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Sortings for Reactive Systems

Lars Birkedal, Søren Debois, and Thomas Hildebrandt

IT University of Copenhagen
{birkedal,debois,hilde}@itu.dk

Abstract. We investigate sorting or typing for Leifer and Milner’s reactive
systems. We focus on transferring congruence properties for bisimulations
from unsorted to sorted systems. Technically, we give a general definition
of sorting; we adapt Jensen’s work on the transfer of congruence properties
to this general definition; we construct a predicate sorting, which, for any
decomposible predicate P filters out agents not satisfying P ; we prove that
the predicate sorting preserves congruence properties and that it suitably
retains dynamics; and finally, we show how the predicate sortings can be
used to achieve context-aware reaction.
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1 Introduction

The last decade has seen a series of definitions of reactive systems for which it is
possible to derive labeled transition systems with an associated bisimulation re-
lation that is guaranteed to be a congruence relation [21, 15, 12, 13, 16, 19, 20, 4].
Sewell proposed to use suitable contexts of the reactive system as labels in the
derived labeled transition system [21]. Leifer and Milner refined this approach by
suggesting that it suffices to consider minimal contexts, with minimality captured
by the notion of relative pushout (RPO) in the category corresponding to the re-
active system [15]. Milner and Jensen suggested further refinements in their work
on bigraphical reactive systems, technically by representing the reactive systems as
quotients of precategories, which in turn posses the requisite relative pushouts [12,
13, 16]. An alternative approach using 2-categories was suggested by Sassone and
Sobocinski [19, 20], and subsequently transferred to double categories by Bruni,
Gadducci, Montanari and Sobocinski in [4].

One aim of these abstract definitions of reactive systems is to unify and generalize
existing calculi for concurrency and mobility, by providing a uniform behavioural
theory: the congruential bisimulation relation associated with the derived labeled
transition system. For bigraphical reactive systems, this aim has been evaluated with
encouraging results: existing behavioural theories has been recovered for CCS [16],
π-calculus [11], and mobile ambients [11]; and bigraphical semantics has contributed
to of for Petri-nets [17] and HOMER [5].
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Bigraphical reactive systems aim also to model aspects of ubiquitous systems
directly. An evaluation of this aim was initiated in [1].

A sorting for a reactive system is analogous to a typing discipline for terms:
Each sort gives an abstract view of its morphisms, in the same way that each type
gives an abstract view of its terms. Various notions of sorting have turned out to
be useful for both the meta-modeling aim and for the ubiquitous system aim.

1. For the representation of existing calculi in bigraphical reactive systems, a sort-
ing removes “junk” morphisms — morphisms not representing anything. Junk
morphisms are removed to get a tight correspondence between the bisimulation
relation derived in bigraphs and the intended bisimulation [17, 16, 11, 5].

2. For the modeling of context-aware systems, sortings may restrict selected re-
action rules to apply only in certain contexts, to get “context-aware reaction
rules” [2, 1].

The sortings used in loc.cit. are all defined by first adding sorts to each object
in the category of bigraphs, second stipulating a well-sortedness condition taking
into account this extra sort information, and finally declaring that we will only
consider well-sorted morphisms. (Notice again the analogy to typing disciplines.) For
representation applications (Item 1 above), sorts and conditions are chosen to make
well-sorted all but the junk morphisms. For modeling applications (Item 2 above),
sorts are used simply to distinguish sets of contexts; by choosing an appropriate
sort for a reaction, we restrict it to specific contexts.

Obviously, we cannot tinker arbitrarily with the underlying category; we must
preserve relative pushouts in order to retain the bisimulation congruence. In each
example cited above, this preservation property is shown by hand. Moreover, sorting
is itself defined explicitly in each case: both Jensen [11] and [16] define sorting
for bigraphical place graphs; and Leifer and Milner defines bigraphical link graph
sorting in [17].

In this paper we investigate sortings for reactive systems and make the following
contributions.

1. We give a general definition of sorting, encompassing all the different notions
seen in the above examples (Definition 4).

2. We lift Jensen’s safety theorem to this general setting (Theorem 3). Jensen’s
safety theorem gives a sufficient condition under which RPOs may be transferred
between sorted and unsorted worlds, but only in the setting of bigraphical place-
graph sorting [11].

3. We present a general construction of sorting, the predicate sorting (Defini-
tion 17). For any predicate P which is preserved under under de-composition,
this sorting filters out morphisms not satisfying P .

4. We prove that predicate sortings transfer RPOs (Theorem 4). Thus, if the bisim-
ulation of an unsorted system is a congruence, then so is the bisimulation of the
corresponding predicate-sorted system.

5. We prove a correspondence theorem (Theorem 5) for predicate sortings. It says
that a predicate sorting suitably preserves the dynamics of its corresponding
unsorted system.

6. We show that predicate sortings can be used to model some context-aware
reaction systems, notably those where some reaction rules should apply only in
contexts which do not contain a given sub-context (Theorem 6).

We work in this paper in the setting of reactive systems over categories rather than
precategories (the home of bigraphs) or 2-categories. We believe the extension of
our work to either setting to be straightforward.
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Overview. In Section 2, we recall Leifer and Milner’s reactive systems; in Section 3,
we give our general definition of sorting and lift Jensen’s transfer theorem; in Sec-
tion 4, we briefly discuss compound of sortings; in Section 5, we define predicate
sortings; in Section 6, we prove that predicate sortings transfers RPOs; in Section 7,
we prove the correspondence theorem; in Section 8, we demonstrate that predicate
sortings can be used to define context-aware reaction rules; and in Section 9, we
conclude.

Notation. In what follows, we will need a tiny bit of standard terminology from the
study of (op-)fibrations (see, e.g., [10]). Let p : E → B be a functor. A morphism f

is above p(f). We retain this convention in diagrams: if f is above g, we will, to
the extent possible, draw f physically above g. A morphism φ is vertical if it is
above an identity. The verticals above a particular identity idB forms a category,
which we call the fibre over B. A morphism f is opcartesian iff whenever h, f is a
cospan and h is above g ◦ p(f), then there exists a unique ḡ s.t. h = ḡ ◦ f . (Two
morphisms f, g form a span if they have the same domain, a cospan if they have
the same codomain.)

2 Reactive Systems

We give a brief introduction to Leifer and Milner’s reactive systems [15]. First, some
terminology and a little intuition. Let B be a category, and let ε be a distinguished
object of B. We shall think of morphisms with domain ε as agents (or terms) and all
other morphisms as contexts. Notice that the composition C◦a of a context C : X →
Y with an agent a : ε→ X yields an agent C ◦ a : ε→ Y . A reaction rule (l, r) is a
pair of agents with the same codomain, i.e., for some X, l : ε → X and r : ε → X.
Intuitively l is the left-hand side and r is the right-hand side of a rewrite rule. A
set R of reaction rules gives rise to a reaction relation, 7−→ by closing reaction rules
under contexts:

a 7−→ b iff ∃C ∈ B,∃(l, r) ∈ R. a = C ◦ l, b = C ◦ r. (1)

Altogether, these components constitute a reactive system.

Definition 1 (Reactive systems). A reactive system over a category B comprises
a distinguished object ε and a set R of reaction rules; the reaction rules gives rise
to a reaction relation by (1) above.

Thus far, we have merely restated well-known concepts in the language of cate-
gory theory. The contribution of Leifer and Milner is their method for deriving a la-
beled transition system from any reactive system: Provided the underlying category
has sufficient structure, the bisimulation on these labeled transitions is guaranteed
to be a congruence. To give the labeled transitions, we will need the concept of
relative pushouts (RPOs).

Definition 2 (Relative pushout). Consider the following diagram.

f0

f1

g0

g1

h0

h1

h
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Suppose the outer square commutes. We say that (hi, h) is an RPO for gi to fi
iff the entire diagram commutes and (hi, h) are universal, that is, whenever (h′i, h

′)
has h′0◦g0 = h′1◦g1 and fi = h′◦h′i), then there exists a unique mediating morphism k

s.t. h = h′ ◦ k and hi = k ◦ h′i. If (fi, id) is an RPO for gi to fi, we say that fi is
an idem pushout (IPO) for gi.

(For category-theory buffs: The RPO for gi to fi is a pushout of appropriate gi in
the slice-category over the codomain of the fi.)

Intuitively, if (hi, h) is an RPO for gi to fi, then h is common part of the
contexts fi. The universality condition says that h is as big as possible: If h′ is an
alternative common part, then it must factor h, and there are thus commonalities
in the fi captured by h but not by h′. With this intuition, if fi is an IPO for gi,
the fi are minimal contexts making up for the differences between the gi.

Leifer and Milner proceeds to construct their labeled transition systems by tak-
ing as labels such minimal contexts enabling reaction.

Definition 3. For a reactive system (R, ε) over B, we define the standard tran-

sition relation −→ by taking a
L

−→ b iff there exists a context C and a reaction
rule (l, r) ∈ R s.t. the following diagram commutes, and the square is an IPO.

L

a

l r

bC

As mentioned, if B has all RPOs, then the bisimulation induced by the standard
transitions is a congruence [15].

3 Sortings

The process of first adding sort information, then removing morphisms based on
that information is really the construction of a category E, based on some existing
category B. There is obviously a forgetful functor p : E → B, which is surjective
on objects; both Jensen [11] and Milner/Leifer [17] note so. Clearly, this functor
characterizes the sorting — Milner and Leifer states: “We shall often confuse [a
sorting] with its functor” [17, p.44]. Hence, we suggest taking the existence of such
a functor as the definition of a sorting.

Definition 4 (Sorting). A sorting of a category B is a functor into B that is
faithful and surjective on objects.

We are interested in sortings that allow us to infer the existence of RPOs in E

from the existence of RPOs in B. Jensen gives a sufficient condition, safety, for
making such inferences. However, Jensen formulate safety in the setting of bigraph-
ical place-graph sortings, so we would like to lift Jensen’s definition of safety and
his RPO-transfer theorem [11, Theorem 4.32] to our general definition of sorting.
Remarkably, virtually nothing needs to be done: Jensen’s definition, theorems and
proofs are all formulated exclusively in terms of the (induced) forgetful functor p,
so we may transfer his work verbatim to our more general setting. Thus, Defini-
tion 5; Theorems 1, 2, and 3; and Corollaries 1 and 2 are essentially due to Jensen,
although our formulations are much more general than his1.

1 In the words of Poincaré [18, p. 34]: “When language has been well-chosen, one is
astonished to find that all demonstrations made for a known object apply immediately
to many new objects: nothing requires to be changed, not even the terms, since the
names have become the same.”
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Definition 5 (Transfer of RPOs). A functor p : E → B transfers RPOs iff
whenever the p-image of an E-square s has an RPO, then that RPO has a p-preimage
that is an RPO for s.

It maybe helpful to think of this condition as “p essentially reflects RPOs”.

Theorem 1. If B has RPOs and p : E → B transfers RPOs, then E has RPOs.

Proof. To find an RPO for the square s, find an RPO for p(s). Because p transfers
RPOs, this RPO has a p-preimage which is an RPO for s. ut

Corollary 1. If B has RPOs and p : E → B transfers RPOs, then p preserves
RPOs.

Proof. Suppose r is an RPO for the square s in E. By Theorem 1, we may form
an RPO r′ for p(s). Because p transfers RPOs, r′ has a preimage r̄′ which is an
RPO for s, but RPOs are unique up to iso, so r̄′ ' r, whence p(r̄′) = r′ ' p(r), so
also p(r) RPO for p(s). ut

We will reformulate some of Jensen’s concepts within the setting of opfibrations
for two reasons: (1) Work in progress on constructing a sorting for HOMER [8]
suggests that establishing that the latter formulation, though equivalent to the
former, yields slightly easier and less tedious safety proofs; and (2) the concepts
of “opcartesian” and “jointly opcartesian” morphisms seem to work better than
Jensen’s notion of minimally sorted set of morphisms — conceptually, the latter
places insufficient emphasis on the connection between E and B. However, ours and
Jensen’s presentations are equivalent, as we shall see in Proposition 2 below.

In order to characterize RPOs in E, we have concocted the following general-
ization of “opcartesian”. The notion is inspired by Jensen’s notion of of minimally
sorted sets of morphisms.

Definition 6 (Jointly opcartesian). Let p : E → B be a functor. A cospan f, g

in E is said to be jointly opcartesian iff whenever f ′, g′ is a cospan, f, f ′ is a
span, and g, g′ is a span (see the diagram below, upper half) with p(f ′) = k ◦ p(f)
and p(g′) = k ◦ p(g) (see the diagram below, lower half), then there is a unique k̄
s.t. f ′ = k̄ ◦ f and g′ = k̄ ◦ f ′.

f

g

f ′

g′

k̄

p(f)
p(g)

p(f ′)

p(g′)

k

Theorem 2. If B has RPOs and p : E → B is transfers RPOs, then the diagram
below is an RPO iff its p-image is an RPO and h0, h1 are jointly opcartesian.
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f0

f1

g0

g1

h0

h1

h

We re-use Jensen’s proof [11, Theorem 4.32 (well-sorted RPOs)] essentially with-
out changes. We repeat his proof (in somewhat greater detail than Jensen) in Ap-
pendix A.

We now work our way toward a sufficient condition for a sorting to transfer
RPOs.

Definition 7 (Lift at E). Let p : E → B be a functor and let E be an object of E.
A morphism of B has a lift at E iff it is the p-image of a morphism f : E → X.

Definition 8 (Weak opfibration). A functor p : E → B is a weak opfibration iff
whenever a morphism f of B has a lift at E, it has an opcartesian lift at E.

Our definition of weak opfibration relaxes the requirement of an opfibration (see,
e.g., [10]), where each morphism of B must have an opcartesian lift at each preimage
of its domain.

Definition 9 (Nearly opcartesian). A morphism f of E is nearly opcartesian
if there exists a vertical φ and an opcartesian f ′ s.t. f = φ ◦ f ′.

In an opfibration, every morphism is nearly opcartesian. For sortings, our defi-
nition of weak opfibration relaxes the definition of opfibration as much as possible
while retaining sufficient nearly opcartesians.

Proposition 1. Suppose p : E → B is a sorting. Then p is a weak opfibration iff
every morphism of E is nearly opcartesian.

Proof. Suppose p : E → B is a weak opfibration, and consider some morphism f :
E → E′ of E. Then p(f) has an opcartesian lift f̄ at E, and p(f̄) factors p(f) ◦ id;
hence there exists a vertical φ with f = φ ◦ f̄ .

Suppose instead that every morphism of E is nearly opcartesian, and consider a
lift f : E → E′ of some morphism p(f). Factor f into f = φ ◦ f̄ with f̄ opcartesian
and φ vertical. ut

We need two more conditions on p to obtain a sufficient condition for RPO-
transfer.

Definition 10 (Reflects prefixes). A functor p : E → B reflects prefixes iff
whenever f is above g ◦ h then h has a lift at the domain of f .

Definition 11 (Vertical pushouts). A functor p : E → B has vertical pushouts
iff the fibres have pushouts and such pushouts are also pushouts in E.

Theorem 3. Let p : E → B be a sorting, and suppose B has RPOs. If p is a weak
opfibration, reflects prefixes, and has vertical pushouts, then p transfers RPOs.

Once again, Jensen’s proof [11, Theorem 4.32] works in our setting; we repeat it (in
somewhat greater detail) in Appendix A.

The following corollary is immediate.
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Corollary 2. Let p : E → B be a sorting, and suppose B has RPOs. If p is a weak
opfibration, reflects prefixes, and has vertical pushouts, then E has RPOs.

For good measure, we prove that our reformulation of Jensen’s safety condition
in terms of weak opfibrations is indeed equivalent to the original notion. To recall
Jensen’s definition of safety, we will need two auxiliary notions.

Definition 12 (Minimally sorted morphism). Let p : E → B be a sorting. A
morphism f of E is minimally sorted iff whenever f = φ ◦ f ′ with φ vertical, φ is
iso. We shall say that a morphism f is nearly minimal if there are is a minimal f ′

and a vertical φ s.t. f = φ ◦ f ′.

Definition 13 (Decompositions). A functor p : E → B has decompositions if
whenever f is above g ◦ h, then f = g′ ◦ h′ with p(g′) = g and p(h′) = h.

Definition 14 (Safety). A sorting p : E → B is safe if (1) every morphism of E

is nearly minimal, (2) p has decompositions, (3) every minimally sorted morphism
is opcartesian and (4) p has vertical pushouts.

Proposition 2. Let p : E → B be a sorting. Then p is safe iff it is a weak opfibra-
tion, reflects prefixes, and has vertical pushouts.

Proof. Suppose p is safe. Because p has decompositions, it must have prefixes, and p
has vertical pushouts by assumption. To see that p is a weak opfibration, suppose f :
E → E′ is a morphism of E. We may write f = φ ◦ f ′ where f ′ is minimally sorted
and φ vertical; but then f ′ is an opcartesian lift of p(f) at E.

Suppose instead that p is a weak opfibration, reflects prefixes, and has vertical
pushouts. For (1), note that by Proposition 1, every morphism f is nearly opcarte-
sian and thus nearly minimal. For (2), suppose f is above g ◦ h. Because p has
prefixes, h has an opcartesian lift h̄, and thus a preimage g′ of g s.t. f = g′ ◦ h̄.
For (3), we prove below that the minimally sorted morphisms are precisely the
opcartesians. For (4), we have assumed vertical pushouts.

To see that the minimally sorted morphisms are precisely the opcartesians, sup-
pose f is minimally sorted. We may write f as f = φ ◦ f ′ where f ′ is opcartesian
and φ is an iso. But the vertical isos are opcartesian, and the composition of op-
cartesians is opcartesian, hence f : E → E′ is opcartesian. Suppose instead that f
is opcartesian, that φ is vertical, and that f = φ ◦ f ′. We must prove φ iso. Be-
cause p(f) = p(φ) ◦ p(f ′) = p(f ′), we see that p(f) factors p(f ′) by the identity,
so there exists a unique vertical ψ : E′ → E′′; by faithfulness of p, φ ◦ ψ = idE′

and φ ◦ φ = idE′′ , hence φ iso. ut

Notice that we use faithfulness of sortings in the above proof. For faithful func-
tors, the uniqueness requirement for opcartesian morphisms is always fulfilled; as
such, to be opcartesian is a substantially weaker property under a faithful functor
than it is under an arbitrary functor. Although no counterexample comes to mind,
we believe the above theorem does not hold for arbitrary functors.

4 Compound Sortings

We note two ways to combine sortings. First, because sortings are functors, we can
simply compose them.

Proposition 3 (Composition of sortings). The composition of sortings is a
sorting.

Proof. Composition preserves faithfulness and surjectivity.
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It is immediate that composition of sortings preserves RPO-transfer, i.e., if p and q
both transfer RPOs, then so does q ◦ p. We currently do not know whether compo-
sition preserves weak opfibrations.

Second, we can form conjunctions of sortings by taking pullbacks. We will need
a closer look at pullbacks.

Lemma 1. The pullback of functors p : E → B and q : F → B is isomorphic to the
category E ×B F, which has objects {(E,F ) | p(E) = q(F )} and morphisms {(f, g) |
p(f) = q(g)}. Moreover, if p and q are sortings, then so are πE and πF .

E ×B F F

E B

πE

πF

p

q

Proof. It is straightforward to verify the characterization of pullbacks. Suppose p
and q are sortings. We prove only that πE is a sorting; the case for πF is symmetrical.
To see πE surjective on objects, consider some E ∈ E . Because q is a sorting,
there exists some F ∈ F with p(E) = q(F ), hence (E,F ) is an object of E ×B F.
Clearly, πE(E,F ) = E. To see that πE is faithful, suppose πE(f, g) = πE(f ′, g′);
clearly, f = f ′. We compute:

πE(f, g) = πE(f ′, g′) =⇒ p(πE(f, g)) = p(πE(f ′, g′))
=⇒ q(πF(f, g)) = q(πF(f ′, g′))
=⇒ q(g) = q(g′)
=⇒ g = g′

Lemma 2. Let p : E → B and q : F → B be sortings, and let p′ be the pullback of p
along q. Then q ◦ p′ is a sorting.

Proof. Immediate from Proposition 3 and Lemma 1.

Definition 15. Let p : E → B and q : F → B be sortings, and let p′ be the pullback
of p along q. The conjunction of p and q is the sorting p′ ◦ q.

The structure required by Theorem 3 is preserved by conjunction.

Proposition 4. If both p : E → B and q : F → B are sortings, weak opfibrations,
reflecting prefixes and possessing vertical pushouts, then so is their conjunction.

Proof. Suppose p : E → B and q : F → B are safe sortings, and consider their
pullback.

E ×B F F

E B

πE

πF

p

q

The conjunction q◦πF is a sorting by Lemma 1. We prove that if f, g are opcartesian,
then so is (f, g); so suppose (h, i) is above k◦q(g) = k◦p(f). Then there are unique j, l
with p(j) = k and q(l) = k and h = j ◦ f and i = l ◦ g; but that is precisely a
unique (j, l) s.t. (h, i) = (j, l) ◦ (f, g) and q(πF(j, l)) = k. We can now prove q ◦ πF

a weak opfibration: If (f, g) is a lift of something, we may write f = φ ◦ f ′ and g =
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ψ ◦ g′ with f ′, g′ opcartesian; because p(f ′) = p(f) = q(g) = q(g′), (f ′, g′) is the
requisite opcartesian lift. For prefixes, suppose p(πE(f, g)) = uv = qπE(f, g). Both p
and q reflects prefixes, so there are vf , vg which form cospans with f, g respectively
and clearly p(vf ) = q(vg). For vertical pushouts, given a span of verticals (φ0, ψ0)
and (φ1, ψ1), erect the pointwise pushouts obtaining the square in the following
diagram.

(φ0, ψ0)

(φ1, ψ1)

(φ′1, ψ
′
1)

(φ′0, ψ
′
0)

(f0, g0)

(f1, g1)

(kφ, kψ)

The square clearly commutes, so assume (f0, g0) and (f1, g1) as indicated. Our two
pushouts give us mediating morphisms kφ and kψ; we find p(kφ) = p(kφ ◦ φ′1) =
p(f0) = q(g0) = q(kψ ◦ ψ′

1) = q(kψ). Uniqueness is immediate from pointwise
uniqueness. ut

5 Predicate Sortings

The example sortings referenced in the introduction can all be seen as attempts
to ban morphisms from the underlying category B. We contend that the adding of
sort information is but a means to this end; in each case, the authors construct
a category E that in some sense resembles B, but where morphisms not satisfying
some predicate P are no longer present. If such a predicate P is preserved by com-
position and true at identities, then P would define a subcategory. Unfortunately,
the predicates P tend not to be closed under composition.

However, we can identify a common feature of the sortings of these encodings:
When read as predicates on morphisms of B, they all define de-composible predi-
cates.

Definition 16. A predicate P on the morphisms of a category B is decomposible
iff P (f ◦ g) implies P (f) and P (g).

This property appears rather remarkable, but it is not, really, once we realize
that the decomposible predicates are precisely those that disallow morphisms that
are factored by morphisms in some given set.

Proposition 5. A predicate P on the morphisms of a category B is decomposible
iff there exists a set Φ of B-morphisms s.t. P (f) iff for any g, ψ, h, f = g ◦ ψ ◦ h
implies ψ 6∈ Φ.

Proof. Suppose P is a decomposible predicate; take Φ = {φ | ¬P (φ)}. If P (f)
and f = g ◦ ψ ◦ h then P (ψ), so ψ 6∈ Φ. If instead f = g ◦ ψ ◦ h implies ψ 6∈ Φ then
in particular f = id ◦f ◦ id, so f 6∈ Φ, thus P (f).

Suppose instead that for some set Φ we define P (f) iff f = g◦ψ◦h implies ψ 6∈ Φ.
Suppose P (f ◦ g), and assume f = h ◦ φ ◦ i. Then f ◦ g = h ◦ φ ◦ (i ◦ g), so φ 6∈ Φ;
similarly for g. ut
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In any encoding J−K of a calculus as a reactive system, it is natural to take Φ
to be the complement of the image of the encoding J−K. However, the resulting
predicate is different from just defining “P (f) iff f is in the image of J−K”; the
former definition always allows decompositions of morphisms in the image of J−K
where as the latter does so only if J−K is closed under decomposition in the first
place.

Because the encodings listed in the introduction all use sortings that are man-
ifestations of decomposible predicates. It appears that so far, images of encodings
either turn out to closed under decomposition, or can be closed under decomposition
without adversely affecting the resulting bisimulation.

Incidentally, Proposition 5 gives an immediate connection to BiLog [6, 7], a spa-
tial logic for bigaphs. Given a BiLog formula ψ, which characterizes a set Ψ of
unwanted morphisms, the BiLog formula (¬ψ)∀◦ characterizes the morphisms f
s.t. f = x ◦ φ ◦ y implies φ 6∈ Ψ . Hence, by Proposition 5, the set of morphisms sat-
isfying (¬ψ)∀◦ is decomposible, and thus gives rise to a predicate sorting as defined
below.

We proceed to construct, for any decomposible predicate P on a category B, a
corresponding sorting p : E → B. We shall prove in subsequent sections that this
sorting transfers RPOs, and that E and B are sufficiently alike that p preserves and
suitably reflects dynamics.

The problem we face when constructing any sorting is that we would like to
retain as many morphisms of B as possible, while guaranteeing that we never inad-
vertently violate P by composition. Suppose for instance that we have morphisms

A B C,
f g

and that we have both P (f) and P (g), but not P (g ◦ f). There are two ways to
sort B: Either disallow f and allow g, or allow f and disallow g. In the predicate
sorting, we retain both choices: For the preimages of an object B, we take essentially
all pairs (X,Y ) of sets of morphism into and out of B such that every morphism
in X can safely be composed with every morphism in Y .

Definition 17 (Predicate sorting). Let B be a category, and let P be a decom-
posible predicate on the morphisms of B. We define the predicate sorting or P -
sorting p : E → B. The category E has pairs (X,Y ) as objects, where, for some
object B of B, X is a set of B-morphisms with codomain B and Y is a set of B-
morphisms with domain B, subject to the following conditions.

idB ∈ X,Y (id)

f ∈ X ∪ Y =⇒ P (f) (sound)

f ∈ X, g ∈ Y =⇒ P (g ◦ f) (comp)

g ◦ f ∈ X =⇒ g ∈ X (suffix)

g ◦ f ∈ Y =⇒ f ∈ Y (prefix)

There is a morphism f : (X,Y ) → (U, V ) whenever the following holds.

f ∈ Y, f ∈ U (valid)

x ∈ X =⇒ f ◦ x ∈ U (preserve)

v ∈ V =⇒ v ◦ f ∈ Y (reflect)

Let us put the above requirements in words. For an object (X,Y ), we stipulate
that X,Y contain the identity (id); that X,Y contain only morphisms satisfying P
(sound); that morphisms of X,Y are composible (comp); that X is suffix-closed
(suffix); and that Y is prefix-closed (prefix). The first three requirements picks
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out all possible combinations of morphisms satisfying P . The latter two require-
ments ensure the existence of opcartesians and that the sorting reflects prefixes,
respectively; we will need these extra requirements to transfer RPOs. Notice how
decomposibility of P is only integral to these latter two requirements.

For a morphism f , we require that it is contained in the sets at its domain and
codomain (valid); that it preserves validity of its domain (preserve); and that
it reflects validity at its codomain (reflect). The latter two requirements ensure
that we do not accidentally violate P by successive compositions. (Technically, we
could do without (valid), which follows from (preserve), (reflect) and ((id));
we feel that the definition is clearer as it stands. Also, we remark that it is possible
to define the fibres of E as certain pairs of subobjects of presheaves, but for this
paper we will stick to the concrete description above.)

We demonstrate that E is well-defined.

Lemma 3. The category E in the P -sorting p : E → B is indeed a category.

Proof. We see that E has identities and that composition is always defined; asso-
ciativity is immediate. For identities, by definition, any object (X,Y ) over B has
idB ∈ X,Y (valid); clearly x ∈ X implies idB ◦ x = x ∈ X (preserve), and
analogously for y ∈ Y (reflect). For composition, consider

(X,Y ) (U, V ) (S, T ) ,
f g

we must show g◦f : (X,Y ) → (S, T ). For (valid), f ∈ U so g◦f ∈ S; similarly g ∈ V

so g ◦ f ∈ Y . For (preserve), if x ∈ X then f ◦ x ∈ U , so g ◦ f ◦ x ∈ S; similarly,
for (reflect), if t ∈ T then t ◦ g ∈ V , so t ◦ g ◦ f ∈ Y . ut

6 Transfer Theorem for Predicate Sortings

In this section, we prove that a predicate sorting p : E → B transfers RPOs. First,
we establish that each fibre is a lattice (Proposition 6); second, we characterize
the opcartesians (Proposition 7 and Definition 18); third, we use this characteriza-
tion to show that p is a weak opfibration 8; and fourth, we show that p transfers
RPOs (Theorem 4).

First, each fibre is a lattice. We begin by characterizing the verticals.

Lemma 4. If φ : (X,Y ) → (U, V ) is vertical, then X ⊆ U and V ⊆ Y .

Proof. Consider idB : (X,Y ) → (U, V ). By (preserve), if f ∈ X, then idB ◦f =
f ∈ U ; similarly by (reflect), if i ∈ V then i ◦ idB ∈ Y . ut

It is now straightforward to find joins and meets.

Lemma 5. If a fibre has objects (X,Y ) and (U, V ), then it also has objects (X ∪
U, Y ∩ V ) and (X ∩ U, Y ∪ V ).

Proof. For (id), simply note id ∈ X,Y,U, V . (sound) is trivial. For (comp), sup-
pose x ∈ X ∪U and y ∈ Y ∩V . If x ∈ X, then because (X,Y ) is an object, P (y ◦x);
if x ∈ U , then because (U, V ) is an object, P (y ◦ x). Similar reasoning applies
to (X ∩ U, Y ∪ V ). For (suffix) and (prefix), union and intersection are easily
seen to preserve both suffix- and prefix-closedness. ut

Clearly, each fibre is a lattice.

Proposition 6. The fibre over B is a lattice with join (X,Y ) t (U, V ) = (X ∪
U, Y ∩ V ) and meet (X,Y ) u (U, V ) = (X ∩ U, Y ∪ V ).
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Proof. Immediate from Lemmas 4 and 5. ut

We proceed to characterize the opcartesians. The following auxiliary definition
will be instrumental in characterizing the codomains of the opcartesian. Essentially,
given a morphism f : A → B and a preimage (X,Y ) of f , we take (preserve)
and (reflect) as definitions of a preimage of B.

Definition 18. Let f : A→ B be a morphism of B, and let X ⊆ {g | cod(g) = A}
and Y ⊆ {h | dom(h) = A}. Define

f ◦X = {f ◦ x | x ∈ X},

Y • f = {g | g ◦ f ∈ Y }.

For any set Z of morphisms, we define the suffix and prefix closures Zs = {h |
∃g. h ◦ g ∈ Z} and Zp = {g | ∃h. h ◦ g ∈ Z}.

We now work our way towards a characterization of the opcartesians. This is
straightforward, but somewhat longwinded.

Lemma 6. Suppose that f : p(X,Y ) → B and that f has a lift at (X,Y ). Then
((f ◦X)

s
, (Y • f)

p
) is an object in the fibre over B.

Proof. For (id), we have id ∈ X, thus idB ◦f = f = f ◦id ∈ f ◦X, so idB ∈ (f ◦X)
s
.

Also, f ∈ Y because f has a lift at (X,Y ), so idB ◦f ∈ Y and thus idB ∈ Y • f .
For (sound), suppose that g ∈ f ◦X. Then g = f ◦ x for some x ∈ X; but f has
a lift at (X,Y ), so P (f ◦ x), hence P (g). If g = h ◦ i, then P (h ◦ i), thus P (h).
Suppose instead that g ∈ Y •f . Then g ◦f ∈ Y , so P (g ◦f), hence P (g). If g = h◦ i,
then P (h ◦ i), thus P (i). For (comp), suppose g ∈ f ◦ X and h ∈ Y • f . Then
there is an x ∈ X s.t. g = f ◦ x. By definition h ◦ f ∈ Y , and because X and Y

are composible, P ((h ◦ f) ◦ x), thus P (h ◦ g). If g = g0 ◦ g1 and h = h0 ◦ h1, we
have P (h0◦h1◦g0◦g1), hence P (h1◦g0). Finally, (suffix) and (prefix) are satisfied
by definition. ut

Lemma 7. Suppose f : p(X,Y ) → B is a morphism of B s.t. f ∈ Y . Then f :
(X,Y ) → ((f ◦X)

s
, (Y • f)

p
) is a morphism.

Proof. For (valid), f ∈ Y by assumption, and because id ∈ X we find f = f ◦ id ∈
f ◦X. (preserve) is trivial. For (reflect), if g ◦ h ∈ Y • f then g ◦ h ◦ f ∈ Y by
definition, so by prefix-closedness of Y , h ◦ f ∈ Y . ut

Lemma 8. Any morphism f : (X,Y ) → ((f ◦X)
s
, (Y • f)

p
) is opcartesian.

Proof. Consider the following diagram.

(X,Y ) (U, V )

((f ◦X)
s
, (Y • f)

p
)

h

f g

h

f g
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We must prove that g : ((f ◦X)
s
, (Y • f)

p
) → (U, V ) is a morphism. For (valid),

g ◦ f = h ∈ U , so g ∈ U ; similarly, g ◦ f = h ∈ Y , so g ∈ Y • f . For (preserve),
if f ◦x ∈ f ◦X, then g ◦f ◦x = h◦x ∈ U . If f ◦x = i◦j, then g ◦f ◦x = g ◦ i◦j ∈ U ,
hence g ◦ i ∈ U . For (reflect), if v ∈ V , then v ◦ h ∈ Y , so v ◦ g ◦ f ∈ Y ,
thus v ◦ g ∈ Y • f . ut

We can now characterize the opcartesians and prove that p is a weak opfibration.

Proposition 7. A morphism f : (X,Y ) → (U, V ) is opcartesian if and only if
U = (f ◦X)

s
and V = (Y • f)

p
.

Proof. The right-to-left direction is a restatement of Lemma 8. For the other di-
rection, suppose f : (X,Y ) → (U, V ) is opcartesian, and consider the following
diagram.

(X,Y ) ((f ◦X)
s
, (Y • f)

p
)

(U, V )

f

f

φ

ψ

Because f : (X,Y ) → (U, V ) is opcartesian, there must exist the vertical φ, hence
by Lemma 4, U ⊆ (f ◦X)

s
and V ⊇ (Y • f)

p
. However, by Lemma 8, f : (X,Y ) →

((f ◦X)
s
, (Y • f)

p
) is also opcartesian, so we also have the vertical ψ, whence,

again by Lemma 4, U ⊇ (f ◦X)
s

and V ⊆ (Y • f)
p
. But then U = (f ◦X)

s

and V = (Y • f)
p
. ut

Proposition 8. A predicate sorting p : E → B is a weak opfibration.

Proof. Suppose f : p(X,Y ) → B of B has a lift at (X,Y ). Then f ∈ Y , so by
Lemmas 7 and 8, f has an opcartesian lift at (X,Y ). ut

We proceed to establish the remaining preconditions for the RPO-transfer the-
orem: that p reflects prefixes and has vertical pushouts.

Lemma 9. A predicate sorting p : E → B reflects prefixes.

Proof. Suppose f is above g ◦ h, and suppose f has domain (X,Y ). Then f ∈ Y ,
hence h ∈ Y . By Lemma 7, h has a lift at (X,Y ). ut

Lemma 10. Any span of verticals φ, ψ has φ t ψ as pushout in E.

Proof. Suppose f ◦ φ = g ◦ ψ. We may assume φ, ψ, f and g has domains and
codomains as in the following diagram.

(S, T )

(X,Y ) (X ∪ U, Y ∩ V )

(U, V )

φ

ψ

ρ

f

g
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It is sufficient to establish that there is a morphism ρ : (X ∪ U, Y ∩ V ) → (S, T )
above p(f); commutativity and uniqueness then follows by faithfulness of p. Clearly
p(f) = p(ρ) = p(g). For (valid), observe first that p(f) ∈ X, so p(ρ) = p(f) ∈
X ∪ U , second that p(ρ) = p(f) ∈ S. For (preserve), if x ∈ X, then p(ρ) ◦ x =
p(f) ◦ x ∈ S, while if u ∈ U then p(ρ) ◦ u = p(g) ◦ u ∈ U . For (reflect), if t ∈ T ,
then t ◦ p(ρ) = t ◦ p(f) ∈ Y , and also t ◦ p(ρ) = t ◦ p(g) ∈ V . ut

Theorem 4. If B has RPOs, then a predicate sorting p : E → B transfers RPOs.

Proof. By Proposition 8, p is a weak opfibration; by Lemma 9, p reflects prefixes;
and by Lemma 10, p has vertical pushouts. Hence, by Theorem 3, p transfers RPOs.

ut

7 Correspondence Theorem for Predicate Sortings

Taking the view that sortings exist to get rid of junk morphisms, when is a sorting
good enough? Not just any sorting will do. For instance, for any category B and
predicate P , we can construct a category E that has, for each f with P (f), unique
objects fX , fY and a morphism f : fX → fY . This category gives a sorting p : E → B

that transfers RPOs and has as image precisely the morphisms f with P (f), but
surely, this sorting is untenable: It supports no non-trivial compositions, reactions,
or transitions.

We believe that a sorting will prove usable if our chosen reactive system defined
in B and restricted to morphisms satisfying P can be recovered in E, and similarly
for transitions. Although crude, this approach have been used to good effect in the
example encodings referenced in the introduction.

We establish that our predicate sortings maintain this correspondence between
reactions and transitions in Theorem 5 below. First, we make our notions of corre-
spondence precise.

Definition 19 (P -restricted reactions and transitions). Let 7−→ be a reaction
relation. We define the P -restricted reaction relation b7−→c (in the obvious way) by

f b7−→c g iff f 7−→ g and P (f), P (g).

Let −→ be the corresponding transition relation. We define the P -restricted transi-
tion relation b−→c by

f b
h

−→c g iff f
h

−→ g and P (f), P (g), P (h), P (h ◦ f).

Definition 20 (p-induced reactions and transitions). Let p : E → B be a
sorting, and let 7−→ be a reaction relation on E. We define the p-induced reaction
relation J7−→K in B by taking for any f, g,

p(f) J7−→K p(g) iff f 7−→ g.

Let −→ be the corresponding transition relation. We define the p-induced transition
relation J−→K in B by taking for any f, g, h,

p(f) J
p(h)
−→K p(g) iff f

h
−→ g.

To formulate the notion of correspondence, we will need to lift a reactive system
from B to E. Such a lift in turn require a lift of the distinguished object ε, the
domain of agents.

Definition 21. Write ε̄ for the pair ((idε)
s
, {f : ε→ X | P (f)}).
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Lemma 11. The pair ε̄ is an object above ε.

Proof. (id) is obvious; for (sound), note that we have assumed P (id) for all iden-
tities id and that idε has domain ε; (comp) is immediate from P (f ◦ idε); (suffix)
is valid by definition; (prefix) holds by decomposibility of P . ut

Lemma 12. Any morphism f : ε→ X with P (f) has a lift at ε̄.

Proof. Immediate from Lemma 7 ut

Definition 22 (p-inherited reactive system). Let p : E → B be a sorting,
and let R be a ground reactive system on B. The p-inherited reactive system has
distinguished object ε̄ and reaction rules R̄ defined by

R̄ = {(f, g) | f, g : ε̄→ X for some X, and (p(f), p(g)) ∈ R}.

We can now formulate our correspondence theorem.

Theorem 5 (Correspondence). Let B be a category with RPOs, let P be a de-
composible predicate, let p : E → B be the predicate sorting for P , let R be a reactive
system on B, and let R̄ be the p-inherited reactive system on E. Then

1. the p-induced and P -restricted reaction relations coincide, and
2. the p-induced and P -restricted transition relations coincide.

We will spend the remainder of this section proving the correspondence theorem.
We prove first that we have sufficient lifts of cospans in B to jointly opcartesian
cospans in E.

Definition 23 (Nearly jointly opcartesian). For p : E → B, a cospan f, g

is nearly jointly opcartesian iff there exists a jointly opcartesian pair f ′, g′ and a
vertical φ s.t. f = φ ◦ f ′ and g = φ ◦ g′.

Proposition 9. In a predicate sorting p : E → B, f, g are jointly opcartesian iff f =
φ ◦ f̄ and g = ψ ◦ ḡ where f̄ , ḡ are opcartesians and φ, ψ are the unique verticals
given by f̄ t ḡ.

Proof. “⇐=”. Consider the diagram in Figure 1. We must prove the existence of the
indicated k; commutativity is then immediate and uniqueness follows from faith-
fulness of p. For (valid), first, k ◦ f = h ∈ S, so k ∈ S. Second, k ◦ f = h ∈ Y ,
so k ∈ (Y • f)

p
; also k ◦ g = i ∈ V , so k ∈ (V • g)

p
. For (preserve), suppose

first f ◦ x ∈ f ◦X. Then k ◦ f ◦ x = h ◦ x ∈ S; if f ◦ x = l ◦m then k ◦ l ◦m ∈ S,
so k ◦ l ∈ S. If instead g ◦ u ∈ g ◦ U , then k ◦ g ◦ u = i ◦ u ∈ S; if g ◦ u = l ◦m
then k◦ l◦m ∈ S, so k◦ l ∈ S. For (reflect), if t ∈ T then t◦h ∈ Y , so t◦k◦f ∈ Y ,
hence t ◦ k ∈ (Y • f)

p
; similarly t ◦ i ∈ V , so t ◦ k ◦ g ∈ V , hence t ◦ k ∈ (V • g)

p
.

“=⇒”. Suppose f, g are jointly opcartesian. Erect the diagram in Figure 2. We
have just proved that φ ◦ f̄ , ψ ◦ ḡ are jointly opcartesian, hence the ρ; by as-
sumption, f, g are jointly opcartesian, hence the τ . By Proposition 6, we must
have ρ = τ = id. ut

Proposition 10. In a predicate sorting p : E → B, every cospan f, g is nearly
jointly opcartesian.

Proof. By Proposition 1, we may write f = ρ ◦ f̄ and g = τ ◦ ḡ where f̄ , ḡ are
opcartesian and ρ, τ are verticals. Take φ, ψ to be the unique verticals given by f̄t ḡ.
By Proposition 9, φ ◦ f̄ and ψ ◦ ḡ are jointly opcartesians, hence there exists a
vertical α with f = α ◦ φ ◦ f̄ and g = α ◦ ψ ◦ ḡ. ut
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(X,Y )

((f ◦X)s, (Y • f)p)

((f ◦X)s ∪ (g ◦ U)s,
(Y • f)p ∩ (V • g)p)

(S, T )

((g ◦ U)s, (V • g)p)

(U, V )

f̄

φ

ḡ

ψ

h

i

k

h

i

f

g

k

Fig. 1. Diagram (a) for proof of Proposition 9.

We can now prove that we have sufficient jointly opcartesian lifts at cospans.
Notice the parallel to the notions of “opcartesian”, “nearly opcartesian” and “weak
opfibration”. We have essentially duplicated that development only with “jointly
opcartesian” and “nearly jointly opcartesian” and leaving out the last step; we
might have defined “weak joint opfibration”.

Proposition 11. Let p : E → B be a predicate sorting, and consider a cospan

p(X,Y ) B p(U, V )
f g

If f and g have lifts at p(X,Y ) and p(U, V ), respectively, then they have jointly
opcartesian lifts there.

Proof. We have opcartesian lifts f̄ of f and ḡ of g, and because f, g is a cospan,
we may form f̄ t ḡ. Take φ, ψ to be the unique morphisms induced by f̄ t ḡ; by
Proposition 9, φ ◦ f̄ψ ◦ ḡ is a jointly opcartesian lift of f, g. ut

Using the notion of jointly opcartesian morphisms, we can now prove the corre-
spondence theorem.

Proof (of Theorem 5). Part 1. Suppose first that a J7−→K b. Then for some f, g with
a = p(f) and b = p(g), f 7−→ g. Thus f = D ◦ e and g = D ◦ e′ with (e, e′) ∈ R̄,
so a = p(D)◦p(e) and b = p(D)◦p(e′), with (p(e), p(e′)) ∈ R, so a 7−→ b; clearly P (a)
and P (b), hence a b7−→c b.
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f

g

f̄

ḡ

φ

ψ

ρ

τ

Fig. 2. Diagram (b) for proof of Proposition 9.

Suppose instead that f b7−→c g. There exists C, r and s with (r, s) ∈ R s.t. f =
C◦r and g = C◦s. By Lemma 12 we can find lifts of r, s at ε̄, so by Proposition 11, we
have a jointly opcartesian lift r̄, s̄ of r, s at ε. Again by Lemma 12, we can lift C ◦ r
and C ◦ s at ε; so by r̄, s̄ jointly opcartesian, there is a lift C̄ of C at cod(r̄) = cod(s̄).
Clearly (r̄, s̄) ∈ R̄, so we have C̄ ◦ r̄ 7−→ C̄ ◦ s̄, and in turn f = C ◦ r J7−→K C ◦s = g.

Part 2. Suppose a b
L

−→c b. Thus there exists (r, s) ∈ R and a context C s.t. the
following diagram commutes and the square is an IPO.

L

a

r s

bC

We find P (C ◦r) because P (L◦a), and P (C ◦s) because P (b). By Lemma 12 and 8,
we have opcartesian lifts ā, L ◦ a, r̄, s̄, C ◦ r and C ◦ s at ε̄. Because ā is opcartesian,
we find may a lift of L̄ at the codomain of ā; we may assume this lift opcartesian.
By Proposition 11, we may assume r̄, s̄ jointly opcartesian and C ◦ r, C ◦ s cospan,
so there exists a lift C̄ of C at cod(r̄) = cod(s̄). Again by Proposition 11, we may
assume L̄, C̄ jointly opcartesian. Altogether, we have erected the following diagram.

L̄

ā

r̄ s̄

C̄

By Theorem 2, we have constructed an IPO, and clearly (p(r̄), p(s̄)) ∈ R, so we

have a transition ā
L̄

−→ C̄ ◦ s̄. Because C ◦ s = b, we have obtained the desired

transition a J
L

−→K b.

Suppose instead a J
L

−→K b. For some f, g, h, we have a = p(f), b = p(g), L = p(h)

and f
h

−→ g, so there exists (r, s) ∈ R̄ and a C s.t. the following diagram commutes,
and the square is an IPO.

h

f

r s

gC
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Clearly, (p(r), p(s)) ∈ R), and by Theorem 4, the image of the square is an IPO, so

there is a transition p(f)
p(h)
−→ p(g), that is, a

L
−→ b. Clearly, P (a), P (L), P (b) and

P (L ◦ a), so we have the desired a b
L

−→c b. ut

8 Context-aware Reactions

In this section, we adapt the work of the preceding sections to the modeling of ubiq-
uitous computing directly in reactive systems; such modeling is one of the intended
applications of bigraphs.

Ubiquitous computing is inextricably linked to context-aware computing: Com-
putations that are aware of and depend on the present context of the computing
agent. Here are two examples. (1) An electronic tour guide device, carried around
by visitors at a museum, should provide information about the physically closest
exhibit. (2) Two mobile phones could refuse to transfer sensitive data on an inse-
cure short-range bluetooth connection if an untrusted third mobile phone is present.
Notice the dual requirements in these examples: The first stipulates a positive re-
quirement (the presence of an exhibit), whereas the second stipulates a negative
requirement (the absence of an untrusted third party). Thus, for modeling such ap-
plications, it is very convenient if we can specify reaction rules that apply in some
but not all contexts. However, as observed in [3], work on process calculi tends to
supply at most a rudimentary distinction between active and passive contexts, a
distinction insufficient for the above examples.

We can use sorting to control reaction: We simply specify our reactive system
directly in the sorted category E. By choosing the right codomain for a reaction
rule (l, r) we specify in what contexts it applies.

In particular, we may use sorting to capture absence of something in the context.
In some categories — in particular bigraphs — we model contexts as morphisms
and the presence of something as factorization. Thus, we say that a : A′ → B′ is
present in the context c : A→ B iff c = x ◦ a ◦ y for some x, y. Under this notion of
presence, the predicate sorting can be used to capture absence to the extent of the
following theorem.

Theorem 6. Let p : E → B be a predicate sorting, let f : ε → B be a morphism
of B, and let T be any set of morphisms with domain B. Then f has a lift f̄ at ε̄
s.t. each g : B → X has a lift at cod(f̄) precisely when g ∈ T iff T is prefix closed
and respects P .

Proof. “=⇒”. It is straightforward to verify that f̄ : ε̄ → ((f ◦ {idA}
s
)
s

, T ) is a
morphism. By Lemma 7 every g ∈ T has a lift at cod f̄ ; by (valid) and (sound),
no other morphisms can have lifts at cod f̄ .

“⇐=”. If T does not respect P , then there is g ∈ T with ¬P (g); this g can
have no lift anywhere by (valid) and (sound). Suppose T is not prefix-closed and
consider a lift f̄ of f at ε̄. Let g = g′ ◦ g′′ be a morphism of T s.t. g′ 6∈ T . If g has a
lift at cod f̄ , then so does g′. ut

Put another way: If we want the left-hand side of a reaction rule (l, r) to apply
precisely in a set T of contexts, we can do so within any predicate sorting, provided T
is prefix-closed and respects the predicate P . Notice that we may take P to be
everywhere true, should we so desire.

What does the restriction to prefix-closed sets T mean? Reconsidering the ex-
amples with presence and absence, we see that absence is prefix-closed whereas
presence is not. Clearly, if a does not occur in a context c, then it also does not
occur in any sub-context of c; in particular, it does not occur in any prefix of c. On
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the other hand, we may very well have a context C that contains some A, but a
prefix of C which does not.

In the case of bigraphs or, more generally, wide reactive systems [13, 16], the
monoidal structure enables us to express presence without the use of sortings: If
we insist that (l, r) applies only when a is present in the context, we simply give
the rule as (a⊗ l, a⊗ r). Thus, in sorted wide reactive systems, we can model both
presence and absence.

9 Conclusion

Building on earlier work on more specific sortings, ours is the first investigation of
general sortings, or type systems, for reactive systems. However, type systems have
been investigated for related frameworks, notably for hypergraph rewriting systems
in [14], and for process algebras in [9]. Our work is alone in addressing the impact
of sorting on labeled transition systems, bisimulations, and congruence properties.

König’s typings for hypergraph rewriting systems [14] resembles our sortings in
that the aim of typing is explicitly stated to be identifying hypergraphs satisfying
a given predicate; that decomposition preserves well-typedness; that composition
does not necessarily preserve well-typedness; and that there is a notion of minimal
type, roughly comparable to our use of opcartesian lifts. The method differs from
ours — the setting of hypergraphs not withstanding — in that the typing relation
is required to satisfy subject reduction, whereas we simply disregard type-altering
reductions (cf. the P -restriction of reaction, Definition 19).

Honda’s work on typed process algebras [9] is reminiscent of ours in that it
focuses explicitly on controlling which morphisms are composible and which are not.
However, Honda’s notion of process is quite specific to process calculi compared to
our more general setting of reactive systems over categories.

One direction for future work is further investigating compositionality of sort-
ings. In Section 3, we demonstrated how to compose sortings sequentially and how to
form their conjunction; it is natural to wonder about other connectives, particularly
negation. Another direction is investigating the use of sortings for encoding typed
calculi in reactive systems. Yet another is that for bigraphs, it would be interesting
if there were stronger connections between BiLog [6, 7] and sorted bigraphs than
those noted in Section 5. For instance, BiLog formulae might form the basis of a
syntactic formulation of sorting, which could in turn be useful for implementations
of reactive systems. Finally, it would be interesting to know if the predicate sorting
is in some sense universal.
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A Proof of Jensen’s Theorems

The following proofs are due to Jensen [11, Theorem 4.32 (well-sorted RPOs)].
Our proofs differ from Jensen’s in minor details and are heavily elaborated. (I



Sortings for Reactive Systems 21

have included the least number of diagrams that enable me to follow the argument
without resorting to pen and paper. Dijkstra surely would have found my intellect
inadequate. — Debois.)

Proof (of Theorem 3). Suppose p : E → B is a sorting, a weak opfibration, has
prefixes, and has vertical pushouts. Consider a square, its p-image, and an RPO for
the p-image (see diagram).

f0

f1

g0

g1

p(f0)

p(f1)

p(g0)

p(g1)

h0

h1

h

Because p has prefixes, we find opcartesian lifts h̄0, h̄1 at cod(g0), cod(g1), respec-
tively. Because p(h̄0 ◦ g0, we also find an opcartesian lift i of h0 ◦ g0 = h1 ◦ g1.

Because h̄0, h̄1 are opcartesian, we find lifts h̄, ĥ of h as indicated in the diagram
below. Because i is opcartesian, there are verticals φ0, φ1 from i to h̄0◦g0 and h̄1◦g1.
Take ψ0, ψ1 to be the (vertical) pushout of φ0, φ1, and use the universal property
of the pushout to find h∗ in the following diagram.

f0

f1

g0

g1

h̄0

h̄1

i

h̄

ĥ
φ0

φ1

ψ0

ψ1

h∗

Fig. 3. Construction of RPO

We prove that ψ0◦h̄0, ψ1◦h̄1, h
∗ is an RPO for our original square. Suppose we have

an alternative candidate j0, j1, j; we must find a unique mediating m∗, as indicated
in the diagram in Figure 4.

Clearly, p(j0), p(j1), p(j) is a candidate RPO for the image square, so there
exists m s.t. m ◦ h0 = p(j0), m ◦ h1 = p(j1) and h = p(j) ◦ m. Because h̄0, h̄1

are opcartesian, we find lifts m̄, m̂ of m s.t. j0 = m̄ ◦ h̄0 and j1 = m̂ ◦ h̄1. We
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m
p(f0)

p(f1)

p(g0)

p(g1)

h0

h1

h

p(j0)

p(j1)

j

m∗
m̄

m̂

f0

f1

g0

g1

h̄0

h̄1

i

h̄

ĥ
φ0

φ1

ψ0

ψ1

h∗

j0

j1

j

Fig. 4. Universality of RPO construction

prove that m̄ ◦ φ0 = m̂ ◦ φ1; with this equality we will be able to use find m∗

using the universal property of the pushout φi, ψi. We find m̄ ◦ φ0 ◦ i = m̂ ◦ φ1 ◦ i;
clearly p(m̄ ◦ φ0) = m = p(m̂ ◦ φ1), but i is opcartesian, so m̄ ◦ φ0 = m̂ ◦ φ1. Thus
we have m∗ as the unique morphism with m̄ = m∗ ◦ψ0 and m̂ = m∗ ◦φ1. We prove
that m∗ mediates the alternative RPO candidate j0, j1, j. We find j0 = m̄ ◦ h̄0 =
m∗ ◦ ψ0 ◦ h̄0 and j1 = m̂ ◦ h̄1 = m∗ ◦ ψ1 ◦ h̄1. We need only prove j ◦m∗ = h∗. We
will use that h∗ is the unique morphism s.t. h∗ ◦φ0 = h̄ and h∗ ◦φ1 = ĥ. Because h̄0

and h̄1 are opcartesian, h̄ = j ◦ m̄ = j ◦ n ◦ ψ1 and ĥ = j ◦ m̂ = j ◦ n ◦ ψ1, so
indeed j ◦ m∗ = h∗. If also m′ mediates, then so does p(m′), so p(m′) = m by
universality of m, but then p(m′) = m = p(m∗), so because p faithful, m′ = m.

ut

Proof (of Theorem 2). We prove that the construction in the preceding proof of the
RPO ψ0 ◦ h̄0, ψ1 ◦ h̄1, h

∗ as the pre-image the RPO h0, h1, h (see the diagram in Fig-
ure 3) has ψ0 ◦ h̄0, ψ1 ◦ h̄1 jointly opcartesian. The Theorem follows because RPOs
are unique up to isomorphism. So suppose p(q0) = r ◦ p(h0) and p(q1) = r ◦ p(h1),
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with q0, q1 as in the diagram in Figure 5. We must prove the existence of the indi-

r∗
r̄

r̂

f0

f1

g0

g1

h̄0

h̄1

i

h̄

ĥ
φ0

φ1

ψ0

ψ1

h∗

q0

q1

Fig. 5. Characterization of RPOs

cated r∗. Because h̄0, h̄1 are opcartesian, we find lifts r̄, r̂ of r; because φ0, φ1, ψ0, ψ1

is a pushout, we find the necessary r∗.
ut


