
IT University
of Copenhagen

The 4P Taxonomy
A Survey of Software Development Environments

Anders Hessellund

IT University Technical Report Series TR-2006-86

ISSN 1600–6100 June 2006

Copyright c© 2006, Anders Hessellund

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-127-8

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Contents

1 Introduction 3

2 Theoretical framework 4
2.1 Work metaphors . 5
2.2 A taxonomy of concepts . 7

3 Program 9
3.1 Source artifacts . 10
3.2 Representation . 12
3.3 Consistency . 16
3.4 Target product . 19

4 Platform 20
4.1 Toolkit . 20
4.2 Presentation . 23
4.3 Function . 28
4.4 Inconsistency Management . 31

5 People 33
5.1 Area of Expertise . 34
5.2 Level of Expertise . 35
5.3 Organization . 36
5.4 Mediation . 36

6 Process 37
6.1 Life Cycle . 37
6.2 Method . 39
6.3 Configuration Management . 40
6.4 Decomposition Techniques . 42

7 Applying the taxanomy 42
7.1 Program . 44
7.2 Platform . 46
7.3 People . 47
7.4 Process . 48

8 Related work 49

9 Conclusion 51

2

1 Introduction

The conceptual architecture of software development environments1 has
a tremendous impact on the way we perceive the nature of software
development. Our environments form the way we construct software systems.
More importantly, they also direct and to a large extent restrict our
perception of possible implementation choices. A software development
environment consist of the tools that we have at our disposal. Strengths
and weaknesses of the tools in our toolkits often influence the nature of final
products as well as the methods we employ in order to create these final
products. The ever growing complexity of software projects only increases
our dependency on environments and thereby enhance their effect on our
work. Without a proper conceptualization of this field, we are unable to
understand, distinguish and choose between the environments available.

In a classical survey Contemporary Software Development Environments

[1] from 1982, Howden observes that there are already more than 400 software
development tools available on the market. The field has only grown during
the 24 years that have passed. Consequently, it is simply not possible to write
a complete survey of the plethora of existing tools. Nevertheless, developers
and managers still have to make decisions about which tools to use, and
predict how well these tools will fulfill their concrete requirements. Such
decisions are often based on vague intuitions, media hype and hear-say from
random fora. In order to properly understand the implications of such a
decision, it is necessary to understand what the tools actually offer and how
they fit into the broader context of software development.

The purpose of this paper is to introduce a conceptual framework that
will allow us to gain a deeper understanding of the nature and effect
of software devlopment environments. We will use the words software
development environment in a broad sense to denote a collection of tools,
the development method and the people involved in the actual development.
The key component in our framework is a taxonomy of software development
environments called the 4P Taxonomy. The four dimensions, our four Ps,
of a software development environment are Program, Platform, People and
Process. In this paper we will introduce and define these four dimensions
and use examples from concrete environments to illustrate our ideas. This
should provide the reader with a powerful cognitive tool that can be used
to understand and distinguish between different concrete environments. Our
ambition is that the framework should help our reader make more informed

1Note to the reader: The term software development environment only appears in italics
here and will be written in regular text in the rest of the paper. The reader should note
that the term denotes our broad definition which is explained in the rest of the paper.

3

choices between tools in the future.
In this paper, we will show that our proposed taxonomy can actually be

applied to a small set of modern software development environments. This
proves that our taxonomy can be used to understand actual environments
and hence potentially provide us with the overview that we require. The
key contributions of this paper are therefore a comprehensive taxonomy, an
example of its application and an in-depth survey of a large part of the
literature in this area.

This paper is organized in the following way: Section 2 introduces the
overall theoretical framework in the form of a high-level view of the 4P
taxonomy. Sections 3, 4, 5 and 6 elaborate on each of the four components
in the taxonomy - Program, Platform, People and Process. Section 7 shows
how the previously introduced taxonomy can be applied on a small selection
of actual software development environments. Section 8 describes related
work and shows some connections between our work and previous studies in
this field. Section 9 provides a summary of the key contributions and suggest
some directions for further research and development.

2 Theoretical framework

In order to understand the field of software development environments,
we must establish a common frame of reference in the form of a set
of key definitions. In this section, we will first motivate the need for
conceptualization and examine the concept of a tool by considering some
interesting analogies. Then we will introduce the 4P taxonomy that forms
the conceptual foundation for our work.

Previous conceptual studies of software development environments have,
as described in section 8, mainly been concerned with grouping tools into
general categories. Few attempts have been made at drawing a map of the
individual concepts which often span several such tool categories. Nørmark’s
report on Programming Environments [2] is one notable exception. Where
Nørmark puts emphasis on the programming activity, we will try to take a
wider perspective and include more of the actual development process. The
central intention in the framework that we will describe here is to reveal the
wealth of features, trade-offs, and distinctions that can be observed under
the general heading of software development environments.

Initially, we will have to define the somewhat blurred concept of a software
development environment. A software development environment consist of a
platform of tools and infrastructure, a program under development, people
that are involved, and a process that guides and directs all activities. It

4

should be observed that this is a much broader definition than the ordinary
meaning of software development environment. Typically, software develop-
ment environment is used in the sense integrated development environment

which only covers a certain part of the whole process and of the people
involved, viz., the programming activity and the programmers. As software
projects become increasingly complex and development processes extend
beyond simply the write-compile-execute style of working, we need to take a
larger perspective on software development.

We need to look at the complete life cycle of a project from early notes
on paper napkins over programming of thousands of lines of source code to
the final configuration and deployment of a finished product. These different
phases of the life cycle and the people involved in each of them form an
intricate web of relations. Software development environments are required
to manage this process and carefully handle the gradual refinement of a
vague idea over detailed blueprints to a full executable system. Furthermore,
the complex interactions of different people in various roles should be
managed and the their work should be integrated seamlessly into the overall
development.

Tool builders are faced with a daunting challenge if they aspire to
deliver the perfect tool. Computer-Aided Software Engineering (CASE)
tools and various forms of augmented Integrated Development Environments
(IDE) have delivered great value to developers and managers, but the all-
encompassing tool is yet to be seen. In order to produce promising future
solutions, we must conceptualize the very idea of a tool and then slowly the
different dimensions and facets of this idea. One approach can be to look at
more traditional tools and gain some insights by analogy.

2.1 Work metaphors

When we examine our intuitions about the very idea of a tool, three analogies
or metaphors come to mind. The first is the artist who relies on a few
primitive tools, such as brush and paint, and his unconstrained creativity.
The second is the craftsman with his stable toolkit and practical experience.
The third is the engineer or architect who relies on models, abstraction
and rigorous, theoretical education. We will examine these analogies or
metaphors and extract the mode of work which is embedded in each of them.

The artist works with primitive tools on unique products. The guiding
principle is creativity. An example is the single canvas painter who uses
simple brushes and jars of paint to create great beauty. The tools are
simple and flexible. They serve short-term goals and are not intended for
complex functionality. It can be argued that exactly for short term, unique

5

product development, these tools are ideal. This, of course, assumes an
extremely talented creator since there is rarely any methodological guidance.
Collaboration is typically not required in this mode of working because the
talented painter is a lone ranger 2.

In terms of software development environments, the artist is the expert
programmer who single-handed creates amazing and efficient products which
fulfills immediate requirements. The history of programming has several
examples of such artists, for instance Don Knuth3 (TEX [4]) and Jim Kent
(GigAssembler [5]). The toolkit does not have to contain complex tools
since the guiding principle is personal creativity rather than a computer-
assisted method. The obvious problem with this work mode is that when
programmers of lesser quality attempt to develop software in this fashion,
the odds of a successful outcome are extremely bad. Mere humans have to
rely on more than intuition and creativity in the face of complex problems.
The division of labor that is needed to handle complexity is not possible in
this work mode and that eliminates the hope of realistic project planning.

The second analogy is the often mentioned idea of the craftsman. The
craftsman typically works with a fixed, well-known toolkit and follows
methods based on experience and training. The products can be unique
or mass-produced. Production always happens according to patterns and
practices of the trade. Collaboration is sometimes a part of the craftsman’s
work because he is specialized within a field and recognizes his reliance on
others in larger projects. A good example of this craftsman is the carpenter
who can both create a unique desktop or fit a wooden door into a brick frame.
In the first case he accomplishes his work alone and in the second case he
produces and adapts a door to a frame created by others.

Programmers who develop programs according to the craftsman’s work
mode are skilled but not the programming equivalents of renaissance masters.
The prototypical example of a craftsman in programming is the consultant.
They rely on good tools and training. The tools might not assist them
in every part of the work, but they are never unimportant. Similarly, the
method is perhaps not formal or rigorous, but there are often certain patterns,
heuristics and guidelines to follow. Collaboration is often handled informally,
but a lone ranger attitude is not acceptable. The craftsman-programmer
often handles complexity better although a project can of course become
overwhelming and require a better tool and method. Nevertheless, in many
concrete scenarios with medium-size problems the craftsman is often the most

2This does, of course, not apply to renaissance masters like Michelangelo who directed

the painting of the Sistine Chapel ceiling rather than painting it singlehanded.
3Interestingly, Knuth devoted his Turing Award lecture in 1974 to theme of

programming as an art [3].

6

cost-effective and reliable person.
The third and final analogy in this section is the engineer or architect

as this role is sometimes also called. An engineer’s toolkit consist of
complex tools and rigorous methods. A central theme in this analogy is
the idea of high-level abstractions. Where the artist and the craftsman can
rely on intuition and experience, the engineer relies on explicitly defined
higher-level abstractions or models. Complexity is handled by describing a
problem and its solution at various levels and then dividing labor accordingly.
Collaboration is a necessity and the concept of defined process replaces
previous notions of heuristics and guidelines.

The choice of name for the field of Software Engineering accurately
captures the aspiration of software development since the first international
conference [6] where the word engineering appeared in the title. Software
should be developed according to the engineer analogy. The growth of
computational power and complexity requirements have pushed software
development toward an engineering practice. Typical tools are high-level
languages and models. Collaboration is structured by means of formal
methods and rigorous procedures. This mode of work facilitates solution to
extremely complex problems but also introduces the risk of over-engineering
when simple problems are solved in unnecessarily complex ways.

In summary, we can conclude that the choice of software development
environment should be made with respect to our current and future problems.
If we expect a series of complex problems, we should choose tools that support
us in a variety of ways and adopt methods that can help us manage the entire
process. If, on the other hand, our problems are minor then we should reject
the complex work modes and embrace simple, agile ways of problem solving.
The requirements of collaboration, defined process and project planning also
play an important role in our choice.

Our tool analogies suggest that the previously mentioned idea of a perfect
tool is probably not a meaningful ideal. Tools should fit our mode of work
rather than dreams of a universal tool. Programmers faced with tasks that
resemble the artist’s or the craftsman’s are simply better off relying on their
traditional tools. The engineers are the most obvious market segment for
the universal tool. But even in this case, there are also requirements of
an adaptable process and flexible tools which make any one-size-fits-all tool
seem less desirable.

2.2 A taxonomy of concepts

With our three metaphors of work in mind, we can now begin to conceptualize
the main dimensions of a software development environment and then unfold

7

these dimensions such that different facets, features and trade-offs become
visible. Choosing a certain environment usually implies a rejection of a set of
features. The purpose of a conceptual taxonomy is to reveal the often hidden
implications of such a choice. In this section, we will present a high-level view
of the taxonomy with a special focus on the four main dimensions. In the
next sections, we will then unfold these dimensions in greater detail.

We have choosen to use the cardinality-based feature modeling notation

[7, 8] to visualize our taxonomy. Feature diagrams are useful cognitive aids
when developing taxonomies as they capture common and variable features
in a hierarchic fashion. Table 1, which is adapted from Czarnecki et al. [7, 8],
provides brief explanations of the notation. It should be noted that we do
not pretend that the taxonomy is complete. The variability of our feature
diagrams only cover the software development environments that we have
looked at. The field of software development environment research is full of
weird and exotic prototypes which are important but hard to capture in a
general taxonomy. Our efforts should therefore only be seen as the first steps
toward a general taxonomy.

Table 1: Cardinality-based feature modeling notation [7, 8]

We propose a taxonomy with four main dimensions as sketched in
figure 1: Program, Platform, People and Process. A software development
environment can be analyzed with respect to these four dimensions. First,
the program is the artifact that is being made. It can consist of various
different components and sub-artifacts which fit together in special ways. The
program dimension covers this artifact from early inception and construction
to deployment and maintenance. It is therefore necessary to reason about
the status and form of the program as it evolves. Second, the platform is
the foundation on which the program is created. The platform consist of the
toolkit and technical facilities that enable the developer to realize a vision.
Third, the people dimension describes the skills and roles of those using the

8

platform. Fourth, the process dimension covers the methods, procedures
and management techniques by which the development progress and the
collaboration is organized.

Figure 1: The four dimensions of a software development environment.

The analogy of the craftsman from the previous section can be used to
illustrate these four dimensions. When a carpenter produces a wooden door,
the door is his program. It is composed of different pieces of wood and
evolves from unassembled materials to a finished and polished product. The
carpenter uses a hammer, saw, screws and other tools from his toolkit and
he conducts his work at a workbench. This toolkit and workbench is the
platform that facilitates his work. The people dimension is simple in this case
as we have only discussed the carpenter. He is endowed with a skill set and a
certain degree of expertise which he employs in his work. Finally, the process
dimension is visible in the steps he performs as well as his coordination with
the people who create the frame. We encourage the reader to perform a
similar analysis for the artist and the engineer to convince himself that these
four dimensions are actually present in all three modes of work.

It should be obvious that these four dimensions are closely woven in most
environments and that it can be extremely difficult to keep them separated.
Nevertheless, the point of forcing concept into categories is exactly to be able
to discuss and evaluate them. Tool builders have an interest in this since
they have to consider how the different dimensions are represented in their
concrete tool designs. If all design considerations have gone into establishing
a strong platform then there might be a risk that the future users (i.e., the
people) and their way of organizing work (i.e., the process) are left out. In
order to create both powerful and useful environments we need to take all
four dimensions into account.

3 Program

It seems a natural choice to start by unfolding the program dimension as
shown in figure 2. The program is in effect the raison d’être of software
development environments and should therefore be examined at some length.

9

In this section, we will conduct this examination by looking at four of the
central facets that constitute this dimension. These four facets are the source

artifacts that embody the sources of a program, the representation of these
source artifacts within the environment, the nature and level of consistency

of the source artifacts and representation, and finally the domain that the
program targets. We do not pretend that these four dimensions constitute
the totality of the program dimensions but they are sufficiently important to
be treated here.

Figure 2: The Program dimension.

3.1 Source artifacts

In order to understand the concept of source artifacts, we must first
distinguish between artifacts that are manually created and artifacts that are
derived. We will denote the first category sources and the second category
targets. The final stage of program development results in an artifact that
we denote the product. This product is typically derived from various sources
which are created and maintained throughout the development. During
development, artifacts can appear both as sources and as targets. In code
generation a target is derived from a generation process. This target can be
source code which is then specialized and later used as a source artifact in a
new derivation process.

In any derivation process, the target is the whole and the sources are
the parts. It can be argued that the whole is more than the sum of its
parts since the target, especially the final product, actually adds value to
its consumers whereas the individual sources often are useless in isolation.
On the other hand, it can also be argued that the parts are more than
the whole because several of the sources never actually appear in the derived
product. Initial design documents and sketches on paper napkins in the early
phases of development are often left out of the final product. The program
is more than what the customers receive. Many intermediate products of the
development are of course not of any interest to the final customer. We claim
that important design decisions are often lost due to the lack of support in
the software development environments.

10

Figure 3: A few categories of source artifacts

The source artifacts, which we have ordered into categories in figure
3, can be requirement documents, analysis specifications, design diagrams,
source code, adapted third party libraries, documentation and many other
kinds. These source artifacts are either created or adapted during program
development. Memos, notes, emails and chats are also source artifacts as they
often embody relevant ideas, reasons and decisions. A software development
environment must manage all these source artifacts and present the user with
both the important parts and the essential relations. At the same time the
environment must be able to sort out irrelevant details, such that all source
artifacts are retrievable but only the important ones are immediately visible.
Views and navigation features serve these purposes but we will return to
these subjects in section 4.2 in the discussion of presentation.

The wave of Computer-Aided Software Engineering (CASE) tools that
appeared in the eighties [9] was an important move toward management
of a broader spectrum of different software source artifacts. Before that,
software development environments had mainly been toolkits, such as the
Programmer’s Workbench [10] which extended the Unix operating system
with various tools or Emacs [11, 12] which provided a thin, uniform interface
to a range of tools. These tools did not provide any general scheme for
management of different software source artifacts. One notable predecessor
to CASE tools is the DRACO approach [13, 14] which introduces the idea
of domains and transformations between domains in order to manage and
integrate different source artifacts. We will discuss CASE tools in more
detail in section 4.3.3.

Traditionally, source code artifacts have been the center of attention in
research into software development environments. The current interest in
model-driven development and model-driven architecture [15] have spawned
an increased interest in analysis and design source artifacts. Analysis
specifications and design diagrams that used to be merely documentation

11

have been promoted to source artifacts from which targets can be derived
automatically. We consider this a recognition of the fact that software
development environments must accommodate not only multiple types of
source artifacts but also source artifacts at multiple levels of abstraction.

3.2 Representation

The source artifacts of a software development environment can be repre-
sented in various ways. Representation, which is illustrated in figure 4, covers
the medium in which the source artifacts are stored, the computational form
or forms which contain it, and the principle according to which developers
can actually interact with this representation. This part of the program
dimension is naturally closely related to the source artifacts as described in
section 3.1. The design choices regarding representation also have a strong
causal relation to both the way tools are integrated as described in section
4.1 and for the possibilities of establishing various views of the representation
as described in section 4.2.

Figure 4: Representational facets

3.2.1 Storage mechanisms

There are various storage mechanisms which can be provided in a software
development environment. Meyers [16] offers a detailed discussion of the
storage trade-offs and design choices which we will use as reference. Often
environments even provide several of these possibilities in order to meet the
requirements of the developers.

The simplest form is shared files where shared can either denote sharing
between tools or between users. Although the idea of using shared files as the
main storage medium can seem primitive, it is actually surprisingly widely
used. The main advantage of using shared files is that the developer has a
feeling of control and understands the storage medium. The developer can
interact with shared files through tools or simply by the mechanisms offered
by the file system.

12

There are numerous disadvantages with this approach. First, different
tools or users can overwrite changes in the shared files. Second, the
translation process back and forth from various different files to a general,
high-level abstraction that can be manipulated by other tools and displayed
at the front end is difficult and error-prone. As an example of this
problem, Meyers [16] states that shared files are not well-suited to support
multiple views because different views may manipulate the file contents in
incompatible ways. Third, duplicate effort can occur if different tools have to
load and process the same files. Meyers [16] uses the example of editors and
compilers that both have to parse source code which causes the environment
to essentially perform the same task twice.

A more advanced storage form is a central repository. This can basically
also be shared files but the key difference is that a repository further provides
management facilities. Examples of this are Concurrent Version System
(CVS) [17] and Subversion [18] which will be covered in greater depth in
section 6.3. The main advantages of repositories are: first, the support
for collaboration where the repository serves as standardized integration
mechanism, and second, the administrative facilities which for instance
provide audit trails and logging of all activities.

These repositories solve the problem of sharing files between users by
giving each user a local copy (sandbox) that can be synchronized with the
central repository. The synchronization is either based on a pessimistic or
optimistic concurrency model depending on whether files in the repository
can be locked. There is of course a range of potential problems related to the
synchronization process, but case studies [17] have shown that these problems
are, even with optimistic concurrency, not as frequent as one might fear.
Repositories do not solve the problem of tool sharing within a developer’s
local copy. The local copies have similar characteristics as the previous model
with shared files. Different tools can interact with the same file and cause
both problems and duplicate work.

A third form of storage facility is a database. Databases offer advanced
transactional facilities as well as strong support for keeping data consistent.
These facilities solve both the problem of sharing data between users and
tools as they are all subject to the transactional mechanisms of the database.
Users and tools ideally work directly on the representation in the database
and hence there is no requirement of keeping local and remote copies
synchronized as in the repository model. This means that there is no real
distinction between representation and storage in this case. Tools can work
directly on the representation without needing to load and process stored
files first. Another advantage is the possibility of representing data in a very
fine-grained manner. Individual fragments of source artifacts can be stored

13

separately instead of being pressed into large files.
There are several disadvantages with databases. First, tools are as Meyers

[16] observes often not capable of working directly on the representation
in the database. Instead, tools often extract data and manipulate it in
a tool-specific format. This basically corresponds to using the database
as a repository which of course re-introduces all the previously mentioned
synchronization issues. The root cause of the problem is that tools have to
be tailored to use the representation in the database schema. Such a tailoring
activity typically requires an understanding of the representation. Second,
the transactional mechanisms of the database can turn against the user if
multiple tools cause a deadlock. Unless the tools are coordinated on a higher
level by the environment as described in section 4.1, deadlocks can be hard
to avoid.

Some of the problems that databases face can be alleviated with the use
of views as suggested by Garlan [19]. Tools interact with views rather than
with the entire database. Garlan introduces the idea of compatibility maps as
a means to share data among views. Views can be bundled into features for
more advanced requirements but - as Meyers [16] states - the complexity can
still overwhelm the developer when trying to comprehend a large structure.
Another disadvantage is that it is difficult to add new tools as tool builders
have to develop both new views and compatibility maps in order to integrate
a tool into the environment.

A fourth storage mechanism is an in-memory representation. Like the
database approaches, the in-memory model does not distinguish between
storage and representation. Tools work directly on this single in-memory
representation which Meyers [16] calls the Holy Grail of environment
integration. This model is not directly suitable in multi-user scenarios.
In an individual developer’s software development environment, the in-
memory representation can provide logging, transactional mechanisms and
tool integration. Interlisp [20] and Smalltalk environments like Visual Works
[21] and Squeak [22] are good examples. In these environments, the entire
workspace state is the representation and different tools can interact with this
representation. The entire state of the workspace is typically saved between
sessions.

A key advantage is the possibility of supporting various interesting views
which we will discuss in greater detail in section 4.2. The main disadvantage
is that these environments are typically targeted for a single user and only
cover a very narrow spectrum of source artifacts. Another typical design
problem is choosing the best-suited representation. We will return to this
problem in the next section.

14

3.2.2 Representation form(s)

In the previous section, we mentioned the distinction between representation

and storage mechanism. Here we will elaborate a bit on this distinc-
tion by discussing the difference between multi-representational and uni-

representational environments. In the shared files and repository models,
it is easy to distinguish between representation and storage. Tools build
their representations by processing stored source artifacts. In the database
and the in-memory models, the distinction is less clear. Both models of
course store data, but it is stored in a format that is immediately suitable as
a representation for tools.

The distinction between multi- and uni-representation becomes relevant
when we move from storage medium to a representation. The tools in an
environment require a representation that they can examine and manipulate.
For instance, a traditional compiler builds an abstract syntax tree from
source files in order to perform its operations. When several tools are
active within an environment, they can either use a single common or
canonical representation, or each tool can have its own representation in
some idiosyncratic format.

Multi-representational environments build several different representa-
tions in order to satisfy the demands of multiple tools. This approach is
common when the storage medium is either shared files or a repository. The
main advantage is that it is typically easy to add new tools as they can use
their own representation based on the lowest common denominator - the file
system. Obvious disadvantages are lack of integration between tools and
duplicate effort when building similar representations.

Uni-representational environments focus on the integration of tools on
the data-level which will be covered in section 4.1. A central, canonical
representation must be chosen and all tools are required to work directly
on this representation. The obvious benefits are better support for data
consistency, tool coordination that eliminates duplicate effort and the ability
to quickly extend the environment with new views. Disadvantages include
the problem of choosing a representation format and the difficulties in adding
new tools. A canonical representation must be chosen with great care as it
forms the foundation on which tools operate. Adding tools can be difficult
as they must be adapted to the chosen representation. Interlisp [20] is a
classic example of such an uni-representational or residential environment.
The program resides as data representation which allows extensions like
Masterscope to query it and DWIM (Do What I Mean) to correct input
errors on the fly.

Abstract syntax trees have often been suggested as best canonical repre-

15

sentation in software development environment. This has been implemented
in environments such as Cornell Program Synthesizer [23], Gandalf [24],
and PECAN [25]. Other researchers, such as Garlan [19] and Meyers [16],
have claimed that abstract syntax trees are probably too limiting when an
environment has to handle more than simple source code. Reiss [26, 27]
has recently gone a step further and proposed that the lack of an accepted,
single canonical representation actually suggests that the very concept of uni-
representation is wrong. These discussions are still active in the academic
tool community.

3.3 Consistency

An important part of the program dimension is the issue of consistency which
is shown in figure 5. To produce an executable target system, the various
sources has to be in a consistent state. Inconsistencies can either lead to
the inability to build the final product or perhaps the deployment of an
unstable, erroneous product. A software development environment has to
take consistency into account. In this section, we will discuss different classes
of inconsistencies that source artifacts can contain. We will also discuss some
inconsistencies among different source artifacts. Later, in section 4.4, we will
continue this discussion by examining how the platform dimension detects,
represents, and resolves inconsistencies.

Figure 5: Different classes of consistency

3.3.1 Classes of inconsistency

The first class of inconsistencies are syntax errors. Source artifacts that are
written in specification or programming languages are typically subject to
a set of grammatical rules. Grammatical rules can for instance be specified
in Extended Backus-Naur Form [28] for certain textual languages or in the
Unified Modeling Language’s Meta Object Facility [29] for certain visual

16

languages. The rules are typically embedded in parsers, and the inability
to parse a source artifact often stems from syntax errors. Syntax errors are
inconsistencies between the grammar of the language and the contents of the
source artifact.

Syntax errors can be resolved manually and modern-day parsers usually
provide detailed assistance in the form of location information and error type.
Syntax errors cause compilers or interpreters to fail, but they are rarely of
any real significance as they indicate sloppy editing rather than deep design
errors. Software development environments often provide different kinds of
assistance in order to prevent the occurrence of syntax errors. We will discuss
some of these in section 4.2.

The second class of inconsistencies arise when the contents of a source
artifact do not follow the stylistic rules and conventions among a set of
developers. In minor groups that follow the artist, or craftsman, approach,
this might not be a problem. In larger scenarios where an engineering
approach is taken, there are good reasons to follow certain standards of
writing. Requirement documents can be expected to follow standards that
both the customer and developers agree on. Such conventions establish the
source artifacts in a common frame of reference which promotes a single,
unambiguous interpretation. These conventions can be enforced by reviews.

The style of source code artifacts can also be guided by conventions. Most
larger development organization encourage adherence to code standards.
This makes code more readable and supports collaboration. Tools such
as fxCop [30] can automate the process of reviewing code and enforce an
extendable set of style rules. The notion of Bad Code Smells [31] which was
introduced by Fowler and Beck denotes another category of style errors. Long

Method is an example of such a smell where an object-oriented program is
written in a procedural style. Visualization tools such as CodeCrawler [32]
can detect and visualize lack of compliance with conventions, such as long

method, large class or other bad code smells.
A third class of inconsistencies are semantic errors. These errors are

caused by lack of consistency between the developer’s mental model of
the program and the actual meaning of the program as it is embedded in
source artifacts. In source artifacts written in natural language, semantic
errors occur when the content is written in ambiguous ways. Requirement
and analysis documents are typically subject to such errors. The field of
formal methods attempt to eliminate these ambiguities by the use of formal
specifications such as VDM [33], Z [34] and RAISE [35].

Semantic errors on the code level can be distinguished by whether they
concern the static or the dynamic properties of a program. In other words,
these errors are detectable either at compile- or runtime-time. In statically

17

typed languages such as Ada, C++ and Java, semantic errors can arise from
inconsistency between the type system in the language and the contents of
source code artifacts. Modern software development environments such as
Eclipse Java Development Tools [36] and Visual Studio.NET [37] detect these
kinds of errors by continually building the source artifacts and running the
compiler’s type checks. More elaborate type checking and static analysis can
be performed by a tool like Findbugs [38] for Java which has more powerful
static analysis capabilities than the ordinary Java compiler. The dynamic
semantics of a program can only be tested by execution. Several tools, such as
debuggers, profilers, and unit test frameworks, attempt to detect the presence
of runtime anomalies.

3.3.2 Inconsistency among source artifacts

A large set of inconsistencies concerns relations between source artifacts as
opposed to inconsistencies or integrity problems in individual source artifacts.
Inconsistencies can arise either between source artifacts at the same level of
abstraction or at different levels of abstraction. An example of the first kind
is when a set of source code files are inconsistent. Changes may for instance
have introduced inconsistencies between source code and configuration files,
such as for instance between java source files and deployment descriptors
in J2EE applications. In enterprise applications, complex configurations
must for instance match large code bases. A given configuration and its
corresponding code can get out of synch and lead to errors or non-optimal
performance.

Inconsistencies between source artifacts at different levels of abstraction
are even more common. In a development project where source artifacts are
produced in all phases, it is extremely complex to ensure that source artifacts
are not lost or ignored. Analysis and design decisions which are written or
sketched informally may be forgotten during implementation such that the
final source code is inconsistent with the initial design. These decisions can
furthermore be hard to share among members of a team since everyone must
agree on an interpretation. Maintenance and reengineering efforts of running
systems are often hampered by the lack of source artifacts from the early
development phases. Methods and tools have been developed with the sole
purpose of recovering design because it is unfeasible to work solely with
source code level abstractions. The FAMOOS project [39] is one of the most
important research activities in this area .

It is important that a software development environment offers both the
possibility of checking for inconsistency in individual source artifacts as well
as across several source artifacts. Nuseibeh et al. [40] have demonstrated

18

that local consistency does not guarentee global consistency, so the problem
of inconsistency among different source artifacts should be actively handled
by the environment.

3.4 Target product

The target product which results from creating, processing and building
source artifacts is typically created with some domain in mind and on a
given platform. Figure 6 shows just a few possible domains and platforms
which software systems can be created for.

Figure 6: Some sample target domains and platforms

Environments are often evaluated according to how well they support
development in a given domain and platform. A software development
environment for mobile phones should for instance be able to emulate the
target phones and offer special support for programming on a memory-
constrained platform. Another example could be software development
environments for web applications. Such environments must support
the multitude of languages which are part of webprogramming. This
requires special tool support as described by Fraternali [41]. These two
examples illustrate that the target domain influence our requirements for
an environment.

General-purpose environments can often be used for several domains and
platforms because they are not tailored for any one domain or platform. Spe-
cialization of such environments is typically achieved through extensibility
mechanisms where plugins can extend general programming capabilities with
features that support domain-specific development. Tools such as Eclipse
Java Development Tools [36] and Visual Studio.NET [37] can encompass
platforms such as device, desktop, and web when extended with appropriate
plugins. General-purpose environments should be designed such that the
support offered for each domain is not the least common denominator.

19

Critical systems, such as those in the defence, medical or traffic sector,
often have zero tolerance for errors. To produce applications for these
domains, rigorous formal methods are typically applied. Software devel-
opment environments such as Overture [42] are based on formal methods
which guarantee a very high-level of correctness. The software development
environment should have explicit method support as described in section 6.2
in order to offer real value in this target domain.

4 Platform

Figure 7: Facets of the platform dimension

The platform dimension of an environment is the second of our four Ps.
Where the program dimension concerns the material that we are giving a
form, the platform dimension is the foundation on which our work takes
place. It is metaphorically our workbench and tools. This dimension is
often described as if it was the complete environment. This mistake is
caused by the fact that the platform dimension mainly consists of the tools

and the presentation aspect. These are tangible and visible aspects of the
environment and they form the foundation on which development takes
place. In this section, we will examine the platform dimension, as shown
in figure 7, by looking at the tools, their presentation or graphical interface,
the environment’s primary function and its ability to manage inconsistency
during development.

4.1 Toolkit

The toolkit and its organization is one of the most important parts of an
environment. Definitions and categorizations of tools can be found in surveys
by Reiss [43] who solely looks at programing tools and Grundy and Hoskings
[44] who include a wider range of tools. In this section, we will cover two
general aspects of tools: integration and openness which are shown in figure
8.

20

Figure 8: Integration and openness features in the toolkit

4.1.1 Integration

In early environments such as the Programmer’s Workbench [10], the
environment simply consist of a set of loosely bundled tools. Later
developments have led to integrated environments where the integration
between tools is a major concern. Integration can - according to Wasserman
[45] - take place at three different levels. First, the underlying data
and program representation can be integrated. Second, the tools can be
coordinated by messaging. Third, the front end or graphical user interface
can be integrated.

Data integration has already been covered in section 3.2 where the
problems and strengths of different storage and representation forms were
discussed. This kind of integration belongs to the program dimension of
environments because the glue that binds tools together is the program itself.

Control integration is achieved by enabling the individual tools to
communicate. Messaging either happens directly between the tools or
through a central broadcasting mechanism. The first approach requires tools
to be able to communicate with all other tools in their environment through
idiosyncratic protocols. The latter approach taken by FIELD [46] where
tools inform each other by selective broadcasting in a so-called hub’n’spoke

architecture. The broadcast mechanism is by far the easiest to implement
since each tool only has to understand the interface to the central hub. Tools
can subscribe to and react on events in the environment. This can lead to
better and more responsive environments since the user does not have to
initiate all operations. The main disadvantage is that tools must be adapted
to communicate. If new tools are added to the environment then a range of
changes might cascade through the system.

Front end integration is achieved by providing a uniform interface to

21

the tools of an environment. This approach is taken in most integrated
programming environments because it provides a single use context for the
developer. A uniform interface can also help the developer by showing the
relationships between different tools. A build sequence can for instance be
created by composing tools like parsers, compilers, linkers etc on a single
screen. The central trade-off with regard to front end integration is that one
can either choose to show the full potential of a few tools or a limited part of
the features of many tools within a single screen. If the environment provides
a detailed view into the capabilities of a single tool then the relationships
between tools become less visible. If the environment favors showing a
large number of tools then they can only exhibit a limited part of their
functionality. This may lead the developer to use only a subset of the inherent
functionality in the tool.

One elegant solution to the above problem is to provide multiple
compositions of tool features, such that the developer can switch between
different views on the tools depending on his current task. This approach is
taken in Eclipse Java Development Tools [36] where the notion of perspectives

enables the developer to switch between programming, debugging or testing
mode. Each mode displays different features of the same underlying tools in
order to support the task at hand.

The three levels of integration can of course be combined in various ways.
Data, control and front end integration are all present in some environments
and only partially present in others. It should be noted that there also
different degrees of integration. In a control integrated environment, the
degree of integration depends on how large a percentage of the tools that
are actually aware of each others’ presence and their ability to communicate
semantically rich messages. These issues are discussed in greater length in the
Object-Oriented Tool Integration Services approach [47] where a distinction
between coarse-grained and fine-grained integration is introduced. Another
excellent source of information is Brown and Penedo’s annotated bibliography
of articles in this field [48].

4.1.2 Openness

The openness aspect of an environment describes how well it can be extended
with new tools, views or different features. It is often necessary to extend
an environment. The environment itself can evolve and hence need to
be updated. The individual tools can evolve or new tools can be added.
The environment should be capable of incorporating to such changes and if
necessary adapt to new features.

We distinguish between three slightly overlapping models of openness.

22

First, closed environments are unable of being extended. They are often
tightly integrated and can at most be subject to updates. These environments
are most frequently found in proprietary and very domain-specific niches
where a single vendor rules the market. The advantage is that the complete
architecture is typically designed for optimal cooperation between tools. The
disadvantage is the lack of adaptability and flexibility.

The second and third possible openness models are respectively the ability
to extend existing tools and to add new ones. These two models are often
overlapping since new tools can for instance extend several existing ones in
order to provide new functionality. These openness models are especially
relevant to general-purpose environments where the environment has to
adapt to new tools on the market and more specialized demands from the
developers. Implementations of these openness models are Emacs [11, 12] or
Interlist [20] where everything can be rewritten in various LISP dialects, and
Eclipse Plug-in Development Environment [49] where the entire environment
is built around the concept of plug ability. The Eclipse Plug-in Development
Environment is especially interesting in this context because it actually offers
both a runtime in which to test tool extensions as well as a detailed set of
guidelines [50] on how the environment should be extended.

4.2 Presentation

In section 3.2, we covered how an environment can store and represent a
program. In order to actually make the underlying representation visible
and tangible to the developer, the environment needs to present this
representation. Presentation denotes both the passive viewing of the program
as well as the interactive editing of the program. In this section we will
describe a few of the important facets of presentation, as shown in figure
9, in software development environments. Meyers [16] distinguishes between
environments where different views interact or are dependent on each other
and environments where views can relate to entirely different parts of the
program and hence be independent of each other. We will follow this
distinction by distinguishing between uniparadigm and multiparadigm views.
Uniparadigm views are typically related solely to the coding phase whereas
multiparadigm views span several development phases. We will furthermore
examine some different editing modes that various views provide.

4.2.1 Uniparadigm views

In early environments where the level of integration was very low, each
tool typically built an idiosyncratic representation which supported a single

23

Figure 9: Presentation is ordered in paradigms and views.

view. A simple text editor for instance offers a textual view into the
representation of a text file. As integrated environments began to appear,
more advanced views such as layered or multiple views became available.
Multiple representations can support layered views which each add some
sophistication to the bottom layer. An example of a layered view is when
our simple text editor is extended with syntax highlighting. In this case the
bottom layer is the text file view where the representation is a sequence of
characters. A parser can then parse this representation according to some
grammar and add a view layer which emphasizes keywords by displaying
them in a special font. Such layered views in the programming phase aids
the developer in getting an overview and detecting syntax and style errors.

A more advanced use of the underlying representation is multiple views
which are very common in modern-day programming environments. If the
environment has built a sophisticated representation of a program, then it is
possible to support different views which all display some special properties
of the underlying representation. An abstract syntax tree of a Java program
can for instance support views such as a syntax highlighted source code
view, a list of method signatures, a call graph and other views displaying
various kinds of interdependencies. Views can also relate bookmarks, tasks
and similar metadata to locations in the source code. In complex programs,
such views can make all the difference for a developer trying to comprehend
the program at hand. One especially used feature is navigation by hyperlinks
where a developer can click on a method call a be moved to the location of
the definition of this method.

Figure 10: View features.

Views can be textual, visual or even hybrids as shown in figure 10. Textual

24

notation are used for requirements, specifications, and source code listings.
Programming tools traditionally favors textual views. Visual notations are
suitable for use cases, early diagram sketches, flows and various other high-
level views on the representation. Hybrid forms can be found for instance in
the Intentional Programming Environment [51, ch.11] where for instance a
IF-ELSE construction within a source code listing can be displayed visually
as a branch.

When multiple views are in use, it is necessary to consider synchronization
and consistency issues. Read-only views must be updated regularly and
read/write-view must be capable of both updating the representation
and being updated. Each view is synchronized with the underlying
representation. In multirepresentational environments, the synchronization
between views is inherently delayed as a view’s underlying representation
must be stored before a change can propagate to other views.

The synchronization procedure can happen either on demand, incremen-
tally or constant as shown in figure 10. On demand synchronization happens
when the developer initiates the operation. Incremental synchronization
is initiated by the environment either in fixed intervals or in an event-
based manner where certain actions trigger synchronizations, such as in
the SMILE environment [52]. Instantaneous synchronization is possible in
some unirepresentational environments where views interact directly with
the underlying representations.

4.2.2 Edit modes

Read/write views provide different kinds of editing modes as shown in figure
11. Especially views based on a single representation support more advanced
forms of editing. In textual views, we distinguish between two main kinds
of editing: free and structured. These editing modes can furthermore be
augmented with automatic support of various kinds. Graphical views are
usually structured.

A textual view which provide free editing is the simplest form. Any text
inputs can be entered and changes do not propagate until the contents of the
view are saved either by user action or incremental building. Free editing
is preferred among most developers as there is a complete sense of control.
Most source artifacts from the early phases of development are edited in
completely free form. Source code artifacts can be edited in free mode but
with support in the form of automatic code completions and on demand
insertion of code templates.

Structured editing of textual views is a bit more advanced. Environments
with frequent incremental builds or instantaneous synchronization use the

25

Figure 11: Edit modes and interaction features of views.

underlying representation to guide the developer in the editing activity. In
language-based environments where the representation is tailored to a specific
language, structured views enforce syntactically correct programs. The Emily
editor [53], the Cornell Program Synthesizer [23] and Gandalf [24] all use a
grammar-based representation to direct the developer. Such systems are also
known as syntax-directed editors.

The main advantage of structure-oriented and syntax-directed editors is
the enforcement of syntactical and stylistic correctness. The program appears
to the developer as a kind of template where a set of placeholders can be filled
in with a limited set of possible completions. From early research projects
such as the Cornell Program Synthesizer [23] and Gandalf [24] to modern-day
commercial prototypes such as JetBrains’ Meta Programming System [54], a
central goal has been to create editor-generators such that a syntax-directed
editor can be generated for arbitrary languages.

Another frequently mentioned advantage is speed of development. If the
developer only has to fill in templates then a lot of the manual typing is
eliminated and hence development speed is higher. This has been questioned
by actual programming practice because there are situations where tolerance
of temporary syntactical inconsistency can actually speed things up. A
central critique of the initial versions of the Cornell Program Synthesizer
was that some editing operations were complicated exactly because of the
enforced syntactical correctness. If the programmer could manually override
these editing constraint, he could achieve his goals faster.

Nørmark [2] discusses a related problem which he calls the feeling

of claustrophobia. The programmer feels a lack of control and editing
impotence. This is especially bad in situations where editing operations
are complicated solely by the editor constraints. Even JetBrains’ recent
prototype the Meta Programming System [54] does not seem to offer a

26

solution to these old problems. It is tempting to conclude that syntax-
directed editing should be dismissed. One possible exception could be
programming for non-programmers where correctness can be prioritized
above the developer’s need for a feeling of control [55].

A support feature which deserves to be mentioned is wizard-based editing
which relies on code generation schemes to speed up development. This
is in effect an advanced form of on demand support. The editing process
typically starts working through a flow of wizards where all input is verified.
The wizards generate code skeletons which can then be extended by either
free or structured editing in ordinary editors. The wizard-based approach
is especially powerful in situations where complex configuration has to be
specified or where high-level constructs require lots of boiler-plate code. A
modern programming environment like Visual Studio .NET [37] uses wizards
to generate boiler-plate code for graphical user interface, database access and
application configuration.

A special case of editing operations which are typically provided by
wizard-based approaches are machine support for refactoring [56]. A machine
supported refactoring is a re-structuring of code which preserves the program
semantics [57, 31]. Wizards are useful in relation to refactorings as they
enable a certain parameterization and fine-tuning of the general refactorings.
Refactorings can be considered high-level editing operations and they are
a standard requirement for programming environments today. A rather
recent suggestion for future editing modes is Example Centric Programming
[58] and the Subtext prototype [59]. This form of editing use the copy
and paste operations of free editing as first class entities in a structured
environment. This editing mode is similar to refactoring because all editing
happens through transformations of the program source artifact.

4.2.3 Multiparadigm views

The uniparadigm views and editing operations that we covered in the
previous sections are typically related to the programming phase. The
complexity of software development projects often require visualizations that
span the individual project phases. Multiparadigm views provide these
broad perspectives. The different views do not interact with each other
as they embody different concerns, and editing often takes place in different
languages. In a multiparadigm environment, the domain expert will use
another language and another set of views than the programmer. These
different views are all integrated in the final product.

An early system which supports multiparadigm views is the Draco system
by Neighbors [13, 14]. The Draco system introduces a set of domains

27

which each has its own notation. Each domain concerns a specific part
of the system, and these domains can be composed to produce the final
system. Reiss’ so-called conceptual programming environment Garden [60]
follow similar ideas by letting the user specify new notations to fit the
various required paradigms. The wave of Meta CASE tools, which we will
describe in section 4.3.4, shows renewed interest in environments based on
multiparadigm views.

4.3 Function

The platform dimension of a software development environment can typically
be described to some extent by stating what its function is. Until someone
succeeds in delivering the universal software development environment, we
will have to settle for environments where the platform is specialized toward
one or a few goals. In this section, we will enumerate some of these possible
goals as shown in figure 12. The list will necessarily be limited. A more
detailed discussion of possible primary functions can be found in the survey
by Grundy and Hoskings [44] where several concrete examples are listed.

Figure 12: Supported functions.

4.3.1 General-purpose programming

Environments that are primarily oriented toward supporting the program-
ming phase can usually be ordered into two general categories: light- and
heavyweight environments. The lightweight environments are relatively
simple tools organized according to the needs of an artist or craftsman
approach as described in section 2.1. The heavy-weight environments follow
the engineering approach and are typically called Integrated Development
Environments (IDEs). These environments offer a broader range of pro-
gramming support features.

Probably the best and classical example of a lightweight environment is
Vi [61]. Vi supports the basic file-based, textual approach which replaced

28

the type writer editor paradigm of the early days of programming. Vi is
a paradigmatic example of a lightweight environment where the creative,
unconstrained mode of working is in the center. Heavyweight environments
such as Eclipse Java Development Tools [36], IDEA [62] and Visual Studio
.NET [37] have gradually taken the center of the stage in recent years. Due
to the exponential growth in computational power, it is now possible to offer
multiple different views in addition to the editors of lightweight environments.
Heavyweight environments typically also offer configuration management
facilities which will be described in section 6.3 and support for monitoring
the quality and integrity of the program.

4.3.2 Fourth Generation Languages

The term fourth generation language (4GL) was coined by James Martin in
1982 [63]. These languages raise the level of abstraction to a higher degree
than ordinary, block-structured programming languages. Fourth generation
languages are typically embedded in special environments that leverage the
full strengths of these languages. Apart from residing in specially tailored
environments they also typically imply a incremental development method
where simple components are gradually modified and refined [64].

Typical usages of fourth generation languages are database querying,
report and forms generation. These areas are characterized by being very
domain-specific and requiring tool-specific training. Classical examples of
fourth generation languages can be found in Horowitz et al.’s survey of
application generators [64]. More modern examples are Oracle Reports [65],
ABAP [66] and C/AL [67] for financial report generation, Microsoft Access
[68] for database management, SAS [69] for data mining and Visual Basic
[70] for user interfaces.

The success of a fourth generation language depends on how well the
development problem fits within the anticipated domain and implied method.
The main disadvantage of these tools is usually the lack of flexibility caused
by a strict focus on a specific kind of problems. fourth generation languages
typically only allow a limited range of customizations and changes beyond
this often lead to inelegant solutions.

4.3.3 Computer-Aided Software Engineering (CASE)

Computer-Aided Software Engineering (CASE) tools are to a large extent the
realization of the engineering work mode as described in section 2.1. CASE
tools span several project phases and supports the management of multiple
kinds of source artifacts. A central motivation for CASE tools was the rise of

29

development methods where some steps could be automated. The high-level
design of entity and behavior diagrams could be used to generate skeleton
code which could be customized in subsequent steps [71, 72].

Another factor distinguishes CASE tools from the previously described
IDEs and fourth generation languages is the central role of collaboration.
The engineering work mode relies on the successful collaboration of multiple
people, so CASE tools are used to support this aspect. Methods and process
models are often an explicit part of a CASE environment. This enables
managers to perform more accurate estimates and programmers to get a
better overview of the program architecture.

CASE tools have not been adopted at the rate that one might expect
from the impressive lists of technical features. Reports have shown adoption
of CASE tools is slow and that the tools are often not used to their full
extent after introduction [73]. Jarzabek and Huang [74] have suggested that
the main reason for this lack of adoption is that CASE tools only supports
hard aspects of software development. The tools are typically not suited to
a flexible process and are incapable of adopting the programmer’s mental
model of the project.

4.3.4 Meta CASE

Meta CASE or domain-specific modeling environments have emerged during
the last 10 years as a form of higher-order CASE tools. Meta CASE envi-
ronments are tool-builders which produce CASE tools. These environments
provide a generic set of possibilities which can be used to compose more
domain-specific environments. It might be argued that the term meta-fourth
generation languages is equally appropriate since the produced environments
often have capabilities similar to classic fourth generation languages. The
output of meta CASE tools can be tailored to an individual company’s
concepts and methods which makes them very attractive.

The users of meta CASE tools can be split into two categories: tool
adapters and tool users. The tool adapters adapt use the meta CASE tool
to build specialized CASE tools. The tool users use the specialized CASE
tools, i.e., the adapted meta CASE tool. A central problem is that the meta
CASE tools require highly skilled developers in order to be adapted properly.
It is no easy task to create environments that are both specific and flexible
from a generic toolbox.

Tools such as MetaEdit+ [75], Generic Modeling Environment [76],
XMF-MOSAIC [77], and Visual Studio DSL Tools [78] are examples of
meta CASE environments. These tools all promise higher productivity and
greater conceptual precision due to their ability to produce highly specific

30

environments. The technology is still too young to be evaluated properly on
empirical basis. One possible critique that could be leveraged is that these
tools suffer from the same problems as fourth generation languages and CASE
tools, and they will therefore not be able to replace traditional IDEs. Fowler
[55], who has coined the term language workbenches for these tools, argue
that they are not intended to replace IDEs but that they are instead aimed
at non-programmers. This suggests a two-staged development method where
tool adapters in the first stage develop domain-specific environments and tool
users in a second stage use these environments to develop actual applications.

4.4 Inconsistency Management

An important part of the program dimension concerns the state of the
program or specifically its degree of consistency. In section 3.3, we described
the various kinds of inconsistencies that can be present in a program under
development. In this section, we will examine how the platform can manage
such inconsistencies by providing certain services to the developer. We will
discuss the detection of, representation of, reasoning about, presentation of,
and resolution of inconsistencies in a program as shown in figure 13. This
discussion is inspired by the work of Grundy et al. [79] on inconsistency
management in multi-view software development environments.

Figure 13: Inconsistency management features

In order for the developer to realize the existence of inconsistencies in the
program, the platform must offer means of detecting such inconsistencies.
The detection process must be automated to some degree if it is to be
implemented in the platform. Requirement documents can for instance rarely
be automatically checked as they demand human reviews. Source artifacts
that appear in later development phases often lend themselves easier to
automatic checking.

Syntactical, stylistic and static semantic errors can be checked by parsers,
type checkers and similar tools. Dynamic semantical errors can to some
extent be detected by debuggers and test cases. Consistency relations

31

between source artifacts at the same level of abstraction are usually also
checked by the mentioned tools. Consistency relations between source
artifacts at different levels of abstraction typically requires specialized tools,
such as the CLIME environment [27].

When an inconsistency has been detected, the environment must be
able to represent it in some way. Most consistency checkers usually run
through the program representation in a single pass and the environment
must capture inconsistencies in a new representation in order to be able to
manage them. If the inconsistency representation is only kept in-memory
then it becomes hard to understand especially the maintenance of systems.
Previous inconsistencies might have been repaired in an unsound manner.
Such repair operations must be stored along with their causes if one is to
understand the maintenance history of a source artifact. Practically no
environments provide this kind of historical information on inconsistencies.

Automatic reasoning about inconsistencies can provide advanced trace-
ability support in an environment. If we are to understand why a program
transitioned into an inconsistent state and how/if this inconsistency was
resolved, we need traceability. Several researchers have worked on the
problem of reasoning on the basis of inconsistent programs. Inconsistency
in classical logic allows us to conclude anything on the basis of inconsistent
premises. Inconsistency in software does not lead to a situation which is
quite as extreme. Nevertheless, when the logical structure of our programs is
inconsistent then our ability to logically infer program properties is reduced.

Research [80, 81] have suggested that our environments must be able
to tolerate some degree of inconsistency in order to effectively support the
development process. A series of editing operation can for instance introduce
inconsistency temporarily. Environments which rigidly prevent temporary
syntactic inconsistency, such as the Cornell Program Synthesizer [23], are
often a cause of frustration to developers.

Nuseibeh et al. [40] describes the case of the Ariane-4 rocket where an
inconsistency between the safety requirements for exception handling and the
lack of floating-point exception handling in the implementation was tolerated
because it was concluded that floating-point overflow could never occur. This
story has a tragic twist since the Ariane-5 rocket reused the implementation
of Ariane-4 but the floating-point exception handling inconsistency was not
re-evaluated and the flight of Ariane-5 ended in disaster. The morale of
this story is that tolerance of inconsistency is a valid option in software
development environments but only if the developer is made aware of this
tolerance by the environment.

The presentation of inconsistency has been a very low priority in
tool- and environment development. The most frequent presentations of

32

inconsistencies are compiler warnings and errors about source code in modern
IDEs. These environments provide lists with descriptions of the problem
and easy access to the location of the error. The step-based replay-feature
of debuggers provide a presentation of runtime errors but these tools often
require an understanding of the execution platform and data representation
in order to be effectively used. The least supported presentation form is the
presentation of inconsistencies across different levels of abstraction. These
kinds of inconsistencies are complex because they are caused by the interplay
of several source artifacts at different levels of abstraction and it is often not
possible to pinpoint any single root cause of the problem.

Finally, the resolution of inconsistencies is also a matter of concern in
environments. To resolve an inconsistency, the environments must be able
to trace its origin. It is not always possible to trace a single root cause,
and even if such a root cause can be found, there can be several possible
resolution strategies. In short, human intervention is usually required.
The automatic elimination of inconsistencies can also be dangerous because
the developers may lose control if the environment is too aggressive in
automatic inconsistency resolution. The optimal solution seems to be that
the environment presents detected inconsistencies and possible resolution
strategies, but leaves it to the developer to actually execute one of these
strategies.

5 People

Nygaard has stated that We need to develop systems in which the computer

based components only are subsystems, even if important ones [82]. This
quote leads us to the people dimension which is the third of our four Ps as
shown in figure 14. This dimension often plays a minor role in the design
of software development environments. A classic misconception is that if
we design our tools with the best possible technical design then this will
necessarily lead to adoption and successful usage. Experience with CASE
tools has however [73, 74] shown that even superb technical and highly
innovative solutions do not stand a chance if they do not take users into
account. This section will introduce four of the most important parts of the
people dimension which are area of expertise, level of expertise, organization

and mediation.

33

Figure 14: The People dimension.

5.1 Area of Expertise

The involved parties in a development project can have different areas of

expertise which determine their responsibilities. We have chosen a table
representation, as shown in table 2, instead of a feature diagram to make
room for descriptions of each role. Typical roles are managers who oversee
the project, analysts who describe the problem domain and requirements,
designers and developers who implement the program and testers who
perform activities like integration, user and acceptance tests. Each user group
has different needs and tasks. A software development environment should
support as broad a range of these roles as possible in order to integrate the
diverse efforts of many different people. Especially when work is structured
according to our metaphor of the engineer, it is necessary to divide the work
into domain-specific tasks which can be handled by people with the relevant
expertise.

The Draco system [13] distinguishes between roles such as system builders,
domain builders, domain users and system specialist which all play a different
role in the Draco method of developing software. Each of these roles view
the system in a different way. The domain builder describes some business
domain in a custom notation. The system specialist compose and refine
general domain descriptions into an executable system using a different view.
Systems such as Garden [60] and meta CASE tools, section 4.3.4, takes these
ideas further by providing advanced visual or textual tools to define domain-
specific languages that suit a particular role.

Another aspect of how software development environments adapt to
specific roles can be seen in a tool such as Visual Studio 2005 Team System
[83] where the environment is composed of a general platform and a set of
role-specific extensions. These extensions are tailored to suit the needs of a
manager, an architect, a tester, and a developer. Similarly, the Rational suite
[84] targets roles such as analyst, architect, developer, tester, and deployment

manager. These products are tailored for specific roles but share a common
underlying platform.

34

Role Area of expertise
Analyst Scoping requirements and busi-

ness concepts in cooperation with
the customer.

Designer Mapping of requirements and
business concepts to implementa-
tion.

Developer Actual coding, implementation
and low-level design choices.

Tester Unit, integration, usability and
acceptance tests.

Deployment manager Deployment, configuration and
maintenance issues.

Project manager Management of project progress
and plan.

Table 2: Areas of expertise may be associated to roles.

5.2 Level of Expertise

Apart from having different areas of expertise, developers often also master
their skill with different levels of expertise. Some programmers are for
instance known among the team members to be real hardcore problem solvers
while others are inexperienced and not yet ready for a major responsibility.
The user interfaces of software development environments should take these
different levels of expertise into account, such that novices can be guided by
hints, balloon tips and other forms of assistance while experts can cut straight
through to the core of the problem without unnecessary distractions.

Kelleher and Pausch [85] have created a useful taxonomy of programming
environments for novice programmers. Their taxonomy shows several differ-
ent ways a software development environment can support novices, such as
changing the edit modes, introducing graphical views and/or using different
languages (visual or textual). Generally, these different approaches mainly
focus on the presentation facet of the software development environment.
In other words, a well-designed user interface is a key factor in supporting
developers with weaker skills.

Support for skilled programmers must take our work metaphors into
account. Developers working according to the artist or craftsman metaphor
will typically prefer a minimal interface with a free editing form. Developers
in the engineering tradition will need more powerful views. A central
concern here should be that the user interface and toolkit must be adapted

35

to the individual’s requirements. An environment such as Eclipse Java
Development Tools [36] offer the combination of plugin architecture for tools
and customizable perspectives in the user interface. Such features support
the demanding developer as they allow him to adapt the environment to
meets his current needs.

5.3 Organization

The organization of developers becomes important as soon as their number
rises above one. If there is only a single developer who plays all roles in the
project then the environment should be lightweight and suited to his needs.
If several developers are involved then organizational issues such as roles,
location and responsibility must be taken into account. The organization
of the developers should ideally be explicitly represented and supported in
environments.

In large projects, the development parties are typically not co-located.
Sometimes the group is even distributed geographically and support for col-
laboration is therefore needed. Software development environments provide
this kind of support through source artifact repositories, messaging systems,
and web-based knowledge sharing facilities such as portals, newsgroups and
wikis. It is a great strength if an environment is able to capture the messaging
traffic in such a way that for instance contractual information and design
discussions are not lost.

The communication between different parts of the organization often
happens in natural language. An interesting approach to enhance the value
of threads of emails would be to formalize and integrate them into software
development environment. If an email discussion about a bug for instance can
be traced back to source artifacts such as source code and design diagrams
then we can increase transparency between developers and end-users. Such
traceability features requires strong communication infrastructure in the
environment.

5.4 Mediation

The fourth facet of the people dimension is mediation which deals with
the software development environment’s usability, i.e., the system’s ability
to support the user in his tasks. The user interface is typically the focal
point of attention when discussing mediation. User interface widgets, screen
and workflows must be intuitive and support the user in a straight forward
manner. Apart from usability issues, mediation also concerns the software
development environment’s ability to effectively establish correct mental

36

models of the program that is being developed. This requires a clear
presentation design, as described in section 4.2, and an adaptability to the
skills of the individual user, as described in section 5.2. We will not discuss
the mediation facet further in this paper as the topic of usability alone is an
entire research that is beyond our scope.

6 Process

The inherent complexity in software development is due to the multitude
of source artifacts, tools, and people that interact in various ways. A
software development environment encompasses these three dimensions as
described in the previous sections. The fourth and last dimension of
an environment, according to our taxonomy, is the process dimension as
shown in figure 15. The process dimension captures the principles that
guide and manage the complex interactions of the previously described
dimensions. In this section, we will examine how the process dimension
is structured and what role it plays within an environment. We will look
at four central facets of this dimension: the project life cycle, the guiding
method, configuration management practices and the cognitive decomposition

techniques that developers apply.

Figure 15: The Process dimension.

6.1 Life Cycle

Regardless of the guiding method, it is often useful to consider a development
project as a set of connected phases. We have, in figure 16, not chosen
a feature diagram in order to show the sequential relation between the
different phases. The project may not progress in this manner, but the
waterfall conception of a project forces one to take all the different phases
into consideration. Typical phases are the requirements phase, analysis and
design phase, implementation phase, testing phase, deployment phase and
maintenance phase. Software development environments can be evaluated in
terms of their life cycle support, i.e., their coverage of the different phases.

37

Those that cover more than one phase should also be evaluated on how well
they integrate the efforts and source artifacts of the different phases.

Figure 16: A classic waterfall representation of the project lifecycle.

The requirements phase produces the documentation of and agreement
on initial requirements for the final system. The participants are usually
customers, managers and analysts. These requirements are typically specified
in natural language, possibly guided by specification templates. Few
environments actually support this phase even though the requirements serve
as central evaluation criteria for the final product. The main problem
is that it is difficult to relate natural language requirements to design
diagrams and source code because of the different levels of formalization.
On the other hand, formalizing requirements at too early a stage might be
counterproductive as customers may be unfamiliar with formal notations.

The analysis and design phase concerns the documentation of general
concepts from the problem area and the mapping of those into the solution
area. Various notations are possible ranging from strict formal methods
to loosely defined sketches. The common factor among these notations is
that some sort of formalization is taking place. Requirements articulated in
natural language are translated to a more formalized notation in order for
programmers to be able to start working. Classical software development
environments do not support this phase very well, but with the advent of
CASE tools this situation has, in principle, changed. In practice, however,
the CASE tools have not been adopted as described in section 4.3.3.

The implementation phase concerns the programming and purely tech-
nical sides of development. This phase has been and continues to be the
central area for most software development environments. Programmers
must be supported while tackling the challenging activity of translating
design to executable code. As programs are being developed, the complexity
of a project can quickly become overwhelming, so developers need multiple
views on different levels of abstraction in order to properly conceptualize the
system. The main goals in this phase are getting the system implemented
correctly and on time as well as ensuring that the finished product is in
accordance with the requirements and the design. The main problem is
often that the requirements and design are either ambiguous or not well
understood. Hence it is not possible to properly align the implementation
with these requirements and the design.

38

The testing and deployment phases concern the final approval and
delivery of the program. Testing ensures, on a technical level, that the
program meets the requirements and, on the human level, that users are
actually capable of using it and benefit from using it. Deployment of the
program concerns the final build and integrity checks as well as installation
at the site of customers. The degree of support for these phases vary a lot
in current software development environments. Some have rigorous testing
schemes built in while others simply assume that an executable or compilable
program is a correct program. The ability to test a program rigorously
often depends on the method that has been employed while constructing the
program. Formal methods offer mathematical proof techniques whereas ad

hoc methods can only offer rather arbitrary tests.
The maintenance phase concerns work on the program after deployment.

This includes creating patches and bug fixes as well as managing the
different versions and releases. Customer feedback, design modifications and
adaptation to individual customers can also be part of this phase. Software
development environments with strong configuration management support
are very valuable in this phase. Feedback and change requests are often
harder to handle. The software development environment must be able to
trace a user complaint to a design decision or faulty requirement. Several
tools offer advanced traceability features, such as Bugzilla [86] which is widely
adopted in the open source community.

6.2 Method

The method of a project denotes the overall guiding principles. A project can
be guided in a purely ad hoc manner, in an agile and/or iterative manner,
by the waterfall process or even by purely formal means as shown in figure
17. The method determines the order of different phases and how these
phases are executed. In this section, we will briefly discuss how software
development environments can offer method support.

Figure 17: Different type of method support

We distinguish between three degrees of method support in a software
development environment. First, some environments are completely agnostic

39

with regard to the method employed. This is very common in general-purpose
environments as described in section 4.3.1. Environments like Emacs [11, 12],
Eclipse Java Development Tools [36] and Visual Studio.NET [37] do not offer
any explicit method support. This does not mean that they can not be used
in conjunction with some particular method. The main point is that the
method employed is not enforced by the environment.

Second, software development environments at the other end of the
spectrum are customized to a specific method. Such environments are
typically implemented in order to promote the adoption of a certain method.
This can be achieved by making methodological concepts and notations
explicit and enforcing a certain process in the environment. An example of
such an environment is the Overture tool [42] which is a dedicated tool for an
object-oriented variant of the Vienna Development Method called VDM++.
Classic CASE tools, as described in section 4.3.3, are also often tailored to a
specific method.

Third, some hybrid software development environments exist where the
environment can be parameterized with different methods. Meta CASE
environments as described in section 4.3.4 often fall into this category. These
higher-order environments generate method specific environments. A tool
such as MetaEdit+ [75] is exactly designed to support different methods.
These environments are different from our first category as they are not
agnostic of the method. A generated environment embodies a given method
and has explicit support for this method, for instance by using a given
notation.

6.3 Configuration Management

An important part of any software development environment is its ability
to manage configuration items - the support for configuration management.
All the various source artifacts of a project can be considered configuration
items. These items are composed into configurations that capture valid
relations between source artifacts. As a project progresses, the individual
source artifacts can be revised several times and the different versions of the
same source artifact may take part in different configurations. Configuration
management, which is illustrated in figure 18, handles the problem of keeping
track of these items and configurations.

Versioning of source artifacts can be handled manually but software
development environments typically automate this process by using version

control tools. Several versioning paradigms exists [87]. A versioning paradigm
takes its outset in the conceptual definition of a configuration item. Source
artifact-oriented systems such as CVS [17] store versions of single source

40

Figure 18: Different kinds of configuration management support

artifacts and use a layer of metadata to retrieve configurations. Change-
oriented systems, such as Arch [88], store change-sets and apply these to
retrieve configurations. Most version control systems are based on storage
models such as repositories or central databases as described in section 3.2.1.

Apart from storing the different versions of source artifacts, version
control systems are also important from a managerial perspective. The
version histories provide information about the progress of a project and
audit trails can be used to assign blame when the source repository is
corrupted. Configurations and configuration items are typically annotated
and this information enhances the possibility of offering traceability. A bug
or a change request can for instance be traced back to a certain revision of a
source artifact.

Other parts of configuration management are build automation and con-

tinuous integration. Build automation concerns the process of transforming
source artifacts to the target product. Automation tools such as Make [89]
and Ant [90] allow the developer to formalize the process of building a
product. The build process can usually be parameterized such that different
targets can be produced from the same set of sources. One can for instance
produce a build either with or without test code.

Continuous integration, a term coined by Fowler and Foemmel [91], is a
synthesis of version control, build automation and testing. The idea is to
extend the software development environment with a separate server which
automatically retrieves the latest code from the repository, builds it according
to the formalized build process and runs tests on the target product. This
practice ensures frequent integration tests and regular feedback to developers
and managers of the state of the code base. Continuous integration is
implemented in tools such as CruiseControl [92] and Draco.NET [93].

41

6.4 Decomposition Techniques

The understanding of a complex problem requires certain analytical skills.
The classic way of understanding such a problem is to decompose it into
smaller more comprehensible parts. Software development environments
support this process by embodying different decomposition concepts as shown
in figure 19. Decomposition is often prescribed in a certain manner by
the employed method. If a software development environment is tied to a
certain method as described in section 6.2 then this usually implies a special
decomposition technique. Object-oriented methods as described by Wirfs-
Brock and Johnson [94] are for instance centered around decomposition in
objects and classes. Some of the most common techniques use the following
concepts during the decomposition process:

Figure 19: Different decomposition concepts

It is beyond the scope of this paper to describe the different decomposition
techniques in detail. The key point in relation to software development
environments is that decomposition techniques can, similarly to methods,
be integrated to various degrees. Some environments are agnostic of
decomposition whereas others are tied to a specific decomposition. A recent
trend is to allow various different decomposition techniques simultanuously.
The Concern Manipulation Environment [95] follows this idea discarding the
tradition of having only one decomposition technique - a tradition which has
been called the tyranny of the dominant decomposition [96, 97].

7 Applying the taxanomy

In this section, we will evaluate a couple of software development environ-
ments with respect to the previously introduced taxonomy. As there is an
astronomical number of different environments on the market from industry,
academia, and open source hackers, we will have to limit ourselves to a few.
We will furthermore only evaluate these tools in relation to parts of the
taxonomy. These evaluations should be seen as paradigmatic examples that
the reader can use to perform his own evaluations using the taxonomy.

42

It is difficult to choose a representative selection of tools that sheds light
on all the different facets of software development environments. We have
chosen to base our evaluation on four environments to show how different
parts of the taxonomy can be used. The evaluation should not be perceived as
an ordinary comparison. The selected environments, to some extent, address
different problems and our intention here is not find to the best one. The
four environments are:

Visual Studio 2005 Team System [83]
Microsoft’s Visual Studio product has been through several versions.
We have chosen the 2005 Team System edition which is currently
the latest. This product is a general-purpose software development
environment which has been extended with some interesting process-
related features.

Rational Software Architect 6.0 [98]
IBM’s product Rational Software Architect is similar to Visual Studio
in scope and purpose. This is also a general-purpose software
development environment which has been extended beyond mere
coding capabilities. The environment consist of a large set of plugins
to the open source platform Eclipse [36].

Visual Works Smalltalk 7.0 [21]
Different Smalltalk environments have played a significant role in the
evolution of software development process. We have included Visual
Works in our comparison both to acknowledge its significance but also
because Visual Works is still a competitive and relevant general-purpose
environment.

Emacs 21.4 [99]
Similar to Smalltalk, Emacs have also played a major role historically
and is still the tool of choice for a large number of programmers. Emacs
is - especially on the Unix/Linux platforms - very well integrated with
the commandline facilities of the operating system. We have chosen to
ignore this in our comparison and view tools such as CVS, Make, FTP
etc as external to Emacs. It is a classic general-purpose environment
which has great appeal to people working according to our artist-
metaphor in section 2.1.

Our evaluation is based on our own experiences with these tools as well
as the official datasheets and documentation from the different vendors. The
products are evaluated according to a subset of the features in our taxonomy.

43

The evaluation is therefore split in four parts. One for each dimension or for
each P in our 4P taxonomy. Feature support can fall in three categories: 1)
fully supported (+), 2) partially supported (-/+), or 3) not supported (-).
The product names are abbreviated as explained in table 3.

Product Abbreviation
Visual Studio 2005 Team System VS2005TS
Rational Software Architect 6.0 RSA
Visual Works Smalltalk 7.0 VWS
Emacs 21.4 Emacs

Table 3: Abbreviations used in the next sections.

Since several of these environments can be extended beyond recognition,
we have chosen to evaluate these products with their basic feature sets.
Each environment contains only the plugins and settings that are part of
the standard distribution. They have not been adapted in any way. We have
chosen this restriction as extra plugins would allow these tools to support
virtually any feature which we could come up with. It is simply not possible,
for us, to properly map the plethora of plugins for a tool such as e.g., Rational
Software Architect. When deciding on a tool, one should of course not ignore
the plugin market for a prospective tool. With the advent of open source,
the size, quality and rapid evolution of available plugins can easily become a
deciding factor.

7.1 Program

We have chosen to evaluate the tool selection in terms of two facets along
the Program dimension - the storage mechanism and the representation form.
The different possible storage mechanisms are shown along the vertical axis
in table 4. The traditional model of shared files storage is the most common.
There may, as suggested in section 3.2.1, be several reasons why this model
is preferred. We believe that the two main reasons are familiarity and tool
extensibility.

Familiarity stems from the fact that most users of development envi-
ronments are familiar and therefore more comfortable with the file system.
Emacs is probably the best example of this. Emacs users typically have at
least one buffer open with a shell, i.e., a direct interface to the file system.
They consider the file system a focal point of development, and Emacs is
therefore used to enhance their ability to interact with the filesystem.

Environments such as VS2005TS and RSA also use the shared file system,
but with these tools the motivation is less obvious. All three environments

44

VS2005TS RSA VWS Emacs

Shared files storage + + - +
Repository storage + + - +
Database storage - - - -

In-memory storage - - + -

Table 4: Storage mechanisms.

provide a graphical interface that shields the user from direct interaction with
the file system. Several of the files in a typical project are used to configure
the project, workspace and graphical interface, so these files are not really
meant for direct editing through a text editor. The combination of graphical
user interface and configuration files are used to abstract away the details
of file management to some degree. It might therefore be argued that these
environments could benefit equally well from other storage mechanisms.

Tool extensibility is often richer in file based environments since it is easier
to contribute for third party plugin developers. These third party developers
can rely on their knowledge of established file formats, such as for instance
the file structure of a Java file. It is often more difficult to motivate third
party developers to learn idiosyncratic formats for database og in-memory
storage. An environments such as RSA is based on the idea of extensibility
and an open architecture, so this is a deciding factor in the choice of shared
files as storage mechanism.

The main exception in Table 4 is VWS which is based on in-memory
storage. The environment logs all editing actions and stores the complete
state of the workspace as an image file when it is closed by the user. This
approach has been very popular both in academia and industry, but today
it has to a large degree been overtaken by environments such as VS2005TS
and RSA. The main reason that VWS uses in-memory storage is the choice
of representation form which is covered next.

VS2005TS RSA VWS Emacs

Uni-representation - - + -
Multi-representation + + - +

Table 5: Representation form.

VWS relies on a uni-representation as shown in table 5. VS2005TS, RSA
and Emacs, on the other hand, relies on the more common scheme of multi-
representation. The distinction between uni- and multi-representation was
discussed in greater detail in section 3.2.2. Interestingly, some of these tools

45

actually show exceptions to the general categorization. VWS for instance
stores the single representation in an image file when the environment is
shut down. Nevertheless, the actual bodies of methods are not stored in this
image file, but in a separate file which is referred to from the image file. This
indicates that the distinction between uni- and multi-representation is not
clear cut.

Similarly, Emacs is generally considered a multi-representational environ-
ment, but when it is used as a LISP editor, it is actually working directly
on a single representation. Since Emacs is written in LISP, this is a common
scenario when extending the environment. In ordinary Java, TEX or other
programming scenarios, Emacs can be considered multi-representational.

7.2 Platform

Our four environments have different characteristics along the platform

dimension. We have chosen to look at view features, such as notation,
language support, synchronization and edit mode. The first of these,
notation, is intimately linked to the last, edit modes. All four environments
support textual notation when dealing with raw source code. This affects
the edit modes as textual notation is often displayed in free text editors. As
described in section 4.2.2, structured editing has not been very successful in
relation to textual notations. This is probably why our selection of modern
software development environments have all opted for free editing.

VS2005TS RSA VWS Emacs

Textual notation + + + +
Graphical notation + + - -

On demand synchronization - - + +
Incremental synchronization + + - -
Constant synchronization - - - -

Free editing + + + +
Structured editing + + - -

Table 6: Support for different view features.

As shown in Table 6, VS2005TS and RSA also offers graphical notations
such as class diagrams. Both environments offer structured graphical editors
for these notations. Structured editing is considered a useful feature in
graphical environments as lines automatically connect with boxes in drag
and drop scenarios. It would be a nuissance if the user had to use too
much time on aiming when connecting different graphical entities. This is

46

in contrast to textual environments where structured editing has been less
convincing.

VS2005TS RSA VWS Emacs

Syntax highlighting + + + +
Grammatical structure + + + +

Static semantics + + - -

Table 7: Language support

All four environments offer language support as Table 7 shows. VS2005TS,
RSA and Emacs even offers an extensible set of languages using modes,
plugins and various adaptions. Emacs offers syntax highlighting for various
languages out of the box. VS2005TS and RSA offers support for .NET and
Java respectively. Both can be extended with additional languages, but when
working with the primary language these environments offer extra benefits,
such as object browsers and incremental synchronization, as described in
section 4.2. VWS on the other hand is tailored for Smalltalk and it does
not make sense to consider VWS independently of that language. All four
environments offers text editors with an understanding of the grammatical
structure of programs such that for instance correct indentation can be
provided. VS2005TS and RSA extends this with continuous analysis of the
program’s static semantics which enables intellisense, auto-completion and
other advanced features.

Generally, we can conclude that language support is a significant
requirement for any software development environment today. The recent
interest in meta CASE environments, as described in section 4.3.4, is a good
example of this requirement since the focal point of meta CASE tools is the
automatic generation of language-oriented editors.

7.3 People

Our selection of environments can be split into two general categories along
the people dimension. VS2005TS and RSA both aim to support the entire
life cycle of a project. This means that they must be suitable for all different
roles in a project. We believe, as shown in Table 8, that both environments
succeed in supporting every role except the analyst. The analyst requires
a graphical and preferably domain-specific notation for his work. This kind
of support is only present in custom-made tools or environments generated
from meta CASE tools. The central trade-off that both VS2005TS and RSA
has made in their effort to cover the complete life cycle has been to focus on

47

expert users. Both environments support a lot of different functions and are
therefore very complex. This excludes most novice and intermediate users
from mastering these environments.

VS2005TS RSA VWS Emacs

Analyst - - - -
Designer + + - -
Developer + + + +

Tester + + - -
Deployment manager + + - -

Project manager + + - -

Table 8: Support for different areas of expertise.

VWS and Emacs represent the second category along the people dimen-
sion. These environments are focused on the coding phase and all efforts are
directed towards supporting the programmer in his tasks. Both environments
are consequently significantly easier to use as opposed to VS2005TS and RSA.
The two categories, life cycle versus coding environments, can be seen as
instantiations of the work metaphors described in section 2.1. Environments,
such as VS2005TS and RSA, that cover the entire life cycle appeals to the
engineer. Here the focus is on planning and coordination. Environments,
such as VWS and Emacs, on the other hand appeals to the artist or
craftsman. Here the idea of fast, manual and ad hoc production is the essence.

7.4 Process

Finally, our selection of environments can be evaluated along the process

dimension. We have chosen to look at some configuration management
features, i.e., build management and version control, here. As shown in
Table 9, our environments fall into three categories when it comes to build
management. VS2005TS and RSA rely on automatic builds. These builds
are formalized in scripts and executed by specialized build engines. The
user can generate these scripts automatically and tailor them manually if
necessary. Emacs on the other hand relies on manual builds. This is part of
the artist or craftsman attitude which dictates fine-grained control of every
part of a project. On larger projects this attitude can become infeasible and
that is when engineering tools such as VS2005TS and RSA take over. VWS
does not really fall into either of these two categories. Since VWS uses a uni-
representation behind the scenes, it is not necessary to build the program at

48

all. The user interacts directly with the internal representation and hence
this representation does not need to be built.

VS2005TS RSA VWS Emacs

Manual builds - - n/a +
Automatic builds + + n/a -

Continuous integration + - - -
Version control + + + +

Table 9: Support for configuration management.

All four environments offer version control out of the box. VS2005TS
adds continuous integration on top of this. Since version control is a large
and very complicated area, all these environments focus on offering simple
client functionality for the most common version control systems. More
advanced version control schemes typically requires both server-side software
as well as client-side adaptions in these environments.

Generally, we can conclude that all four environments are expected to
offer some process support, such as build management and version control.
This indicates an acceptance of the fact that software development is a
collaborative effort and the software development environments should as
a bare minimum offer some collaboration support.

8 Related work

Several researchers have previously organized software development environ-
ments in conceptual schemes. The key motivation is the lack of cognitive
tools to support our understanding of the field. It is recognized that
the characteristics and features of an environment, to a large extent, can
determine the outcome of a project. Nevertheless, we claim that no one has
yet succeeded in creating a comprehensive conceptual framework to actually
understand these characteristics and features. In this section, we will describe
some of the most interesting attempts in the past.

One of the most comprehensive conceptual studies of software devel-
opment environments is Nørmark’s report on programming environments
[2]. This report introduces a notation called programming form diagrams

to describe the relation between the program and the platform dimension in
an environment. The report emphasizes program construction, examination
and administration as three important dimensions of software development
environments. The discussion of pros and cons of different editing modes
is especially intriguing and has been a major influence in the related

49

discussion in this paper. There is furthermore a very detailed description
of representation which has also inspired the discussion here. Nørmark’s
focus is on tools such as Emacs [11, 12] and Interlisp as well as language-
based environments such as Cornell Program Synthesizer [23] and Gandalf
[24]. These tools are also examined by Mancoridis [100] who place them in
a multi-dimensional taxonomy based on previous surveys.

Hausen and Muellerburg’s [101] survey describes 20 tools and is mainly
drawn from a workshop on software engineering environments in 1980. The
authors emphasize that environments should be evaluated on their ability
to represent the life cycle of a project. This is important as it is an early
realization of the fact that environments should be able to support more
than merely the programming phase. Part of what the authors denote the
life cycle model is also considerations on how environments may imply a
certain method. These ideas are very similar to the process dimension
of our taxonomy. The main difference is that the authors do not include
decomposition techniques which, in our view (section 6.4), is also a major
part of the process embedded in environments.

Other surveys take a more conceptual approach by describing generic
software development environment models. Howden [1] proposes a taxonomy
where environments are organized by the cost of their project. Environments
can be put into four categories ranging from minor projects to very large
projects. Each category has special tool and architecture requirements. The
emphasis here is on the composition of an environment’s toolkit. Perry and
Kaiser [102] also propose four categories, but they base their categories on the
number of developers involved instead. Their categories use the sociological
metaphors of the individual, the family, the city, and the state. Each category
can be described by what policies, mechanisms and structures it employs. We
believe that these conceptual models provide powerful cognitive schemes but
they ignore a lot of the nuances that are captured on the detailed level of
our taxonomy. A saying has it that the devil is in the detail and hence
a taxonomy must provide a more fine-grained description than these two
surveys.

A different class of related surveys are the tool-centered ones which focus
on the definition and description individual tools. Reiss [43] offers a set
of definitions for tools, such as editors, compilers, debuggers etc. These
definitions can be used to establish a common vocabulary when discussing
especially programming tools. Reiss [43] and Meyers [16] offer detailed
descriptions of the integration models of software development environments
which they complement with lots of practical examples. We have based
parts of our taxonomy on the their work with regard to our program and
platform dimension. We extend their work by fitting tool integration and

50

individual programming tools into the larger context of software development
environments.

Harrison et al.’s [97] survey provides a historical overview of the key trends
in software development environments. They propose a historical time line
with four phases. In the first phase, environments were loosely coordinated.
In the second phase, coordination of work flow was introduced. In the third
phase, programming support became a major topic. Finally in the fourth
phase, life cycle models and process support entered the stage. We agree with
their historical account although it should be noted that these four phases are
not necessarily sequentially ordered as even the fourth phase can be traced
back to the seventies. A major insight in their survey is the emphasis on
decomposition techniques where they warn against environments that only
support a single decomposition technique.

Finally, two other important surveys introduce compressive categoriza-
tions of existing tools. Grundy and Hoskings [44] survey from the Wiley
Encyclopedia of Software Engineering [103] proposes 18 categories of tools,
such as requirements tools, formal methods tools etc, which they relate to
the life cycle of a project. Their survey is at least as comprehensive as our
taxonomy. The main difference is that our taxonomy offers one generic way
of describing environments whereas their survey offers 18 ways of categorizing
tools. A similar and equally comprehensive survey by Kelleher and Pausch
[85] evaluates a wealth of tools on the tool’s ability to support novice
programmers. Their survey is a paradigmatic example of conceptualization
about software development environments but their focus is much more
narrow than the focus in our taxonomy.

9 Conclusion

This paper proposes a taxonomy for software development environments.
The taxonomy is structured along four dimensions: Platform, Program,
People and Process. We have analyzed these four dimensions using
cardinality-based feature modeling which has shown how different facets of
each dimension relates to one another. It is our claim in this paper that the
taxonomy provides an important starting point for a comprehensive study
of software development environments. We have shown how to apply the
taxonomy on a small selection of environments to prove that our ideas can
serve as a useful cognitive tool. We believe that such cognitive tools are
required in order to get an overview of the plethora of past and current
software development environments.

The main contributions of this paper are:

51

1. A taxonomy that describes central distinctions and trade-offs in the
area of software development environments. The full taxonomy can be
found on page 62

2. An application of this taxonomy that shows how our distinctions
and ideas can be used to evaluate concrete software development
environments.

3. A survey of important parts of literature and tools in this area during
the last 35 years.

We believe that the use of cardinality-based feature modeling has proven
a valuable tool when trying to survey the wealth of information in this
area. Interestingly, we have discovered that the final feature models to a
large degree depend on an initial implicit decision, wiz., our decision to take
literature about tools rather than tools as the starting point. This decision
was motivated by our desire to include older tools that are unavailable today
in the survey. We believe that our emphasis on literature has given the
feature models a focus on concepts rather than concrete features. This is
especially visible in section 7. The application of the taxonomy is focused
on the underlying concepts rather than the concrete features from each
environment’s datasheet. It would be interesting to see if a feature model
which was based on data sheets would resemble our proposal.

Another interesting idea for future work would, of course, be to perform
a more comprehensive application of the taxonomy. The taxonomy would
probably need several small-scale alterations if it was applied on a larger
selection of software development environments. Nevertheless, we believe
that the four central dimensions will stand. Furthermore, we also claim
that the general approach of gradually exploring the features and their
relations is the most fruitful way of understanding what software development
environments really are.

Acknowledgements:

We would like to thank Peter Sestoft, Kasper Østerbye and Jacob Winther
Jespersen for comments and reviews of earlier versions of this paper.

52

References

[1] Howden, W.E.: Contemporary software development environments.
Commun. ACM 25(5) (1982) 318–329

[2] Nørmark, K.: Programming Environments - Concepts, Architectures
and Tools. Technical Report R-89-5, Aalborg Universitetscenter (1989)

[3] Knuth, D.E.: Computer programming as an art. Commun. ACM
17(12) (1974) 667–673

[4] TeX Users Group: Just what is TeX. (http://www.tug.org/whatis.
html) Last accessed April 1, 2006.

[5] Philipkoski, K., Philipkoski, K.: Kent: The Genome Su-
perman. http://www.wired.com/news/medtech/0,1286,46154,00.

html (2001) Last accessed April 1, 2006.

[6] Naur, P., Randell, B., eds.: Software Engineering: Report of a
conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7-11 Oct. 1968. (1969) Brussels, Scientific Affairs Division,
NATO, 231pp.

[7] Kim, C.H.P., Czarnecki, K.: Synchronizing Cardinality-Based Feature
Models and their Specializations. In: Proceedings of ECMDA’05.
(2005)

[8] Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-
based feature models and their specialization. Software Process:
Improvement and Practice 10(1) (2005) 7–29

[9] Fuggetta, A.: A Classification of CASE Technology. Computer 26(12)
(1993) 25–38

[10] Dolotta, T.A., Mashey, J.R.: An introduction to the Programmer’s
Workbench. In: ICSE ’76: Proceedings of the 2nd international
conference on Software engineering, Los Alamitos, CA, USA, IEEE
Computer Society Press (1976) 164–168

[11] Gosling, J.: A redisplay algorithm. In: Proceedings of the ACM
SIGPLAN SIGOA symposium on Text manipulation, New York, NY,
USA, ACM Press (1981) 123–129

53

[12] Stallman, R.M.: EMACS the extensible, customizable self-
documenting display editor. In: Proceedings of the ACM SIGPLAN
SIGOA symposium on Text manipulation, New York, NY, USA, ACM
Press (1981) 147–156

[13] Neighbors, J.M.: Software Construction using Components. PhD
thesis, Department of Information and Computer Science, University
of California, Irvine (1980) published as Technical Report UCI-ICS-
TR-160.

[14] Neighbors, J.M.: Chapter 12. Draco: a method for engineering reusable
software systems. ACM Frontier Series. In: Software Reusability,
Volume I: Concepts and Models. Addison-Wesley, New York, NY, USA
(1989) 295–319

[15] Object Management Group: Model Driven Architecture. (http://
www.omg.org/mda/) Last accessed March 5, 2006.

[16] Meyers, S.D.: Representing Software Systems in Multiple-View
Development Environments. PhD thesis, Brown University (1993)
published as Technical Report CS-93-18.

[17] Grune, D.: Concurrent Versions System, a method for independent
cooperation. Vrije Universiteit, Amsterdam. (1986) published on http:

//www.cs.vu.nl/~dick/CVS.html.

[18] Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control
with Subversion, v.1.1. O’Reilly Media (2005)

[19] Garlan, D.B.: Views for tools in integrated environments. PhD thesis,
Carnegie-Mellon University (1987)

[20] Teitelman, W., Masinter, L.: The Interlisp Programming Environment.
In Barstow, D.R., Shrobe, H.E., Sandewall, E., eds.: Interactive
Programming Environments. McGraw-Hill, New York (1984) 83–96

[21] Cincom: VisualWorks Smalltalk. (http://smalltalk.cincom.com/
index.ssp) last accessed March 2, 2006.

[22] Squeak. (http://www.squeak.org/) last accessed March 2, 2006.

[23] Teitelbaum, T., Reps, T.: The Cornell Program Synthesizer: a syntax-
directed programming environment. Commun. ACM 24(9) (1981) 563–
573

54

[24] Habermann, A.N., Notkin, D.: Gandalf: Software development
environments. IEEE Trans. on Software Engineering 12 (1986) 1117–
1127

[25] Reiss, S.P.: PECAN: Program development systems that support
multiple views. In: ICSE ’84: Proceedings of the 7th international
conference on Software engineering, Piscataway, NJ, USA, IEEE Press
(1984) 324–333

[26] Reiss, S.P.: Consistent Software Evolution. http://www.cs.brown.

edu/~spr/research/clime/whitepaper.pdf (2001)

[27] Reiss, S.P.: Constraining Software Evolution. In: ICSM ’02:
Proceedings of the International Conference on Software Maintenance
(ICSM’02), Washington, DC, USA, IEEE Computer Society (2002) 162

[28] Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Perlis,
A.J., Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J.H., van
Wijngaarden, A., Woodger, M.: Report on the algorithmic language
algol 60. Commun. ACM 3(5) (1960) 299–314

[29] Object Management Group: Meta-Object Facility. (http://www.omg.
org/technology/cwm/) Last accessed March 4, 2006.

[30] Microsoft: fxcop. (http://www.gotdotnet.com/Team/FxCop/) Last
accessed March 3, 2006.

[31] Fowler, M.: Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional (1999)

[32] Lanza, M.: CodeCrawler. (http://www.iam.unibe.ch/~scg/
Research/CodeCrawler/) Last accessed March 3, 2006.

[33] Jones, C.B.: Systematic software development using VDM (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1990)

[34] Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1989)

[35] The RAISE Language Group: The RAISE Specification Language.
Prentice Hall (1992)

[36] The Eclipse Foundation: Eclipse Java Development Tools. (http:
//www.eclipse.org/jdt/) Last accessed March 3, 2006.

55

[37] Microsoft: Visual Studio .NET 2005. (http://msdn.microsoft.com/
vstudio/) Last accessed March 3, 2006.

[38] Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39(12)
(2004) 92–106

[39] The Software Composition Group: Framework-based Approach for
Mastering Object-Oriented Software Evolution (FAMOOS). (http:
//www.iam.unibe.ch/~famoos/) Last accessed March 3, 2006.

[40] Nuseibeh, B., Easterbrook, S., Russo, A.: Making inconsistency
respectable in software development. The Journal of Systems and
Software 58(2) (2001) 171–180

[41] Fraternali, P.: Tools and approaches for developing data-intensive web
applications: a survey. ACM Comput. Surv. 31(3) (1999) 227–263

[42] : The Overture Tool. (http://www.overturetool.org/index.php)
Last accessed March 24, 2006.

[43] Reiss, S.P.: Software tools and environments. ACM Comput. Surv.
28(1) (1996) 281–284

[44] Grundy, J.C., Hosking, J.G.: Software Tools. In: Software Tools. 2
edn. Wiley InterScience (2001) Appears in [103].

[45] Wasserman, A.I.: Tool integration in software engineering
environments. In: Proceedings of the international workshop on
environments on Software engineering environments, New York, NY,
USA, Springer-Verlag New York, Inc. (1990) 137–149

[46] Reiss, S.P.: Connecting tools using message passing in the field
environment. IEEE Softw. 7(4) (1990) 57–66

[47] Harrison, W., Kavianpour, M., Ossher, H.: Integrating coarse-
grained and finegrained tool integration. In: Proceedings of the Fifth
International Workshop on Computer-Aided Software Engineering
(CASE ’92). (1992) 23–35

[48] Brown, A.W., Penedo, M.H.: An annotated bibliography on
integration in software engineering environments. SIGSOFT Softw.
Eng. Notes 17(3) (1992) 47–55

[49] The Eclipse Foundation: Eclipse Plug-in Development Environment.
(http://www.eclipse.org/pde/) Last accessed March 3, 2006.

56

[50] Gamma, E., Beck, K.: Contributing to Eclipse. The Eclipse Series.
Addisson-Wesley (2003)

[51] Czarnecki, K., Eisenecker, U.W.: Generative Programming - Methods,
Tools, and Applications. Addison-Wesley (2000)

[52] Kaiser, G.E., Feiler, P.H.: An architecture for intelligent assistance
in software development. In: ICSE ’87: Proceedings of the 9th
international conference on Software Engineering, Los Alamitos, CA,
USA, IEEE Computer Society Press (1987) 180–188

[53] Hansen, W.J.: Creation of Hierarchic Text with a Computer Display.
PhD thesis, Dept. of Computer Science, Stanford University, California
(1971)

[54] JetBrains: Meta Programming System. (http://www.jetbrains.
com/mps/, 12. December 2005)

[55] Fowler, M.: Language Workbenches: The Killer-App for Domain
Specific Languages? (http://www.martinfowler.com/articles/
languageWorkbench.html, 12. June 2005)

[56] Roberts, D., Brant, J., Johnson, R.: A refactoring tool for smalltalk.
In: Theory and Practice of Object Systems. Volume 3. (1997) 253 –
263

[57] Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, Dept. of Computer
Science, Urbana-Champaign, IL, USA (1992) published as technical
report UIUCDCS-R-92-1759.

[58] Edwards, J.: Example centric programming. SIGPLAN Not. 39(12)
(2004) 84–91

[59] Edwards, J.: Subtext: uncovering the simplicity of programming.
In: OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming, systems, languages, and
applications, New York, NY, USA, ACM Press (2005) 505–518

[60] Reiss, S.P.: A conceptual programming environment. In: ICSE
’87: Proceedings of the 9th international conference on Software
Engineering, Los Alamitos, CA, USA, IEEE Computer Society Press
(1987) 225–235

57

[61] Joy, W.: An Introduction to Display Editing with Vi. Computer
Science Division, Department of Electrical Engineering and Computer
Science, University of California, Berkeley. (1981)

[62] JetBrains: IntelliJ IDEA. (http://www.jetbrains.com/idea/) Last
accessed March 5, 2006.

[63] Martin, J.: Applications Development Without Programmers. Prentice
Hall (1981)

[64] Horowitz, E., Kemper, A., Narasimhan, B.: A survey of application
generators. IEEE Software 2(1) (1985) 40–54

[65] Oracle: Oracle Reports. (http://www.oracle.com/technology/
products/reports/index.html) Last accessed March 5, 2006.

[66] SAP: SAP R3 ABAP. (http://www.sapgenie.com/abap/) Last
accessed March 5, 2006.

[67] Microsoft: Navision C/AL. (http://www.microsoft.com/danmark/
mbs/losninger/navision.asp) Last accessed March 5, 2006.

[68] Microsoft: Microsoft Access. (http://office.microsoft.com/
en-us/FX010857911033.aspx) Last accessed March 5, 2006.

[69] SAS Institute: SAS. (http://www.sas.com/) Last accessed March 5,
2006.

[70] Microsoft: Visual Basic. (http://en.wikipedia.org/wiki/Visual_
Basic) Last accessed March 5, 2006.

[71] The Software Engineering Institute: What is a CASE Environment?
http://www.sei.cmu.edu/legacy/case/case_whatis.html (2004)

[72] Pressman, R.S., Ince, D.: Software Engineering: A Practitioner’s
Approach (European Adaption). 5 edn. McGraw-Hill (2000)

[73] Iivari, J.: Why are CASE tools not used? Commun. ACM 39(10)
(1996) 94–103

[74] Jarzabek, S., Huang, R.: The case for user-centered case tools.
Commun. ACM 41(8) (1998) 93–99

[75] MetaCASE: MetaEdit+. (http://www.metacase.com/mep/) Last
accessed March 5, 2006.

58

[76] Institute for Software Integrated Systems: The Generic Modeling
Environment. (http://www.isis.vanderbilt.edu/projects/gme/)
Last accessed March 5, 2006.

[77] Xactium: XMF-MOSAIC. (http://albini.xactium.com/web/) Last
accessed March 5, 2006.

[78] Microsoft: Visual Studio DSL Tools. (http://msdn.microsoft.com/
vstudio/DSLTools/) Last accessed March 5, 2006.

[79] Grundy, J., Hosking, J., Mugridge, W.B.: Inconsistency Management
for Multiple-View Software Development Environments. IEEE Trans.
Softw. Eng. 24(11) (1998) 960–981

[80] Balzer, R.: Tolerating inconsistency. In: ICSE ’91: Proceedings of the
13th international conference on Software engineering, Los Alamitos,
CA, USA, IEEE Computer Society Press (1991) 158–165

[81] Nuseibeh, B.: To Be and Not to Be: On Managing Inconsistency
in Software Development. In: IWSSD ’96: Proceedings of the
8th International Workshop on Software Specification and Design,
Washington, DC, USA, IEEE Computer Society (1996) 164

[82] Nygaard, K., Handlykken, P.: The System Development Process -
Its setting, some problems and needs for methods. In Hünke, H.,
ed.: Software Engineering Environments Proceedings of a Symposium
(S2E2). (1980) cited from [101].

[83] Microsoft: Visual Studio 2005 Team System. (http://
msdn.microsoft.com/vstudio/products/vsts/default.aspx) Last
accessed March 22, 2006.

[84] IBM: Rational Software. (http://www-306.ibm.com/software/
rational/) Last accessed March 22, 2006.

[85] Kelleher, C., Pausch, R.: Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers. ACM Comput. Surv. 37(2) (2005) 83–137

[86] The Mozilla Organization: Bugzilla. (http://www.bugzilla.org/)
Last accessed March 22, 2006.

[87] Conradi, R., Westfechtel, B.: Version models for software configuration
management. ACM Comput. Surv. 30(2) (1998) 232–282

59

[88] GNU: Arch. (http://gnuarch.org/index.html) Last accessed March
8, 2006.

[89] Feldman, S.I.: Make - A Program for Maintaining Computer Programs.
Software - Practice and Experience 9(4) (1979) 255–65

[90] The Apache Software Foundation: Apache Ant. (http://ant.apache.
org/) Last accessed March 24, 2006.

[91] Fowler, M., Foemmel, M.: Continuous Integration. ({http://www.
martinfowler.com/articles/continuousIntegration.html}) Last
accessed March 24, 2006.

[92] : CruiseControl. (http://cruisecontrol.sourceforge.net/) Last
accessed March 24, 2006.

[93] Chive Software Limited: Draco.NET. (http://draconet.
sourceforge.net/) Last accessed March 24, 2006.

[94] Wirfs-Brock, R.J., Johnson, R.E.: Surveying current research in
object-oriented design. Commun. ACM 33(9) (1990) 104–124

[95] IBM Research: Concern Manipulation Environment (CME): A
Flexible, Extensible, Interoperable Environment for AOSD. (http:
//www.research.ibm.com/cme/) Last accessed March 24, 2006.

[96] Tarr, P., Ossher, H., Harrison, W., Stanley M. Sutton, J.: N degrees
of separation: multi-dimensional separation of concerns. In: ICSE
’99: Proceedings of the 21st international conference on Software
engineering, Los Alamitos, CA, USA, IEEE Computer Society Press
(1999) 107–119

[97] Ossher, H., Harrison, W., Tarr, P.: Software engineering tools and
environments: a roadmap. In: ICSE ’00: Proceedings of the Conference
on The Future of Software Engineering, New York, NY, USA, ACM
Press (2000) 261–277

[98] IBM Rational Software: Rational Software Architect V6.0. ({http://
www-306.ibm.com/software/awdtools/architect/swarchitect/})
Last accessed March 25, 2006.

[99] Free Software Foundation / GNU: GNU Emacs V21.4. (http://www.
gnu.org/software/emacs/) Last accessed March 25, 2006.

60

[100] Mancoridis, S.: A multi-dimensional taxonomy of software
development environments. In: CASCON ’93: Proceedings of the
1993 conference of the Centre for Advanced Studies on Collaborative
research, IBM Press (1993) 581–594

[101] Hausen, H.L., Muellerburg, M.: Conspectus of software engineering
environments. In: ICSE ’81: Proceedings of the 5th international
conference on Software Engineering, Piscataway, NJ, USA, IEEE Press
(1981) 34–43

[102] Perry, D.E., Kaiser, G.E.: Models of software development
environments. In: ICSE ’88: Proceedings of the 10th international
conference on Software engineering, Los Alamitos, CA, USA, IEEE
Computer Society Press (1988) 60–68

[103] Marciniak, J.J.: Encyclopedia of Software Engineering. John Wiley &
Sons, Inc., New York, NY, USA (2002)

61

62

