IT University

of Copenhagen

User Interface Development by Proxy

Jacob Winther Jespersen

IT University Technical Report Series TR-2006-77

ISSN 1600-6100 January 2006



Copyright © 2006, Jacob Winther Jespersen

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600-6100

ISBN 87-7949-115-4

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web: www.itu.dk



User Interface Development by Proxy

Jacob Winther Jespersen
IT University of Copenhagen
Glentevej 67, DK-2400 NV, Denmark
Jwj@itu.dk

ABSTRACT

A branch of software development is characterized by the
reliance on Partners to adapt a Vendor’s domain specific
software to fit Customers. As part of a project that
researches this software value chain, we investigate
specifically the requirements and techniques to develop
user interfaces in a suitable fashion.

In the Vendor-Partner-Customer arrangement, a Vendor is
responsible for his platform’s points of variablity, i.e. the
ways in which a Partner may utilize the Vendor’s software
components. With the proper variation points Partners can
efficiently construct finished user interfaces to honor
particular requirements for task support and visual
appearance.

This paper outlines an architecture for the design and
construction of user interfaces in the scenario. We point to
the relevance of model-based user interface development to
the context, present the notion of a user interface family,
and discuss preliminary results.

Author Keywords
HCI, partner development, model-based user interface
development, user interface family.

ACM Classification Keywords
H.5.m Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION

In commercial information systems development, the
Vendor-Partner-Customer business model currently seems
to be successful. The Partner is often a third-party but
occasionally a part of the Vendor or Customer organization.

The key to appreciate the setup is the specificity of the
domains that the systems address. Because each Vendor

targets a single domain, e.g. accounting or financing, he
produces domain-specific tools and components. For
example, if a Vendor seeks to facilitate his Partners to build
individual accounting systems, he concentrates on
providing a solid and competitive accounting core
functionality, i.e. the functionality needed in every
accounting system. Thus, he need not consider exactly what
differentiates a car-dealer from other kinds of dealerships in
the accounting sense. Knowing about such differences is
left to Partners who are supposed to have specialized
knowledge of the business domain they work in.

Partners rely on the variability within a Vendor’s tools and
components to do systems that honor particular
requirements at their respective customers. Having fewer
variation points and semantically richer constructs than a
general-purpose programming language potentially make a
proficient Partner able to efficiently develop systems to a
particular domain, without compromising the quality of the
user interface.

MODELING THE USER INTERFACE

Even if the Vendor-Partner-Customer arrangement
promotes a development methodology that by conception is
not designed to foster user interfaces of a high quality, it is
not clear that it prevents them. However, finding a suitable
level of abstraction for the Partner’s user interface
development has proven to be a challenge [1]. At one end
of the spectrum, specifying windows, layout, and widgets
does not leverage the domain knowledge that is present; at
the other end, mapping pure domain constructs to user
interface elements sacrifice flexibility in visual appearance
and task support.

Thus, given this development arrangement, the research
seeks to clarify: What kind of user interface modeling
constitutes a suitable specification of the executable user
interface code in a final system?

Being a good Partner

From an HCI perspective, one can argue that the Partner —
as portrayed above — plays a superfluous role. He is put in
place to facilitate re-use of software components and thus to
speed system development, which is not a virtue on its own
in the HCI agenda. Also, customers sometimes have
difficulties differentiating between Partner and Vendor, and
may expect Partners practically to assume the traditional



Vendor role. In many respects, a Partner is able to fill that
expectation; one can say that a Partner acts on behalf of a
Vendor, i.e. the Partner is a proxy to the Vendor. But,
ultimately, Partners do not have control of the variation
points in the Vendor’s system components.

Being a good Partner means developing systems within the
technical boundaries set by the Vendor, i.e. making do with
the functionality in the Vendor’s tools and components.
When a Partner resorts to self-made functionality outside
these boundaries, he steps down from his privileged
position on the Vendor’s platform.

System families

On the System Engineering side, there are techniques in
place to support the Vendor’s development activity.
Concepts such as product families a.k.a. system families [2]
have already informed ambitions to reduce the cost of
developing individual systems with common properties.
(“A product family is a group of products that can be built
from the same assets.” [3])

In HCI, there is no direct equivalent to the family scope;
rather — to use a complementary term — HCI practice is
usually concerned with product lines, i.e. “... a group of
products sharing a managed set of features that satisfy the
specific needs of a selected market.” [3] For example, HCI
practitioners could consider it important to establish
coherence in the user interaction within an office
application product /ine (word processing, spreadsheet,
presentation creator). However, we are not pursuing
product line issues in the current project.

Partner | Customer

|
C te Ul
opcrete :9 Ul Code

2

Vendor

Task

I
I
I
I
I
I
I
Abstract Ul !
I
I
I
I
I
I
|

I

I

Abstract Ul I

Model Model I

I

I

I

Core |
system |
I

Figure 1. Depiction of the Vendor-Partner-Customer
relationship with emphasis on the user interface realization.
The gray area marks the final system.

OUR APPROACH

One possible depiction of the relationship between Vendor,
Partner, and Customer with emphasis on the user interface
aspect is in Figure 1.

Ideally, the Vendor (with the core system in place) is able
to analyze the domain he is working in — possibly expressed
in a task specification and a data model, or in alternative
ways — and then (1) design an appropriate abstract user

interface model. This model explicitly represents the points
of variability available to Partners, and exists in conjunction
with (3) some means of executing the concrete user
interface model that a Partner produces (2) to customers on
an individual basis.

User interface family

Conceptually, an abstract user interface model embodies a
Vendor’s assets from which to construct user interfaces,
thus derived concrete user interface models belong to the
same family — in the sense described earlier — and they are
subject to the benefits of family development.

CONCLUDING REMARKS

Where the kinship is merely use of windows and widgets
only little is gained. Standard window toolkits of most
operating systems already have assets at that abstraction
level. Kinship of a higher order (e.g. specialized windows
with a certain visual appearance and behavior) reuses more
valuable assets such as the code to support the complex
human-computer interaction involved in controlling non-
trivial business objects.

We have designed and implemented a first generation of the
architecture in which the abstract model only allows us to
represent generic entities with attributes; basically, it is a
data browser with editing capabilities. As such, it shares the
fate of much related work in model-based user interface
development [4]. It does not provide for the necessary
sophistication of the user interface construction, primarily
because variation points are aligned solely with data
structures e.g. as in [5], and not according to a domain’s
established style of visual appearance and task support.

The hypothesis we go by, as we continue the research, is
that model-based user interface development can provide
for user interface families and is well suited to the proxy
arrangement. We also believe that a high degree of domain-
dependence in the user interface modeling is a necessity to
achieve satisfactory results from this kind of development.

REFERENCES

1. Jespersen, J.W. (2003). Investigating User Interface
Engineering in the Model-driven Architecture. Proc. of
WS on Bridging the Gap: SE and HCI at Interact *03.

2. Czarnecki, K., Eisenecker, U. W. (2000). Generative
Programming. Addison-Wesley.

3. Whitey, J. (1996). Investment Analysis of Software
Assets for Product Lines. Tech. rep. CMU/SEI-96-TR-
010, Carnegie Mellon University, www.sei.cmu.edu

4. Szekely, P. (1996). Retrospective and Challenges for
Model-Based Interface Development. In Proc. of WS on
Computer-Aided Design of User Interfaces, Namur
University Press.

5. Engelson et al. (1996). Automatic Generation of User
Interfaces from Data Structure Specification and
Object-Oriented Application Models. ECOOP 1996.



