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Bigraphical Semantics of Higher-Order Mobile
Embedded Resources with Local Narnhes

Mikkel Bundgaard and Thomas Hildebrandt
Department of Theoretical Computer Science
IT University of Copenhagen
Denmark
{m kkel bu, hil de} @t u. dk

Abstract

Bigraphs have been introduced with the aim to provide a topographivetia-
model for mobile, distributed agents that can manipulat@rtbwn linkages
and nested locations, generalising both characterisfidheort-calculus and
the Mobile Ambients calculus. We give the first bigraphipaésentation of

a non-linear, higher-order process calculus with nestedtions, non-linear ac-
tive process mobility, and local nhames, the calculudadher-Order Mobile
Embedded Resources (Homer). The presentation is based on Milner's recent
presentation of th&-calculus in local bigraphs. The combination of non-linear
active process mobility and local names requires a new itiefinof paramet-
ric reaction rules and a representation of the location ofigg We suggest
localised bigraphs as a generalisation of local bigraphs in which links can be
further localised.

Keywords: bigraphs, local names, non-linear process mobility

Introduction

The theory ofBigraphical Reactive Systems (BRS) [JM04] has been proposed as a
topographical meta-model for mobile, distributed agehtt tan manipulate their
own linkages and nested locations. Bigraphs generaliethetlink structure char-
acteristic to that-calculus and the nested location structure charactetsthe Mo-
bile Ambients calculus. A bigraph consists of two strucsurtheplace graph and
thelink graph. The place graph is a tuple of unordered trees that represents the
topology of the system (why it is also referred to as the topaph). The roots of
the trees are referred to ajions and the nodes are often referred topbaces and
may represent locations or other process constructors asiehg. action prefixing.
Some of the leaves may lsites (also referred to as holes) making the bigraph a
(multi-hole) context. Each non-site place is typed witboatrol and has a number
of portslinked together by the link graph. Thigk graph represents the connectivity
in the system, corresponding to shared names imtbalculus. Free names are rep-
resented by links connected to a set of names in the (auterjace of the bigraph.
Figure 1 depicts a pure bigraph with 2 regiong &ndr1) which together with the

*Funded by the Danish Research Agency grant: 2059-03-008CdMoCo) and IT-Vest networking
universities: National Teaching Network: Model-Based iQegor Concurrency.
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Figure 1: A pure bigraph

namesyp, y1 andys constitute theouter interface (2, {yo,y1,y2}), and 3 sites <,
s, andsp) which together with the nameg andx; constitute thanner interface
(3,{x0,x1}) of the bigraph. A bigrapl can be composed with a bigraphif the
outer interface oH match with the inner interface d& and the result is that the
contents of the regions &f is placed in the respective sites®fand the links in the
outer interface of is connected to the links in the inner interfaceGf

In so-calledpure bigraphs, the place and link graph can be considered to be
orthogonal structures, since the nesting of the placestenddnnections of the links
have no interrelationship. Pure bigraphs are sufficienefresent calculi such as
the pure Mobile Ambient calculus. The orthogonality breaken we move to so-
calledbinding andlocal bigraphs. Binding bigraphs were introduced in [JM03] to
capture the notions of binding and scope of names as fourtkin-talculus. In
binding bigraphs we allow for a node to hakinding ports, and require that any
other port linked to the same link as a binding port to be witthie node of the
binding port. In [Mil04b], Milner refines the definition dbinding bigraphs into
local bigraphs. In local bigraphs, the free names (i.e. names in the intejfare
all explicitly located at the regions of the bigraph, the samame possibly located at
several regions. Correspondingly, holes (i.e. sites) gpéatly annotated by a set of
names connected to links. Local bigraphs are used to faeilihe presentation of the
A-calculus as the bigraphical reactive syst&mG in [MilO4c], which demonstrates
how higher-order processes (process passing) can be prdsenthe bigraphical
framework using explicit substitutions.

In the present paper we give the first bigraphical presentaif the combination
of active processes in nested locations as present in thdé/Jnbients, non-linear
higher-order process passing (by explicit substituti@sspresent in th&-calculus
and local names as presentin tizealculus. It turns out that the combination of non-
linear, active process mobility, and local names needsiapegre, i.e. we can not



simply combine the previous presentations of the Mobile Aents, theh-calculus,
and therrcalculus.

We take as our starting point the calculus of Higher-OrdebNéooEmbedded
Resources (Homer) [HGB04]. Homer is a pure higher-orderutas inspired by
prior higher-order calculi such as Plain CHOCS [Tho93] ar@@r{San92], and can
be regarded as an extension of #ealculus to contain nested, active locations and
concurrent synchronisation over (nested) named chanBatscally, Homer has two
prefixes for located resourcéér) (passive) and|r] (active) whered is a sequence
of names representing the address of the resource. Iilyitthese two prefixes cor-
respond respectively to a passive and an active bigraphatevith ports connected
to the linksd. The interactions are controlled by two corresponding toiesors for
moving located resourceéx) . p (receive) and(x) . p (take), denoting respectively
the usual input-prefixed process waiting to receive a (pasprocess on the chan-
neld, and an input action for taking attive process from location, in both cases
substituting the moved resource in fom p. The two interactions are captured by
the two "dual” reaction rules.

alr).plax).g~\ plar/x (1)

and

ar].plax).q\.plqlr/x @)
The first rule (1) is the basic interaction as known from RIGHOCS [Tho93]. Here
the process to the left wants to send out passive resourcer along the name
and the process to the right wants to receive a resource al@amgl substitute this
resource in fo in g. As the process variablein the receiving prefix can bind any
number of occurrences afin g we have the possibility to discard the input or copy
the input, resemblin@-reduction know from the-calculus [Bar84], since process
passing in Homer is non-linear.

In Plain CHOCS the processis passive, meaning that cannot compute in-
ternally, nor can it interact with the surrounding envircemh Furthermore, if the
receiving procesq decides to activate an instance of the received resouee tltis
instance cannot be moved again. We have chosen to augmepégb®e process
passing of Plain CHOCS withctive process passing, as in (2), where we have a
resourca computing at locationa and a prefix for taking up the running process at
locationa and bind it tox, respectively. Compared to the passive prefix it is now
possible forr to compute internally while residing at the locatian.e.

r\.r’' impliesalr] \, afr'] . (3)

Wheng takes the running resourcea copy may again be placed at a location where
it can continue to run until it is taken again. So we have aqtiocess mobility in
Homer in addition to the passiw®de mobility as e.g. found in Plain CHOCS and
HOr

We also allow for location prefixes to be nested, hence we laavexplicit rep-
resentation of nested, named locations, as also introdinctte Mobile Ambient



calculus [CGO00] or the Seal Calculus [CVYNO4]. However, carily to these cal-
culi, we allow interactions with arbitrarily deeply nestedtive processes by simply
composing addresses. In the example below we send the cesodown to the
nested addresab (composed o& andb), and it is received at the addrdsgesiding
in the locatiora

ab(r).plab(x).q|q].q" \,plalqr/x|d].q" . (4)

Dually, we can also take up resources from nested locati®ims a

alblr].p| p].p"|ab(x).qN\alp|p].p"|qlr/x . (5)

In general, we allow interaction with arbitrarily deeplysted sub resources. How-
ever, two processes that are neither locally parallel naha sub/parent process
relation need a common ancestor process to act as a routendthates commu-
nication. We also allow composite names for active locatiand receive prefixes.
Besides making the calculus symmetric, it also allows uxpress nested location
names without allowing all sub locations to be moved sepbrat

As usual, we letn) p denote a procegsin which the namais local. With local
names we also need to handle scope extension. For most aftbesg constructors
scope extension is as expected, but for locations we nea#téqarticular care. For
when a resource is moved it may be necessary to extend the e€amame through
the boundary of a location, e.g. if the resourceontains the name free, we will
expect the reaction

al(n)(blr] | p)] [ ab(x).a™\, (n)(a[p] | alr/x]) (6)

where we have extended the scop@a td cover all possible occurrences of the name
n. In [HGBO04] we called this kind of scope extension f@rtical scope extension,
to differentiate it from the usual kind of scope extensiohgwne we extend the scope
over parallel processes at the same location. In the Mobribi&nts calculus vertical
scope extension is performed in the structural congrueadoag with the usual scope
extension)

m{(n)p] = (mp] , if n#m . )

However, as discovered in several calculi, this rule is meisl when mobile pro-
cesses may be copied. There exists several solutions tprlidem, all of them
exclude the vertical scope extension in the structural noemce (7), and instead ex-
tend the scope in the reaction relation. This extensiorliedonesagerly, meaning
that we always extend the scope,band only if the namen is free inr. In Homer
we have chosen the latter solution, which corresponds tashal semantics of e.g.
HOm. Combined with nested locations it has the consequenca itaitext can test
if a name is free in a process (assuming that free inp)

mi(m)(m([r] [ p)] | M (y). m(x). (x| x) . ©)



Since the scope of is extended if and only if is free inr, the process reduces (in
two steps) to one of the following processes

(mp|(np 9)

or
(m(plp , (10)

depending on whetheris free inr. Consequently, for for any non-trivial congruence
related processes must have the same set of free names.(se@1€B04] for a
detailed discussion).

Itis sometimes useful, however, to be able to abstract fres but non-accessible
names, as e.g. in thperfect firewall equation [CGO0O]

(M)(n[p) =0, (11)

stating that the behaviour of a computing resource at a location is unobservable.
However, when the context can test for free names of a presdhss equivalence
will only hold if fn(p) = 0. In [HGBO04] the process constructisee name extension
was introduced to mend this problem. The constru¢tgp extends the free names
of p with the idle namen. Using an example similar to (8) it was shown that name
extension cannot be extended vertically either. So not dogs the free names of a
process matter, but tHecality of the names matters as well.

In this paper we chose an equivalent solution by typing psses explicitly with
a set of namen €ontaining the free names. Thgoed perfect firewall equation then
becomes

(n)(n[p]): i=0:A forfn(p)\{n} CA. (12)

As for the free name extension we need to be able to able tesxhe same
requirement at all location and send prefixes, as we ottserlgiose the information
about the free names of a process when inserting it into aeggrds the following
example illustrates. Assume that the processes

def def
p=0 q=

and (m)(m[n[Q]]) (wherem= n)

are related by our equivalence under the typ{mg, e.g.p: {n} = q: {n}. Then
consider the following context which will first lift the spe of n if and only if the
inserted process contains the namé®e, and the copy the remaining content of the
locationn.

= m((n)(m[(-)] | P)] | (y) . 7T(x). (x| X) , wherene fn(p).  (13)
Then we have the following reactions

Cp)\. N\ (np' [ (np (14)

and

Cla)\ N\ (M| p) - (15)



So when we inserp andq into a context we loose the information that they were
related with the same type, e.g. that we considered themvtha same free name
n. So we need type annotations on all locations and send peefixkeep track of
the free names, which is done by extending the syntax ofy@etod(r); andd[r]s.

Related Work In [HGBO04] Hildebrandt et al. introduce the Homer calculiie
calculus has a simple syntax and semantics that in many wéssds the traditional
process passing calculi for concurrency and mobility. gsin extension of Howe’s
method the authors show that late labelled transition hikitions are congruences,
and hence a sound characterisation of barbed bisimulatingroence in terms of
a late contextual bisimulation. The authors also propoBesaname extension as

a process constructor in calculi with explicit locations;dl names, and non-linear
process mobility. Bundgaard et at. presents in [BHGO5a]raaoéing of the syn-
chronousrtcalculus without summation, replication, and matchinghie calculus
of Homer. The encoding is proven fully abstract with respgiediarbed bisimulation
and sound with respect to barbed congruence. These resaipsaven by utilising
an intermediatgr-calculus with explicit substitutions. In [BHGO5b] thissut is
extended to ar-calculus containing replication and matching, and an dimgpthat
does not utilise any auxiliary names is presented.

Bigraphs is a refinement of the framework adtion calculi [Mil96], which is
based on process constructors inherited fromrtfoalculus (see e.g. [Gar0Q] for a
gentle introduction to this connection). The graphicalimtof action graphs in-
troduced in [Mil96] inspired the bigraphical model. Leifend Milner discovered
that the categorical notion @élative pushout (RPO) could be used to characterise
minimal labels in order to automatically derive bisimutatirelations which are con-
gruences [LMO0Q], and these RPO transitions underly the \hetieal theory ofbi-
graphical reactive systems (BRS).

There already exists several presentations of well-knaateudi for concurrency
and mobility as bigraphical reactive systems. In [JM04, 3MInsen and Milner
set up the basic theory of bigraphical reactive systems ahibbi¢ a presentation of
the asynchronous-calculus Atand prove that the derived LTS and its bisimilarity
match closely the traditional LTS and bisimilarity of askinenousrecalculus. A
sketch of a presentation of the Mobile Ambient calculus was given in [JM04],
but the formal treatment were postponed to Jensen’s Ph.Bsi§Jen05]. Mil-
ner presented in [Mil04a] a presentation of condition-eetri nets using only the
link graph of bigraphs to represent the Petri nets. Againaadard equivalence of
condition-event nets is recovered using the framework gfdphical reactive sys-
tems.

In a different direction, Milner has refined the theory ofiling bigraphs [Mil04b],
so that the location of a local name can be more than one regiamultiple local-
ity of a name is utilised by Milner in [Mil04c] to present a et of theA-calculus
with explicit substitutions, calleds,, Several aspects of the presentation given in
the current paper are inspired from Milner’s presentat®esides bigraphs there ex-
ist several graphical formalisms suitable for presentialgwli for concurrency and



mobility: solo diagrams, synchronized hyperedge replaa@ntile systems etc., see
e.g. [BLO5] for references.

Another topic touched upon in [MilO4c] is confluence. Milnges the notion
of support of a bigraph to determine if, and how, two ground redexes ooy
in a ground bigraph overlap, and he uses the notion of relggivshouts to carry
out “syntactic analysis” of bigraphs. O’Conchuir examinfegy, in [O0’C04] and
compares it to anothar-calculus with explicit substitutionsxgc [Ros96a, Ros96b]
by Rose.

Currently, several other aspects of bigraphs are beingstigated, such as the
connection to XML in [HWO5] by Hildebrandt and Winther (theopotype imple-
mentation of Reactive XML is extended to a distributed agtth [HNOWO5]) and
Conforti etal.’s logics for bigraphs [CMS05b] and its agpliion to XML [CMS05a].

Explicit substitutions have been widely applied in theisgtof functional pro-
gramming languages, but primarily to bridge the gap betwberabstract mathe-
matical definition of a programming language and the caecimplementation of
this language. In the seminal work of Abadi et al. [ACCL91]Xxm, a A-calculus
with explicit substitutions, the explicit substitutionsegpropagated throughout the
term and applied locally. The approach chosen in this pajffersifrom this solu-
tion, in the same way as Milner's lambda calculus did, sineealso perform the
substitution ‘at a distance’. Thexgc [Ros96a, Ros96b] calculus resembBles but
retains the variables names instead of introducing De Bindices. Furthermore, in
Axgc there is no composition of substitutions and the cakbhs an explicit garbage
collection of substitutions.

Explicit substitutions have also appeared in process tdtmconcurrency and
mobility. Ferrari et al. presented in [FMQ96Jacalculus with explicit substitutions,
T, where the substitutions are recorded in a global envirarigheThe motivation
for splitting up the name instantiation from the transitbsemantics is to utilise
the structural operational semantics meta-theory deeeldpr traditional process
calculi such as CCS in the setting of tiecalculus. Another investigation of i
calculus with explicit substitutions was performed by tdivkoff in [Hir99] using De
Bruijn indices and handling the name instantiation usingrentrewrite system. The
calculus of explicit fusions, pi-F, [GWO00] by Gardner andsahik contains fusions,
processes of the form=y, explicitly in the syntax enabling the interchange of the
namesx andy in the surrounding context. Zimmer utilised in [ZimO4jecalculus
with explicit substitutions and channels as an intermedaiguage for proving that
the synchronous-calculus can be encoded in a restricted Mobile Ambientutag
containing only the mobility primitives and the hierardhiistructure of the ambients.

Structure of the Paper In Section 1 we present briefly the main concepts of local
bigraphs of Milner. In Section 2 we introduce the two vargaaf the calculus of
Higher-Order Mobile Embedded Resources. In the first vearnige have substituted
the existing free name constructfm} p with simple type annotations at locations
and send prefixes, and only consider typed relations betwescesses. In the sec-
ond variant, Homer, we augment the calculus with explicit substitutions. \Waver



that there is an operational correspondence between thearants. Section 3 con-
tains the presentation of Honteas a bigraphical reactive system, the translation
of Homero terms into bigraphs, and the translation of path contextstha reac-
tion rules. We prove that structural congruence of Hammeorresponds to graph
isomorphism in bigraphs. In Section 3.5 we present the dioera correspondence
between Homer and its presentation” Homer In Section 4 we present a generali-
sation of local bigraphs in which links can be further losafi, called localised links.

In Section 4 we also examine the problems arising from regasg the restriction
constructor using a closed free link in bigraphs. We coneladd propose further
work in Section 5.

1 Local Bigraphs

In this section we introduce the main concepts of local phsg[Mil04b] of Milner.
We refer the reader to [JM04] for additional information aeding the basic theory
of (pure and binding) bigraphs and [Mil04b] and [MilO4c] fitre remaining details
about local bigraphs.

In this paper we will primarily use a simple term languagdrdduced in the
above mentioned papers, instead of the graphical repesamof bigraphs. The
term language consists of the following constructdrg:g andh | g are theparallel
product andprime parallel product of two bigraphsh andg, respectively. Whereas
the prime parallel product merges the regions of two simgtgen (prime) bigraphs,
the parallel product juxtaposes the regions. Thesure constructor/no g is the
bigraphg, where we have removed the outer namigy replacing the name with an
edge ing.

A bigraphical reactive systems is defined with respect igiaagure that specifies
the controls and their properties (e.g. the number of porthie control, and whether
the control is passive, active or atomic). Each node in adpigiis associated with a
control. The following definitions are defined as in [MilG}

Definition 1.1 (local signature) A local signature X is a set whose elements are
calledcontrols. For each controK it provides a pair of finite ordinals, the binding
arity h and the free arit, indexing respectively thbinding and thefree ports of
any K-node, writtenK : h — k. The signature also determines which controls are
atomic, and which of the non-atomic controls agetive. Controls which are not
active (including the atomic controls) are callesbsive. If K is atomic therh = 0.

Definition 1.2 (local interface) A local interface takes the formt = (m,X), where
mis the width of the interface and is a vector of lengtim, such thal; is the set of
names local to théth site. We call¥ = (m, Up<j<mX;) the pure interfacenderlying
l.

We will often write X or (m,loc, X), whereX = Up<j-mX andloc C m{) X is
alocality relation, for the local interfacém, X). We will also often writeX for the
local interface(1, X).



Definition 1.3 (local bigraph) If | andJ are local interfaces, &oncrete) local

bigraph G : | — J consists of aminderlying pure bigraphGY : I — JY satisfying the
same scoping conditions as in [Mil04b]. For a local bigr&phl — J we calll and
J the inner and outeface of G, respectively.

We can compose two local bigraphisandG, if the outer face ofs and inner
face ofH matches, resulting in the bigrapho G, where the content of the regions
of G have been inserted into the respective sitdd gdind the links of corresponding
local names have been fused together. We call a local big@plith unit inner
face,G: € — J, aground bigraph and write it a& : J. We define thedynamics of a
bigraphical reactive system in terms of reaction rules ansbation relation, which
are defined precisely as in [Mil04b].

Definition 1.4 (reaction rule, reaction relation)A ground reaction ruleis a ground

pair (r,r’), redex andreactum, with the same outer face. Given a set of ground rules,
thereaction relation — over agents is the least, closed under support equivalence
(=), suchthaDor — Do’ for each activé and each ground rulg,r’).

In order to easen the specification of the reaction relatieruse parametric reac-
tion rules, which allows rules that arbitrarily transforhetr parameters. Differently
from the original definition in [MilO4b], we require thatlabuter names of a param-
eter are specified explicitly by the parametric reactiole rto ensure that we handle
scope extension properly. In the definition of parameteigation rule we have also
left out the specification aof, as we do not need any renaming in any of the rules.
But first we need that we can factorise a bigraph if none dfritss cross regions.

Proposition 1.5(factorisation) We can uniquely factorise any ground bigraph ¢ : X
with outer width minto primes, if none of its links cross regions, as

c=coll || Cm1 , withgi: X .

The instantiation maps a parameter for the redex to a paeafeethe reactumin
a parametric reaction rule and allows for the rule to repicome of the parameters
and discard others.

Definition 1.6 (instantiation) An instantiation f from | to J, written f :: | — J,
wherel = (m X) andJ = (n,Y) are local, is induced by an underlying function
f : n— m. We define the instantiation

T: XY

in the following way. For interfaces we havgl) =Y, whereY; o Xs(j) for all

j € n. For a ground bigraph : X with no links crossing regions, we know that we
can factorise it uniquely as

a=col|l - ||tm1 ,withg: X .



Letd; = c¢(j) for j € n have disjoint supports, we then define the instantiatioa of
local bigraph as

- o, def
f@):Y ¥ dof| || dns .

Parametric reaction rules allow for the rules to contairapagters, that can be
replicated, discarded, or just moved.

Definition 1.7 (parametric reaction rule)A parametric reaction rule has aredex R
andreactum R, and takes the form

(R:l - K,R:I' =K, f)

with the inner face$ = (m,X) andl’ = (n,X’) andf : ' — mis a map of ordinals,
inducing the instantiatiori. For every parametet : | the parametric reaction rule
generates a ground reaction rule on the form

(Rod,RoT(d)) , wheref(d): 1.

2 Higher-Order Mobile Embedded Resources

In this section we present two variants of the calculus ofiidigOrder Mobile Em-
bedded Resources (Homer), a non-linear, pure higher-prdeess calculi with local
names and named, nested locations. The first variant of iHoorgains explicitly
typed locations and send prefixes instead of the procesrcmtor,interface exten-
sion, {n}pthat was introduced in [HGBO4]. The interface extensiorrafm, {n}p,
extended the free names pfwith the (possible idle) name. The solution taken
in this paper is that we explicitly annotate every locatiand send prefix) with a
set of names that must include the free names of the processiced in the pre-
fix. Furthermore, we will only consider relations that relgrocesses with the same
top-level type. The reason why we need to be able to typesedttibns, as well, is
that interface extension cannot be extended verticallyuih a location barrier, as
explained in the introduction.

In the second variant of Homer we also add explicit sub&bitistto the calculus,
resembling the approach taken by Milner in [MilO4c]. Thisiaat of Homer serves
as an intermediate step between the traditional Homer kesl@und our presentation
as a bigraphical reactive system, since we need the exgqlibgtitutions to represent
the higher-order processes-passing of Homer.

2.1 Syntax and notation

We assume an infinite set ofimes A ranged over bym andn, and letri"range
over finite sets of names. We lgtange over (possibly empty) sequences of names,
and letd range over non-empty sequences of names, referredaddassses and let

|8| denote the length of the pafh also we leth ::= & | 5. We assume an infinite
set of process variables 1’ ranged over by andy, and letxrange over finite sets

10



Processes:
p,q,r = 0 inactive process
| m.p action prefixing
| plq parallel composition
| (n)p letnbelocalinp
|

X process variable
Prefixes:
= o(x)  receive aresource atand bind it tox
| 3(x) take computing resource frodhand bind it tox
| 3(r)a send a passive resounchaving typen'to &
| O[r]s computing resourceat locationd having typen™

Table 1: Higher-Order Mobile Embedded Resources

of variables. The seP of process expressions is then defined by the grammar in
Table 1.

The processes constructors are the usual process coossrfroim higher-order
concurrent process calculi. As usual, we let the restmctperator(n) bind the
namen and the prefixe$(x) bind the variablex. Note that the restriction operator
also can bind the names that occur in a type annotation.

The prefixd(x) represents the possibility to receive a passive resourtéreen a
local processes or a processes in a parent-location, whére@refix3(x) represents
the possibility to take an active resource from a local lmcabr a sub-location.
The prefixesd(r)s andd|r]x are responsible for sendingpassive resource locally
(or down) to the addresd and providing aractive resourcer locally (or up) on
the locationd, respectively. In both cases we explicitly annotate thdiyngith a
set containing the free names of the resource. The prefifes and5(x) are the
usual prefixes of Plain CHOCS [Tho93], except that we allegquences of names
as addresses instead of only a name. The prefikgsandd(x) are responsible for
adding active process mobility to the calculus, as expthinghe introduction.

We define the free names and free variables in Definition 2\bte that we
define the free names of the prefix@gr)lx asfn(d[(r)]s) = fn(¢p) UA, so the type
annotation of a send or a location prefix determines the fig@aes of the resource
in the prefix, under the assumption that the type annotatmains the free names
of the resource. We will throughout the paper tacitly asstimaéthis requirement is
satisfied.

Definition 2.1 (free names and variables)Ve define the set®(p) andfv(p) of free

11
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XFO0:f XEp|q:AiUf;
XEp:fn
KX x: f XE(n)p: i
X p:i XEr:m Xp:h
KE¢(X). p:AUM(P) KEQ[r)]m. p: MUAUN(D)

Table 2: Typing rules for Homer

names andfree variables of p inductively in the structure of.

Free names Free Variables
fn0) = 0 fv(0) = 0
fn(o[(Hla.p) = Mm(@)uiufn(p)  [r)]a.p) = fv(r)Utv(p)
fn(¢(x).p) = fn(¢)uUtn(p) fV(o(x).p) = fv(p)\{x}
fn(p[a) = fn(p)Ufn(q) fv(plag) = fv(p)ufv(g)
fn((mp) = f(p)\{n} fv((np) = fv(p)
fn(x) = fv(x) = x

The setdn(p) andbv(p) of bound namesandbound variablesare defined according
as usual.

We define capture-free substitution in usual manner, thouith the proper up-
date of type annotation.

Definition 2.2 (substitutions) We define the processq: fi/x] to be p with all free
occurrences ok replaced byg of typeri; where we have changed the annotations
of all sub-termsp[(r)]m in p to §[(r)musn, if and only if r contains a free occurrence
of x, and if necessargi-convertingp such that no free names and variableg ere
bound.

As mentioned in the beginning of this section, compared tGR84] we have
removed the process construcfor} p that extends the set of free names of a process
p with the (possibly idle) nameand instead added type annotations at every location
and send prefix.

Definition 2.3 (well-typed process)We define the valid typing judgements of the
form X+ p: Ainductive by the rules in Table 2.

From now on we will only consider well-typed processes. Nbt a procesg
is well-typed with respect to a finite set of variablesrid names, writtenXt p: f, if
and only if the free names (variables)pére included in the set (X), and for every
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sub-term$[(r)]s andq[x :=r : M in pwe have that can be typed with the type.~
We will say that the annotations in a processvaléd if for all sub-termsp[(r)]m it is
the case than D fn(r). We say that a process with no free variableddsed and let
7. denote the set of closed processes. We write, q, if p andq area-convertible
(both with respect to names and variables), weHgt (and %) denote the set of
a-equivalence classes of (closed) process expressionsi@odnsider processes up
to a-equivalence.

Notation. We omit trailing0s, and hence writainstead offt. 0. We writel- p: fi for
O+ p: A, and we let prefixing and restriction be right associatimel &ind stronger
than parallel composition, hence writing erg.p | (n)q| r instead of t. p) | ((n)q) |
r. For a set of names= {ny,...,ng} we let(fi)p denote(ny) - - - (k) p. We write rfifi
for mU A, always implicitly assumingn™ fi = 0.

2.2 Reaction Semantics

We provide Homer with a reaction semantics defined in thentibal Abstract Ma-
chine [BB90] style using structural congruence, evaluationtexts, and reaction
rules.

Definition 2.4 (contexts and congruencé context C is defined by taking the gram-
mar defined in Table 1 and augmenting the production of meegpressions to also
contain a special symbol callechale

Ci= ... | (9)a

and by requiring that the hole only occur once in the term. Wigogate the hole with
atype, meaning we can only place a process with tyipéothe hole(—)x. We write
C(p) for the insertion ofp into the hole of the context, assuming that the hole in
C is annotated with the type dand we havé- p: i. We extendn() to contexts by
fn(C) = fn(C(0)), and we extendlv() accordingly. For typing contexts, we add the
following rule to the typing rules of Table 2.

XF (—)ﬁ:ﬁ

A binary relation®_ on well-typed processes is called|-typed if and only if
it relates processgsandq with the same type (X), written Xt p R q: A. We will
only consider well-typed relations in this paper. A relati® is called acongruence
if and only if it is a well-typed equivalence relation andadtisfies thak™ p R q: fi
impliesX  C(p) R C(q) : i for all contextsC, where the hole is annotated with the
typeri and the type of the context .~

Structural congruence = is defined as the least congruence on well-typed pro-
cesses relatingF p=q: A, if Xk p: A, Xk q: A, andp = qcan be derived using
the rules in Table 3, as structural congruence does nottdffedyping of a process.
The first row of the equations express tli&t|,0) is a commutative monoid, the next
two rows enforce the rules of scope of name restriction.

13



[0=p (pPIP) P =pl(PIP) Ppla=dlp
p|a),if ngfn(q) . (n)p= ()Tt p, if n¢ (1)
mp=m(mp  (np=p, if ngfn(p)

—_

Table 3: Structural congruence

As Homer permits reactions arbitrarily deep in the locatimerarchy and also
permits reactions between a process and an arbitrarilylgeested sub-resource,
we define in Definition 2.5 the concepts of evaluation anthgantexts.

Definition 2.5 (evaluation contexts and path context&n evaluation context £ is a
context with no free variables and whose hole is not guargeaifirefix, nor does it
occur as the object of a send prefix. We define evaluationests by the following
grammar

E:=()a| E|lp| (NNE | O[E]x.p, forpe & .

We define a family of multi-hol@ath contexts Q‘ indexed by a path addregs A\*
and a set of namas ihductively inrfandy

= ()
i = S (=)t - (<,
whenevenmy= 0.

Remark. Note that the evaluation conteXt£] . p enables internal reactions of active
resources, and that for a path conté&t the path addressindicates the path under
which the first hole of the context is found, and the set of aarfindicates the bound

names of the hole. The side condition in the definition ohpadntexts ensures that
none of the names in the path address of the hole are bounchdlimel namesf)

in the definition of path contexts are needed since the strakbcongruence does not
permit vertical scope extension, as described in the intrtdn.

We handle the vertical scope extension and the update ofaypetations of a
location using ampen operator, defined on path contexts.

Definition 2.6 (open operator on path context$)/e define aropen operator on path
contextsri® ¢y inductively by:

mo@ = ¢
Mo ci® = &\ M(me A | (-)a)lhum- (v

if cg‘ylﬁz = 3[(f) (G2 | (=)i))s - (—)sv andrfin fig i mfn(cg‘ylﬁZ) —0.
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(send) +¥3(r)a-a| GM(3(X).p.B) \. a|fi® GN(plr : fi/x, ) : ¥
if MN(dURA) =0

(take)  + GBI B) [Y(X). p N\, (Anmm) (Ao GP(a, B) | pIr : /X)) : ¥
if MmN (dUfn(p)) =0

Table 4: Reaction rules for Homer

Intuitively, the open operator im® C{‘ removes the nameas ffom the bound
names of the hole and adds them to the type annotations aj¢h#dns that are part
of the address path. When applied in the reaction rule, ttterlaondition of the
open operator can always be metdiconversion, the condition ensures us that we
can extend the scope by using the open operator and placesthietion at top level,
without any name captures.

As for the structural congruence, we define the reacticaticah for Homer, writ-
ten\,, as the least well-typed binary relation between well-typeocesses satis-
fying the rules in Table 4 and closed under all evaluatiortexts £ and structural
congruence. The rules are essentially the reaction rulfid@B04] altered to use
type annotations instead of the free name constructor.

Remark. The (send) rule expresses how a passive resourée sent (down) to the
(sub) locationy, where it is received at the addre3snd is substituted in fox in

p, possibly in several copies, updating the type annotatiensecessary. The side
conditions ensure that the location path is not bound in threext and that no free
names ofr get bound during movement. Note that the open operator ognds
the type annotations of the locations constituting thetioogpath and does not lift
any restrictions, sincenifi = 0.

The gake) rule captures that a computing resourdg taken from the (sub) loca-
tiony, where it is running at the addre§sand is substituted in focin p, possibly in
several copies. Again, the side conditions ensure thabitaibn path is not bound
in the context, and that no free hame is bound, when we lifréils&iction. In this
rule it is possible that the open operator both lifts refisits and extends the type
annotation of the locations.

In both rules we use multi-hole path contexts. The kakbles in ak+ 1-hole
path context can be filled with an arbitrary process, wniths the vectop, since the
reaction rules only affect the first hole in the path conté&tie types ensure that no
names can disappear from the free names of a location, a sefix, pr from top-
level during reaction. However, note that locations or sprefixes in the process
that receives the moved resourcean get their type annotation extended by the type
of r that do not already appear in their annotation.
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2.3 Homer with explicit substitutions

In this subsection we present a variant of the Homer cal¢cohlied Homes, where
we have introduced explicit substitutions in the syntaeaad of the meta-notion
p[q: fi/x]. We augment the grammar of Homer presented in Table 1 withxlicé
syntactic substitutiop[x := q: fi], representing the procesges a context that can
substituteq (of type ) in for x. The typing rule for explicit substitution, defined
below, ensures thatis closed and that the free namesjadre contained im.”

Definition 2.7 (Homer with explicit substitutions)We augment the grammar in
Table 1 with an explicit substitution

p,g,r = ... | px:=q:f .
We augment Definition 2.1 of free names and variables aeviall

Free names Free Variables
fn(px:=q:fA]) = f(pui  f(px:=q:f)) = (fv(p)\{x})ufva)

For the typing judgementt- p : fiwe add the following rule

XXEp:i Fg:m
XEpx:=q:m:AuUm .

We let Po. denote the set of closed Hongeprocesses and le®o 4 (and Pocq)
denote the set af-equivalence classes of (closed) Homprocess expressions, and
again we consider processes umtequivalence.

Remark. Note that the explicit substitutiop{x :=r : fi] bindsxin p. We let prefixing
and restriction be right associative and bind stronger #eplicit substitution and
let explicit substitution bind stronger than parallel camgjlion hence writing e.g.
L. p[x:=r: fi] instead of(Tt. p)[x:=r : fi.

Definition 2.8 (contexts, structural congruence, and evaluation cosltefe define
contexts for Homes by augmenting the grammar of Definition 2.7 with a hole

Ci= ... | (9)a

and by requiring that it only appear once in the entire termfdx Homer we require
that only processes of typedre placed into the hole-)5. We define structural
congruence=q for Homeio by extending the rules of Table 3 with the following
rule

(n)(p[x:=r:f))=¢ (N)p[x:=r:f], ifngf .

One might expect a rule stating that we can move restrictiateuthe object of
an explicit substitution as

(n)(p[x:=r:A]) =¢ px:=(N)r:A\{n}], if ngn(p) .

16



(sendo)  FYB(N)a.q| GPB(X). p.B) \o al e GN(plx:=r: A, p) : 7
if MN(dURA) =0

(takeo)  + GM(3lr]a. 0, B) [ VB(X). P\ (RNM) (G GM(q, B) | pix:=r :A]) 1/
if MmN (dUfn(p)) =0

(applyo) FCX)x:=r:fA \gAo C(r)x:=r:f:f ,
if C does not binc or the names im ~

(garbageo) F p[x:=q:f] \gp:f , wherex ¢ fv(p)

Table 5: Reaction rules for Honer

But for the same reasons as mentioned in the introductienishinot sound. The
definition of evaluation contexts and path contexts reméie same for Homeras
for Homer, and hence the open operator remains unchangedhétiedefine the
reaction relation\,; for Homew as the least binary well-typed relation d@to.
satisfying the rules in Table 5 and closed under evaluat@mrexts and structural
congruencesg.

Remark. Compared to Table 4 we have made the following changes taetiation
relation. We have added a syntactic explicit substitupba:=r : fi] instead of the
substitutionp|r : fi/x], and we have added rules for applying and garbage collecting
an explicit substitution. The rulesdghdo) and takeo) mimic the rules ¢end) and
(take) of Homer, respectively. The only difference is that we heyydaced the sub-
stitution pr : fi/x] with p[x:=r : fi]. The rule épplyo) replaces one occurrence of
the variable (arbitrarily deep in the context) with the amttof the explicit substi-
tution. Note that we have overloaded the useoofince we in épplyo) apply the
operator to a general context and not only a path context.edewthe result of the
operator is the same, it extends the type annotations ofi@lldcations (and send
prefix) containing this occurrence of the variable. Thedatondition of the rule
can always be satisfied usingconversion of the context. Thedrbageo) rule is
responsible for garbage collecting superfluous subsiitsti

2.4 Connection between the two variants

In this subsection we relate the two presented variants ohétaalculus: Homer
and Homeo. We will in the following subsection sometimes use a Homercpss
to denote the Homer process with the same syntax, as the set of expressions of
Homer, %4, is a subset of the set of process expressions of Hop®a,  (i.€. the
subset of Homer processes that has no sub-terms of the fpf=r : fi)).

For one direction in the correspondence we use that an éqllestitutionp[x:=
r : fi can react (in Homer) to become the process that arises from the meta-notation

17



p[r : fi/X] by utilising the reaction rulesapplyc) and @arbageo).

Proposition 2.9. If p and r are Homer processes and r is closed, thent p[x:=r:
Al s p[r: A/x : A
Lemma 2.10.If - p\,q: fithenF p\ 5 q:f.

Proof. There are only two rules for inferring a reaction in Homesend) and take).
In both cases the result follows by choosing the matching iiHomeo ((sendo)
or (takeo)) and applying Proposition 2.9. O

For the other direction in the correspondence we need thenfiig function
app: POc/q — Poja s (16)

which takes a Homer processp and applies and garbage collects all the explicit
substitutions imp. Note that the crucial property @pp is the following

app(p[x:=r: ) = app(p[r : A/X]) .

We also need the following proposition stating that the figrcapp preserves re-
dexes for the rulesséndo) and takeo).

Proposition 2.11. Assume that p isa Homero process and it contains a (sendo) or
a (takeo) redex, then the Homer process app(p) also have this redex.

Proposition 2.12.If - p\; q: Aithenapp(p) = app(q) : fior - app(p) \. app(q) :
fi.

Proof. We consider each of the four rules defining; in turn.

e (sendo) Assume that p\ q: fibecause of theséndo) rule, thenr- app(p) \,
app(q) : A using the gend) rule, since we know from Proposition 2.11 ttagp
preserves the redex and since the rulesdo) and &end) only differ in the
substitution anépp gives the same result on this.

o (takeo) Similar to the case forséndo).

e (applyo) Assume that- p \, g: fi because of theapplyo) rule, thent
app(p) = app(q) : A, as the only difference betwe@randgq is that we have ap-
plied one of the explicit substitutions to one occurrencthefbound variable,
and sinceapp will apply and garbage collect all the explicit substitutso

e (garbageo) Assume that p \; q: fi because of thegérbageo) rule, then-
app(p) = app(q) : A, as the explicit substitution garbage collecteddsrbageo)
is also garbage collected laypp. O
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3 Bigraphical Semantics of Homeo

In this section we give the bigraphical presentation of Hanaes the bigraphical re-
active system” Homer First, we present the signature for” Hormgand give a fully
compositional translation of Hometerms into bigraphs. Second, we translate the
path contexts and the reaction relatisg; . An important criteria for the presenta-
tion is to show that there is a static and operational comedpnce between Honeer
and its presentation as a bigraphical reactive system, img#rat structural congru-
ence of Homer corresponds to graph isomorphism in the bigraphical pitesiemn,
and that reactions match.

Intuitively, we define a signature which has one controldach syntactic con-
structor in the Homes-terms, and use local links and nesting of controls to repres
the structure of the abstract syntax tree of a given Hamterm. We have chosen to
represent the path addresses of the respective prefixesnét port for each element
in the sequence. Hence, for each kind of prefix we have anitaffamily of controls
indexed by the length of the address. To avoid this infinitenber of controls, we
could represent the sequences of names as nested nodestairmldad of control,
each with one port connected to an outer name and let nestihg modes express
the sequencing, but to keep the presentation succinct we ¢feasen to elide this
option.

The signature has controlece andtake representing the two input prefixes,
andsend andloca representing the two kinds (passive and active) of locaged r
sources. We useesi (shorthand foresidual) to hinder reactions behind prefixes.
Controlsvar, sub, anddef represent a variable and the constructs for explicit sub-
stitutions, respectively. Finally, the signature also ¢@strolstname (abbreviation
for typename) andann (abbreviation forannotation) to represent the explicit
type annotation of resource and send prefixes. We will disahis in more detall
after having presented the reaction rules in the bigrapfiamework. In total, the
signature for" Homer is defined as follows.

Definition 3.1 ( Home signature) The signature for’ Homerhas an infinite num-
ber of controls.

e The controlsrar: 0 — 1 andtname: 0 — 1 are atomic

e The families of controlsrece5: 1 — |9, takej5: 1 — ||, andsend5: 0 —
|8] are all inactive

e The family of controldocays: 0 — |8] is active

e The controlgesi: 0 — 0,def: 0 — 1, sub:1 — 0, andann: 0 — 0 are inac-
tive

Remark. Note that we cannot represent restriction using an enajasintrol, since

this would break the static correspondence, as stated iar€he3.7. For instance the
rule (n)(m)p =¢ (m)(n)p would be problematic, since the place graph is defined as a
forest. We will examine this and an alternative definitidmastriction in Section 4.2.
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Figure 2: lons and atoms for” Honwer

For the same reasons, we do not introduce a control repiegehe inactive process
0 as the rulep | 0 =¢ p would also break the static correspondence.

Notation. In Figure 2 we depict the ions and the atoms used in the trigmslan
Definition 3.4. As usual we do not depict the arbitrary narties can be exported
from the ions, we have also chosen to depict the contraine as just a dot®, in
order to be able to distinguish graphically betwéeame andvar controls.

Following the convention of Milner [Mil04c], we writeary andtnamey, for the
atoms, and we denote the ions as follows

sub ©idz defy @idz resi @idz ann @ idz

reces) @ idz takesy) @ idz sends @ idz locas @ idz

using the® operator defined in Definition 3.2 below. Following the eention of
[Mil04c], we write the binding port names in parenthesis &asd.

We need to introduce a variant of the extension operatoraa leigraphs in order
to translate Homer-terms into bigraphs directly. The idea behind the extamsio
operator, denoted, of [Mil04b] is that we can allow for a parameter to have more
names than expected by a context, thus extending the inceepfahe context. The
insertion of the parameter into the context should then énslime sense extend the
outer face of the context.

The problem with the extension operator, for our usage,asiths only defined
for G @ w, if the names in the outer and inner face of the bigrgdnd the wiringw
are disjoint (ands andw have equal width). However, in our presentation we need
to be able to express an operation likebut where the outer faces can share names.
To this end we define a derived operator, writtenbased on the extension operator.
We first define shared extension of outer interfaces, ard tthared extension of
bigraphs.
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Definition 3.2 (Shared extension)or two interfaces = (m,loc, X) andJ = (m,loc, X}
of equal width, we define their shared extensidm; J as

zy ¥ (m,Jloculoc, XUX’) .

Given a bigraphG : | — J and a wiringw : 1" — J' of equal width and disjoint
supports, wherd = (m loc,X & X") andJ’ = (m,loc’, X' & X"), and arenaming’
a: X" — X", whereX” N(XuUX’) =0, thenifl @ 1’is defined, theshared extension
of G by wis defined as

GTw: ol -3FY € aloGa(adidy)ow)

wherea~1 is defined as the inverse of extended with the identities o, X', and
X",

So we define shared extension by first mapping one part o$liaged names to
a disjoint set of names, perform the extension, and then pieteel join the shared
names with a substitution. The following proposition stdteat we can always find
a bijective linking, so that shared extension is defined.

Proposition 3.3. Given a bigraph G : | — J awiring w: I’ — J' satisfying the re-
quirements of Definition 3.2, we can always find a renaming a also satisfying the
requirements of Definition 3.2.

We will only use a simple instance of tleoperator in the presentation, since we
only need to extend a bigraph (of inner and outer width 1) \aithdentity wiring,
hereby extending the inner and outer face of the bigraph.tkegionsends & idz
hasZ as inner names ardlu d as outer names.

3.1 The Translation

We have a fully compositional translation from Horag¢o bigraphs. The translation
is defined inductively in the typing derivation of a proce§she reason for this is
that we need the typings for propagating the relevant lindgsresenting names and
variables, throughout the entire bigraph. As in the presi#on in Section 2 we let

m andn range over Homer names, @trange over non-empty sequences of Homer
names, and let andy range over Homer variables. We will follow the convention
and writerr @ X for the bigraph with unit inner face amfS X outer face.

Definition 3.4 (Translation of Homes-terms into bigraphs)We define the transla-
tion of a well-typed Homeg-term p into a bigraph inductively in the inference of

1a bijective substitution.
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XEp:A

[X+0:A] =A®X

[X+plq: U] =[x p:f] | [XFq:fie]

[K+ (n)p:A] = /no([XF p:An])

[Rx Fx: /] =vary @i® X
[XEpx:=r:/]:AUF] = (suby @ idgum ) ([Rx - p: A] |

(defxy @ idw)([Fr: /] | (ann & idg)[/]))

[XE3[r]w .p: FUAUN(S)] = (locas @ idauwx)([XEr: /]
((ann @ |dn/)[[”]}) | (resi @idag)[XF p: i)

[RF3(r)w . p: W UAUM(E)] = (sends @ ida ) ([KHr:{] |
((@ann @ idy)[A]) | (resi @ idag)[X+ p:f])

[XF3(x).p:AU(d)] = (recegy © idsg)[}x - p: A

p
[%F3(x). p:AUM(3)] = (takegy) @ idag)[Rx+ p: ]

and we translate the type annotations as follows

[A] = | tnamey .
nen
Remark. We represent the inactive proce®ss an empty bigraph with the correct
outer face. The parallel composition of Horaés represented using the correspond-
ing operator in bigraphs, prime product. We use a clogaravhich closes the open
link n, to represent the restriction of the nameA variable is represented as a node
of controlvar which is connect to the name which is disjoint from the set.”

We represent the explicit substitutions in Homén the same way as [Mil04c].
However, note that the contrdef is inactive, since otherwise we could have reac-
tions under prefix, and that we have augmented the explibisttution with a type
annotation. The translation also ensures that the namalisjoint from the sek ~
containing the set of free variables.

The first two prefixesd[r}s. p and 8(r)s . p are represented by a node of the
matching control (indexed by the length &f containing the representation of the
object of the prefix and the residual process enclosed inde rad controlresi.
We use the contralesi to ensure that the residual processes after a prefix cannot
make reactions. Actually, the control is superfluous in #y@esentation of the send
prefix, since the contradend itself is inactive, but we have kept it to emphasise the
connection between the two prefix&s); andd(r)s.

We have chosen to represent the type annotations as a setrae nodes en-
closed by a node of contr@nn. The last two prefixes(x). p and3(x) . p are
represented straightforwardly by a node of the respectivérol, where the variable
xis bound in the enclosed representatiompoAs for the representation of the expli-
cit substitution we require thatandxare disjoint. Finally note that we have decided
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Figure 3: Example on translation of the terr | r') . p| nN(X) . xinto a bigraph

to used throughout the translation, even though we often compag@phs where
the names are disjoint.

Example (translation of Homes-terms) As an example on the translation from
Homelo-terms to bigraphs, we depict in Figure 3 the result of thedlation of
n(r [1')fmy - PIN(X) . %, where we for clarity have chosen not to draw the free names

of p.

When presenting a calculi as a bigraphical reactive systerwauld like for the
property that structural congruence of the calculi corogg}fs to graph isomorphism
in the bigraphical representation.

Lemma 3.5. X p=¢ q: fiimplies [X+ p: fi] = [XFq: f].

Proof. Since the translation is compositional we can consider @ithe axioms
defining=, separately. We only present some of the cases

e Each of the axioms
KFp|0=gp:A XF(p|P)| P =p|(P|p):A X-pla=sq]|p:f

follows directly from the translation, since we translatradlel composition
in Homeo as the prime product in bigraphg, ‘which can be shown to be
associative and commutative, and as we tran§latéo the unit for|.

e To prove the case for the axiom for reordering of restriction
Xt (n(mp=(m)(n)p:fi
we show that the two bigrapHf&+ (n)(m)p: i and[X+ (m)(n)p: fi] can be

constructed in the same manner (we assumeatfaatdn are distinct names of
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p). We construcfX+ p: inm] and add two edges to its link gragh ande;,
and make all points ah (n) point toey, (e,). Finally we remove the names
andn.

e The axiom for scope extension

X (mpla=c (n)(p|a):f, if n¢fn(q)

can be proven in the same way. We construct the bigrdhsn)p | g: fi]

and [X+ (n)(p|q): fi] in the following way. Without loss of generality we
assume tham = iy Uiy, whereninX andr>X are the names in the outer face
of [+ p: fitn] and[X+ q: fix], respectively. First we buil@&+ p: fiyn] and

[XF g: fiz], and then we combine them using the prime product, add ore edg
e, to the link graph of this bigraph, and make all points of thenea point to

en. Sincen ¢ fn(q) we only touch points ifX+ p: fiyn]. Finally we remove
the namen.

e For the remaining cases we proceed in the same manner byitexdnio con-
structing that forms both bigraphs. O

Proposition 3.6. If [X+ p: fi] = gand [XI- q: fi] = ¢ and g and ¢ are isomorphic,
thenX- p=5q: Q.

Theorem 3.7 (Static correspondenceX - p = q: i if and only if [X+ p: fi] =
[+ p:A].

3.2 Representing Path Contexts and the Open Operation

In order to present the reaction rules of Homeave need to be able to represent
the path contexts and the open operation. In this subsestodescribe how we
translate the path contexts defined in Section 2.5. We dmeetl to represent the
evaluation contexts of Homer since these are inherent in the bigraphical setting,
due to the specification of controls as being either activieactive.

Definition 3.8 (path bigraphs) We define the translation of a path conte?tinto

a bigraph of a certain form, calledpath bigraph, inductively in the structure Otf\?
(using Definition 2.5)

IF@:-®] = idg

[F com:Af'] (locas @ idgy ) (/fio ([ G /] | ids) |
((ann & idgy)[M]) | (resi & idpy))

if Ci™ = &[(A) (G| (=) )]s - (—)av- We letF, F’ range over path bigraphs. And as
for Homeio we will sometimes use subscript to denote the address ofdleeand
superscript to denote the bound names of the hole.

We also define an operation equivalent to the open openmatdomen.
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Definition 3.9 (open operator on bigraphsyVe define anopen operator on path
bigraphsniop F, extending the type annotations with ~

MOpidgyr = dmwum

MosF = (locas® idem)(/(\ M) (Mep[- G ) [idy) |
((ann @ idgy m) [MUM]) | (resi @ idpy))

if F = (locas@idgay)(/fio ([ QM W] |idw) | (ann @id ) [AT]) | (resi Didgy) -

Remark. We cannot just juxtaposition the type annotationgfédp | [1], since we
represent the individual elements of a type annotationieifglwith one node per
element in the annotation, since this would result in ourcdations being multisets
rather than sets. E.§tV'] | [mM] = [ UM] does not hold in general. So instead we
only add the elements im that are not already present in the type annotation.

3.3 A Simple Sorting on Homero

In this subsection we present a simple sorting to ensureviiradbnly work with
a subset of ground bigraphs, that is the bigraphs that aree'c with respect to
our presentation of Homer The sorting introduces a requirement on the possible
nesting of nodes and on how the linkage is performed, pdatiguthat the sets of
free names and variables are kept disjoint.

But before stating the definition of the class of bigraphet tive are interested
in we need some nomenclature to differentiate the diffekerds of links and ports.
We have two kinds of ports: name- and variable-ports.

e Thename-portsare either the single port ontaame node or all the free ports
of arece, take, send, or aloca node.

e Thevariable-portsare the free port of def node or avar node or the binding
port of asub, rece, or atake node.

In the same way we define two kinds of links:
e A name-linkis a link with only name-ports, and if free a name.

e A variable-link is a link with only variable-ports connected to it, and ifdra
variable name.

Definition 3.10 (bigraphs good for Homei). We define a sub-clas$ of ground
bigraphs in” Homaes as the bigraphs that satisfy the following requirements

e We only allow name- and variable-links as links in the bidrap
e A variable-link can be connected to any numbevaf-ports.

— If a variable-link is bound by either sece-or atake-port, then it con-
tains nodef-ports.
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— If a variable-link is bound by a port on sub-nodev, then it also has
onedef-port, which resides on a child of and this is the only location
where adef node can occur.

e A name-link can be connected to any number of name-ports.

e For every pair of distinctname nodes enclosed in the sarmen node their
name-ports must be connected to distinct links.

e Everyloca, send, anddef node must contain a uniquen child node.
FurthermoreJoca andsend nodes must contain a uniquesi child node.
And these are the only locations whenen andresi nodes can occur.

e All tname nodes must be inann node and no other kind of nodes can reside
here.

e For every outer name of the parameter dfoga, send, or asub node a
tname node must exist that points to this name.

Remark. We have introduced all the abovementioned restrictionsiforee that we
only work with bigraphs, that have a structure correspogdonhow we interpret
Homeo in bigraphs. In Homer the sets of names and variables are by definition
disjoint, but since we use the links of bigraphs to reprebeit sets, we need some
additional requirements to enforce this distinction indgrof links.

The requirements enforce thal@a node and asend node contains unique
resi andann nodes. We also require thdef can only appear as a child ofsaib
node. Finally, we require that theame nodes representing a type annotation only
occur in aann node, that they are unique in the sense that they all areditdke
different name-links, and that they contain all free nanfeabh®@ parameter.

Proposition 3.11(invariant) The class of bigraphs I is preserved by the reaction
relation — defined in Section 3.4 and contains all images of the trandation given in
Definition 3.4.

3.4 Reaction rules ofHomero

In this subsection we present the reaction rules of"Haméis mentioned in Sec-
tion 1 we have chosen to present the rules using a term laegnatead of the
graphical representation, due to the complexities of thesru

Definition 3.12 (reaction rules of " Homex). We depict the reaction rules of Honger
in Table 6 (the send and take rules) and Table 7 (applying artshge collecting the
substitution).

Remark. In all the rules we have chosen to enumerate the holes frdrtolefjht in

the terms representing the bigraphs, but omitting thekdstles in thek + 1-hole
path contextsy, andF" on which the instantiation acts as the identity. In both the
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R

Send| (sendys ® idy)(ids | (ann @ idg) | (resi D idy)) | Fyo (recesy ® idy)

R

idy [ (Mo Fy) o (SUb @ idy) (i | (defx @ ida)(ids | (ann & ida)))

f

{0—21—-32—03—1}

R

Take | F"o (locas @ idw)(ids | (ann @ idy) | (resi @ idy)) | (takeysy @ idsy)

R

/(Ao (Aop R oidy) |
(Sub T idy)(iduy | (defx T ids)(ids | (ann Tids)))

f

{0—2,1—3,2—0,3— 1}

Table 6: Reaction rules of " Hom&rsend and take

R
Apply | (subyy @idy)(Covary| (defx @ idg)(ids | (ann @ idg)))
R
(subyy @ idy)(AGp Coidg | (defx @ ida)(ids | (ann @ ida)))
f
{0,1— 0,2+~ 1}
| R | R f

Garbage| (suby & idy)(idy | (defx @ idn)) | ids

{0~ 0}

Table 7: Reaction rules of Hommrapply and garbage collecting
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rules Send and Take the path bigrdftdoes not bind the names & In both rules
the content of thann node is used in the open operator, that is thens8oth rules
mimic their counterparts in Homerclosely. In the rule Apply we utilise a general
homer contextC satisfying the sorting requirement and which does not ctbse
variable-linkx. The reaction rule Garbage, which discards the explicisstuiion,

is defined as foXBIG in [Mil04c].

As mentioned in Section 1 we have explicitly typed the hotethie rules and
furthermore defined instantiation and parametric reactides such that we do not
allow parameters to contain outer names not mentionedattplin the rules. We
have done this to ensure that the scope of a restriction ififteat as part of fitting
a parameter to a parametric reaction rule. For instancegifoek at the last part of
the Apply rule, concerning theéef node in the explicit substitution

(defy T ids)(ids | (ann Tidy))

then we explicitly state that the names of the process in tibstgution and the
names of the annotation must be the sam&a’it is not possible to lift a restriction
from the process, since this would break this corresponeléine will return to this

subject in Section 4.2.

The rules Send and Take in Table 6 differ from the usual sjpatibn of bigraph-
ical parametric reaction rules. In addition to the usuabpagters the rules are also
parametrised ovgath contexts, as in place of, and Fym, respectively. In Figure 4
we have sketched the reaction rule Send in order to illuestitais point (we have
elided to draw the free names of the sites). In the figure wesldzawn the path
contextF, as a site containing a bigraph representing the receivéxpi@b in order
to utilise this reaction rule we need to both instantiategheameters and the path
context.

There are two reasons why we cannot uséde reaction rule, as Milner [MilO4c],
between two complementary prefixes (e.g. the send andvepegfix) to specify the
reaction. First and foremost, we need some special striotuthe context surround-
ing the receive prefix, it cannot just be an arbitrary contes it constitutes part of
the address path of the receive prefix. In Figure 4 the patiiesF, specifies that
the nested location structure of the path context conetttite address payh Sec-
ond, the context surrounding the receive prefix can be chamy the reaction rule,
due to the update of the type annotations, hence it cannat besduation context as
evaluation contexts remain fixed under reaction.

One can consider the parametrisation on path bigraphs irsémel and Take
reaction rule as a kind of higher-order operator, which asta function on bigraphs,
taking a bigraph as argument and returning a new bigraph.edewonly a subset
of bigraphs (the path bigraphs) are valid arguments.

Example (Mimicking reactions) We consider the reaction

on(r | t')imy - P|oln(X) . Xm N\ PO | F']fnm
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Figure 4: Sketch of the rule Send

in Homer and show how the variant Hongeand its presentation as a bigraphical
reactive system mimics this reaction. Note that we havetethihe top-level type.
The prefixon(r | 1)y sends down the proces$r’ to the receiving proces¥x) . x
residing at locatiom and as a side-effect updates the type annotation of thedocat
In Homeo we have the following sequence of reactions

on(r [ 1) my - P| o[N(X) - X (n) \o
ploxx:=(r[r) :{m}H]mm \o
plof(rr)px:=(r|r): {mHlinm o
plofr| I'/]{n,m}

using the rulessendo, applya, andgarbageo. Inthe second line we have the location
0 containing the process varialiteenclosed in an explicit substitution, which can
substituter | r’ of type{m} in for x.

In bigraphs we have the matching sequence of reactions tedpit Figure 5.
Note that we have chosen not to draw the free nam@saoid the possible free name
mof r andr’.

3.5 Correspondence

In this subsection we present the operational correspaedeetween Homerand
its presentation as a bigraphical reactive system”Homée prove the operational
correspondence by considering the individual rules cartsig the reaction rela-
tions™; and— . By inspecting the translation we can see that evaluatiotesds

in Homewo are translated to active contexts, and conversely if thgenader the
translation is an active context then the preimage must baga an evaluation con-
text. We follow the same method as Jensen and Milner by firatacterising the
reactions in both Homerand "Homeo by the forms of the expressions involved.
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Then we use the definition of the translation to connect theracterisations. We

only present two of the casegafbageo) and &endo) the remaining two are similar.
Proposition 3.13 and Proposition 3.14 characterise thetimrarelations\, ; and

— (for the rules ¢arbagec) and Garbage, respectively) in terms of the form of the

processes and bigraphs.

Proposition 3.13. F p \ P : fi by the rule (garbageo) if and only if p and p’ are
of the forms
Fp =¢ E(Qx:=r:i]):n

Fp =5 E():f,
if x ¢ fv(q) for some evaluation context £ and closed processesqand r.

Proposition 3.14. g — ¢ by therule Garbageif and only if g and ¢’ are of the forms

g Eo((sub @idn)(h| (defx & idw)h))
g = Eoh,

for some bigraphs h and i with outer face fi and /', respectively, and an active
context E.

Lemma 3.15(operational correspondence a@albagec) and Garbage)

F p\ P :fibytherule (garbageo) and [ p' : fi] = sif and only if [~ p: fi] — s
by the rule Garbage.
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Proof. From Proposition 3.13 we know thatp \ p’ : fi if and only if p and p’
have the forms

Fp =6 E(@QX:=r:f]):f
F p/ =0 ‘Z(q) : ﬁ )
for some evaluation conte#, closed processepandr, and wherex ¢ fv(q). From
a-conversion we can assume that all bound names are distidictlisjoint from
the free names, and without loss of generality that the hDIE @& annotated with

the typen”. From the correspondence between structural congruentey@ph
isomorphism (Theorem 3.7) and Definition 3.4 (17) holdsiflanly if

(17)

[Fp:f] = [FEZ:f]o([Fax=r:/]:/"]) B
= [[l— E: ﬁﬂ o ((sub(x) D idﬁ")([['_ q: ﬁ”]] | (defx S2) |dﬁ/)(h/)))
[Fr:fl = [FE:fe(f-q: /) ,

sincex ¢ fv(q) and lettingh’ = [-r : /] | (ann @ idg)[']. By Proposition 3.14,
takingh = [F g: fi"], this holds if and only iff p: i] — [ p : fi] by the rule Gar-
bage. O

We proceed in the same manner with the casedardg). Proposition 3.16 and
Proposition 3.17 characterise the reaction relatiggsand— (for the rules ¢endo)
and Send, respectively) in terms of the form of the procearsdsigraphs.

Proposition 3.16.+ p\, p' : fi by therule (sendo) if and only if pand p’ are of the
forms

Fp =¢ EN()w.q| GNO(X).q,d)):f
Fp o= E@|FoqNdx:=r:/],q):f,

if MmN (85U A) = 0 for some evaluation context £, path context C!7, closed processes
r, g, and d, and some process g where fv(q/) C {x}.

Proposition 3.17. g — ¢ by therule Send if and only if g and ¢’ are of the forms

g = Eo((sendps@idy)(h|(ann @idy) | (resi ®idw)h’) |
Fyo ((rece5(x) &) idﬁ///)hlu))
Eo (| (W OpFy) o (suby & idgn)(
W | (defy @ idw)(h| (ann @ idw)N))) ,

g/

for some bigraphs h and i with outer face i, h" with outer face ii”, and b’ with
outer face i, and an active context E with inner face fi”, and a path bigraph F, with
inner face i

Note that we leave the laktholes in thek+ 1-hole path contex, unspecified,
as the content of these holes remains fixed under the reactie.

Lemma 3.18(operational correspondence aer{do) and Send) - p N\, p’: fi by
therule (sendo) and [~ p’ : fi] = sif and only if [ p: fi] — sby therule Send.
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Proof. From Proposition 3.16 we know thatp \ p’ : fi if and only if p and p’
have the forms

Fp o= EW(Mw-q|GG(X).q,d)):fi
Fp = E@Q|FoNdx:=r:/],d):f,

for some evaluation context, path contextf‘, closed processes g, andd, and
some procesg wherefv(d') C {x}, and wheremn (3Ufi) = 0. Froma-conversion
we can assume that all bound names are distinct and disjoimt the free names,
and without loss of generality that the hole Bfis annotated witm®. From the
correspondence between structural congruence and gramploiphism we have

[Fp:f] = [-E:A]o([Fya(r)w.al G3(X).q.d): ')
= [FE:f]o((sendys @idg)([-r: AT | ((@ann @ idgy)[F]) |
(resi @idw)[Fq: ")) | [- G : '] o (recesy @ idyr) [{x} Fd - {7"])

[Fp:f] = [FE:Ao([-q|foddXx:= riv],g) i’
= [FE:Affo([Fa:A"]|(Fop[- G)o (suby & idgr)
({x} = o - @] | (defx @ idw ) ([Fr: @] | (ann ©idy)[{])))

By Proposition 3.17 this holds if and only[if- p: fi] — [ p’: fi] by the rule Send.
([l

Theorem 3.19(Operational Correspondenceijor every well-typed processt p: fi,
we have

Fp\g P :fiand [ p':f] =sifandonlyif [ p:fA] —»s .

4 Extensions and ldeas

In this section we present some of the thoughts and ideah#vat arisen during
the work on this paper. We describe two orthogonal direstioone is a possible
change to the definition of local bigraphs, called localiaks, that would simplify
the presentation presented in this paper by facilitatingléernative representation
of type annotations. The other address the location of a&dltiek arising from the
closure operator used to represent the restriction coctsirin Homeo, and how
our type annotations affects this location.

4.1 Localised Links

In the presentation of Homein Section 3 we utilised the dotgthe nodes of control
tname) to represent the type annotations of location and sendxpsef Since the
type annotations in Homerare sets we needed a way to associate an arbitrary num-
ber of links (or name$)to a node in aminordered way. We chose the same solution

2Throughout this section we will use the words ‘links’ andrmes’ interchangeably, as the extension
affects both kinds of entities.
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ann

Figure 6: Original representation and using localiseddink

as presented in the presentation of “The Game of Life” in [BP0n the left-hand
side of Figure 6 we have sketched a situation where we haval8snepresenting
arbitrary Homeo-prefixes, and where we would like to associate the namveith

all three nodes and the namenly with the two rightmost nodes. The solution used
in this paper is to introduce aann node as a child of the node and let it contain one
tname node per name that we want to associate with the grand-paogiet The
single port on théname nodes are then linked to the names. Using this method we
can associate an arbitrary number of names to a nodeunadered way.

A desired solution would be, to be able to associate a nameettiirto a node
instead of a port on the node, hence to be able to associatesrtana node in an
unordered way, as illustrated on the right-hand side of Figure 6. Sam@esnand
non the right-hand side of Figure 6 amet connected to any ports on the three nodes,
but directly to the nodes. In this section we will briefly erpaon this possibility,
which we will call localised links. A direct consequence of this extension will be
that we can remove the contrdlsame andann from the presentation and instead
represent the type annotations directly using localisekisli In Figure 7 we have
illustrated the final result in Figure 5, the procgs$o[r | '], my, using localised
links. Note that the name is connected to the only port on theca node, and
the namesnandn are connected to tHeca node. We will expand on an additional
advantage of localised links in Section 4.2 in connectiahie location of a closed
link.

Recall that for a local bigraph we require that both its if#tees are local, mean-
ing that all names in the interface are given one (or more}gdan the interface.
However contrary to the way we define the association batweenes and nodes,
we define the association between names and places in dréac# in an unordered
way. Note that we do not propose localised links as a replaogfor traditional
links, but rather as an addition to these, as we in most ptaiens need the order-
ing of ports. Note that a link can both be a traditional linidanlocalised link at the
same time. In the presentationmafp];y, using localised links the nanmewill both
be used as a traditional link, to represent the name of thatitot, and as a localised
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link, to represent the type annotati¢m} of the location.

Formally, we suggest to introduce a new function to the diédim of a local
bigraph. For a local bigrapf : <m,>?) — <n,\7> with the set of edgek and the
set of node¥/, we let the functioriocalise map edges and outer names to a set of
locations,localise: EwWY — P(V), where we letP(V) denote the powerset of the
set of nodes. We require that this map satisfies a scopinditom as for traditional
links, meaning that for an outer namé is only mapped to nodes that are located in
regions, where the name is also located. We define the catigposf two bigraphs

F:(mX)— (nY)  with nodesV, edgesE, and functioriocalise
and
G:(I,Z) — (mX)  with nodesV’, edge<E’, and functioriocalise
as usual for local bigraphs. The localisation function
localise’ : EWE' WY — P(V)wP(V')

for F o Gis defined as follows (using the link malpnk, of F)

localise (x) if xe E',
localise(X) Wy ex andlink(x)=xl0calisg (X') if xe EWY ,

localisg’ (x) = {

So the locations of an edge i remain unchanged by the composition, whereas for
a name inY or an edge irE we might need to combine the locationdofalise and
localisg, if a name inX links to the name or edge, respectively.

4.2 The Location of Restriction

As mentioned in the introduction we have to be careful whenlmaing local names
and non-linear process passing. Since the two processes

(n)mP] and m[(n)P] (assumingn # m) (18)
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Figure 8: Location of a restriction

are not structural congruent in general, they should nat gse to isomorphic bi-

graphs under the translation defined in Section 3.1. If wesaer our presentation
without type annotations then the two processes in (18)gaik rise to isomorphic

bigraphs, since we have no means to detect whether the elosaur outside or in-

side the location, as illustrated in the left part in Figur@g8te that we have ignored
the residual process after the location prefix and the naitteedocation).

Recall that we have decided to use closumén bigraphs to represent the restric-
tion constructor in Homer. In bigraphical reactive systems which copy parameters
this can lead to the same kind of problems as mentioned imthediuction. In the
right-hand part in Figure 8 we have illustrated how the typaaations helps us in
distinguishing the two bigraphs. If the restricted nameesp in the type annota-
tion then the closure must be outside the location and evaguy of the parameter
will share this link. On the other hand, if the restricted matdoes not appear in the
type annotation then the closure must be inside the locatimhevery copy of the
parameter will have a distinct link.

Even though the type annotations solve the problem in djstghing the repre-
sentations of the Homemprocesses in (18), the solution does not, however, exactly
match our intuition about where the closure resides. Wetilate this in Figure 9,
where the two bigraphs both represent the pro¢egs[P|s, under the translation.
The problem with our representation of type annotationkas the annotations are
located inside théoca node and not on the “border” or outside of the node as in
Homew. So we cannot ensure that the closure remains outside tliebof the
loca node. Note that in our syntactic term language represemtati bigraphs is
not possible to express the bigraph on the right-hand sidkégoire 9, as this would
imply that a restrictiorinside a location can bind the names in the type annotation,
hence breaking the lexical scoping of restriction.

This ambiguity does not, however, affect the reaction iefedf Homeo as our
reaction rules, presented in Definition 3.12, are explidigped and since we define
instantiation without forcing the parameters on discreiemal form. In particular
the explicitly typing of holes in the reaction rules invaig type annotations (Send,
Take, and Apply) forces the hole of the resource to have theeset of free names
as the hole of the type annotation. Since we at the same tifireedastantiation
where the parameter has no superfluous outer names, we aane énat if the re-
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Figure 9: Ambiguousness of the location of a restriction

stricted name appears in the type annotation (meaningtibatstriction is outside
the node) then every copy of the parameter will share this I{bn the other hand,
if the restricted name does not appear in the type annotttemevery copy of the
parameter will have a distinct link.

An immediate suggestion for an alternative to the type aatrats is to represent
name closures explicitly as a control with a binding port.wéwer, then the usual
scope condition would require the place with the binding pothe representation of
(n) p to bearound the proces, which would break the usual structural congruence
equalities such as

(M(mp=c (M) and (n)p|g=c(n)(p|aq), forngfn(q).  (19)

Recently Jensen and Milner have proposed a solution to tine gsoblem of
copying parameters with closed links unambiguously. Inrteelution they make
use of an atomices node for the restriction with a new kind ofutward-binding
port. The sole purpose of thres node is to facilitate this binding port, but contrary
to the binding ports seen so far this port is outward-bindiAg the name implies
an outward-binding port does not bind inside the node (asitite is atomic), but
instead it binds inside the parent node, however the scofhedfinding port cannot
extend outside the parent node, so its scope covers sibtidgsnand their descen-
dants. In Figure 10 we have illustrated the concept of oudvidnding. We have an
outward-bindinges node which scope covers the entire content of the surrogndin
loca node. Besides this change in the scope of the binder the aiHwading port
behaves as a traditional binding port.

This explicit representation of restriction using ams place per restriction be-
haves well wrt the structural equalities in (19), but inst@&dreaks the equalities:

. (N)p=¢ (N)1T. p, if n& (1) and (N)p=cs p, if n&fn(p).

In the first case the location of the restriction differs andhe second case the
left-hand side contains an outward-bindires node whereas the right-hand side
does not. So if we consider our presentation with outwardtioig then graph iso-
morphism will correspond to an equivalence strictly fiream structural congruence.
Another solution would be to consider bigraphs quotientedribequivalence coarser
than lean-support equivalence.
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More importantly even if we add outward-binding to our presd¢ion we will
still need the type annotations, as we loose informatioruafsree names when we
compose bigraphs. We consider the following counterexarinpin the introduction
with the processes

p=0
and »
a= (m)(mn[o]]) (wherem# n)
as bigraphs with the outer name If we insert them into the representation of the
following context (using outward-binding to represent thstriction)

¢ = Mm[-)])

then we forp’s case have lost the information that the process residigcation
m’ knows the namen, whereas we still have this information fgr So we can
create a counterexample as done in (13) in the introduc8onwithout the explicit
localisation of links within active sub locations we loosedl information about the
outer names of a process when we place it in a context. Sodhiian does not
provide the desiretlisimulation congruence.

An alternative solution for making the connection to Homenore tight will
probably be to use localised links or to locate #ren andresi nodes of a prefix
outside the prefix. In Figure 11 we have sketched how we wfitesent the Homer
processd[r]s . q using this alternative representation. This solution valice the
closure to be outside theca node if the name appears in the annotation, as the
scope of the closure must cover both thea and theann node. The solution with
localised links will also force the closure to be outside thea node if the name
appears in the annotation, since the localised links reptesy the type annotation
will be connected on thiwca node.

def

5 Conclusions and Further Work

We have presented a higher-order calculus with non-linetiveaprocess mobility
and local names, Homer as a bigraphical reactive system @rtoniTo this end
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we have introduced a variant of Homer called Homewxhere we have introduced
explicit substitutions. The presentation of Homer in thaper also differs from
existing presentations in that we have replaced the freeeretension operator with
type annotations and in that we only consider well-typedtiehs between processes
with the same type.

We prove that structural congruence of Home&orresponds to graph isomor-
phism in” Homeo and that there is a tight operational correspondence bettiee
reaction relation of Homer and the reaction relation of "Honmr The presenta-
tion highlights the importance of keeping explicit tracktb& names of parameters
in the reaction rules of bigraphs. This ensures us that weheadle the problems
with local names and non-linear process passing propdrblsd address the issue
of localisation of names (links) which suggests an extengidocal bigraphs called
bigraphs with localised links. The presentation in this paper extends the one given
in [BHO5] to include the full Homer calculus.

Several interesting questions arise from the work doneimghper. First and
foremost, we plan to examine the labelled transition bisation congruence deriv-
able using the general theory of bigraphs and compare itedabelled transition
bisimulation congruences for Homer in [HGBO4]. In this pges we plan to exam-
ine proof techniques known from calculi for concurrency amability in the setting
of bigraphs. Especially we plan to investigate the notiommto proof techniques
related to bisimulation equivalences in bigraphs. We waléw like to further ex-
amine the extension of localised links, both with respetadtilitate presentations as
bigraphical reactive systems and with respect to the behei theory of bigraphi-
cal reactive systems. In particular we would like to exanifriee extension retains
relative pushouts. Also we would like to examine to whicheext we can express
one kind of linkage using the other. In this paper we haveflgrigketched how
we can represent localised links using traditional linkd aested controls. For the
other direction we would probably need one control for eactinal, or use nesting,
to represent the ordering of ports on a node. However bothiisol seems to require
a large and complicated sorting scheme.

Another direction could be to pursue the alternative pregam sketched in the
last part of Section 4.2 and see how it relates to the presemtaresented in this
paper. An immediate consequence of the alternative praemis that the reaction
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rules will become more complicated as we need to introducetirtking informa-
tion in the rules. A yet unexamined direction is to investiga variant of Homer
with type annotations, but without the restriction constau in the syntax. From a
typed Homer process with type annotations we can calculhtehanames that are
bound and the scope of the restriction binding them.

Currently several proposals exists for augmenting eithecontrols or interfaces
of bigraphs with additional information for expressing stmints on the possible
nesting of nodes, the possible linkage between ports etgoutd be interesting to
see whether the sorting presented in Section 3.3 can bessqutén these settings,
and whether we can enforce a more strict control with the mearg and locations
of closed free links. Hence to capture some of the same irdthoms as the outward-
binding node, but without introducing an explicit node egenting the restriction.
A first try could be to augment the controls with informatiaimout whether a control
permits that closed free links penetrate the boundary of timérol.
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