
Bigraphical Models of Context-aware Systems

Lars Birkedal
Søren Debois
Ebbe Elsborg
Thomas Hildebrandt
Henning Niss

IT University Technical Report Series
TR-2005-74

ISSN 1600–6100 11 2005

Copyright © 2005, Lars Birkedal
Søren Debois
Ebbe Elsborg
Thomas Hildebrandt
Henning Niss

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-110-3

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Web: www.itu.dk

Bigraphical Models of Context-aware Systems

L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, and H. Niss

IT University of Copenhagen (ITU)
{birkedal,debois,elsborg,hilde,hniss}@itu.dk

Abstract. As part of ongoing work on evaluating Milner’s bigraphical reac-
tive systems, we investigate bigraphical models of context-aware systems, a
facet of ubiquitous computing. We find that naively encoding such systems in
bigraphs is somewhat awkward; and we propose a more sophisticated model-
ing technique, introducing plato-graphical models, alleviating this awkward-
ness. We argue that such models are useful for simulation and point out that
for reasoning about such bigraphical models, the bisimilarity inherent to bi-
graphical reactive systems is not enough in itself; an equivalence between the
bigraphical reactive systems themselves is also needed.

1 Introduction

The theory of bigraphical reactive systems, due to Milner and co-workers, is based
on a graphical model of mobile computation that emphasizes both locality and con-
nectivity [14, 18, 21]. A bigraph comprises a place graph, representing locations of
computational nodes, and a link graph, representing interconnection of these nodes.
We give dynamics to bigraphs by defining reaction rules that rewrite bigraphs to bi-
graphs; roughly, a bigraphical reactive system (BRS) is a set of such rules. Based
on methods of the seminal [15], any BRS has a labelled transition system, the be-
havioural equivalence (bisimilarity) of which is a congruence.

There are two principal aims for the theory of bigraphical reactive systems: (1) to
model ubiquitous systems [28], capturing mobile locality in the place graph and mo-
bile connectivity in the link graph; and (2) to be a meta-theory encompassing existing
calculi for concurrency and mobility. To date, the theory has been evaluated only wrt.
the second aim: We have bigraphical understanding of Petri nets [17], π-calculus [12,
14, 13], CCS [21], mobile ambients [12], HOMER [4], and λ-calculus [18, 19].

The present paper initiates the evaluation of the first aim. We investigate model-
ing of context-aware systems, a vital aspect of ubiquitous systems. A context-aware
application is an application that adapts its behaviour depending on the context at
hand [26], interpreting “context” to mean the situation in which the computation
takes place [9]. The canonical example of such a situation is the location of the de-
vice performing the computation; systems sensitive to location are called location-
aware. As an example, a location-aware printing system could send a user’s print job
to a printer close by. (For notions of context different from location, refer to [27]; for
large-scale practical examples, see [1].)

To observe changes in the context, context-aware systems typically include a
separate context sensing component that maintain a model of the current context.
Such models are known as context models [11] or, more specifically, location models
[2]. The above-mentioned location-aware printing system would need to maintain a
model of the context that supports finding the printer closest to a given device.

Such models are informal. There are only very few formal models of context-
aware computing (refer to [10] for an overview). We point out Context Unity [25]; in
spirit, our proposal is somewhat closer to process calculi than Context Unity is. On

the other hand, we do use that in bigraphs, we get to make our own reaction rules, an
unusual feature for traditional process calculi.

In overall terms, our contribution is two-fold.

– We find, perhaps surprisingly, that naively modeling context-aware systems as
BRSs is somewhat awkward; and

– we propose a more sophisticated modeling technique, in which the perceived and
actual context are both explicitly represented as distinct but overlapping BRSs.
We call such models Plato-graphical.

The remainder of this paper is organized as follows. In Section 2, we introduce
bigraphs and bigraphical reactive systems. In Section 3, we discuss naive bigraphical
models of location-aware systems. In Section 4, we introduce our Plato-graphical
models of context-aware systems. In Section 5, we present two example models. In
Section 6, we discuss. Finally, in Section 7, we conclude and note future work.

2 Bigraphs and Bigraphical Reactive Systems

We introduce bigraphs by example (formal definitions of [14, 21] are repeated in
Appendix A). Readers acquainted with bigraphs may skip this section.

Here is a bigraph, A:

server
secret

office

pc pda pda

It has nodes (vertices), indicated by solid boxes. Each node has a control, written in
sans serif. Each control has a number of ports; ports can be linked by edges, indi-
cated by lines. Here, the controls secret and office have no ports, all other controls
have one port. Nodes can be nested, indicated by containment. The two outermost
dashed boxes indicate roots. Roots have no controls; they serve solely to separate
different nesting hierarchies.

The bigraph A ostensibly models two physically separate locations (because of
the two roots). The first contains a server, which in turn contains secret data; the
second contains an office, which in turn contains a PC and two PDAs. The server
and the PC are connected, as are the PDAs.

Here is another bigraph, B:

server

0

z
office

pc pda

1

2

B resembles A, except that the content of server has been replaced with a site −0, one
of the pdas has been replaced by a site −1, and there is an inner name z connected to
the remaining pda. Using sites and names, we can define composition of bigraphs.
For that, here is yet another bigraph C:

secret

z

pda

C has an outer name z. The bigraphs B and C compose to form A, i.e., A = B ◦C.
Composition proceeds by plugging the roots of C into the sites of B (in order), and
fusing together the connections pda → z (in C) and z → pda (in B) removing the
name z in the process.

One cannot compose arbitrary bigraphs. For U ◦V to be defined, U must have
exactly as many sites as V has roots, and the inner names of U must be precisely the
outer names of V . The sites and inner names are collectively called the inner face;
similarly, the roots and outer names are called the outer face. A has inner face 〈0, /0〉
and outer face 〈2, /0〉; we write A : 〈0, /0〉 → 〈2, /0〉. Similarly, B : 〈2,{z}〉 → 〈2, /0〉
and C : 〈0, /0〉 → 〈2,{z}〉.

The graphical representation used above is handy for modeling, but unwieldy for
reasoning. Fortunately, bigraphs have an associated term language [6, 16], which we
use (albeit in a sugared form) in the sequel. The language is summarized in Table 1.
Here are, in order of increasing complexity, term representations of the bigraphs A,

Term Meaning
U ‖V Concatenation (juxtaposition) of roots.
U |V Concatenation (juxtaposition) of children. (collect the

children of U and V under one root.)
U ◦V Composition.
U(V) Nesting. U contains V .
K~x(U) Ion. Node with control K of arity |~x|, ports connected to

the outer names of vector~x. The node contains U .
1 The barren (empty) root.
−i Site numbered i.

/x.U U with outer name x replaced by an edge.
x/y Connection from inner name y to outer name x.

Table 1. Sugared term language for bigraphs.

3

B and C.

C = secret ‖ pdaz

A = /x./y.serverx(secret) ‖ office(pcx | pday | pday)

B = /x./y.serverx(−0) ‖ office(pcx | pday | −1) | y/z

Notice how, in B, edges are specified by first linking nodes to the same name, then
converting that name to an edge using the closure ‘/’.

We give dynamics to bigraphs by defining reaction rules. Example:

server

0

z

office

pc
pda

1 _

server

0

z

office

pc
pda

0 1

/x.serverx(−0) ‖ office(pcx | pdaz | −1)

−→ /x.serverx(−0) ‖ office(pcx | pdaz(−0) | −1)

This rule might model that if a PC in some office is linked to a server, a PDA in
the same office may use the PC as a gateway to copy data from the server. The rule
matches the bigraph A above, taking secret to the site −0 and pday to the site −1,
rewriting A to

A′ = /x./y.serverx(secret) ‖ office(pcx | pday(secret) | pday)

(We omit details on what it means to match connections; refer to one of [14, 21].)
It is occasionally convenient to limit the contexts in which a reaction rule ap-

plies [3], i.e., we might want to limit the above example reaction rule to apply only
in the left wing of the building. To this end, bigraphs can be equipped with a sort-
ing [12, 21, 20, 17]. A sorting consists of a set of sorts (or types); all inner and outer
faces are then enriched with such a sort. Further, a sorting must stipulate some con-
dition on bigraphs, we then restrict our attention to the bigraphs that satisfy that
condition, thus outlawing some contexts. Obviously, removing contexts may ruin
the congruence property of the induced bisimilarity; [12] and [20] give different suf-
ficient conditions for a sorting to preserve that congruence property.

This concludes our informal overview of bigraphs. Now on to the models.

4

3 Naive Models of Location-aware Systems

In this section, we attempt to model location-aware systems naively in bigraphs. We
will find the naive approach to be somewhat awkward.

We use the place and link graphs for describing locations and interconnections
directly, and we use reaction rules to implement both reconfiguration of the context
and queries on the context. The former is simply a non-deterministic change in the
context; the latter is a computation on the context that does not change the context,
except for producing an answer to some question. In a location-aware system, a
device moving would be a reconfiguration, whereas computing the answer to the
question “what devices are currently at the location l” is a query.

We discuss the implementation of this query. (An implementation of the query
can be found in Appendix B.) Incidentally, a query such as “find nearest neigh-
bor”, which conceptually is only slightly harder, is significantly harder to implement.
(Other examples plagued by essentially the same difficulties can be found in [8].)

Consider the following bigraph representing devices (e.g., PDAs) located at lo-
cations (e.g., offices, meeting rooms) within a building.

l = /w./x./y./z.loc(loc(loc(loc(devw) | loc(devx | devy))) | loc() | loc(devz))

Off-hand, finding all devices, say, beneath the root, looks straightforward: We should
simply recursively traverse the nesting tree. Unfortunately, such traversal is quite
complicated for the following reasons.

– The bigraphical reaction rules do not support recursion directly, so we must
encode a runtime stack by means of additional controls.

– Bigraphical reaction rules can be applied in any context, but when implementing
an operation such as the query we consider now, we need more refined control
over when rules can be applied; one may achieve this more refined control by
again using additional nodes and controls, essentially implementing what corre-
sponds to a program counter. This still leaves great difficulty in handling con-
current operations, though.

– As a special case of the previous item, it is particularly difficult to express that
a reaction rule is intended to apply only in case something is not present in the
context.

Summing up, the bigraphical rules that model physical action do not in general pro-
vide the power to compute directly with a model of that action (because of a lack of
control structures). The slogan is “reconfiguring is easy, querying is hard”.

In earlier work on evaluating bigraphs as a meta-theory (aim (2) mentioned in
the Introduction), reaction rules were used to encode the operational semantics of
a calculus or programming language. However, above we attempt to implement a
query directly as reaction rules. This seemingly innocuous difference will turn out to
have major implications for reasoning methods; more on this in Section 6.

We imagine that adding more flexibility to the reaction rules might make it easier
to program directly with bigraphs. One possible attempt is to use spatial logics for

5

bigraphs [5] in combination with sorting, to get control of the contexts in which a
particular reaction rule applies.

In the following sections, we propose another way to model context-aware sys-
tems in bigraphs, where the reaction rules are not used to program directly with but
instead they are used (1) to represent transitions happening in the real world and (2)
to encode operational semantics of programming languages, within which one can
then implement queries on representations of the real world.

4 Plato-graphical Models of Context-aware Systems

The naive model of the previous section shares an important characteristic with re-
cent proposals of formal models for context-aware computation [3, 7, 25] that com-
prise agents and contexts only: These models take the agent’s ability to determine
what is the present context as given. We contend that for some systems, it is natural
to model not only the actual context but also the agent’s representation of the actual
context. We shall see that pursuing this idea will partially alleviate the awkwardness
seen in the previous Section.

We shall need some notation and definitions.

Notation 1. We write B = (K ,R) to indicate that B is a bigraphical reactive system
with controls K and rules R , and write f ∈ B to mean that f is bigraph of B.

Definition 1 (Independence). Let B = (K ,R) and B′ = (K ′,R ′) be bigraphical
reactive systems. Say that B and B′ are independent and write B ⊥ B′ iff K and K ′

are disjoint.

Definition 2 (Composite bigraphical reactive systems). Let B = (K ,R) and B′ =
(K ′,R ′) be bigraphical reactive systems. Define the union B∪B′ point-wise, i.e.,
B∪B′ = (K ∪K ′,R ∪R ′), when K and K ′ agree on the arities of the controls in
K ∩K ′.

We propose a model of context-aware computing that comprises three bigraphical
reactive systems: the context C; its representation or proxy P; and the computational
agents A. Drawing on classical work [23] we call such a model Plato-graphical.

Definition 3 (Plato-graphical model). A Plato-graphical model is a triple (C,P,A)
of bigraphical reactive systems, such that M = C∪P∪A is itself a bigraphical reac-
tive system and C ⊥ A. A state of the model is a bigraph of M on the form /~x.(C ‖
P ‖ A), where C ∈ C, P ∈ P, A ∈ A, and~x is some vector of names.

We emphasize the intended difference between C and P: Whereas an element of C
models a possible context, an element of P models a model of a possible context. The
independence condition ensures that agents can only directly observe or manipulate
the proxy; not the context itself. (In the parlance of [25], the independence condition
ensures separability.) To query or alter the context, agents must use the proxy as a
sensor and actuator.

6

Using bigraphs as our basic formalism gives us two things. First, we can write
our own reaction rules. We claim that because of this ability, models become remark-
ably straightforward and intuitive; hopefully, the reader will agree after seeing our
example models in the next section. Second, we automatically get a bisimilarity that
is a congruence. Thus, bisimilarity of agents is a very fine equivalence: No state of
the context and proxy can distinguish bisimilar agents.

Proposition 1. Let ∼ denote the bisimilarity in M , and let A,A′ ∈ A with A ∼ A′.
For any C ∈ C, P ∈ P, and~x, we have /~x.(C ‖ P ‖ A) ∼ /~x.(C ‖ P ‖ A′).

To get a less discriminating equivalence we can consider agents under a particular
state of the context, or a particular state of the system.

Definition 4. Let ∼ denote the bisimilarity in M , and let A,A′ ∈A, C ∈C and P∈P.
We say A and A′ are equivalent w.r.t. P iff P ‖ A ∼ P ‖ A′, and we say A and A′ are
equivalent w.r.t. C,P iff C ‖ P ‖ A ∼C ‖ P ‖ A′.

We conjecture that the above forms of derived equivalences will prove useful.
Working within the Plato-graphical model, we are free to emphasize any of its

three components, perhaps modeling P in great detail, but keeping C and A abstract.
Definition 3 above does not impose any restriction on composition of states. For

example, assume that we have a Plato-graphical model M = (C,P,A), that c, p and a

are controls of C, P and A, respectively, and that p is not a control of C. Then the
bigraphs

F = c(−0 | −1) ‖ p ‖ a(−2) and G = c ‖ p ‖ a

are both states of M , but their composite F ◦G = c(c | p) ‖ p ‖ a(a) is not a state
of M . This example implies that bisimilarity of states of a Plato-graphical system
may be too fine a relation: Conceivably, when comparing two states s and s′, we may
wish to take into account only contexts C such that C ◦ s and C ◦ s′ are themselves
states, i.e., we might want to outlaw F as a possible context for G. We can achieve
this finer control using place-sorting. So, we define a place-sorted Plato-graphical
model.

Notation 2. For the interface 〈m,X ,sortm〉, write 〈m,sortm〉 when we do not care
about names. Represent 〈m,sortm〉 by a vector m0, . . . ,mn−1 of sorts. Denote by Si≤m

such a vector representing the sorted interface 〈m,X ,sortm〉.

Definition 5 (Sorted Plato-graphical model). Let M = C∪P∪A be a Plato-graphical
model with C = (KC,RC), P = (KP,RP) and A = (KA,RA). Define a sorting disci-
pline on M by taking sorts Θ = {KC,KP,KA} and, for primes, sorting condition

Φ(f : Si≤n → S) = ctrl(f) ⊆ S∧∀i ≤ n. Si = S ,

lifting to an arbitrary bigraph f ′ by decomposing f into primes f ′ = f0 . . . fn−1 and
declaring f ′ well-sorted iff all the fi are. Let φ be an assignment of Θ-sorts to the
rules of RC, RP, and RA, such that every rule is well-sorted under Φ. Define M ′ to
be M sorted by (Θ,Φ) (using φ to lift the reaction rules). In this case, we call M ′

a sorted Plato-graphical model, and define the states of M ′ to be the well-sorted
bigraphs with outer face KC,KP,KA.

7

The condition Φ essentially requires that (1) the controls of a prime (bigraph) are
elements of the sort of its outer face, and (2) the sort of the outer face is exactly the
sort of each of the sites. Under this sorting discipline and new definition of state, if G
is assigned a sort such that it is a state, then F cannot be assigned a sort that makes
it composible with G.

Is the bisimilarity in the sorted system M ′ a congruence? The sorting discipline
of M ′ is in general not homomorphic in the sense of Milner [20, Definition 10.7]: we
cannot give a sort to controls in KC ∩KP. (If C, P and A are pairwise independent,
the sorting is homomorphic; however, such a model is pathologic.) Neither is the
sorting safe in the sense of Jensen [12, Definition 4.30]; condition (4) cannot be
met. Counterexample: Suppose f : KC → KC is well-sorted; take g = f ⊗1 : KC →
KC,KA (recall that 1 : ε → 〈1, /0〉 denotes the barren root). Clearly, U(f) = (−0 |
−1) ◦U(f ⊗ 1). However, if KC 6= KA then (−0 | −1) : KC,KA → KC is not well-
sorted.

Nevertheless, the sorting of Definition 5 does give rise to a bisimilarity that is a
congruence; we prove so in Appendix C.

5 Examples

We give two examples of Plato-graphical models.

5.1 A Simple Context-aware Printing System

We model the simple context-aware printing system of [3]. An office-building con-
tains both modern PCL-5e compatible printers and old-fashioned raw-printers. Occa-
sionally, the IT-staff at the building removes or replaces either type of printers. Each
printer can process only one job; queueing is done by a central print server. The print
server dispatches jobs to raw-printers only if it knows no PCL-printers; if there are
PCL-printers, but they are all busy, the job will simply have to wait. This system
is context-aware: The type and number of printers physically available determine
the meaning of the action “to print”. We give a model B of this system in Figure 1.
Looking at the controls of B, it is straightforward to verify that B is Plato-graphical.

Proposition 2. The model B of Figure 1 is Plato-graphical.

We take a detailed look at the model. A state of the context C consists of nested
physical locations loc, within which printers prt are placed. We distinguish between
PCL- and raw-printers by putting a token pcl and raw within them, respectively. Each
printer has a single port, intended to link the printer to the proxy. Here is a state of the
context with a PCL-printer and a raw-printer at adjacent locations; the PCL-printer
is idle whereas the raw-printer is busy.

C = loc(loc(prtx(raw | datz)) | loc(/y.prty(pcl)))

8

Context C.

Control Activity Arity Comment
loc active 0 Nested location
prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer

loc(−0) −→ loc(−0 | /x.prtx(raw)) (1)

loc(−0) −→ loc(−0 | /x.prtx(pcl)) (2)

loc(−0 | prtx(−1)) −→ loc(−0) | x/ (3)

prtx(datz | −0) −→ prtx(−0) | z/ (4)

Proxy P.

Control Activity Arity Comment
prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer
prts passive 1 Known devices
jobs passive 0 Pending documents
doc atomic 1 Document

jobs(docz | −0) ‖ prtsy(pcl) ‖ prty(pcl) −→

jobs(−0) ‖ prtsy(pcl) ‖ prty(pcl | datz)
(5)

jobs(docz | −0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw) −→

jobs(−0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw | datz)
(6)

/x.prtx(pcl) ‖ prtsy(pcl) −→ prty(pcl) ‖ prtsy(pcl) (7)

/x.prtx(raw) ‖ prtsy(raw) −→ prty(raw) ‖ prtsy(raw) (8)

Agents A.
Control Activity Arity Comment
jobs passive 0 Pending documents
doc atomic 1 Document

jobs(−0) −→ jobs(−0 | /z.docz) (9)

Fig. 1. Example Plato-graphical model B.

Context C Proxy P Agent A
(1) : KC (5) : KA,KP,KC (9) : KA
(2) : KC (6) : KA,KP,KC
(3) : KC (7) : KP,KC
(4) : KC (8) : KP,KC

Fig. 2. Sorts for the rules of C, P, and A.

9

Setting C in parallel with some proxy P will allow P access to the raw printer through
the shared link x, but not to the PCL-printer, because it is in a closed link. The
dynamics of C allow printers to appear (1, 2), disappear (3), and finish printing (4).

A state of the proxy P consists of a pool of pending jobs jobs and two tables of
printers prts; one contains a token raw, the other a token pcl, indicating what type of
printer the table lists. The prts is a table in the sense that its only port is linked to all
the printers in the context that the table knows about. Here is an example state of the
proxy which knows one raw-printer, knows no PCL-printers and has two pending
jobs.

P = prtsx(raw) | /y.prtsy(pcl) | jobs(/z.docz | /z′.docz′)

Setting C and P above in parallel by ‖, and closing the link x, we get a system /x.C ‖
P, where the table prtsx(raw) and the physical printer prtx(raw | dat) are linked. The
dynamics of P state that if there is a job and a known, idle PCL-printer, the proxy
may activate this printer (5); that if there is a job, no known PCL-printer, and an idle
raw-printer, the context may activate that printer (6); and finally, that the proxy may
discover a previously unknown printer (7, 8).

The dynamics of A allow the agents to spontaneously spool documents (9).
Notice how the two printing rules (5) and (6) do not observe the context directly.

Instead, the proxy observes the context (rules (7) and (8)) and records its observations
in the tables prtsx(raw) and prtsy(pcl); the printing rules (5) and (6) then consults the
tables. It is straightforward to determine whether there are no known PCL-printers:
simply check if the table of PCL-printers has the form /y.prtsy(pcl).

As observed in Section 3 and [3], it is generally very difficult, if not impossible,
to observe the absence of something in the context directly. An interesting but rather
natural consequence of the indirect observation is that it becomes asynchronous, i.e.,
it is possible that a PCL-printer exists but has not yet been observed.

This model B can be lifted to a sorted one by adding the sorts given in Figure 2;
the figure assigns sorts to the outer face of both the redexes and reactums of the
indicated rules. It is straightforward to verify that all of the rules are well-sorted.

Proposition 3. The model B with the sorting assignment of Figure 2 is a sorted
Plato-graphical model.

5.2 A Location-aware Printing System

Suppose we extend the printing system with location-awareness, by stipulating that
a print job is not printed until the printer and the device submitting the job are co-
located. To model this extended system, we introduce a new control dev for devices
(PCs or PDAs) with one port and change doc to include an extra port so we can
link submitted jobs to the devices submitting them. The linking is reflected in the
following modified rule (9) for spooling print jobs:

loc(devx | −0) ‖ jobs(−1) −→ loc(devx | −0) ‖ jobs(−1 | /z.docz,x) (9′)

10

We must also modify rules (5) and (6) to insist that the device and printer are co-
located. Rule (5) becomes

jobs(docz,x | −0) ‖ prtsy(pcl) ‖ loc(devx | prty(pcl)) −→

jobs(−0) ‖ prtsy(pcl) ‖ loc(devx | prty(pcl | datz)).
(5′)

(We suppress the new Rule (6’).)
Modifying the system once again, instead of insisting that device and printer have

to be actually co-located, we just require the print job to end at a printer close to the
device. The print server will need to query the proxy for the printer nearest a given
device. We saw in Section 3 that implementing such queries is awkward, so we will
need to use the proxy. In the preceding Section, we did so directly in bigraphs; this
time around, we transfer the expressive convenience of a general-purpose program-
ming language to bigraphs for ease of implementation. We use bigraphs directly for
modeling the actual context C, whereas we will exploit bigraphs as a meta-calculus
for modeling the proxy P.

In detail, the whole model is B = C∪P∪A, with P = S∪L. Here C is intended
to be a bigraphical model of the “real world”, the proxy P is comprised of a loca-
tion sensor S and a location model L and A is the location-based application (the
“computational agent”).

A state C of C could look like this:

C = loc(loc(loc(loc(devw) | loc(devx | devy))) | loc | loc(devz))

Changes in the real world are modeled by reaction rules that reconfigure such states.
If we want to model, say, that a devices may move from one location to another, we
include the reaction rule

loc(devx | −0) ‖ loc(−1) −→ loc(−0) ‖ loc(devx | −1). (10)

To implement the proxy, encode as a BRS a programming language L with data
structures, communication primitives, and concurrency, e.g., Pict [22] or CML [24].
(We return to this assumption below.) That is, define a translation from terms of L
to bigraphs, and add reaction rules encoding the operational semantics of L . Then
implement the location model, the sensor, and the agents in L and use the encoding
to transfer that model to bigraphs. In particular, a state of the location model L will
have a data structure representing the current state of C. If L is an even half-way
decent programming language, it should be straightforward to implement queries
such as one of Section 3 or the “find closest printer” we need above.

The sensor informs the location model about changes in C. We extend the above
rule (10) moving a device to

(loc(devx | −0) ‖ loc(−1)) | S | L −→ (loc(−0) ‖ loc(devx | −1)) | S′ | L, (10′)

where S′ is an L-encoding of “send a notification to L that device x has moved”.
Upon receiving the notification, L updates its representation of the world. Agents
of A can in turn query L when they need location information.

11

6 Discussion

We consider the following questions.

1. What languages L can we encode?
2. How closely may Plato-graphical model real systems?
3. What challenges have we found for bigraphical models?
4. What uses do we envision for Plato-graphical models?
5. How do we reason about Plato-graphical models?

Ad. 1. As mentioned, there exist bigraphical encodings of various π-calculi [12,
14, 13] and of the λ-calculus [18, 19]. Using ideas of the latter encodings, we have
encoded Mini-ML (call-by-value λ-calculus with pairs and lists) in local bigraphs
[18]. Based on our experiences with this encoding, we find it palatable to encode
CML or Pict1.

Ad. 2. The model closely reflects how some actual location-aware systems work,
for instance the one running at the ITU. Here, a sensor system (made by Ekahau)
computes every two seconds the physical location of every device on the WLAN.
The sensor system informs a location model about updates to locations; location-
aware services then interact with the location model. In our sketched plato-graphical
model, the location model L may lag behind the actual C, if L’s representation of C
does not reflect some recent reconfiguration of C. But that also happens in the real
system at the ITU – when a location-aware service asks the location model for the
whereabouts of a device, it obtains not the position of the device, but the position of
the device the last time the sensor checked. In the mean time, the device may have
moved.

Ad. 3. When modeling the physical world, we have made use of both the place
and link graphs, the place graph modeling the location hierarchy of a building. As
argued in [2], DAGs or graphs are more natural models of location. Thus, systems
such as the ones we have considered here suggest generalizing the place graphs part
of bigraphs, or consider ways to encode DAGs or general graphs naturally as place
graphs.

Ad. 4. Given an implementation of bigraphical reactive systems, one could sim-
ulate the behaviour of a location-aware system, and thus allow for experimentation
with different designs of location-aware and context-aware systems. Likewise, one
could experiment with different choices for the L language of Section 5.2. Such
simulation suggests further extensions of the bigraphical model: In actual context-
aware systems, one is generally interested in timing aspects (e.g., the sensor samples
only every two seconds), continuous space (e.g., the sensor really produces contin-
uous data), and probabilistic models (e.g., to accurately simulate sensors and sensor
failure).

1 We are presently working on implementing an interpreter for bigraphical reactive systems;
such an interpreter will make it easier to experiment with these and other encodings.

12

Ad. 5. What about using Plato-graphical models for formal reasoning about
context-aware systems? One use of formal models is to prove an abstract speci-
fication model equivalent to a concrete implementation model. In π-calculus, we
come with π-terms i,s, one for the implementation and one for the specification. The
terms i and s are themselves the models; we take (π-) bisimilarity as equivalence,
so to prove i and s equivalent, we merely prove them bisimilar. We can play the
same game within any BRS: Simply come up with a bigraph I (the implementation
model) and a bigraph S (the specification model), and prove them bisimilar within
the labelled transition system of the BRS. Because that bisimulation is a congruence,
such reasoning should be tractable.

Unfortunately, bisimulation within a single BRS is the wrong equivalence for
plato-graphical models. Suppose we want a specification model M with an abstract
view of the context, and an implementation model M ′ with a detailed view of the
context. We express this by having M and M ′ differ only in their context sub-BRSs,
that is,

M = C∪P∪A M ′ = C′∪P∪A.

The trouble is that because C and C′ may have different controls and reaction rules,
bisimulation between their respective labelled transition systems is meaningless!
What we need is a notion of equivalence of BRSs, not just equivalence of bigraphs
of a single BRS. At the time of writing, we know of no such equivalence2. Thus, our
investigation of bigraphical models for context-aware systems suggests that equiva-
lence of BRSs is a key notion currently missing. One possible direction would be to
try recover from the notion of WRS-functor [15] — functors that preserve reaction
rules — a notion of a BRS implementing another BRS.

7 Conclusion & Future Work

We have initiated an evaluation of the use of bigraphical reactive systems for models
of context-aware computing in ubiquitous systems. We found that BRSs, in their
current form, are not suitable for directly modeling context queries, but on the other
hand suitable for modeling reconfigurations of the actual context.

In response, we proposed Plato-graphical models, where both state and dynam-
ics are logically divided in three parts: the actual context, the observed context (or
proxy), and the computational agents, respectively. The computational agents and
the actual context are separated, and interact only through the proxy. This separation
into different BRSs makes it possible to encode different parts of the system using
domain-specific languages. Moreover, we have shown how the context-aware print-
ing system of [3] can be modeled straightforwardly in the Plato-graphical model.

2 The reader may suggest that we just define a common language for modeling both the
abstract and detailed view, and define a translation from this language into a single BRS.
However, in this case we are no longer modeling a ubiquitous system directly in bigraphs
(aim 1 of the Introduction), but using bigraphs as a meta-calculus (aim 2 of the Introduc-
tion).

13

Further, we have argued that Plato-graphical models are useful for simulating
context-aware systems, and we are currently working on an implementation of BRSs
at ITU to allow such experimentation. Only through such experimentation will it be
clear how useful Plato-graphical models really are. For simulation purposes it will
be important to extend bigraphs with timing aspects, continuous space, and proba-
bilities.

Finally, we have pointed out that establishing a notion of equivalence between
BRSs, as opposed to bisimilarity within a BRS, is important future work.

8 Acknowledgments

We gratefully acknowledge discussions with the other members of the BPL group
at ITU, in particular Arne Glenstrup, Troels Damgaard and Mikkel Bundgaard; and
with Robin Milner. This work was funded in part by the Danish Research Agency
(grant no.: 2059-03-0031) and the IT University of Copenhagen (the LaCoMoCo
project).

References

1. Mike Addlesee, Rupert W. Curwen, Steve Hodges, Joe Newman, Pete Steggles, Andy
Ward, and Andy Hopper. Implementing a sentient computing system. IEEE Computer,
34(8):50–56, 2001.

2. Christian Becker and Frank Dürr. On location models for ubiquitous computing. Personal
and Ubiquitous Computing, 9:20–31, 2005. Springer.

3. Pietro Braione and Gian Pietro Picco. On calculi for context-aware coordination. In Pro-
ceedings of COORDINATION’04, volume 2949 of LNCS, pages 38–54. Springer, 2004.

4. Mikkel Bundgaard and Thomas Hildebrandt. Bigraphical semantics of higher-order mo-
bile embedded resources with local names. In Proceedings of GT-VC’05, 2005. Accepted
for publication.

5. Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. Spatial Logics for
Bigraphs. In Proceedings of ICALP’05, volume 3580 of LNCS, pages 766–778. Springer,
2005. ISBN 3-540-27580-0.

6. Troels C. Damgaard and Lars Birkedal. Axiomatizing binding bigraphs (revised). Tech-
nical Report TR-2005-71, IT University of Copenhagen, 2005.

7. Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for a calculus
for global computing. In Proceedings of ICALP’05, volume 3580 of LNCS, pages 1226–
1238. Springer, 2005.

8. Søren Debois and Troels C. Damgaard. Bigraphs by Example. Technical Report TR-
2005-61, IT University of Copenhagen, March 2005.

9. Anind K. Dey and Gregory D. Abowd. Towards a better understanding of context and
context-awareness. In Workshop on The What, Who, Where, When, and How of Context-
Awareness, 2000. Part of the 2000 Conference on Human Factors in Computing Systems
(CHI 2000).

10. Matthew Hennessy. Context-awareness: Models and analysis. Talk at 2nd UK-UbiNet
Workshop, slides at www.cogs.susx.ac.uk/users/matthewh/talks.html,
May 2004.

14

11. Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling context infor-
mation in pervasive computing systems. In Proceedings of Pervasive’02, volume 2414 of
LNCS, pages 167–180. Springer, 2002.

12. Ole Høgh Jensen. Mobile Processes in Bigraphs. PhD thesis, University of Aalborg,
2005. Forthcoming.

13. Ole Høgh Jensen and Robin Milner. Bigraphs and Transitions. In Proceedings of
POPL’03, pages 38–49. ACM Press, 2003. ISBN 1-58113-628-5.

14. Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical
Report UCAM-CL-TR-580, University of Cambridge – Computer Laboratory, February
2004. ISSN 1476-2986.

15. James J. Leifer and Robin Milner. Deriving bisimulation congruences for reactive sys-
tems. In Proceedings of CONCUR’00, pages 243–258. Springer, 2000.

16. Robin Milner. Axioms for bigraphical structure. Technical Report UCAM-CL-TR-581,
University of Cambridge – Computer Laboratory, February 2004. ISSN 1476-2986.

17. Robin Milner. Bigraphs for Petri Nets. In Lectures on Concurrency and Petri Nets:
Advances in Petri Nets, volume 3098 of LNCS, pages 686–701. Springer, 2004.

18. Robin Milner. Bigraphs whose names have multiple locality. Technical Report UCAM-
CL-TR-603, University of Cambridge – Computer Laboratory, September 2004. ISSN
1476-2986.

19. Robin Milner. Bigraphs: A tutorial. Slides, April 2005. Available at http://www.cl.
cam.ac.uk/users/rm135/bigraphs-tutorial.pdf.

20. Robin Milner. Pure bigraphs. Technical Report UCAM-CL-TR-614, University of Cam-
bridge – Computer Laboratory, January 2005. ISSN 1476-2986.

21. Robin Milner. Pure bigraphs: Structure and dynamics. Information and Computation,
2005. To appear.

22. Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the pi-
calculus. In Proof, Language and Interaction: Essays in Honour of Robin Milner, pages
455–494. MIT Press, 2000.

23. Plato. The republic, book vii, 360 B.C. Translation by Benjamin Jowett.
24. John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
25. Gruia-Catalin Roman, Christine Julien, and Jamie Payton. A formal treatment of context-

awareness. In Proceedings of FASE’04, volume 2984 of LNCS, pages 12–36, 2004.
26. Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications. In

Proceedings of IEEE Workshop on Mobile Computing Systems and Applications, pages
85–90, 1994.

27. Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more to context than
location. Computers & Graphics Journal, 23(6):893–902, December 1999.

28. Mark Weiser. Hot topics – ubiquitous computing. IEEE Computer, 26(10):71–72, Octo-
ber 1993.

A Bigraphs

We recite the identical relevant definitions of [14] and a few from [21].

Definition 6 (pure signature). A (pure) signature K is a set whose elements are
called controls. For each control K it provides a finite ordinal ar(K), an arity; it
also determines which controls are atomic, and which of the non-atomic controls
are active. Controls which are not active (including the atomic controls) are called
passive.

15

Definition 7 (prime interface). An interface I = 〈m,X〉 consists of a finite ordinal
m called a width, a finite set X called a name set. An interface is prime if it has width
1.

Definition 8 (prime bigraph). A prime bigraph P : m → 〈X〉 has no inner names
and a prime outer face.

Definition 9 (place graph). A place graph A = (V,ctrl, prnt) : m → n has an inner
width m and an outer width n, both finite ordinals; a finite set V of nodes with a
control map ctrl : V → K ; and a parent map prnt : m]V →V]n. The parent map
is acyclic, i.e. prntk(v) 6= v for all k > 0 and v ∈V . An atomic node – i.e. one whose
control is atomic – may not be a parent. We write w >A w′, or just w > w′, to mean
w = prntk(w′) for some k > 0.

The widths m and n index the sites and roots of A respectively. The sites and
nodes – i.e. the domain of prnt – are called places.

Definition 10 (precategory of place graphs). The precategory of place graphs ´PLG

has finite ordinals as objects and place graphs as arrows. The composition A1 ◦A0 :
m0 → m2 of two place graphs Ai = (Vi,ctrli, prnti) : mi → mi+1 (i = 0,1) is defined
when the two node sets are disjoint; then A1 ◦A0

def
= (V,ctrl, prnt) where V =V0]V1,

ctrl = ctrl0] ctrl1, and prnt = (IdV0] prnt1) ◦ (prnt0] IdV1). The identity place
graph at m is idm

def
= (/0, /0K , Idm) : m → m.

Definition 11 (tensor product, ´PLG). The tensor product ⊗ in ´PLG is defined as
follows: On objects, we take m⊗n = m+n. For two place graphs Ai : mi → ni (i =
0,1) we take A0⊗A1 : m0 +m1 → n0 +n1 to be defined when A0 and A1 have disjoint
node sets; for the parent map, we first adjust the sites and roots of A1 by adding them
to m0 and n0 respectively, then take the union of the two parent maps.

Definition 12 (barren,sibling,active,passive). A node or root is barren it is has no
children. Two places are siblings if they have the same parent. A site s of A is active
if ctrl(v) is active whenever v > s; otherwise s is passive. If s is active (resp. passive)
in A, we also say that A is active (resp. passive) at s.

Definition 13 (hard place graphs). A hard place graph is one in which no root or
non-atomic node is barren. They form a sub-precategory denoted by ´PLGh.

Presuppose a denumerable set χ of global names.

Definition 14 (link graph). A link graph A = (V,E,ctrl, link) : X → Y has finite
sets X of inner names, Y of (outer) names, V of nodes and E of edges. It also has a
function ctrl : V → K called the control map, and a function link : X]P → E]Y
called the link map, where P

def
= ∑v∈V ar(ctrl(v)) is the set of ports of A.

We shall call the inner names X and ports P the points of A, and the edges E and
outer names Y its links.

16

Definition 15 (precategory of link graphs). The precategory ´LIG has name sets
as objects and link graphs as arrows. The composition A1 ◦A0 : X0 → X2 of two link
graphs Ai = (Vi,Ei,ctrli, linki) : Xi → Xi+1 (i = 0,1) is defined when their node sets
and edge sets are disjoint; then A1 ◦A0

def
= (V,E,ctrl, link) where V = V0]V1,ctrl =

ctrl0] ctrl1,E = E0]E1 and link = (IdE0] link1)◦ (link0] IdP1). The identity link
graph at X is idX = (/0, /0, /0K , IdX) : X → X .

Definition 16 (tensor product, ´LIG). The tensor product ⊗ in ´LIG is defined as
follows: On objects, X ⊗Y is simply the union of sets required to be disjoint. For two
link graphs Ai : Xi → Yi (i = 0,1) we take A0 ⊗A1 : X0 ⊗X1 → Y0 ⊗Y1 to be defined
when the interface products are defined and when A0 and A1 have disjoint node sets
and edge sets; then we take the union of their link maps.

Definition 17 (parallel product). The parallel product | in ´LIG is defined as fol-
lows: On objects, X | Y

def
= X ∪Y . On link graphs Ai : Xi → Yi (i = 0,1) we define

A0 | A1 : X0 ⊗X1 → Y0 | Y1 whenever X0 and X1 are disjoint, by taking the union of
link maps.

Definition 18 (concrete pure bigraph). A (concrete) pure bigraph over the signa-
ture K takes the form G = (V,E,ctrl,GP,GL) : I → J where I = 〈m,X〉 and J = 〈n,Y 〉
are its inner and outer faces, each combining a width (a finite ordinal) with a finite
set of global names drawn from χ. Its first two components V and E are finite sets
of nodes and edges respectively. The third component ctrl : V → K , a control map,
assigns a control to each node. The remaining two are: GP = (V,ctrl, prnt) : m → n,
GL = (V,E,ctrl, link) : X → Y .

A place graph can be combined with a link graph iff they have the same node set and
control map.

Definition 19 (Tensor product). The tensor product of two bigraph interfaces is
defined by 〈m,X〉⊗ 〈n,Y 〉

def
= 〈m + n,X]Y 〉 when X and Y are disjoint. The tensor

product of two bigraphs Gi : Ii → Ji(i = 0,1) is defined by G0⊗G1
def
= 〈GP

0 ⊗GP
1 ,GL

0 ⊗
GL

1〉 : Io ⊗ I1 → J0 ⊗ J1 when the interfaces exist and the node sets are disjoint. This
combination is well-formed, since its constituents share the same node set.

Definition 20 (precategory of pure concrete bigraphs). The precategory ´BIG(K)
of pure concrete bigraphs over a signature K has pairs I = 〈m,X〉 as objects (inter-
faces) and bigraphs G = (V,E,ctrlG,GP,GL) : I → J as arrows (contexts). We call I
the inner face of G, and I the outer face. If H : J → K is another bigraph with node
set disjoint from V , then their composition is defined directly in terms of the com-
positions of the constituents as follows: H ◦G

def
= 〈HP ◦GP,HL ◦GL〉 : I → K. The

identities are 〈idm, idX 〉 : I → I, where I = 〈m,X〉.
The subprecategory ´BIGh consists of hard bigraphs, those with place graphs in

´PLGh.

17

Definition 21 (tensor product, ´BIG). The tensor product of two bigraph inter-
faces is defined by 〈m,X〉 ⊗ 〈n,Y 〉

def
= 〈m + n,X ∪Y 〉 when X and Y are disjoint.

The tensor product of two bigraphs Gi : Ii → Ji (i = 0,1) is defined by G0 ⊗G1
def
=

〈GP

0 ⊗GP

1 ,GL

0 ⊗GL

1〉 : I0 ⊗ I1 → J0 ‖ J1 when the interfaces exist and the node sets
are disjoint. This combination is well-formed, since its constituents share the same
node set.

Definition 22 (parallel product, ´BIG). The parallel product of two bigraphs is
defined on interfaces by 〈m,X〉 ‖ 〈n,Y 〉

def
= 〈m + n,X ∪Y 〉, and on bigraphs by G0 ‖

G1
def
= 〈GP

0 ⊗GP
1 ,GL

0 | GL
1〉 : Io ⊗ I1 → J0 ‖ J1 when the interfaces exist and the node

sets are disjoint.

Refer to [14] for the definition of ´BBG, ´BBGh, and l.

Definition 23 (bigraphical reactive system). A bigraphical reactive system (BRS)
over K consists of ´BBG(K) equipped with a set ´Reacts of reaction rules closed
under support equivalence (l). We denote it – and similarly for ´BBGh(K) – by
´BBG(K , ´Reacts).

Refer to [21] for the definition of s-category.

Definition 24 (place-sorted bigraphs). An interface 〈m,X〉 is Θ-(place-)sorted if it
is enriched by ascribing a sort to each place i ∈ m. If I is place-sorted we denote its
underlying unsorted interface by U(I).

We denote by ´BIGh(K ,Θ) the s-category in which the objects are place-sorted
interfaces, and each arrow G : I → J is a bigraph G : U(I) → U(J). The identities,
composition and tensor product are as in ´BIGh(K), but with sorted interfaces.

Definition 25 (place-sorting). A place-sorting is a triple Σ = (K ,Θ,Φ) where Φ is
a condition on the place graphs of Θ-sorted bigraphs over K . The condition Φ must
be satisfied by the identities and preserved by composition and tensor product.

A bigraph in ´BIGh(K ,Θ) is Σ(-place)sorted if it satisfies Φ. The Σ-sorted bi-
graphs form a sub-s-category of ´BIGh(K ,Θ) denoted by ´BIGh(Σ). Further, if ´R
is a set of Σ-sorted reaction rules then ´BIGh(Σ, ´R) is a Σ-sorted BRS.

B Encoding of “find all devices”

Consider the following simple bigraph representing a building consisting of locations
(e.g., rooms) and devices (e.g., PDAs) in these locations. (We have omitted the outer
names on the locations, and also sites.)

l = loc(loc(loc(loc(dev1) | loc(dev2 | dev3))) | loc() | loc(dev4))

Consider how to implement a query to return all the devices in the building by means
of bigraphical reaction rules. Observe that we have chosen to represent all locations
via the same control loc, rather than using different controls office, building, etc., for

18

different locations – this is to avoid having to write reaction rules for every combi-
nation of location controls.

Now, assume that a query occurs by some process introducing a node with con-
trol f into the system (in a unique3 in node), and that no other queries impose them-
selves while we calculate the answer to this one. The termination condition (observ-
able by the “input/output process”) is when in is empty (and nodes with control f ′

appear in the node with unique control out). We can not handle concurrent queries
so that is why we wish to detect termination (so that we can begin the next query).

The idea is to do a depth-first search/collection while keeping track of where we
have already looked by placing these subtrees into “searched-nodes” (s). Controls:

Control Activity Arity Comment
in passive 0 Input node
f atomic 0 Controls find-all query
f ′ atomic 1 Answer node
loc active 1 Nested location
out passive 0 Output node
g atomic 0 Dummy, just to keep in non-empty
dev atomic 1 Device, has link to id
s passive 0 Collects searched nodes

And now, for the rules. Initialization; move f into the top location (enclosing all the
others) to indicate “the point of control” in the structure, and add g to indicate that
we are not done with the query:

in(f) ‖ loctop(locx(−0)) ‖ out() −→ in(g) ‖ loctop(locx(f | s() | −0)) ‖ out()

If a device is found, add it to s, and add a representative for it to out:

locx(f | −0 | devy | s(−1)) ‖ out(−2)

−→ /y.locx(f | −0 | s(−1 | devy)) ‖ out(−2 | f
′
y)

Notice that the label (context) of this transition will include the bigraph top/x. This
rule can be used as long as there are devices in the current location being searched.
When done with this location f is moved up, since we assume that a location can only
contain either devices or other locations. (The query would have been significantly
harder without this assumption.) So, if a location containing location(s) is being
searched:

locx(f | locy(−1) | s(−2) | −0) −→ locx(locy(f | s() | −1) | s(−2) | −0)

Then, search deeper. A new s-node is created when going down, this is a trick to do
“on-line garbage collection” when climbing back up the tree. (The query has to leave

3 Certain properties can only be ensured by invariants of the reactive system, e.g. uniqueness
of controls.

19

the bigraph as it was initially.) When a leaf is reached (an empty location) move f up,
merging s-nodes. This is more clever than doing a clean-up traversal because there is
no construction in reaction rules that can express “not”, i.e. one can not write a rule
saying “clean up until there are no more s-nodes in the tree”. The “climbing” rule:

locx(locy(f | s(−2)) | s(−1) | −0) −→ locx(f | s(locy(−2) | −1) | −0)

Notice how the presented rules use sites to make themselves general. To clean up
when we have traversed the whole tree (and there is exactly one s):

in(g) ‖ loctop(locx(f | s(−0))) −→ in() ‖ loctop(locx(−0))

At this point out will have all representatives, in is emptied to indicate termination.
(The reader is encouraged to try out the rules on the example location model. It is
easiest doing it using the graphical bigraph notation.)

C Rigid control-sortings and RPOs

For a bigraph b (sorted or otherwise), we write b∗ for the function that takes each
place (site or root) or node of b to its uniquely determined root. In this appendix we
will generally omit writing down the link-graph part of interfaces when we do not
need them.

Definition 26 (Rigid control-sorting). Let K be a set of controls. A sorting S =
(K ,Θ,Φ) is a rigid control-sorting if Θ ⊆ P (K) and there exists a predicate φ, such
that

Φ
(

(m,sm)
f

−→ (n,sn)
)

iff

{

(i) sm(i) = sn(f ∗(i)) for i < m,
(ii) φ(ctrl f (v),sn(f ∗(v))) for v node in f .

In the sequel, we assume a fixed set of controls K , rigid control-sorting S = (K ,Θ,Φ),
a sorted signature ΣS and a corresponding unsorted signature U(ΣS) = Σ; following
[12], we write B̂IG(Σ) for the precategory of concrete bigraph over Σ and B̂IG(ΣS)
for the corresponding precategory of sorted concrete bigraphs, and we write U for
the forgetful functor from B̂IG(ΣS) to B̂IG(Σ); recall that this functor is faithful.

In Theorem 1 we state that B̂IG(ΣS) has RPOs; it follows that the standard
bisimulation on B̂IG(ΣS) is a congruence. To establish Theorem 1, we will need
some lemmas to make precise just how closely B̂IG(ΣS) mimics B̂IG(Σ).

Lemma 1. If U(a) = p ◦ q, then there exists unique b,c s.t. U(b) = p, U(c) = q
and a = b◦ c.

Proof. For existence, suppose a : (m,sm) −→ (n,sn) and cod(q) = dom(p) = l. De-
fine

sl(i)
def
= sn(p∗(i)). (11)

20

We claim that c = (m,sm)
q

−→ (l,sl) and b = (l,sl)
p

−→ (n,sn) are well-sorted. Con-
sider c. Condition (i) of Definition 26 is satisfied by (11), Condition (ii) is satisfied
because the nodes of c is a subset of the nodes of a. Now consider b. For i < n, we
find

sm(i) = sn(a
∗(i)) = sn(p∗(q∗(i))) = sl(q

∗(i)),

satisfying Condition (i). Next, for v a node of q, we find

φ(ctrlq(v),sl(q
∗(v))) = φ(ctrla(v),sn(p∗(q∗(v)))) = φ(ctrla(v),sn(a

∗(v))).

But φ(ctrla(v),sn(a∗(v))) is satisfied by well-sortedness of a; thus Condition (ii) is
satisfied.

For uniqueness, it is sufficient to prove that sl is the only sorting making b and c
well-sorted. Suppose s′l is an alternate such sorting. If there is i < l s.t. s′l(i) 6= sl(i) =

sn(p∗(i)), then (l,s′l)
p

−→ (n,sn) is not well-sorted: contradiction. Thus s′l = sl .

Lemma 2. If a,b is a cospan and U(a) = U(b), then a = b.

Proof. Because U(a) = U(b), a and b must have the same inner width, m:

(m,sm)
a - (n,sn) � b

(m,s′m).

Suppose for a contradiction that there is i < m s.t. s′m(i) 6= sm(i). Then

sn(a
∗(i)) = sm(i) 6= s′m(i) = sn(b

∗(i)),

but that cannot be, because a∗(i) = b∗(i) follows from U(a) = U(b): contradiction.

Theorem 1. B̂IG(ΣS) has RPOs.

Proof. Consider the square (i) below.

b0
-

b1

�

a1

-

a0

�

(i)

h0 -

U(b0)
-
h

6

� h1

U(b1)
�

U(a1)

-

U(a0)

�

(ii)

Apply U to get a similar square in B̂IG(Σ), and erect an RPO there, altogether
obtaining the diagram (ii). By Lemma 1, there are c0 and c factoring b0 s.t. U(c0) =
h0 and U(c) = h; symmetrically, there are also c1 and c′ factoring b1 s.t. U(c1) = h1

and U(c′) = h. (See diagram (iii) below.)

21

c0

-

b0
-

c
6

c′
6

�
c1

b1

�

(iii)

But b0,b1 is a cospan, so also c,c′ is a cospan; thus c = c′ by Lemma 2, and we have
a candidate RPO c0,c1,c.

Suppose d0,d1,d is an alternate candidate RPO. We must find unique e s.t. c =
d ◦e. Because U(c0),U(c1),U(c) is an RPO, we find unique p s.t. U(c) = U(d)◦ p.
By Lemma 1, there are unique d ′,e s.t. U(d′) = U(d), U(e) = p and c = d′ ◦e. But
then d,d′ is cospan, so by Lemma 2, d = d ′. Thus, we have found e s.t. c = d ◦e. For
uniqueness, suppose there is e′ with c = d ◦ e′. Then

h = U(c) = U(d)◦U(e′) = U(d)◦ p

but then U(e′) = p = U(e) by uniqueness of p; but e′,e is also a cospan, so by
Lemma 2, e = e′.

Corollary 1. Bisimulation on the standard transition-system of B̂IG(ΣS) is a con-
gruence.

Proof. By [12, Theorem 3.16], possession of RPOs is a sufficient prerequisite for
the desiderata.

We can now prove that the sorting of Definition 5 gives a congruential bisimula-
tion.

Theorem 2. Let S be the sorting given in Definition 5. Then the bisimulation over
the standard transitions of B̂IG(ΣS) is a congruence.

Proof. By Corollary 1, it is sufficient to show that S is a rigid control sorting.

Take φ(k,K) = k ∈ K. Clearly, Φ
(

(m,sm)
f

−→ (n,sn)
)

is equivalent to i < m =⇒
sm(i) = sn(f ∗(i)) and v ∈ f =⇒ φ(ctrl f (v),sn(f ∗(v))).

22

