
Business Process Execution with
Bigraphs and Reactive XML

Thomas Hildebrandt
Henning Niss
Martin Olsen

IT University Technical Report Series TR-2006-85

ISSN 1600–6100 April 2006

Copyright c© 2006, Thomas Hildebrandt
Henning Niss
Martin Olsen

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-125-1

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Business Process Execution with
Bigraphs and Reactive XML

Thomas Hildebrandt, Henning Niss, and Martin Olsen?

IT University of Copenhagen {hilde,hniss,mol}@itu.dk

Abstract. Bigraphical Reactive Systems have been proposed as a meta model for
global ubiquitous computing generalising process calculi for mobility such as the
pi-calculus and the Mobile Ambients calculus as well as graphical models for con-
currency such as Petri Nets. We investigate in this paper how Bigraphical Reactive
Systems represented as Reactive XML can be used to provide a formal semantics as
well as an extensible and mobile platform independent execution format for XML
based business process and workflow description languages such as WS-BPEL and
XPDL. We propose to extend the formalism with primitives for XPath evaluation and
higher-order reaction rules to allow for a very direct and succinct semantics.

1 Introduction

Recently proposed language standards for business process coordination such as XPDL [8]
and WS-BPEL [3] (combining the languages XLANG [33] and WSFL [21]) have a syntax
based on XML to facilitate exchange of process descriptions between heterogeneous pro-
cess execution engines and analysis tools. The semantics of the present business process
execution languages, relating the process description to the possible state changes, is given
by an informal specification.

Reliable implementations of business process execution engines and tools must be
based on a formal semantics to be able to provide guarantees for the process execution
and in particular to guarantee consistency between different process engines and tools.

Business processes are so-called long-lived processes and the state of running pro-
cesses, sometimes referred to as cases, are continuously persisted. Not only mobile process
descriptions but also mobile cases are highly relevant, e.g. if a business case is needed on
a disconnected PDA, in a different part of the world or the process execution engine is
updated and the cases must be exported to the updated engine. To facilitate mobile cases
one would need a standard, platform independent representation of the state of processes
as for instance an intermediate execution format like Java bytecode. Such a standard has
not yet been defined, on the contrary, the state of a business process is usually assumed to
be persisted in a proprietary format in a relational database [14].

In the present report we describe a general approach to define a platform independent
execution format for business processes based on XML as well as an XML-based extensi-
ble format for the formal process language semantics derived from the meta process model
of Bigraphical Reactive Systems (BRS) [11, 20, 24, 25] which can be seen as a specialized
kind of graph rewriting systems. The BRS meta model prescribes a format for process lan-
guage signatures and reaction rules (rewrite rules) used to describe the formal operational
semantics, and a general theory for deriving from the reaction rules a labelled bisimulation
congruence for the process language [11]. Processes are represented as two graphs (hence
the name bigraphs), named the place graph and the link graph respectively, which are de-
signed to generalise the pi-calculus [26] and the Mobile Ambients calculus [5]; bigraphs
has been shown also to encompass Petri Nets [23].
? Authors listed alphabetically. This work was funded in part by the Danish Research Agency (grant

no.: 2059-03-0031) and the IT University of Copenhagen (the Bigraphical Programming Lan-
guages project)

Concretely, we investigate how BRSs, by exploiting similarities between Bigraphs and
XML, can be used to provide a formal semantics and execution format for XML-based
business process languages, using a small subset of WS-BPEL as an illustration of the
idea. In spite of being just a small subset, the WS-BPEL case provides several benefits.
Firstly, the case illustrates how an industry standard XML-based programming language
can be extended to an XML-based execution format using ideas from process calculi. Sec-
ondly, we show how the semantics can be given as XML-based rewrite rules thereby both
providing an extensible and interchangeable format for the semantics and narrowing the
gap usually arising between a programming language and its formalisation, as it is the case
for π-calculus formalisations of business processes. Finally, the case suggests an interest-
ing extension of BRS to allow for (linear) higher-order reaction rules and tree logics, in
this concrete case a subset of XPath. The higher-order reaction rules is essentially a format
for wide reaction rules in which the different parts of the rule may be nested inside each
other, and thus parameters of the reaction rules may be contexts. Subsequently, we em-
ploy XPath to constrain such context parameters, resulting in a kind of context-dependent
reaction rules.

Our formalisation is presented as an instance of a distributed meta process calculus
DiX, which at the same time can be regarded as a term language for a (generalisation
of) pure open bigraphs and a process calculus notation for tuples of (unordered) XML,
XML contexts and XML-rewrite rules. The DiX calculus and the theory of bigraphical
reactive systems form the theoretical foundation for a distributed XML-centric model of
computation. This has been implemented in a prototype called Distributed Reactive XML;
it provides an extensible, distributed (peer-to-peer) process execution engine for the calcu-
lus based directly on the formalisation, and in particular a process engine for any concrete
instance. Our approach thus constitutes a general approach to developping extensible and
distributed process execution engines from formal process semantics.

The DiX calculus with first-order reaction rules and its implementation as Distributed
Reactive XML was presented in [18] based on the Reactive XML implementation given
in [17, 36]. The work presented in this report builds on the MSc thesis by the 3rd au-
thor [27]. The case of WS-BPEL and and its bigraphical semantics using higher-order re-
action rules is published in [19].

Related Work Much work has been carried out recently on formalisations of workflow lan-
guages, in particular within the Petri Net [29] and pi-calculus formalisms. Indeed the ques-
tion of which of these two formalisms is most suitable has raised a lively debate [35]. The
work in [31] describes a complete Petri Net-semantics for WS-BPEL. Pi-calculus formal-
isations of business and workflow processes have been described in [30, 32]. With respect
to comprehensibility and extensibility, all of these formalisations suffer from the fact that
the business process language is formalised in very abstract models with few primitives for
interaction and reaction. In comparison, bigraphical reactive systems allow one to describe
domain-specific reaction rules, just as in usual graph rewriting systems. Consequently, the
process semantics given in the present paper stays very close to the WS-BPEL language
by utilizing the extensibility of bigraphical reactive systems and the similarities between
bigraphs and XML. An argument for employing abstract minimalistic models such as the
π-calculus and Petri Nets is of course to be able to perform formal reasoning and utilize
verification tools. We retain this hope by relying on the formal theory for bigraphical re-
active systems, notably the theory of bisimulation congruences, which will be pursued in
future work.

Our representation of bigraphs as XML is inspired by the similarities between pro-
cess calculi for mobility and semi-structured data observed in [4] and is closely related to
the work in [10]. However the focus of [10] is to represent XML as bigraphs (and using
bigraph-logics introduced by the same authors in [9] to describe properties of XML) as
opposed to the present paper that have the opposite focus, namely to represent bigraphs as
XML, and using XML as an platform independent execution format for bigraphical reactive

2

systems. A possible joining point of the two lines of work would be to use bigraph-logics
in place of the XPath constraints.

The work on XML-based execution formats relates to the proactive XML-centric mod-
els of computation and coordination surveyed in [7], in which processes that manipulates
XML-documents are embedded in the documents themselves. In particular our work relates
to the Workspaces approach [34] in which XPDL process descriptions are transformed into
sets of XML documents representing the steps to be carried out, thus providing a distributed
XML representation of the process state. The main difference between the Workspace ap-
proach and ours is that the computation steps in Workspaces are based on XSLT, which has
the clear benefit of being an open and widely implemented standard. On the other hand,
XSLT is in itself a complex programming language without a formal semantics.

Finally, it would be interesting to investigate the applicability of other graph rewriting
models to give semantics of business process.

2 Bigraphical Reactive Systems and Reactive XML

In this section we describe the Distributed eXtensible process (and context) calculus DiX
(previously presented in [18]) and its relationship to bigraphs and representation as Reac-
tive XML.
Notation: We let n, m, i, j range over natural numbers and write [m] for the set (ordinal)
{1, . . . m}.

2.1 Signatures and Process expressions

The starting point for the extensible process calculus DiX is a general notion of signatures
that encompasses both the signatures of XML documents and bigraph signatures. The ter-
minology is partly borrowed from bigraph signatures.

Definition 1. A signature is a tuple (Σ, Ξ]∆ ⊆ Σ, Nc ⊆ N,Att, ar), where Σ is a set
of controls ranged over by κ, Ξ and ∆ are resp. the subsets of active and atomic controls,
N is an infinite set of names ranged over by n, Nc is a set of constant names, Att is a set
of finite attribute index sets, and ar : Σ → Att is a function assigning an attribute index
set to each control. ut

As a signature for XML, Σ is a set of XML element names, N is a set of XML attribute
values and variables where Nc is the subset of attribute values (concretely the strings not
beginning with a $), and Att is the set of finite sets of XML attribute names. The subset of
active controls Ξ in the signature determines where reactions (or rewrites) can take place
as described below and the subset of atomic controls ∆ are controls that can not have any
children. Following [10] we assume the existence of an atomic control with no attributes
for each possible #PCDATA node.

Example 1 (Signature for WS-BPEL process descriptions). When viewed as DiX terms
WS-BPEL processes are constructed from controls such as sequence, flow, while, and
variable, each corresponding to a WS-BPEL element. The active controls allow reactions
under the control; for example sequence and flow are active, hence allowing for the execu-
tion of the sub-processes. The passive controls does not allow such reactions; for example
variable and while are passive since a variable declaration does not involve execution, and
execution of a while body does not proceed until the condition has been met. Some controls
carry attributes; for example variable carries an attribute name , ar(variable) = {name}.
In concrete processes attribute values are constants (in the set Nc) such as amount; in
reaction rules attribute values are typically variables (in the set N\Nc) such as $x. Refer
to Figure 2 for the signature for the subset of WS-BPEL considered in this paper. ut

3

The notion of constant names is an extension of the notion of bigraph signatures and
will be explained when we introduce contexts below. For bigraph signatures the attribute
index set Att is the set ω = {[n] | n ≥ 0} of finite ordinals and the attribute indexes ar(κ)
of a bigraph control κ are referred to as the ports of κ. The attributes of bigraph controls
are thus simply a list of names indicating which name each port is linked to. In other words,
bigraph signatures has the form (Σ,Ξ]∆ ⊆ Σ, ∅, ω, ar).

A distributed Σ-process is an ordered set of unordered trees for which each node is
labelled by a control κ ∈ Σ and a set of name attributes indexed by ar(κ), which we write
as κ{ai : ni}ai∈ar(κ). If ar(κ) = {a1, . . . , ak} the node κ{ai : ni}ai∈ar(κ) corresponds
to the XML element <κ a1="n1" · · · ak="nk">.

Definition 2. For a signature Σ = (Σ, Ξ] ∆ ⊆ Σ,Nc ⊆ N,Att, ar) the Σ-processes
are given by the grammar

w ::= w ‖ w | p | 0 wide Σ-processes

p ::= κ{ai : ni}ai∈ar(κ).p | κa{i : ni}i∈ar(κa).1 | p| p | 1 prime Σ-processes

where κ ∈ Σ\∆, κa ∈ ∆ and ni ∈ N . ut

We use a commutative and associative binary parallel composition | to separate siblings
and the prefix notation κ{ai : ni}ai∈ar(κ).p for a tree with root κ{ai : ni}ai∈ar(κ) and sub
tree p. For XML the prefix operator corresponds to surrounding p with the usual open and
close elements as in <κ a1="n1" · · · ak="nk"> p </κ>. We collect trees into an ordered
set of trees by an associative binary parallel composition ‖. Using bigraph terminology, we
refer to | as the prime parallel composition and ‖ as the wide parallel composition. We also
refer to trees as prime processes and ordered collections of trees as wide processes (rather
than distributed processes). We let 0 denote the empty collection of trees (i.e. wide process)
and 1 the emtpy tree (i.e. prime process).

Example 2 (WS-BPEL processes). In DiX, WS-BPEL processes are constructed from con-
trols by prefixing (corresponding to the nesting in the XML rendition) and parallel com-
position (corresponding to juxtapositioning in the XML rendition). The following prime
process expression copies in parallel the value from variable x to variable y and vice versa.

flow.
(
assign.copy.(from{var : x}| to{var : y})

| assign.copy.(from{var : y}| to{var : x})
)

ut

We let≡ be the structural congruence defined as the least congruence with respect to the
operators above that makes | associative and commutative with identity 1 and ‖ associative
with identity 0.

Definition 3. The structural congruence ≡ is the least congruence on process expressions
such that

p1 |(p2 | p3) ≡ (p1 | p2)| p3 p| q ≡ q | p p| 1 ≡ p 1| p ≡ p

and
r1 ‖ (r2 ‖ r3) ≡ (r1 ‖ r2) ‖ r3 r ‖ 0 ≡ r 0 ‖ r ≡ r ut

Associativity of the parallel compositions allows us to leave out parentheses, writing
respectively Πi∈[n] pi and ΠΠi∈[n] pi for the n times prime and wide parallel compositions;
we let Πi∈∅ pi = 1 and ΠΠi∈∅ pi = 0 . As usual we will often leave out trailing nil pro-
cesses, writing κa{ai : ni}ai∈ar(κ) for κa{ai : ni}ai∈ar(κ).1. We say that the width of a
wide process expression ΠΠi∈[n] pi is n, i.e. it is the wide parallel product of n primes.

4

2.2 Context expressions and reactions

To define reactions formally we first need to define contexts formally. Borrowing from bi-
graphs our contexts consist of two components W and σ, a process context and an attribute
context respectively. The process context W is what one may first expect of a (multi-hole)
context, namely a process expression with indexed holes []j in which processes can be
placed. The attribute context σ is a finite name substitution that act as a context of the at-
tribute variables. An attribute context allows renaming, fusion and instantiation of attribute
variables. In bigraph terminology, the process context is called the place graph and the
attribute context is called the link map.

Definition 4. For a signature Σ = (Σ,Ξ]∆ ⊂ Σ,Nc ⊆ N,Att, ar) the Σ-contexts are
pairs G = (W,σ), where σ : N → N is a finite substitution respecting constant names
referred to as the attribute context and W is the process context defined by the grammar

W ::= W ‖ W | P | 0

P ::= κ{i : ni}i∈ar(κ).P | κa{i : ni}i∈ar(κa).1 | P |P | 1 | []j

where κ ∈ Σ\∆, κa ∈ ∆, ni ∈ N , and j ≥ 0. Define the names n(W) of a process context
W to be the set of names appearing as values of attributes in the expression W . ut

That the substitution σ is finite means that the set dom(σ) = {x | σ(x) 6= x} is finite.
That it respects contant names means that dom(σ) ∩Nc = ∅. We will say that an attribute
context σ is trivial if it is the identity id : N → N (i.e. dom(σ) = ∅) and often identify W
and (W, id).

Example 3 (WS-BPEL context). Let W be the process context

assign.copy.(from{var : $f}| to{var : $t})| []1

then (W, id) is a context capturing an assignment from one variable (identified by the at-
tribute variable $f) to another ($t) possibly in parallel with other processes ([]1). ut

We type contexts (W,σ) : (n, X)−→(m,Y) if W has width m and for any hole []j
in W the index j is in [n], and the attribute context satisfies that dom(σ) ⊆ X and σ(X ∪
n(W)) ⊆ Y . Using bigraph terminology we refer to (n, X) and (m,Y) as interfaces, and
(n, X) as the innerface and (m,Y) as the outerface of (W,σ) : (n, X)−→(m,Y).

Note that contexts are not uniquely typed: The innerface may contain names not appear-
ing in the domain of σ and the outerface may contain names not appearing in σ(X∪n(W)).
For a typed context (W,σ) : (n, X)−→(m,Y) we write (W,σ)⊕X ′ for (W,σ) : (n, X]
X ′)−→(m,Y ∪ X ′), the extension of the interfaces with a set of names X ′ satisfying
X ′ ∩X = ∅. The condition ensures that X ′ ∩ dom(σ) = ∅ and thus well-typedness.

Example 4 (Typed WS-BPEL context). A type of the context above is

(W, id) : (1, {$f, $t})−→(1, {$f, $t})

because it has one hole, uses the attribute values {$f, $t} and has width 1. ut

Example 5 (Extended typed WS-BPEL context). The typed context of Example 4 can be
extended, for instance with two constant names x and y to (W, id) ⊕ {x, y} yielding the
type

(W, id) : (1, {$f, $t, x, y})−→(1, {$f, $t, x, y}) ut

We say that a context (W,σ) : (n, X)−→(m,Y) is affine if the same index appears at
most once at a hole and that a context (W,σ) : (n, X)−→(m,Y) is linear if all indexes
in [n] appear exactly once. For bigraph signatures, the typed linear contexts given above is

5

a term language for open pure bigraphs [11]. That the bigraphs are open and pure means
respectively that we do not have the usual constructor for local names used to represent
name binding in the pi-calculus nor the possibility of binding names within the attributes
of controls, as e.g. used for the input prefix in the pi-calculus. Local names and binding are
allowed in general in binding bigraphs, but they are not needed for the work presented in
this paper and is thus left for future work. We let 0 be short for the empty interface (0, ∅).
As usual, a process p can be viewed as a context (p, id) : 0−→(m,Y) with trivial attribute
context and the empty innerface, referred to as a ground context. We will often abbreviate
the type of a ground context as (p, id) : (m,Y).

Contexts compose by process substitution and attribute value substitution as defined
formally below.

Definition 5. For contexts (W,σ) : (n, X)−→(m,Y) and (W ′, σ′) : (m,Y)−→(k, Z)
define the composite context

(W ′, σ′) ◦(W,σ) = (W ′(Wσ′), σ′ ◦σ) : (n, X)−→(k, Z) ,

where Wσ′ is the context obtained from W by substituting all attribute values n with σ′(n)
and W ′(Wσ) is the context obtained from W ′ by for all indexes i ∈ [m] inserting the i’th
prime of Wσ into every i-indexed hole of W ′. The composition of substitutions σ′ ◦σ is
standard function composition.

The proposition below means that typed contexts and interfaces form a category.

Proposition 1. Context composition is associative and (ΠΠi∈n[]i, id) : (n, X) → (n, X)
is the identity context for the interface (n, X).

Proof. Using associativity of process context substitution and function composition

(W ′′, σ′′) ◦
(
(W ′, σ′) ◦(W,σ)

)
= (W ′′, σ′′) ◦(W ′(Wσ′), σ′ ◦σ)
=

(
W ′′((W ′(Wσ′))σ′′), σ′′ ◦(σ′ ◦σ)

)
=

(
W ′′((W ′(Wσ′))σ′′), (σ′′ ◦σ′) ◦σ

)
=

(
W ′′(W ′σ′′((Wσ′)σ′′)), (σ′′ ◦σ′) ◦σ

)
=

(
W ′′(W ′σ′′(Wσ′′ ◦σ′)), (σ′′ ◦σ′) ◦σ

)
=

(
W ′′(W ′σ′′)(Wσ′′ ◦σ′), (σ′′ ◦σ′) ◦σ

)
= (W ′′(W ′σ′′), σ′′ ◦σ′) ◦(W,σ)
=

(
(W ′′, σ′′) ◦(W ′, σ′)

)
◦(W,σ)

Example 6 (WS-BPEL context composition). Consider the context (W, id) : (1, {$f, $t})
−→(1, {$f, $t}) from Example 4 above. From (W, id) we may obtain contexts represent-
ing each of the two assignments of the flow in Example 2 by compositions:

Wx,y = assign.copy.(from{var : x}|to{var : y})|[]1 = ([]1, [$f 7→ x, $t 7→ y]) ◦W

and

Wy,x = assign.copy.(from{var : y}|to{var : x})|[]1 = ([]1, [$f 7→ y, $t 7→ x]) ◦W

We can then obtain the complete process of Example 2 by combining these:

flow.
(

assign.copy.(from{var : x}| to{var : y})
| assign.copy.(from{var : y}| to{var : x})

)
= flow.[]1 ◦Wx,y ◦Wy,x ◦ 1

The contexts Wx,y , Wy,x, and flow.[]1 can be typed as follows:

Wx,y : (1, ∅)−→(1, {x, y})
Wy,x : (1, {x, y})−→(1, {x, y})

flow.[]1 : (1, {x, y})−→(1, {x, y}) ut

6

We say that a context is active if no holes are nested inside non-active controls. The
dynamics of a process language is then defined by a set of parametric reaction rules.

Definition 6. For a signature Σ define the set of parametric reaction rules PReactΣ as
{(WL,WR)|WL : (n, X)−→(m,Y),WL is linear,WR : (n, X)−→(m,Y)}.

For a set R ⊂ PReactΣ , and contexts W : (k, Z) and W ′ : (k, Z) we say that
W −→W ′ if there exists a parametric rule

(
WL,WR : (n, X)−→(m,Y)

)
∈ R, an active

context WA : (m,Y ∪ X ′)−→(k, Z) and a parameter process WP : (n, X] X ′) such
that W ≡ WA ◦WL ⊕X ′ ◦WP and W ′ ≡ WA ◦WR ⊕X ′ ◦WP . ut

2.3 Reactive XML

We now turn to the correspondence between DiX and XML. In the following we let ε denote
the empty document. As indicated above we represent controls as XML elements (except
for the #PCDATA controls represented as character data) and attributes as XML-attributes.
We use the reserved1 element names wide, reg, and hole for respectively the root of
the wide process, the root of the primes (referred to as regions in bigraphs) and the holes.
The hole element has an attribute name providing the index of the hole. In summary,
we define a translation [[·]] from DiX processes and process contexts (that is, contexts with
trivial attribute context) to XML as follows:

[[ΠΠi∈[n] Pi]] = <wide>

<reg>[[P1]]</reg> . . .<reg>[[Pn]]</reg>
</wide>

[[κ{ai : xi}ai∈ar(κ).P]] = <κ a1="x1" . . . an="xn"> [[p]] </κ>, for |ar(κ)| = n

[[κa]] = κa, for κa ∈ #PCDATA

[[P |P ′]] = [[P]][[P ′]]

[[1]] = ε

[[[]j]] = <hole name="j"/>

Example 7. The process in Example 2 is rendered in XML as:

<wide>
<reg>

<flow>
<assign>

<copy>
<from>42</from>
<to variable="x"/>

</copy>
</assign>
<assign>

<copy>
<from>Hello World</from>
<to variable="y"/>

</copy>
</assign>

</flow>
</reg>

</wide>

1 Technically, this can be reserved using the notion of XML namespaces.

7

The context in Example 4 is rendered in XML as:

<wide>
<reg>

<assign>
<copy>

<from var="$f"/>
<to var="$t"/>

</copy>
</assign>
<hole name="1"/>

</reg>
</wide>

ut

In the implementation, described in Sec. 4, we represent the set of reaction rules as
an XML document containing the rules encoded as pairs of contexts as well as an XPath
representation of the active controls as will be described in Sec. 3.

3 Formalising XML Business Process Execution

When representing WS-BPEL processes as bigraphs we leverage the fact that Reactive
XML provides an XML-based syntax for bigraphs and that a bigraphical reactive system
may tailor the exact expressions to the application. In other words, the representation (al-
most) makes it possible to view the original WS-BPEL process expression as a Reactive
XML expression.

In this section we investigate how to formalise XML business process execution, con-
cretely a hybrid of BPEL4WS 1.1 and WS-BPEL 2.0, as bigraphical reactive systems. The
contributions of this are twofold: on the one hand it gives a succint representation of the
semantics of a WS-BPEL subset, on the other hand it directly provides a subsequent im-
plementation based on our earlier work on Reactive XML [18] as described in Sec. 4.

For a bigraphical reactive system, one gets to specify not only process expressions in the
formalism, but also the reaction rules. This makes bigraphical reactive systems particularly
well-suited for representing the semantics of WS-BPEL as we can capture the semantics of
each kind of WS-BPEL process as one or more bigraphical reaction rules.

3.1 A subset of WS-BPEL as processes

Figure 1 gives the grammar of the WS-BPEL process language we consider presented in
the more compact DiX notation. We use value to range over #PCDATA and expr to range
over simple XPath expressions to be defined below. The translation to XML (as described
in Section 2.3) is straightforward.

The corresponding signature Σ is defined in Figure 2. The signature mostly consists of
controls corresponding directly to elements in WS-BPEL 2.0 and/or BPEL4WS 1.1 (those
not marked with a star). The signature has additional controls (marked with a star) next,
from_expr, and instance introduced by the representation and described below.

We employ a simple kind of sorting (i.e. schema) restricting the allowed children of
controls and the allowed names for attributes. We let EXPR range over a subset of XPath
expressions (including the contants true and false), defined below. We use sets in sorts to
represent disjunction and let & represent conjunction. We use ? for zero or one, and ∗ for
zero or more. The process control thus have zero or one variables control as child and zero
or one control from the set ACT (of actions).

8

system ::= procs | state

procs ::= proc | . . .| proc

state ::= inst| . . .| inst

proc ::= process{name : n}.(vars | act)

vars ::= variables.(var | . . .| var)

var ::= variable{name : n}
act ::= seq | flow | while | if | inv | rec | rep | assign | 1

seq ::= sequence.(act | next.act)

flow ::= flow.(act | . . .| act)

while ::= while.(condition.expr | act)

if ::= if.(condition.expr | then.act | else.act)

inv ::= invoke{operation : n, inputVariable : n}
rec ::= receive{operation : n, variable : n}
rep ::= reply{operation : n, variable : n}
assign ::= assign.copy.(from | to)

from ::= from{var : n} | from_expr.expr

to ::= to{var : n}
inst ::= instance{name : n}.(instvars | act)

instvars ::= variables.(instvar | . . .| instvar)

instvar ::= variable{name : n}.value

Fig. 1. Grammar for the WS-BPEL subset. Metavariables n ranges over names N , expr ranges over
valid XPath expressions, and value ranges over #PCDATA.

Control Activity Attributes Sort
process passive {name:n} {variables}?&ACT?

variables passive {variable}∗

variable passive {name:n} #PCDATA

sequence active ACT?&next

next* passive ACT?

flow active ACT∗

while passive {condition}&ACT?

if passive {condition}&{then}&{else}
condition passive EXPR

then passive ACT?

else passive ACT?

invoke atomic {operation:n, inputVariable:n} ∅
receive atomic {operation:n, variable:n} ∅
reply atomic {operation:n, variable:n} ∅
assign passive {copy}

copy passive {from, from_expr}&{to}
to atomic {var:n} ∅
from atomic {var:n} ∅
from_expr * passive EXPR

instance* active {name:n} {variables}?&ACT?

Fig. 2. WS-BPEL process signature. Let ACT be the set {sequence, flow, while, if, invoke, receive,
reply, assign}, #PCDATA be the set of #PCDATA controls and EXPR be the subset of #PCDATA

controls for which the value is a valid XPath expression. Controls marked with a * are introduced by
the representation; the rest correponds to WS-BPEL elements.

9

3.2 Process instances and execution state

From a high-level perspective, a WS-BPEL process description consists of a number of
processes in parallel

proc1 | . . .| procn

During execution, each of the processes proci may get instantiated, eg., when it is being
invoked. A process instance needs to maintain the current “program counter” indicating
what activity is currently being executed and an assignment of values to the variables of the
process. We shall refer to the representation of program counters and variable assignments
for all process instances as the execution state of the WS-BPEL process description.

Traditionally, execution engines store execution state in proprietary formats, typically in
a database. We propose to represent not only the WS-BPEL process description as XML,
but also the execution state. This allows us to use Reactive XML to implement the ex-
ecution steps taken by WS-BPEL processes. Reaction rules implement the semantics of
WS-BPEL by rewriting the execution state appropriately. Again from a high-level perspec-
tive the current state of the execution of a WS-BPEL process description has the following
form, represented by system in the grammar:

(proc1 | . . .| procn)|(inst1 | . . .| instm)

In other words, it is a set of process descriptions together with a set of the currently instan-
tiated processes. We need the descriptions in order to be able to instantiate new processes;
the instances capture the execution state, not as program program pointers but, in the style
of process calculi, as descriptions of the current state and possible future behaviour. Pro-
cess instances are represented using the control instance which is just like process except
variables carry a current value. Thus a typical instance has the form

instance{name : i}.
(variables.(variable{name : x1}.v1 | · · ·| variable{name : xn}.vn)
| p)

where p represents the future behavior of the instantiated process.
Since process descriptions are only meant to be used when instantiating processes the

process control is passive; dually, process instances are meant to be executed (ie., rewritten)
and therefore the instance control is active.

For each syntactic construct we present a number of reaction rules specifying how
execution of the construct proceeds. For example, there are three rules specifying how to
execute conditionals. The reaction rules rewrite the XML representation of the execution
state; specifically, the process instance for which an execution step is to be taken. Once
execution of an activity has finished it is represented by the nil process 1. These reaction
rules “capture” the semantics of WS-BPEL.

3.3 Activity composition

WS-BPEL defines a number of structural activities which combine smaller activities into
a combined activity.

One of the most basic structural activities in WS-BPEL is that of parallel (or con-
current) composition, known as flow. Activities prefixed by a flow are executed in paral-
lel/concurrently2. The execution of the flow activity ends when all parallel activities have
finshed executing. By making the corresponding control flow active we ensure, appealing to
the underlying bigraphical model, that the activities may execute in parallel. It would also

2 Future work will address the representation of links to constrain the execution order.

10

have been possible to omit the explicit control completely, however, at the cost of more dif-
ferences between the original WS-BPEL process and its encoding. A single reaction rule
removes the flow control when all activities have ended:

flow.1 → 1 (1)

An equally important structural activity is sequential composition through the sequence
control. The activities are to be executed in the order in which they occur as children
of the <sequence> element (ie., so-called “document order”). The execution of the
sequence activity ends when the last activity in the sequence has finished executing. In
contrast to flow its encoding has to address the fact that the children of a control are un-
ordered in bigraphs. This means that we cannot just group two sequential activities un-
der a sequence control which is active, as that would allow either of them to execute.
Instead we introduce a new, passive control, next, to block execution of the second ac-
tivity, and provide an explicit reaction rule for transferring control to the second activity
once the first has finished. That is, we represent two WS-BPEL activities in sequence,
<sequence> act1 act2 </sequence>, by the process sequence.(p1 | next.p2) (when
pi is the representation of act i) and use the following reaction rule to transfer control:

sequence.next.[]1 → []1. (2)

The if structural activity provides for the conditional execution of an activity. An activ-
ity is executed depending on the evaluation of a conditional expression (by default specified
in XPath 1.0). To support basing conditions on XPath expressions we extend Reactive XML
with a primitive, EvalXPath(·), for evaluating XPath expressions (rather than extending
the underlying calculus, we could instead have written an XPath interpreter in DiX). Con-
sider a rule containing EvalXPath(expr) on the right-hand side. Reactive XML rewrites
using this rule by evaluating the XPath expression expr against the DiX context matching
the left-hand side of the rule and inserting the result in place of EvalXPath(expr).

Equipped with this primitive we can easily specify the semantics of if by first appealing
to the primitive (3) for computing the condition and then proceeding based on whether the
condition evaluates to true (4) or false (5).

if.(condition.[]1 | then.[]2 | else.[]3) (3)
→ if.(condition.EvalXPath([]1)| then.[]2 | else.[]3)
if.(condition.true | then.[]1 | else.[]2) (4)
→ []1
if.(condition.false | then.[]1 | else.[]2) (5)
→ []2

The allowed XPath expressions are boolean and simply-typed (i.e. integer) expressions
over constants, and the functions bpws:getVariableData(’n’) for extracting the
value of a variable (as in BPEL4WS 1.1).

The while structural activity provides for the repeated execution of an activity controlled
again by an XPath expression. The activity is executed repeatedly until the XPath condition
no longer evalutes to true, in which case the execution of the while activity ends.

We specify the semantics of while by (as usual) unfolding the while loop to an if con-
struct (6) and then proceeding using the rules for if.

while.(condition.[]1 |[]2)
→ if.

(
condition.[]1 | then.(sequence.([]2 | next.while.(condition.[]1 |[]2)))
| else.1

) (6)

11

3.4 Variables
Assigning values to variables is one of the primitive activities of WS-BPEL (in the subset
we consider the only other primitive activities are concerned with invoking processes as
discussed in Section 3.7). Variable assignments take the form assign.copy.(from | to).

The intention is to assign the value specified by from to the variable specified by to. In
our WS-BPEL subset to can only specify a variable as in to{var : x}. The value to assign
to the to variable is specified by from: it can be either another variable, from{var : x},
or an XPath expression, from_expr.expr . Below we first describe how to define variable
assignments of the form from{var : x}; the form from_expr.expr is simpler as it appeals
simply to EvalXPath(expr) rather than involving looking up the current binding of a vari-
able.

Recall, that process instances record the current bindings of values to variables, as in

instance{name : assignex}.
(variables.(variable{name : x}.17| variable{name : y}.Hello World)
| . . .)

(7)

where the #PCDATA values 17 and Hello World are bound to x and y respectively.
Executing an assignment assign.copy.(from | to) is therefore a matter of manipulating

the correct variables in the instance’s variables control. In order to not let an assignment
from one process instance affect the variables of another instance, we need to insist that
the controls assign and variables are both located under the same instance control, i.e. they
are in the same scope. Furthermore, since the assignment may occur within a structural
activity, we expect the reaction rule for variable-to-variable assignment to take the form:

instance{name : $i}.(C(assign.copy.(from{var : $f}| to{var : $t}))
| variables.(variable{name : $f}.[]1 | variable{name : $t}.[]2 | []3))

−→ instance{name : $i}.(C(1)
| variables.(variable{name : $f}.[]1 | variable{name : $t}.[]1 | []3))

(8)

(where []1 is the value of the variable matched by $f , []2 is the value of the variable
matched by $t , and []3 are the remaining variable bindings).

Intuitively, the context C above captures the fact that assign may be nested under active
controls, i.e. flow, while, or a sequence. For example, considering again the process instance
in (7) we could have

instance{name : assignex}.(variables.(. . .)
| sequence.(assign.copy.(from{var : x}| to{var : y})| next. . . .))

(7’)

in which case C therefore is sequence.([]1 | next.(. . .)).
Formally, we want to have an infinite set of rules obtained by instatiating C with all

possible active contexts. In the next sections we will suggest a format of higher-order para-
metric reaction rules that allow us to specify such rule sets.

Analogously, we should like the rule for assigning results of XPath evaluations to vari-
ables to take the form:

instance{name : $i}.(C(assign.copy.(from_expr.[]1 | to{var : $t}))
| variables.(variable{name : $t}.[]2 | []3))

−→ instance{name : $i}.(C(1)
| variables.(variable{name : $t}.EvalXPath([]1)| []3))

(9)

Remark The notion of closed links present in the existing theory of binding bigraphs offer
an alternative to the solution based on higher-order reaction rules that we propose. Intu-
itively, closed links correspond in XML to (unique) identifiers/keys and references to such.
Instead of letting the instance node determine the scope one could then let variable names
be identifers/keys and the uses of of variables references to such. We leave the exploration
of closed links and its representation in XML for future work.

12

3.5 Higher-order Reaction Rules

Consider again the reaction rule for assignment. We wish to be able to abstract the process
context C in the reaction rule by a hole, writing:

instance{name : $i}.([assign.(copy.(from{var : $f}| to{var : $t}))]4
| variables.(variable{name : $f}.[]1 | variable{name : $t}.[]2 | []3))

−→ instance{name : $i}.([1]4
| variables.(variable{name : $f}.[]1 | variable{name : $t}.[]1 | []3))

(10)

The parameters of holes number 1, 2 and 3 are as usual prime processes, that is contexts Pi :
(1, X), but the parameter of hole number 4 is a prime process context C : (1, Z)−→(1, Z)
(where Z = {$f, $t}) with a single hole. That is, we wish to instantiate (10) with a wide
process context W = P1 ‖ P2 ‖ P3 ‖ C resulting in the ground rule

instance{name : $i}.(C ◦(assign.(copy.(from{var : $f}| to{var : $t})))
| variables.(variable{name : $f}.P1 | variable{name : $t}.P2 |P3))

−→ instance{name : $i}.(C ◦ 1
| variables.(variable{name : $f}.P1 | variable{name : $t}.P1 |P3))

However, note that the parameter W = P1 ‖ P2 ‖ P3 ‖ C above has type (1, Z)−→(4, X∪
Z). Essentially, we need the hole of the process context C to be part of the outerface and
the process inside the hole [(assign.(copy.(from{var : $f}| to{var : $t}))]4 to be part
of the innerface of the redex.

To be able to make the contexts appearing in higher-order holes part of the innerface, we
extend the types for interfaces with a limited linear function space considering interfaces of
the form t ::= (t̄, X), where t̄ is a vector of types t1t2 . . . tn which is short for ⊗iti (1.
A higher-order context W where the hole with index i is of the form [Wi]i and Wi is
a process of type ti will then have the interface (t1t2 . . . tn, X). This means that a prime
process context C of type ti−→(1, X) can be placed in the hole [Wi]i, replacing the hole
with the process C ◦Wi. We will write 0 for the empty interface (ε, ∅) where ε is the empty
vector. As before, a prime process P can be regarded as a ground process context with type
P : 0−→(1, X). In particular, a higher order context hole [0]i then correspond to a normal
(first order) hole []i in which a prime process P can be inserted.

The type of the redex and reactum in the reaction rule above is then (t̄, Z)−→(1, Z ′)
where t1 = t2 = t3 = 0, t4 = (1, Z), Z = {$f, $t}, and Z ′ = {$f, $t, $i}.

We write (n, X) for the type (t̄, X) where |t̄| = n and ti = 0 for all i ∈ [n], that is, the
case where all holes are normal first order holes. This makes the higher-order contexts and
interfaces a conservative extension of the first order contexts and interfaces.

To be able to make holes of process contexts part of the outerface we define the in-
volution of a higher-order process context W to be the process W− : 0−→(t̄, X) for
t̄ = t1t2 . . . tn if W ≡ ΠΠi∈[n] Pi and Pi can be typed ti−→(1, X).

Now for W = P1 ‖ P2 ‖ P3 ‖ C we have W− : 0−→(t̄, X ∪Z) for t1 = t2 = t3 = 0
and t4 = (1, Z) matching the innerface (t̄, Z) of the redex and reactum (if it is extended
with the names in X\Z).

For the present paper we restrict ourself to only consider higher-order contexts of type
(t̄, X)−→(n, Y) and 0−→(t̄, X) as given by the grammar below.

Definition 7. For a signature Σ = (Σ,Ξ,Nc ⊆ N,Att, ar) the higher-order Σ-contexts
H are defined by the grammar

H ::= (Who, σ) | Who
−

Who ::= Who ‖ Who | Pho | 0

Pho ::= κ{i : ni}i∈ar(κ).Pho | Pho |Pho | 1 | [Who]j

13

where σ : N → N are finite substitutions, κ ∈ Σ, ni ∈ N , and j ≥ 0 as for first-order
contexts.

As indicated above, we type contexts (Who, σ) : (t̄, X)−→(m,Y) for t̄ = t1t2 . . . tn if
Who has width m, dom(σ) ⊆ X and σ(X ∪ n(Who)) ⊆ Y , and for any hole [W ′

ho]j
W ′

ho
− can be typed 0−→ tj . We type contexts Who

− : 0−→(t̄, X) for t̄ = t1t2 . . . tn if
Who ≡ Πi∈[n] Pi and Pi can be typed ti−→(1, X).

We define higher-order context composition (inductively) as follows.

Definition 8. For contexts (Who, σ) : (t̄, X)−→(m,Y) and W ′
ho

− : 0−→(t̄, X) define
the composite context

(W ′
ho, σ) ◦Who = W ′

ho[(Pi ◦W ′′
ho

−)σ/[W ′′
ho]i] : 0−→(m,Y)

for Who ≡ Πi∈[n] Pi and where [(Pi ◦W ′′
ho

−)σ/[W ′′
ho]i] is the substitution of (Pi ◦W ′′

ho
−)σ

for holes [W ′′
ho]i in W ′

ho.

The higher-order contexts allow us to specify the reaction rule for assign as in (10)
above. However, we wish to constrain the parameter of the fourth hole to only active con-
texts. In general the constraints may depend on attribute values, for instance to guarantee
the existence of a certain path of controls between the root and the hole(s) as it is the case
for the XPath addressing of sub contents of variables allowed in WS-BPEL. In the follow-
ing section we address how this can be achieved.

3.6 XPath attribute values and context constraints

We consider a small subset of XPath given by the grammar

φ ::= naos | expr

naos ::= //*[not(ancestor-or-self::*[nameset])] | //*
nameset ::= name()=’n’ | name()=’n’ or nameset

expr ::= bpws:getVariableData(’n’) | . . .

The XPath expressions defined by naos are of the form

//*[not(ancestor-or-self::*[name()=’n1’ or . . . or name()=’nk’])]

and selects nodes not nested within any of the controls ni for i ∈ [k]. These expressions are
for instance used to identify active contexts, by letting the set {n1, . . . , nk} be the set of
passive controls. We will let φactive denote this expression. The XPath expressions defined
by expr are as for the while conditions, booleans and simple typed expressions.

Recall that an XPath expression is evaluated with respect to a node (somewhat confus-
ingly referred to as the context) in an XML-document and results in a nodeset. We define
that a prime context P satisfies an XPath constraint if all of the holes are children of one of
the nodes in the nodesets resulting from evaluating XPath on the children of the reserved
reg control of [[P]] (the context represented as XML). The syntax of higher-order context
holes is then extended to [W ′

ho]φj , where φ is an XPath expression belonging to the subset
defined above. We extend the interface types accordingly to t ::= (t̄, φ̄, X) where t̄ as be-
fore is a vector t1 . . . tn of types and φ̄ is a vector φ1 . . . φn of limited XPath expressions
as defined by the grammar above. We omit the XPath constraints from the type if they all
are the expression //* that selects all contexts.

We extend the typing condition to require for (Who, σ) : (t̄, φ̄, X)−→(m,Y) for t̄ =
t1t2 . . . tn that for any hole [W ′

ho]φj φ = φj and for the involuted contexts with XPath
constraints Who

− : 0−→(t̄, φ̄, X) for t̄ = t1t2 . . . tnand φ̄ = φ1 . . . φn ifWho ≡ Πi∈[n] Pi

and Pi can be typed ti−→(1, X) and satisfies φi.
Returning to the assign case, we can now add the constraint φactive to the hole with

index 4 and type the redex (and reactum) WL : (t̄, φ̄, X)−→(1, X) where t1 = t2 = t3 =
0 and t4 = (1, Z) and φ1 = φ2 = φ3 = //* and φ4 = φactive.

14

3.7 Process communication

Communication amongst processes is the other form of basic activities of WS-BPEL we
consider. The specification of communication takes up a large fraction of the WS-BPEL
specification; here we shall focus on the basics of invoking a process and process commu-
nication. WS-BPEL addresses orchestration of web services and as such integrate features
from WSDL (Web Services Description Language) [6]. In the present work, rather than
working with web services, we consider a system as a collection of processes and interpret
process invocation and communication as between the processes in the system. Further-
more, WS-BPEL also specifies how to correlate the messages between multiple (instances
of) processes using so-called “correlation sets”. See [27] for the details of representing this
in Reactive XML.

A business process may invoke another process, thereby creating an instance of the in-
voked process, using invoke{operation : op, . . .}. This creates an instance of the process
in the system which contains a receive{operation : op, . . .} activity. The invoking process
instance may specify parameters to the receiving process by including a variable in the
invoke attribute inputVariable. The intention is to look up the current value of the vari-
able in the instance, and bind that value to the formal parameter specified in the receive’s
variable attribute (just as was done for variable assignment).

The above informal description can be expressed in the following reaction rule:

instance{name : $i}.([invoke{operation : $o, inputVariable : $in}]φactive

3

| variables.(variable{name : $in}.[]1 | []2))
| process{name : $p}.([receive{operation : $o, variable : $var, }]φactive

6

| variables.(variable{name : $var}| []4)| []5)
−→

instance{name : $i}.([1]φactive

3 | variables.(variable{name : $in}.[]1 | []2))
| instance{name : $p}.(variables.(variable{name : $var}.[]1 | []4)| []5)
| process{name : $p}.([receive{operation : $o, variable : $var}]φactive

6

| variables.(variable{name : $var}| []4)| []5)

Observe (1) how the invoking process instance simply discards the invoke (which means it
is asynchronous in the sense of BPEL since it does not assume a reply), (2) that the receiv-
ing process description remains unchanged (making it possible to create more instances),
and (3) a new process instance has been added to the system with the correct variable bind-
ing and the “body” of the receiving process description ([]5). We have used the same trick
as for assign in order to locate the invoke under seq, flow, and while. One similarly needs a
reaction that allows sending messages between two process instances (in WS-BPEL using
reply and receive) following the pattern above:

instance{name : $rp}.([reply{operation : $o, variable : $out}]φactive

3

| variables.(variable{name : $out}.[]1 | []2))
| instance{name : $rv}.([receive{operation : $o, variable : $var}]φactive

6

| variables.(variable{name : $var}.[]4 | []5))
−→

instance{name : $rp}.([1]φactive

3 | variables.(variable{name : $out}.[]1 | []2))
| instance{name : $rv}.([1]φactive

6 | variables.(variable{name : $var}.[]1 | []5))

4 Implementing Business Process Execution with Reactive XML

In this section we describe the implementation of Distributed Reactive XML and its per-
spectives for business process execution and simulation. The implementation is based on

15

XML Store [2, 15, 28] as a peer-to-peer persistent storage layer. Our implementation ex-
tends the previous implementation presented in [18] by adding support for wide and higher-
order reaction rules. The implementation and the examples are available on the web:
〈http://www.itu.dk/research/theory/bpl/reactivexml/〉.

4.1 XML Store

XML Store [2, 15, 28] is a general-purpose, peer-to-peer distributed, persistent storage man-
ager for tree-structured data (XML documents). Below we briefly describe these features.

XML Store is a storage manager for tree structured values (data). XML Store pro-
vides functionality for storing and retrieving tree-shaped values—concretely, XML doc-
uments. Values are stored persistently, and as such outlives the application storing them.
Once stored, a value is identified by a location-independent identifier (typically, a crypto-
graphic hash of the contents of the value).

XML Store is peer-to-peer distributed. This means that an XML Store provides wide-
scale distribution of the values it is storing. Distribution in XML Store is transparent so
an application cannot observe whether a value is stored locally or remotely. Therefore,
an application behaves identically whether values are distributed or not. XML Store can be
based on any so-called structured peer-to-peer routing protocol; the current implementation
is based on Kademlia [22].

XML Store is value-oriented. This means that data, once stored, does not change; in
other words, data is immutable. This is analogously to the notion of values in programming
languages (for example non-references in Standard ML, strings in Java, etc). The crucial
idea in making XML Store value-oriented is that since values are never updated or changed,
they can be cached, replicated, etc freely without the need for coherency protocols.

For example, the current state of the execution of a process is a value—it is never
updated. Therefore we can freely cache it at (copy it to) all interested parties. On the other
hand, we also have to take special measures to perform the equivalent of updates on the
execution state. In XML Store this is a two-step process: first compute the new state by
constructing a value representing the new state, then bind a name to a (unique) identifier
for the value. For example, we might bind the name state to the identifier of the process
expression. After one step of reductions, the name state gets bound to the (new) identifier
for the new process expression. Such destructive updates are simple (they only involve a
name and a 128-bit identifier) and occur only in isolated places when “updating” the current
state. We shall refer to such updatable entities as cells. In pratice, the only form of update
cells support are compare-and-swap operations: for a cell c we can update it to contain a
new location-independent identifier if we know the identifier already contained in the cell.
Refer to [16] for a justification of choosing compare-and-swap as the basic operation.

XML Store employs sharing aggressively. This means that rather than storing the same
value (data item) multiple times, XML Store simply points to the same, already stored item.
XML Store uses an asynchronous background process [2] that discovers shared values, dis-
cards all but one and updates pointers to the discarded values to point to the one remaining
value. In this way, XML Store really stores DAGs rather than trees.

This avoids the obvious inefficiency in the example above: rather than constructing a
completely new value for the new state, one reuses as much as possible the old value. For
example, if a reaction takes place in the left child of node that has many more untouched
(by the reaction) children, then when constructing the new value one simply reuse the
untouched children (by using the pointers) to them. This is made possible since XML Store
is value-oriented—in other words, it is guaranteed that noone changes the shared values.

4.2 Processes as XML in XML Store

As shown in Section 2.3 process expressions are mapped to XML in a very direct way.

16

Example 8. A process instance with two assignments in parallel in both DiX and XML
syntax.

DiX:

instance{name : assignex}.
(variables.variable{name : x}
| flow.

(assign.copy.

(from.42| to{var : x})
| assign.copy.

(from.What is the meaning?

| to{var : x})
)

)

XML:

<instance name="assignex">
<variables>

<variable name="x"/>
</variables>

<flow>
<assign>
<copy>

<from>42</from>
<to variable="x"/>

</copy>
</assign>
<assign>
<copy>

<from>
What is the meaning?

</from>
<to variable="x"/>

</copy>
</assign>

</flow>
</instance> ut

Architecturally, Distributed Reactive XML is an XML Store distributed over a number
of peers, which provides clients with access to the current business process. Clients con-
nect to this XML Store either by joining the peer-to-peer network, or as traditional clients.
Since one could imagine different situation where each of them would be an advantage,
it makes sense to have both options. For instance, a back-end ERP system which updates
the processes on a regular basis would most likely benefit from being a part of the network,
instead of connecting to the XML Store each time an update takes place. On the other hand,
mobile clients or clients with less resources, for instance mobile PDAs, may not have re-
sources available to join a peer-to-peer network, and they would therefore connect to the
XML Store as clients.

The XML document making up the business process is distributed as well. Distribution
is achieved by means of a peer-to-peer routing algorithm (for locating stored data) and
each peer may store zero or more parts of the complete business process. Therefore, one
typically finds that one peer stores one instance, say, another peer stores another instance,
and so on. The distribution makes it possible to store an instance close to the peer for which
the instance is currently relevant. For example, if the state of the overall system is

<system>
<process name="pn1"> p1 </process>
...
<process name="pnn"> pn </process>
<instance name="in1"> i1 </process>
...
<instance name="inm"> im </process>

</system>

then when instantiating process pni the system evolves to

<system>
<process name="pn1"> p1 </process>
...
<process name="pnn"> pn </process>

17

<instance name="in1"> i1 </process>
...
<instance name="inm"> im </process>
<instance name="inm+1"> im+1 </process>

</system>

In this case it is natural, and indeed the current behavior, to store the new instance inm+1

at the peer that instantiated pni since it presumably needs to execute the instance. Should
it later be the case that a different peer is responsible for most of the execution of the
instance, or should the instantiating peer be subject to high load, then it is possible to move
the corresponding part of the XML document to a new peer precisely because it is a value
and hence will not be updated (albeit, the current prototype engine has no means to support
this).

In order to keep track of the current state of the system, we maintain an updatable
cell containing a value reference to the current state of the entire system. In other words,
through the cell one gets access to the <system> element and all its children. When the
state evolves the cell gets updated to point to the new state.

Note that the current prototype implementation of XML Store does not support dis-
tributed cells. Thus regardless of the distribution scheme chosen, we still need to update
the cell to the overall state of the system centrally.

4.3 Implementing reaction rules

To implement the execution of reaction rules we need to be able to match left hand sides of
parametric reaction rules and replace the result with the right hand side.

Recall that a DiXprocess p may react to be become a process p′, p−→ p′, if there
exists a reaction rule (WL,WR), a parameter WP , and an active context WA such that p ≡
WA ◦WL ◦WP ; we shall refer to WL ◦WP as the redex (and WR ◦WR as the reactum)
and WA as the evaluation context of the reaction. (Consult Definition 6 for the complete
details.)

Let us first consider how to implement prime reaction rules, that is, reaction rules
(WL : (n, X)−→(1, Y),WR : (n, X)−→(1, Y)). For a prime reaction rule we only need
to consider evaluation contexts with one hole, where the redex is inserted. The redex is
composed of WL and WP where WP has width n, ie. WP = ΠΠi∈[n] pi. The composition
is realized by inserting the i’th prime of WP into the i’th hole of WL. In other words, p can
react using the rule (WL,WR) if

p ≡ WA[WL[i : Pi]] (11)

(where W [i : P] denotes filing all holes with index i of W with P) in which case

p′ ≡ WA[WR[i : Pi]] (12)

Therefore performing a reaction p−→ p′ amounts to finding a reaction rule such that
we can solve equation (11), and then computing the result (12).

To solve equation (11) we must traverse p looking for WL[i : Pi] under active controls
only (since WA is required to be active). In the current prototype implementation we do so
by constructing the set PA of all sub-processes of p (p itself included) which are located
only under active controls. Having constructed this set we look for elements of PA (ie.,
processes) “matching” WL; a process matches WL if it can be obtained from WL by in-
serting prime processes (even the nil process 1) in place of the holes of WL. In other words,
we match the “structure” of WL. If a match is found, a reaction is possible.

Concretely, we compute the set PA by an XPath expression. Let xpath(φ, [[p]]) denote
the set of roots of subtrees in [[p]] that satisfies φ. From a signature Σ = (Σ, Ξ] ∆ ⊂

18

Σ,Nc ⊆ N,Att, ar) we can construct an XPath expression that picks out only active
contexts, we do so by disallowing all passive controls3:

φactive(Σ) = //*[not(ancestor-or-self::*

[name()=’κ1’ or name()=’κ2’ or ... name()=’κk’])]

for Σ \Ξ = {κ1, . . . , κn}. Now, PA = xpath(φactive(Σ), [[p]]).

Example 9. For the WS-BPEL signature in Figure 2 the XPath φactive(Σ) is

//*[not(ancestor-or-self::*[
name()=’process’ or name()=’assign’ or
name()=’variables’ or name()=’variable’ or
name()=’copy’ or name()=’from’ or name()=’to’ or
name()=’to_query’ or name()=’from_query’ or
name()=’from_expr’ or name()=’from_var’ or
name()=’if’ or name()=’then’ or name()=’else’ or
name()=’condition’ or name()=’while’ or
name()=’next’ or name()=’receive’ or
name()=’invoke’ or name()=’reply’])] ut

As an example of the rewriting process, consider the rule for assignments of expressions
to variables:

instance{name : $i}.([assign.copy.(from_expr.[]1 | to{var : $t})]4
| variables.(variable{name : $t}.[]2 | []3))

−→ instance{name : $i}.([1]4
| variables.(variable{name : $t}.EvalXPath([]1)| []3))

(13)

and an example process (repeated from Example 8)

instance{name : assignex}.
(variables.variable{name : x}
| flow.

(assign.copy.(from.42| to{var : x})
| assign.copy.(from.What is the meaning?| to{var : x})))

Performing a reaction on this process using the rule (13) then proceeds as follows:

1. Find all posssible redexes by finding all evaluation contexts.
For the example process, the XPath expression (from Example 9) will identify the two
assignment subexpressions.

2. Match each of the possible redexes against the left hand side of the reaction rule in-
stantiating holes and variables, possibly recursively matching within holes.
Matching the second assignment expression in the process against the left hand side of
the reaction rule above will result in a match between the left hand side of the reaction
rule (1) with the variable $iname instantiated to assignex, (2) with the context hole
[]4 bound to the context

flow.(assign.copy.(from.42| to{var : x})|[]),

(3) inside the context hole the matching is executed recursively, resulting in a match
with (a) the rule hole []1 bound to What is the meaning? and (b) the variable
$t bound to x, and (4) the rule holes []2 and []3 bound to the empty tree, i.e. the nil
process 1, reflecting that there is no content of the x variable and no other variables.

3 This is an implementation detail. Should we have specified that only active controls were present
on the path to the document root, we would have had to also include the reserved elements <wide>
and <reg> in the XPath expression.

19

3. If any match exists, the reaction can be executed by calculating a reactum based on the
right hand side of the reaction rule, and reconstructing the process expression.
Since all data stored in XML Store is immutable, clients cannot simply change the
matched node (the redex) in the process tree to reflect the changes. Instead they have to
build up a new tree. Figure 3 illustrates this situation. Before the reaction, the process
is as seen in Figure 3(a). After the reaction, Figure 3(b), a new process has been built,
but new nodes have only been constructed from the nodes which have to be “updated”
(the reactum) up to the root. On the path to the root unchanged nodes are reused.

42 What is the meaning?

from fromto

copy

(variable:x)

copy

(name: x)
assignassignvariable

variables flow

instance
(name: assignex)

p

||xx
xx

""FF
FF

�� ����
�

��3
33

��1
11

1

��

�� ��

��

��1
11

1

�� ��

42 What is the meaning?

from fromto

copy

(variable:x)

copy

(name: x)
assignassignvariable

variables flow

p

instance
(name: assignex)

||xx
xx

""FF
FF

�� ����
�

��3
33

��1
11

1

��

�� ��

��

��1
11

1

�� ��

p′

instance
(name: assignex)

flow variables

variable
(name: x)

����
�

��3
33

ww ��3
33

��

(a) (b)

Fig. 3. A reaction p−→ p′; unchanged nodes are reused (dotted arrows indicate reuse; bold text indi-
cate the newly constructed paths).

The handle to the current process will at this point still refer to the old root node p. To
make other clients aware of the new process, the client has to updated the handle to the
new root p′.
Such updates of handles (the only updates possible with XML Store) are done using
an atomic compare-and-swap algorithm, which guarantees that nobody has changed
the value in the time ∆t = [tread; tswap]. By using this facility, we are able to ob-
tain a simple distribution of client updates to the process. Thus ultimately, this is how
coordination is implemented.

In the implementation, reaction rules are saved as a so-called rewrite rulesets. Con-
cretely the rules are placed in a document with root element REWRITE RULESET and
two attributes, a NAME attribute and a CONSTRAINT attribute. The first simply provides a
name to the ruleset used in the tool, the second provides the XPath expression determining
the evaluation contexts for this ruleset (for example, the XPath given in Example 9).

Reaction rules are described within the ruleset as pairs of wide processes, respectively
within a RULE LEFT and a RULE RIGHT tag.

Example 10. The reaction rule describing the semantics of assignment in the case of copy-
ing from an expression to a variable renders as follows.

<REWRITE_RULESET NAME="BPEL" CONSTRAINT=".....">

<REWRITE_RULE NAME="copy from_expr - to" >
<RULE_LEFT>

<wide>

20

<reg>
<instance name="$iname">

<CONTEXT_HOLE NAME="4">
<assign>

<copy>
<from_expr>

<RULE_HOLE NAME="1"/>
</from_expr>
<to var="$t"/>

</copy>
</assign>

</CONTEXT_HOLE>
<variables>

<variable name="$t">
<RULE_HOLE NAME="2"/>

</variable>
<RULE_HOLE NAME="3"/>

</variables>
</instance>

</reg>
</wide>

</RULE_LEFT>
<RULE_RIGHT>

<wide>
<reg>

<instance name="$iname">
<CONTEXT_HOLE NAME="4">
</CONTEXT_HOLE>
<variables>

<variable name="$t">
<EXEC_XPATH_HOLE NAME="4"/>

</variable>
<RULE_HOLE NAME="3"/>

</variables>
</instance>

</RULE_RIGHT>
</REWRITE_RULE>

.....

</REWRITE_RULESET> ut

4.4 Synchronizing updates

The simple form of synchronization mentioned above works, but does not support situa-
tions where several clients simultaneously inspect the current process, find possible reac-
tions, and build up a new process. To handle this, we will allow non-conflicting reactions
(intuitively, reactions in different parts of the process) to take place concurrently. We use
the term conflicting reactions to denote the situation where we are not able to incorporate
changes from two (or more) reactions without leaving the process in an inconsistent state.

Assume that the two reaction rules R1 = (L1, R1) and R2 = (L2, R2) are performed
on the same process. The reactions are performed simultaneously, consequently, they will
inspect the process in the exact same state. We can now state two situations with conflicting
reactions:

21

1. The two reactions overwrite each other’s changes. Since they are both changing the
same nodes, we cannot fuse the changes from both reactions to one process tree.

2. One (or both!) of the reactions makes changes to the redex for the other reaction. Since
a reaction is only possible if the rule matches the redex, this situation removes the
initial condition for one or both of the reactions.

As described in Section 4.3 performing a reaction on the process p, amounts to finding a
matching subtree (a redex) tL in p and replacing this with a new subtree (the corresponding
reactum) tR. Assume now that when performing R1, a subtree tL1 in p is found. Addition-
ally, a subtree tL2 is found for R2 in p. We know that all nodes changed when performing
R1 must be within the subtree tL1 , and all nodes changed when performing R2 must be
within the subtree tL2 . Hence, a conservative estimate for non-conflicting reactions are: if
R1 does not change any nodes in tL2 and likewise R2 does not change any nodes in tL1 ,
the two reactions will not have any overlapping changes.

Let subtree be the function that for a node n returns a set containing all nodes in the
the tree with root n.

Definition 9. Consider two reaction rules R1 = (L1, R1) and R2 = (L2, R2), the redex
tL1 of the reaction R1 performed on p, and the redex tL2 of the reaction R2 performed on
p. The two reactions R1 and R2 are conflicting, if subtree(tR1) ∩ subtree(tR2) 6= ∅

We can use this knowledge in an optimistic concurrency control manager, where we
allow clients to inspect the process expression at any time. The client will then find possible
reactions. When it is ready to commit the result of one of these reactions, we validate
whether the reaction is in conflict with other reactions performed in the time between the
client inspected the process and the attempted commit operation. If any reactions occured,
for each of them we check that the redex for that reaction does not have any nodes in
common with the redex for the reaction we are about to commit. If there are no conflicts,
we can incorporate the changes from this reaction in the shared process. In case of conflicts,
we simply abort the commit operation.

In order to be able to do this validation, we need to track each reaction performed
and the matching subtree (redex) that was the condition for the reaction. We capture these
in so-called versions. A version consists of the resulting process tree and a changeset. A
changeset records the changes that takes the original process tree (before the reaction took
place) to the process tree stored in the version. Therefore, a changeset consists of the redex,
the resulting reactum, and a XPath expression indicating what part of the process tree was
rewritten.

Example 11. Consider again the reaction for executing the second assignment in the exam-
ple above. In that case the version contains the process tree depicted in Figure 3(b) and a
changeset. The changeset contains the redex (the tree in Figure 3(a))), the reactum (the tree
labeled p′ in Figure 3(b)), and an XPath expression indicating the path to the instance

/child::*[1] ut

We can now describe what is really stored in the XML Store, namely the latest version
together with a list of versions leading to that version. The aggresive use of sharing in
XML Store avoids the obvious problem of repeatedly storing the same (parts of) process
trees again and again.

Note that above we also have a match with the first assignment. A concurrent reaction
would produce a changeset with the same redex and XPath expression, but with a different
reactum. Since the redices are the same, we have a conflict. As an example of reactions that
can occur without conflicts, consider a number of clients performing (non-conflicting) re-
actions on the constiuents of a flow-control; hence the implementation indeed allows for the
concurrent execution of processes in a flow. Another example is the “adminstrative reac-
tions”: for example removing the flow-control when all constiuents have finished (similarly
for sequence), and evaluating XPath expressions.

22

As a side effect of storing changesets, we are able to track all changes on a reaction-by-
reaction basis. This gives us a nice feature for debugging ReactiveXML.

5 Conclusion and Future Work

We have demonstrated how Bigraphical Reactive Systems, by exploiting the similarities of
Bigraphs and XML, can be used to provide a formal semantics and a mobile and extensible
XML execution format for XML-based business process languages. We used a small sub-
set of WS-BPEL to illustrate how an industry standard XML-based programming language
can be extended to an XML-based execution format using ideas from process calculi. By
also representing the reaction rules as XML we provide an interchangeable format for the
semantics and narrowing the gap usually arising between a programming language and
its formalisation. The case suggested an interesting extension of BRS to allow for (lin-
ear) higher-order reaction rules constrained by tree logics, in this concrete case a subset of
XPath, resulting in a kind of context-dependent reaction rules. We are currently working
on expressing a more general category of higher-order contexts as a Geometry of Inter-
action [1, 12, 13] construction on the underlying category of bigraphs and show that the
general theory of bisimulation congruences for bigraphs can be extended to this setting.

The WS-BPEL process calculus described in the previous sections is just a subset of
a WS-BPEL process calculus which has been described and implemented as Distributed
Reactive XML in [27]. We have so far only focussed on language primitives found in the
XLANG subset. We leave for future work to demonstrate that the flow-graph primitives of
the WFDL subset can be represented equally succinct.

The implementation of Distributed Reactive XML so far serves as a proof of concept.
However, by representing the business process descriptions, their state and semantics of
the process languages as XML and implementing it on top of a distributed peer-to-peer
XML storage layer allowing concurrent reactions on shared processes and data, we achieve
a middleware supporting many of the features of the ideal scenario described in [7]. We
leave for future work to study the relationship between our approach and the approaches
surveyed in [7], in particular the Workspaces approach.

References

[1] Samson Abramsky. Retracing some paths in process algebra. In Proceedings of the
7th International Conference on Concurrency Theory (CONCUR), volume 1119 of
Lecture Notes in Computer Science, pages 1–17. Springer-Verlag, 1996.

[2] Thomas Ambus. Multiset discrimination for internal and external data management.
Master’s thesis, Dept. of Computer Science, University of Copenhagen (DIKU), 2004.
URL 〈http://www.thomas.ambus.dk/plan-x/msd/〉.

[3] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trick-
ovic, and Sanjiva Weerawarana. Business process execution language for web ser-
vices (version 1.1). Technical report, IBM, Microsoft, SAP, and Siebel Systems, May
2003.

[4] Luca Cardelli. Semistructured computation. In Proceedings of the 7th International
Workshop on Database Programming Languages (DBPL), volume 1949 of Lecture
Notes in Computer Science, pages 1–16. Springer-Verlag, 2000.

[5] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proceedings of the
First International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS), volume 1378 of Lecture Notes in Computer Science, pages
140–155. Springer-Verlag, 1998.

[6] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weerawarana.
Web services description language (WSDL). Technical report, W3C, January 2006.

23

[7] Paolo Ciancarini, Robert Tolksdorf, and Franco Zambonelli. Coordination middle-
ware for XML-centric applications. In Proceedings of 2002 ACM Symposium on
Applied Computing (SAC), pages 336–343. ACM Press, 2002.

[8] The Workflow Management Coalition. Process definition interface — XML process
definition language (version 2.00). Technical Report WFMC-TC-1025, Workflow
Management Coalition (WfMC), 2005.

[9] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. Bilogics: Spatial-
nominal logics for bigraphs. 2004.

[10] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. Bigraphical logics
for XML. In Proceedings of the 13th Italian Symposium on Advanced Database
Systems (SEBD), pages 392–399, 2005.

[11] Ole Høgh Jensen and Robin Milner. Bigraphs and transitions. In Proceedings of the
30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 38–49. ACM Press, 2003.

[12] Jean-Yves Girard. Geometry of interaction I: interpretation of system F. In Proceed-
ings of Logic Colloquium (1988), pages 221–260. North-Holland, 1989.

[13] Jean-Yves Girard. Geometry of interaction II: deadlock free algorithms. In Proceed-
ings of the International Conference on Computer Logic (COLOG), number 417 in
Lecture Notes in Computer Science, pages 76–93. Springer-Verlag, 1989.

[14] Mike Havey. Essential Business Process Modelling. O’Reilly, 2005.
[15] Fritz Henglein and Henning Niss. Plan-X webpage, 2005. URL

〈http://www.plan-x.org/〉. (XML Store is part of the Plan-X Project).
[16] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages and Systems, 13(1):124–149, 1991.
[17] Thomas Hildebrandt and Jacob W. Winther. Bigraphs and (Reactive) XML. Technical

Report TR-2005-56, IT University of Copenhagen, 2005.
[18] Thomas Hildebrandt, Henning Niss, Martin Olsen, and Jacob W. Winther. Distributed

Reactive XML. In 1st International Workshop on Methods and Tools for Coordinat-
ing Concurrent, Distributed and Mobile Systems (MTCoord), 2005.

[19] Thomas Hildebrandt, Henning Niss, and Martin Olsen. Formalising business process
execution with bigraphs and Reactive XML. In Proceedings of the 8th International
Conference on Coordination Models and Languages (COORDINATION), volume ??
of Lecture Notes in Computer Science. Springer, 2006. Accepted for publication.

[20] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Tech-
nical Report UCAM-CL-TR-580, University of Cambridge, Computer Laboratory,
2004.

[21] Frank Leymann. Web services flow language (WSFL). Technical report, IBM Soft-
ware Group, 2001.

[22] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information sys-
tem based on the XOR metric. In 1st International Workshop on Peer-to-Peer Systems
(IPTPS ’02), pages 53–65, 2002.

[23] Robin Milner. Bigraphs for Petri nets. In Lectures on Concurrency and Petri Nets,
number 3098 in Lecture Notes in Computer Science, pages 686–701. Springer-Verlag,
2003.

[24] Robin Milner. Bigraphical reactive systems. In Proceedings of the 12th International
Conference on Concurrency Theory (CONCUR), volume 2154 of Lecture Notes in
Computer Science, pages 16–35, 2001.

[25] Robin Milner. Axioms for bigraphical structure. Technical Report UCAM-CL-TR-
581, University of Cambridge, Computer Laboratory, 2004.

[26] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I.
Information and Computation, 100(1):1–40, 1992.

[27] Martin Olsen. Encoding mobile workflows in Reactive XML. Master’s thesis, IT
University of Copenhagen, 2006. In Danish.

24

[28] Kasper Bøgebjerg Pedersen and Jesper Tejlgaard Pedersen. Value-oriented XML
Store. Master’s thesis, IT University of Copenhagen, 2002. URL
〈http://www.it-c.dk/people/kasperp/xmlstore/pdf/thesis.pdf〉.

[29] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut für In-
strumentelle Mathematik, Schriften des IIM Nr. 2, 1962. Second Edition:, New York:
Griffiss Air Force Base, Technical Report RADC-TR-65–377, Vol.1, 1966, Pages:
Suppl. 1, English translation.

[30] Frank Puhlmanm and Mathias Weske. Using the pi-calculus for formalizing workflow
patterns. In Proceedings of BPM 2005, number 2678 in LNCS. Springer-Verlag, 2005.

[31] Christian Stahl. A Petri net semantics for BPEL. Informatik-Berichte 188, Humboldt-
Universität zu Berlin, jul 2005.

[32] Christian Stefansen. A declarative framework for enterprise information systems.
Master’s thesis, Dept. of Computer Science, University of Copenhagen (DIKU), 2005.
Qualification Report.

[33] Satish Thatte. XLANG: Web services for business process design. Technical report,
Microsoft Corporation, 2001.

[34] Robert Tolksdorf. Workspaces: A web-based workflow management system. IEEE
Internet Computing, september 2002.

[35] Wil M.P van der Aalst. Pi calculus versus Petri nets: Let us eat “humble pie” rather
than further inflate the “Pi hype”. BPTrends, 3(5):1–11, 2005.

[36] Jacob W. Winther. Reactive XML. Master’s thesis, IT University of Copenhagen,
2004.

25

