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Abstract

This technical report includes complementary material to the article of the same name submitted for LICS.
It has been assembled mostly to aid referees reading the article, and to demonstrate that all calculations have
been carried out in detail.



Chapter 1

Introduction

The combination of parametric polymorphism and recursion on the level of terms yields a type theory
expressive enough to solve general recursive type equations[15, 6]. However, as realized by Plotkin [15],
for this combination to give a consistent theory, the parametricity principle must be weakened, and so he
suggested studying a dual intuitionistic / linear type theory in combination with parametric polymorphism,
in which for example the parametricity principle would apply to graphs of linear, but not intuitionistic maps.

Based on these ideas, in 2000 Bierman, Pitts, and Russo [3] presented the programming languageLILY,
a polymorphic intuitionistic / linear lambda calculus endowed with an operational semantics. In their paper,
they sketched how to carry out Plotkin’s ideas in the operational setting. The formulation of the parametricity
principle was based on the notion of>>-closed relations, and the idea was to use the strong connection
between these and ground contextual equivalence, to show correctness of recursive type encodings up to
ground contextual equivalence. In their paper, however, only correctness of the encodings of sum types was
proved.

In recent work the first three authors [6, 9] have presented an adaptation of Abadi & Plotkin’s logic for
parametricity [14] toPILLY , a polymorphic dual intuitionistic / linear type theory with fixed points. The
resulting logic — called LAPL for Linear Abadi and Plotkin Logic — contains an axiomatized abstract
notion of admissible relations on which the formulation of the parametricity principle is based. Admissible
relations give the necessary weakening of the parametricity principle. Inloc. cit. we showed in detail,
following Plotkin’s suggestions, that LAPL can be used to define a wide range of types, including general
nested recursive types. We also defined a sound and complete class of categorical models for LAPL called
LAPL-structures,

In this paper we present a concrete LAPL-structure constructed from the operational semantics ofLILY.
This defines formally an interpretation of LAPL intoLILY, transferring the general results proved abstractly
in LAPL to LILY. The construction of the LAPL-structure involves showing that the>>-closed relations
define a notion of admissible relations, i.e., formally showing that they can be used for reasoning about
parametricity.

This new model of LAPL based on the operational semantics ofLILY is of interest for the following
reasons:

• It shows thatour definition of LAPL in [6] isindeed ageneralone: In [6] we presented a model based
on admissible partial equivalence relations over a universal model of the untyped lambda calculus and
in [12] we presented a model based on synthetic domain theory.

• The present model issimplerthan our previous models mentioned above in that it does not require any
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domain theory, realizability, or synthetic domain theory. We hope this will make it more accessible.
To make the model accessible also for readers who are not that familiar with category theory we de-
liberately choose to show not only the necessary categorical properties required of an LAPL-structure
but also sketch in more explicit terms the interpretation of LAPL in our new model.

• The previous models mentioned above were constructed via a so-called parametric completion pro-
cess, which roughly means that they were constructed in two steps: first a simple non-parametric
model was constructed and then it was made parametric by filtering out all the non-parametric ele-
ments. (See [9] for more on parametric completions.) The present model is the first such1 that isnot
based on a parametric completion process.

• It allows us to conclude that a wide range of types are definable up to ground contextual equivalence
in LILY, as claimed but not formally proved in [3] (except for the simple case of finite coproducts).
Hence our model can be used to prove correct program transformations based on parametricity for a
language with general recursive types, an improvement over earlier work [7], which only dealt with
algebraic data types.

In fact, we also proved thisLILY definability of types in [12] from the model based on synthetic
domain theory by combining it with an adequate denotational semantics ofLILY, but here we can do
it by much simpler techniques.

• The model we present here is, to our knowledge, the first model of general recursive types as formal-
ized via algebraic compactness based on operational semantics. Algebraic compactness is a categori-
cal formulation of what it means to solve recursive domain equations; it ensures that the solutions are
universal in an appropriate categorical sense, thus allowing for the derivation of (mixed) inductive-
coinductive reasoning principles, c.f. [13]. In earlier work by the first author and Harper [4] a reason-
ing principle similar to the one derived here was presented for a recursive type, but it only worked for
a single top-level recursive type. For other related work on operational models of recursive types, e.g.,
[1, 8], one may probably also establish useful reasoning principles for the recursive types but as far
as we know it has not been done and, at any rate, it is pleasing that the reasoning principles presented
here are an immediate consequence of general results about LAPL-structures.

The remainder of this report is organized as follows.
In Chapter 2 we recall the notion of an LAPL structure.
In Chapter 3 we then derive reasoning principles for recursive types definable in such LAPL-structures.
In Chapter 4 we extend theLILY language with tensor types and associated terms. Moreover, we extend

the operational properties ofLILY studied in [3] to the new language and slightly generalize the results in [3]
(to work for terms with free term and type variables, e.g.) and include a few new ones needed for the model
construction. We have included tensor types, even though we in the end show that they are definable using
parametricity, because it eases the construction of the model.

In Chapter 5 we construct aPILLY -model from the operational semantics of our extension ofLILY. This
is the first step in the construction of the LAPL-structure. The next step in the construction is the logic
fibration. The interpretation of the logic is basically set theoretic, interpreting propositions on types, for
example, as subsets of sets of ground contextual equivalence classes of terms. As mentioned, the>>-closed
relations play the role of admissible relations in LAPL, and thus need to satisfy certain closure properties.
These are also established in Chapter 5.

1Except for the syntactic one constructed to prove completeness of LAPL-structures.
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The last step in the construction of the LAPL-structure is the relational interpretation of types. We show
how the inductive definition of the interpretation ofLILY-types as⊥⊥-closed relations presented in [3]
defines a relational interpretation of types satisfying the requirements for LAPL-structures. Finally, it is
shown that the parametricity schema does indeed hold in the constructed LAPL-structure.

The chapter concludes with a description of the interpretation ofPILLY into the model we have con-
structed out of the operational semantics ofLILY.

We then conclude in Chapter 6
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Chapter 2

LAPL-structures

The equational theoryPILLY is a variant ofDILL [2] extended with polymorphism and fixed points given
by a fixed point combinator of type

∏
α.(α → α) → α, where in general we useσ → τ as notation for

!σ ( τ .
We start off by sketching the notion of LAPL-structure as described in [6]. Some readers may prefer

to first look at the concrete LAPL-structure constructed in Chapter 5 and the explicit description of the
interpretation in the end and then refer back to this section later. LAPL-structures model a variant of Abadi
& Plotkin’s logic for parametricity [16, 15] designed for reasoning aboutPILLY . Propositions in the logic
exist in contexts of free type variables, free variables ofPILLY and free relational variables. The free
relational variables may be relations or admissible relations. Propositions are written as

~α | ~x : ~σ | ~R : Rel(~σ, ~σ′), ~S : AdmRel(~τ , ~τ ′) ` φ : Prop.

The vector~α is a list of free type variables. We will not describe the logic in details, but only mention a few
main points. The variables~x : ~σ are treated intuitionistically in the logic. We may reason about linear terms
by for example using variables of typeσ ( τ , but the reasoning about the terms is purely intuitionistic.

The logic comes equipped with a notion of admissible relations, which is required to be closed under
certain constructions. For example, equality relations (relating equal elements of some type) are required
to be admissible, and admissible relations must be closed under reindexing alonglinear maps and universal
quantification.

For any type~α ` σ(~α) : Type with n free variables, and anyn-vector ofadmissiblerelations~R : AdmRel(~τ , ~τ ′),
we can form an admissible relationσ[~R] : AdmRel(σ(~τ), σ(~τ ′)). This is called the relational interpretation
of σ, and it is important for reasoning about parametricity. For example we can express theidentity extension
schema[17] asσ[eq~α] ≡ eqσ(~α), which we use as our definition of parametricity.

A pre-LAPL -structure is a schema of categories and functors

Prop

r

��
LinType

p
**VVVVVVVVVVVVVVVVVVV G 22 Type

Fpp

&&LLLLLLLLLL
� � I // Context

q

��
Kind

(2.1)
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such that the diagram

LinType

p
&&LLLLLLLLLL

G

11⊥ Type
Fqq

zzttttttttt

Kind

(2.2)

is a model ofPILLY [10] (a fibred version of a model ofDILL [2], with generic objectΩ ∈ Kind for p,
simple products modeling polymorphism inp, and a term modeling the fixed point combinator).

We further require that the fibrationq has fibred products and thatI is a faithful map preserving fibred
products. The pair of fibrations(r, q) is an indexed first-order logic fibration which has products and co-
products with respect to projectionsΞ×Ω → Ξ in Kind [5], meaning that each fibre ofr over an objectΞ
in Kind is a first-order logic fibration with structure preserved under reindexing, and that the logic models
quantification along the mentioned projections inKind.

Finally, there should exist a fibred functorU mapping pairs of typesσ, τ in the same fibre ofLinType
to an objectU(σ, τ) in Context acting as an object of all relations fromIG(σ) to IG(τ) in the logic of
Prop.

A notion of admissible relations for a pre-LAPL-structure is a subfunctorV of U closed under the
constructions for admissible relations in the logic.

A pre-LAPL-structure models Abadi & Plotkin’s logic for parametricity, except for the relational inter-
pretation of types. The contexts of the logic are modeled inContext usingU , V to model the sets of all
relations and admissible relations between types respectively. The propositions of the logic are modeled in
Prop.

From a pre-LAPL-structure with a notion of admissible relations one can define aPILL model (aPILLY

model that does not necessarily modelY )

LinAdmRel 00

''OOOOOOOOOOO ⊥ AdmRelations
pp

vvnnnnnnnnnnnn

AdmRelCtx

(2.3)

of admissible relations. There exists two maps ofPILL-models∂0, ∂1 from (2.3) to (2.2) basically mapping a
relation to its domain and codomain respectively. An LAPL-structure is a pre-LAPL-structure with a notion
of admissible relations and a map ofPILL-modelsJ from (2.2) to (2.3) such that

∂0 ◦ J = ∂1 ◦ J = id.

The functorJ models the relational interpretation of types. It enables us to talk about parametricity at
all types in the model, not just the interpretations of types inpurePILLY .

A parametric LAPL-structure is an LAPL-structure satisfying the identity extension schema in the
internal logic. Moreover the extensionality schemes

∀x : σ.f(x) =τ g(x) ⊃ f =σ→τ g
∀α : Type.t α =σ u α ⊃ t =Q

α.σ u,

should hold and the model should have very strong equality. The latter means that if two terms ofPILLY

are provably equal in the logic, then they are in fact equal in the model.
Parametric LAPL-structures are interesting because we can reason about the containedPILLY -model

using parametricity. In particular, we can solve a large class of domain equations in parametric LAPL-
structures, and show that a large class of endo-functors have initial algebras and final coalgebras. These
results are presented in Chapter 3.
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Chapter 3

Reasoning Principles

In this chapter we include a note by Rasmus Møgelberg deriving reasoning principles for recursive types,
valid in any parametric LAPL-structure.
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Induction and coinduction principles for recursive

types in LAPL

Rasmus E. Møgelberg∗

mogel@itu.dk

DISI, Universitá di Genova
Italy

September 12, 2005

Abstract

We investigate induction and coinduction principles for inductive,
coinductive and recursive types encoded in LAPL using parametricity.
Using a closure operator on relations giving the least admissible rela-
tion containing the given relation, we show that coinduction principles
work for general relations and not just admissible relations.

1 Introduction

In this document, we will assume that we are given a parametric LAPL-
structure.

Note for readers: Section 3 seems a bit out of place here. Consider
skipping it on arst reading.

2 A closure operator on relations

Lemma 2.1

If ρ is an admissible relation, and ρ′ is any relation, ρ′ ( ρ is admissible.

∗This work is sponsored by Danish Research Agency stipend no. 272-05-0031
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Proof. The proof from [1, Prop 2.3] goes through without the assumption that ρ ′

is admissible.

Lemma 2.1 shows that inductively constructed types induce what Pitts calls admis-
sible actions on relations [6, Def 4.6]. In fact the statement of Lemma 2.1 is much
stronger than that.
We will now define an operation on relations, associating to a relation the smallest
admissible relation containing it. First we need some general definitions for the
formulation of the theorem. Define the indexed category Relations → Kind, to
have as objects over Ξ triples (σ, τ,R), where Ξ ` R : Rel(σ, τ), and as maps pairs
of maps preserving relations. The indexed category AdmRelations → Kind is
the restriction of Relations → Kind to admissible relations.
Suppose R : Rel(σ, τ) is any relation. By Lemma 2.1 above,

∀α, β, S : AdmRel(α, β). (R ( S) ( S (1)

is an admissible relation from
∏

α. (σ ( α) ( α to
∏

α. (τ ( α) ( α.
By [1, Prop 3.4], in a parametric LAPL-structure σ ∼=

∏
α. (σ ( α) ( α,

and so we may pull back (1) along the isomorphisms to get an admissible relation
Φ(R) : AdmRel(σ, τ).

Theorem 2.2. The association R 7→ Φ(R) defines a fibred left adjoint to the forget-
ful functor AdmRelations → Relations. In other words, for R any relation,
Φ(R) is the smallest admissible relation containing R.

Proof. The map Φ is functorial since S appears only positively in (1).
We show that R ⊂ Φ(R). The isomorphism σ (

∏
α. (σ ( α) ( α is given

by the lambda expression ξ = λ◦x : σ.Λα. λ◦f : σ ( α. f x. If R(x, y) and
(f, g) : R ( S then (f x, g y) ∈ S, and so R(x, y) implies

(ξ x, ξ y) ∈ ∀α, β, S : AdmRel(α, β). (R ( S) ( S.

This shows that R ⊂ Φ(R).
Finally, since the types β ` β and β `

∏
α. (β ( α) ( α are isomorphic, their

relational interpretations are isomorphic, and so for any admissible relation S:

S = (ξ, ξ)∗(∀α, β, S : AdmRel(α, β). (R ( S) ( S) = Φ(S).

Thus, if R : Rel(σ, τ) is any relation and S : AdmRel(σ, τ) is admissible then R ⊂
S implies Φ(R) ⊂ Φ(S) = S, and on the other hand, Φ(R) ⊂ S implies R ⊂ S

since R ⊂ Φ(R).
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3 Existensial types

In [8] Plotkin sketched how to define existensial types from polymorphism using
parametricity as

∐
α. σ(α) =

∏
β. (

∏
α. σ(α) ( β) ( β

In [1, Sec 3.9] working in the logic LAPL, Birkedal, Møgelberg and Petersen show
that this definition is correct in the categorical sense, by showing that it defines
a left adjoint to weakening. Put more precisely, this means that if Ξ, α ` σ is a
type, and Ξ ` τ is a type, there is a natural bijective correspondence between terms
Ξ ` t :

∐
α. σ ( τ and terms Ξ, α ` t̂ : σ ( τ . The goal of this section is to

deduce the natural reasoning principle for existensial types.
Before we state the reasoning principle, we recall the constructor for existensial
types:

pack :
∏

α. σ(α) (

∐
α. σ(α).

Basically, pack takes a type α and an element of type σ(α) and packs it into the
existensial type. It is defined as follows:

pack = Λα. λ◦x : σ(α).Λβ. λ◦f :
∏

γ. σ(γ) ( β. f α x

Theorem 3.1. For x, y :
∐

α. σ(α) the following is equivalent to internal equality
of x and y.

∃α, β,R : AdmRel(α, β), x′ : σ(α), y : σ(β). x = packαx′∧y = packβy′∧σ[R](x′, y′).

As a special case we get the following principle:

∀x :
∐

α. σ(α).∃α, x′ : σ(α). x =‘

α.σ(α).∃α pack α x′

Proof. We first show the case of admissible relations.
Recall from [1, Sec 3.9] that if Ξ ` t :

∐
α. σ ( τ , then Ξ, α ` t̂ : σ ( τ is

defined as t̂(x) = t(pack α x). On the other hand, if Ξ, α ` s : σ ( τ then
Ξ ` ŝ :

∐
α. σ ( τ is defined as ŝ(x) = x τ (Λα. s).

Let us for simplicity write χ(R) for

(x, y).∃α, β,R : AdmRel(α, β), x′ : σ(α), y : σ(β). x = packαx′∧y = packβy′∧σ[R](x′, y′)

Now, our aim is to prove that for any pair of types τ, τ ′ and any admissible relation
S : AdmRel(τ, τ ′), and any pair of maps t, t′ we have

(t, t′) : eq‘

α.σ ( S

iff
(t.t′) : χ(R) ( S

3



and the first part of the theorem will follow as an application of the Yoneda Lemma.
First notice that

Ξ | x, y ` χ(R)(x, y) ⊃ S(t(x), t′(y))
===============================================================
Ξ, α, β | R : AdmRel(α, β) | x, y, x′, y′ ` σ[R](x′, y′) ⊃ S(t(pack α x′), t′(pack β y′))
===============================================================

Ξ, α, β | R : AdmRel(α, β) | x′, y′ ` σ[R](x′, y′) ⊃ S(t̂(x′), t̂′(y′))

so it suffices to show that

Ξ | x, y ` x =‘

α.σ(α) y ⊃ S(t(x), t′(y))
=================================================
Ξ, α, β | R : AdmRel(α, β) | x′, y′ ` σ[R](x′, y′) ⊃ S(t̂(x′), t̂′(y′))

i.e., that (t, t′) preserve relations iff (t̂, t̂′) do.
First assume (t, t′) preserve relations. By parametricity of pack,

(pack α, pack β) : σ[R] ( eq,

and so since t̂ = t◦(packα) and t̂′ = t′ ◦(packβ) the pair (t̂, t̂′) preserve relations.
On the other hand, if (t̂, t̂′) preserve relations then

(Λα. t̂,Λβ. ŝ) : ∀α, β,R : AdmRel(α, β). σ[R] ( S,

and so by parametricity, if eq‘

α.σ(α)(x, y) then

(t(x), t′(y)) = (x
∐

α. σ(α) (Λα. t̂), y
∐

α. σ(α) (Λβ. t̂′)) ∈ S

Remark 3.2. It may seem more natural to first prove the reasoning principle for
existensial types, and then use that for proving the categorical properties. I believe
that this is what Plotkin and Abadi did in the case of the second order lambda
calculus [9]. In this paper we have done the opposite, namely used the categorical
properties to prove the reasoning principle. The reason for this is that admissible
relations are not assumed to be closed under existensial quantification, and so we
cannot induce the reasoning principle by applying parametricity to a relation like
χ(R).

4 Induction and coinduction priciples

In this section we establish induction and coinduction principles for respectively
inductive and coinductive types encoded using parametricity. This supplements
the treatment of inductive and coinductive types in [1], where only categorical
properties of these types were discussed.
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We start with inductive types. Suppose α ` σ(α) is a type expression in which α

occurs only positively, such that σ induces a functor from types to types. In [1],
following [8] we define the type

µα. σ(α) =
∏

α. (σ(α) ( α) → α

and a term
in : σ(µα. σ(α)) ( µα. σ(α)

which we show is an initial algebra for the functor induced by σ. We now show the
following (relational) induction principle.

Theorem 4.1 (Induction). Suppose R : AdmRel(µα. σ(α), µα. σ(α)) satisfies

(in, in) : σ[R] ( R.

Then
∀x : µα. σ(α). R(x, x)

Remark 4.2. The induction principle speaks about relations since it is obtained as
a consequence of binary parametricity. In case one also has unary parametricity
available (for some notion of admissible propositions), applying the proof of The-
orem 4.1 to unary parametricity will yield the well-known propositional induction
principle: If φ is an admissible proposition on µα. σ(α), then

(∀x : σ(µα. σ(α)). σ[φ](x) ⊃ φ(in x)) ⊃ ∀x : µα. σ(α). φ(x)

Proof of Theorem 4.1. By parametricity, for any x : µα. σ(α),

x(∀α, β,R : AdmRel(α, β). (σ[R] ( R) → R)x

The assumption states that (in, in) : σ[R] ( R and so by [1, Lemma 2.31],

(!in, !in) : !(σ[R] ( R).

Thus
R(x µα. σ(α) !in, x µα. σ(α) !in).

Finally, [1, Lemma 3.25] tells us that xµα. σ(α)!in = x, which proves the theorem.

We now turn to coinduction principles for coinductive types. Again we assume that
we are given a type α ` σ(α) with α appearing only positively. Coinductive types
are treated in [1, Sec 3.11], where — following [8] — we define the type

να. σ(α) =
∐

α. !(α ( σ(α)) ⊗ α

and the term
out : να. σ(α) ( σ(να. σ(α))

which we prove is a final coalgebra for the functor induced by σ.
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Theorem 4.3 (Coinduction). Suppose R : AdmRel(να. σ(α), να. σ(α)) is such
that (out, out) : R ( σ[R], then

∀x, y : να. σ(α). R(x, y) ⊃ x =να.σ(α) y

Proof. Suppose R : AdmRel(να. σ(α), να. σ(α)) is such that (out, out) : R (

σ[R] and R(x, y). By parametricity of

pack :
∏

α. !(α ( σ(α)) ⊗ α ( να. σ(α)

we have

pack να. σ(α) !out⊗ x =να.σ(α) pack να. σ(α) !out⊗ y

and by [1, Lem 3.29],

pack να. σ(α) !out ⊗ x =να.σ(α) x

pack να. σ(α) !out ⊗ y =να.σ(α) y

which proves the theorem.

The next theorem is an interesting generalisation of Theorem 4.3, stating that the
assumption of admissibility in the coinduction principle is unnecessary. A similar
result was proved by Pitts in the setting of coinductive types in the category of
domains [6].

Theorem 4.4 (General coinduction principle). Suppose R : Rel(να. σ(α), να. σ(α))
is such that (out, out) : R ( σ[R], then

∀x, y : να. σ(α). R(x, y) ⊃ x =να.σ(α) y

Proof. Suppose R : Rel(να. σ(α), να. σ(α)) is any relation satisfying (out, out) : R (

σ[R]. The idea of the proof is to use Theorem 4.3 on the admissible relation Φ(R).
Since Φ is a functor,

(out, out) : Φ(R) ( Φ(σ[R]),

and since σ[Φ(R)] is an admissible relation containing σ[R] , and Φ(σ[R]) is the
smallest such, Φ(σ[R]) ⊂ σ[Φ(R)] and so

(out, out) : Φ(R) ( σ[Φ(R)].

Now, the coindution principle for admissible relations gives us

∀x, y : να. σ(α).Φ(R)(x, y) ⊃ R(x, y)

and so the theorem follows from R ⊂ Φ(R).
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5 Recursive types

In this section we consider recursive types defined using parametricity as in [8] and
[1, Sec 3.12]. For the moment we only consider recursive types with no parameters.
So we consider the situation, where we are given an inductively constructed type

α, β ` σ(α, β)

in which α occurs only negatively and β only positively. Such a type induces a
functor in two variables, contravariant in the first and covariant in the second, on
the category of types. In loc. cit. a type rec α. σ(α, α) is constructed satisfying

σ(rec α. σ(α, α), rec α. σ(α, α)) ∼= rec α. σ(α, α).

This is done using parametricity in combination with Freyds theory of algebraically
compact categories [3, 2, 4] as suggested first by Plotkin [8, 7]. In fact, what is
proved about rec α. σ(α, α) is a bit stronger. We prove that it is an initial dialgebra
for the functor induced by σ, i.e., that given any pair of types ω, ω ′ and terms
t : ω ( σ(ω′, ω),t′ : σ(ω, ω′) ( ω′, there exists unique h, h′ making the diagrams

σ(rec α. σ(α, α), rec α. σ(α, α)) ◦

σ(h,h′)

◦

rec α. σ(α, α)

h′

◦
σ(ω, ω′)

t′
◦ω′

ω
t

◦

h

◦

σ(ω′, ω)

σ(h′,h)

◦

rec α. σ(α, α) ◦σ(rec α. σ(α, α), rec α. σ(α, α))

(2)

commute.
Here we prove the following reasoning principle for the recursive type rec α. σ(α, α).
This principle is the same as the one obtained by Pitts for recursive types in the cat-
egory domains [6, Cor 4.10]

Theorem 5.1. Suppose

R− : Rel(rec α. σ(α, α), rec α. σ(α, α)) and
R+ : AdmRel(rec α. σ(α, α), rec α. σ(α, α))

are relations. Then the following principle holds

(i−1, i−1) : R−
( σ(R+, R−) (i, i) : σ(R−, R+) ( R+

R− ⊂ eqrec α.σ(α,α) ⊂ R+

where i denotes the isomorphism

σ(rec α. σ(α, α), rec α. σ(α, α)) ( rec α. σ(α, α).
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Proof. We first prove the rule in the case of both relations being admissible. The
proof in this case is a surprisingly simple consequence of parametricity.
The proof that rec α. σ(α, α) is an initial dialgebra [1, Sec 3.12] is constructive
in the sence that there is a construction of the unique maps h, h′ satisfying the
diagrams (2) above from the given types ω, ω ′ and terms t, t′. In fact, from the
proof we can derive terms

k :
∏

ω, ω′. (σ(ω, ω′) ( ω′) ( (ω ( σ(ω′, ω)) ( ω′
( rec α. σ(α, α)

k′ :
∏

ω, ω′. (σ(ω, ω′) ( ω′) ( (ω ( σ(ω′, ω)) ( rec α. σ(α, α) ( ω′

such that the maps h, h′ can be obtained as

h = k ω ω′ t′ t

h′ = k′ ω ω′ t′ t

The exact constructions of k, k′ are not of interest us right now — what matters to
us is that we can use the assumption of parametricity on them. We consider the
case ω = ω′ = rec α. σ(α, α) and t = i−1 and t′ = i. In this case of course
h = h′ = id . If we use parametricity of k by substituting the relation R+ for the
type ω and R− for ω′ then we get since

id = k rec α. σ(α, α) rec α. σ(α, α) i−1 i

(id , id) : R−
( eqrec α.σ(α,α). Likewise, using parametricity of k ′ we get

(id , id) : eqrec α.σ(α,α) ( R+

which proves the theorem in the case of R− being admissible.
For the general case, we just need a simple application of the closure operator of
Theorem 2.2. So assume again

(i−1, i−1) : R−
( σ(R+, R−),

(i, i) : σ(R−, R+) ( R+,

and R+ is admissible, but R− may not be. The idea is to use the case above on
Ψ(R−) and R+ which are both admissible, but we need to check that the hypothe-
sis still holds for this case. First, by Ψ being a functor

(i−1, i−1) : Ψ(R−) ( Ψ(σ(R+, R−)).

But, since σ(R+,Ψ(R−)) is an admissible relation containing σ(R+, R−),

Ψ(σ(R+, R−) ⊂ σ(R+,Ψ(R−))

and so
(i−1, i−1) : Ψ(R−) ( σ(R+,Ψ(R−)). (3)
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Since σ(Ψ(R−), R+) ⊂ σ(R−, R+) we also have

(i, i) : σ(Ψ(R−), R+) ( R+. (4)

Using the case of admissible relation proved above on (3) and (4), we get

Ψ(R−) ⊂ eqrec α.σ(α,α) ⊂ R+

which together with R− ⊂ Ψ(R−) proves the theorem in the general case.

6 Recursive types with parameters

Recursive types with parameters are also treated in [1, Sec 3.13]. Let us start by
recalling the results of loc. cit..
Suppose ~α, ~β, α, β ` σ(~α, ~β, α, β) is a type in which the variables ~α, α occur only
negatively and the variables ~β, β occur only positively. Then there exists a type
~α, ~β ` τ(~α, ~β) in which the variables ~α occur only negatively and the variables ~β

only positively, and an isomorphism:

~α, ~β ` i : σ(~α, ~β, τ(~β, ~α), τ(~α, ~β)) ( τ(~α, ~β)

In fact, also a parametrized version of (2) is proved, which we repeat here, as it is
needed for the proof of Theorem 6.1 below.
For any pair of types ω, ω′ and pair of maps

g : ω ( σ(~β, ~α, ω′, ω)

g′ : σ(~α, ~β, ω, ω′) ( ω′

there exists unique maps
h : ω ( τ(~β, ~α)

h′ : τ(~α, ~β) ( ω′

making the diagrams

ω
g

◦

h

◦

σ(~β, ~α, ω′, ω)

σ(~β,~α,h′,h)

◦

τ(~β, ~α)
i

◦σ(~β, ~α, τ(~α, ~β), τ(~β, ~α))

σ(~α, ~β, τ(~β, ~α), τ(~α, ~β))
i

◦

σ(~α,~β,h,h′)

◦

τ(~α, ~β)

h′

��

σ(~α, ~β, ω, ω′)
g′

◦ω′

(5)

commute.
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Theorem 6.1. Suppose ~R+ : AdmRel(~ω+, ~ω′
+) and ~R− : AdmRel(~ω−, ~ω′

−) are vec-
tors of admissible relations, and

S+ : AdmRel(τ(~ω−, ~ω+), τ(~ω′
−, ~ω′

+))
S− : Rel(τ(~ω+, ~ω−), τ(~ω′

+, ~ω′
−))

are relations. Then the following rule holds:

(i−1, i−1) : S− ( σ(~R+, ~R−, S+, S−) (i, i) : σ( ~R−, ~R+, S−, S+) ( S+

S− ⊂ τ(~R+, ~R−) τ(~R−, ~R+) ⊂ S+

Proof. The proof proceeds as the proof of Theorem 5.1, and we start by consid-
ering the case where S− is admissible. This time the terms generating h, h′ have
types

k :
∏

~α, ~β.
∏

ω, ω′. (σ(~α, ~β, ω, ω′) ( ω′) ( (ω ( σ(~β, ~α, ω′, ω)) ( ω ( τ(~β, ~α)

k′ :
∏

~α, ~β.
∏

ω, ω′. (σ(~α, ~β, ω, ω′) ( ω′) ( (ω ( σ(~β, ~α, ω′, ω)) ( τ(~α, ~β) ( ω′

Now, notice first that

k ~ω+ ~ω− τ(~ω+, ~ω−) τ(~ω−, ~ω+) i i−1 = idτ(~ω+,~ω−) (6)
k′ ~ω+ ~ω− τ(~ω+, ~ω−) τ(~ω−, ~ω+) i i−1 = idτ(~ω−,~ω+) (7)
k ~ω′

+ ~ω′
− τ(~ω′

+, ~ω′
−) τ(~ω′

−, ~ω′
+) i i−1 = idτ(~ω′

+
,~ω′−) (8)

k′ ~ω′
+ ~ω′

− τ(~ω′
+, ~ω′

−) τ(~ω′
−, ~ω′

+) i i−1 = idτ(~ω′−,~ω′
+

) (9)

because the identities make the diagrams (5) commute.
The theorem will follow from instantiating the parametricity schema of k, k ′ with
~R− substituted for ~α, ~R− substituted for ~β and S− for ω and S+ for ω′. This tells
us that if

(i−1, i−1) : S− ( σ(~R+, ~R−, S+, S−)

(i, i) : σ( ~R−, ~R+, S−, S+) ( S+

then (using (6)-(9) above)

(id τ(~ω+,~ω−), id τ(~ω′
+

,~ω′−)) : S− ( τ(~R+, ~R−)

(id τ(~ω−,~ω+), id τ(~ω′−,~ω′
+

)) : τ(~R−, ~R+) ( S+

which was what we needed to prove.
For the general case, dropping the assumtion that S− is admissible, the proof pro-
ceeds exactly as in Theorem 5.1.
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Chapter 4

Operational Semantics of LILY

In this chapter we include a student project by Carsten Varming extending the operational semantics of LILY
with tensor and open types, deriving a number of properties of contextual equivalence.
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1 Preface

This is the second part of my project about parametricity. In includes the first part as it will be
part of a technical report as a whole.

Some things have changed since the first part and other thing are new. All the stuff to do with the
tensor product, unit and the interpreter is new. These additions are scattered around everywhere,
but in particular the sections 5.3, 7 and 8 are new. Section 6 is the same as in part I. In the other
sections I have tried to mark new parts with a * and changed parts with a †. Things without a
mark are as in the first part except for the additions to handle tensor product and unit.

Quite a things are new in section 4 as I have changed some invariants used in the proofs of
equivalence of the given semantics. Likewise many things have changed quite a bit as I have spent
much time elaborating the proofs of the first part.

2 Introduction

In [BPR00] Bierman, Russo and Pitts gave an operational semantics of a functional language
(Lily) with a polymorphic linear type system. With only four type constructs the type system
is very simple, but it still provides us with powerful concepts such as linear use of variables and
parametricity. The type system is strong enough to allow us to prove a strictness theorem, that
in a sense unifies call-by-value and call-by-name semantics.

In this student project it is my intension to give a coherent and detailed examination of the
theorems and definitions published in [BPR00]. I will start with a brief introduction to the static
and dynamic semantics of the language. Then I will develop a structural operational semantics of
Lily, as in [Pit02] to prove the strictness theorem. Along the way I will prove the ciu theorem for
closed Lily-terms. I will also show an unwinding theorem for Lily.

Next I will look at four different relations, that turns out to be equivalent. One of these is
contextual equivalence, and thus we end up with a valuable description of contextual equivalence.
This part follows the outline of [Pit00] closely, but as the language is quite different, almost all
the details are different.

In the end I will show how contextual equivalence can be used to define a category and I will give
an example of how to encode natural numbers in Lily and prove that they behave as such. The
idea behind the proof of the example is taken from [BMP05].

3 The language

The language without unit and tensor is given in [BPR00]. The language is given by the following
grammar, type and evaluation relation.
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Definition In Lily the raw terms and types are defined by:

Raw types τ ::= α type variables
| τ ( τ ′ linear function type
| ∀α.τ ∀-type
| !τ exponential type
| I unit
| τ ⊗ τ tensor product

Raw terms M ::= a linear variable
| x intuitionistic variable
| λa : τ.M abstraction
| M1M2 application
| Λα.M generalization
| Mτ specialization
| !(x = M : τ) recursively defined thunk
| let !x = M1 in M2 exponential eliminator
| ∗ unit
| let ∗ = M1 in M2 unit eliminator
| M1 ⊗M2 tensor
| let a1 ⊗ a1 = M1 in M2 tensor eliminator

where α ranges over a denumerable infinite set of type variables, a ranges over a denumerable
infinite set of linear program variables and x ranges over a denumerable infinite set of intuitionistic
program variables.

In Lily ∀α.( ), λa : τ.( ), Λα.( ), !(x = ( ) : τ), let !x = M in ( ) and let a1 ⊗ a2 = M1 in ( )
are variable-binding constructs. I will denote the set of free type variables in τ with ftv(τ), free
intuitionistic variables in M with fiv(M) and free linear variables in M with flv(M).

I will identify raw terms modulo renaming of bound variables. Likewise types are defined up to *
renaming of bound type variables.

Given raw terms N, M and a linear variable a we define M [N/a] as the result of capture avoiding *
substitution of N into all free occurrences of a in M . Likewise, given a intuitionistic variable x we
define M [N/x] as the result of capture avoiding substitution of N into all free occurrences of x in
M . Given a type τ and a type variable α we define M [τ/α] as the result of a capture avoiding
substitution of τ into all free occurrences of α in M .

Definition A type environment is a partial function with finite domain, from variables to types.
Let Γ we a type environment. We then write Γ, x : τ for the type environment that maps x to
τ and any variable y different from x to Γ(y). We denote the empty type environment ∅. We
abbreviate ftv(im(Γ)) as ftv(Γ). We say a type environment is linear (resp. intuitionistic) if it
maps linear (resp. intuitionistic) variables to types.

We say a raw term M is well-typed and has type τ if and only if there is a set of type variables
~α, an intuitionistic Γ and linear ∆ type environment such that Γ, ∆, ~α, τ, M are in the relation
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defined by the following rules.

ftv(Γ, τ) ⊆ ~α x /∈ dom(Γ)

Γ, x : τ ; ∅ `~α x : τ

ftv(Γ, τ) ⊆ ~α

Γ; a : τ `~α a : τ

Γ; ∆, a : τ `~α M : τ ′ a /∈ dom(∆)

Γ; ∆ `~α λa : τ.M : τ ( τ ′

Γ; ∆1 `~α M1 : τ ( τ ′ Γ; ∆2 `~α M2 : τ dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α M1M2 : τ ′

Γ; ∆ `~α,α M : τ α /∈ ~α ∪ ftv(Γ, ∆)

Γ; ∆ `~α Λα.M : ∀α.τ

Γ; ∆ `~α M : ∀α.τ ftv(τ ′) ⊆ ~α

Γ; ∆ `~α Mτ ′ : τ [τ ′/α]

Γ, x : τ ; ∅ `~α M : τ x /∈ dom(Γ)

Γ; ∅ `~α!(x = M : τ) :!τ

Γ; ∆1 `~α M1 :!τ Γ, x : τ ; ∆2 `~α M2 : τ ′ x /∈ dom(Γ) dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α let !x = M1 in M2 : τ ′

Γ; ∅ `~α ∗ : I

Γ; ∆1 `~α M1 : I Γ; ∆2 `~α M2 : τ dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α let ∗ = M1 in M2 : τ

Γ; ∆1 `~α M1 : τ1 Γ; ∆2 `~α M2 : τ2 dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α M1 ⊗M2 : τ1 ⊗ τ2

Γ; ∆1 `~α M1 : τ1 ⊗ τ2 Γ; ∆2, a1 : τ1, a2 : τ2 `~α M2 : σ
dom(∆1) ∩ dom(∆2) = ∅ a1, a2 /∈ dom(∆1) ∪ dom(∆2) a1 6= a2

Γ; ∆1, ∆2 `~α let a1 ⊗ a2 = M1 in M2 : σ

Note how the rules ensure linearity of ∆, by disallowing weakening and contraction.

In what is to come we will only consider raw terms that are well-typed. Thus terms are defined
as well-typed raw terms.

Finally, we have two dynamic semantics. One gives a call-by-value semantics (⇓s) and one gives
a call-by-name semantics (⇓n).

Definition Let ⇓ denote either ⇓s or ⇓n. We then define ⇓s and ⇓n as evaluation relations given
by:

v1:
λa : τ.M ⇓ λa : τ.M

v2:
Λα.M ⇓ Λα.M

v3:
!(x = M : τ) ⇓!(x = M : τ)

v4:
∗ ⇓ ∗

v5:
M1 ⊗M2 ⇓ M1 ⊗M2

appt:
M ⇓ Λα.M ′ M ′[τ/α] ⇓ V

Mτ ⇓ V

rec:
M1 ⇓!(x = M : τ) M2[(let !x =!(x = M : τ) in M)/y] ⇓ V

let !y = M1 in M2 ⇓ V

cval:
M1 ⇓s λa : τ.M M2 ⇓s V ′ M [V ′/a] ⇓s V

M1M2 ⇓s V

cname:
M1 ⇓n λa : τ.M M [M2/a] ⇓n V

M1M2 ⇓n V

unit:
M1 ⇓ ∗ M2 ⇓ V

let ∗ = M1 in M2 ⇓ V

tensor:
M1 ⇓ N1 ⊗N2 M2[N1, N2/a1, a2] ⇓ V

let a1 ⊗ a2 = M1 in M2 ⇓ V

We say a term M evaluates to V in a call-by-value (resp. call-by-name) semantics if and only if
M ⇓s V (resp. M ⇓n V ).
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The set of values of type τ , denoted V al(τ) is a subset of the set of terms of type τ such that
V ∈ V al(τ) if and only if V = λa : τ ′.M , V = Λα.M , V = !(x = M : τ ′), V = ∗ or V = M1 ⊗M2

for some type variable α, type τ ′, intuitionistic variable x and terms M, M1, M2. I will use M for
arbitrary terms and V for values.

I will abbreviate let !x =!(x = M : τ) in M to fix x : τ.M as the evaluation of this term is defined
recursively and behaves like a fix point (have a look at the unwinding theorem [theorem 4.28]).
I will also abbreviate the following non-recursive thunk !(x = M : τ), x /∈ fiv(M) to !M .

Lemma 3.1 (Rule inversion of the type system) For all type environments Γ, ∆, set of type *
variables ~α, terms M and types τ , if Γ; ∆ `~α M : τ then one and only one rule must have been
applied as the last rule in the derivation of Γ; ∆ `~α M : τ .

Proof To any syntactic construct in Lily, only one rule can result in a derivation with that syntax.

Lemma 3.2 For all type environments ∆, Γ, terms M and types τ1, τ2. *

Γ; ∆ `~α M : τ1 ∧ Γ; ∆ `~α M : τ2 ⇒ τ1 = τ2

Proof By induction on Γ; ∆ `~α M : τ1.

Lemma 3.3 (Rule inversion of the dynamic semantics) For all closed terms M and values *
V , if M ⇓ V then one and only one rule must have been applied as the last rule in the derivation
of M ⇓ V .

Proof To any syntactic construct of a closed term only one rule can result in a derivation of that
syntax. Note how no rules are given for variables as they are never closed.

Lemma 3.4 For all closed terms M and values V , *

M ⇓ V ∧M ⇓ V ′ ⇒ V = V ′.

Proof By induction on M ⇓ V .

Lemma 3.5 If Γ; ∆ `~α M : τ and α /∈ ~α then Γ; ∆ `~α,α M : τ . *

Proof By induction on Γ; ∆ `~α M : τ .

Lemma 3.6 If Γ; ∆ `~α M : τ , x /∈ dom(Γ), ftv(τ ′) ⊆ ~α then Γ, x : τ ′; ∆ `~α M : τ . *

Proof By induction on Γ; ∆ `~α M : τ .

Lemma 3.7 For all types τ , terms M , type environments Γ, ∆ and set of type variable ~α, *

Γ; ∆ `~α M : τ ⇒ ftv(Γ, ∆, τ) ⊆ ~α.

Proof By induction on Γ; ∆ `~α M : τ .

Lemma 3.8 (Substitution lemma for types) Given types τ, τ ′ such that α ∈ ftv(τ) then *
τ [τ ′/α] is a type such that ftv(τ [τ ′/α]) = (ftv(τ)\{α}) ∪ ftv(τ ′).
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Proof By structural induction on τ , using the fact that types are identified up to bound variables
in the ∀ case.

Lemma 3.9 (Substitution lemma) For all type environments Γ, ∆, set of type variables ~α, *
terms M, N and types τ, τ ′.

Γ; ∆ `~α,α M : τ α /∈ ~α ftv(τ ′) ⊆ ~α

Γ[τ ′/α]; ∆[τ ′/α] `~α M [τ ′/α] : τ [τ ′/α]

Γ, x : τ ; ∆ `~α M : τ ′ Γ; ∅ `~α N : τ x /∈ dom(Γ)

Γ; ∆ `~α M [N/x] : τ ′

Γ; ∆1, a : τ `~α M : τ ′ Γ; ∆2 `~α N : τ a /∈ dom(∆1) dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α M [N/a] : τ ′.

Proof By induction over the derivation of Γ; ∆ `~α M : τ ′. Let begin with substitutivity of types.

If M = x then Γ, x : τ ; ∅ `~α,α x : τ , α /∈ ~α, ftv(τ ′) ⊆ ~α, ftv(Γ, τ) ⊆ ~α, α and x /∈ dom(Γ), thus
ftv(Γ[τ ′/α], τ [τ ′/α]) ⊆ ~α, x /∈ dom(Γ[τ ′/α]), whence (Γ, x : τ)[τ ′/α]; ∅[τ ′/α] `~α x[τ ′/α] : τ [τ ′/α].

If M = a then Γ, a : τ `~α,α a : τ , α /∈ ~α, ftv(τ ′) ⊆ ~α, ftv(Γ, τ) ⊆ ~α, α, thus ftv(Γ[τ ′/α], τ [τ ′/α]) ⊆
~α, whence Γ[τ ′/α], a : τ [τ ′/α] `~α a : τ [τ ′/α].

If M = λa : σ.M ′ then Γ; ∆ `~α,α λa : σ.M ′ : σ ( σ′, thus Γ; ∆, a : σ `~α,α M ′ : σ′, a /∈ dom(∆),
α /∈ ~α, ftv(τ ′) ⊆ ~α. By induction Γ[τ ′/α], ∆[τ ′/α], a : σ[τ ′/α] `~α M ′[τ ′/α] : σ′[τ ′/α], whence
Γ[τ ′/α], ∆[τ ′/α] `~α (λa : σ.M ′)[τ ′/α] : σ′[τ ′/α].

If M = Nσ then Γ; ∆ `~α,α Nσ : τ [σ/β], where Γ; ∆ `~α,α N : ∀β.τ , ftv(σ) ⊆ ~α, α, α /∈ ~α and
ftv(τ ′) ⊆ ~α, thus ftv(σ[τ ′/α]) ⊆ ~α). By induction Γ[τ ′/α]; ∆[τ ′/α] `~α N [τ ′/α] : (∀β.τ)[τ ′/α].
As types are identified modulo bound variables β can be made different from α in τ . Then
(∀β.τ)[τ ′/α] = ∀β.τ [τ ′/α] and (Nσ)[τ ′/α] = N [τ ′/α]σ[τ ′/α], thus

Γ[τ ′/α]; ∆[τ ′/α] `~α (Nσ)[τ ′/α] : (τ [τ ′/α])[σ[τ ′/α]/β].

As β is different from α, (τ [τ ′/α])[σ[τ ′/α]/β] = (τ [σ/β])[τ ′/α].

If M = Λβ.N then Γ; ∆ `~α,α Λβ.N : ∀β.τ , α /∈ ~α, ftv(τ ′) ⊆ ~α, thus Γ; ∆ `~α,α,β N : τ and β /∈
~α∪{α}∪ftv(Γ, ∆), whence α 6= β, β /∈ ~α∪ftv(Γ[τ ′/α], ∆[τ ′/α]), α /∈ ~α∪{β} and ftv(τ ′) ⊆ ~α∪{β}.
By induction Γ[τ ′/α]; ∆[τ ′/α] `~α,β N [τ ′/α] : τ [τ ′/α]. Hence Γ[τ ′/α]; ∆[τ ′/α] `~α (Λβ.N)[τ ′/α] :
(∀β.τ)[τ ′/α]

The other cases goes through with the same reasoning.

Now to substitutivity of intuitionistic variables.

If M = x then Γ, x : τ ; ∅ `~α x : τ , Γ; ∅ `~α N : τ , x /∈ dom(Γ). Now x[N/x] = N , thus
Γ; ∅ `~α x[N/x] : τ . If M = y 6= x then as y[N/x] = y and y ∈ dom(Γ), Γ(y) = τ , Γ; ∅ `~α y]N/x] : τ .

If M = a then x 6= a. As before Γ; ∆ `~α a[N/x] : τ ′.

If M = let !y = M1 in M2 then Γ, x : τ ; ∆1, ∆2 `~α let !y = M1 in M2 : τ ′ and x /∈ dom(Γ), thus
Γ, x : τ ; ∆1 `~α M1 :!σ, Γ, x : τ, y : σ; ∆2 `~α M2 : τ ′, dom(∆1)∩dom(∆2) = ∅ and y /∈ dom(Γ)∪{x},
thus x 6= y. By induction Γ; ∆1 `~α M1[N/x] :!σ and Γ, y : σ; ∆2 `~α M2[N/x] : τ ′. Hence
Γ; ∆ `~α (M1M2)[N/x] : τ ′.

If M =!(y = M ′ : σ) then τ ′ =!σ and Γ, x : τ ; ∅ `~α!(y = M ′ : σ) :!σ, thus Γ, x : τ, y : σ; ∅ `~α M ′ : σ
and y /∈ dom(Γ)∪{x}, thus x 6= y. By induction Γ, y : σ, ∅ `~α M ′[N/x] : σ, thus Γ; ∅ `~α!(y = M ′ :
σ)[N/x] : τ ′.

If M = M1M2 then Γ, x : τ ; ∆1, ∆2 `~α M1M2 : σ′ and Γ; ∅ `~α N : τ and x /∈ dom(Γ), thus
Γ, x : τ ; ∆1 `~α M1 : σ ( σ′, Γ, x : τ ; ∆2 `~α M2 : σ, dom(∆1) ∩ dom(∆2) = ∅. By induction
Γ; ∆1 `~α M1[N/x] : σ ( σ, Γ; ∆2 `~α M2[N/x] : σ and dom(∆1) ∩ dom(∆2) = ∅, thus as
(M1M2)[N/x] = M1[N/x]M2[N/x], Γ; ∆1, ∆2 `~α (M1M2)[N/x] : σ′.
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The other cases are like the ones above.

The linear case is proved using the same reasoning as above.

Lemma 3.10 For all closed terms M such that ∅; ∅ `∅ M : τ , *

M ⇓ V ⇒ ∅; ∅ `∅ V : τ ∧ V ∈ V al(τ).

Proof By induction on M ⇓ V , using rule inversion of the type system and the substitution
lemma.

In [BPR00] we have the following definition of contextual equivalence.

Definition (Ground contextual equivalence of closed terms) Let Typ = {τ |ftv(τ) = ∅}
be the set of closed types. Given τ ∈ Typ, let Term(τ) be the set {M | ∅; ∅ `∅ M : τ} of closed
terms of type τ . Given M, M ′ ∈ Term(τ), we have M =gnd M ′ : τ if and only if

∀x, N, τ ′ : x : τ ; ∅ `∅ N : τ ′ ⇒ (N [M/x] ⇓n⇔ N [M ′/x] ⇓n)

∀a, N, τ ′ : ∅; a : τ `∅ N : τ ′ ⇒ (N [M/a] ⇓n⇔ N [M ′/a] ⇓n)

4 An abstract machine for Lily

In order to prove the strictness theorem I follow the outline given in [BPR00] and [Pit02]. This
implies defining a structural operational semantics for Lily and showing that it is equivalent to
the semantics given above.

Definition An evaluation frame F is a term with a hole −, given by the grammar

F ::= let !y = − in M
| −M
| −τ
| let ∗ = − in M
| let a1 ⊗ a2 = − in M

where M is a term and τ is a type.

We write F [M ] for the term given by replacing the hole in F by the term M . We can compose
evaluation frames into a frame stack Fs, and we define

Fs ::= Id Empty
| Fs ◦ F non-empty

and Id[M ] = M and (Fs ◦ F)[M ] = Fs[F [M ]].

A closed evaluation frame is an evaluation frame F , such that ∅; a : τ `∅ F [a] : τ ′ for some closed
types τ and τ ′. A closed frame stack is a frame stack Fs where all evaluation frames are closed.
By definition Id is closed.

We define a typing relation on closed frame stacks, by †

Id : τ ( τ

∅; a : τ `∅ F [a] : τ ′′

Fs : τ ′′ ( τ ′

Fs ◦ F : τ ( τ ′

I will only consider closed frame stacks, unless stated otherwise.
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Lemma 4.1 Given a closed frame stack Fs of type τ ( τ ′ and a term M such that Γ; ∆ `~α M : τ †
then Γ; ∆ `~α Fs[M ] : τ ′.

Proof By induction on Fs.

If Fs = Id : τ ( τ then Fs[M ] = M , thus by assumption Γ; ∆ `~α Fs[M ] : τ ′.

If Fs = Fs′ ◦ F then Fs′ : τ ′′ ( τ ′ and ∅; a : τ `∅ F [a] : τ ′′. By Lemma 3.6 and Lemma
3.5, Γ; a : τ `~α F [a] : τ ′′, thus by the substitution lemma Γ; ∆ `~α F [M ] : τ ′′ and by induction
Γ; ∆ `~α Fs′[F [M ]] : τ ′, whence Γ; ∆ `~α Fs[M ] : τ ′.

Now we can define an evaluation relation using frame stacks, in which a term evaluate relative to
a given frame stack. Please note how non-values reduce by pushing an evaluation frame on the
frame stack and how only values can pop an evaluation frame from the frame stack. This is the
key to Lemma 4.4.

Definition Let → be the relation in {〈Fs, M〉 | Fs : τ ( τ ′, M : τ}2 where Fs ranges of closed
frame stacks and M ranges over closed terms, given by:

〈Fs, let !y = M1 in M2〉 → 〈Fs ◦ let !y = − in M2, M1〉

〈Fs, M1M2〉 → 〈Fs ◦ −M2, M1〉

〈Fs, Mτ〉 → 〈Fs ◦ −τ, M〉

〈Fs, let ∗ = M1 in M2〉 → 〈Fs ◦ let ∗ = − in M2, M1〉

〈Fs, let a1 ⊗ a2 = M1 in M2〉 → 〈Fs ◦ let a1 ⊗ a2 = − in M2, M1〉

〈Fs ◦ let !y = − in M2, !(x = M : τ)〉 → 〈Fs, M2[(let !x =!(x = M : τ) in M)/y]〉

〈Fs ◦ −M2, λa : τ.M〉 → 〈Fs, M [M2/a]〉

〈Fs ◦ −τ, Λα.M〉 → 〈Fs, M [τ/α]〉

〈Fs ◦ let ∗ = − in M, ∗〉 → 〈Fs, M〉

〈Fs ◦ let a1 ⊗ a2 = − in M, N1 ⊗N2〉 → 〈Fs, M [N1, N2/a1, a2]〉

In the following I will make use of the lemma below without further notice, the proof is omitted
since it is a straightforward exercise.

Lemma 4.2 The semantics is deterministic: For all closed frame stacks Fs : τ ( τ ′ and terms
M ∈ Term(τ), if 〈Fs, M〉 → 〈Fs′, M ′〉 and 〈Fs, M〉 → 〈Fs′′, M ′′〉 then Fs′ = Fs′′ and M ′ =
M ′′.

Proof By inspection.

Lemma 4.3 Given a closed frame stack Fs : τ ( τ ′ and a closed term M : τ such that 〈Fs, M〉 → *
〈Fs′, M ′〉, then Fs′ : τ ′′ ( τ ′ is closed and M ′ : τ ′′ is closed for some type τ ′′.

Proof The proof is a case analysis of the derivation of 〈Fs, M〉 → 〈Fs′, M ′〉.

Assume we have the derivation

〈Fs, let a1 ⊗ a2 = M1 in M2〉 → 〈Fs ◦ let a1 ⊗ a2 = − in M2, M1〉.

By assumption ∅; ∅ `∅ let a1⊗ a2 = M1 in M2 : τ , thus ∅; ∅ `∅ M1 : σ⊗ σ′ and ∅; a1 : σ, a2 : σ′ `∅
M2 : τ . Thus M1 is closed. As ∅; a : σ⊗σ′ `∅ a : σ⊗ σ′, ∅; a : σ⊗σ′ `∅ let a1⊗ a2 = a in M2 : τ .
Thus let a1 ⊗ a2 = − in M2 is a closed evaluation frame. Hence Fs ◦ let a1 ⊗ a2 = − in M2 is a
closed frame stack of type σ ⊗ σ′ ( τ ′ and M1 is closed of type σ ⊗ σ′.
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Assume we have the derivation

〈Fs′ ◦ let a1 ⊗ a2 = − in M2, N1 ⊗N2〉 → 〈Fs′, M2[N1, N2/a1, a2]〉.

Fs′ is closed of type τ ( τ ′′ by assumption. As let a1 ⊗ a2 = − in M2 is closed, τ = σ ⊗ σ′

for some closed types σ, σ′, N1 : σ, N2 : σ′ and ∅; a1 : σ1, a2 : σ′ `∅ M2 : τ ′′. By the substitution
lemma ∅; a2 : σ′ `∅ M2[N1/a1] : τ ′′ and ∅; ∅ `∅ M2[N1, N2/a1, a2] is closed of type τ ′′.

The other cases are handled the same way.

The next lemma is in the heart of evaluation using frame stacks, since it points out the idea of
evaluating terms in frames.

Lemma 4.4 For all closed frame stacks Fs : τ ( τ ′ and closed terms M : τ ,

〈Id,Fs[M ]〉 →∗ 〈Fs, M〉,

where →∗ is the transitive and reflexive closure of →.

Proof By induction on the length n of the frame stack Fs.

n = 0: Given a closed frame stack Fs it must be Id thus 〈Id,Fs[M ]〉 = 〈Id, M〉 →∗ 〈Id, M〉 =
〈Fs, M〉 as →∗ is reflexive.

n > 0: Given a closed frame stack Fs is must be Fs′ ◦F for some closed frame stack Fs′ : τ ′′ ( τ ′

and closed evaluation frame F , such that ∅; a : τ `∅ F [a] : τ ′′. By the substitution lemma
F [M ] : τ ′′, thus by induction

〈Id,Fs[M ]〉 = 〈Id,Fs′[F [M ]]〉 →∗ 〈Fs′,F [M ]〉
?
→ 〈Fs′ ◦ F , M〉 = 〈Fs, M〉.

We get ? by case analysis.

Lemma 4.5 For all closed evaluation frames F , and closed terms M : τ , such that ∅; a : τ `∅ *
F [a] : τ ′ and values V : τ ,

F [M ] ⇓n V ⇔ ∃V ′.M ⇓n V ′ ∧ F [V ′] ⇓n V.

Proof The proof is by case analysis of F .

If F = −M2 then F [M ] = MM2. Assume MM2 ⇓n V , then M ⇓n λa : σ.M ′ and M ′[M2/a] ⇓n V
for some M ′, a, σ. As λa : σ.M ′ ⇓n λa : σ.M ′, (λa : σ.M ′)M2 ⇓n V .

Assume there exists V ′ such that M ⇓n V ′ ∧ V ′M2 ⇓n V . By the substitution lemma MM2 :
τ ′, thus by type preservation V ′ = λa : σ.M ′ for some a, σ, M ′. From (λa : σ.M ′)M2 ⇓n V ,
M ′[M2/a] ⇓n V and as M ⇓n λa : σ.M ′ we have MM2 ⇓n V .

The other cases are handled in the same manner.

Lemma 4.6 For all closed frame stacks Fs : τ ( τ ′ and closed terms M : τ and values V : τ ′, *

Fs[M ] ⇓n V ⇔ ∃V ′.M ⇓n V ′ ∧ Fs[V ′] ⇓n V.

Proof The proof is by induction on length n of Fs.

If n = 0 then Fs = Id, thus ⇒ is trivial and as V ′ ⇓n V ⇒ V ′ = V we have ⇐.

If n > 0 then Fs = Fs′ ◦F for some closed frame stack Fs′ : τ ′′ ( τ ′ and closed evaluation frame
F , such that ∅; a : τ `∅ F [a] : τ ′′. By the substitution lemma F [M ] : τ ′′. By induction,

Fs′[F [M ]] ⇓n V ⇔ ∃V ′.F [M ] ⇓n V ′ ∧ Fs′[V ′] ⇓n V
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Assume Fs[M ] ⇓n V then Fs′[F [M ]] ⇓n V , thus F [M ] ⇓n V ′ ∧ Fs′[V ′] ⇓n V for some V ′.
As F and M are closed, by Lemma 4.5 M ⇓n V ′′ and F [V ′′] ⇓n V ′ for some value V ′′. As
the length of Fs′ is less than the length of Fs we get by induction Fs′[F [V ′′]] ⇓n V , thus
M ⇓n V ′′ ∧ Fs[V ′′] ⇓n V for some V ′′.

Assume M ⇓n V ′′ ∧ Fs[V ′′] ⇓n V for some V ′′. Then Fs′[F [V ′′]] ⇓n V thus by induction
F [V ′′] ⇓n V ′′′ and Fs′[V ′′′] ⇓n V for some V ′′′. By Lemma 4.5 F [M ] ⇓n V ′′′. Hence ∃V ′′.F [M ] ⇓n

V ′′ ∧ Fs′[V ′′] ⇓n V , thus Fs[M ] ⇓n V .

Lemma 4.7 For all closed terms M : τ, M ′ : τ ′ and closed frame stacks Fs : τ ( τ ′′,Fs′ : τ ′ ( *
τ ′′′

〈Fs, M〉 → 〈Fs′, M ′〉 ⇒ ∀V.Fs′[M ′] ⇓n V ⇒ Fs[M ] ⇓n V.

Proof The proof is by case analysis of 〈Fs, M〉 → 〈Fs′, M ′〉

If M is not a value then Fs[M ] = Fs′[M ′] and the result is trivial as the semantics is deterministic.

Let M = λa : σ.M ′
1 and Fs = Fs′′ ◦ −M2, then Fs′′ = Fs′ and M ′ = M ′

1[M2/a]. By lemma 4.3
Fs′ : τ ′′ ( τ ′ and M ′ : τ ′′ for some closed type τ ′′. By Lemma 4.6

Fs′[M ′] = Fs′[M ′
1[M2/a]] ⇓n V ⇔ ∃V ′.M ′

1[M2/a] ⇓n V ′ ∧ Fs′[V ′] ⇓n V.

As M = λa : σ.M ′
1, M ⇓n M , thus MM2 ⇓n V ′ and Fs′[V ′] ⇓n V . As Fs : τ ( τ ′′, ∅; a : τ `∅

aM2 : τ ′, thus by the substitution lemma MM2 is closed of type τ ′. By Lemma 4.6 Fs′[MM2] ⇓n V
and as Fs′[MM2] = Fs[M ], Fs[M ] ⇓n V .

In the other cases the reasoning is the same.

Lemma 4.8 Given a closed term M : τ , then for all closed frame stacks Fs : τ ( τ ′, †

M ⇓n V ⇒ 〈Fs, M〉 →∗ 〈Fs, V 〉,

Proof I will prove the ⇒, by induction on M ⇓n V .

vi: M ≡ V . Trivial as →∗ is reflexive.

appt: M ≡ M1σ. From M1σ ⇓n V we know M1 ⇓n Λα.M ′
1 and M ′

1[τ/α] ⇓n V for some α and
M ′

1. As M1σ is closed of type τ , we get ∅; ∅ `∅ M1 : ∀α.τ ′′ from

∅; ∅ `∅ M1 : ∀α.τ ′′ ftv(σ) ∈ ∅

∅; ∅ `∅ M1σ : τ
.

By type preservation Λα.M ′
1 : ∀α.τ ′′, thus ∅; ∅ `{α} M ′

1 : τ ′′ and by substitutivity M ′
1[σ/α]

is a closed term of type τ . By induction we have for all closed frame stacks Fs′′,Fs′ that
〈Fs′′, M1〉 →∗ 〈Fs′′, Λα.M ′

1〉 and 〈Fs′, M ′
1[τ/α]〉 →∗ 〈Fs′, V 〉. Thus given Fs,

〈Fs, M1τ〉 → 〈Fs ◦ −τ, M1〉 →
∗ 〈Fs ◦ −τ, Λα.M ′

1〉 → 〈Fs, M ′
1[τ/α]〉 →∗ 〈Fs, V 〉.

rec: M ≡ let !y = M1 in M2. From let !y = M1 in M2 ⇓n V we know M1 ⇓n!(x = M ′
1 : τ)

and M2[(fix x : τ.M ′
1)/y] ⇓n V . By type preservation and substitutivity of the type system

M2[(fix ⇓n!(x = M ′
1 : τ) is closed, thus by induction we have for all closed frame stacks

Fs,Fs′ that 〈Fs, M1〉 →∗ 〈Fs, !(x = M ′ : τ)〉 and 〈Fs, M2[(fix x : τ.M ′)/y]〉 →∗ 〈Fs, V 〉.
Thus given Fs,

〈Fs, let !y = M1 in M2〉 → 〈Fs ◦ let !y = − in M2, M1〉

→∗ 〈Fs ◦ let !y = − in M2, !(x = M ′ : τ)〉

→ 〈Fs, M2[(fix x : τ.M ′)/y]〉

→∗ 〈Fs, V 〉
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In the other cases the reasoning is the same.

Lemma 4.9 For all closed frame stacks Fs : τ ( τ ′ and closed terms M : τ †

Fs[M ] ⇓n V ⇔ 〈Fs, M〉 →∗ 〈Id, V 〉.

Proof By Lemma 4.1 Fs[M ] is closed. Assume Fs[M ] ⇓n V then by Lemma 4.8, 〈Id,Fs[M ]〉 →∗

〈Id, V 〉. By Lemma 4.4, 〈Id,Fs[M ]〉 →∗ 〈Fs, M〉. As the system is deterministic and 〈Id, V 〉 is
stuck, 〈Id,Fs[M ]〉 →∗ 〈Fs, M〉 →∗ 〈Id, V 〉. Thus 〈Fs, M〉 →∗ 〈Id, V 〉.

The ⇐ is by induction on the length n of the derivation. Assume 〈Fs, M〉 →∗ 〈Id, V 〉.

If n = 0 then M = V and Fs = Id and as V = Id[V ] = Fs[M ], Fs[M ] ⇓n V .

If n > 0 then 〈Fs, M〉 → 〈Fs′, M ′〉 →∗ 〈Id, V 〉, 〈Fs′, M ′〉 →∗ 〈Id, V 〉 is a shorter derivation and
by Lemma 4.3 Fs′ and M ′ are closed and Fs′ : τ ′′ ( τ ′, M ′ : τ ′′ for some closed type τ ′′, thus
by induction Fs′[M ′] ⇓n V . By Lemma 4.7 Fs[M ] ⇓n V .

Corollary 4.10 For all closed terms M : τ ,

M ⇓n V ⇔ 〈Id, M〉 →∗ 〈Id, V 〉.

The next definition is very important as it gives an inductive definition of termination. This makes
it easier to prove theorems concerning termination, such as contextual equivalence of terms, etc.

Keeping the evaluation relation using frame stacks in mind, the definition is not surprising.

Definition Let ↘ be a relation on closed frame stacks and closed terms given by

base
〈Id, V 〉 ↘

app1

〈Fs ◦ −M2, M1〉 ↘

〈Fs, M1M2〉 ↘
spec1

〈Fs ◦ −τ, M〉 ↘

〈Fs, Mτ〉 ↘

rec1
〈Fs ◦ let !y = − in M2, M1〉 ↘

〈Fs, let !y = M1 in M2〉 ↘
spec2

〈Fs, M [τ/α]〉 ↘

〈Fs ◦ −τ, Λα.M〉 ↘

rec2
〈Fs, M2[(let !x =!(x = M : τ) in M)/y]〉 ↘

〈Fs ◦ let !y = − in M2, !(x = M : τ)〉 ↘
app2

〈Fs, M [M2/a]〉 ↘

〈Fs ◦ −M2, λa : τ.M〉 ↘

unit1
〈Fs ◦ let ∗ = − in M2, M1〉 ↘

〈Fs, let ∗ = M1 in M2〉 ↘
unit2

〈Fs, M2〉 ↘

〈Fs let ∗ = − in M2, ∗〉 ↘

tn1

〈Fs ◦ let a1 ⊗ a2 = − in M2, M1〉 ↘

〈Fs, let a1 ⊗ a2 = M1 in M2〉 ↘
tn2

〈Fs, M2[N1, N2/a1, a2]〉 ↘

〈Fs ◦ let a1 ⊗ a2 = − in M2, N1 ⊗N2〉 ↘

Remark Note how a derivation of ↘ is unique, thus we have rule inversion.

Lemma 4.11 For all closed terms M ∈ Term(τ) and closed frame stacks Fs : τ ( τ ′ such *
that 〈Fs, M〉 ↘, if 〈Fs, M〉 ↘ is derived from 〈Fs′, M ′〉 ↘ using the rules of the definition of
〈Fs, M〉 ↘ then Fs′ is closed of type τ ′′ ( τ ′ and M ′ is closed of type τ ′′ for some closed type
τ ′′.

Proof By induction of the derivation of 〈Fs, M〉 ↘.

The base case is vacuously true.

In the other cases Lemma 4.3 gives the result.

Lemma 4.12 For all closed terms M ∈ Term(τ) and closed frame stacks Fs : τ ( τ ′,

〈Fs, M〉 ↘⇔ ∃V ∈ V al(τ ′).〈Fs, M〉 →∗ 〈Id, V 〉

and 〈Id, M〉 ↘⇔ M ⇓n
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Proof We start with ⇒, by induction on 〈Fs, M〉 ↘.

base: Trivial as →∗ is reflexive.

app1: By Lemma 4.11 the induction hypothesis is applicable on 〈Fs◦−M2〉 ↘, thus by induction,
there exists a V ∈ V al(τ ′) such that 〈Fs ◦ −M2, M1〉 →∗ 〈Id, V 〉. As 〈Fs, M1M2〉 →
〈Fs ◦ −M2, M1〉, 〈Fs, M1M2〉 →∗ 〈Id, V 〉.

app2: We must have Fs = Fs′ ◦−M1 and M = λa : τ.M ′ for some Fs′, M1, τ, M
′. By induction,

∃V.〈Fs′, M ′[M1/a]〉 →∗ 〈Id, V 〉. Hence

〈Fs′ ◦ −M1, λa : τ.M ′〉 → 〈Fs′, M ′[M1/a]〉 →∗ 〈Id, V 〉.

The other cases goes just like the three cases given above.

Now to ⇐, which we prove by induction on the number of reductions in 〈Fs, M〉 →∗ 〈Id, V 〉.

n = 0: We must have Fs = Id and M = V , so by the base rule we have 〈Fs, M〉 ↘.

n > 0: We must have at least one reduction so we proceed by case analysis of the first reduction
step:

Assume the first reduction step is

〈Fs, let !y = M1 in M2〉 → 〈Fs ◦ let !y = − in M2, M1〉.

By Lemma 4.3 the induction hypothesis is applicable on 〈Fs ◦ let !y = − in M2, M1〉, thus
〈Fs ◦ let !y = − in M2, M1〉 ↘, and 〈Fs, M〉 ↘.

The other cases are similar.

The last bit is obvious from Corollary 4.10.

The next lemma expresses that termination is not affected by evaluation, that is, given a term
that terminates, anything that term evaluates to also terminates. Likewise, given a term that
terminates, anything that evaluates to that term also terminates. This is not surprising as the
semantics is deterministic.

Lemma 4.13 For all closed frame stacks Fs : τ ( τ ′′, Fs′ : τ ′ ( τ ′′ and closed terms M : τ ,
M ′ : τ ′,

〈Fs, M〉 →∗ 〈Fs′, M ′〉 ⇒ (〈Fs, M〉 ↘⇔ 〈Fs′, M ′〉 ↘).

Moreover M ⇓n V ⇒ (〈Fs, M〉 ↘⇔ 〈Fs, V 〉 ↘).

Proof By induction on the length n of the derivation →∗. If n = 0 then there is nothing to prove
as Fs = Fs′ and M = M ′. If n > 0 then we proceed by case analysis of the first evaluation step:

(i) Fs = Fs′′ ◦ −M2 for some Fs′′, M2 and M = λa : τ1.M1. Then

〈Fs, M〉 = 〈Fs′′ ◦ −M2, λa : τ1.M1〉 → 〈Fs′′, M1[M2/a]〉 →∗ 〈Fs′, M ′〉.

Assume 〈Fs′′ ◦ −M2, λa : τ1.M1〉 ↘. Then 〈Fs′′, M1[M2/a]〉 ↘ and Fs′′, M1[M2/a] are
closed, thus by induction, 〈Fs′, M ′〉 ↘. The ⇐ is proved in the same way.

(ii) The other cases are just like the one above.

By Lemma 4.8 we get the last bit.
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Lemma 4.14 For all closed frame stacks Fs : τ ( τ ′ and closed terms M : τ , 〈Id,Fs[M ]〉 ↘⇔
〈Fs, M〉 ↘ and 〈Fs, M〉 ↘⇔ Fs[M ] ⇓n.

Proof By Lemma 4.4 〈Id,Fs[M ]〉 →∗ 〈Fs, M〉, thus by Lemma 4.13, 〈Id,Fs[M ]〉 ↘⇔ 〈Fs, M〉 ↘.
By Lemma 4.12 〈Id,Fs[M ]〉 ↘⇔ Fs[M ] ⇓n.

The next theorem is the heart of contextual equivalence in Lily. This is so because it states that
the call-by-value and the call-by-name semantics coincide when observing terms of exponential
type. This is the first non-obvious theorem so far and it shows the power of the type system, as
in the next lemma the base case is handled entirely by it and the other cases are handled almost
directly by the induction hypothesis.

The intuition for why this theorem holds, is the following. Assume N [M/a] ⇓n V :!τ . Then V
must be a thunk and this thunk must be a residual of one of the original thunks in N [M/a]. Since
none of those thunks have free linear variables the residual thunk must have had all the terms
substituted into such variables evaluated.

Theorem 4.15 (Strictness Theorem) For all τ ′, τ ∈ Typ, M ∈ Term(τ), and open terms,
such that ∅; a : τ `∅ N :!τ ′

N [M/a] ⇓n⇔ ∃V.M ⇓s V ∧N [V/a] ⇓n (4.1)

The proof of the theorem (see page 19) is obtained by a series of lemmas.

Lemma 4.16 For all frame stacks Fs and terms M , flv(M) ⊆ flv(Fs[M ]). *

Proof By induction on Fs.

If Fs = Id then Fs[M ] = M thus flv(Fs[M ]) = flv(M).

If Fs = Fs′ ◦ F for some frame stack Fs′ and frame F then as Fs[M ] = Fs′[F [M ]] and F [M ]
is a term, by induction flv(F [M ]) ⊆ flv(Fs[M ]). As no frame binds variables in the hole
flv(M) ⊆ flv(F [M ]) and flv(M) ⊆ flv(Fs[M ]).

Lemma 4.17 For all terms M , type environments Γ, ∆ and types τ . *

Γ; ∆ `~α M : τ ⇒ flv(M) = dom(∆).

Proof By induction on Γ; ∆ `~α M : τ . We have the following cases of the derivation of Γ; ∆ `~α

M : τ .

M ≡ x Here ∆ = ∅ and flv(M) = ∅ = dom(∆).

M ≡ a Here ∆ = a : τ and flv(M) = {a} = dom(∆)

M ≡ λa : σ.M ′ By induction flv(M ′) = dom(∆) ∪ {a}. Now flv(λa : σ.M ′) = dom(∆) as
a /∈ dom(∆).

M ≡ M1M2 By induction flv(M1) = dom(∆1) and flv(M2) = dom(∆2) where ∆ = ∆1, ∆2 and
dom(∆1) ∩ dom(∆2) = ∅. Now flv(M) = flv(M1) ∪ flv(M2) = dom(∆1) ∪ dom(∆2) =
dom(∆).

M ≡ Λα.M ′ By induction flv(M ′) = dom(∆), thus as flv(M ′) = flv(Λα.M ′), flv(Λα.M ′) =
dom(∆).

M ≡ M ′τ ′ By induction flv(M ′) = dom(∆), thus flv(M) = dom(∆).
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M ≡!(x = M ′ : σ) Here ∆ = ∅ and by induction flv(M ′) = ∅, thus flv(M) = ∅ = dom(∆).

M ≡ let !x = M1 in M2 By induction flv(M1) = dom(∆1) and flv(M2) = dom(∆2) for some
∆1, ∆2 such that ∆1, ∆2 = ∆. As flv(M) = flv(M1) ∪ flv(M2), flv(M) = dom(∆1) ∪
dom(∆2) = dom(∆1, ∆2).

M ≡ ∗ Here ∆ = ∅ and flv(∗) = ∅ = dom(∆).

M ≡ let ∗ = M1 in M2 By induction flv(M1) = dom(∆1) and flv(M2) = dom(∆2) for some
∆1, ∆2 such that ∆ = ∆1, ∆2. Thus flv(M) = flv(M1)∪flv(M2) = dom(∆1)∪dom(∆2) =
dom(∆).

M ≡ M1 ⊗M2 By induction flv(M1) = dom(∆1) and flv(M2) = dom(∆2) for some ∆1, ∆2 such
that ∆ = ∆1, ∆2. Thus flv(M) = flv(M1) ∪ flv(M2) = dom(∆1) ∪ dom(∆2) = dom(∆).

M ≡ let a1 ⊗ a2 = M1 in M2 By induction flv(M1) = dom(∆1) and flv(M2) = dom(∆2) ∪
{a1, a2} where ∆ = ∆1, ∆2 and a 6= b and a, b /∈ dom(∆1) ∪ dom(∆2). As flv(M) =
flv(M1) ∪ (flv(M2)\{a, b}), flv(M) = dom(∆).

Lemma 4.18 For all terms M , type environments Γ, ∆, frame stacks Fs and types τ . *

Γ; ∆ `~α Fs[M ] : τ ∧ flv(M) = dom(∆) ⇒ ∃τ ′.Γ; ∆ `~α M : τ ′

Proof By induction on Fs.

If Fs = Id then the result is trivial.

If Fs = Fs′ ◦ F for some frame stack Fs′ and frame F , then

dom(∆) = flv(M)
∗
⊆ flv((Id◦F)[M ]) = flv(F [M ])

∗
⊆ flv(Fs′[F [M ]]) = flv(Fs[M ])

?
= dom(∆).

∗ by Lemma 4.16 and ? by Lemma 4.17. Thus flv(F [M ]) = dom(∆).

By induction there exists a τ ′′ such that Γ; ∆ `~α F [M ] : τ ′′. By inspection and Lemma 4.17,
Γ; ∆ `~α M : τ ′ for some τ ′.

Lemma 4.19 For all terms M , type environments ∆, frame stacks Fs and types τ . *

∅; ∆ `∅ Fs[M ] : τ ∧ flv(M) = dom(∆) ⇒ ∃τ ′.∅; ∆ `∅ M : τ ′ ∧ Fs : τ ′ ( τ

Proof By induction on Fs.

If Fs = Id then the result is trivial.

If Fs = Fs′ ◦ F for some frame stack Fs′ and frame F then as in the proof of Lemma 4.18,
flv(F [M ]) = dom(∆), thus by Lemma 4.18, ∅; ∆ `∅ F [M ] : τ ′′ for some τ ′′. By inspection and
Lemma 4.17, ∅; a : τ ′ `∅ F [a] : τ ′′. By induction Fs′ is closed of type τ ′′ ( τ , thus Fs is closed
of type τ ′ ( τ .

Corollary 4.20 For all frame stacks Fs and types τ, τ ′. *

∅; a : τ `∅ Fs[a] : τ ′ ⇒ Fs : τ ( τ ′.

Lemma 4.21 For all frame stacks Fs, terms M , type environments ∆, Γ, set of type variables ~α *
and types τ ′,

Γ; ∆ `~α Fs[M ] : τ ′ ⇒ ∃∆1, ∆2, τ.∆ = ∆1, ∆2 ∧ Γ; ∆1 `~α M : τ ∧ Γ; ∆2, a : τ `~α Fs[a] : τ ′.

Where a is a fresh linear variable and dom(∆1) ∩ dom(∆2) = ∅.
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Proof By induction on Fs.

If Fs = Id then Γ; ∆ `~α M : τ ′, thus letting τ = τ ′, ∆1 = ∆ and ∆2 = ∅, then by Lemma 3.7

Γ; ∆1 `~α M : τ ∧ Γ; ∆2, a : τ `~α Id[a] : τ ′.

If Fs = Fs′ ◦ F then Γ, ∆ `~α Fs′[F [M ]] : τ ′. By induction there exists ∆1, ∆2 = ∆ and a type
τ ′′ such that Γ; ∆1 `~α F [M ] : τ ′′, Γ; ∆2, a : τ ′′ `~α Fs′[a] : τ ′ and dom(∆1) ∩ dom(∆2) = ∅, where
a is a fresh linear variable.

We have the following cases for F .

F = −σ: Here Γ; ∆1 `~α Mσ : τ ′′, thus by the typing rules Γ; ∆1 `~α M : τ and ftv(σ) ⊆ ~α. By
Lemma 3.7 Γ; ∅, a : τ `~α aσ : τ ′′ and as a is fresh, by the substitution lemma Γ; ∆2, a : τ `~α

Fs[a] : τ ′.

F = −M ′: Here Γ; ∆1 `~α MM ′ : τ ′′, thus by the typing rules Γ; ∆3 `~α M : τ and Γ; ∆4 `~α M ′ : σ
for some ∆3, ∆4, σ, τ such that τ = σ ( τ ′′, ∆3, ∆4 = ∆1 and dom(∆3) ∩ dom(∆4) = ∅.
By Lemma 3.7 and the typing rules Γ; ∆4, b : τ `~α bM ′ : τ ′′ for some fresh b, and by the
substitution lemma Γ; ∆2, ∆4, b : τ `~α Fs′[bM ′] : τ ′. Thus Γ; ∆2, ∆4, b : τ `~α Fs[b]. It is an
easy check to see that dom(∆2, ∆4, b : τ) ∩ dom(∆3) = ∅.

The other cases are similar to the two above.

Lemma 4.22 For all types τ, τ ′ ∈ Typ, frame stacks Fs, evaluation frames F and terms M such *
that ∅; a : τ `∅ (Fs ◦ F)[M ] : τ ′.

If F = −σ and M = Λα.N then ∅; a : τ `∅ Fs[N [σ/α]] : τ ′.

If F = −N2 and M = λa : σ.N1 then ∅; a : τ `∅ Fs[N1[N2/a]] : τ ′.

If F = let !y = − in N2 and M =!(x = N1 : σ) then

∅; a : τ `∅ Fs[N2[(let !x =!(x = N1 : σ) in N1)/y]] : τ ′.

If F = let ∗ = − in N2 and M = ∗ then ∅; a : τ `∅ Fs[N2] : τ ′.

If F = let a1 ⊗ a2 = − in N3 and M = N1 ⊗N2 then ∅; a : τ `∅ Fs[N3[N1, N2/a1, a2]] : τ ′.

Proof If F = −σ and M = Λα.N then by Lemma 4.21 either ∅; ∅ `∅ (Λα.N)σ : τ ′′ and ∅; a : τ, b :
τ ′′ `∅ Fs[b] : τ ′ or ∅; a : τ `∅ (Λα.N)σ : τ ′′ and ∅; b : τ ′′ `∅ Fs[b] : τ ′.

In the first case ∅; ∅ `∅ Λα.N : ∀α.σ′, ftv(σ) = ∅ and τ ′′ = σ′[σ/α], thus ∅; ∅ `{α} N : σ′.
By the substitution lemma ∅; ∅ `∅ N [σ/α] : σ′[σ/α] = τ ′′ and again by the substitution lemma
∅; a : τ `∅ Fs[N [σ/α]] : τ ′.

In the latter case ∅; a : τ `∅ Λα.N : ∀α.σ′, σ′[σ/α] = τ ′′, ftv(σ) = ∅ and by Lemma 3.7
ftv(τ) = ∅. Thus ∅; a : τ `{α} N : σ′, by the substitution lemma ∅; a : τ [σ/α] `∅ N [σ/α] : σ′[σ/α]
whence (remembering ftv(τ) = ∅) ∅; a : τ `∅ N [σ/α] : τ ′′ and again by the substitution lemma
∅; a : τ `∅ Fs[N [σ/α]] : τ ′.

If F = −N2 and M = λc : σ.N1 then by Lemma 4.21, either ∅; ∅ `∅ (λc : σ.N1)N2 : τ ′′ and
∅; a : τ, b : τ ′′ `∅ Fs[b] : τ ′ or ∅; a : τ `∅ (λc : σ.N1)N2 : τ ′′ or ∅; b : τ ′′ `∅ Fs[b] : τ ′.

In the first case ∅; ∅ `∅ λc : σ.N1 : σ ( τ ′′, ∅; ∅ `∅ N2 : σ and ∅; a : τ, b : τ ′′ `∅ Fs[b] : τ ′.
Thus ∅; c : σ `∅ N1 : τ ′′ and by the substitution lemma ∅; ∅ `∅ N1[N2/c] : τ ′′ and again by the
substitution lemma ∅; a : τ `∅ Fs[N1[N2/c]] : τ ′.

In the second case either ∅; a : τ `∅ λc : σ.N1 : σ ( τ ′′, ∅; ∅ `∅ N2 : σ and ∅; b : τ ′′ `∅ Fs[b] : τ ′

or ∅; ∅ `∅ λc : σ.N1 : σ ( τ ′′, ∅; a : τ `∅ N2 : σ and ∅; b : τ ′′ `∅ Fs[b] : τ ′. In the former case
∅; a : τ, c : σ `∅ N1 : τ ′′ and ∅; ∅ `∅ N2 : σ. By the substitution lemma ∅; a : τ `∅ N1[N2/c] : τ ′′ and
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again by the substitution lemma ∅; a : τ `∅ Fs[N1[N2/c]] : τ ′. In the later case ∅; c : σ `∅ N1 : τ ′′

and ∅; a : τ `∅ N2 : σ. Thus by the substitution lemma ∅; a : τ `∅ N1[N2/c] : τ ′′ and again by the
substitution lemma ∅; a : τ `∅ Fs[N1[N2/c]] : τ ′.

The other cases are similar.

Lemma 4.23 For all closed frame stacks Fs and terms N, M such that M ∈ Term(τ), ∅; a : τ `∅ †
N : τ ′ and (Fs[N ])[M/a] ∈ Term(!τ ′′) for some closed type τ ′′,

(Fs[N ])[M/a] ⇓n⇒ ∃V.M ⇓s V ∧ (Fs[N ])[V/a] ⇓n .

Proof I will prove

∀τ, τ ′, τ ′′ ∈ Typ.∀M ∈ Term(τ).∀Fs.∀N.∀a.

∅; a : τ `∅ Fs[N ] :!τ ′′ ∧ Fs[M/a] : τ ′ (!τ ′′∧

N [M/a] ∈ Term(τ ′) ∧ 〈Fs[M/a], N [M/a]〉 ↘

⇒ (∃V ∈ V al(τ).M ⇓s V ∧ Fs[V/a], N [V/a]〉 ↘ ∧

M /∈ V al(τ) ⇒ h(〈Fs[V/a], N [V/a]〉 ↘) < h(〈Fs[M/a], N [M/a]〉 ↘))

where h(− ↘) is the hight of the derivation of − ↘. This is shown by complete induction on the
height of the derivation of 〈Fs[M/a], N [M/a]〉 ↘. Finally by Lemma 4.14 and 4.12 we get the
result.

Assume the height is 1. A derivation of height 1 must be a derivation using only the base rule.
Here Fs[M/a] = Id and N [M/a] = V , for some V ∈ V al(!τ ′). As ∅; a : τ `∅ N :!τ ′′, N must be a
thunk or the variable a. The first case cannot be, as thunks have no free linear variables. In the
second case, M must be a value, but then the theorem is trivial.

Assume the height is n > 1. If M is a value then the theorem is trivial, thus we can assume M is
not a value. We then have the following cases for the last rule applied in the derivation.

app1: Here either N = a or not. In the later case N = N1N2 for some N1, N2. Thus 〈(Fs ◦
−N2)[M/a], N1[M/a]〉 ↘. By Lemma 4.11 (Fs ◦−N2)[M/a] is closed of some type σ (!τ ′′

and N1[M/a] is closed of type σ for some closed type σ. As (Fs ◦ −N2)[N1] = Fs[N1N2] =
Fs[N ], ∅; a : τ `∅ (Fs ◦ −N2)[N1] :!τ ′′. By induction

∃V.M ⇓s V ∧ 〈(Fs ◦ −N2)[V/a], N1[V/a]〉 ↘ ∧

h(〈(Fs ◦ −N2)[M/a], N1[M/a]〉 ↘) > h(〈(Fs ◦ −N2)[V/a], N1[V/a]〉 ↘).

Hence ∃V.M ⇓s V ∧ 〈Fs[V/a], (N1N2)[V/a]〉 ↘ and

h(〈Fs[M/a], (N1N2)[M/a]〉 ↘) > h(〈Fs[V/a], (N1N2)[V/a]〉 ↘).

In the former case we must have M = M1M2 and by Lemma 4.20 Fs is closed, thus
〈Fs, M1M2〉 ↘. If M1 = V1 = λb : σ.M ′

1 and M2 = V2 are both values then 〈Fs, (λb :
σ.M ′

1)V2〉 ↘, thus 〈Fs, c[(M ′
1[V2/b])/c]〉 ↘ where c is a fresh linear variable of type τ . By the

substitution theorem ∅; c : τ `∅ Fs[c] : τ ′′. By induction 〈Fs, V 〉 ↘, where M ′
1[V2/b] ⇓s V .

As V2 ⇓s V2 and V1 ⇓s λb : σ.M ′
1, we get V1V2 ⇓s V . Now

h(〈Fs, M1M2〉 ↘) = h(〈Fs, (λb : σ.M ′
1)M2〉 ↘) = h(〈Fs, M ′

1[V2/b]〉 ↘) + 2,

thus if M ′
1[V2/b] is a value then we clearly have the height condition. If it is not a value then

h(〈Fs, M1M2〉 ↘) = h(〈Fs, M ′
1[V2/b]〉 ↘) + 2 > h(〈Fs, V 〉 ↘) + 2 > h(〈Fs, V 〉 ↘),

thus the condition is satisfied.
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If M1 is not a value then 〈Fs, (M1V2)〉 ↘, thus 〈Fs ◦ −V2, b[M1/b]〉 ↘ and by induction
〈Fs◦−V2, V1〉 ↘ and M1 ⇓s V1. 〈Fs, V1V2〉 ↘. By the height conditions of the induction we
see the induction hypothesis can be applied as before, thus 〈Fs, V 〉 ↘ and M1 ⇓s V1∧V1V2 ⇓s

V . Combining the strict evaluations gives the result.

If M1 = V1 is a value and M2 is not a value then 〈Fs, M1M2〉 = 〈Fs, (V1b)[M2/b]〉 for some
fresh linear variable b. By the reasoning above we get M2 ⇓s V2 and 〈Fs, V1V2〉 ↘ and
the induction hypothesis is applicable as above. Thus V1V2 ⇓s V and 〈Fs, V 〉 ↘, whence
M1M2 ⇓s V and a check as above ensures the height condition.

If neither M1 nor M2 are values, then 〈Fs, M1M2〉 ↘, thus 〈Fs ◦ −M2, b[M1/b]〉 ↘. By
induction M1 ⇓s V1 and 〈Fs ◦ −M2, V1〉 ↘ and the induction hypothesis is applicable as
before on 〈Fs, V1M2〉 ↘. Thus V1M2 ⇓s V 〈Fs, V 〉 ↘ As above we get M1M2 ⇓n V and
combining the strict evaluations gives the result.

spec1: If N 6= a then N = N ′τ for some N ′, thus 〈(Fs ◦ −τ)[M/a], N ′[M/a]〉 ↘. By induction

∃V.M ⇓s V ∧ 〈(Fs ◦ −τ)[V/a], N ′[V/a]〉 ↘ ∧

h(〈Fs ◦ −τ)[V/a], N ′[V/a]〉 ↘) < h(〈Fs ◦ −τ)[M/a], N ′[M/a]〉 ↘)

Hence

∃V.M ⇓s V ∧ 〈Fs[V/a], (N ′τ)[V/a]〉 ↘ ∧

h〈Fs[V/a], (N ′τ)[V/a]〉 ↘) < h〈Fs[M/a], (N ′τ)[M/a]〉 ↘).

If N = a then M = M1σ and 〈Fs, M1σ〉 ↘ for some closed term M1 and type σ. If
M1 = V1 = Λα.M ′

1 is a value then 〈Fs, b[(M ′
1[σ/α])/b]〉 ↘, where b is a fresh linear variable.

By induction M ′
1[σ/α] ⇓s V and 〈Fs, V 〉 ↘. Combining the strict evaluations gives the

result.

If M1 is not a value then 〈Fs◦−σ, b[M1/b]〉 ↘ and by induction ∃V.M1 ⇓s V ∧〈Fs◦−σ, V1〉 ↘,
thus 〈Fs, V1σ〉 ↘ and the induction hypothesis is applicable as before. Combining the strict
evaluations gives the result.

rec1: If N 6= a then N = let !y = N1 in N2 for some N1, N2, thus

〈(Fs ◦ let !y = − in N2)[M/a], N1[M/a]〉 ↘ .

By induction

∃V.M ⇓s V ∧ 〈(Fs ◦ let !y = − in N2)[V/a], N1[V/a]〉 ↘ ∧

h(〈(Fs ◦ let !y = − in N2)[V/a], N1[V/a]〉 ↘) <

h(〈(Fs ◦ let !y = − in N2)[M/a], N1[M/a]〉 ↘).

Hence ∃V.M ⇓s V ∧ 〈Fs[V/a], (let !y = N1 in N2)[V/a]〉 ↘, and

h(〈Fs[V/a], (let !y = N1 in N2)[V/a]〉 ↘) <

h(〈Fs[M/a], (let !y = N1 in N2)[M/a]〉 ↘).

If N = a then M = let !y = M1 in M2 for some closed terms M1 and M2 and 〈Fs, let !y =
M1 in M2〉 ↘. Thus 〈Fs ◦ let !y = − in M2, M1〉 ↘. If M1 = V2 =!(x = M ′

1 : τ) is a
value then 〈Fs, b[M2[fix y : τ.M ′

1/y]/b]〉 ↘, thus by induction M2[fix y : τ.M ′
1/y] ⇓s V and

〈Fs, V 〉 ↘. Combining the strict evaluations and computing the height gives the result.

If M1 is not a value then 〈Fs ◦ let !y = − in M2, b[M1/b]〉 ↘. By induction M1 ⇓s V1,
〈Fs ◦ let !y = − in M2, V1〉 ↘ and the induction hypothesis is applicable on 〈Fs, let !y =
V1 in M2〉 ↘. Thus let !y = V1 in M2 ⇓s V and 〈Fs, V 〉 ↘. Combining the strict evaluations
and computing the height gives the result.
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unit1: If N 6= a then N = let ∗ = N1 in N2 for some N1, N2, thus

〈(Fs ◦ let ∗ = − in N2)[M/a], N1[M/a]〉 ↘ .

By induction

∃V.M ⇓s V ∧ 〈(Fs ◦ let ∗ = − in N2)[V/a], N1[V/a]〉 ↘ ∧

h(〈(Fs ◦ let ∗ = − in N2)[V/a], N1[V/a]〉 ↘) <

h(〈(Fs ◦ let ∗ = − in N2)[M/a], N1[M/a]〉 ↘).

Hence ∃V.M ⇓s V ∧ 〈Fs[V/a], (let ∗ = N1 in N2)[V/a]〉 ↘, and

h(〈Fs[V/a], (let ∗ = N1 in N2)[V/a]〉 ↘) <

h(〈Fs[M/a], (let ∗ = N1 in N2)[M/a]〉 ↘).

If N = a then M = let ∗ = M1 in M2 for some closed terms M1 and M2 and 〈Fs, let ∗ =
M1 in M2〉 ↘. Thus 〈Fs ◦ let ∗ = − in M2, M1〉 ↘. If M1 = V2 is a value then
〈Fs, b[M2/b]〉 ↘, thus by induction M2 ⇓s V and 〈Fs, V 〉 ↘. Combining the strict evalua-
tions and computing the height gives the result.

If M1 is not a value then 〈Fs ◦ let ∗ = − in M2, b[M1/b]〉 ↘. By induction M1 ⇓s V1 and
〈Fs ◦ let ∗ = − in M2, V1〉 ↘ and the induction hypothesis is applicable on 〈Fs, let ∗ =
V1 in M2〉 ↘. Thus let ∗ = V1 in M2 ⇓s V and 〈Fs, V 〉 ↘. Combining the strict evaluations
and computing the height gives the result.

tn1: If N 6= a then N = let a1 ⊗ a2 = N1 in N2 for some N1, N2, thus

〈(Fs ◦ let a1 ⊗ a2 = − in N2)[M/a], N1[M/a]〉 ↘ .

By induction

∃V.M ⇓s V ∧ 〈(Fs ◦ let a1 ⊗ a2 = − in N2)[V/a], N1[V/a]〉 ↘ ∧

h(〈(Fs ◦ let a1 ⊗ a2 = − in N2)[V/a], N1[V/a]〉 ↘) <

h(〈(Fs ◦ let a1 ⊗ a2 = − in N2)[M/a], N1[M/a]〉 ↘).

Hence ∃V.M ⇓s V ∧ 〈Fs[V/a], (let a1 ⊗ a2 = N1 in N2)[V/a]〉 ↘, and

h(〈Fs[V/a], (let a1 ⊗ a2 = N1 in N2)[V/a]〉 ↘) <

h(〈Fs[M/a], (let a1 ⊗ a2 = N1 in N2)[M/a]〉 ↘).

If N = a then M = let a1 ⊗ a2 = M1 in M2 for some closed terms M1 and M2 and
〈Fs, let a1 ⊗ a2 = M1 in M2〉 ↘. Thus 〈Fs ◦ let a1 ⊗ a2 = − in M2, M1〉 ↘. If
M1 = V1 = (M ′

1 ⊗M ′
2) is a value then 〈Fs, b[(M2[M

′
1, M

′
2/a1, a2])/b]〉 ↘, thus by induction

M2[M
′
1, M

′
2/a1, a2] ⇓s V and 〈Fs, V 〉 ↘. Combining the strict evaluations and computing

the height gives the result.

If M1 is not a value then 〈Fs ◦ let a1⊗ a2 = − in M2, b[M1/b]〉 ↘. By induction M1 ⇓s V1

and 〈Fs ◦ let a1 ⊗ a2 = − in M2, V1〉 ↘ and the induction hypothesis is applicable on
〈Fs, let a1 ⊗ a2 = V1 in M2〉 ↘. Thus let a1 ⊗ a2 = V1 in M2 ⇓s V and 〈Fs, V 〉 ↘.
Combining the strict evaluations and computing the height gives the result.

spec2: In all the ?2 cases N = a is vacuously true, thus it is safe to assume N 6= a. In this
case Fs[M/a] = (Fs′ ◦ −σ)[M/a] for some Fs′, σ and N = Λα.N ′ for some N ′. Thus
〈Fs′[M/a], (N ′[σ/α])[M/a]〉 ↘. By Lemma 4.22, ∅; a : τ `∅ Fs′[N ′[σ/α]] :!τ ′′. By induction

∃V.M ⇓s V ∧ 〈Fs′[V/a], (N ′[σ/α])[V/a]〉 ↘ .

Hence ∃V.M ⇓s V ∧ 〈(Fs′ ◦ −σ)[V/a], (Λα.N ′)[V/a]〉 ↘. From the induction the height
condition is clearly satisfied.
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rest: As the height is larger than one we cannot have the base rule as the last rule used in the
derivation. Thus there is only ?2 rules left. These are all handled as the spec2 case using
the specially tailored Lemma 4.22.

The following definition defines an equivalence relation on terms that coincide with contextual
equivalence. This is not a big surprise in view of Lemma 4.12, but when generalized to open terms
this becomes non-trivial as the next section shows.

Definition (ciu equivalence on closed terms) Let M, M ′ be closed terms of type τ ∈ Typ. †
Then M ≤ciu M ′ : τ if and only if, for all types τ ′ ∈ Typ and frame stacks Fs : τ (!τ ′,

〈Fs, M〉 ↘⇒ 〈Fs, M ′〉 ↘ .

Further more we define M =ciu M ′ : τ ⇔ M ≤ciu M ′ : τ ∧M ′ ≤ciu M : τ .

Lemma 4.24 Let M, M ′ ∈ Term(τ), M ≤ciu M ′ : τ and N be a term such that N [M/m] ∈ *
Term(τ ′). Then N [M/m] ≤ciu N [M ′/m] : τ ′.

Proof I will prove for all closed terms N [M/m] : τ ′ and closed frame stacks Fs[M/m] : τ ′ (!τ ′′.

〈Fs[M/m], N [M/m]〉 ↘⇒ 〈Fs[M ′/m], N [M ′/m]〉 ↘

by induction on 〈Fs[M/m], N [M/m]〉 ↘.

Assume N 6= m.

base: Here Fs[M/m] = Id = Fs[M ′/m] and N [M/m] is a value. Thus N [M ′/m] is also a value.

app1: Here N [M/m] = (N1N2)[M/m] for some N1, N2. By ↘, 〈(Fs ◦N2)[M/m], N1[M/m]〉 ↘.
By Lemma 4.11 (Fs ◦ N2)[M/m] is closed of type σ (!τ ′′ for some closed type σ and
N1[M/m] is closed of type σ. By induction 〈(Fs ◦ N2)[M

′/m], N1[M
′/m]〉 ↘ and by ↘,

〈Fs[M ′/m], N1N2[M
′/m]〉 ↘.

app2: Here Fs[M/m] = (Fs′ ◦ −N2)[M/m] and N [M/m] = (λa : τ ′′.N1)[M/m] for some
Fs′, N2, N1. By ↘, 〈Fs′[M/m], (N1[N2/a])[M/m]〉 ↘. By Lemma 4.11 Fs′[M/m] is closed
of some type σ and (N1[N2/a])[M/m] is closed of type σ. By induction 〈Fs′[M ′/m], (N1[N2/a])[M ′/m]〉 ↘
and by ↘, 〈Fs[M ′/m], (λa : τ ′′.N1)[M

′/m]〉 ↘.

The other cases are proved by the same reasoning.

If N = m then as M is closed M [M/m] = M 6= m and 〈Fs[M/m], M [M/m]〉 ↘, thus as above
〈Fs[M ′/m], M [M ′/m]〉 ↘ and by ≤ciu, 〈Fs[M ′/m], M ′〉 ↘.

Theorem 4.25 (ciu theorem for closed terms) For all closed terms M, M ′ : τ , types τ ′ ∈ †
Typ and closed frame stacks Fs : τ (!τ ′.

M =ciu M ′ : τ ⇔ (〈Fs, M〉 ↘⇔ 〈Fs, M ′〉 ↘) ⇔ M =gnd M ′ : τ.

Proof Given m, N, τ ′ such that m : τ ; ∅ `∅ N :!τ ′ or ∅; m : τ `∅ N :!τ ′. Assume N [M/m] ⇓n, then
〈Id, N [M/m]〉 ↘. By Lemma 4.24 〈Id, N [M ′/m]〉 ↘, thus N [M ′/m] ⇓n and M ′ =gnd M : τ .

Given a frame stack Fs : τ (!τ ′ assume 〈Fs, M〉 ↘. By Lemma 4.1, ∅; a : τ `∅ Fs[a] :!τ ′. By
Lemma 4.14 Fs[M ] ⇓n. By contextual equivalence of M and M ′, (Fs[a])[M/a] = Fs[M ] ⇓n⇔
Fs[M ′] ⇓n, thus Fs[M ′] ⇓n and by Lemma 4.14, 〈Fs, M〉 ↘.

Hence =gnd and =ciu coincide.
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Lemma 4.26 On the conditions of Theorem 4.15

N [M/a] ⇓n⇐ ∃V.M ⇓s V ∧N [V/a] ⇓n .

Proof Given M ⇓s V ⇒ N [M/a] =ciu N [V/a] :!τ ′, assume ∃V.M ⇓s V . Then Fs[N [M/a]] ⇓n⇔
Fs[N [V/a]] ⇓n for all closed frame stacksFs :!τ ′ (!τ ′′, thus in particular N [M/a] ⇓n⇔ N [V/a] ⇓n.
Assume N [V/a] ⇓n then N [M/a] ⇓n.

Hence M ⇓s V ⇒ N [M/a] =ciu N [V/a] :!τ ′ is the only thing left. By lemma 4.24 it is enough to
prove M ⇓s V ⇒ M =ciu V : τ . This is proved by induction on M ⇓s V . The only interesting
case is when M = M1M2. By induction M1 =ciu λa : τ.M ′ : τ ′′ ( τ , M2 =ciu V2 : τ ′′ and
M ′[V2/a] =ciu V : τ . Thus given a frame stack Fs :!τ ′ (!τ ′′′

〈Fs, M1M2〉 ↘⇔〈Fs ◦ −M2, M1〉 ↘

⇔〈Fs ◦ −M2, λa : τ.M ′〉 ↘

⇔〈Fs, M ′[M2/a]〉 ↘

By lemma 4.24, 〈Fs, M ′[V2/a]〉 ↘. Hence M1M2 =ciu V : τ .

Proof of the Strictness theorem (4.15) Letting Fs = Id in Lemma 4.23 we get ⇒, and
Lemma 4.26 gives ⇐.

Remark In the strictness theorem it is very important that we only consider termination of terms
of type !τ for some τ ∈ Typ, since for other types the base case of Lemma 4.23 breaks, as the next
example shows.

Lemma 4.27 Let Ω = let !x =!(x = x : ∀α.α) in x, then for any τ ∈ Typ, ∅; ∅ `∅ Ωτ : τ and Ωτ
diverges under call-by-name evaluation.

Proof This is a derivation of ∅; ∅ `∅ Ωτ : τ .

Let d be
ftv(x : ∀α.α) = ftv(∀α.α) = ∅ ⊆ ∅

x : ∀α.α; ∅ `∅ x : ∀α.α

d
∅; ∅ `∅!(x = x : ∀α.α) : ∀α.α d

∅; ∅ `∅ let !x =!(x = x : ∀α.α) in x : ∀α.α ftv(τ) ⊆ ∅

∅; ∅ `∅ (let !x =!(x = x : ∀α.α) in x)τ : τ

Assume Ωτ ⇓n V , for some value V , then there must be a least such derivation

!(x = x : ∀α.α) ⇓n!(x = x : ∀α.α) x[(let !x =!(x = x : ∀α.α) in x)/x] ⇓n V

let !x =!(x = x : ∀α.α) in x ⇓n V

but this cannot be as x[(let !x =!(x = x : ∀α.α) in x)/x] = let !x =!(x = x : ∀α.α) in x then has
an even smaller derivation.

Example Let E = λa : τ.λf : τ ( τ ′.fa. Now E(Ωτ) ⇓n but E(Ωτ)��⇓s.

The next theorem characterizes the fixed point construction in Lily. It does so by proving an
induction principle that allows us to reason about fixed points. The outline of this theorem
follows a similar theorem in [Pit00], but the proof is different.

19



Theorem 4.28 (Unwinding Theorem for Lily) Given a closed type τ ∈ Typ and a term M
such that x : τ ; ∅ `∅ M : τ we define:

fix0(M) = Ωτ

fixn(M) = M [fixn−1(M)/x]

Then for all closed types τ ′ and terms N such that m : τ ; ∅ `∅ N :!τ ′ or ∅; m : τ `∅ N :!τ ′,
N [fix x : τ.M/m] ⇓n⇔ ∃n.N [fixn(M)/m] ⇓n.

I will prove the Unwinding Theorem by a small series of lemmas.

Lemma 4.29 For all closed terms M : τ , Ωτ ≤ciu M : τ . *

Proof It is enough to show 〈Fs, Ωτ〉��↘ for all Fs : τ (!τ ′. Assuming 〈Fs, Ωτ〉 ↘ then by
Lemma 4.14 Fs[Ωτ ] ⇓n and by Lemma 4.6 Ωτ ⇓n V ′ ∧ Fs[V ′] ⇓n V for some V ′, but Ωτ��⇓n.

�

Lemma 4.30 For all closed types τ ∈ Typ and terms M such that x : τ ; ∅ `∅ M : τ , fixn(M) ∈ *
Term(τ).

Proof This is shown by induction on n. If n = 0 then fixn(M) = Ωτ and we are done by
Lemma 4.27. If n > 0 then fixn(M) = M [fixn−1(M)/x] and x : τ ; ∅ `∅ M : τ . By induction
fixn−1(M) ∈ Term(τ) and by the substitution lemma we are done.

Lemma 4.31 For all n and all terms M such that x : τ ; ∅ `∅ M : τ , fixn(M) ≤ciu fixn+1(M). *

Proof This is shown by induction on n. If n = 0 then fixn(M) = Ωτ , thus we have the result by
Lemma 4.30. If n > 0 then fixn(M) = M [fixn−1(M)] and by induction fixn−1(M) ≤ciu fixn(M),
thus by Lemma 4.24 we get the result.

Now I will prove the Unwinding Theorem (Theorem 4.28).

Proof Let us begin with ⇒. Here I will prove for all closed frame stacks Fs[fix x : τ.M/m] : †
τ ′ (!τ ′′ and terms N such that ∅; m : τ `∅ N : τ ′ or m : τ ; ∅ `∅ N : τ ′

〈Fs[fix x : τ.M/m], N [fix x : τ.M/m]〉 ↘⇒ ∃n ≥ 0.〈Fs[fixn(M)/m], N [fixn(M)/m]〉 ↘

by induction on ↘. Letting Fs = Id gives the result by lemma 4.12.

Assume N 6= m.

base: Here Fs = Id and N [fix x : τ.M/m] = V for some value V . As N 6= m, N [fixn(M)/m] is
also a value. As the computation is done, it is obvious that any n will do.

rec1: Here N must be let !y = N1 in N2 for some terms N1, N2. Assume

〈Fs[fix x : τ.M/m], (let !y = N1 in N2)[fix x : τ.M/m]〉 ↘ .

Then
〈(Fs ◦ let !y = − in N2)[fix x : τ.M/m], N1[fix x : τ.M/m]〉 ↘,

and by induction

∃n ≥ 0.〈(Fs ◦ let !y = − in N2)[fixn(M)/m], N1[fixn(M)/m]〉 ↘ .

Hence
∃n ≥ 0.〈Fs[fixn(M)/m], (let !y = N1 in N2)[fixn(M)/m]〉 ↘ .
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rec2: Here N must be a thunk !(z = N ′ : τ) for some N ′ and Fs must be Fs′ ◦ let !y = − in N2

for some N2,Fs′. Assume

〈(Fs′ ◦ let !y = − in N2)[fix x : τ.M/m], !(z = N ′ : τ)[fix x : τ.M/m]〉 ↘ .

Then
〈Fs′[fix x : τ.M/m], (N2[(fix z : τ.N ′)/y])[fix x : τ.M/m]〉 ↘

and by induction

〈Fs′[fixn(M)/m], (N2[(fix z : τ.N ′)/y])[fixn(M)/m]〉 ↘ .

Hence
〈(Fs′ ◦ let !y = − in N2)[fixn(M)/m], !(z = N ′ : τ)[fixn(M)/m]〉 ↘ .

The other cases are proved in the same way.

If N = m and M = x then I must show

〈Fs[fix x : τ.M/m],fix x : τ.x〉 ↘⇒ . . .

Assuming 〈Fs[fix x : τ.M/m],fix x : τ.x〉 ↘, then by ↘

〈Fs[fix x : τ.M/m], Ωτ〉 ↘,

but from the proof of Lemma 4.30 this cannot be. Thus the theorem holds vacuously in this case.

If N = m and M 6= x then 〈Fs[fix x : τ.M/m], (let !x =!(x = M : τ) in M)〉 ↘, thus by alpha
equivalence 〈Fs[fix x : τ.M/m], (let !m =!(x = M : τ) in M [m/x])〉 ↘. By rule inversion of
↘, 〈Fs[fix x : τ.M/m], (M [m/x])[fix x : τ.M/m]〉 ↘ and M [m/x] 6= m, thus we are in the case
above. Hence 〈Fs[fixn(M)/m], (M [m/x])[fixn(M)/m]〉 ↘ for some n. Now

(M [m/x])[fixn(M)/m] = M [fixn(M)/x] = fixn+1(M),

thus
〈Fs[fixn(M)/m],fixn+1(M)〉 ↘ .

and as fixn+1(M) is closed

〈Id,Fs[fixn+1(M)][fixn(M)/m]〉 ↘ .

As fixn(M) ≤ciu fixn+1(M),

〈Id,Fs[fixn+1(M)][fixn+1(M)/m]〉 ↘

and
〈Fs[fixn+1(M)/m],fixn+1(M)〉 ↘ .

Hence
∃n.〈Fs[fixn(M)/m], N [fixn(M)/m]〉 ↘ .

Now ⇐. By logic ∀n. (P (n) ⇒ Q) ≡ (∃n.P (n)) ⇒ Q, thus by the ciu theorem for closed terms, it
is equivalent to prove

〈Fs, N [fixn(M)/m]〉 ↘⇒ 〈Fs, N [fix x : τ.M/m]〉 ↘

for all n, closed frame stacks Fs : τ ′ (!τ ′′ and terms N such that m : τ ; ∅ `∅ N : τ ′ or
∅; m : τ `∅ N : τ ′.

I will proceed by induction on n.

21



If n = 0 then given Fs and N , assume 〈Fs, N [fixn(M)/m]〉 ↘. Then 〈Fs, N [Ωτ/m]〉 ↘. By
Lemma 4.29 and Lemma 4.24, N [Ωτ/m] ≤ciu N [fix x : τ.M/m], thus 〈Fs, N [fix x : τ.M/m]〉 ↘.

Assuming n > 0. First I will show 〈Fs,fixn(M)〉 ↘⇒ 〈Fs,fix x : τ.M〉 ↘ for all frame stacks
Fs : τ (!τ ′. Given Fs, as fixn(M) = M [fixn−1(M)/x], by induction

〈Fs,fixn(M)〉 ↘⇒ 〈Fs, M [fixn−1(M)/x]〉 ↘⇒ 〈Fs, M [fix x : τ.M/x]〉 ↘⇒ 〈Fs,fix x : τ.M〉 ↘

Thus fixn(M) ≤ciu fix x : τ.M : τ and the result follows from Lemma 4.24.

Definition The Y combinator is given by *

Y = fix x : ∀α.!(!α ( α) ( α.Λα.λf :!(!α ( α).let !f ′ = f in f ′!(xα(!f ′))

5 A logical relation

In this section I will introduce four binary relations and prove them to be equal. As one of those
is contextual equivalence, we get three other ways, to prove two terms contextual equivalent. The
outline of this section follows [Pit00], although as we have a different concept of test functions
and constructs not examined in [Pit00] (thunks, unit and tensor product), the details are very
different.

I will start by introducing an operation on binary relations from [BPR00]. As in [Pit00] and [Pit05]
this operation forms a Galois connection on relations. Again the proof details are quite different
compared to [Pit00] and [Pit05], as they use frame stacks instead of test functions.

Definition For all closed types τ ∈ Typ, let Test(τ) denote the set {λa : τ.M |∅; ∅ `∅ λa :
τ.M : τ (!τ ′} for some τ ′ ∈ Typ. For all closed types τ, τ ′ ∈ Typ, let Rel(τ, τ ′) =def {r|r ⊆
Term(τ)× Term(τ ′)}, and let Rel∗(τ, τ ′) =def {s|s ⊆ Test(τ)× Test(τ ′)}.

Given r ∈ Rel(τ, τ ′), let r> ∈ Rel∗(τ, τ ′)

r> =def {(V, V ′)|∀(M, M ′) ∈ r.V M ⇓n⇔ V ′M ′ ⇓n}

Given s ∈ Rel∗(τ, τ ′), let s> ∈ Rel(τ, τ ′)

s> =def {(M, M ′)|∀(V, V ′) ∈ s.V M ⇓n⇔ V ′M ′ ⇓n}

Lemma 5.1 Given relations r ∈ Rel(τ, τ ′) and s ∈ Rel∗(τ, τ ′), the operation (−)> forms a Galois
connection.

Proof We must show r ⊆ s> ⇔ s ⊆ r>. Assume r ⊆ s>. Given (V, V ′) ∈ s and (M, M ′) ∈ r we
have (M, M ′) ∈ s>, thus V M ⇓n⇔ V ′M ′ ⇓n. Hence (V, V ′) ∈ r>.

Assume s ⊆ r> and (M, M ′) ∈ r. Given (V, V ′) ∈ s, we have (V, V ′) ∈ r>, thus V M ⇓n⇔
V ′M ′ ⇓n. Hence (M, M ′) ∈ s>.

As we have shown that the operation (−)> gives a Galois connection, the consequences of this
results in the next lemma, which is just like in [Pit05].

Lemma 5.2 The operator (−)>> is monotone (−1 ⊆ −2 ⇒ (−1)
>> ⊆ (−2)

>>), inflationary

((−) ⊆ (−)>>) and idempotent
(

(−)>> = (−)>>
>>

)

. The operator (−)> is order reversing
(

−1 ⊆ −2 ⇒ (−1)
> ⊇ (−2)

>
)

.
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Proof As (−)> ⊆ (−)> we get from the Galois connection − ⊆ (−)>>. Assume −1 ⊆ −2,
then −1 ⊆ −2 ⊆ (−2)

>>, thus by the Galois connection (−2)
> ⊆ (−1)

>. As (−)> is order
reversing (−)>> is monotone. We have (−)>> ⊆ (−)>>, thus by the Galois connection we have
(−)> ⊆ (−)>>>. Hence (−)>> ⊇ (−)>>>> and we have (−)>> = (−)>>>>.

Lemma 5.3 (−)> = (−)>>>

Proof As (−)> form a Galois connection,

(−)> ⊆ (−)>>> ⇔ (−)>> ⊆ (−)>>

(−)> ⊇ (−)>>> ⇔ (−) ⊆ (−)>>>>
?
= (−)>>

? is by idempotentcy, thus as (−)> is inflationary the right hand side is true.

5.1 The ∆ relation

Next I will introduce the ∆ function as given in [BPR00]. The images of this function is a relation,
which I call the ∆ relation.

Definition Given r1 ∈ Rel(τ1, τ
′
1) and r2 ∈ Rel(τ2, τ

′
2), let r1 ( r2 ∈ Rel(τ1 ( τ2, τ

′
1 ( τ ′2) be

given by
r1 ( r2 =def {(M, M ′)|∀(M1, M

′
1) ∈ r1.(MM1, M

′M ′
1) ∈ r2}.

Given a family (R(r) ∈ Rel(τ [σ/α], τ ′[σ′/α′])|σ, σ′ ∈ Typ, r ∈ Rel(σ, σ′)), we define ∀r.R(r) ∈
Rel(∀α.τ, ∀α′.τ ′) to be

∀r.R(r) =def {(M, M ′)|∀σ, σ′ ∈ Typ, r ∈ Rel(σ, σ′).(Mσ, M ′σ′) ∈ R(r)}.

Given r ∈ Rel(τ, τ ′), let !r ∈ Rel(!τ, !τ ′) be given by

!r =def {(!(x = M : τ), !(x′ = M ′ : τ))|(fix x : τ.M,fix x′ : τ ′.M ′) ∈ r}.

Given r1 ∈ Rel(τ1, τ
′
1) and r2 ∈ Rel(τ2, τ

′
2), let r1 ⊗ r2 ∈ Rel(τ1 ⊗ τ2, τ

′
1 ⊗ τ ′2) be given by

r1 ⊗ r2 =def {(M1 ⊗M2), (M
′
1 ⊗M ′

2)|(M1, M
′
1) ∈ r1 ∧ (M2, M

′
2) ∈ r2}

Definition For all Lily types τ with free type variables ~α = α1, . . . , αn, let

∆τ : Rel(τ1, τ
′
1), . . . , Rel(τn, τ ′n) → Rel(τ [~τ/~α], τ [~τ ′/~α])

be a function defined inductively on τ , with

∆αi
(~r/~α) =def ri (5.1)

∆τ1(τ2
(~r/~α) =def ∆τ1

(~r/~α) ( ∆τ2
(~r/~α) (5.2)

∆∀α.τ (~r/~α) =def ∀r.∆τ (r>>/α,~r/~α) (5.3)

∆!τ (~r/~α) =def (!∆τ (~r/~α))>> (5.4)

∆I(~r/~α) =def {(∗, ∗)}
>> (5.5)

∆τ1⊗τ2
(~r/~α) =def (∆τ1

(~r/~α)⊗∆τ2
(~r/~α))>>. (5.6)

For closed Lily types τ ∈ Typ we write ∆τ instead of ∆τ (∅/∅) ∈ Rel(τ, τ).

The purpose of this section is to prove that the ∆ relation coincides with contextual equivalence.
To do this I must extend the definition of contextual equivalence and ∆ to open terms and types.
In the same process I extend the definition of ciu equivalence to open terms and types as in [Pit05].

The outline of this section is like the outline in [Pit00] and the lemmas have much of the same
wording, but the details are quite different. The main difference in the wording of the lemmas,
reflects the use of test functions instead of frame stacks. As most of the work is done in the
lemmas, the wording and details of the main theorems are very much the same as in [Pit00] and
[Pit05].
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5.2 The =obs relation

To prove that the ∆ relation coincides with contextual equivalence I define the concepts adequacy,
compatibility and substitutivity. These concepts are properties of relations and there happens to
be a largest relation with these properties. This relation is called observational equivalence and it
is equivalent to contextual equivalence. Hence we get a description of contextual equivalence from
its properties. This approach is taken from [Pit00] and [Pit05]. The definitions of substitutivity
and compatibility are straight forward adoptions to Lily, and the definition of adequacy is the only
thing that requires some thoughts. This is so since our contextual equivalence is different from
what it is in [Pit00] and [Pit05] (our contexts must result in terms of exponential type).

Definition Given a binary relation on arbitrary terms E we define *

Γ; ∆ `~α M E M ′ : τ
def
⇔ Γ; ∆ `~α M : τ ∧ Γ; ∆ `~α M ′ : τ ∧ (M, M ′) ∈ E .

We say a binary relation E has the property given by the rule

Γ1; ∆1 `~α1
M1 E N1 : τ1 · · · Γn; ∆n `~αn

Mn E Nn : τn

Γ′; ∆′ `~α′ M ′ E N ′ : τ ′

if and only if
(

∧

i∈{1,...,n} Γi; ∆i `~αi
Mi E Ni : τ

)

⇒ Γ′; ∆′ `~α′ M ′ E N ′ : τ ′. We say a binary

relation E has a property given by several rules if and only if it has the property given by each
of the rules.

Definition (Adequacy) We say a relation E is adequate if for all types τ ∈ Typ and terms
M, M ′ ∈ Term(!τ).

∅; ∅ `∅ M E M ′ :!τ ⇒ (M ⇓n⇔ M ′ ⇓n)

Definition (Compatibility) We say a relation E is compatible if

Int:
ftv(Γ, τ) ⊆ ~α x /∈ dom(Γ)

Γ, x : τ ; ∅ `~α x E x : τ
Lin:

ftv(Γ, τ) ⊆ ~α

Γ; a : τ `~α a E a : τ

FnAb:
Γ; ∆, a : τ `~α M E M ′ : τ ′ a /∈ dom(∆)

Γ; ∆ `~α λa : τ.M E λa : τ.M ′ : τ ( τ ′

FnApp:
Γ; ∆1 `~α M1 E M ′

1 : τ ( τ ′ Γ; ∆2 `~α M2 E M ′
2 : τ dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α M1M2 E M ′
1M

′
2 : τ ′

TyAb:
Γ; ∆ `~α,α M E M ′ : τ α /∈ ~α ∪ ftv(Γ, ∆)

Γ; ∆ `~α Λα.M E Λα.M ′ : ∀α.τ

TyApp:
Γ; ∆ `~α M E M ′ : ∀α.τ ftv(τ ′) ⊆ ~α

Γ; ∆ `~α Mτ ′ E M ′τ ′ : τ [τ ′/α]
Thunk:

Γ, x : τ ; ∅ `~α M E M ′ : τ x /∈ dom(Γ)

Γ; ∅ `~α!(x = M : τ) E !(x = M ′ : τ) :!τ

Let:
Γ; ∆1 `~α M1 E M ′

1 :!τ Γ, y : τ ; ∆2 `~α M2 E M ′
2 : τ ′ y /∈ dom(Γ) dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α let !y = M1 in M2 E let !y = M ′
1 in M ′

2 : τ ′.

UnitI:
Γ; ∅ `~α ∗ E ∗ : I

UnitE:
Γ; ∆1 `~α M1 E M ′

1 : I Γ; ∆2 `~α M2 E M ′
2 : τ dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α let ∗ = M1 in M2 E let ∗ = M ′
1 in M ′

2 : τ

TensorI:
Γ; ∆1 `~α M1 E M ′

1 : τ1 Γ; ∆2 `~α M2 E M ′
2 : τ2 dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α M1 ⊗M ′
1 E M2 ⊗M ′

2 : τ1 ⊗ τ2

TensorE:

Γ; ∆1 `~α M1 E M ′
1 : τ1 ⊗ τ2 Γ; ∆2, a1 : τ1, a2 : τ2 `~α M2 E M ′

2 : σ
dom(∆1) ∩ dom(∆2) = ∅ a1, a2 /∈ dom(∆1) ∪ dom(∆2) a1 6= a2

Γ; ∆1, ∆2 `~α let a1 ⊗ a2 = M1 in M2 E let a1 ⊗ a2 = M ′
1 in M ′

2 : σ
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Definition (Substitutivity) We say a relation E is substitutive if †

Γ; ∆ `~α,α M E M ′ : τ α /∈ ~α ftv(τ ′) ⊆ ~α

Γ[τ ′/α]; ∆[τ ′/α] `~α M [τ ′/α] E M ′[τ ′/α] : τ [τ ′/α]

Γ, x : τ ; ∆ `~α M E M ′ : τ ′ Γ; ∅ `~α N E N ′ : τ x /∈ dom(Γ)

Γ; ∆ `~α M [N/x] E M ′[N ′/x] : τ ′

Γ; ∆1, a : τ `~α M E M ′ : τ ′ Γ; ∆2 `~α N E N ′ : τ
a /∈ dom(∆1) dom(∆1) ∩ dom(∆2) = ∅

Γ; ∆1, ∆2 `~α M [N/a] E M ′[N ′/a] : τ ′.

Remark By comparing the rules of compatibility with the type system, we see that to prove a
binary relation, defined on well typed terms, compatible, we get the type criteria for free. Likewise,
the substitution lemma gives the type criteria of substitutivity.

Definition We define observational congruence =obs to be the union of all adequate and compat- †
ible relations.

The next two lemmas and the next theorem proves that =obs is itself adequate and compatible,
and that it coincides with contextual equivalence. The proofs of the lemmas are taken from [Pit05]
and the definition of contextual equivalence on open terms, is as in [Pit00].

Lemma 5.4

(i) The identity relation Id is adequate and compatible

(ii) The set of adequate relations is closed under arbitrary union.

(iii) Every compatible relation contains Id.

(iv) The set of compatible relations is closed under composition and reciprocation. The set of
adequate relations is closed under composition and reciprocation.

(v) If the union of a non-empty family of compatible relations is transitive then it is compatible.

Proof

(i) By inspection we get the result.

(ii) Let (M, M ′) ∈
⋃

Ri then there must be an i such that (M, M ′) ∈ Ri thus M ⇓n⇔ M ′ ⇓n.

(iii) This is shown by induction on derivation of the typing relation. Eg. if Γ; ∆ `~α λa : τ.M :
τ ( τ ′, then by induction we get (M, M) ∈ R, thus (λa : τ.M, λa : τ.M) ∈ R as R is
compatible.

(iv) This is shown by inspection. Eg. assume (M1, M
′′
1 ) ∈ (R1 ◦R2) and (M2, M

′′
2 ) ∈ (R1 ◦R2),

then there exists M ′
1, M

′
2 such that (M1, M

′
1) ∈ R1, (M2, M

′
2) ∈ R1, (M ′

1, M
′′
1 ) ∈ R2 and

(M ′
2, M

′′
2 ) ∈ R2, thus (M1M2, M

′
1M

′
2) ∈ R1 and (M ′

1M
′
2, M

′′
1 M ′′

2 ) ∈ R2 as Ri is compatible.
Hence (M1M2, M

′′
1 M ′′

2 ) ∈ (R1 ◦R2).

(v) This is also shown by inspection. Eg. let (M1, M
′
1) ∈

⋃

i∈I Ri where M1, M
′
1 has ! type

and (M2, M
′
2) ∈

⋃

i∈I Ri then there must be an i and an j such that (M1, M
′
1) ∈ Ri and

(M2, M
′
2) ∈ Rj . By (iii) we have (M2, M2) ∈ Ri and (M ′

1, M
′
1) ∈ Rj thus

(let !y = M1 in M2, let !y = M ′
1 in M2) ∈ Ri

(let !y = M ′
1 in M2, let !y = M ′

1 in M ′
2) ∈ Rj

and by transitivity (let !y = M1 in M2, let !y = M ′
1 in M ′

2) ∈ (Ri ◦Rj) ∈
⋃

i∈I Ri.
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Lemma 5.5 The =obs is a compatible and adequate equivalence relation.

Proof By Lemma 5.4(ii) =obs is adequate. By Lemma 5.4(i) =obs is reflexive and non-empty, and
by Lemma 5.4(iv) =obs is symmetric and transitive. Hence by Lemma 5.4(v) =obs is compatible.

Definition (Ground contextual equivalence) Given terms M, M ′ such that Γ; ∆ `~α M : τ
and Γ; ∆ `~α M ′ : τ we define Γ; ∆ `~α M =gnd M ′ : τ if and only if for all types τ ′ ∈ Typ and all
contexts C such that ∅; ∅ `∅ C[M ] :!τ ′ and ∅; ∅ `∅ C[M ′] :!τ ′, we have C[M ] ⇓n⇔ C[M ′] ⇓n.

Remark When M, M ′ are closed terms the definition of contextual equivalence degenerates to
the definition for closed terms. This is easily seen as there are no free variables or types in M or
M ′ to capture and C[M ] must have type !τ for some τ ∈ Typ in the empty environment.

Theorem 5.6 Contextual equivalence coincide with =obs. Hence for all terms M, M ′ such that
Γ; ∆ `~α M : τ and Γ; ∆ `~α M ′ : τ , we have Γ; ∆ `~α M =gnd M ′ : τ ⇔ Γ; ∆ `~α M =obs M ′ : τ .

Proof We must show =gnd is adequate and compatible.

Adequacy: Given a type τ ∈ Typ and terms M, M ′ such that ∅; ∅ `∅ M =gnd M ′ :!τ . Then
M :!τ , M ′ :!τ and for the context C = −, C[M ] = M :!τ and C[M ′] :!τ , thus M ⇓n⇔ M ′ ⇓n.

Compatibility: We have to show that =gnd respects each of the rules of compatibility.

Int: Here we must show Γ, x : τ ; ∅ `~α x =gnd x : τ for all types τ , type environments Γ and
intuitionistic variables x such that ftv(Γ, τ) ⊆ ~α and x /∈ dom(Γ).

Given a type τ ′ and a context C such that C[x] :!τ ′ then by determinism and C[x] = C[x],

C[x] ⇓n⇔ C[x] ⇓n .

Lin: Similar to the Int case.

FnAb: Assume Γ; ∆, a : τ `~α M =gnd M ′ : τ ′, then given a type τ ′′ and a context C such that
C[λa : τ.M ] :!τ ′′, C[λa : τ.−] is a context C ′ such that C′[M ] :!τ ′′. Assume C[λa : τ.M ] ⇓n

then C′[M ] ⇓n and as Γ; ∆, a : τ `~α M =gnd M ′ : τ ′, C′[M ′] ⇓n. Thus C[λa : τ.M ′] ⇓n.

FnApp: Assume Γ; ∆ `~α M1M2 =gnd M ′
1M

′
2 : τ , then given a type τ ′′ and a context C such that

C[M1M2] :!τ ′′. Let C′ be the context C[−M2] then C[M1] :!τ ′′. Assume C[M1M2] ⇓n,
then C′[M1] ⇓n. Now C′[M ′

1] :!τ ′′ and C′[M ′
1] ⇓n, thus C[M ′

1M2] ⇓n. Doing the same
with the argument M2 we get C[M ′

1M
′
2] ⇓n. Thus Γ; ∆ `~α M1M2 =gnd M ′

1M
′
2 :!τ ′′.

The rest of the cases are handled similar to the cases above.

By the above =gnd⊆=obs.

To show =obs⊆=gnd, assume E is a compatible and adequate relation and Γ; ∆ `~α M E M ′ : τ .
Given a context C such that ∅; ∅ `∅ C[M ] :!τ ′ for some τ ′ ∈ Typ and C[M ] ⇓n, then by compatibility
C[M ] E C[M ′] :!τ ′ and by adequacy C[M ′] ⇓n.

The next series of lemmas are all parts of the proof that the ∆ relation is compatible. Each of
the lemmas handle a particular rule, and the lemmas also proves how >> closed relations are
preserved by the actions on them, as defined in the very beginning of this section.

These lemmas are in wording very similar to lemmas in [Pit00], but the proofs are quite different.

Lemma 5.7 Given τ1, τ
′
1, τ2, τ

′
2 ∈ Typ, suppose r1 ∈ Rel(τ1, τ

′
1), r2 ∈ Rel(τ2, τ

′
2) and r2 = r>>2

then,
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(i) For all values λa : τ1.M : τ1 ( τ2 and λa : τ ′1.M
′ : τ ′1 ( τ ′2

(

∀(A, A′) ∈ r1.(M [A/a], M ′[A′/a]) ∈ r2

)

⇒ (λa : τ1.M, λa : τ ′1.M
′) ∈ r1 ( r2

(ii) For all (V, V ′) ∈ r>2 and (A, A′) ∈ r1

(λf : τ1 ( τ2.V (fA), λf : τ ′1 ( τ ′2.V
′(fA′)) ∈ (r1 ( r2)

>

This is true even if r2 6= r>>2 .

(iii) r1 ( r2 = (r1 ( r2)
>>.

Proof

(i) Assume ∀(A, A′) ∈ r1.(M [A/a], M ′[A′/a]) ∈ r2, as r2 = r>>2 ,

∀(V, V ′) ∈ r>2 .V (M [A/a]) ⇓n⇔ V ′(M ′[A′/a]) ⇓n .

Now V (M [A/a]) = (V M)[A/a] as V is closed. As λa : τ.M : τ1 ( τ2, ∅; a : τ1 `∅ M : τ2,
thus ∅; a : τ1 `∅ V M :!τ ′ for some τ ′. As τ1 ∈ Typ, ∅; b : τ1 `∅ V b :!τ ′. By the substitution
theorem M [A/a] is closed and when A ⇓s Va, M [Va/a] is closed. Thus using the strictness
theorem, we get for some Va, Vb

V (M [A/a]) ⇓n ⇔ A ⇓s Va ∧ (V M)[Va/a] ⇓n

⇔ A ⇓s Va ∧ (V b)[(M [Va/a])/b] ⇓n

⇔ A ⇓s Va ∧M [Va/a] ⇓s Vb ∧ V Vb ⇓n

⇔ (λa : τ1.M)A ⇓s Vb ∧ (V b)[Vb/b] ⇓n

⇔ (V b)[(λa : τ1.M)A/b] ⇓n

⇔ V ((λa : τ1.M)A) ⇓n .

Likewise
V ′M ′[A′/a] ⇓n⇔ V ′((λa : τ1.M

′)A′) ⇓n .

Thus ∀(A, A′) ∈ r1.((λa : τ1.M)A, (λa : τ ′1.M
′)A′) ∈ r2. Hence (λa : τ1.M, λa : τ ′1.M

′) ∈
r1 ( r2.

(ii) Given (A, A′) ∈ r1, (V, V ′) ∈ r>2 and (F, F ′) ∈ r1 ( r2, then V (FA) ⇓n⇔ V ′(F ′A′) ⇓n and

V (FA) ⇓n⇔〈Id, V (FA)〉 ↘⇔ 〈Id ◦ −F, λf : τ1 ( τ2.V (fA)〉 ↘

⇔〈Id, (λf : τ1 ( τ2.V (fA))F 〉 ↘⇔ (λf : τ1 ( τ2.V (fA))F ⇓n .

where f is fresh. Likewise V ′(F ′A′) ⇓n⇔ (λf : τ1 ( τ2.V
′(fA′))F ′ ⇓n. As (F, F ′) ∈

r1 ( r2, (A, A′) ∈ r1 and (V, V ′) ∈ r>2 , all are arbitrary, we have for all (A, A′) ∈ r1 and
(V, V ′) ∈ r>1

(λf : τ1 ( τ2.V (fA), λf : τ1 ( τ2.V
′(fA′)) ∈ (r1 ( r2)

>.

And we did not use r2 = r>>2 .

(iii) Assume (F, F ′) ∈ (r1 ( r2)
>>. Given (A, A′) ∈ r1, (V, V ′) ∈ r>2 ,

(λf : τ1 ( τ2.V (fA), λf : τ1 ( τ2.V
′(fA′)) ∈ (r1 ( r2)

>.

As above (λf : τ1 ( τ2.V (fA))F ⇓n⇔ V (FA) ⇓n. Likewise for V ′(F ′A′), and as (V, V ′)
was arbitrary, (FA, F ′A′) ∈ (r>2 )> = r2. Hence as (A, A′) was arbitrary, (F, F ′) ∈ r1 ( r2.
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Lemma 5.8 Given types τ1, τ
′
1 with at most one free type variable α. If for all τ2, τ

′
2 ∈ Typ, R is

a function R : Rel(τ2, τ
′
2) → Rel(τ1[τ2/α], τ ′1[τ

′
2/α]) then we have the following.

(i) Given values Λα.M : ∀α.τ1 and Λα.M ′ : ∀α.τ ′1, such that

∀r ∈ Rel(τ2, τ
′
2).(M [τ2/α], M ′[τ ′2/α]) ∈ R(r).

If for all r, R(r) = (R(r))>> then (Λα.M, Λα.M ′) ∈ ∀r.R(r).

(ii) If r ∈ Rel(τ2, τ
′
2) and (V, V ′) ∈ (R(r))> then

(λa : (∀α.τ1).V (aτ2), λa : (∀α.τ ′1).V
′(aτ ′2)) ∈ (∀r.R(r))>.

(iii) If for all r, R(r) = (R(r))>> then ∀r.R(r) = (∀r.R(r))>>.

Proof

(i) Given τ2, τ
′
2 ∈ Typ, R : Rel(τ2, τ

′
2) → Rel(τ1[τ2/α], τ ′1[τ

′
2/α]) and r ∈ Rel(τ2, τ

′
2), assume

R(r) = (R(r))>>. Then as (M [τ2/α], M ′[τ ′2/α]) ∈ R(r),

∀(V, V ′) ∈ (R(r))>.V (M [τ2/α]) ⇓n⇔ V ′(M ′[τ ′2/α]) ⇓n .

By the type system and the substitution lemma M [τ2/α] : τ1[τ2/α], thus ∅; b : τ1[τ2/α] `∅
V b :!σ for some σ ∈ Typ. Hence

V (M [τ2/α]) ⇓n ⇔ M [τ2/α] ⇓s Vα ∧ V Vα for some Vα

⇔ Λα.M ⇓s Λα.M ∧M [τ2/α] ⇓s Vα ∧ V Vα for some Vα

⇔ (Λα.M)τ2 ⇓s Vα ∧ V Vα ⇓n for some Vα

⇔ V ((Λα.M)τ2) ⇓n .

Thus
∀(V, V ′) ∈ (R(r))>.V ((Λα.M)τ2) ⇓n⇔ V ′((Λα.M ′)τ ′2) ⇓n .

As R(r) = (R(r))>>, ((Λα.M)τ2, (Λα.M ′)τ ′2) ∈ R(r). Hence as τ2, τ
′
2 ∈ Typ and r ∈

Rel(τ2, τ
′
2) were arbitrary,

(Λα.M, Λα.M ′) ∈ ∀r.R(r).

(ii) Assume r ∈ Rel(τ2, τ
′
2) and (V, V ′) ∈ (R(r))>. Given (F, F ′) ∈ ∀r.R(r) we must show

(λa : (∀α.τ1).V (aτ2))F ⇓n⇔ (λa : (∀α.τ ′1).V
′(aτ ′2))F

′ ⇓n .

Now

(λa : (∀α.τ1).V (aτ2))F ⇓n ⇔ 〈Id, (λa : (∀α.τ1).V (aτ2))F 〉 ↘

⇔ 〈Id ◦ −F, λa : (∀α.τ1).V (aτ2)〉 ↘

⇔ 〈Id, V (Fτ2)〉 ↘

⇔ V (Fτ2) ⇓n .

Likewise (λa : (∀α.τ ′1).V
′(aτ ′2))F ⇓n⇔ V ′(F ′τ ′2) ⇓n, thus we need to show

V (Fτ2) ⇓n⇔ V ′(F ′τ ′2) ⇓n .

As (Fτ2, F
′τ ′2) ∈ R(r) and (V, V ′) ∈ (R(r))> we clearly have this.
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(iii) Assume (F, F ) ∈ (∀r.R(r))>>. Given τ2, τ
′
2 ∈ Typ, r ∈ Rel(τ2, τ

′
2) and (V, V ′) ∈ (R(r))>,

(λa : (∀α.τ1).V (aτ2))F ⇓n⇔ (λa : (∀α.τ ′1).V
′(aτ ′2))F

′ ⇓n .

As above

(λa : (∀α.τ1).V (aτ2))F ⇓n⇔ V (Fτ2) ⇓n and (λa : (∀α.τ1).V (aτ2))F ⇓n⇔ V (Fτ2) ⇓n .

Thus V (Fτ2) ⇓n⇔ V ′(F ′τ ′2) ⇓n. As (V, V ′) was arbitrary (Fτ2, F
′τ ′2) ∈ (R(r))>>. Thus

(Fτ2, F τ ′2) ∈ R(r). As τ2, τ
′
2, r was arbitrary (F, F ′) ∈ ∀r.R(r).

Lemma 5.9 For all types τ1, τ
′
1 ∈ Typ, suppose r ∈ Rel(τ, τ ′) and r = r>>. If terms M, M ′,

such that x : τ ; ∅ `∅ M : τ and x′ : τ ′; ∅ `∅ M ′ : τ ′, satisfy

∀(A, A′) ∈ r.(M [A/x], M ′[A′/x′]) ∈ r, (5.7)

then (fix x : τ.M,fix x′ : τ ′.M ′) ∈ r.

Proof First a little induction proof on n, proving

(fixn(M),fixn(M ′)) ∈ r for all n (5.8)

Given (V, V ′) ∈ r> and M, M ′ as assumed in the lemma

V fix0(M) ⇓n⇔ Ωτ ⇓s Vτ ∧ V Vτ ⇓n⇔ Ωτ ′ ⇓s Vτ ′ ∧ V ′Vτ ′ ⇓n⇔ V ′fix0(M ′) ⇓n .

Thus (fix0(M),fix0(M ′)) ∈ r>> = r.

If n > 0 then as fixn(M) = M [fixn−1(M)/x], we have by induction on n and (5.7) that

(fixn(M),fixn(M ′)) ∈ r.

Given (V, V ′) ∈ r>, by the unwinding theorem

V (fix x : τ.M) ⇓n⇔ ∃n.V fixn(M) ⇓n
?
⇔ ∃n.V ′fixn(M ′) ⇓n⇔ V ′(fix x′ : τ ′.M ′) ⇓n .

? Using existential elimination, (5.8) and existential introduction.

Hence (fix x : τ.M,fix x′ : τ ′.M ′) ∈ r>> = r.

Lemma 5.10 For all types τ with free type variables in ~α, types τ1, . . . , τn, τ ′1, . . . , τ
′
n ∈ Typ and †

>> closed term relations ri ∈ Rel(τi, τ
′
i ), such that |~α| = n,

∆τ (~r/~α) = (∆τ (~r/~α))>> ∧∆τ (~r/~α) ∈ Rel(τ [~τ/~α], τ [~τ ′/~α]).

Proof The proof goes by induction on the type τ .

τ = αi By assumption we have the result.

τ = σ1 ( σ2 for some types σ1, σ2. We have ∆τ (~r/~α) = ∆σ1(σ2
(~r/~α) = ∆σ1

(~r/~α) ( ∆σ2
(~r/~α),

thus by induction ∆σ2
(~r/~α) = (∆σ2

(~r/~α))>>, ∆σ2
(~r/~α) ∈ Rel(σ2[~τ/~α], σ2[~τ ′/~α]) and ∆σ1

(~r/~α) ∈

Rel(σ1[~τ/~α], σ1[~τ ′/~α]). By Lemma 5.7 (iii) we get the first part and by the definition of
∆σ1

(~r/~α) ( ∆σ2
(~r/~α), we get the second part.
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τ = ∀α.τ ′ for some type τ ′. We have ∆τ (~r/~α) = ∆∀α.τ ′(~r/~α) = ∀r.∆τ ′(~r/~α, r>>/α). Given types
σ, σ′ ∈ Typ and a relation r then as (−)>> is idempotent r>> = (r>>)>> and by induction

(∆τ ′(~r/~α, r>>/α) = ∆τ ′(~r/~α, r>>/α))>>

∆τ ′(~r/~α, r>>/α) ∈ Rel(τ ′[~τ/~α, σ/α], τ ′[~τ ′/~α, σ′/α]).

As σ, σ′, r was arbitrary it works for all σ, σ′ and r. Thus by definition ∀r.∆τ ′(~r/~α, r>>/α) ∈

Rel(∀α.τ ′[~τ/~α], ∀α.τ ′[~τ ′/~α]). Given σ, σ′ ∈ Typ let

R : Rel(σ, σ′) → Rel((τ ′[~τ/~α])[σ/α], (τ ′[~τ ′/~α])[σ′/α])

be the function r → ∆τ ′(~r/~α, r>>/α). Then as τ ′[~τ/~α] and τ ′[~τ ′/~α] has at most one free
type variable, and as for all r, R(r) = (R(r))>>, by Lemma 5.8 (iii) we get the result.

τ =!τ ′ for some type τ ′. We have ∆τ (~r/~α) = (!(∆τ ′(~r/~α))>>, thus as (−)>> is idempotent, we
get the first part and by induction

∆τ ′(~r/~α) ∈ Rel(τ ′[~τ/~α], τ ′[~τ ′/~α]).

By definition
!∆τ ′(~r/~α) ∈ Rel((!τ ′)[~τ/~α], (!τ ′)[~τ ′/~α]),

and as for all types σ, σ′, (−)>> : Rel(σ, σ′) → Rel(σ, σ′),

(!∆τ ′(~r/~α))>> ∈ Rel((!τ ′)[~τ/~α], (!τ ′)[~τ ′/~α]).

τ = I. By idempotentcy we get the first part and as ∗ : I , (∗, ∗) ∈ Rel(I, I), thus

∆τ (~r/~α) = ∆I (~r/~α) = {(∗, ∗)}>> ∈ Rel(I, I) = Rel(I [~τ/~α], I [~τ ′/~α]) = Rel(τ [~τ/~α], τ [~τ ′/~α]).

τ = σ ⊗ σ′. This case is handled by the same reasoning as the !τ case.

Lemma 5.11 Given relations r1 ∈ Rel(τ1, τ
′
1), r2 ∈ Rel(τ2, τ

′
2), such that r1 = r>>1 and r2 = r>>2 ,

closed terms (M1, M
′
1) ∈ (!r1)

>> and terms M2, M
′
2, such that y : τ1; ∅ `∅ M2 : τ2, y′ : τ ′1; ∅ `∅

M ′
2 : τ ′2 and

∀(A, A′) ∈ r1.(M2[A/y], M ′
2[A

′/y′]) ∈ r2.

Then
(let !y = M1 in M2, let !y′ = M ′

1 in M ′
2) ∈ r2.

Proof As r2 is >> closed, we only have to show

∀(V, V ′) ∈ r>2 .V (let !y = M1 in M2) ⇓n⇔ V ′(let !y = M ′
1 in M ′

2) ⇓n .

Given (V, V ′) ∈ r>2 , then

V (let !y = M1 in M2) ⇓n

?
⇔M1 ⇓s V1 ∧ V (let !y = V1 in M2) ⇓n for some V1

?
⇔M1 ⇓s V1 ∧ let !y = V1 in M2 ⇓s V2 ∧ V V2 ⇓n for some V1, V2

†
⇔M1 ⇓s!(x = M : τ) ∧ let !y =!(x = M : τ) in M2 ⇓s V2 ∧ V V2 ⇓n for some V2, M

⇔M1 ⇓s!(x = M : τ) ∧M2[(fix x : τ.M)/y] ⇓s V2 ∧ V V2 ⇓n for some V2, M
?
⇔M1 ⇓s!(x = M : τ) ∧ V (M2[(fix x : τ.M)/y]) ⇓n for some M.

? It is an easy check to see that the type conditions of the strictness lemma are fulfilled.
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† As (M1, M
′
1) ∈ (!r1)

>>, M1 :!τ1, thus by type preservation V1 :!τ1 and therefore V1 must be a
thunk.

Likewise

V ′(let !y′ = M ′
1 in M ′

2) ⇓n⇔ M ′
1 ⇓s!(x

′ = M ′ : τ ′) ∧ V ′(M ′
2[(fix x′ : τ.M ′)/y′]) ⇓n for some M ′.

If M1 ⇓s!(x = M : τ) and M ′
1 ⇓s!(x

′ = M ′ : τ ′) then (!(x = M : τ), !(x′ = M ′ : τ ′)) ∈ (!r1)
>>, as

given (V, V ′) ∈ (!r1)
>,

V M1 ⇓n
?
⇔ V (!(x = M : τ)) ⇓n .

? By the strictness theorem and determinism of Lily.

Moreover as !r1 only relate values, (λa :!τ.a, λa :!τ.a) ∈ (!r1)
>, thus M1 ⇓s!(x = M : τ) ⇔ M ′

1 ⇓s

!(x′ = M ′ : τ ′).

Thus if M1��⇓s then we have the main result.

Given (V1, V
′
1) ∈ r>1 , then

(λa :!τ.V (let !y = a in y), λa :!τ.V ′(let !y′ = a in y′)) ∈ (!r1)
>,

since !r1 only contain values (!(x = M ′ : τ), !(x′ = M ′ : τ ′)) | (fix x : τ.M,fix x′ : τ ′.M ′) ∈ r1, and

(λa :!τ.V (let !y = a in y))!(x = M : τ) ⇓n

⇔V (let !y =!(x = M : τ) in y) ⇓n

⇔let !y =!(x = M : τ) in y ⇓s Vy ∧ V Vy ⇓n for some Vy

⇔fix x : τ.M ⇓s Vy ∧ V Vy ⇓n for some Vy

⇔V (fix x : τ.M) ⇓n .

Assume M1 ⇓s!(x = M : τ) and (M1, M
′
1) ∈ (!r1)

>>. Then M ′
1 ⇓s!(x

′ = M ′ : τ ′) for some
x, x′, M, M ′, τ, τ ′. Given (V, V ′) ∈ r>1 then as

(λa :!τ.V (let !y = a in y), λa :!τ.V ′(let !y′ = a in y′)) ∈ (!r1)
>,

V (fix x : τ.M) ⇓n⇔ V ′(fix x′ : τ ′ = M ′) ⇓n. Thus (fix x : τ.M,fix x′ : τ ′.M ′) ∈ r>>1 = r1. With
the very first calculation, this gives the result.

Lemma 5.12 Given relations r1, r2, r3 such that r3 = r>>3 , r1 ∈ Rel(τ1, τ
′
1), r2 ∈ Rel(τ2, τ

′
2), *

r3 ∈ Rel(τ3, τ
′
3), closed terms (M1, M

′
1) ∈ (r1 ⊗ r2)

>>, and terms (M3, M
′
3), such that ∅; a1 :

τ1, a2 : τ2 `∅ M3 : τ3, ∅; a′1 : τ ′1, a
′
2 : τ ′2 `∅ M ′

3 : τ ′3 and

∀(A, A′) ∈ r1, (B, B′) ∈ r2.(M3[A/a1, B/a2], M
′
3[A

′/a′1, B
′/a′2]) ∈ r3,

Then
(let a1 ⊗ a1 = M1 in M3, let a′1 ⊗ a′2 = M ′

1 in M ′
3) ∈ r3

Proof As r3 = r>>3 we only have to show

∀(V, V ′) ∈ r>3 .V (let a1 ⊗ a2 = M1 in M3) ⇓n⇔ V ′(let a′2 ⊗ a′2 = M ′
1 in M ′

3) ⇓n .
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Given (V, V ′) ∈ r>3 , (N1, N
′
1) ∈ r1, (N2, N

′
2) ∈ r2 and (M3, M

′
3) as in the lemma,

(λa : τ1 ⊗ τ2.V (let a1 ⊗ a2 = a in M3))N1 ⊗N2 ⇓n

⇔V (let a1 ⊗ a2 = N1 ⊗N2 in M3) ⇓n

⇔V VM ⇓n ∧let a1 ⊗ a2 = N1 ⊗N2 in M3 ⇓s VM for some VM

⇔V VM ⇓n ∧M3[N1, N2/a1, a2] ⇓s VM for some VM

⇔V (M3[N1, N2/a1, a2]) ⇓n

⇔V ′(M ′
3[N

′
1, N

′
2/a′1, a

′
2]) ⇓n

⇔V ′V ′
M ⇓n ∧M ′

3[N
′
1, N

′
2/a′1, a

′
2] ⇓s V ′

M for some V ′
M

⇔V ′V ′
M ⇓n ∧let a′1 ⊗ a′2 = N ′

1 ⊗N ′
2 in M ′

3 ⇓s V ′
M for some V ′

M

⇔V ′(let a′1 ⊗ a′2 = N ′
1 ⊗N ′

2 in M ′
3) ⇓n

⇔(λa : τ1 ⊗ τ2.V
′(let a′1 ⊗ a′2 = a in M ′

3))N
′
1 ⊗N ′

2 ⇓n .

Thus for all (N1, N
′
1) ∈ r1, (N2, N

′
2) ∈ r2, (V, V ′) ∈ r>3 and (M3, M

′
3) ∈ r3 as in the lemma

(λa : τ1 ⊗ τ2.V (let a1 ⊗ a2 = a in M3))N1 ⊗N2 ⇓n⇔

(λa : τ1 ⊗ τ2.V
′(let a′1 ⊗ a′2 = a in M ′

3))N
′
1 ⊗N ′

2 ⇓n .

Given (M1, M1) ∈ r1 ⊗ r2 then M1 = N1 ⊗N2, M
′
1 = N ′

1 ⊗N ′
2 and (N1, N

′
1) ∈ r1, (N2, N

′
2) ∈ r2,

thus given (V, V ′) ∈ r>3 and (M3, M
′
3) ∈ r3 as in the lemma,

(λa : τ1 ⊗ τ2.V (let a1 ⊗ a2 = a in M3), λa : τ1 ⊗ τ2.V
′(let a′1 ⊗ a′2 = a in M ′

3)) ∈ (r1 ⊗ r2)
>.

whence by Lemma 5.3,

(λa : τ1 ⊗ τ2.V (let a1 ⊗ a2 = a in M3), λa : τ1 ⊗ τ2.V
′(let a′1 ⊗ a′2 = a in M ′

3)) ∈ (r1 ⊗ r2)
>>>.

thus given (M1, M
′
1) ∈ (r1 ⊗ r2)

>>

V (let a1 ⊗ a2 = M1 in M3) ⇓n

⇔(λa : τ1 ⊗ τ2.V (let a1 ⊗ a2 = a in M3))M1 ⇓n

⇔(λa : τ1 ⊗ τ2.V
′(let a′1 ⊗ a′2 = a in M ′

3))M
′
1 ⇓n

⇔V ′(let a′1 ⊗ a′2 = M ′
1 in M ′

3) ⇓n .

Lemma 5.13 Given relations r1, r2 such that r1 = {(∗, ∗)} ∈ Rel(I, I), r2 = r>>2 ∈ Rel(τ2, τ
′
2), *

closed terms (M1, M
′
1) ∈ r>>1 and (M2, M

′
2) ∈ r2. Then

(let ∗ = M1 in M2, let ∗ = M ′
1 in M ′

2) ∈ r2.

Proof As r2 = r>>2 we only have to show

∀(V, V ′) ∈ r>2 .V (let ∗ = M1 in M2) ⇓n⇔ V ′(let ∗ = M ′
1 in M ′

2) ⇓n

Given (V, V ′) ∈ r>2 , then

V (let ∗ = M1 in M2) ⇓n

⇔M1 ⇓s V1 ∧ V (let ∗ = V1 in M2) ⇓n for some V1

⇔M1 ⇓s V1 ∧ let ∗ = V1 in M2 ⇓s V2 ∧ V V2 ⇓n for some V1, V2

⇔M1 ⇓s ∗ ∧ let ∗ = ∗ in M2 ⇓s V2 ∧ V V2 ⇓n for some V2

⇔M1 ⇓s ∗ ∧M2 ⇓s V2 ∧ V V2 ⇓n for some V2

⇔M1 ⇓s ∗ ∧ V M2 ⇓n .

Likewise V ′(let ∗ = M ′
1 in M ′

2) ⇓n⇔ M ′
1 ⇓s ∗ ∧ V ′M ′

2 ⇓n. As r1 only relates values, (∗ to ∗)
(λa : I.let ∗ = a in !∗, λa : I.let ∗ = a in !∗) ∈ r>1 , thus M1 ⇓s⇔ M ′

1 ⇓s. Hence if M1��⇓s then we
have the result. Assume M1 ⇓s ∗, then M ′

1 ⇓s ∗ and we have the result.
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Lemma 5.14 Given types τ, τ ′i and type variables αi, α
′
i such that ftv(τ) ⊆ {~α, ~αi

′} then

∆τ [~τ ′/~α′](~r/~α) = ∆τ (~r/~α, ∆~τ ′(~r/~α)/~α′)

Proof By induction on τ , we get this case study which gives the result.

τ = α: If α /∈ ~α′ then the result is trivial. If not we get it from equation (5.1), as

∆α[~τ ′/~α′](~r/~α) = ∆τ ′
i
(~r/~α) = ∆α(~r/~α′, ∆~τ ′(~r/~α)/~α′)

τ = τ1 ( τ2:

∆(τ1(τ2)[~τ ′/~α′](~r/~α) = ∆τ1[~τ ′/~α′](~r/~α) ( ∆τ2[~τ ′/~α′](~r/~α)

= ∆τ1
(~r/~α′, ∆~τ ′(~r/~α)/~α′) ( ∆τ2

(~r/~α′, ∆~τ ′(~r/~α)/~α′)

= ∆τ1(τ2
(~r/~α′, ∆~τ ′(~r/~α)/~α′)

τ = ∀α.τ1:

∆∀α.τ2[~τ ′/~α′](~r/~α) = ∀r.∆τ2[~τ ′/~α′](~r/~α, r>>/α)

= ∀r.∆τ2
(~r/~α, r>>/α, ∆~τ ′(~r/~α, r>>/α)/~α′)

= ∆∀α.τ2
(~r/~α, ∆~τ ′(~r/~α)/~α′)

τ =!τ2:

∆!τ2[~τ ′/~α′](~r/~α) = (!∆τ2[~τ ′/~α′](~r/~α))>>

= (!∆τ2
(~r/~α), ∆~τ ′(~r/~α)/~α′)>>

= ∆!τ2
(~r/~α), ∆~τ ′(~r/~α)/~α′)

τ = τ1 ⊗ τ2:

∆(τ1⊗τ2)[~α′/~α′](~r/~α) = (∆τ1[~α′/~α′](~r/~α)⊗∆τ2[~α′/~α′](~r/~α))

= (∆τ1
(~r/~α, ∆~τ ′(~r/~α)/~α′)⊗∆τ2

(~r/~α, ∆~τ ′(~r/~α)/~α′))

= ∆(τ1⊗τ2)(~r/~α, ∆~τ ′(~r/~α)/~α′)

τ = I: Trivial as I is a closed type.

The next definition is taken from [Pit00] and slightly adapted to handle linear variables.

Definition (Logical relation on open terms) Suppose Γ; ∆ `~α M : τ and Γ; ∆ `~α M ′ : τ
with free type variables α1, . . . , αl, free intuitionistic variables x1 : τ1, . . . , xm : τm and free linear
variables a1 : τ ′1, . . . , an : τ ′n, we write

Γ; ∆ ` M∆M ′ : τ (5.9)

if and only if, given any σi, σ
′
i, ri ∈ Rel(σi, σ

′
i) where each ri is >> closed, (Nj , N

′
j) ∈ ∆τj

(~r/~α)
and (Mk, M ′

k) ∈ ∆τ ′
k
(~r/~α), we have

(

M [~σ/~α, ~N/~x, ~M/~a], M ′[~σ′/~α, ~N ′/~x, ~M ′/~a]
)

∈ ∆τ (~r/~α) (5.10)

Remark Please note how the terms substituted in are closed terms. This makes the ∆ relation
very close to that of =ciu on open terms (see page 35).
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Lemma 5.15 The ∆ relation for open terms (5.9) is compatible. †

Proof We must show that Γ; ∆ `~α M∆M ′ : τ is closed under the axioms of compatibility.

Variables: We substitute terms in relation into the variables, thus the axioms are satisfied by
definition.

FnApp: Assume Γ; ∆1 `~α M1∆M ′
1 : τ ( τ ′ and Γ; ∆2 `~α M2∆M ′

2 : τ . Given terms, types and
relations as in the definition of ∆, then we only have to show

(N1N2, N
′
1N

′
2) ∈ ∆σ′(~r/~α)

where the N ’s and σ′ are the results of performing the substitutions as in the definition.

Performing the same substitutions on M1, M
′
1, M2, M

′
2 and using the definition of ∆σ(σ′ we

get the result.

FnAb: Performing substitutions as above and noting that ∆τ ′(~r/~α) is >> closed, we get the
result from Lemma 5.7(i).

TyAb: Given Γ; ∆ `~α,α M∆M ′ : τ and α /∈ ftv(Γ, ∆) ∪ ~α, I must show

Γ; ∆ `~α Λα.M∆Λα.M ′ : ∀α.τ

Given ~N, ~M,~σ, ~N ′, ~M ′, ~σ′, ~r where ri = r>>i for all i, as in the definition of ∆ on open terms,
I must show

(

Λα.M [~σ, ~N, ~M/~α, ~x,~a], Λα.M ′[~σ′, ~N ′, ~M ′/~α, ~x,~a]
)

∈ ∆∀α.τ (~r/~α) = ∀r.∆τ (~r/~α, r>>/α)

Given types σ, σ′ ∈ Typ and a relation r ∈ Rel(σ, σ′), let R : Rel(σ, σ′) → Rel(τ [~σ/~α, σ/α], τ [~σ′/~α, σ′/α)
be the function λr.∆τ (~r/~α, r>>/α). This function is well-defined by idempotentcy and
Γ; ∆ `~α,α M∆M ′ : τ . By idempotentcy Lemma 5.10 then applies and as σ, σ′, r all were
arbitrary, we got all the requirements of Lemma 5.8(i), which gives the desired result.

TyApp: Performing substitutions as above and specializing with τ ′, τ ′ and ∆τ ′() we get the result
by Lemma 5.14.

Thunks: Performing substitutions as above we end up with terms satisfying the conditions of
Lemma 5.9 where r is ∆σ() and σ is the type of the resulting terms. By Lemma 5.10,
Lemma 5.9, the definition of !∆σ and the fact that (−)>> is monotone, we get the result.

Let: Performing substitutions as above we end up with closed terms (N1, N
′
1) ∈ ∆!σ and terms

N2, N
′
2, satisfying the requirements of Lemma 5.11 where r1 = ∆σ and r2 = ∆σ′ . By

definition of ∆!σ and Lemma 5.10 we get the result by Lemma 5.11.

UnitI: Performing substitutions as above we end up with (∗, ∗) ∈ ∆I which we get by monotonic-
ity of (−)>>.

UnitE: Performing substitutions as above we end up with terms satisfying the requirements of
Lemma 5.13 where r1 = (∗, ∗) and r2 = ∆σ , thus by the lemma we get the result.

TensorI: Performing substitutions as above we get the result by definition of ∆σ ⊗ ∆σ′ and
monotonicity of (−)>>.

TensorE: Performing substitutions as above we end up with terms (N1, N
′
1) ∈ ∆σ⊗σ′ and terms

N3, N
′
3 such that the requirements of Lemma 5.12 where r1 = ∆σ , r2 = ∆σ′ , r3 = ∆σ′′ is

satisfied. By Lemma 5.10, we get the result from Lemma 5.12.
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Corollary 5.16 As a compatible relation is reflexive,

Γ; ∆ `~α M : τ ⇒ Γ; ∆ `~α M∆M : τ

Definition Given a set of type variables ~α, an intuitionistic type environment Γ, a linear type *
environment ∆ and a type τ such that ftv(τ, ∆, Γ) ⊆ ~α, let the set of (Γ, ∆, ~α, τ)–closing substi-
tutions be the following set of functions defined on terms t such that Γ; ∆ `~α t : τ ,

{λt.t[~τ, ~N ′, ~N/~α, ~x,~a] | ~τ ∈ Typ, ~N, ~N ′ ⊆ Term(τ [~τ/~α]), dom(Γ) = ~x, dom(∆) = ~a}.

I will omit the type τ when it is clear from the context. Given a closing substitution σ I will
overload σ to types by letting σ(τ) be τ [~τ/~α].

Remark It is easy to see that the image of a closing substitution is a set of closed terms.

Definition: (ciu equivalence for open terms) Suppose Γ; ∆ `~α M : τ and Γ; ∆ `~α M ′ : τ , †
then we write

Γ; ∆ `~α M =ciu M ′ : τ

if and only if, for all (Γ, ∆, ~α)–closing substitutions σ

σM =ciu σM ′ : τ [~σ/~α].

Remark The relation =ciu for open terms is clearly reflexive by the fact that =ciu for closed
terms is reflexive.

Definition: (Kleene equivalence) Two closed terms M, M ′ are kleene equivalent (M =kl M ′ :
τ) if and only if

∀V.M ⇓n V ⇔ M ′ ⇓n V.

Lemma 5.17 Given τ ∈ Typ and M, M ′ ∈ Term(τ). If M =obs M ′ : τ or M =kl M ′ : τ or
M =ciu M ′ : τ or M =gnd M : τ , then for all types τ ′ ∈ Typ and all test functions V : τ (!τ ′ for
some τ ′ ∈ Typ,

V M ⇓n⇔ V M ′ ⇓n .

And any >> closed term relation r, respects =kl, =obs, =gnd and =ciu.

Proof Let M =obs M ′ : τ . Given V : τ (!τ ′, as =obs contains Id we get from compatibility
V M =obs V M ′ :!τ ′, whence by adequacy V M ⇓n⇔ V M ′ ⇓n.

If M =ciu M ′ : τ then M : τ and V m[M/m] :!τ ′, thus by Lemma 4.24 V M =ciu V M ′ :!τ ′. Hence
for all types τ ′′ ∈ Typ and frame stacks Fs :!τ ′ →!τ ′′, 〈Fs, V M〉 ↘⇔ 〈Fs, V M ′〉 ↘. If we let Fs
be Id then by Lemma 4.14, Id[V M ] ⇓n⇔ Id[V M ′] ⇓n, thus V M ⇓n⇔ V M ′ ⇓n.

Let M =kl M ′ : τ , then for all values W , M ⇓n W ⇔ M ′ ⇓n W , thus by Lemma 4.13 M =ciu

V =ciu M ′ : τ .

As =gnd for closed terms is equivalent to =ciu (Lemma 4.25), we have the last case.

Given a term relation r, such that r = r>>, assume (M1, M
′
1) ∈ r = r>> and M1 =obs M . Then

∀(V, V ′) ∈ r>.V M ⇓n⇔ V M1 ⇓n⇔ V ′M ′
1 ⇓n,

thus (M, M ′
1) ∈ r>> = r. Likewise, if M ′ =obs M ′

1 : τ1 then (M, M ′) ∈ r. Hence

M1 =obs M : τ ∧ (M1, M
′
1) ∈ r ∧M ′

1 =obs M ′ : τ1 ⇒ (M, M ′) ∈ r.

The other equivalences (=kl, =ciu, =gnd) are proved in the same way as =obs.
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Lemma 5.18 =ciu is substitutive. *

Proof I will start by showing

Γ; ∆ `~α,α M =ciu M ′ : τ ∧ ftv(τ ′) ⊆ ~α ⇒ Γ[τ ′/α]; ∆[τ ′/α] `~α M [τ ′/α] =ciu M [τ ′/α] : τ [τ ′/α].

Given a (Γ[τ ′/α], ∆[τ ′/α], ~α, τ [τ ′/α])–closing substitution σ, then σ must be defined by λt.t[~τ , ~N ′, ~N/~α, ~x,~a]

for some ~N, ~N ′, ~τ such that ~N ′, ~N ⊆ (τ [τ ′/α])[~τ/~α].

Let σ′ be λt.t[~τ , τ ′[~τ/~α], ~N ′, ~N/~α, α, ~x,~a], then σ′ is a (Γ, ∆, ~α, α, τ)–closing substitution as dom(Γ) =
dom(Γ[τ ′/α]), dom(∆) = dom(∆[τ ′/α]), τ [τ ′/α] ∈ Typ and (τ [τ ′/α])[~τ/~α] = τ [~τ , τ ′[~τ/~α]/~α, α]. By
assumption Γ; ∆ `~α M =ciu M ′ : τ , thus σ′(M) =ciu σ′(M ′) : σ′(τ). Now σ′(M) = σ(M [τ ′/α])
and σ′(M ′) = σ(M [τ ′/α]), thus σ(M [τ ′/α]) =ciu σ(M ′[τ ′/α]) : σ(τ [τ ′/α]). As σ was arbitrary we
get the result.

Using the same reasoning where σ is extended with a → σ(N) gives the linear result (N is the
term being substituted in). Likewise we get the intuitionistic result by extending with x → σ(N).

Lemma 5.19 *
Γ; ∆ `~α M∆M ′ : τ ⇒ Γ; ∆ `~α M =obs M ′ : τ

Proof To show ∆ ⊆=obs, we only need to show adequacy of ∆, since by Lemma 5.15, we then
have adequacy and compatibility.

Assume (M, M ′) ∈ ∆!τ for some τ ∈ Typ. It is enough to show (λx :!τ.x, λx :!τ.x) ∈ (∆!τ )> =

(!∆τ )>>
>

= (!∆τ )>, since (λx :!τ.x)M ⇓n⇔ M ⇓n. Now in !∆τ there are only values V :!τ , and
(λx :!τ.x)V ⇓n⇔ V ⇓n. Hence for all (V, V ′) ∈!∆τ ,

(λx :!τ.x)V ⇓n⇔ (λx :!τ.x)V ′ ⇓n .

Lemma 5.20 *
Γ; ∆ `~α M∆M ′ : τ ⇔ Γ; ∆ `~α M =ciu M ′ : τ

Proof First ∆ ⊆=ciu. Given a (Γ, ∆, ~α)–closing substitution σ : τ → τ [~τ/~α], we must show for
all frame stacks Fs : τ [~τ/~α] (!τ ′, 〈Fs, σM〉 ↘⇔ 〈Fs, σM ′〉 ↘.

Assume Γ; ∆ `~α M∆M ′ : τ then using the definition of ∆ on open terms where ri = ∆τi
, and the

fact that ∆τi
is reflexive, we get (σM, σM ′) ∈ ∆τ (~r/~α). By Lemma 5.14

(σM, σM ′) ∈ ∆τ [~τ/~α].

Thus σM =obs σM ′ : τ [~τ/~α] and therefore by compatibility Fs[σM ] =obs Fs[σM ′] :!τ ′. By
adequacy Fs[σM ] ⇓n⇔ Fs[σM ′] ⇓n, and by Lemma 4.14, 〈Fs, σM〉 ↘⇔ 〈Fs, σM ′〉 ↘.

Now to =ciu⊆ ∆. By Lemma 5.18, =ciu is substitutive, thus by Lemma 5.10 and Lemma 5.17

Γ; ∆ `~α M1 =ciu M ′
1 : τ ∧ Γ; ∆ `~α M ′

1∆M ′
2 : τ ∧ Γ; ∆ `~α M2 =ciu M ′

2 : τ ⇒ Γ; ∆ `~α M1∆M2 : τ.

As both ∆ and =ciu are reflexive

Γ; ∆ `~α M1 =ciu M ′
1 : τ ⇒ Γ; ∆ `~α M1∆M ′

1 : τ.
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The next corollaries are all stated in [BPR00] and a single equation in Corollary 5.27 is proved
there.

Corollary 5.21 Kleene equivalence is contained in ground contextual equivalence. Thus

((λa : τ.M)N, M [N/a]) ∈ ∆τ ′

((Λα.M)σ, M [σ/α]) ∈ ∆τ [σ/α]

(let !y =!(x = N : τ) in M, M [(fix x : τ.N)/y]) ∈ ∆τ ′

(let ∗ = ∗ in M, M) ∈ ∆τ

(let a1 ⊗ a2 = M1 ⊗M2 in M3, M3[M1, M2/a1, a2]) ∈ ∆τ

(fix x : τ.M, M) ∈ ∆τ x not free in M

and divergent terms of equal type are all contextual equivalent.

Proof From Lemma 5.17 we know ∆τ ′ respects kleene equivalence. As kleene equivalence and
∆τ ′ are both reflexive, =kl⊆ ∆ (like in the proof of Theorem 5.20). The equations are clearly
kleene equivalent and divergent terms are kleene equivalent.

Lemma 5.22 *

(let !y =!(x = M1 : τ) in M2, M2[M1/y]) ∈ ∆τ ′ x not free in M1

Γ; ∆ `~α let !y =!(x = M1 : τ) in M2∆M2[M1/y] : τ ′ x not free in M1

Proof The first is given by the third and sixth equation above, compatibility and transitivity.
Ciu equality then gives the second.

Theorem 5.23 All the equivalences given in Corollary 5.21 works with open terms and types, *
thus

Γ; ∆ `~α (λa : τ.M)N∆M [N/a] : τ ′

Γ; ∆ `~α (Λα.M)σ∆M [σ/α] : τ [σ/α]

Γ; ∆ `~α let !y =!(x = N : τ) in M∆M [(fix x : τ.N)/y] : τ ′

Γ; ∆ `~α let ∗ = ∗ in M∆M : τ

Γ; ∆ `~α let a1 ⊗ a2 = M1 ⊗M2 in M3∆M3[M1, M2/a1, a2] : τ

Γ; ∆ `~α fix x : α.M∆M x not free in M.

Proof Using the ciu correspondence with ∆ (Lemma 5.20) we get the result by Corollary 5.21.
Eg. Given a (Γ, ∆, ~α)–closing substitution σ : τ ′ → τ ′[~τ/~α],

σ((λa : τ.M)N) = (λa : τ [~τ/~α].σ(M))σ(N) =ciu σ(M)[σ(N)/a] = σ(M [N/a]) : τ ′[~τ/~α].

Lemma 5.24 =obs is substitutive. *

Proof Given Γ; ∆ `~α,α M =obs M ′ : τ and a type τ ′ such that ftv(τ ′) ⊆ ~α, I will show

Γ[τ ′/α]; ∆[τ ′/α] `~α M [τ ′/α] =obs M ′[τ ′/α] : τ [τ ′/α].

If ∆ = ∆′, a : σ, then by compatibility

Γ; ∆′ `~α,α λa : σ.M =obs λa : σ.M ′ : σ ( τ.
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Continuing in this manner we get

Γ; ∅ `~α,α λan : σn. . . . .λa1 : σ1.M =obs λan : σn. . . . .λa1 : σ1.M
′ : σn ( · · · ( σ1 ( τ.

Let λan : σn. . . . .λa1 : σ1.M = N and λan : σn. . . . .λa1 : σ1.M
′ = N ′.

If Γ = Γ′, x : σ′ then

Γ′; ∅ `~α,α λa :!σ′.let !x = a in N =obs λa :!σ′.let !x = a in N ′ : σ′1 ( σn ( · · · ( σ1 ( τ.

Continuing as before we get for some K, K ′

∅; ∅ `~α,α K =obs K ′ : σ′m ( · · · ( σ′1 ( σn ( · · · ( σ1 ( τ

Km = λam :!σ′m.let !xm = am in . . . λa1 :!σ′1.let !x1 = a1 in N

K ′
m = λam :!σ′m.let !xm = am in . . . λa1 :!σ′1.let !x1 = a1 in N ′

By compatibility

∅; ∅ `~α (Λα.Km)τ ′ =obs (Λα.K ′
m)τ ′ : (σ′m ( · · · ( σ′1 ( σn ( · · · ( σ1 ( τ)[τ ′/α],

and by Lemma 5.23 and Lemma 5.19

∅; ∅ `~α (Λα.Km)τ ′ =obs Km[τ ′/α] : (σ′m ( · · · ( σ′1 ( σn ( · · · ( σ1 ( τ)[τ ′/α]

∅; ∅ `~α (Λα.K ′
m)τ ′ =obs K ′

m[τ ′/α] : (σ′m ( · · · ( σ′1 ( σn ( · · · ( σ1 ( τ)[τ ′/α],

thus by transitivity

∅; ∅ `~α Km[τ ′/α] =obs K ′
m[τ ′/α] : (σ′m ( · · · ( σ′1 ( σn ( · · · ( σ1 ( τ)[τ ′/α].

By compatibility

xm : σ′m[τ ′/α]; ∅ `~α,α (Km!xm)[τ ′/α] =obs (K ′
m!xm)[τ ′/α] :

(σ′m−1 ( · · · ( σ′1 ( σn ( · · · ( σ1 ( τ)[τ ′/α]

and by Lemma 5.23 and Lemma 5.19

x : σ′m[τ ′/α]; ∅ `~α Km!x =obs Km−1 : (σ′m−1 ( · · · ( σ′1 ( σn ( · · · ( σ1 ( τ)[τ ′/α]

x : σ′m[τ ′/α]; ∅ `~α K ′
m!x =obs K ′

m−1 : (σ′m−1 ( · · · ( σ′1 ( σn ( · · · ( σ1 ( τ)[τ ′/α]

thus by transitivity

xm : σ′m[τ ′/α]; ∅ `~α,α Km−1[τ
′/α] =obs K ′

m−1[τ
′/α] :

(σ′m−1 ( · · · ( σ′1 ( σn ( · · · ( σ1 ( τ)[τ ′/α].

Continuing in this manner we get

Γ[τ ′/α]; ∅ `~α N [τ/α] =obs N ′[τ ′/α] : (σn ( · · · ( σ1 ( τ)[τ ′/α].

Doing the same with the linear variables we get

Γ[τ ′/α]; ∆[τ ′/α] `~α M [τ/α] =obs M ′[τ ′/α] : τ [τ ′/α].

Next I will prove that given Γ, x : τ ; ∆ `~α M =obs M ′ : τ ′ and a term Γ; ∆ `~α N : τ then

Γ; ∆ `~α M [N/x] =obs M ′[N/x] : τ ′.
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By compatibility,

Γ; ∆ `~α λa :!τ.let !x = a in M =obs λa :!τ.let !x = a in M ′ : τ ′,

thus
Γ; ∆ `~α (λa :!τ.let !x = a in M)!N =obs (λa :!τ.let !x = a in M ′)!N : τ ′.

By Lemma 5.23 and Lemma 5.19

Γ; ∆ `~α (λa :!τ.let !x = a in M)!N =obs M [N/x] : τ ′

Γ; ∆ `~α (λa :!τ.let !x = a in M ′)!N =obs M ′[N/x] : τ ′,

thus
Γ; ∆ `~α M [N/x] =obs M ′[N/x] : τ ′.

The same reasoning gives the linear result.

Lemma 5.25 Γ; ∆ `~α M =obs M ′ : τ ⇒ Γ; ∆ `~α M =ciu M ′ : τ . *

Proof Given Γ; ∆ `~α M =obs M ′ : τ and a (Γ, ∆, ~α)–closing substitution σ : τ → τ [~τ/~α], then
by Lemma 5.24, σM =obs σM ′ : τ [~τ/~α]. Given a closed frame stack Fs : τ [~τ/~α] (!τ ′ for
some type τ ′ ∈ Typ, then by compatibility ∅; ∅ `∅ Fs[σM ] =obs Fs[σM ′] :!τ ′ and by adequacy
Fs[σM ] ⇓n⇔ Fs[σM ′] ⇓n, thus by Lemma 4.14 σM, σM ′ are ciu equivalent. Hence as the
(Γ, ∆, ~α)–closing substitution was arbitrary, M, M ′ are ciu equivalent.

Theorem 5.26 We have

Γ; ∆ `~α M =obs M ′ : τ ⇔ Γ; ∆ `~α M∆M ′ : τ ⇔ Γ; ∆ `~α M1 =ciu M ′
1 : τ.

Proof Combining Lemma 5.25, Lemma 5.20 and Lemma 5.19.

Corollary 5.27 (Extensionality properties of =gnd)

M =gnd M ′ : τ ( τ ′ ⇔ ∀N ∈ Term(τ).MN =gnd M ′N : τ ′

M =gnd M ′ : τ ( τ ′ ⇔ ∀V. ∈ V al(τ).MV =gnd M ′V : τ ′

M =gnd M ′ : ∀α.τ ⇔ ∀σ ∈ Typ.Mσ =gnd M ′σ : τ [σ/α] (5.11)

M =gnd M ′ :!τ ⇔ (M��⇓! ∧M ′
��⇓!) ∨ ∃x, N, x′, N ′.

M ⇓s!(x = N : τ)∧

M ′ ⇓s!(x
′ = N ′ : τ)

fix x : τ.N =gnd fix x′ : τ.N ′ : τ

Proof Starting from the top.

Assume M =gnd M ′ : τ ( τ ′, then (M, M ′) ∈ ∆τ(τ ′ . Thus for all (N, N ′) ∈ ∆τ , (MN, M ′N ′) ∈
∆τ ′ . As ∆ is reflexive, ∀N ∈ Term(τ).(MN, M ′N) ∈ ∆τ ′ .

Assume ∀N ∈ Term(τ).(MN, M ′N) ∈ ∆τ ′ . Given (N, N ′) ∈ ∆τ then (MN, M ′N) ∈ ∆τ ′ ,
and as ∆τ(τ ′ is reflexive (M ′, M ′) ∈ ∆τ(τ ′ , thus (M ′N, M ′N ′) ∈ ∆τ ′ , whence by transitivity
(MN, M ′N ′) ∈ ∆τ ′ . As (N, N ′) was arbitrary we have (M, M ′) ∈ ∆τ(τ ′ , and M =gnd M ′ : τ (

τ ′.

As V al(τ) ⊆ Term(τ), we get the first ⇒. Given N ∈ Term(τ) then as ∆τ ′ = ∆>>
τ ′ ,

(MN, M ′N) ∈ ∆τ ′ ⇔
(

∀(W, W ′) ∈ ∆>
τ ′ .W (MN) ⇓n⇔ W ′(M ′N) ⇓n

)
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thus given (W, W ′) ∈ ∆>
τ ′ we must show ?,

N ⇓s V ∧W (MV ) ⇓n⇔ W (MN) ⇓n
?
⇔ W ′(M ′N) ⇓n⇔ N ⇓s V ∧W ′(M ′V ) ⇓n for some V

Note that by determinism the V ’s are equal. If N ��⇓s then the result is obvious. Otherwise we get
the result by the assumption (MV, M ′V ) ∈ ∆τ ′ .

The ⇒ in equation (5.11) follows from compatibility. Assume ∀σ ∈ Typ.Mσ =gnd M ′σ : τ [σ/α].
Given types σ′, σ′′ ∈ Typ and a relation r ∈ Rel(σ′, σ′′) we must show

(Mσ′, M ′σ′′) ∈ ∆τ (r>>/α)

Now (M, M) ∈ ∆∀α.τ = ∀r.∆τ (r>>/α), thus (Mσ′, Mσ′′) ∈ ∆τ (r>>/α). By Lemma 5.10

∆τ (r>>/α) = (∆τ (r>>/α))>>.

Given (V, V ′) ∈ (∆τ (r>>/α))>, then by contextual equivalence

V ′(Mσ′′) ⇓n⇔ V ′(M ′σ′′) ⇓n,

thus
V (Mσ′) ⇓n⇔ V ′(Mσ′′) ⇓n⇔ V ′(M ′σ′′) ⇓n .

Hence
(Mσ′, M ′σ′′) ∈ (∆τ (r>>/α))>> = ∆τ (r>>/α).

Assume M =gnd M ′ :!τ . Either M ⇓s or not. In the later case then as ∆!τ is adequate M ′
��⇓s.

In the former case then by adequacy M ′ ⇓s as well. Assume M ⇓s!(x = N : τ), M ′ ⇓s!(x
′ = N ′ : τ)

for some x, x′, N, N ′. As (M, M ′) ∈ ∆!τ ,

∀(V, V ′) ∈ ∆>
!τ .V M ⇓n⇔ V ′M ′ ⇓n,

thus by the strictness theorem and determinism of Lily.

∀(V, V ′) ∈ ∆>
!τ .V !(x = N : τ) ⇓n ∧M ⇓s!(x = N : τ) ⇔

V !(x = N ′ : τ) ⇓n ∧M ′ ⇓s!(x
′ = N ′ : τ)

Hence (!(x = N : τ), !(x′ = N ′ : τ)) ∈ ∆>>
!τ = ∆!τ . Let E = λa :!τ.let !y = a in y :!τ ( τ . By

compatibility E!(x = N : τ) =gnd E!(x′ = N ′ : τ) : τ , thus fix x : τ.N =gnd fix x′ : τ.N ′ : τ as
E!(x = N : τ) =gnd fix x : τ.N .

Given (V, V ′) ∈ ∆>
!τ = (!∆τ )>>>, then by the strictness theorem

V M ⇓n⇔ M ⇓s!(x = N : τ) ∧ V !(x = N : τ) ⇓n for some x, N

V ′M ′ ⇓n⇔ M ′ ⇓s!(x
′ = N ′ : τ) ∧ V ′!(x′ = N ′ : τ) ⇓n for some x′, N ′

If M��⇓s and M ′
��⇓s then V M ⇓n⇔ V ′M ′ ⇓n, thus (M ′M ′) ∈ ∆>>

!τ = ∆!τ .

Assume there exists x, x′, N, N ′, such that fix x : τ.N =gnd fix x′ : τ.N ′ : τ , M ⇓s!(x = N : τ)
and M ′ ⇓s!(x

′ = N ′ : τ), then

(!(x = N : τ), !(x′ = N ′ : τ)) ∈ (!∆τ ).

and by determinism

V M ⇓n⇔ M ⇓s!(x = N : τ) ∧ V !(x = N : τ) ⇓n

V ′M ′ ⇓n⇔ M ′ ⇓s!(x
′ = N ′ : τ) ∧ V ′!(x′ = N ′ : τ) ⇓n

and as (!∆τ )>>> = (!∆τ )>

V !(x = N : τ) ⇓n⇔ V ′!(x′ = N ′ : τ) ⇓n .

Hence (M, M ′) ∈ ∆>>
!τ = ∆!τ .

40



Lemma 5.28 We have *

let !x = M in !(y = x : τ) =gnd M :!τ where x 6= y

Γ; ∆ `~α let !x = M in !(y = x : τ) =gnd M :!τ where x 6= y

Proof If M��⇓! then let !x = M in !x��⇓!, thus by Corollary 5.27 we get the result.

Assume M ⇓s!(z = M ′ : τ) then as

let !x = M in !(y = x : τ) ⇓s!(y = fix z : τ.M ′ : τ)

by Corollary 5.27, we only have to show

fix y : τ.fix z : τ.M ′ =gnd fix z : τ.M ′ : τ

By Corollary 5.21 and Lemma 5.26 we get the result.

Given a (Γ, ∆, ~α)–closing substitution σ : τ → τ [~τ/~α], then as σ(let !x = M in !(y = x : τ)) =
let !x = σM in !(y = x : τ [~τ/~α]), by the first equation (σM, σ(let !x = M in !(y = x : τ)) are
contextual equivalent, thus we have the result.

Lemma 5.29 (η equivalence) We have †

Γ; ∆ `~α λa : τ.ga =gnd g : τ ( τ ′

Γ; ∆ `~α Λα.gα =gnd g : ∀α.τ α not free in g

Proof To begin I will start with the closed case.

Given a value V ∈ V al(τ), by the type system a is not free in g, thus (λa : τ.ga)V =gnd gV . Thus

∀V ∈ V al(τ).(λa : τ.ga)V =gnd gV : τ ′.

By Corollary 5.27 we get the result.

Given a (Γ, ∆, ~α)–closing substitution σ : τ ( τ ′ → (τ ( τ ′)[~τ/~α],

σ(λa : τ.ga) = λa : τ [~τ/~α].σ(g)a =gnd σ(g) : (τ ( τ ′)[~τ/~α].

Thus as the closing substitution was arbitrary we get the result for open terms.

The type abstraction equation is proved the same way.

Corollary 5.30 Any recursively defined thunk, !(x = M : τ) ∈ V al(!τ) is contextual equivalent to
a non-recursive thunk of a fix point term !(fix x : τ.M) :!τ .

Proof By Corollary 5.27 we only have to show

fix y : τ.fix x : τ.M =gnd fix x : τ.M : τ y not free in M.

By Corollary 5.21 we get the result.

5.3 The tensor product

Above I have introduced the syntactical structure of a tensor product and unit. To justify the
names we must show that they behave as such. In [Bar96] the requirements are quantified as the
following theorem.
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Theorem 5.31

Γ; ∆ `~α let ∗ = ∗ in M =gnd M : τ (5.12)

Γ; ∆ `~α let ∗ = M in ∗ =gnd M : I (5.13)

Γ; ∆ `~α let a1 ⊗ a2 = M1 ⊗M2 in M3 =gnd M3[M1, M2/a1, a2] : τ (5.14)

Γ; ∆ `~α let a1 ⊗ a2 = M in a1 ⊗ a2 =gnd M : τ1 ⊗ τ2 (5.15)

For all linear contexts C

Γ; ∆ `~α let ∗ = M1 in C[M2] =gnd C[let ∗ = M1 in M2] : τ.

A linear contexts is a context where the hole is not inside a thunk. This ensures that the strictness
theorem applies.

For all linear contexts C which do not bind a1 : τ1, a2 : τ2.

Γ; ∆ `~α let a1 ⊗ a2 = M1 in C[M2] =gnd C[let a1 ⊗ a2 = M1 in M2] : τ

For all linear contexts C which do not bind x : τ ′.

Γ; ∆ `~α let !x = M1 in C[M2] =gnd C[let !x = M1 in M2] : τ

Proof By the ciu theorem we only have to consider closed terms. In (5.12), the left side is kleene
equivalent to the right side, thus they are contextual equivalent. Likewise with (5.13), (5.14) and
(5.15).

As ∆ is >> closed the first equality is equivalent to

(let ∗ = M1 in C[M2], C[let ∗ = M1 in M2]) ∈ ∆>>
τ

which is equivalent to

∀(V, V ′) ∈ ∆>
τ .V (let ∗ = M1 in C[M2]) ⇓n⇔ V ′(C[let ∗ = M1 in M2]) ⇓n

Given (V, V ′) ∈ ∆>
τ

V (let ∗ = M1 in C[M2]) ⇓n⇔M1 ⇓s ∗ ∧ V (let ∗ = ∗ in C[M2]) ⇓n

⇔M1 ⇓s ∗ ∧M2 ⇓s V2 ∧ V (let ∗ = ∗ in C[V2]) ⇓n for some V2

⇔let ∗ = M1 in M2 ⇓s V2 ∧ V (C[V2]) ⇓n for some V2

⇔V (C[let ∗ = M1 in M2]) ⇓n

then as ∆τ is reflexive we have the result.

Next we have to show

∀(V, V ′) ∈ ∆>
τ .V (let a1 ⊗ a2 = M1 in C[M2]) ⇓n⇔ V ′(C[let a1 ⊗ a2 = M1 in M2]) ⇓n .

Given (V, V ′) ∈ ∆>
τ ,

V (let a1 ⊗ a2 = M1 in C[M2]) ⇓n

⇔M1 ⇓s N1 ⊗N2 ∧ V (let a1 ⊗ a2 = N1 ⊗N2 in C[M2]) ⇓n for some N1, N2

⇔M1 ⇓s N1 ⊗N2 ∧ let a1 ⊗ a2 = N1 ⊗N2 in C[M2] ⇓s V2 ∧ V V2 ⇓n for some N1, N2, V2

⇔M1 ⇓s N1 ⊗N2 ∧ C[M2][N1, N2/a1, a2] ⇓s V2 ∧ V V2 ⇓n for some N1, N2, V2

⇔M1 ⇓s N1 ⊗N2 ∧ C[M2[N1, N2/a1, a2]] ⇓s V2 ∧ V V2 ⇓n for some N1, N2, V2

⇔M1 ⇓s N1 ⊗N2 ∧ V (C[M2[N1, N2/a1, a2]]) ⇓n for some N1, N2

⇔M1 ⇓s N1 ⊗N2 ∧M2[N1, N2/a1, a2] ⇓s V3 ∧ V C[V3] ⇓n for some N1, N2, V3

⇔let a1 ⊗ a2 = M1 in M2 ⇓s V3 ∧ V C[V3] ⇓n for some V3

⇔V C[let a1 ⊗ a2 = M1 in M2] ⇓n .
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then as ∆τ is reflexive we have the result.

Next we have to show

∀(V, V ′) ∈ ∆>
τ .V (let !x = M1 in C[M2]) ⇓n⇔ V ′(C[let !x = M1 in M2]) ⇓n

Given (V, V ′) ∈ ∆>
τ ,

V (let !x = M1 in C[M2]) ⇓n

⇔M1 ⇓s V1 ∧ V (let !x = V1 in C[M2]) ⇓n for some V1

⇔M1 ⇓s!(y = M ′
1 : τ ′) ∧ let !x =!(y = M ′

1 : τ ′) in C[M2] ⇓s V2 ∧ V V2 ⇓n for some M ′
1, V2

⇔M1 ⇓s!(y = M ′
1 : τ ′) ∧ (C[M2])[fix y : τ ′.M ′

1/x] ⇓s V2 ∧ V V2 ⇓n for some M ′
1, V2

⇔M1 ⇓s!(y = M ′
1 : τ ′) ∧ C[M2[fix y : τ ′.M ′

1/x]] ⇓s V2 ∧ V V2 ⇓n for some M ′
1, V2

⇔M1 ⇓s!(y = M ′
1 : τ ′) ∧ V (C[M2[fix y : τ ′.M ′

1/x]]) ⇓n for some M ′
1

⇔M1 ⇓s!(y = M ′
1 : τ ′) ∧M2[fix y : τ ′.M ′

1/x] ⇓s V3 ∧ V (C[V3]) ⇓n for some M ′
1, V3

⇔let !x = M1 in M2 ⇓s V3 ∧ V (C[V3]) ⇓n for some V3

⇔V (C[let !x = M1 in M2]) ⇓n

then as ∆τ is reflexive we have the result.

5.4 The graph relation on linear functions

The next lemma is mentioned in [BPR00] as it is needed to show interesting properties of functions;
like uniqueness modulo contextual equivalence, etc. An example is given in section 6.1.

The lemma is quite effective, as it proves that any function of type τ ( τ ′ gives a >> closed
relation in Rel(τ, τ ′).

Lemma 5.32 For any linear function G ∈ Term(τ1 ( τ2) and relation r ∈ Rel(τ1, τ2), r ,

{(M, M ′)|GM =gnd M ′ : τ2}, we have r = r>>.

Proof Given (F, F ′) ∈ r>>, we must show (GF, F ′) ∈ ∆τ2
= ∆>>

τ2
. This is true if and only if

∀(V, V ′) ∈ ∆>
τ2

.V GF ⇓n⇔ V ′F ′ ⇓n .

Given (V, V ′) ∈ ∆>
τ2

, then (V G, V ′) ∈ r>, as given (M, M ′) ∈ r, we have (GM, M ′) ∈ ∆τ2
. Thus

V GM ⇓n⇔ V ′M ′ ⇓n. Hence V GF ⇓n⇔ V ′F ′ ⇓n.

5.5 Pilly

This section provides lemmas needed in the model of Pilly.

Lemma 5.33 †

Γ; ∆ `~α (λa : τ.M)N =gnd M [N/a] : τ ′

Γ; ∆ `~α (Λα.M)σ =gnd M [σ/α] : τ [σ/α]

Γ; ∆ `~α let !y =!(x = N : τ) in M =gnd M [(fix x : τ.N)/y] : τ ′

Γ; ∆ `~α let ∗ = ∗ in M =gnd M : τ

Γ; ∆ `~α let a1 ⊗ a2 = M1 ⊗M2 in M3 =gnd M3[M1, M2/a1, a2] : τ

Γ; ∆ `~α fix x : α.M =gnd M x not free in M

Y σ(!M) =gnd M !(Y σ(!M)) : σ

Γ; ∆ `~α Y σ(!M) =gnd M !(Y σ(!M)) : σ

Γ; ∆ `~α let !y =!(x = M1 : τ) in M2 =gnd M2[M1/y] : τ ′ x not free in M1
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Proof The first six we have from Lemma 5.23 and Lemma 5.26.

Y σ(!M) =gnd(Λα.λf :!(!α ( α).let !f ′ = f in f ′!(Y α(!f ′)))σ(!M)

=gndlet !f ′ =!M in f ′!(Y σ(!M ′))

=gnd(fix x :!σ → σ.M)!(Y σ(!(fix x :!σ → σ.M))) x not free in M

As x is not free in M , M =gnd fix x :!σ → σ.M . Thus by compatibility and transitivity we get
the equation. By the ciu theorem together with Lemma 5.22 we get the next two equations.

Lemma 5.34 Given Γ; ∆1 `~α M : τ ( τ ′ and Γ; ∆1 `~α M ′ : τ ( τ ′, *

Γ; ∆1 `~α M =gnd M ′ : τ ( τ ′ ⇔

(∀N.Γ; ∆2 `~α N : τ ∧ dom(∆2) ∩ dom(∆1) = ∅ ⇒ Γ; ∆1, ∆2 `~α MN =gnd M ′N : τ ′)

Proof First the ⇒. Given Γ; ∆1 `~α M =gnd M ′ : τ ( τ ′ and Γ; ∆2 `~α N : τ such that
dom(∆2) ∩ dom(∆1) = ∅ then by compatibility Γ; ∆1, ∆2 `~α MN =gnd M ′N : τ ′, thus for all N
we have the result.

Now the ⇐. We must show Γ; ∆1 `~α M =gnd M ′ : τ ( τ ′. Given a (Γ, ∆1, ~α)–closing substitution
σ : τ ( τ ′ → (τ ( τ ′)[~τ/~α], I will show σM =gnd σM ′ : (τ ( τ ′)[~τ/~α]. As Γ; ∆1 `~α M : τ ( τ ′,
ftv(Γ; τ) ∈ ~α, thus for some fresh linear variable a, Γ; a : τ `~α a : τ . Hence by assumption
Γ; ∆1, a : τ `~α Ma =gnd M ′a : τ ′ and by substitutivity

∅; a : τ [~τ/~α] `∅ σ(Ma) =gnd σ(M ′a) : τ ′[~τ/~α].

Now σ(Ma) = σ(M)a and σ(M ′a) = σ(M ′)a thus

∅; a : τ [~τ/~α] `∅ σ(M)a =gnd σ(M ′)a : τ ′[~τ/~α].

Given N : τ [~τ/~α] then by substitutivity σ(M)N =gnd σ(M ′)N : τ ′[~σ/~α]. Thus for all N : τ [~σ/~α],
σ(M)N =gnd σ(M ′)N : τ ′[~σ/~α]. Hence by extensionality of closed terms σ(M) =gnd σ(M ′)(τ (

τ ′)[~σ/~α]. As the closing substitution was arbitrary we get the result by the ciu-theorem.

Lemma 5.35 Given Γ; ∆ `~α M : ∀α.τ , Γ; ∆ `~α M ′ : ∀α.τ , *

Γ; ∆ `~α M =gnd M ′ : ∀α.τ ⇔ ∀τ ′ ∈ Typ.Γ; ∆ `~α Mτ ′ =gnd M ′τ ′ : τ [τ ′/α]

Proof First the ⇒. Given τ ′ ∈ Typ, then by compatibility Γ; ∆ `~α Mτ ′ =gnd M ′τ ′ : τ [τ ′/α].

Now the ⇐. Given a (Γ, ∆, ~α)–closing substitution σ : ∀α.τ → (∀α.τ)[~τ/~α]. By alpha equivalence
α can be chosen fresh in τ . Given type τ ′′ ∈ Typ, then Γ; ∆ `~α Mτ ′′ =gnd M ′τ ′′ : τ [τ ′′/α]. By
substitutivity,

∅; ∅ `∅ σ(Mτ ′′) =gnd σ(M ′τ ′′) : (τ [τ ′′/α])[~τ/~α].

As τ ′′ is closed and α is fresh,

∅; ∅ `∅ σ(M)τ ′′ =gnd σ(M ′)τ ′′ : (τ [~τ/~α])[τ ′′/α].

Thus as τ ′′ was arbitrary,

∀τ ′′ ∈ Typ.σ(M)τ ′′ =gnd σ(M ′)τ ′′ : (τ [~τ/~α])[τ ′′/α].

Hence by extensionality for closed terms,

σ(M) =gnd σ(M ′) : ∀α.τ [~τ/~α],

and as α /∈ ~α,
σ(M) =gnd σ(M ′) : (∀α.τ)[~τ/~α].

As the closing substitution was arbitrary we get the result by the ciu-theorem.
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6 Program equivalence as a category

This section shows an example on how parametricity can be used to encode types in Lily. I encode
a natural number object and proves with the use of the ∆ relation that this behaves as it should.
The definition of the category is given in [BPR00].

Definition Let the closed Lily types τ ∈ Typ be objects and let the morphisms be ground
contextual equivalence classes of type τ ( τ ′. Given two morphisms M, M ′ we define

M ′ ◦M , λa : τ.M ′(Ma)

Idτ , λa : τ.a

Theorem 6.1 The objects, morphisms, composition and identity, as defined above is a well defined
category.

Proof We start by ensuring that morphisms, composition and identity are well defined, then we
ensure composition is associative and that identity exists for all objects.

welldefinedness of morphisms: A morphism M ∈ Term(τ ( τ ′) has τ as domain, τ ′ as
co-domain and as contextually equivalent terms have the same type, morphisms are well
defined.

welldefinedness of composition: Given M1 =gnd M ′
1 : τ1 ( τ2 and M2 =gnd M ′

2 : τ2 ( τ3 we
have

M2 ◦M1 = λa : τ1.M2(M1a) =gnd λa : τ1.M2(M
′
1a) =gnd λa : τ1.M

′
2(M

′
1a) = M ′

2 ◦M ′
1

welldefinedness of identity: Id ∈ Term(τ ( τ) is a morphism thus Id is well defined as above.

Composition is associative: Given f ∈ Term(τ1 ( τ2), g ∈ Term(τ2 ( τ3), h ∈ Term(τ3 ( τ4)
we have

h ◦ (g ◦ f) = λa : τ1.h((g ◦ f)a)

= λa : τ1.h((λb : τ1.g(fb))a)

=gnd λa : τ1.h(g(fa))

=gnd λa : τ1.(λb : τ2.h(gb))(fa)

= λa : τ1.(h ◦ g)(fa)

= (h ◦ g) ◦ f

For every g : τ ( τ ′ and f : τ ′ ( τ we have

g ◦ Idτ = λa : τ.g(Idτa) = λa : τ.g((λb : τ.b)a) =gnd λa : τ.ga =gnd g : τ ( τ ′

Idτ ◦ f = λa : τ ′.Idτ (fa) = λa : τ ′.λb : τ.b(fa) =gnd λa : τ ′.fa =gnd f : τ ′ ( τ

6.1 The natural numbers (N, s, 0)

This definition is a simple translation of the encoding given in [BMP05], and the proof of the next
theorem is a composition of the ideas given in an example in [BPR00] and the flow of the similar
proof in [BMP05].
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Definition Lets define

N , ∀α.!(α ( α) ( α ( α (6.1)

0 , Λα.λf :!(α ( α).λx : α.let !f ′ = f in x (6.2)

s , λn : N.Λα.λf :!(α ( α).λx : α.let !f ′ = f in f ′(nα!f ′x) (6.3)

Theorem 6.2 (N, s, 0) defines a natural numbers object in this category.

Proof We have to show for any type τ ∈ Typ, function b : N ( τ and term a : τ there is a unique
(up to ground contextually equivalence) map h such that

h(0) =gnd a (6.4a)

h(sx) =gnd b(hx) (6.4b)

Given τ ∈ Typ, b ∈ Term(N ( τ) and a ∈ Term(τ), let f = λn : N.nτ !ba. I will now show that
f behaves as h and that f is the unique morphism with that property.

f0 = (λn : N.nτ !ba)0

=gnd (Λα.λf :!(α ( α).λx : α.let !f ′ = f in x)τ !ba

=gnd (λf :!(τ ( τ).λx : τ.let !f ′ = f in x)!ba

=gnd (λx : τ.let !f ′ =!b in x)a

=gnd let !f ′ =!b in a

=gnd a

f(sm) =gnd (sm)τ !ba

=gnd ((λn : N.Λα.λf :!(α ( α).λx : α.let !f ′ = f in f ′(nα!f ′x))m)τ !ba

=gnd (Λα.λf :!(α ( α).λx : α.let !f ′ = f in f ′(mα!f ′x))τ !ba

=gnd (λf :!(τ ( τ).λx : τ.let !f ′ = f in f ′(mτ !f ′x))!ba

=gnd (λx : τ.let !f ′ =!b in f ′(mτ !f ′x))a

=gnd let !f ′ =!b in f ′(mτ !f ′a)

=gnd b(mτ !ba)

=gnd b(fm)

Given any h with property (6.4), let r , {(M, M ′)|hM =gnd M ′ : τ} ∈ Rel(N, τ). By lemma 5.32
r = r>>.

We have M =gnd M : N, thus (M, M) ∈ ∆N. Therefore

∀σ, σ′ ∈ Typ, δ ∈ Rel(σ, σ′).(Mσ, Mσ′) ∈ ∆!(α(α)(α(α(δ>>/α)

As r = r>> we get

(MN, Mτ) ∈∆!(α(α)(α(α(r>>/α) =

∆!(α(α)(α(α(r/α) =

(!(r ( r))>> ( r ( r

We have

∀M : N.h(sM) =gnd b(hM)

∴ ∀(M, M ′).hM =gnd M ′ ⇒ h(sM) =gnd bM ′

∴ ∀(M, M ′).(M, M ′) ∈ r ⇒ (sM, bM ′) ∈ r

∴ (s, b) ∈ r ( r
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As r respects contextually equivalence we have

(fix !s,fix !b) ∈ r ( r

∴ (!s, !b) ∈!(r ( r)

∴ (!s, !b) ∈ (!(r ( r))>>

We also have

h0 =gnd a

∴ (0, a) ∈ r

Hence we have
(MN!s0, Mτ !ba) ∈ r

and h(MN!s0) =gnd Mτ !ba. In particular Mτ !ba =gnd f(MN!s0) =gnd (MN!s!0)τ !ba. As a, b, τ
was arbitrary we have

∀M : N, τ ∈ Typ, a : τ, b : τ ( τ.Mτ !ba =gnd (MN!s0)τ !ba

Now for every type τ ∈ Typ and values Vb :!(τ ( τ), Va : τ by lemma 5.30 there exists a fixpoint
Fb such that Vb =gnd!Fb, thus

(MN!s0)τVbVa =gnd (MN!s0)τ !FbVa =gnd Mτ !FbVa =gnd MτVbVa

Hence by lemma 5.27 MN!s0 =gnd M .

Given a, b, f and h as above we have

∀V ∈ V al(N).hV =gnd h(V N!s0) =gnd V τ !ba =gnd f(V )

thus h =gnd f and f is unique.

7 Interpreter

To get a feeling about programming in Lily using the the parametric encoding of data types given
in [BPR00, Fig. 1], I constructed an interpreter for Lily.

I have chosen to use Standard ML and a LALR parser generator for SML, as I am familiar with
the language and I believe that an implementation in SML will make it is easy to do experiments.

I split the task into these steps.

• Give a concrete syntax to the language.

• Type check the abstract syntax.

• Interpret the program.

In Lily, as presented in [BPR00], type variables, linear variables and intuitionistic variables are
made up from three different alphabets. This is not user friendly, thus the alphabets must be
joined. Unfortunately the given abstract syntax then becomes context dependent, as for a term
M and a variable v, v might be a type variable or a term variable, and therefore Mv can either
be a type- or a term application. This could be handled by introducing a symbol to distinguish
the cases, eg. by using brackets or braces, but I have chosen to distinguish the cases using the
context. As I am using a LALR parser generator, the context is not available doing parsing, so I
have chosen to parse it as a type application and then afterward I correct the parse tree according
to the context. To make it easy and to keep the original abstract syntax, the parser output is in a
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data type only similar to Lilys abstract syntax. After parsing I then translate the result into the
abstract syntax of Lily.

Besides the ambiguity described above, there are all the usual concerns of functional languages,
like associativity of applications and types, etc. I have tried to resemble SML as much as possible,
so for instance, applications are left associative and arrow types are right associative. In order to
let the programmer force a different behavior I have added parenthesis that can be used in both
types and terms.

I have chosen to parse types as I would parse logics. Thus ∀α.σ ( τ = (∀α.σ) ( τ .

The type checker is basically a type inference algorithm, as in order to check Γ; ∆1, ∆2 `~α MN : τ
I would have to guess a σ such that Γ; ∆1 `~α M : σ ( τ and Γ; ∆2 `~α N : σ. This works very
well as there is enough type annotations in the syntax. The algorithm works as a combination
of top down and bottom up, as bindings are collected on the way down and types are inferred
on the way up. This way almost all the typing rules translates nicely into a patten match, some
recursive calls and then a combination of results is returned as the type. Unfortunately function
application does not follow this scheme, as a non-deterministic split of the linear context is needed.
This non-deterministic split can be handled efficiently by tracking the uses of linear variables in
sub-terms. Thus my algorithm returns not only the type of a given term, but also the linear
variables from the given linearly context not used in the sub-term.

Soon after I had the interpreter set up as described above, I realized that I would like to associate
names to terms and types, and preserve these names as long as possible doing interpretation.
Furthermore I would like to, first associate a name to a term and then later refer to that name. I
have achieved this by adding a syntactic construct with a name and a term to the abstract syntax
of terms, a syntactic construct with a name and a type to the abstract syntax of types and by
adding syntax to bind names to terms or types for later usage. Thus the interpreter now takes a
sequence of bindings, where each binding associates a lily term or type to a name. I would also
like to specify how the interpreter should interpret a given term (eg. by call-by-value or call-by-
name semantics). This is done by augmenting the binding construct with a keyword, telling the
interpreter how it should interpret the term or type. The possibilities are as of today:

• Associate a name with a type.

• Associate a name with a term.

• Associate a name with the result of a call-by-name interpretation of a term.

• Associate a name with the result of a call-by-value interpretation of a term.

After a bit more experience with the interpreter I found that, I tend to use non-recursive thunks
quite often. This was quite painfull as in order to create a non-recursive thunk, I had to come up
with a fresh variable. I have chosen to solve this by making the name and type information in the
abstract syntax of thunks optional. Furthermore I have added support of non-recursive thunks in
the concrete syntax. Making the variable and type information optional in the abstract syntax,
makes sense as in non-recursive thunks, the variable is intuitionistic and not free in the term.

With the discussion above in mind the implementation should be very easy to read and verify,
although the implementation is of course messed up with code to handle α-equivalences.

8 Examples of Lily-programs

Trying to get a feeling about programming in Lily using the encoding of data types given in
[BPR00, Fig. 1], I have coded up functions representing the usual operations on natural numbers.
So fare I have coded up the following (see figure 1 on page 50)

48



• Constructors (zero, successor).

• predecessor.

• ifzero.

• addition.

• multiplication.

• Y-combinator.

Furthermore I have coded up the factorial function twice. The first encoding uses the Y-combinator
to get a fixed point of f0 = 1|fx = x ∗ f(x − 1). The other encoding iterate the function
(x, y) → (x + 1, x ∗ y), n times starting with (!1, 1) where x is intuitionistic and then throw away
the final x. It turned out that the type of the first encoding is !nat ( nat, and the type of the
second encoding is nat ( nat. The type of the first encoding seems quite natural as in the second
clause x is used twice, so one could think that the factorial function must have this type, but the
existence of the second encoding declines such ideas.

It seems natural to compare the encoding in Lilywith the encoding in seconds order lambda
calculus. In F2 I would code the functions like this:

nat = ∀α.((α → α) → α → α)

zero = Λα.λf : α → α.λx : α.x

succ = λn : nat.Λα.λf : α → α.λx : α.f(nαfx)

add = λn : nat.λm : nat.n nat succ m

mul = λn : nat.λm : nat.n nat (add m) zero

pred = λn : nat.
(

n ∀α.((nat → nat → α) → α)

(λp : ∀β.((nat → nat → β) → β).p ∀α.((nat → nat → α) → α)

(λx : nat.λy : nat.Λγ.λf : nat → nat → γ.f (succ x) x))

Λβ.λf : nat → nat → β.f zero zero
)

nat λx : nat.λy : nat.y

Which looks very much like the encoding in Lily. Of course I cannot encode the Y-combinator as
Y ∀β.β Id∀β.β would have type ∀β.β but this type is not inhabitated in F2.

The difference between the encoding in Lily and the F2 encoding, seems to be the tricks used to
get rid of terms in Lily. This example might not be the best as church numerals easily degenerates
to the identity function. Thus the linear types did not cuase much pain.

9 Conclusion

I have presented the language Lily, added a tensor product and unit and shown in full detail
a strictness theorem and an unwinding theorem in the extended calculus. Furthermore, I have
extended the ∆ and obs relations to handle the new constructs and extended all the subsequent
theorems. I have proved extensionality result and equivalence of β and η convertible terms for all
well-typed terms (also the open ones).

I have constructed an interpreter and worked out an example with natural numbers.

Finally, I thank Lars Birkedal and Rasmus Lerchedahl for the great supervision and proof reading.
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term Y = let !x = !(x = /\a.\f:!(!a -> a).

let !f’ = f in f’ (!x a (!f’))

: \/a.(!(!a->a) -> a))

in x;

val pair = /\a./\b.\x:a.\y:b./\g.\f:a -> b -> g. f x y

type nat = \/a.(!(a -> a) -> a -> a)

val zero = /\a.\f:!(a -> a). \x:a. let !f’ = f in x

val succ = \n : nat. /\a.\f:!(a->a).\x:a.let !f’ = f in f’ (n a !(y = f’ : a->a) x)

val add = \n : nat. \m : nat. n nat !(y = succ : nat -> nat) m

val mul = \n : nat. \m : !nat. let !m’ = m in n nat !(y = add m’ : nat -> nat) zero

name incpair = \p: \/g.((nat -> nat -> g) -> g).p \/d.((nat -> nat -> d) -> d)

\a:nat.\b:nat.pair nat nat (succ a) (succ b)

name makepair = \i:nat. i \/d.((nat -> nat -> d) -> d) (!incpair)

(pair nat nat zero zero);

name dopair = \p : \/d.((nat -> nat -> d) -> d).

p \/d.((nat -> nat -> d) -> d)

(\a : nat. \b : nat.

makepair (b nat (!(id nat)) a) \/d.((nat -> nat -> d) -> d)

(\a:nat.\b:nat. pair nat nat (succ a) b));

name pred = \n : nat. (n \/d.((nat -> nat -> d) -> d)

(!dopair)

(pair nat nat zero zero)

nat

\a : nat. \b : nat. a nat (!id nat) b

)

name ifzero = /\a.\n:nat.\h’:!(nat->a).\b:!(nat->a).

let !h = h’

in

makepair n a

\n1:nat.\n2:nat.

let !g = n1 !(nat -> a) (!\f’:!(nat->a).let !f = f’ in !h) b

in g n2;

name fact = Y !nat -> nat

!\fact’ : !(! nat -> nat). \n’ : !nat.

let !n = n’

in let !fact = fact’

in ifzero nat n (!\a:nat.mul a (!fact (!pred n))) !succ

val fact2 = \n : nat. (n \/p.((!nat -> nat -> p) -> p)

(!\f:\/p.((!nat -> nat -> p) -> p).

f \/p.((!nat -> nat -> p) -> p)

\x : !nat.\y : nat.

let !x’ = x

in pair (!nat) nat (!succ x’) (mul y !x’)

)

(pair (!nat) nat (!succ zero) (succ zero))

) nat \x : !nat.\y : nat.let !x’ = x in y

Figure 1: Lily encodings of natural numbers.

50



References

[Bar96] Andrew Barber, Dual intuitionistic linear logic, Tech. report, University of Edinburgh,
1996.

[BMP05] L. Birkedal, R.E. Møgelberg, and R.L. Petersen, Parametric domain-theoretic models
of linear Abadi-Plotkin logic, Tech. Report TR-2005-57, IT University of Copenhagen,
2005.

[BPR00] G. M. Bierman, A. M. Pitts, and C. V. Russo, Operational properties of Lily, a poly-
morphic linear lambda calculus with recursion, Fourth International Workshop on Higher
Order Operational Techniques in Semantics, Montréal, Electronic Notes in Theoretical
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Chapter 5

An LAPL-structure from LILY

In this chapter we include a note by Lars Birkedal, Rasmus Lerchedahl Petersen and Rasmus Møgelberg
describing how to construct a parametric LAPL-structure from the operational semantics of LILY described
in Chapter 4.
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Operational Semantics and Models of Linear Abadi

and Plotkin Logic

L. Birkedal and R.L. Petersen and R.E. Møgelberg

February 17, 2006

Abstract

In this note we build a parametric LAPL-structure out of the op-
erational semantics of LILY, thereby proving definability of recusive
types and obtaining reasoning principles for these.

1 Introduction

Linear Abadi and Plotkin Logic (LAPL) is a logic for reasoning about para-
metricity for PILLY , a polymorphic dual intuitionistic / linear type theory
with fixed points introduced in [6]. In loc. cit we showed in detail, follow-
ing Plotkin’s suggestions, that LAPL can be used to define a wide range
of types, including recursive types. We also defined a sound and complete
class of categorical models, called LAPL-structures, for LAPL.

In 2000 Bierman, Pitts, and Russo [2] presented a programming language
called LILY. LILY is essentially a polymorphic intuitionistic / linear lambda
calculus endowed with an operational semantics.

In this paper we present an LAPL-structure constructed from the op-
erational semantics of LILY. In the model, types of PILLY are essentially
modeled by sets of LILY terms modulo ground contextual equivalence, and
predicates are modeled as subsets of such sets of terms. We prove that the
constructed model of LAPL is parametric.

The remainder of this paper is organized as follows.
In Section 2 we introduce the main category, where objects are PILLY

types and morphisms are ground contextual equivalence classes of PILLY

terms. We also present the rest of the structure needed to obtain a PILLY -
model.

In Section 3 we define the logic fibration needed to formulate parametric-
ity. This will be based on ground contextual equivalence and the notion of
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>>-closed relations. The latter will play the role of admissible relations
and thus need to satisfy certain closure properties. We establish those in
section 4 to obtain a pre-LAPL-structure modelling relations.

In Section 5 we describe the relational interpretation of types by defining
the functor denoted J in [4]. This functor will be built out of the ∆-map
described by Pitts.

In Section 6 we then check that the parametricity schema does indeed
hold, and thus conclude all its consequences. Among those consequences is
the definability of the tensor type through LILY-types. We thus see that we
have in fact a parametric model of LILY.

In Section 7 we describe the interpretation of PILLY into the model we
have constructed out of the operational semantics of LILY.

In Section 9 we investigate a few consequences of the fact that the opera-
tional semantics of LILY constitues an LAPL-structure and finally conclude
in Section 10.

2 The PILLY -model

We have this schema of categories to fill out:

Prop

��
LinType

p
&&MMMMMMMMMM ⊥

G
22 Type

Fpp
//

q

��

Context

xxrrrrrrrrrrr

Kind

We write αn for α1, . . . , αn. We let Typ denote the set of closed LILY types,
and Terms(σ) the set of (ground contextual equivalence classes of) closed
LILY terms of type σ.

2.1 The Base: Kind

Terms and types will be found in LinType and purely intuitionistic terms
in Type as well. Terms and types are sorted into fibers by their set of free
type-variables. Thus p and q maps types to their set of free type-variables.
Hence Kind has as objects sets of type-variables. As a type with free n free
type-variables can be seen as a function from Typn to Typ, sets of appropri-
ate types can serve as morphisms in Kind:
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Definition (Kind):

Objects: αn

Morphisms: σm : αn → αm iff ∀i ∈ {1, . . . ,m}. αn ` σi

Note, that we allow α0 as an object of Kind.

2.1.1 Kind is cartesian

Kind is required to be a cartesian category. The product of αn and αm is
given as αn+m, while the product of σn′

: αn → αn′
and τm′

: αm → αm′

needs to take renaming of the free type-variables into account and becomes
the concatenation of σn′

and τ [αn+1, . . . , αn+m/α1, . . . , αm]
m′

. Projections
are constructed by weakening.

2.2 The fibration with LinType

We actually might like to define LinType as an indexed (by the objects of
Kind) category, because it would look very simple. The category for each
set αn of type-variables would have as objects types with (at most) those free
type-variables and as morphisms (ground contextual equivalence classes of)
terms of appropriate type. But since we need a full fledged fibration things
look a little less simple, in that we have to apply the Grothedieck construc-
tion to the sketched category. We write out the result here since that is the
category we deal with. We do, however, write out the fiber categories as
well right after we have defined p.

Definition (LinType):

Objects: (αn, σ) such that αn ` σ

Morphisms: (ωm, [M ]) : (αn, σ) → (αm, τ), [M ] is a ground contextual
equivalence class of LILY-terms, such that

• ωm : αn → αm in Kind

• −;x : σ `αn M : τ [ωm/αm]

Note that an object (αn,σ) of LinType is a morphism αn → α1 of Kind.
Since we have applied the Grothendieck construction, p becomes a mere

projection:
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Definition (p : LinType → Kind):

Objects: (αn, σ) 7→ αn

Morphisms: (ωm, [M ]) 7→ ωm

And now for the promised fiber. . .
If we define LinTypen to be p−1(αn, idαn) we obtain:

Definition (LinTypen):

Objects: σ such that αn ` σ

Morphisms: [M ] : σ → τ such that −;x : σ `αn M : τ

Composition is by substitution.

2.2.1 LinTypen is SMCC

LinTypen is required to be symetric monoidal closed, and it is. The struc-
ture is easily defined in LILY and looks as expected (each fiber is essentially
a copy of the term model for DILL in [1]). The tensor is given by:

I = I
σ ⊗ τ = σ ⊗ τ

[M ]⊗ [N ] = [let x⊗ y be z in M ⊗N ]

where −;x : σ `αn M : σ′, −; y : τ `αn N : τ ′ and −; z : σ ⊗ τ `αn

let x⊗ y be z in M ⊗N : σ′ ⊗ τ ′.
The monoidal structure is given by

rIσ : I ⊗ σ ( σ = let x1 ⊗ x2 be x in let ? be x1 in x2

lIσ : σ ⊗ I ( σ = let x1 ⊗ x2 be x in let ? be x2 in x1

aσ,τ,ω : σ ⊗ (τ ⊗ ω) ( (σ ⊗ τ)⊗ ω = let x1 ⊗ t be x in let x2 ⊗ x3 be t in (x1 ⊗ x2)⊗ x3

sσ,τ : σ ⊗ I ( σ = let x1 ⊗ x2 be x in let ? be x2 in x1

The closed structure, σ → (−), is given by

σ → τ = σ ( τ
σ → [M ] = [λx : σ.(M [(fx)/y])]

where −; y : τ `αn M : τ ′ and −; f : σ ( τ `αn λx : σ.(M [(fx)/y]) : σ (
τ ′.

4



2.3 The fibration with Type

The category Type has undergone the exact same obfuscation as LinType.
Comparing the two we see that in Type the objects are lists of objects from
LinType and morphisms in Type are lists of morphisms from LinType,
where the free variables are now in the intuitionistic context. This should
be thought of as a variation in to stages. First the free variables are moved
to the intuitionistic context to obtain a category of purely intionistic terms.
Then this category is closed under cartesian product by turning objects into
lists of objects and morphisms into lists of morphisms. This might be easier
to see in the fiber category appearing after the definition of q.

Definition (Type):

Objects: (αn, σs) such that ∀i ∈ {1, . . . , s}. αn ` σi

Morphisms: (ωm, [M ]
r
) : (αn, σs) → (αm, τ r) such that

• ωm : αn → αm in Kind

• ∀i ∈ {1, . . . , r}. x : σs;− `αn Mi : τi[ωm/αm]

As with p, q is a mere projection since all the objects of Kind have been
inserted into the first component of the objects of Type by the Grothendieck
construction:

Definition (q : Type → Kind):

Objects: (αn, σs) 7→ αn

Morphisms: (ωm, [M ]
r
) 7→ ωm

If we define Typen to be q−1(αn, idαn) we obtain:

Definition (Typen):

Objects: σs such that ∀i ∈ {1, . . . , s}. αn ` σi

Morphisms: [M ]
r

: σs → τ r such that ∀i ∈ {1, . . . , r}. x : σs;− `αn

Mi : τi
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2.3.1 Typen is CCC

Typen is required to be a cartesian closed category. The product is given by
juxtaposition (concatenation?) and projections by intuitionistic weakening,
while the closed structure is given by:

σs → τ r = !σs
( τ

r

which is simply and adaption of the usual equation, σ → τ =!σ ( τ , to our
case with lists of types.

2.4 The adjuction F a G

We also have to define the F a G adjunction. It is mostly given by the fact
that Type is almost the coKleisli category of the !-monad on LinType.
Thus G is almost a forgetfull functor and F is almost !.

Definition (G : LinType → Type):

Objects: (αn, σ) 7→ (αn, σ)

Morphisms: (ωm, [M ]) 7→ (ωm, [M ])

Note that G is not the identity on terms, as −;x : σ `αn M : τ [ωm/αm] is
mapped to x : σ;− `αn M : τ [ωm/αm]

Definition (F : Type → LinType):

Objects: (αn, σs) 7→ (αn, !σ1 ⊗ · · ·⊗!σs)

Morphisms:
(ωm, [M ]

r
) 7→ (ωm, [let ⊗i x′i : ⊗i!σi be y in let !xm be x′

m in ⊗i!Mi])

Notice, that (F ◦G)(σ) =!σ.

2.4.1 F ◦G is a comonad

If we define !! = F ◦G and calculate the resulting functor, we get

!!(σ) = !σ
!!([M ]) = [let !y be x in !M ]

This defines a comonad on LinType with the following structure:

δσ :!σ →!!σ = [let !y be x in !!y]
εσ :!σ → σ = [let !y be x in y]
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2.5 We have a PILLY -model

We have simply build the syntactic model as in the completeness proof in [4]
except that terms are identifyed if they are ground contextual equivalent
rather than if they can be proven equal. We now argue that the former
identification is stronger and that we thus obtain a PILLY -model:

From Chapter 4we know that ground contextual equivalence satisfy all
the demands of the equational theory. We thus have a PILLY -model once
we show that all functors are welldefined (respect ground contextual equiv-
alence) and all adjunctions hold (transposition respect ground contextual
equivalence)1. These demands are easily verified using that ground contex-
tual equivalence is compatible and substitutive.

3 Logic

Logic in the model is based on sets. This gives us classical logic and most
structure for free.

We would like to define the fibration Context → Kind as the famil-
iar Fam(Set) → Set, but since Kind is not Set, we define a functor
S : Kind → Set and the fibration Context → Kind will then be the
pullback of Fam(Set) → Set along S. This just means that we only con-
sider the fibers above images of S. We write out the description here.

Definition (S : Kind → Set):

Objects: αn 7→ Typn

Morphisms: σm 7→ (τn 7→ σ[τn/αn]
m

)

This functor S tells us how to think of the objects of Kind in terms of sets:
n free type variables are thought of as all choices of n closed types. The
morphism σm is thought of as the corresponding transformation of choices.

1Formally we define translations between PILLY -terms and LILY-terms to obtain a
bijection between LILY-terms modulo ground contextual equivalence and a quotient of
PILLY -terms corresponding to ground contextual equivalence. Our structure is then iso-
morphic to a quotien of the PILLY -model from the completeness proof. This quotient
is shown to be a PILLY -model by showing that all functors can be lifted to equivalence
classes and that adjuctions still hold. Since all categories and functors are define by the
same syntax in all three structures, the actual computations are the same as those one
would perform verifying the intuitive argument given above.
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Definition (Context):

Objects: (αn, (Ai)i∈S(αn)), where each Ai is a set.

Morphisms: (σm, (fi)i∈S(αn)) : (αn, (Ai)i∈S(αn)) → (αm, (Bj)j∈S(αm)),
such that

• σm : αn → αm in Kind

• fi : Ai → BS(σm)(i)

To understand the definition of context, it is easiest to look at the functor
I, which describes the part of context in which we are interested, namely
the interpretations of types. A type σ with free variables αn is interpreted
as the set of closed terms of σ[τn/αn] for all choices of τn. Thus a type is
mapped to a set of terms indexed by possible choices of closed types for the
free type variables.

As the objects of Type are lists of types and these are thought of as
products of types, the functor I is given by “product of sets of terms”:

Definition (I : Type → Context):

Objects:
(αn, σs) 7→ (αn, (Terms(σ1[τn/αn])× · · · ×Terms(σs[τn/αn]))τn∈S(αn))

Morphisms:
(ωm, [M ]

r
) 7→ (ωm, (t : σ1[τn/αn]

s 7→ [M [τn/αn][ts/xs]]
r
)τn∈S(αn))

I is product-preserving by definition and that it is faithfull follows from
extensionality.

The interpretation of relations is “subsets”:

U : LinType×Kind LinType → Context = 2I(−)×I(=).

Thus relations are simply subsets of the powerset of terms. This en-
ables us to use Pitts original notion of >>-closed relations as our notion of
admissible relations.

For this reason we use the notation r ⊆ σ × τ to denote the fact that

r ⊆ Terms(σ)× Terms(τ)

while r ⊆Adm σ × τ denotes the fact that

r ⊆ σ × τ ∧ r =>> r
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We then define the subfunctor V of U as “the set of >>-closed relations” by

Definition (V : LinType×Kind LinType → Context):

Objects: (αn, σ, τ) 7→ (αn, ({r ⊆Adm S(σ)(~τn)× S(τ)(~τn)})τn∈S(αn))

Morphisms: (ωm, [M ], [N ]) 7→ U(ωm, [M ], [N ])

where the second component of the value on morphisms should be restricted
to >>-closed relations. That this restriction results in a map of >>-closed
relations is seen in section 4.

4 Admissible Relations

To justify that >>-closed relations can serve as a notion of admissible re-
lations, we must show that they enjoy the closure properties of [4] figure 4.
These axioms have been changed slightly since their first release to accomo-
date the current model. The reason this is not unreasonable is that they
were originally simplified for ease-of-use: Rather than showing the rule

Ξ | Γ | Θ ` ρ ⊆Adm σ × τ

Ξ | Γ | Θ `!ρ ⊆Adm!σ×!τ

it was thought easier to prove the three rules

Ξ | Γ | Θ ` ρ ⊆Adm σ × τ x, y /∈ Γ
Ξ | Γ | Θ ` (x : σ, y : τ).x ↓⊃ ρ ⊆Adm σ × τ

,

x, y /∈ Γ
Ξ | Γ | Θ ` (x : !σ, y : !τ).(x ↓⊃⊂ y ↓) ⊆Adm σ × τ

and
Ξ | Γ | Θ ` φ : Prop x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).(x ↓ ∧y ↓⊃ φ) ⊆Adm σ × τ
,

where x ↓≡ ∃f : σ ( I.f(x) =I ∗, as these were more immediate in a
domain-theoretic setting.

But since the first one is what is really needed, and the last one fails
for this particular model, we have reverted to the unoptimized scheme of
axioms. Thus, further down, we show the first rule to hold here.

We refer to figure 4 in [4] and provide only a part of a formula to hint
at which construction we are debating:
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R ⊆Adm σ × τ :A free admissible relational variable is interpreted as the
projection into the set of admissible relations. Thus at every point it
returns the admissble relation it receives as the last component of its
input.

eqσ: Equality is simply ground contextual equivalence, which by Chapter
4is the same as ∆, which is >>-closed.

ρ(t x, u y): Assume ρ is >>-closed. We now wish to show ρ(tM, uN)>> ⇒
ρ>>(tM, uN). Writing out the two formulae, we get ρ(tM, uN)>> ⇔

∀f ′ : σ′ (!ω1, g
′ : τ ′ (!ω2.(∀z′ : σ′, w′ : τ ′.ρ(tz′, uw′) ⊃ f ′z′ ⇓⇔ g′w′ ⇓) ⊃ f ′M ⇓⇔ g′N ⇓

and ρ>>(tM, uN) ⇔

∀f : σ (!ω1, g : τ (!ω2.(∀z : σ,w : τ.ρ(z, w) ⊃ fz ⇓⇔ gw ⇓) ⊃ f(tM) ⇓⇔ g(uN) ⇓

Assume the formula for ρ(tM, uN)>> and that f : σ (!ω1, g : τ (
!ω2 satisfy ∀z : σ,w : τ.ρ(z, w) ⊃ f z ⇓⇔ g w ⇓. If we instantiate
ρ(tM, uN)>> with f ′ = f ◦ t, g′ = g ◦ u, we get f(t M) ⇓⇔ g(u N) ⇓
as required.

ρ(x, y)∧ ρ′(x, y): Conjunction is modelled by intersection, so the following
neat argument applies: Assume ρ and ρ′ to be >>-closed. Since

ρ ∩ ρ′ ⊂ ρ and ρ ∩ ρ′ ⊂ ρ′

we get
ρ> ⊂ (ρ ∩ ρ′)> and ρ′> ⊂ (ρ ∩ ρ′)>

so
ρ> ∪ ρ′> ⊂ (ρ ∩ ρ′)>

Thus
(ρ ∩ ρ′)>> ⊂ (ρ> ∪ ρ′>)> ⊂ ρ>> = ρ

and likewise (ρ ∩ ρ′)>> ⊂ ρ′, so (ρ ∩ ρ′)>> ⊂ ρ ∩ ρ′.

(x : τ, y : σ).ρ(y, x): Let ρ̂ denote (x : τ, y : σ).ρ(y, x). Calculation now
shows, that ρ̂>> = ρ̂>>. Thus

ρ̂>>(M,N) = ρ̂>>(M,N) = ρ>>(N,M) = ρ(N,M) = ρ̂(M,N)

where we obviously use, that ρ is >>-closed.
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!ρ ⊆Adm!σ×!τ :Fortunately !ρ is defined as an >>-closure and is thus >>
closed.

>:Writing out >>>(M,N) we get

∀f : σ (!ω1, g : τ (!ω2.(∀z : σ,w : τ.>(z, w) ⊃ fz ⇓⇔ gw ⇓) ⊃ fM ⇓⇔ gN ⇓

Since >(z, w) holds in general, this is quickly shortened to

∀f : σ (!ω1, g : τ (!ω2.(∀z : σ,w : τ.f z ⇓⇔ g w ⇓) ⊃ f M ⇓⇔ g N ⇓

which again (due to the very strong requirements on f and g) can be
shortened to

∀f : σ (!ω1, g : τ (!ω2.>

which is of course just the same as >.

φ ⊃ ρ(x, y): If φ does not hold we get >. If φ does hold we get ρ which is
admissible.

Quantifications: All quantifications are proved the same way. We will
do (∀x : ω.ρ)>> ⊂ ∀x : ω.ρ>>. Writing out the two formulae, we get
(∀x : ω.ρ)>>(M,N) ⇔

∀f : σ (!ω1, g : τ (!ω2.(∀z : σ,w : τ.(∀x : ω.ρx(z, w)) ⊃ fz ⇓⇔ gw ⇓) ⊃ fM ⇓⇔ gN ⇓

and (∀x : ω.ρ>>)(M,N) ⇔

∀x : ω.(∀f : σ (!ω1, g : τ (!ω2.(∀z : σ,w : τ.ρx(z, w) ⊃ fz ⇓⇔ gw ⇓) ⊃ fM ⇓⇔ g : N ⇓)

Take any T : σ. Assume the formula for (∀x : ω.ρ)>>(M,N) and that
f : σ (!ω, g : τ (!ω satisfy ∀z : σ,w : τ.ρT (z, w) ⊃ f z ⇓⇔ g w ⇓.
Then, as ∀x : ω.ρx(z, w) implies ρT (z, w), we can plug f and g into
(∀x : ω.ρ)>>(M,N), obtaining f M ⇓⇔ g : N ⇓ as required.

ρ ⊆Adm σ × τ ∧ ρ′ ⊆ σ × τ ∧ ρ ≡ ρ′ ⇒ ρ′ ⊆Adm σ × τ : We recall, that
ρ ≡ ρ′ is short hand for ∀x : σ, y : τ.ρ(x, y) ⊃⊂ ρ′(x, y), which in our
model translates to actual equality among the relations ρ and ρ′. The
statement is then obvious.

We must also show, that the rule 2.18 holds:

Ξ | Γ | Θ ` ρ ⊆!σ×!τ, ρ′ ⊆Adm!σ×!τ x, y /∈ Γ

Ξ | Γ | Θ | ∀x : σ, y : τ.ρ(!x, !y) ⊃ ρ′(!x, !y) `
∀x : !σ, y : !τ.x ↓⊃⊂ y ↓⊃ (ρ(x, y) ⊃ ρ′(x, y))
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We recall the definition x ↓≡ ∃f : σ ( I.f(x) =I ∗. We observe, that if
σ =!σ′ then the strictness theorem applies, yielding M ↓⇒ M ⇓. And the
term λx : !σ.let !y be x in ∗ testifies, that M ⇓⇒ M ↓. Thus the abstract
notion of termination coincides with the concrete one.

We note, that the !’s in ρ(!x, !y) are not the comonad, but the syntactic
construction which in LILY is implemented as

!M ≡ !(z = M)

where z is a fresh variable not free in M .
Now pick M : !σ, N : !τ and assume

ρ ⊆!σ×!τ
ρ′ ⊆Adm!σ×!τ
∀x : σ, y : τ.ρ(!x, !y) ⊃ ρ′(!x, !y)
M ⇓⊃⊂ N ⇓
ρ(M,N)

We then wish to show ρ′(M,N). We have two cases: Either neither M nor
N terminates or they both do. If neither terminates, we have ρ′(M,N) right
away, since ρ′ is >>-closed. If they both terminate, they are equivalent to
thunks and the assumption ∀x : σ, y : τ.ρ(!x, !y) ⊃ ρ′(!x, !y) in conjunction
with ρ(M,N) gives us ρ′(M,N).

5 Relational Interpretation

If we write out the definition of AdmRelCtx and AdmRelations as pre-
scribed in [4] we get

Definition (AdmRelCtx):

Objects: (αn, αm, (Ai)i∈S(αn+m)), where each Ai is a set.

Morphisms:
(σr, τ s, (fi)i∈S(αn+m)) :

(αn, αm, (Ai)i∈S(αn+m)) → (αr, αs, (Bj)j∈S(αr+s)),

such that

• σr : αn → αr in Kind

• τ s : αm → αs in Kind

• fi : Ai → BS(σm×τs)(i)
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Definition (AdmRelations):

Objects: (αn, αm, (Ai)i∈S(αn+m), σ, τ, (fi)i∈S(αn+m)), such that

• (αn, σ) is an object of LinType

• (αm, τ) is an object of LinType

• (αn+m, (fi)i∈S(αn+m)) :

(αn+m, (Ai)i∈S(αn+m)) → V (αn+m, σ, τ)

in Context, i.e
∀τn+m ∈ S(αn+m).∀a ∈ Aτn+m .

fτn+m(a) ⊆Adm σ[τn+m/αn+m]× τ [τn+m/αn+m]

Morphisms:
(σr, τ s, (hi)i∈S(αn+m), [M ], [N ]) :

(αn, αm, (Ai)i∈S(αn+m), σ, τ, (fi)i∈S(αn+m)) →
(αr, αs, (Bi)i∈S(αr+s), ω, ρ, (gi)i∈S(αr+s))

such that

• (σr, [M ]) : (αn, σ) → (αr, ω) in LinType

• (τ s, [N ]) : (αm, τ) → (αs, ρ) in LinType

• ∀i ∈ S(αn+m). hi : Ai → BS(σr,τs)(i)

• ∀i ∈ S(αn+m).∀a ∈ Ai.

fi(a) ⊆ (V (ωr+s, [M ], [N ])j ◦ gj ◦ hi)(a)

as illustrated by the diagram:

Ai
fi

|∩
//

hi

��

V (σ, τ)i ⊆ 2I(σ)×I(τ) σ

[M ]

��

τ

[N ]

��
Bj

gj // V (ω, ρ)j

V ([M ],[N ])j

OO

⊆ 2I(ω)×I(ρ) ω ρ

where ω1 . . . ωr are weakened versions of σ1 . . . σr, ωr+1 . . . ωr+s

are weakened versions of τ1 . . . τs and j = S(σr, τ s)(i).
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Note that in the definition of objects σ and τ has been weakened before V is
applied to them, and in the definition of morphisms the same has happened
to [M ] and [N ].

The relational interpretations of types is provided by the map of PILL-
models J . J can be described by its functorial actions on Kind and LinType.
It is merely defined as the ∆ from Chapter 4:

Definition (JBase : Kind → AdmRelCtx):

Objects: αn 7→ (αn, αn,
(Πn

i=1{r ⊆Adm τi × τi+n})τ2n∈Typ2n)

Morphisms: σm 7→ (σm, σm,
((r1 ⊆Adm τ1 × τn+1, . . . , rn ⊆Adm τn × τ2n) 7→
(∆σ1(r

n/αn), . . . ,∆σm(rn/αn)))τ2n∈Typ2n)

Definition (JTotal : LinType → AdmRelations):

Objects: (αn, σ) 7→ (JBase(αn), JBase(σ))

Morphisms: (ωm, [M ]) 7→ (JBase(ωm), [M ], [M ])

We must show that J is indeed a map of PILL-models. So far J is
merely a fibred functor, but according to [10] it is sufficient to show that J
is a strong symmetric monoidal closed functor which preserves the comonad
structure on the nose. Then J has an extension to a map of PILL-models.

That the comonad structure is preserved on the nose is an easy conse-
quence of the very syntatic nature of our categories. That J is a strong SMC
functor is almost as easy. Only the constructs !, ⊗ and I are not defined
directly as J applied to their non-relational counterparts.

The case of tensor is proven like this: Given ρ ⊆Adm σ×τ and rho′ ⊆Adm

σ′ × τ ′, the tensor relation ρ⊗ ρ′ ⊆Adm σ ⊗ σ′ × τ ⊗ τ ′ is defined as

(x : σ ⊗ σ′, y : τ ⊗ τ ′).∀α, β, R ⊆Adm α× β.
∀t : σ ( τ ( α, t′ : σ′ ( τ ′ ( β.(ρ ( ρ′ ( R)(t, t′) ⊃
R(let x′ ⊗ x′′ be x in tx′x′′, let y′ ⊗ y′′ be y in t′y′y′′).

Thus, if we for given types σ and τ (in the same fiber) and given terms
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M : σ⊗ τ and N : σ⊗ τ wish to compare the statement M J(σ⊗ τ) N with
M J(σ)⊗ J(τ) N , the former is given by

M ∆σ⊗τ N

while the latter is given by

∀α, β, R ⊆Adm α× β.
∀t : σ ( τ ( α, t′ : σ′ ( τ ′ ( β.(ρ ( ρ′ ( R)(t, t′) ⊃
R(let x′ ⊗ x′′ be M in tx′x′′, let y′ ⊗ y′′ be N in t′y′y′′).

(where σ = σ′ because J(σ) is a relation on σ. Likewise τ = τ ′.)

If we assume M ∆σ⊗τ N and introduce the following names

r1 = ∆σ, r2 = ∆τ , r3 = R
M1 = M, M ′

1 = N
M3 = −; a1 : σ, a2 : τ ` t a1 a2

M ′
3 = −; a′1 : σ, a′2 : τ ` t′ a′1 a′2

we know that (M1,M
′
1) ∈ (r1 ⊗ r2)>> and that

(A,A′) ∈ r1 ∧ (B,B′) ∈ r2 ⇔
A ∆σA′ ∧ B ∆τB

′ ⇒
R(t A B, t′ A′ B′) ⇔

(M3[A/a1, B/a2],M ′
3[A

′/a′1, B
′/a′2]) ∈ r3

Thus Lemma 5.12 from Chapter 4 applies, telling us that

(let a1 ⊗ a2 be M1 in M3, let a′1 ⊗ a′2 be M ′
1 in M ′

3) ∈ r3

m
R(let x′ ⊗ x′′ be M in t x′ x′′, let y′ ⊗ y′′ be N in t′ y′ y′′)

Thus M J(σ)⊗ J(τ) N .
For the converse direction choose

α = σ ⊗ τ, β = σ ⊗ τ
t = t′ = λx : σ.λy : τ.x⊗ y
R = ∆σ⊗τ

This gives

let x′ ⊗ x′′ be M in x′ ⊗ x′′ ∆σ⊗τ let y′ ⊗ y′′ be N in y′ ⊗ y′′
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which quickly reduces to
M ∆σ⊗τ N

The case of I is a simple version of the argument above using a similar
extensionality property, namely that if M I N then either neither M nor N
terminate or they both evaluate to ?.

The case of ! is proven like so: Given an admissible relation ρ ⊆Adm σ×τ ,
the lifted relation !ρ is given by

(x :!σ, y :!τ).x ⇓⊃⊂ y ⇓ ∧(x ⇓⊃ ρ(let !x′ be x in x′, let !y′ be y in y′))

Thus, considering a type σ and terms M :!σ and N :!σ, we find that
M !(J(σ)) N reduces to

M ⇓⇔ N ⇓ ∧M ⇓⇒ (M J(σ) N)

while M J(!σ) N is given as ∆!σ which by Chapter 4is equivalent to

(M 6⇓ ∧N 6⇓)∨∃x,M ′, y,N ′.M ⇓!(x = M ′ : σ)∧N ⇓!(y = N ′ : σ)∧fixx : σ.M ′ =gnd fixy : σN ′ : σ

This is equivalent to expression for M !(J(σ)) N since

∆!σ = {((!(x = M : σ), !(y = N : σ))|fixx : σ.M ∆σ fixy : σN : σ}

6 Parametricity

The parametricity schema states that for any type

α1, . . . , αn ` σ : Type

equality on σ is given by the relational interpretaion of σ applied to equality
relations:

∀τ1 : Type, . . . , τn : Type.eqσ[τ1/α1,...,τn/αn] = σ(eqτ1 , . . . , eqτn)

Equality is given by contextual equivalence and the relational interpretation
is given by the functor J . Since contextual equivalence coincides with the
relation ∆, we can rewrite the above equation to

∆σ[τ1/α1,...,τn/αn] = J(σ)(∆τ1 , . . . ,∆τn) = ∆σ[∆τ1/α1, . . . ,∆τn/αn]

which is the content of lemma 4.13.

Theorem 6.1. The LAPL-structure considered is a parametric LAPL-structure,
i.e., satisfies identity extension, extensionality and very strong equality.
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7 Pitts original category

Since LinType has a closed structure, morphisms σ → τ corresponds to
morphisms 1 → (σ ( τ) i.e. ground contextual equivalence classes of closed
terms of type σ ( τ . Thus2 we find the category considered by Pitts in [2]
as the fiber over 1 (as he had no free type variables). The proof given there
of the definability of coproducts, we thus get for free along with all the other
inductive and coinductive types. And now we know they work with free type
variables as well.

8 Interpretation

In this section we describe the interpretation of PILLY into the model we
have constructed out of the operational semantics of LILY.3

A PILLY kind context αn is interpreted as the object αn in Kind.
A PILLY type αn ` σ with n free type variables is modeled as an object

in LinType in the fiber over αn:

[[αn ` σ]] = (αn, σ),

which we abbreviate as:
[[σ]] = σ.

These definitions look deceptively simple. To verify that this is indeed the
interpretation one obtains in the LILY LAPL-structure one must of course
calculate the interpretation of types in the LILY LAPL-structure, and then
one quickly sees that the interpretation is as shown above.

Type contexts are modeled by the tensor and comonad structure on
LinType. A context x1 : σ1, . . . , x

′
n : σn; a1 : τ1, . . . , am : τm is modeled as

!![[σ1]]⊗ . . .⊗!![[σn]]⊗ [[τ1]]⊗ . . .⊗ [[τm]]

Thus we use tensor to concatenate contexts and we use !! to make the types
in the intuitionistic context behave intuitionistically. Of course the entire
context will be inside one fiber of LinType.

Terms with n free type variables are modeled as morphisms in LinType
in the fiber over αn.

2One should check, that composition matches.
3Note that by the results in the preceding section, we already know that we have a well-

defined interpretation of PILLY — that is a direct consequence of the fact that we have
constructed an LAPL structure. Here we merely try to provide an intuitive description of
the resulting interpretation.
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A term Ξ | Γ;∆ ` t : σ is modeled as a morphism

[[t]] : [[Γ; ∆]] → [[σ]]

in LinTypen, that is, as a ground contextual equivalence class of LILY terms,
containing a representative M of the form

−;x : (!![[σ1]]⊗ . . .⊗!![[σn]]⊗ [[τ1]]⊗ . . .⊗ [[τm]]) `Ξ M : σ.

The inductive description of [[t]] follows from [9, 1]. For example, [[Ξ | Γ;∆,∆′ ` t⊗ s : σ ⊗ τ ]]
is the equivalence class of the LILY term

−;x : !Γ⊗∆ ` let γ ⊗ δ ⊗ δ′ = split x
in [[t]](γ ⊗ δ)⊗ [[s]](γ ⊗ δ′),

where split is a term definable in LILY such that split x is a tensor product
in the obvious way.

Now consider the interpretation of formulas in context:

~α | ~x : ~σ | ~R : Rel(~σ′, ~σ′′), ~S : AdmRel(~τ ′, ~τ ′′) ` φ : Prop.

The interpretation of the above formula, abbreviated as simply [[φ]], is a
family of subsets, indexed by closed types ~τ :

[[φ]] ⊆
∏

σ∈~σ Terms(σ[~τ/~α])
×

∏
σ′∈~σ′,σ′′∈~σ′′ P (Terms(σ′[~τ/~α])× Terms(σ′′[~τ/~α]))

×
∏

τ ′∈~τ ′,τ ′′∈~τ ′′ P>>(Terms(τ ′[~τ/~α])× Terms(τ ′′[~τ/~α])),

where P>> denotes the function that yields the set of all >>-closed subsets.
In plain words, [[φ]] is a subset of ground contextual equivalence classes of
terms of types σ, of relations (on ground contextual equivalence classes of
terms) and of >>-closed relations (on ground contextual equivalence classes
of terms). Thus it is a very natural interpretation.

The connectives and quantifiers are interpreted just as we ordinarily
do in sets. For example, the interpretation of conjunction [[φ ∧ φ′]] is the
intersection of [[φ]] and [[φ′]].

The only remaining point to note is the interpretation of substitution
of terms into formulas: the interpretation of [[φ[M/x]]], is obtained as fol-
lows. As explained above, the term M is interpreted as an equivalence class
of LILY terms [M ] and hence it induces an obvious function, which works
by substitution, between sets of ground contextual equivalence classes of
terms Terms(. . .) → Terms(. . .) (formally, the function is obtained via the I
functor and the adjunction F a G). That function is used to reindex the
interpretation of φ.
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9 Consequences

We briefly recall a few theroems from Chapter 3:

Proposition 9.1 ([6]). Suppose α ` σ(α) is a type in pure PILLY in which α
occurs only positively. In any parametric LAPL-structure in is interpreted
as an initial algebra and out as a final coalgebra for [[σ]] : LinType1 →
LinType1.

Proposition 9.2 ([6]). Suppose α ` σ(α) : Type is a type in pure PILLY

(α may appear both positively and negatively). There exists a closed type
rec α.σ(α) in PILLY and terms

f : rec α.σ(α) ( σ(rec α.σ(α)),
g : σ(rec α.σ(α)) ( rec α.σ(α)

such that in any parametric LAPL-structure, f, g are interpreted as each
others inverses.

We now consider a few consequences of Theorem 6.1.
Consider the category whose objects are the closed types of LILY and

whose morphisms from σ to τ are closed terms of type σ ( τ of LILY
identified up to ground contextual equivalence. We call this category Lily.

As always, type expressions α ` σ(α) in LILY for which α only appears
positively in σ induce endofunctors on Lily.

Theorem 9.3. All functors Lily → Lily induced by types σ(α) in LILY
have initial algebras and final coalgebras.

Proof. This is a simple corollary of Theorems 9.1 and 6.1 once we observe
that LinType1 is equivalent to Lily and that types in PILLY are simply
interpreted as the corresponding types in LILY.

Likewise we have:

Theorem 9.4. For all types α ` σ(α) : Type of LILY, there exists a closed
type τ of LILY such that τ and σ(τ) are isomorphic as objects of Lily.

This way we get formal proofs of all the claimed isomorphisms in [2, Fig-
ure 1] (loc. cit. only includes a formal proof of definability of coproducts).4

Moreover, it shows that our model can be used to prove correct program
transformations based on parametricity for a language with general recursive
types, an improvement over earlier work [8], which only dealt with algebraic
data types.

4See [9] for the details of all the relevant proofs in LAPL.
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Example 9.5. As an immediate corollary of the definability of ⊗ types in
PILLY [5], and the observation that LinType1 is equivalent to Lily, we get
that in Lily, the object σ ⊗ τ is isomorphic to

∏
α.(σ ( τ ( α) ( α.

Phrased in purely operational semantics terms, it means that in LILY there
are terms f and g, with types f : σ ⊗ τ →

∏
α.(σ ( τ ( α) ( α and

g :
∏

α.(σ ( τ ( α) ( α → σ⊗ τ such that the LILY terms corresponding
to the composition of f and g are ground contextually equivalent to the
identity terms.

For general parametric LAPL-structures we may derive reasoning prin-
ciples for the definable inductive, coinductive, and recursive types [7]. The
principles look similar to the ones considered by Pitts [11] for classical do-
main theory. For instance, we have the following principle for coinductive
types:

Theorem 9.6. Suppose that R : Rel(να.σ(α), να.σ(α)) is such that (out, out) : R →
σ[R]. Then

∀x, y : να.σ(α).R(x, y) ⊃ x =να.σ(α) y.

For the LILY LAPL-structure this theorem provides us with a coinduction
principles for proving contextual equivalence of elements of coinductive types
defined via parametric polymorphism in LILY.

Similar results were proved in operational semantics for a language with
one top-level recursive type in [3]. However, we want to stress that the
definability of recursive types in LAPL, Theorems 9.1 and 9.2, also works for
recursive types with parameters [6], as does the reasoning principles for the
resulting types. Thus, without involving any form of classical or synthetic
domain theory, but just relying on purely operational semantics and general
properties of LAPL-structures, we have derived general reasoning principles
for recursive types. We are not aware of any other work where such general
principles are derived directly from operational semantics.5

10 Conclusion

A parametric model of LILY has been established. This proves that all the
consequences of parametricity as presented in [4] aplly to LILY. Some of
these were already proved in [2], but only in the case of terms with no free
type variables.

5Note that the use of an LAPL-structure here does not replace conventional use of
domain theory in that we do not give a denotational semantics of LILY in a LAPL-structure
(and thus do not require an adequacy proof), but rather construct a concrete LAPL-
structure directly from the operational semantics of LILY.
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Chapter 6

Conclusion

We have constructed an LAPL-structure from the operational semantics ofLILY and used it to establish
formally definability of a wide range of types inLILY. Moreover, we have derived reasoning principles for
definable inductive, coinductive, and recursive types.

In recent work, Møgelberg has investigated the application of LAPL in denotational semantics [11]. In
particular, he has shown how one may use any LAPL-structure to define a denotational semantics of FPC.
By studying the resulting semantics of FPC in theLILY LAPL structure constructed here, we conjecture that
one may extend the semantics to a polymorphic version of FPC and show it adequate with respect to the
operational semantics of polymorphic FPC. In operational terms the semantics amounts to a translation of
polymorphic FPC intoLILY.

Future work also includes studying the interaction of parametric polymorphism with other effects than
non-termination, in particular with references.
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