
Scalable computation of acyclic joins

Anna Pagh
Rasmus Pagh

IT University Technical Report Series
TR-2005-75

ISSN 1600–6100 December 2005

Copyright c© 2005, Anna Pagh
Rasmus Pagh

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-113-8

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www.itu.dk

Scalable computation of acyclic joins

Anna Pagh∗ and Rasmus Pagh∗

Abstract
Thejoin operation of relational algebra is a cornerstone of relational database

systems. Computing the join of several relations is NP-hard in general, whereas
special (and typical) cases are tractable. This paper primarily considers joins
having anacyclic join graph, for which current methods initially apply afull
reducerto efficiently eliminate tuples that will not contribute to the result of the
join. The previously best worst case time for computing an acyclic join ofk fully
reduced relations, occupying a total ofn blocks on disk, isΩ(sort(n) log k + zk)
I/Os, where sort(n) is the time for sorting the data ofn disk blocks, andz is the
size of the output in blocks. Even if the output is small, thelog k factor gives a
significant overhead when joining many relations.

In this paper we show how to compute the join in a time bound that is within
a constant factor of the cost of running a full reducer plus sorting the output.
For a broad class of acyclic join graphs this isO(sort(n + z)) I/Os, removing
the dependence onk from previous bounds. Traditional methods decompose the
join into a number of binary joins, which are then carried out one at a time (with
some parallelism if pipelining is possible). Departing from this approach, our
technique is based on computing the size of certain subsets of the result, and
using these sizes to compute the location(s) of each data item in the result. We
can then assemble the result using a single sorting step.

Finally, as an initial study of cyclic joins in the I/O model, we show how to
compute a join whose join graph is a 3-cycle, inO(n2/m + sort(n + z)) I/Os,
wherem is the number of blocks in internal memory. Previous techniques also
have a quadratic dependence onn, but do not utilize internal memory this well.

1 Introduction

Therelational modelandrelational algebra, due to E. F. Codd [3] underlies the major-
ity of today’s database management systems. Essential to the ability to express queries
in relational algebra is thenatural joinoperation, and its variants. In a typical relational
algebra expression there will be a number of joins. Determining how to compute these
joins in a database management system is at the heart ofquery optimization, a long-
standing and active field of development in academic and industrial database research.
A very challenging case, and the topic of most database research, is when data is so
large that it needs to reside on secondary memory. In that case1 the performance bot-
tleneck is the number of block transfers between internal and external memory needed

∗IT University of Copenhagen, Rued Langgaards Vej 7, 2300 København S, Denmark. E-mail:
{annao,pagh }@itu.dk

1Increasingly, the caching system on the RAM of modern computers means that algorithms devel-
oped for external memory, with their parameters suitably set, have a performance advantage on internal
memory as well.

1

to perform the computation. We will consider this scenario, as formalized in the I/O
model of Aggarwal and Vitter [1].

In contrast to much of the database literature, our emphasis will be onworst case
complexity. While today’s database management systems usually perform much better
than their worst case analysis, we believe that expanding the set of queries for which
good worst case performance can be guaranteed would have a very positive impact
on the reliability, and thus utility, of database management systems. At this point
it should be noted that for a wide class of joins with many relations, our algorithm
improves upon thebest caseperformance of previous methods.

The worst case complexity of computing a binary join in the I/O model is well
understood in general – essentially the problem is equivalent to sorting [1]. When more
than two relations have to be joined, today’s methods use a sequence of binary join
operations. Since the natural join operator is associative and commutative, this gives a
great deal of choice: We may joink relations in2Ω(k)k! different ways (corresponding
to the unordered, rooted, binary trees withk labeled leaves). The time to compute the
join can vary a lot depending on which choice is made, because some join orders may
give much larger intermediate results than others. Research in query optimization has
shown that finding the most efficient join order is a computationally hard problem in
general (see e.g. [6, 8]). The best algorithms use sophisticated methods for estimating
sizes of intermediate results (see e.g. [4]).

More theoretical research has considered the question of what joins are tractable.
The problem is known to be NP-hard in general [10], but the special case of joins
having anacyclic join graphhas been known for many years to be solvable in time
polynomial in the sizesn andz of the input and output relations [16, 15]. In internal
memory, Willard [14] has shown how to reduce the complexity of acyclic joins involv-
ing n words of data toO(n(log n)O(1) + z) if the numberk of relations is a constant,
even when the join condition involves arbitrary equalities and inequalities. However,
Willard’s algorithm does not have a good dependence onk – the time isΩ(kn) for
natural join, and for general expressions the dependence onk is exponential.

The main conceptual contribution of this paper is that we depart from the idea of
basing join computation on a sequence of binary joins. This is an essential change: We
will show that any method based on binary joins, even if it always finds the optimal
join order, has a multiplicative overhead ofΩ(log k) compared to the time for sorting
all data. This is true even if the result of the join is relatively small. Our main technical
contribution is a worst case efficient algorithm for computing acyclic joins, whose
complexity is independent of the number of relations. It is simple enough to be of
practical interest.

1.1 Background and previous work

Query optimizer architecture. Query processing in relational databases is a com-
plex subject due to the power of query languages. Current query optimizers use an
approach first described in [12], based on relational algebra [3]. The basic idea is to
consider many equivalent relational algebra expressions for the query, and base the
computation on the expression that is likely to yield the smallest execution time. The
best candidate is determined using heuristics or estimates of sizes of intermediate re-
sults. When computing a join, the possible relational algebra expressions correspond

2

to expression trees withk leaves/relations. Some query optimizers consider only “left-
deep join trees”, which are highly unbalanced trees, to reduce the search space. In
some cases such an approach has lead to a large overhead, intuitively because data
from the first joins had to be copied in all subsequent joins. Approaches based on
more balanced “bushy trees” have given better results in such cases. (See [9] for a
discussion on left-deep versus bushy trees.) Note, however, that even in a completely
balanced tree withk leaves, most leaves will be at depthlog k−O(1). Thus, data from
the corresponding relations needs to be copied in connection with aboutlog k joins
before it can appear in the result.

Speedup techniques. Pipelining is sometimes used to achieve a speedup by using
any available memory to start subsequent joins “in parallel” with an on-going join,
thus avoiding to write an intermediate result to disk. However, the speedup factor
is at most constant unless an involved relation (or intermediate result) fits in internal
memory. Binary join algorithms based onhashingcan give better performance in the
case where one relation is much smaller than the other, but again this is at most a
constant factor speedup.

Indexing, i.e. clever preprocessing of individual relations, is another way of speed-
ing up some joins. The gain comes from bypassing a sorting step, and in many practical
cases by being able to skip reading large parts of a relation. However, from a worst-
case perspective the savings on this technique is not more than the time for sorting the
individual relations. Thus the previously mentionedlog k factor persists. Specialjoin
indexesthat maintain information on the join of two or more relations are sometimes
used in situations where the same relations are joined often. However, maintaining join
indexes for many different sets of relations is not feasible (because of time and space
usage), so this technique is impractical for solving the general,ad-hocjoin problem.

Acyclic joins. Some joins suffer from extremely large intermediate results, no matter
what join ordering is chosen. This is true even for joins that have no tuples in the final
result. In typical cases, where thejoin graphis acyclic(see section 2.1 for definitions),
it is known how to avoid intermediate results that are larger than the final result by
makingk−1 (binary) semijoins with the purpose of eliminating “dangling tuples” that
can never be part of the final result. Such an algorithm, eliminating all tuples that are
not part of the final result, is known as a “full reducer”. Using a full reducer based on
semijoins is, to our knowledge, the only known way of avoiding intermediate results
much larger than the final result. Thus, using a full reducer is necessary in current
algorithms if good worst-case performance is required. As our main algorithm mimics
the structure of a full reducer, we further describe their implementation in section 2.3.

Further reading. For a recent overview of query optimization techniques we refer
to [7]. We end our discussion of query optimization with a quote from the newest
edition of a standard reference book on database systems [5]:“Relational query opti-
mization is a difficult problem, and the theoretical results in the space can be especially
discouraging. [...] Fortunately, query optimization is an arena where negative theo-
retical results at the extremes do not spell disaster in most practical cases. [...] The
limitation of the number of joins is a fact that users have learned to live with, [...]”.

3

1.2 Our main result

In this paper we present a new approach to computation of multiple joins for the case
of acyclic join graphs (see section 2.1 for definitions). The new technique gives a worst
case efficient, deterministic algorithm, that is free from the logarithmic dependence on
the number of relations exhibited by previous techniques.

Theorem 1 Let k ≤ m relations, having an acyclic join graph, be given. We can
compute the natural join, occupyingz blocks on disk, inO(treduce+ sort(z)) I/Os,
wheretreduce is the time for running a semijoin based full reducer algorithm on the
relations, andsort(z) is the time for sortingz blocks of data.

Our use of the sort() notation is slightly unusual, in that we have not specified how
many data items can be in a block, and the complexity of sorting depends on the total
number of items, not just on the number of blocks. However, for reasonable parameters
(e.g. if the number of items in a block is bounded bym1−Ω(1)), the actual number of
items does not affect the asymptotic complexity. Note that the statement above allows
for variable-length data in the relations.

The value oftreducedepends on the join graph, and on the data in the relations.
It is possible to construct examples wheretreduce = Ω(k sort(n)). However, in most
“reasonable” cases the value isO(sort(n)). For example, if each each attribute occurs
only in a constant number of relations (independent ofk) we havetreduce= O(sort(n)).

In internal memoryall sorting steps can be replaced by hashing (since it suffices to
identify identical values). Hence, in those cases wheretreduce= O(sort(n)), we get a
randomized, linear time algorithm for internal memory.

1.3 Overview of paper

Section 2 contains definitions and notation used throughout the paper, as well as a
description of our model and assumptions. In Section 2.3 we survey known ways of
implementing a full reducer, to be able to describe our algorithm relative to them. In
Section 3 we present our algorithm for joins with acyclic join graphs. Section 4 shows
limits to the performance of join algorithms based on binary joins. Finally, in Section 5
we present our algorithm for joins whose join graph is a 3-cycle.

2 Preliminaries

2.1 Definitions and notation

Let A be a set, called the set ofattributes, and let for each attributea ∈ A correspond
a setdom(a) called thedomainof that attribute. In the context of databases, arelation
R with attribute setAR ⊆ A is a set of functions fromAR, such that all function
values ona ∈ AR belong todom(a). We deal only with relations having afiniteset of
attributes and tuples. Since a function can be represented as a tuple of|AR| values, the
functions are referred to astuples(this is also the usual definition of a relation).

Consider two relationsR1 andR2, having attribute setsAR1 andAR2 , respectively.
Thenatural join of R1 andR2, denotedR1 ./ R2, is the relation that has attribute set
AR1 ∪ AR2 , and contains all tuplest for which t|AR1

∈ R1 and t|AR2
∈ R2. In

4

other words,R1 ./ R2 contains all tuples that agree with some tuple inR1 as well as
some tuple inR2 on their common domain. The restriction of the tuples in a relation
R to attributes in a setA′ (referred to asprojection) is denotedπA′(R) in relational
algebra. Thus,R1 ./ R2 is the maximal setR of tuples for whichπAR1

(R) = R1 and
πAR2

(R) = R2. ThesemijoinR1 n R2 is a shorthand forπAR1
(R1 ./ R2). In words,

it computes the tuples ofR1 that contribute to the joinR1 ./ R2.
It is easy to see that natural join is associative and commutative. Thus is makes

sense to speak of the natural join of relationsR1, . . . , Rk, denotedR1 ./ · · · ./ Rk.
We will consider thejoin graph, which is the hypergraph having the setsAR1 , . . . , ARk

as edges. The join graph is calledacyclicif there exists a tree withk vertices, identified
with the relationsR1, . . . , Rk (and thus associated with the setsAR1 , . . . , ARk

), such
that for anyi andj, ARi ∩ ARj is a subset of all attribute sets on the path fromRi

to Rj . It is known how to efficiently determine whether a join graph is acyclic, and
construct a corresponding tree structure if it is [16].

A more general kind of join, called anequijoin, allows tuples to be combined based
on an arbitrary set of equality conditions. However, it is easy to see that any equi-join
can be reduced to a natural join by “renaming attributes”.

2.2 Model and assumptions

Our algorithms are for the I/O model of computation [1], the classical model for an-
alyzing disk-based algorithms, where the complexity measure is the number of block
transfers between internal and external memory. We letn andm denote, respectively,
the number of input blocks (containing the relations to be joined) and the number
of disk blocks fitting in internal memory. Since we deal with relations that can have
attribute values of varying sizes, we do not have fixed-size data items, as in many algo-
rithms in this model. Therefore the parameterB, usually used to specify the “number
of items in a disk block” does not apply. We will simply express our bounds in terms
of the number of disk blocks that are inputs to some sorting step, and the number
of disk blocks read and written in addition to sorting. To simplify matters, we make
the reasonable assumption thatm ≥ k. In particular, we can assume without loss of
generality thatn > k.

As for the input and output representation, we assume that all relations are stored
as a sequence of tuples. A tuple, in turn, is a sequence of attribute values (in some
standard order). The encoding of values of an attributea is given by an arbitrary,
efficiently decodable prefix code for the domaindom(a).

2.3 Full reducers

We consider the joinR1 ./ · · · ./ Rk, where the join graph is acyclic. The goal
of a full reducer is to remove all tuples from the relations that do not contribute to
the result of the join, i.e., whose removal would leave the join result the same. Here,
we will describe a well-known construction, namely how to implement a full reducer
using a sequence of semijoins (which seems to be the only known approach). The
description of our join algorithm in Section 3 will be based on the description below,
as our algorithm has the same overall structure. We leave open several choices that
affect the efficiency (but do not affect the correctness) of the full reducer, such as

5

determining the best order of computing the semijoins. This is an interesting research
question of its own (see e.g. [11]), but the only goal here is torelatethe complexity of
our join algorithm to that of a semijoin based full reducer.

The computation is guided by a tree computed from the join graph, satisfying the
requirement stated in Section 2.1. We make the tree rooted by declaring an arbitrary
node to be the root. In thefirst phase of the algorithm, the relations are processed
according to apost-ordertraversal of the tree. We renumber the relations such that
they are processed in the orderRk, Rk−1, Rk−2, . . . , and assign the tuples of each
relationRi numbers1, 2, . . . , |Ri| according to their position in the representation of
Ri. When processing a non-root relationRj , a semijoin is performed with its parent
relationRi to eliminate all tuples ofRi that do not agree with any tuple ofRj on
their common attributes. This can be done by sortingRi andπARi

∩ARj
(Rj) according

to the values of attributes inARi ∩ ARj , and merging the two results. The semijoin
produces a subset ofRi that will replaceRi in the subsequent computation (i.e., we
removing dangling tuples straight away, but keep referring to the relation asRi).

Thesecondphase of the full reducer algorithm processes the relations according
to apre-order traversal (e.g. in the orderR1, R2, R3, . . .). It is analogous to the first
phase, but with the roles of parent and child swapped. When processing a non-leaf
relationRi, we replace each of its childrenRj`

, ` = 1, . . . , r, by the result of the
semijoinRj`

n Ri. This can be done efficiently by first computingR′
i,j`

= πARj`
(Ri)

(for ` = 1, . . . , r at the same time), and then computing the desired result asRj`
nR′

i,j`
.

It is easy to see that the complexity of the second phase is no larger than that of the
first phase.

In the first phase it will in some cases be more efficient to consider all children of
Ri, call themRj1 , . . . , Rjr , at the same time, as follows:

1. For` = 1, . . . , r compute the extended projectionRi,j`
which is equal toπARj`

(Ri)
except that each tuple is extended with an extra attributec , whose value is the
position of the corresponding tuple in the representation ofRi (i.e., the number
of tuples is|Ri|). This can be done in a single scan ofRi.

2. For` = 1, . . . , r compute the set of tuple numbers inRi matching at least one
tuple inRj`

, i.e.,πc(Ri,j`
n πARi

∩ARj`
(Rj)). The complexity of this is domi-

nated by the semijoin, which is computed by sorting the two involved relations
according to their common attributes.

3. Sort the sets from step 2, compute their intersection, and finally scan throughRi

to eliminate all rows whose number is not in the intersection.

We will not discuss in detail when to choose the latter alternative (let alone a mix
of the two alternatives), but highlight some cases in which it is particularly efficient.
Consider the amount of data in the common attributes ofRi and each of its children,
counting an attribute ofRi x times if it is an attribute ofx children. If this quantity
is bounded by the representation size ofRi and its children (times some constant),
then the complexity of this step of the algorithm is bounded by a constant times the
complexity of sorting the involved relations. If this is true for anyi, the entire first
phase is performed in sorting complexity.

6

We refer to the exposition in [13] for an argument that the above is indeed a full
reducer. In the following, we lettreducedenote the currently best known I/O complexity,
for the join in question, of a full reducer algorithm of the form described above.

3 Acyclic join algorithm

We consider computation ofR1 ./ · · · ./ Rk, where the join graph is acyclic. To
simplify the exposition, we consider the situation in which any attribute of a relation
Ri that occurs in several of the relations (a “join attribute”) takesΩ(log |Ri|) bits of
space on average (over all tuples) in the representation ofRi. In the full version of the
paper we will describe how to efficiently handle also “short” join attributes.

3.1 Overview

Our algorithm first applies a full reducer to the relations, such that all remaining tuples
will be part of the join result. Then, if there exists a relationRi whose set of attributes
is a subset of the attributes of another relation in the join, it will not affect the join of
the fully reduced relations, and we may eliminate it. Thus, without loss of generality,
we assume that no such relation exists.

We renumber the relations as described in Section 2.3, and number tuples accord-
ing to their position in the representation of relations, using the induced order as an
ordering relation on the tuples. Any tuple in the result will be a combination of tu-
plest1, . . . , tk from R1, . . . , Rk, respectively. The order of the result tuples will be
lexicographic, in the following sense: For two result tuplest and t′, being combi-
nations oft1, . . . , tk and t′1, . . . , t

′
k, respectively,t < t′ iff there existsi such that

t1 = t′1, . . . , ti−1 = t′i−1 andti < t′i.
2

After applying the full reducer, our algorithm goes on to acounting phase(Sec-
tion 3.2) that works bottom-up in the tree, mirroring the first phase of the full reducer
algorithm. At each nodeRi this phase considers the join corresponding to thesubtree
rooted atRi, and computes for each tuplet ∈ Ri the number of tuples of the subtree
join, of whicht is part. (For comparison, the full reducer algorithm just keeps track of
whether these numbers are zero or nonzero.) The counts are then used in anenumer-
ation phase(Section 3.3) that works top-down, but is otherwise rather different from
the second phase of the full reducer algorithm. This phase computes for each tuple
t ∈ Ri the positions of tuples in the result relation whose projection ontoARi equalst.
The positions correspond to the lexicographic order of the result tuples. This already
gives an explicit representation of the result, albeit in a nonstandard format. To get a
standard representation (a list of tuples), a final sorting step is used. Below we give the
details of the counting and enumeration phases.

3.2 Counting phase

Consider a relationRi that has relationsRj1 , . . . , Rjl
as descendants in the tree. For

every tuplet ∈ Ri we wish to compute the sizest of {t} ./ Rj1 ./ · · · ./ Rjl
. The

2Note the underlying assumption that relations are sets, i.e., have no duplicate tuples. However, our
algorithm will work in the expected way in presence of duplicate tuples.

7

sizes should be represented in the order of the tuples in the representation ofRi, and
coded in an efficient prefix code such that a count ofx is encoded inO(log(x+2)) bits.
The computation is done fori = k, k − 1, k − 2, . . . , i.e., going bottom-up in the tree.
At the leaves, all tuples have a count of 1. In the general step, assumeRj1 , . . . , Rjr are
the children ofRi. The tuple counts for these relations will have been computed. The
counts for tuples inRi can now be computed by a slight extension of the procedure
for computing semijoins involvingRi and its children in the full reducer. The changes
are:

• Extend tuples inπARi
∩ARj`

(Rj`
), ` = 1, . . . , r, with an extra attributes that

contains, for each tuplet, the sum of counts for all tuples inRj`
whose projection

onto ARi ∩ ARj`
equalst. This is easily done along with the sorting of the

relevant part ofRj`
.

• The countst for a tuplet ∈ Ri is the product of thes -values of the matching
tuples in the relationsπARi

∩ARj`
(Rj`

), for ` = 1, . . . , r. Thes -values are easily

retrieved by performing the same sorting steps as needed for the semijoins, no
matter which of the two variants described in Section 2.3 is used. Also, it is an
easy matter to keep track of the original positions of tuples ofRi, such that the
list of counts can be ordered accordingly.

3.3 Enumeration phase

In this phase we annotate each tuplet in the input relations with the tuple numbers of
the final result of which it should be part. More specifically, we compute for each re-
lationRi a sorted list of disjoint intervals of result tuple numbers, where each interval
has some tuplet ∈ Ri associated (the actual tuple, not just its position inRi). The
interval boundaries aredifference coded, i.e., each number is encoded as the difference
from the previous number, using an efficient prefix code for the integers. The compu-
tation proceeds top-down, considering the relations in the orderR1, R2, R3, From
the counting phase we know the number of occurrencesst of each tuplet ∈ R1 (the
root relation) in the final result. The positions of the tuples in the lexicographic or-
der of the result relation are intervals whose boundaries are the prefix sums of thest

values. The difference coding in this case simply consists of thest values.
In the general step, when considering a non-leaf relationRi we have a number of

intervals, each associated with a tuplet ∈ Ri, and we wish to compute the intervals
for the children ofRi. The invariant is that an interval associated witht has lengthst.
Again, letRj1 , . . . , Rjr denote the children ofRi, j1 < · · · < jr. The first thing is
to retrieve for each tuplet, and` = 1, . . . , r, the tuple numbers (in the representation
of Rj`

) of the matching tuplesRj`
n {t}, along with their counts. This can be done

by first sorting according to common attributes, merging, and then performing another
sorting to get the information in the same order as the intervals. The result tuples in
the interval oft, restricted to the attributesARj1

∪ · · · ∪ARjr
, is the multiset cartesian

product of the setsRj`
n{t}, ` = 1, . . . , r, where the multiplicity of a tuple is its count,

ordered lexicographically. This means that we can form the correct intervals for each
relation, associated with tuple numbers. Furthermore, the intervals can be generated
in sorted order and difference coded directly.

8

3.4 Correctness

We now sketch the argument for correctness of our algorithm. It builds on the follow-
ing observation on acyclic joins: If, for some relationRi, we remove the verticesARi

from the join graph, this splits the graph into several connected components (some
edges may be the empty set). Fort ∈ Ri, the set of result tuples containingt (i.e.,
R1 ./ · · · ./ Ri−1 ./ {t} ./ Ri+1 ./ · · · ./ Rk) is the cartesian product of the
tuples matchingt in the join of the relations in each of these components. Consider
the tree derived from the (original) join graph. If we split this into subtrees by remov-
ing the node corresponding toRi, each part corresponds to one or more connected
components in the join graph withARi removed (this follows from the definition of
acyclicity). Thus, the result tuples containingt ∈ Ri are a cartesian product of the
matching tuples in the joins of each subtree underRi and the join of the remaining
relations.

This implies both that the counts computed in the counting phase are correct, and
that the enumeration phase forms the correct output.

3.5 Complexity

We account for the work done by the algorithm that is not captured by theO(treduce)
term:

• The work spent on the counts in the counting phase.

• The work spent on the intervals in the enumeration phase.

Note that by acyclicity, and since no set of attributes is contained in another, it follows
that each relation has at least one unique attribute. First consider the counting phase:
Any count ofx can be matched uniquely to at leastx bits in the output, and each count
is part of the input to a constant number of sorting steps, so the added complexity is
O(sort(z)). In the enumeration phase, the encoding of an interval uses a number of
bits that is at most the length of the interval. Thus, the total size of the encoding of all
intervals is at mostz blocks. The cost of handling counts in this phase is the same as
in the counting phase. In conclusion, for both passes the total size of the input to all
sorting algorithms isO(z) blocks, plus the amount of data sorted in the full reducer
(times some constant). The complexity stated in Theorem 1 follows.

4 Limits on the scalability of current algorithms

We first describe a relatively broad class of schemas for which join algorithms based on
binary joins have a logarithmic dependence onk, for a worst case input, even though
the join result is no larger than the input. Assume that the schemas of the relations
R1, . . . , Rk are such that:

• The join graph is connected.

• The encoding of the domain of each attribute is of fixed length, and large enough
to contain a unique identifier for each tuple.

9

• The tuple sizes of the relations are roughly the same (within a constant factor of
each other).

• For each relation, anΩ(1) fraction of the size of tuples in the representation is
due to attributes that are not attributes of any of the other relations.

A bad input for such a set of schemas is a set of relations, each of the same size
(larger than internal memory), such that each tuple is part of exactly one result tuple.
(Note that running a full reducer would not change the relations.) There exist such
relations of any size due to the first two assumptions. Now consider the formula used
for computing the join as a binary tree. At least half of thek leaves must be at depth
at leastlog(k/2), i.e., the corresponding relations will be part of at leastlog(k/2)
joins. By the two last assumptions, the total amount of data involved in these joins is
Ω(log k) times the amount of input datan. Thus the complexity isΩ(sort(n) log k)
I/Os.

Secondly we exhibitΩ(zk) worst case complexity fork = O(3
√

n). To this end
we consider astar schemawhere the attribute setsAR2 , . . . , ARk

are of size 2 and
disjoint, but each intersectingAR1 in one attribute. All domains have encodings of
the same, fixed length (just large enough to encode unique values for all tuples). Let
d = o(3

√
n) be an integer. Suppose that the data is such that any tuple ofR1 matches

d tuples in one of the other relations, and a single tuple in the rest, and furthermore
suppose that this is evenly divided such that a fraction1/k of the tuples inR1 match
d tuples inRi, for i = 2, . . . , k. The result relation isΘ(d) times larger thanR1.
Sincek = O(3

√
n) we can makeR2, . . . , Rk so large that joining any pair of them

(a cartesian product) would require asymptotically more thanzk I/Os. Then the only
feasible plan for computing the join is to joinR2, . . . , Rk one by one toR1. When half
of the joins have been performed, the size of the intermediate result isΩ(z). Since all
subsequent results are larger than this intermediate result,Ω(zk) I/Os are used in total.

5 Algorithm for a 3-cycle join graph

We will briefly sketch our algorithm for computing the join of three relations whose
join graph is a 3-cycle, i.e., where any pair has a common attribute not shared by
the third relation. We start by sorting each relation twice, according to the common
attributes with each of the other relations. This allows us to replace these attributes
by an integer smaller than the number of tuples in the relations. That is, it suffices to
solve the problem for relationsR1, R2, R3 with schemas(a,b) , (b,c) , and(a,c) ,
respectively. We make sure that the same value is not used for two distinct attributes.

The basic idea is to associate with each distinct attribute valuex a random number
hx from some large range{0, . . . , L}. This is done using sorting. To a tuplet ∈ R1

we associate the valueht(a) − ht(b), and similarly to a tuplet ∈ R2 we associate the
valueht(b) − ht(c). Finally, to a tuplet ∈ R3 we associate the valueht(c) − ht(a).
Observe that for any tuple in the result, being a combination oft1 ∈ R1, t2 ∈ R2, and
t3 ∈ R3, the values associated sum to zero. Conversely, for any three tuplest1 ∈ R1,
t2 ∈ R2, andt3 ∈ R3 that donot match, the probability that their associated values
have a sum of zero isO(1/L). Thus, ifL is chosen large enough, we have that with
high probability the result tuples correspond exactly to the triples of associated values

10

having sum0. These triples can be found inO(n2/m+sort(n)) I/Os by a recent result
of Demaine et al. [2].

6 Conclusion

Our main result is a worst-case efficient external memory algorithm for computingk-
ary joins, whose complexity does not grow withk. For a wide class of joins with many
relations it improves upon the complexity of known approaches (based on a sequence
of binary joins). Furthermore, our algorithm is much morepredictablethan previous
methods: Assuming that the result of the join is no larger than the input relations, the
complexity bound for a concrete join can be computed from the amount of data in each
attribute of each relation.

Acknowledgements.The authors would like to thank Gerth Brodal and Uri Zwick for
useful discussions related to this paper.

11

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related prob-
lems.Comm. ACM, 31(9):1116–1127, 1988.

[2] I. Baran, E. D. Demaine, and M. Patrascu. Subquadratic algorithms for 3SUM. InPro-
ceedings of WADS, volume 3608 ofLecture Notes in Computer Science, pages 409–421,
2005.

[3] E. F. Codd. A relational model of data for large shared data banks.Communications of
the ACM, 13(6), June 1970.

[4] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing complex aggregate
queries over data streams. InProceedings of the ACM SIGMOD International Conference
on Management of Data, pages 61–72. ACM Press, 2002.

[5] J. M. Hellerstein and M. Stonebraker.Readings in Database Systems. MIT Press, 4th
edition, 2005.

[6] T. Ibaraki and T. Kameda. On the optimal nesting for computing N-relational joins.ACM
Transactions on Database Systems, 9(3):482–502, 1984.

[7] Y. E. Ioannidis. Query optimization. InComputer Science Handbook, Second Edition,
chapter 55. Chapman & Hall/CRC, 2004.

[8] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of join
results. InProceedings of the 1991 ACM SIGMOD International Conference on Man-
agement of Data, pages 268–277, 1991.

[9] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: An analysis of strategy spaces
and its implications for query optimization. InProceedings of the 1991 ACM SIGMOD
International Conference on Management of Data, pages 168–177. ACM Press, 1991.

[10] D. Maier, Y. Sagiv, and M. Yannakakis. On the complexity of testing implications of
functional and join dependencies.J. Assoc. Comput. Mach., 28(4):680–695, 1981.

[11] S. Pramanik and D. Vineyard. Optimizing join queries in distributed databases. InFoun-
dations of Software Technology and Theoretical Computer Science (FSTTCS), volume
287 ofLecture Notes in Computer Science, pages 282–304. Springer, 1987.

[12] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access
path selection in a relational database management system. InProc. ACM-SIGMOD
International Conference on Management of Data, pages 23–34. ACM Press, 1979.

[13] J. D. Ullman. Principles of Database and Knowledge-based Systems, volume 2. Com-
puter Science Press, 1989.

[14] D. E. Willard. An algorithm for handling many relational calculus queries efficiently.J.
Comput. System Sci., 65(2):295–331, 2002.

[15] M. Yannakakis. Algorithms for acyclic database schemes. In7th International Confer-
ence on Very Large Data Bases (VLDB), pages 82–94. IEEE, 1981.

[16] C. T. Yu and M. Z. Ozsoyoglu. An algorithm for tree-query membership of a distributed
query. In Proceedings of Computer Software and Applications Conference (COMP-
SAC79), pages 306–312. IEEE, 1979.

12

