

i=0

(
ω′
i ⊗ (~y′i)/(

~W ′
i )
)
P′i
)
||
( n−1
i=0

(
ωi ⊗ (~yi)/(~Wi)

)
Pi
))

ππ−1(idm′ ⊗ π̄ν
~m)

=
(( n′−1

i=0

(
ω′
i ⊗ (~y′i)/(

~W ′
i )
)
P′i
)
||
( n−1
i=0

(
ωi ⊗ (~yi)/(~Wi)

)
Pi
))

(idm′ ⊗ π̄ν
~m)

=
( n′−1
i=0

(
ω′
i ⊗ (~y′i)/(

~W ′
i )
)
P′i
)
||
( n−1
i=0

(
ωi ⊗ (~yi)/(~Wi)

)
Pi
)
π̄ν

~m.

(6)
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Further,
(
idZ′i

⊗ (ω′
i ⊗ α′

ip{~y
′
i}q(~y′i)/(

~W ′
i ))P

′
i

)
Di

=

(
idZ′i

⊗ (ω′
i ⊗ α′

ip{~y
′
i}q(~y′i)/(

~W ′
i ))(W

′
i )

(
(mergeni+ki ⊗id)

((⊗ni−1
j=0 (α

j
i ⊗ id1)pX

j
iq
)
⊗
(⊗ki−1

j=0 M
j
i

))
πi

))
⊗li−1
j=0 d

′πi(j)
i

=

(
idZ′i

⊗ (ω′
i ⊗ α′

ip{~y
′
i}q(~y′i)/(

~W ′
i ))(W

′
i )

(
(mergeni+ki ⊗id)

((⊗ni−1
j=0 (α

j
i ⊗ id1)pX

j
iq
)
⊗
(⊗ki−1

j=0 M
j
i

))
πi

))
(idZ′i

⊗ π−1
i )

⊗li−1
j=0 d

′j
i

=
(
idZ′

i
⊗ ω′

i ⊗ α′
ip{~y

′
i}q(~y′i)/(

~W ′
i )
)
(W ′
i )

(
(mergeni+ki ⊗id)

((⊗ni−1
j=0 id

Z
j
i

⊗ (α
j
i ⊗ id1)pX

j
iq
)
⊗
(⊗ki−1

j=0 id
Z
ni+j
i

⊗M
j
i

)))⊗ni+ki−1
j=0 d

j
i

=
(
idZ′i

⊗ ω′
i ⊗ α′

ip{~y
′
i}q(~y′i)/(

~W ′
i )
)
(W ′
i )

(
(mergeni+ki ⊗id)

((⊗ni−1
j=0 (id

Z
j
i

⊗ (α
j
i ⊗ id1)pX

j
iq)d

j
i

)
⊗
(⊗ki−1

j=0 (id
Z
ni+j
i

⊗M
j
i )d
ni+j
i

)))

Lem. 3.39
=

(
idZ′

i
⊗ ω′

i ⊗ α′
ip{~y

′
i}q(~y′i)/(

~W ′
i )
)

(W ′
i )

(
(mergeni+ki ⊗id)

((⊗ni−1
j=0 (id

Z
j
i

⊗ (α
j
i ⊗ id1)pX

j
iq)
(
β
j
i ⊗ (~y

j
i)/(

~W
j
i )
)

(
(W
j
i )
(
(merge

0+|ν̄−1
i

(j)|
⊗ id

V̄
j
i

)
⊗

ν̄i(j
′)=jΩ

idV
j′

∅
Mj′
)))

⊗
(⊗ki−1

j=0 Ω
λr

νi(j)

∅
Mνi(j)

)))
.

(7)

Finally, we find

(idZ⊎Y ⊗ C)(idZ ⊗ R)d

= (idZ ⊗ (idY ⊗ C)R)
⊗m−1
i=0 D

′
π̃(i)

= (idZ ⊗ (idY ⊗ C)R)(idZ ⊗ π̃−1)
⊗m−1
i=0 D

′
i

= (idZ ⊗ (idY ⊗ C)(idY ⊗ π′)
(( n′−1

i=0

(
ω′
i ⊗ (~y′i)/(

~W ′
i )
)
P′i
)
||
( n−1
i=0

(
ωi ⊗ (~yi)/(~Wi)

)
Pi
))

ππ̃−1)
⊗n′+k−1
i=0 Di

(5)(6)
=

(
idZ ⊗

(
(W ′′)(merge⊗id)

(
(
n′−1
i=0 idY′

i
⊗ α′ip{~y

′
i}q) ||

(⊗k′′−1
i=0 Mν̄(i)

)
|| id⊎n−1

i=0 Yi
⊗
(⊗
i∈img(ν)M

′
i

)
πν
)

(( n′−1
i=0

(
ω′
i ⊗ (~y′i)/(

~W ′
i )
)
P′i
)
||
( n−1
i=0

(
ωi ⊗ (~yi)/(~Wi)

)
Pi
)
π̄ν

~m

)))⊗n′+k−1
i=0 Di

=

(
idZ ⊗

(
(W ′′)(merge⊗id)

(( n′−1
i=0 (idY′

i
⊗ α′ip{~y

′
i}q)(

n′−1
i=0

(
ω′
i ⊗ (~y′i)/(

~W ′
i )
)
P′i )
)
||
(⊗k′′−1
i=0 Mν̄(i)

)
||

(
id⊎n−1

i=0 Yi
⊗
(⊗
i∈img(ν)M

′
i

)
πν
)( n−1

i=0

(
ωi ⊗ (~yi)/(~Wi)

)
Pi
)
π̄ν

~m

)))⊗n′+k−1
i=0 Di

Cor. 3.36
=

(
idZ ⊗

(
(W ′′)(merge⊗id)

(( n′−1
i=0 (ω′

i ⊗ α′ip{~y
′
i}q(~y′i)/(

~W ′
i ))P

′
i

)
||
(⊗k′′−1
i=0 Mν̄(i)

)
||

i∈img(ν)(idỸi ⊗M
′
i) ν(j)=i(ωj ⊗ (~yj)/(~Wj))Pj

)))⊗n′+k−1
i=0 Di

= (W ′′)(merge⊗id)

(( n′−1
i=0 idZ′

i
⊗ (ω′

i ⊗ α′ip{~y
′
i}q(~y′i)/(

~W ′
i ))P

′
i

)
||
(⊗k′′−1
i=0 Mν̄(i)

)
||

i∈img(ν) idZ′
n′+i

⊎Ỹi
⊗M′

i

(
idZ′

n′+i
⊗ ν(j)=i(ωj ⊗ (~yj)/(~Wj))Pj

))⊗n′+k−1
i=0 Di

= (W ′′)(merge⊗id)

((
n′−1
i=0

(
idZ′

i
⊗ (ω′

i ⊗ α′ip{~y
′
i}q(~y′i)/(

~W ′
i ))P

′
i

)
Di

)
||
(⊗k′′−1
i=0 Ω

idVν̄(i)

∅
Mν̄(i)

)
||

i∈img(ν)

(
idZ′

n′+i
⊎Ỹi

⊗M′
i

)(
idZ′

n′+i
⊗ ν(j)=i(ωj ⊗ (~yj)/(~Wj))Pj

)
Dn′+i

)

whereỸi′ =
⋃

ν(i)=i′ Yi. By rule Mctx, the hypothesis and Lemma 3.38 we know that(idZ′
n′+i

⊎Ỹi
⊗M′

i)(idZ′n′+i
⊗

ν(j)=i(ωj ⊗ (~yj)/(~Wj))Pj)Dn′+i = Ω
λci
∅
Mi, so we continue with

= (W ′′)(merge⊗id)((
n′−1
i=0

(
idZ′i

⊗ (ω′
i ⊗ α′ip{~y

′
i}q(~y′i)/(

~W ′
i ))P

′
i

)
Di

)
||
(⊗k′′−1
i=0 Ω

λ|Vν̄(i)

∅
Mν̄(i)

)
|| i∈img(ν) Ω

λci
∅
Mi

)

(7)
= (W ′′)(merge⊗id)((

n′−1
i=0

(
idZ′i

⊗ ω′
i ⊗ α′ip{~y

′
i}q(~y′i)/(

~W ′
i )
)

(W ′
i )

(
(mergeni+ki ⊗id)((⊗ni−1

j=0 (id
Z
j
i

⊗ (α
j
i ⊗ id1)pX

j
iq)
(

β
j
i ⊗ (~y

j
i)/(

~W
j
i )
)

(
(W
j
i )
(
(merge

0+|ν̄−1i (j)| ⊗ id
V̄
j
i

)(
⊗

ν̄i(j′)=j
Ω
idV
j′

∅
Mj′)

)))

⊗
(⊗ki−1

j=0 Ω
λr

νi(j)

∅
Mνi(j)

))))

||
(⊗k′′−1
i=0 Ω

λ|Vν̄(i)

∅
Mν̄(i)

)
|| i∈img(ν) Ω

λci
∅
Mi

)
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Normal form properties and pointwise inspection of how names of the inner faces of theΩ bigraphs are mapped,
considering the conditions onλci andλr

νi(j)
, imply that this is equal to

(W ′′)Ωλ
∅

(
(merge0+k ⊗ idV)(M0 ⊗ · · · ⊗Mk−1)id0

)

= Ωλ
W ′(W ′)

(
(merge0+k ⊗ idV)(M0 ⊗ · · · ⊗Mk−1)id0

)

Base case:We must haveimg(ν) = ∅, so the above reasoning applies as the induction hypothesisis not used.

We prove “⇐” by induction over the expression depth ofPA:

Inductive step:Assume n′′−1
i=0 (ω′′

i ⊗ (~y′′i )/(
~W ′′
i ))P′′i : 〈m,

~X〉 → 〈n′′,~Y, {~Y} ⊎ Y〉, PC : 〈n′′, ~Y〉 →

〈(W ′′),W ′′ ⊎ U′′〉 is an active discrete prime,d : 〈m, ~X, {~X} ⊎ Z〉 is discrete, andΩλ
W ′P

A = (idZ⊎Y ⊗

PC)(idZ ⊗
n′′−1
i=0 (ω′′

i ⊗ (~y′′i )/(
~W ′′
i ))P′′i )d. These bigraphs can be expressed in normal form, for anyν : n→ k

with | img(ν)| = k′′′:

PA = (W ′)
(
(merge0+k ⊗ idV)(id0 ⊗M0 ⊗ · · · ⊗Mk−1)id0

)

d = (d′
π̃(0)

⊗ · · · ⊗ d′
π̃(m−1)

)id0

PC = (W ′′)
(
(mergen′+k′′+k′′′ ⊗ idW ′′⊎U′′)((⊗n′−1

i=0 (α′i ⊗ id1)p{~y
′
i}q
)
⊗ (

⊗k′′−1
j=0 M

′′
j ) ⊗

⊗
j∈img(ν)M

′
j

)
π′′)

whereM′′
j has no sites, whileM′

j has at least one site.

Leaving the specification ofν till later, we let π′ = (π′′)−1(idn′ ⊗ πν), and find thatπ′′ = (idn′ ⊗

πν)(π′)−1. Now find aπ such that(idY⊗π′)
(( n′−1

i=0 (ω′
i ⊗ (~y′i)/(

~W ′
i ))P

′
i

)
||
n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
π =

n′′−1
i=0 (ω′′

i ⊗ (~y′′i )/(
~W ′′
i ))P

′′
i , and calculate:

(
idZ⊎Y ⊗ (

⊗n′−1
i=0 (α′i ⊗ id1)p{~y

′
i}q)⊗ (

⊗k′′−1
j=0 M

′′
j ) ⊗

⊗
j∈img(ν)M

′
j

)
(idZ⊎Y ⊗ π′′)(

idZ ⊗
n′′−1
i=0 (ω′′

i ⊗ (~y′′i )/(
~W ′′
i ))P′′i

)⊗m−1
i=0 d

′
π̃(i)

=
(
idZ⊎Y ⊗ (

⊗n′−1
i=0 (α′i ⊗ id1)p{~y

′
i}q)⊗ (

⊗k′′−1
j=0 M

′′
j ) ⊗

⊗
j∈img(ν)M

′
j

)
(idZ⊎Y ⊗ idn′ ⊗ πν)(idZ⊎Y ⊗ π′)−1

(idZ⊎Y ⊗ π′)
(
idZ ⊗

( n′−1
i=0 (ω′

i ⊗ (~y′i)/(
~W ′
i ))P

′
i

)
||
n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
(idZ ⊗ π)

⊗m−1
i=0 d

′
(idm′⊗π̄ν

~m)−1π(i)

=
(
idZ⊎Y ⊗ (

⊗n′−1
i=0 (α′i ⊗ id1)p{~y

′
i}q)⊗ (

⊗k′′−1
j=0 M

′′
j ) ⊗

⊗
j∈img(ν)M

′
j

)
(idZ⊎Y ⊗ idn′ ⊗ πν)(

idZ ⊗
( n′−1
i=0 (ω′

i ⊗ (~y′i)/(
~W ′
i ))P

′
i

)
||
n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
(idZ ⊗ idm′ ⊗ π̄ν

~m)
⊗m−1
i=0 d

′
i

=
(
idZ ⊗

( n′−1
i=0 (idY′

i
⊗ (α′i ⊗ id1)p{~y

′
i}q)(ω′

i ⊗ (~y′i)/(
~W ′
i ))P

′
i

)
|| (
⊗k′′−1
j=0 M

′′
j )

|| (idY′′ ⊗ (
⊗
j∈img(ν)M

′
j)πν)(

n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi)π̄ν

~m

)⊗m−1
i=0 d

′
i

=
(( n′−1

i=0 idZ′
i
⊗ (ω′

i ⊗ pα′i~y
′
iq(α′i~y

′
i)/(

~W ′
i ))P

′
i

)
|| (
⊗k′′−1
j=0 M

′′
j )

|| (idZ′ ⊗ (idY′′ ⊗ (
⊗
j∈img(ν)M

′
j)πν)

( n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
π̄ν

~m)
)⊗m−1

i=0 d
′
i

whereY′′ =
⋃
i∈nYi andZ′ =

⊎
i∈k Z

′
n′+i.

We can express eachP′i in normal form byP′i = (W ′
i )
(
(mergeni+ki ⊗ idW ′

i⊎U
′
i
)
((⊗ni−1

j=0 (α
j
i ⊗ id1)pX

j
iq
)
⊗

⊗ki−1
j=0 M

j
i

)
πi

)
for all i ∈ n′, and group thed′i’s according to the primes and molecules they compose with, so

thatd′0 ⊗ · · · ⊗ d′m−1 = D0 ⊗ · · · ⊗ Dn′+k′′′−1. This yields

=

((
n′−1
i=0 idZ′i

⊗ (ω′
i ⊗ pα′i~y

′
iq(α′i~y

′
i)/(

~W ′
i ))

(W ′
i )
(
(mergeni+ki ⊗ idW ′

i⊎U
′
i
)
((⊗ni−1

j=0 (α
j
i ⊗ id1)pX

j
iq
)
⊗
⊗ki−1
j=0 M

j
i

)
πi

))

|| (
⊗k′′−1
j=0 M

′′
j ) || (idZ′ ⊗ (idY′′ ⊗ (

⊗
j∈img(ν)M

′
j)πν)(

n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi)π̄ν

~m)

)
⊗n′+k′′′−1
i=0 Di
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Writing for all i ∈ n′ eachDi as a tensor product of discrete primesDi =
⊗li−1
j=0 d

′πi(j)
i , we continue with

=

((
n′−1
i=0

(
idZ′i

⊗ (ω′
i ⊗ α′i~y

′
i/

~W ′
i ⊗ id1)

(mergeni+ki ⊗ idW ′
i⊎U

′
i
)
((⊗ni−1

j=0 (α
j
i ⊗ id1)pX

j
iq
)
⊗
⊗ki−1
j=0 M

j
i

)
πi

)

⊗li−1
j=0 d

′πi(j)
i

)

|| (
⊗k′′−1
j=0 M

′′
j ) ||

(
idZ′ ⊗ (idY′′ ⊗ (

⊗
j∈img(ν)M

′
j)πν)

( n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
π̄ν

~m

)⊗k′′′−1
i=0 Dn′+i

)

=

((
n′−1
i=0

(
idZ′i

⊗ (ω′
i ⊗ α′i~y

′
i/

~W ′
i ⊗ id1)

(mergeni+ki ⊗ idW ′
i⊎U

′
i
)
((⊗ni−1

j=0 (α
j
i ⊗ id1)pX

j
iq
)
⊗
⊗ki−1
j=0 M

j
i

))

⊗li−1
j=0 d

′j
i

)

|| (
⊗k′′−1
j=0 M

′′
j ) ||

(
idZ′ ⊗ j∈img(ν)(idY′′j

⊗M′
j)( ν(j′)=j(ωj′ ⊗ (~yj′)/(~Wj′))Pj′)

)⊗k′′′−1
i=0 Dn′+i

)

using Corollary 3.36 with an appropriateν, and lettingY′′j =
⊎

ν(j′)=jYj. Groupingd′ji ’s according to each factor

of
⊗ki−1
j=0 M

j
i so thatd′0i ⊗ · · · ⊗ d′li−1i = d0i ⊗ · · · ⊗ dni+ki−1i for all i ∈ n′, we get

=

((
n′−1
i=0 (id〈Z′i〉

⊗ ω′
i ⊗ α′i~y

′
i/

~W ′
i )

(mergeni+ki ⊗ idZ′i⊎W
′
i⊎U

′
i
)
((⊗ni−1

j=0 (id
Z
j
i

⊗ (α
j
i ⊗ id1)pX

j
iq)d

j
i

)
⊗
⊗ki−1
j=0 (id

Z
ni+j
i

⊗M
j
i)d
ni+j
i

))

|| (
⊗k′′−1
j=0 M

′′
j ) ||

(
j∈img(ν)(idZ′j⊎Y

′′
j
⊗M′

j)( ν(j′)=j(idZ′j′
⊗ (ωj′ ⊗ (~yj′)/(~Wj′))Pj′)Dn′+j′)

))

=

((
n′−1
i=0 (id〈Z′i〉

⊗ ω′
i ⊗ α′i~y

′
i/

~W ′
i )(mergeni+ki ⊗ idZ′i⊎W

′
i⊎U

′
i
)

((⊗ni−1
j=0

(
id1 ⊗ β

j
i ⊗ α

j
i~y
j
i/

~W
j
i

)
(merge

k
j
i

⊗ id)
⊗
j′∈k

j
i

M
j
ij′

)
⊗
⊗ki−1
j=0 (id

Z
ni+j
i

⊗M
j
i) d
ni+j
i

))

|| (
⊗k′′−1
j=0 M

′′
j ) ||

(
j∈img(ν)(idZ′j⊎Y

′′
j
⊗M′

j)( ν(j′)=j(idZ′j′
⊗ (ωj′ ⊗ (~yj′)/(~Wj′))Pj′)Dn′+j′)

))

=

((
n′−1
i=0 (mergeni+ki ⊗ idZ′i⊎Y

′
i⊎{α′i~y

′
i}

)
(( ni−1

j=0

(
id1 ⊗ β

j
i ⊗ (ω′

i ↾ {α
j
i~y
j
i} ⊗ α′i~y

′
i/

~W ′
i ↾ {α

j
i~y
j
i})α

j
i~y
j
i/

~W
j
i

)
(merge

k
j
i

⊗ id)
⊗
j′∈k

j
i

M
j
ij′

)

⊗
ki−1
j=0 (id

Z
ni+j
i

⊗ (id1 ⊗ ω′
i ↾ V

j
i ⊗ α′i~y

′
i/

~W ′
i ↾ V

j
i )M

j
i) d
ni+j
i

))

|| (
⊗k′′−1
j=0 M

′′
j ) ||

(
j∈img(ν)(idZ′j⊎Y

′′
j
⊗M′

j)( ν(j′)=j(idZ′j′
⊗ (ωj′ ⊗ (~yj′)/(~Wj′))Pj′)Dn′+j′)

))

because by normal form∀j ∈ ni : d
j
i =

(
β
j
i ⊗ (~y

j
i)/(

~W
j
i )
)(

(W
j
i )
(
(merge

k
j
i

⊗ id)(
⊗
j′∈k

j
i

M
j
ij′)id0

))
id0 for all

i ∈ n′.
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In total, we have

(idZ⊎Y ⊗ P
C)(idZ ⊗

n′′−1
i=0 (ω′′

i ⊗ (~y′′i )/(
~W ′′
i ))P′′i )d

=
(
idZ⊎Y ⊗ (W ′′)

(
(mergen′+k′′+k′′′ ⊗ idW ′′⊎U′′)
((⊗n′−1

i=0 (α′i ⊗ id1)p{~y
′
i}q
)
⊗ (

⊗k′′−1
j=0 M

′′
j )⊗

⊗
j∈img(ν)M

′
j

)
π′′)

)

(
idZ ⊗

n′′−1
i=0 (ω′′

i ⊗ (~y′′i )/(
~W ′′
i ))P

′′
i

)⊗m−1
i=0 d

′
π̃(i)

= (W ′′)
(
(mergen′+k′′+k′′′ ⊗ idZ⊎Y⊎W ′′⊎U′′)(
idZ⊎Y ⊗

(⊗n′−1
i=0 (α′i ⊗ id1)p{~y

′
i}q
)
⊗ (

⊗k′′−1
j=0 M

′′
j )⊗

⊗
j∈img(ν)M

′
j

)
(idZ⊎Y ⊗ π′′)

(
idZ ⊗

n′′−1
i=0 (ω′′

i ⊗ (~y′′i )/(
~W ′′
i ))P

′′
i

)⊗m−1
i=0 d

′
π̃(i)

)

= (W ′′)

(
(mergen′+k′′+k′′′ ⊗ idZ⊎Y⊎W ′′⊎U′′)((

n′−1
i=0 (id〈Z′i〉

⊗ ω′
i ⊗ α′i~y

′
i/

~W ′
i )(mergeni+ki ⊗ idZ′i⊎W

′
i⊎U

′
i
)

((⊗ni−1
j=0

(
id1 ⊗ β

j
i ⊗ α

j
i~y
j
i/

~W
j
i

)
(merge

k
j
i

⊗ id)
⊗
j′∈k

j
i

M
j
ij′

)

⊗
⊗ki−1
j=0 (id

Z
ni+j
i

⊗M
j
i) d
ni+j
i

))

|| (
⊗k′′−1
j=0 M

′′
j )

||
(
j∈img(ν)(idZ′j⊎Y

′′
j
⊗M′

j)( ν(j′)=j(idZ′j′
⊗ (ωj′ ⊗ (~yj′)/(~Wj′))Pj′)Dn′+j′)

))
)

The assumption states that this is equal toΩλ
W ′P

A = Ωλ
W ′(W ′)

(
(mergek ⊗ idV)(M0 ⊗ · · · ⊗ Mk−1)

)
=

(W ′′)
(
(merge0+k ⊗ idZ⊎Y⊎W ′′⊎U′′)(Ω

λ|V0
∅
M0 || · · · || Ω

λ|Vk−1
∅

Mk−1)id0
)
, but normal form properties imply that

this only can be possible if there is a 1–1 correspondence between the molecules of each expression. Let this
correspondence be given bysplit(k, k′′, k′′′, ki, νi, ν̄i, ν, ν̄, ni, n, n′) so that

∀i ∈ n′, j ∈ ni : (β
j
i ⊗ α

j
i~y
j
i/

~W
j
i )(mergekji

⊗id)(
⊗
j′∈k

j
i

M
j
ij′

)

= (merge|ν̄−1i (j)|⊗id
V̄
j
i

)

(
id0 ⊗

⊗
ν̄i(j′)=j

Ω
λ|V
j′

∅
Mj′

)

∀i ∈ n′, j ∈ ki : (idZni+ji

⊗M
j
i)d
ni+j
i = Ω

λ|Vνi(j)

∅
Mνi(j)

∀i ∈ k′′ : M′′
i = Ω

λ|Vν̄(i)

∅
Mν̄(i) ∧ λ|Vν̄(i)

= id

∀i ∈ img(ν) : (idZ′j⊎Y
′′
j
⊗M′

j) ν(j′)=j(idZ′j′
⊗ (ωj′ ⊗ (~yj′)/(~Wj′))Pj′)Dn′+j′ = Ω

λci
∅
Mi ∧ λci = λ|Vi

By rule Mrdx and Lemmas 3.38 and 3.39 we now get∀i ∈ n′, j ∈ ki : λr
νi(j)
,M
j
i ,Mνi(j)

r
→֒ d

ni+j
i ,Z

ni+j
i . As

PC is active, so isM′
i and thusKP′′ of rule Mctx, soK is active and the induction hypothesis applies, yielding

∀i ∈ k :
(⊗

ν(j′)=i Pj′
)
,Mi

c
→֒M′

i ,Dn′+i. We now have all the premises required by rule Pctx to conclude that

P′′0 ⊗ · · · ⊗ P′′n′′−1, P
A c
→֒ PC, d.

Base case:We havek = 0 and thusPA = 1, n = 0, k′′ = 0, n′ = n′′, andki = 0 for i ∈ n′. The redex
must be a tensor product ofmerge bigraphs, and by checking the premises, we can conclude by rule Pctx that

PR0 ⊗ · · · ⊗ PRn′′−1 : m
′′ → n′′, 1 : 1

c
→֒mergen′′ : n

′′ → 1, 1⊗ · · · ⊗ 1 : m′′.

Proof of Theorem 3.42.
“⇒”: AssumeBR, BA →֒ BC, d,Z. ThenBC is active andd discrete, because all the constituent primesP′′i

are active and the constituentsd′i’s are discrete by Lemma 3.40.
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We now calculate
(
idZ⊎Y ⊗ (

⊗n′−1
i=0 P

′′
i π′
i)πν

)(
idZ ⊗

(
ω ⊗

⊗n−1
i=0 (~yi)/(~Wi)

)
(P0 ⊗ · · · ⊗ Pn−1)π

)⊗m−1
i=0 d

′
(π̄ν

~m
)−1π(i)

)

=
(
idZ⊎Y ⊗ (

⊗n′−1
i=0 P

′′
i π′
i)πν

)(
idZ ⊗

(
(idY ⊗ /Ȳ)

n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
π
)
(idZ ⊗ π−1π̄ν

~m)
⊗m−1
i=0 d

′
i

=
(
idZ⊎Y ⊗ (

⊗n′−1
i=0 P

′′
i π′
i)πν

)(
idZ ⊗

(
(idY ⊗ /Ȳ)

n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
ππ−1π̄ν

~m

)⊗n′−1
i=0 di

=
(
idZ ⊗

(
idY ⊗ (

⊗n′−1
i=0 P

′′
i π′
i)πν

)(
(idY ⊗ /Ȳ)

n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
π̄ν

~m

)⊗n′−1
i=0 di

Cor 3.36
=

(
idZ ⊗

(
(id

〈n′,~W ′′,W ′′⊎U ′′⊎V̄〉
⊗ /Ȳ)

n′−1
i′=0 (idŶi′

⊗ P′′i′ π
′
i′ ) ν(i)=i′(ωi ⊗ (~yi)/(~Wi))Pi

))⊗n′−1
i=0 di

=
(
(id〈n′,~W ′′,W ′′⊎U ′′⊎V̄〉 ⊗ /Ȳ)

n′−1
i′=0 (P′′i′ ⊗ idZi′⊎Ŷi′

)
((

(idŶi′
⊗ π′

i′ ) ν(i)=i′(ωi ⊗ (~yi)/(~Wi))Pi
)
⊗ idZi′

))⊗n′−1
i′=0
di′

= (id〈n′,~W ′′,W ′′⊎U ′′⊎V̄〉 ⊗ /Ȳ)
n′−1
i′=0 (P′′i′ ⊗ idZi′⊎Ŷi′

)
(
Bi′ ⊗ idZi′

)
di′

Lem 3.40
= (id〈n′,~W ′′,W ′′⊎U ′′⊎V̄〉 ⊗ /Ȳ)

n′−1
i=0 Ω

λi
Bi
P′i ,

(8)

where~W ′′ = [W ′′
0 , . . . ,W

′′
n′−1].

Further, we can show that

B′1 =
(
ω′′ ⊗

n′−1⊗

i=0

(~y′i)/(~W
′′
i )
)
(id

〈n′,~W ′′,W ′′⊎U′′⊎V̄〉
⊗ /Ȳ)

n′−1

i=0

Ω
λi
Bi

= ω′ ⊗
n′−1⊗

i=0

(~y′i)/(~W
′
i ) = B′2 (9)

by case analysis overw ∈W ′ ⊎U′:

Casew ∈W ′
ij: In this case, we know by Definition 3.37(1) thatλi(w) = yij, and asW ′′

i = λ(W ′
i ) by rule B, we

find thatlinkB′1(w) = y′ij = linkB′2
(w).

Casew ∈ U′ ∧ λ(w) /∈ V̄: In this caseΩλi
Bi

(w) = λ(w) by Definition 3.37(2), and by rule B we findlinkB1(w) =

ω′′Ω
λi
Bi

(w) = ω′′(λ(w)) = ω′(w) = linkB′2
(w).

Casew ∈ U′
i ∧ λ(w) ∈ V̄: Let e =

n′−1
i=0 Ω

λi
Bi

(w) =
( n′−1
i=0 ωi

)
λ(w) = ωλ(w), and consider the setE =

{w′ ∈ W ′ ⊎U′ |
( n′−1
i=0 ωi

)
λ(w′) = e}. Due to the mapping condition in Rule B, this is exactly the set

of elements thatω′ maps to some edgeω′(w). Thus,linkB′1 = linkB′2
in this case.

Finally, we calculate:

BC(BR ⊗ idZ)d

=
(
ω′′ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′′
i )
)(

idZ⊎Y ⊗
⊗n′−1
i=0 P

′′
i π′
i)πν

(
idZ ⊗

(
ω ⊗

⊗n−1
i=0 (~yi)/(~Wi)

)
(P0 ⊗ · · · ⊗ Pn−1)π

)(⊗m−1
i=0 d

′
(π̄ν

~m)−1π(i)

)

(8)
=

(
ω′′ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′′
i )
)
(id〈n′,~W ′′,W ′′⊎U′′⊎V̄〉 ⊗ /Ȳ)

n′−1
i=0 Ω

λi
Bi
P′i

(9)
=

(
ω′ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′
i )
)
P′i

= BA

For “⇐”, assumeBC is active,d is discrete andBA = BC(BR ⊗ idZ)d. We express the bigraphs in normal
form:

BA =
(
ω′ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′
i )
)(

ǫ ⊗ ((
⊗n′−1
i=0 P

′
i )id0)

)
: 〈n′,~Y′, {~Y′} ⊎Y′〉

BC =
(
ω′′ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′′
i )
)(

idZ⊎Y ⊗ ((
⊗n′−1
i=0 P

′′
i )π′′)

)

: 〈n,~Y, {~Y} ⊎Y ⊎ Z〉 → 〈n′,~Y′, {~Y′} ⊎Y′〉

BR =
(
ω ⊗

⊗n−1
i=0 (~yi)/(~Wi)

)(
ǫ ⊗ ((

⊗n−1
i=0 Pi)π)

)
: 〈m, ~X〉 → 〈n,~Y, {~Y} ⊎Y〉

d =
⊗m−1
i=0 d

′
π̃(i) : 〈m,

~X, {~X} ⊎ Z〉, d′i prime

Pi : 〈mi, ~Xi〉 → 〈(Wi),Wi ⊎Ui〉

where π̃ = (π̄ν
~m)−1π, ν = νπ′′

, ~m = [m0, . . . ,mn−1], ∀i ∈ n : Pi : 〈mi, ~Xi〉 → 〈(Wi),Wi ⊎ Ui〉. By

Lemma 2.12 we haveBC =
(
ω′′ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′′
i )
)(

idZ⊎Y ⊗ ((
⊗n′−1
i=0 P

′′
i πi)πν)

)
for someπ0, . . . ,π

′
n − 1.
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Letting ω = (idY ⊗ /Ȳ)~y/~V and∀i ∈ n : ωi = ~y/~V ↾ Ui, we now calculate

(
idZ⊎Y ⊗ (

⊗n′−1
i=0 P

′′
i πi)πν

)(
idZ ⊗

(
ω ⊗

⊗n−1
i=0 (~yi)/(~Wi)

)
(
⊗n−1
i=0 Pi)π

)⊗m−1
i=0 d

′
π̃(i)

=
(
idZ ⊗

(
idY ⊗ (

⊗n′−1
i=0 P

′′
i πi)πν

)(
ω ⊗

⊗n−1
i=0 (~yi)/(~Wi)

)
(
⊗n−1
i=0 Pi)π

)
(idZ ⊗ π̃−1)

⊗m−1
i=0 d

′
i

=
(
idZ ⊗

(
idY ⊗ (

⊗n′−1
i=0 P

′′
i πi)πν

)(
ω ⊗

⊗n−1
i=0 (~yi)/(~Wi)

)
(
⊗n−1
i=0 Pi)ππ̃−1

)⊗m−1
i=0 d

′
i

=
(
idZ ⊗

(
idY ⊗ (

⊗n′−1
i=0 P

′′
i πi)πν

)(
(idY ⊗ /Ȳ)~y/~V ⊗

⊗n−1
i=0 (~yi)/(~Wi)

)
(
⊗n−1
i=0 Pi)ππ−1π̄ν

~m

)⊗m−1
i=0 d

′
i

=
(
idZ ⊗

(
idY ⊗ (

⊗n′−1
i=0 P

′′
i πi)πν

)
(id〈~Y,{~Y}⊎Y〉 ⊗ /Ȳ)

( n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
π̄ν

~m

)⊗m−1
i=0 d

′
i

=
(
idZ ⊗ (id〈~W ′′,{~W ′′}⊎U ′′⊎Y〉 ⊗ /Ȳ)

(
idY⊎Ȳ ⊗ (

⊗n′−1
i=0 P

′′
i πi)πν

)( n−1
i=0 (ωi ⊗ (~yi)/(~Wi))Pi

)
π̄ν

~m

)⊗m−1
i=0 d

′
i

Lem. 3.36
=

(
idZ ⊗ (id〈~W ′′,{~W ′′}⊎U ′′⊎Y〉 ⊗ /Ȳ)

n′−1
i′=0 (id

Ŷi′
⊗ P′′i′ πi′ ) ν(i)=i′(ωi ⊗ (~yi)/(~Wi))Pi

)⊗m−1
i=0 d

′
i

whereŶi′ =
⋃

ν(i)=i′ Yi. We regroup thed′i’s so thatd′0 ⊗ · · · ⊗ d′m−1 = d0 ⊗ · · · ⊗ dn′−1, and continue with

= (id
〈~W ′′,{~W ′′}⊎U′′⊎Y⊎Z〉

⊗ /Ȳ)
(
n′−1
i′=0 (id

Zi′⊎Ŷi′
⊗ P′′i′ πi′)

(
idZi′

⊗ ν(i)=i′(ωi ⊗ (~yi)/(~Wi))Pi
))⊗n′−1

i′=0 di′

= (id〈~W ′′,{~W ′′}⊎U′′⊎Y⊎Z〉 ⊗ /Ȳ)
n′−1
i′=0 (id

Zi′⊎Ŷi′
⊗ P′′i′ )

(
idZi′

⊗ (id
Ŷi′

⊗ πi′) ν(i)=i′(ωi ⊗ (~yi)/(~Wi))Pi
)
di′

whereZ =
⊎
i∈n′ Zi. We now find

BC(BR ⊗ idZ)d

=
(
ω′′ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′′
i )
)

(
idZ⊎Y ⊗ (

⊗n′−1
i=0 P

′′
i πi)πν

)(
idZ ⊗

(
ω ⊗

⊗n−1
i=0 (~yi)/(~Wi)

)
(
⊗n−1
i=0 Pi)π

)⊗m−1
i=0 d

′
π̃(i)

=
(
ω′′ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′′
i )
)
(id

〈~W ′′,{~W ′′}⊎U′′⊎Y⊎Z〉
⊗ /Ȳ)

n′−1
i′=0 (id

Zi′⊎Ŷi′
⊗ P′′i′ )

(
idZi′

⊗ (id
Ŷi′

⊗ πi′) ν(i)=i′(ωi ⊗ (~yi)/(~Wi))Pi
)
di′

=
(
ω′′ ⊗ /Ȳ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′′
i )
)
B′

whereB′ =
n′−1
i′=0 (id

Zi′⊎Ŷi′
⊗ P′′i′ )(idZi′ ⊗ Bi′)di′ andBi′ =

(
id
Ŷi′

⊗ πi′
)

ν(i)=i′(ωi ⊗ (~yi)/(~Wi))Pi.

By assumption, this is equal to
(
ω′ ⊗

⊗n′−1
i=0 (~y′i)/(

~W ′
i )
)
P′, whereP′ =

⊗n′−1
i=0 P

′
i . Note that all points

are contained inB′ andP′, respectively, so there is a 1–1 correspondence between thepoints ofB′ andP′. By
construction,B′ has no free internal edges, so all of its free points are linked to some outer name ofB′. Based on
the correspondence between points inB′ andP′, define a mapλ : W ′ ⊎U′−→W ′′ ⊎U′′ ⊎Y ⊎ Ȳ ⊎ Z mapping
outer names ofP′ to corresponding outer names ofB′. λ is well defined becauseP′ is discrete, and satisfies

mapping(λ,ω,ω′, Ȳ,Y′,U′,W ′
ij)

ω′′ = {λ(u′) 7→ ω′(u′) | u′ ∈ U′ ∧ λ(u′) ∈ U′′}

∀i ∈ n′, j ∈ ki :W
′′
ij = λ(W ′

ij) where ∀i ∈ n′ : ~W ′
i = [W ′

i0, . . . ,W
′
iki

] ∧ ~W ′′
i = [W ′′

i0, . . . ,W
′′
iki

].

We now find thatΩλ
W ′P

′ = B′ and consequently thatΩλi
W ′
i
P′i = (id

Zi′⊎Ŷi′
⊗ P′′i′ )(idZi′ ⊗ Bi′)di′ , where

∀i ∈ n′ : λi = λ ↾ W ′
i ⊎U

′
i . By Lemma 3.40 we then find∀i′ ∈ n′ : λi′ , Bi′ , P

′
i′
c
→֒ P′′i′ : Ii′ → 〈(W ′′

i′ ),W
′′
i′ ⊎

U′′
i′ 〉, di′ ,Zi′ . We now have all the premises that allow us by rule B to concludeBR, BA →֒ BC, d,Z.
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