

Preliminary results of a persistent execution engine

Kasper Østerbye

IT University Technical Report Series TR-2006-82

ISSN 1600-6100 January 2006

IT University
of Copenhagen

Copyrigth © 2006, Kasper Østerbye

 IT University of Copenhagen
 All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

 ISSN 1600-6100

 ISBN 87-7949-121-9

Copies may be obtained by contacting:

 IT University of Copenhagen
 Glentevej 67
 DK – 2400 Copenhagen NV
 Denmark

 Telephone: +45 38 16 88 88
 Telefax: +45 38 16 88 99
 Web: www.itu.dk

 1

Preliminary results of
a persistent execution engine

Kasper Østerbye, kasper@itu.dk
IT University of Copenhagen

January 25, 2006

Abstract: Normally one strives to make a virtual ma-
chine as fast as possible. This report documents what is
likely to be the slowest virtual machine ever created.
The idea behind this VM is to support execution proc-
esses rarely do anything at all, but which run for very
long real time.

1. Introduction
A workflow process controls how a specific task is carried out in col-
laboration between a system of computers, and a group of humans.
Such a process will most of the time wait for a human agent to finish
a subtask, wait for a specific external event, or just wait for a particu-
lar duration or until a certain date.

We believe that being able to write such workflows in a programming
language, in which one focuses on the description of the individual
process, will make it easier to understand and express the processes
involved. Our vision is to create a language which does to workflows
what Simula did to simulation, providing a language that provides di-
rect support for the material view [Kreutzer, 95]. That is, allow us to
focus on the processes and their interconnections, rather than the
scheduling of the tasks of the workflow. The individual processes in a
simulation spend most of its (simulated) time waiting. As our workflow
processes will wait in real time, it is important that the process can be
easily persisted when it has to wait.

A very radical (and naïve) approach is to let all state in the virtual ma-
chine be persisted at all times. This paper reports on a virtual ma-
chine in which each step of the fetch-execute loop of the interpreter is
itself a database transaction. This is the most radical approach we can
take, which will provide us with a base performance against which we
can measure later optimizations.

This research is motivated by the idea of a workflow language. How-
ever, workflow languages and their implementation will not be further
addressed in this paper.

Section 2 will provide a description of the experimental virtual ma-
chine. Next, we report on some timing results done using different
kinds of queries.

 2

2. Experimental setup
As indicated by the title, we are not anywhere near realizing our vision
of a persistent workflow language. Our experiment is a model of a
stack machine. It stores the stack, program, and instruction pointer in
tables. The only instructions implemented are a push, add, condi-
tional jump, and exit. Nevertheless, those are sufficient to allow us to
write a simple loop.

The database we have used is Microsoft Access, primarily because it is
easy to set up.

The layout of the used tables can be seen below:

The program used in the tests is encoded in the table Instructions. It
mirrors the following simple stack code:

start: push -200 ; Initial value
loop: push 1 ; push 1
 add ; add one
 jumpneg loop ; test stacktop, if negative, jump to loop
 exit ; end program

A.1 Query based results
The first set of interpreters was written in Java using the java.sql
classes. Three variations on the interpreter have been tried out.

• Plain, where the necessary queries were executed as plain
strings sent to the database. The code is shown in appendix A.

• Prepared, where the same SQL statements are used, but they
are precompiled them as prepared statements. The code is in
appendix B.

 3

• Integrated, a variation in which we integrated the update of the
instruction pointer into the queries themselves. The code is in
appendix C.

In all three cases, the instruction fetch execute loop is written as:
 public int interpret(Statement stmt) throws SQLException{
 int count = 0;
 while(true){
 count++;
 ResultSet instr = stmt.executeQuery(getInstruction);
 instr.next();
 String opcode = instr.getString("instrType");
 if (opcode.equals("push")){
 stmt.execute(pushIntInstruction);
 stmt.execute(incrIP);
 }else if (opcode.equals("add")){
 stmt.execute(addInstruction);
 stmt.execute(incrIP);
 }else if (opcode.equals("jumpNeg")){
 stmt.execute(jumpNegInstruction);
 stmt.execute(incrIP);
 }else if (opcode.equals("exit")){
 break;
 }else{
 out.println("Unknown opcode: " + opcode);
 }
 }
 return count;
 }

The result of the interpreter method is the number of instructions
executed, which is used for the timing results. The interpreter gets the
current instruction, and depending on its type, an instruction is is-
sued and the instruction pointer is executed.

The three instructions are coded as:
 addInstruction =
 "UPDATE stack AS s1, stack AS s2, Globals AS sp " +
 "SET s2.valueInt = s1.valueInt+s2.valueInt "+
 ", sp.valueInt = sp.valueInt-1 " +
 "WHERE s1.index=sp.valueInt AND s2.index=sp.valueInt-1 And sp.index=1;";
 pushIntInstruction =
 "UPDATE Stack AS s, Globals AS sp, Globals AS ip, Instructions AS instr " +
 "SET sp.valueInt = sp.valueInt+1, s.valueInt = instr.argint1 " +
 "WHERE s.index=sp.valueInt+1 AND sp.index=1 And " +
 " ip.index=2 AND instr.instrNo=ip.valueInt;";
 jumpNegInstruction =
 "UPDATE stack AS s, Instructions AS instr, Globals AS sp, Globals as ip " +
 "SET ip.valueInt = instr.argInt1-1 "+
 "WHERE s.index=sp.valueInt AND sp.index=1 " +
 " AND instr.instrNo = ip.valueInt AND ip.index = 2" +
 " AND s.valueInt < 0";

The add instruction updates the stack at the second location from the
top index directly, and decrements the stack pointer sp. The push in-
struction pushes the literal (argint1) stored as part of the instruction
and increments the stack pointer sp. The jumpNeg instruction up-
dates the instruction pointer. Notice that the instruction pointer is set
to one less than the value in the instruction. As can be seen in the in-

 4

terpreter, this is accounted for as the instruction pointer is always in-
cremented by one after the instruction has been executed.

In the prepared version (appendix B), the only change is that the in-
struction queries are made as prepared statements.

In the Integrated version (appendix C), we have modified the queries to
include updating the instruction pointer as part of the query itself.
However, it is not possible to update two rows in the same table using
different formulas. As it is rarely the case that the stack pointer and
instruction pointer are updated the same way, it is necessary to split
the Globals table into two tables, a StackTop table and an InstrPointer
table, both with a single row and a single column. The add instruction
in this case becomes:

 addInstruction = con.prepareStatement(
 "UPDATE stack s1, stack s2, StackTop sp, InstrPointer AS ip " +
 "SET s2.valueInt = s1.valueInt+s2.valueInt "+
 ", sp.valueInt = sp.valueInt-1 " +
 ", ip.valueInt = ip.valueInt+1 " +
 "WHERE s1.index=sp.valueInt AND s2.index=sp.valueInt-1");

The jumpNeg instruction is slightly more complicated, as we need to
assign a value based on a condition. Either the next instruction is
found by incrementing the instruction pointer or it is taken from the
jumpneg instruction itself (argint1). Fortunately, Access has a switch
expression that enables exactly this:

 jumpNegInstruction = con.prepareStatement(
 "UPDATE stack AS s, Instructions AS instr, StackTop as sp, InstrPointer as ip " +
 "SET ip.valueInt = switch(s.valueInt < 0, instr.argInt1, true, ip.valueInt+1)"+
 "WHERE s.index=sp.valueInt AND instr.instrNo = ip.valueInt");

If the first expression in the switch is true, the second expression is
the result, else if the third expression is true, the fourth expression is
returned. The switch expression is not standard SQL. Other versions
of SQL typically offer a similar expression however, e.g. named choice
or case.

A.2 Stored procedures
The next set of experiments was to use stored procedures, and to write
the interpreter itself as a stored procedure. Access does not provide
stored procedures, so we have to investigate a different database, and
we have chosen SQL Server 2005 Express, which at the time of writing
is free of charge.

Unlike in plain SQL, the Transact-SQL language in SQL Server does
not allow an update-statement to update more than one table. This
actually makes the instructions easier to code and easier to read. The
full solution is shown in Appendix D. Below is shown the procedure
for push:

 5

PROCEDURE dbo.InstrPush
AS
 UPDATE StackPointer
 SET value = value + 1;

 UPDATE Stack
 SET valueInt = Instructions.argint1
 FROM Instructions, InstructionPointer, StackPointer
 WHERE [index] = StackPointer.value AND Instructions.instrNo = InstructionPointer.value;

 UPDATE InstructionPointer
 SET value = value + 1
 RETURN

The interpreter itself was coded as a StoredProcedure:
PROCEDURE dbo.RunInterpreter
AS
 SET NOCOUNT ON;
 exec ResetVM;
 DECLARE @instrCount as int;
 SET @instrCount = 0;
 DECLARE @instrType AS VARCHAR(30)
 WHILE 0<1 BEGIN /* True did not work, so I wrote 0<1 */
 BEGIN TRANSACTION;
 SET @instrCount = @instrCount +1;
 SET @instrType = (SELECT instrType
 FROM Instructions, InstructionPointer
 WHERE Instructions.instrNo = InstructionPointer.value);
 IF (@instrType='exit') BEGIN
 COMMIT TRANSACTION;
 BREAK;
 END;
 EXEC ('Instr'+@instrType);
 COMMIT TRANSACTION;
 END
 RETURN @instrCount;

We exploit a naming convention to call the stored procedures repre-
senting the instructions of the virtual machine, in that the name of
the stored procedure is named ‘instr’ concatenated with the name of
the instruction type. This will also make it easy to extend the virtual
machine with new instructions without actually changing the RunIn-
terpreter procedure.

A.3 DLinq experiment
The final experiment is to use the C# 3.0 DLinq library. Here the idea
is to define Entity classes for each of the tables, and write the inter-
preter in C#, but in such a manner that one synchronizes the data-
base after the execution of each instruction. The code is shown in Ap-
pendix E. In the previous tables, StackPointer and InstructionPointer
have had but a single row and column. However, when one need to
map between rows and objects one must equip each row with a key to
preserve object id. In this experiment, the two tables have been ex-
tended with an extra column named processID, in anticipation of fu-
ture use.

 6

The class for representing Stack is shown below. The other tables fol-
low similar structure:

 [Table(Name="Stack")]
 public class StackElement{
 private int index;

 [Column(Id=true)]
 public int Index {
 get { return index; }
 set { index = value; }
 }

 private int valueInt;
 [Column]
 public int ValueInt {
 get { return valueInt; }
 set { valueInt = value; }
 }

 }
The interpreter itself is this time written in C#, and looks like this:

public static int Run(bool submit){
 InitVM();
 SP.Value = -1;
 IP.Value = 1;
 Instruction current;
 int count = 0;
 while(true){
 current = Program[IP.Value-1];
 count++;
 switch (current.InstrType){
 case "exit": return count;
 case "push": {
 SP.Value++;
 Stack[SP.Value].ValueInt = current.ArgInt1;
 IP.Value = IP.Value + 1;
 break;
 }
 case "add":{
 Stack[SP.Value-1].ValueInt += Stack[SP.Value].ValueInt;
 SP.Value--;
 IP.Value++;
 break;
 }
 case "jumpneg":{
 IP.Value = (Stack[SP.Value].ValueInt<0 ? current.ArgInt1 : IP.Value + 1);
 break;
 }
 }
 db.SubmitChanges();
 }
 return count;
 }
 }

As can be seen, one uses the entity classes without concern for their
persistent representation. However, after each instruction, the call
db.SubmitChanges() synchronizes the database with the entities.

 7

3. Timing Results
Three experiments were carried out. The timing results are shown be-
low, as number of instructions carried out per second.

 Plain Prepared Integrated SProc DLinq
Average 154 353 454 628 22547
Std. Dev 0,6 3,4 2,9 10,7 142,9
Rel speed 1,0 2,3 2,9 4,1 146,5
Loop 1000 1000 1000 5000 200000

The first three measurements were carried out in Windows safe mode
with a command prompt, which provides minimal background noise.
However, SQL Server 2005 Express was not able to run in simple Safe
mode. Due to the higher speed of the later strategies, the last two used
longer loops. The number of loops performed to obtain the results is
listed above.

The relative speeds of the three approaches are not surprising. It is
well known that prepared statements are faster than plain statements,
and it is well known that each roundtrip to the database incurs extra
overhead. In the integrated approach, there is only one roundtrip per
instruction, whereas the prepared approach uses two – one to execute
the instruction, and one to increment the instruction pointer.

It is unfortunately hard to tell if the stored procedure approach is bet-
ter than the integrated approach, as it is implemented on top of a dif-
ferent database.

However, the performance of DLinq is significantly faster, 146 times
the plain solution, but more noticeable, 35 times faster than the
stored procedure approach. Both experiments use the same database.

The result is surprising, as object relational mappings are normally
considered slow. It is possible to expect the actual SQL used by DLinq.
This shows that precise updates are generated. Thus, rather than up-
dating the stack with a ‘where stack.index = stackpointer.value’, the actual val-
ues are used ‘where stack.index = 1’. All joins are eliminated using this
technique, which might be part of the explanation.

In addition, the program itself is cached in a list in the DLinq example.
However, it is worth noticing that it is not possible to do this optimiza-
tion in the other cases, as no data-structures beside tables are pro-
vided in Transact-SQL. One might have considered to replicate the
program table in an in-memory temporary table in connection with the
stored procedure approach, but that does not get you anywhere, as
the program table is already cached by the underlying infrastructure.

Despite the relative speed of the DLinq approach, this has to be one of
the slowest interpreters ever built.

4. Outlook
The simple programs discussed above merely hint what a persistent
virtual machine might look like. It is far from the idea of a workflow
engine. Below is a list of things that need to be done:

 8

• Add data structures (in the form of tables) for process queues,
to enable scheduling and synchronization.

• Extend the instruction set. Besides providing the obviously
needed arithmetic instructions, full relational operators etc. it is
worth to consider making it an extensible interpreter. In par-
ticular, it would be useful to be able to write new instructions as
stored procedures. This will enable a stored procedure to be a
single instruction and give back some of the lost speed.

However, for now, we are able to execute close to 22000 instructions a
second. If we assume an office with 2000 employees, each completing
one workflow task every 5 minutes, we need to do approximately seven
task transactions per second, which gives us room for using approxi-
mately 3100 instructions per task. With this margin, we find it rea-
sonable to continue.

The next step is to define a concurrency model for the virtual ma-
chine. It must support waiting for a specified duration, and for the oc-
currence of external events. In addition, it must enable more tradi-
tional internal process synchronization. With the relative feasibility of
the persistent virtual machine in place, designing the high-level lan-
guage now needs attention as well.

5. References
We are not aware of anyone who has attempted to build a virtual ma-
chine in this way. If you come across similar ideas, I should be quite
happy to hear about it – email me at kasper@itu.dk.

In a broader sense, work on process migration is relevant, as it con-
cerns serialization of the execution state for transmission over a net-
work. Process migration differs from our approach in there being spe-
cific snapshot points in the program execution in which the process
can be serialized for transmission. One can say that our virtual ma-
chine is serialized after each instruction.

The issue of supporting workflow processes by being able to persist
running threads is also addressed in other work, e.g. [1]. However,
most work on persistency addresses transparent data persistence.

1. Florian Matthes Joachim W. Schmidt. Persistent Threads, Pro-
ceedings of the Twentieth Conference on Very Large Databases,
1994, Santiago, Chile.

 9

A Plain source code
/// Stackmachine, Access database, plain statements
import java.sql.*;
import static java.lang.System.*;
class Access_Plain{

 public static void main(String... args){
 try{
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 StackMachine sm = new StackMachine();
 sm.run();
 }catch(ClassNotFoundException uups){
 out.println("Database driver not found");
 }
 }
 static class StackMachine{
 /********** Start of class ******************/

 final private static String dbUrl = "jdbc:odbc:StackInterpreter";

 Connection con;
 String clear1,clear2;
 String getInstruction;
 String addInstruction;
 String jumpNegInstruction;
 String pushIntInstruction;
 String incrIP;
 String incrStack;
 String decrStack;

 String getStackTop;

 public void run(){
 try{
 Statement stmt = con.createStatement();
 //out.println("Starting stack machine");
 stmt.execute(clear1);
 stmt.execute(clear2);
 long start = currentTimeMillis();
 int count = interpret(stmt);
 long end = currentTimeMillis();
 out.print("Instructions executed: " + count);
 out.print(": Execution time: " + (end-start));
 out.println(":Instr pr. second: " + (count*1000/(end-start)));
 con.close();
 }catch(SQLException uups){
 out.println("Error: " + uups);
 uups.printStackTrace();
 }
 }

 public StackMachine() {
 try{
 con = DriverManager.getConnection(dbUrl);
 clear1 = "UPDATE stack s, Globals g SET g.valueInt=0 , s.valueInt = 0 ";
 clear2 = "UPDATE Globals g SET g.valueInt=-1 where g.index = 1";
 getInstruction =
 "Select instrType from Instructions,Globals " +

 10

 "WHERE Instructions.instrNo= Globals.valueInt and Globals.index=2";
 addInstruction =
 "UPDATE stack AS s1, stack AS s2, Globals AS sp " +
 "SET s2.valueInt = s1.valueInt+s2.valueInt "+
 ", sp.valueInt = sp.valueInt-1 " +
 "WHERE s1.index=sp.valueInt And s2.index=sp.valueInt-1 And sp.index=1;";
 pushIntInstruction =
 "UPDATE Stack AS s, Globals AS SP, Globals AS IP, Instructions AS I " +
 "SET SP.valueInt = SP.valueInt+1, s.valueInt = I.argint1 " +
 "WHERE s.index=SP.valueInt+1 And SP.index=1 And " +
 " IP.index=2 And I.instrNo=IP.valueInt;";
 jumpNegInstruction =
 "UPDATE stack AS s, Instructions AS I, Globals AS sp, Globals as IP " +
 "SET IP.valueInt = I.argInt1-1 "+
 "WHERE s.index=sp.valueInt And sp.index=1 " +
 " AND I.instrNo = IP.valueInt AND IP.index = 2" +
 " AND s.valueInt < 0";
 incrIP =
 "UPDATE Globals SET valueInt = valueInt + 1 WHERE index=2";
 incrStack =
 "UPDATE Globals SET valueInt = valueInt + 1 WHERE index=1";
 decrStack =
 "UPDATE Globals SET valueInt = valueInt - 1 WHERE index=1";
 getStackTop =
 "Select Stack.valueInt AS v, Globals.valueInt AS sp from Stack,Globals " +
 "WHERE Stack.index= Globals.valueInt and Globals.index=1";
 }catch(SQLException uups){
 out.println("Could not connect to database\n" + uups);
 uups.printStackTrace();
 exit(1);
 }catch(Exception uups){
 out.println("Something else went wrong: " + uups);
 exit(1);
 }
 }

 public int interpret(Statement stmt) throws SQLException{
 int count = 0;
 while(true){
 count++;
 ResultSet instr = stmt.executeQuery(getInstruction);
 instr.next();
 String opcode = instr.getString("instrType");
 if (opcode.equals("push")){
 stmt.execute(pushIntInstruction);
 stmt.execute(incrIP);
 }else if (opcode.equals("add")){
 stmt.execute(addInstruction);
 stmt.execute(incrIP);
 }else if (opcode.equals("jumpNeg")){
 stmt.execute(jumpNegInstruction);
 stmt.execute(incrIP);
 }else if (opcode.equals("exit")){
 break;
 }else{
 out.println("Unknown opcode: " + opcode);
 }
 }
 return count;
 }

 11

 } // end Stack machine

}

 12

B Prepared source code
/// Stackmachine, Access database, prepared statements
import java.sql.*;
import static java.lang.System.*;
class Access_Prepared {

 public static void main(String... args){
 try{
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 StackMachine sm = new StackMachine();
 sm.run();
 }catch(ClassNotFoundException uups){
 out.println("Database driver not found");
 }
 }
 static class StackMachine{
 /********** Start of class ******************/

 final private static String dbUrl = "jdbc:odbc:StackInterpreter";

 Connection con;
 PreparedStatement clear1,clear2;
 PreparedStatement getInstruction;
 PreparedStatement addInstruction;
 PreparedStatement jumpNegInstruction;
 PreparedStatement pushIntInstruction;
 PreparedStatement incrIP;
 PreparedStatement incrStack;
 PreparedStatement decrStack;

 PreparedStatement getStackTop;

 public StackMachine() {
 try{
 con = DriverManager.getConnection(dbUrl);
 clear1 = con.prepareStatement(
 "UPDATE stack s, Globals g SET g.valueInt=0 , s.valueInt = 0 ");
 clear2 = con.prepareStatement(
 "UPDATE Globals g SET g.valueInt=-1 where g.index = 1");
 getInstruction = con.prepareStatement(
 "Select * from Instructions,Globals " +
 "WHERE Instructions.instrNo= Globals.valueInt and Globals.index=2");
 addInstruction = con.prepareStatement(
 "UPDATE stack AS s1, stack AS s2, Globals AS sp " +
 "SET s2.valueInt = s1.valueInt+s2.valueInt "+
 ", sp.valueInt = sp.valueInt-1 " +
 "WHERE s1.index=sp.valueInt And s2.index=sp.valueInt-1 And sp.index=1;");
 pushIntInstruction = con.prepareStatement(
 "UPDATE Stack AS s, Globals AS SP, Globals AS IP, Instructions AS I " +
 "SET SP.valueInt = SP.valueInt+1, s.valueInt = I.argint1 " +
 "WHERE s.index=SP.valueInt+1 And SP.index=1 And " +
 " IP.index=2 And I.instrNo=IP.valueInt");
 jumpNegInstruction = con.prepareStatement(
 "UPDATE stack AS s, Instructions AS I, Globals AS sp, Globals as IP " +
 "SET IP.valueInt = I.argInt1-1 "+
 "WHERE s.index=sp.valueInt And sp.index=1 " +
 " AND I.instrNo = IP.valueInt AND IP.index = 2" +
 " AND s.valueInt < 0");
 incrIP = con.prepareStatement(
 "UPDATE Globals SET valueInt = valueInt + 1 WHERE index=2");

 13

 incrStack = con.prepareStatement(
 "UPDATE Globals SET valueInt = valueInt + 1 WHERE index=1");
 decrStack = con.prepareStatement(
 "UPDATE Globals SET valueInt = valueInt - 1 WHERE index=1");
 getStackTop = con.prepareStatement(
 "Select Stack.valueInt AS v, Globals.valueInt AS sp from Stack,Globals " +
 "WHERE Stack.index= Globals.valueInt and Globals.index=1");
 }catch(SQLException uups){
 out.println("Could not connect to database\n" + uups);
 uups.printStackTrace();
 exit(1);
 }catch(Exception uups){
 out.println("Something else went wrong: " + uups);
 exit(1);
 }
 }

 public void run(){
 try{
 clear1.executeBatch();
 clear2.executeBatch();
 long start = currentTimeMillis();
 int count = interpret();
 long end = currentTimeMillis();
 out.print("No. Instructions executed: " + count);
 out.print(":Execution time: " + (end-start));
 out.println(":Instr pr. second: " + (count*1000/(end-start)));
 con.close();
 }catch(SQLException uups){
 out.println("Error: " + uups);
 uups.printStackTrace();
 }
 }

 public int interpret() throws SQLException{
 int count = 0;
 while(true){
 count++;
 ResultSet instr = getInstruction.executeQuery();
 instr.next();
 String opcode = instr.getString("instrType");
 if (opcode.equals("push")){
 pushIntInstruction.executeUpdate();
 incrIP.executeUpdate();
 }else if (opcode.equals("add")){
 addInstruction.executeUpdate();
 incrIP.executeUpdate();
 }else if (opcode.equals("jumpNeg")){
 jumpNegInstruction.executeUpdate();
 incrIP.executeUpdate();
 }else if (opcode.equals("exit")){
 break;
 }else{
 out.println("Unknown opcode: " + opcode);
 }
 }
 return count;
 }
 } // end Stack machine

 14

}

 15

C Integrated source code
/// Stackmachine, Access database, prepared statements, integrated ip update
import java.sql.*;
import static java.lang.System.*;
class Access_Prep_Integrated {

 public static void main(String... args){
 try{
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 StackMachine sm = new StackMachine();
 sm.run();
 }catch(ClassNotFoundException uups){
 out.println("Database driver not found");
 }
 }
 static class StackMachine{
 /********** Start of class ******************/

 final private static String dbUrl = "jdbc:odbc:StackInterpreter";

 Connection con;
 PreparedStatement clear1;
 PreparedStatement getInstruction;
 PreparedStatement addInstruction;
 PreparedStatement jumpNegInstruction;
 PreparedStatement pushIntInstruction;

 public void run(){
 try{
 clear1.executeUpdate();
 long start = currentTimeMillis();
 int count = interpret();
 long end = currentTimeMillis();
 out.print("No. Instructions executed: " + count);
 out.print(":Execution time: " + (end-start));
 out.println(":Instr pr. second: " + (count*1000/(end-start)));
 con.close();
 }catch(SQLException uups){
 out.println("Error: " + uups);
 uups.printStackTrace();
 }
 }

 public StackMachine() {
 try{
 con = DriverManager.getConnection(dbUrl);
 clear1 = con.prepareStatement(
 "UPDATE stack s, InstrPointer ip, StackTop sp " +
 "SET s.valueInt = 0, ip.valueInt=0 , sp.valueInt = -1 ");
 getInstruction = con.prepareStatement(
 "Select instrType from Instructions,InstrPointer ip " +
 "WHERE Instructions.instrNo= ip.valueInt");
 addInstruction = con.prepareStatement(
 "UPDATE stack s1, stack s2, StackTop sp, InstrPointer AS ip " +
 "SET s2.valueInt = s1.valueInt+s2.valueInt "+
 ", sp.valueInt = sp.valueInt-1 " +
 ", ip.valueInt = ip.valueInt+1 " +
 "WHERE s1.index=sp.valueInt And s2.index=sp.valueInt-1");
 pushIntInstruction = con.prepareStatement(

 16

 "UPDATE Stack AS s, StackTop as SP, InstrPointer as ip, Instructions AS I " +
 "SET SP.valueInt = SP.valueInt+1, s.valueInt = I.argint1 " +
 ", ip.valueInt = ip.valueInt+1 " +
 "WHERE s.index=SP.valueInt+1 And I.instrNo=IP.valueInt");
 jumpNegInstruction = con.prepareStatement(
 "UPDATE stack AS s, Instructions AS I, StackTop as sp, InstrPointer as IP " +
 "SET IP.valueInt = switch(s.valueInt < 0, I.argInt1, true, Ip.valueInt+1)"+
 "WHERE s.index=sp.valueInt AND I.instrNo = IP.valueInt");
 }catch(SQLException uups){
 out.println("Could not connect to database\n" + uups);
 uups.printStackTrace();
 exit(1);
 }catch(Exception uups){
 out.println("Something else went wrong: " + uups);
 exit(1);
 }
 }

 public int interpret() throws SQLException{
 int count = 0;
 while(true){
 count++;
 ResultSet instr = getInstruction.executeQuery();
 instr.next();
 String opcode = instr.getString("instrType");
 if (opcode.equals("push")){
 pushIntInstruction.executeUpdate();
 }else if (opcode.equals("add")){
 addInstruction.executeUpdate();
 }else if (opcode.equals("jumpNeg")){
 jumpNegInstruction.executeUpdate();
 }else if (opcode.equals("exit")){
 break;
 }else{
 out.println("Unknown opcode: " + opcode);
 }
 }
 return count;
 }
 } // end Stack machine
}

 17

D Stored Procedure Solution
PROCEDURE dbo.RunInterpreter
AS
 SET NOCOUNT ON;
 exec ResetVM;
 DECLARE @instrCount as int;
 SET @instrCount = 0;
 DECLARE @instrType AS VARCHAR(30)
 WHILE 0<1 BEGIN /* True did not work, so I wrote 0<1 */
 BEGIN TRANSACTION;
 SET @instrCount = @instrCount +1;
 SET @instrType = (SELECT instrType
 FROM Instructions, InstructionPointer
 WHERE Instructions.instrNo = InstructionPointer.value);
 IF (@instrType='exit') BEGIN
 COMMIT TRANSACTION;
 BREAK;
 END;
 EXEC ('Instr'+@instrType);
 COMMIT TRANSACTION;
 END
 RETURN @instrCount;

ROCEDURE dbo.ResetVM
AS
 UPDATE InstructionPointer
 SET InstructionPointer.value=1;
 UPDATE StackPointer
 SET StackPointer.value=-1
 RETURN
PROCEDURE dbo.InstrPush
AS
 UPDATE StackPointer
 SET value = value + 1;

 UPDATE Stack
 SET valueInt = Instructions.argint1
 FROM Instructions, InstructionPointer, StackPointer
 WHERE [index] = StackPointer.value AND Instructions.instrNo = InstructionPointer.value;

 UPDATE InstructionPointer
 SET value = value + 1
 RETURN

PROCEDURE dbo.InstrJumpNeg
AS
 UPDATE InstructionPointer
 SET value =
 CASE WHEN Stack.valueInt < 0 THEN Instructions.argint1
 ELSE InstructionPointer.value + 1
 END
 FROM Stack, StackPointer, Instructions
 WHERE Stack.[index] = StackPointer.value AND Instructions.instrNo = InstructionPointer.value
 RETURN
PROCEDURE dbo.InstrAdd
AS
 DECLARE @topvalue int;
 SET @topvalue = (SELECT Stack.ValueInt
 FROM Stack, StackPointer
 WHERE Stack.[index] = StackPointer.value);

 18

 UPDATE StackPointer
 SET value = value -1;
 UPDATE Stack
 SET ValueInt = ValueInt + @topvalue
 FROM Stack, StackPointer
 WHERE [index] = StackPointer.value;

 UPDATE InstructionPointer
 SET value = value + 1

 RETURN

E DLinq Solution
namespace POPTest {
 public class VM{
 public static DataContext db;

 public static void InitVM(string connectionString){
 db = new DataContext(connectionString);

 IP = db.GetTable<InstructionPointer>().Head();
 SP = db.GetTable<StackPointer>().Head();

 Table<Instruction> prog = db.GetTable<Instruction>();
 Program = new List<Instruction>(prog.OrderBy(instr => instr.InstrNo));

 Table<StackElement> st = db.GetTable<StackElement>();
 Stack = new List<StackElement>(st.OrderBy(sta => sta.Index));

 }
 public static InstructionPointer IP;
 public static StackPointer SP;
 public static List<StackElement> Stack;
 public static List<Instruction> Program;

 public static long Run(string connectionString, bool submit){
 InitVM(connectionString);
 SP.Value = -1;
 IP.Value = 1;
 Instruction current;
 long count = 0;
 while(count<100000000){ // to execute only few ~ use count <10
 current = Program[IP.Value-1];
 count++;
 switch (current.InstrType){
 case "exit": return count;
 case "push": {
 SP.Value++;
 Stack[SP.Value].ValueInt = current.ArgInt1;
 IP.Value = IP.Value + 1;
 break;
 }
 case "add":{
 Stack[SP.Value-1].ValueInt += Stack[SP.Value].ValueInt;
 SP.Value--;
 IP.Value++;
 break;
 }
 case "jumpneg":{

 19

 IP.Value = (Stack[SP.Value].ValueInt<0 ? current.ArgInt1 : IP.Value + 1);
 break;
 }
 default:{
 Console.Out.WriteLine("Unknown Instruction");
 return count;
 }
 }
 db.SubmitChanges();
 }
 return count;
 }
 }

 [Table(Name="InstructionPointer")]
 public class InstructionPointer{
 private int _processID;
 [Column(Id=true)]
 public int ProcessID {
 get { return _processID; }
 set { _processID = value; }
 }

 private int id;
 [Column(Name="value",Id=true)]
 public int Value {
 get { return id; }
 set { id = value; }
 }

 }
 [Table(Name="Instructions")]
 public class Instruction{
 private int _instrNo;
 [Column(Id=true)]
 public int InstrNo {
 get { return _instrNo; }
 set { _instrNo = value; }
 }

 private string _instrType;
 [Column]
 public string InstrType {
 get { return _instrType.Trim(); }
 set { _instrType = value.Trim(); }
 }

 private int _argInt1;
 [Column]
 public int ArgInt1 {
 get { return _argInt1; }
 set { _argInt1 = value; }
 }

 }
 [Table(Name="Stack")]
 public class StackElement{
 private int index;

 20

 [Column(Id=true)]
 public int Index {
 get { return index; }
 set { index = value; }
 }

 private int valueInt;
 [Column]
 public int ValueInt {
 get { return valueInt; }
 set { valueInt = value; }
 }

 }
 [Table(Name="StackPointer")]
 public class StackPointer{
 private int _processID;
 [Column(Id=true)]
 public int ProcessID {
 get { return _processID; }
 set { _processID = value; }
 }

 private int _value;
 [Column]
 public int Value {
 get { return _value; }
 set { _value = value; }
 }

 }

 public static class ExtensionMethods{
 public static T Head<T>(this IEnumerable<T> en){
 var enu = en.GetEnumerator();
 enu.MoveNext();
 return enu.Current;
 }
 }
}

