
Bigraphical Semantics of Higher-Order Mobile Em-
bedded Resources with Local Names

Mikkel Bundgaard
Thomas Hildebrandt

IT University Technical Report Series TR-2005-70

ISSN 1600–6100 September 2005

Copyright c© 2005, Mikkel Bundgaard
Thomas Hildebrandt

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-104-9

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Bigraphical Semantics of Higher-Order Mobile
Embedded Resources with Local Names∗

Mikkel Bundgaard and Thomas Hildebrandt
Department of Theoretical Computer Science

IT University of Copenhagen
Denmark

{mikkelbu,hilde}@itu.dk

Abstract

Bigraphs have been introduced with the aim to provide a topographicalmeta-
model for mobile, distributed agents that can manipulate their own linkages
and nested locations, generalising both characteristics of the π-calculus and
the Mobile Ambients calculus. We give the first bigraphicalpresentation of
a non-linear, higher-order process calculus with nested locations, non-linear ac-
tive process mobility, and local names, the calculus ofHigher-Order Mobile
Embedded Resources (Homer). The presentation is based on Milner’s recent
presentation of theλ-calculus in local bigraphs. The combination of non-linear
active process mobility and local names requires a new definition of paramet-
ric reaction rules and a representation of the location of names. We suggest
localised bigraphs as a generalisation of local bigraphs in which links can be
further localised.

Keywords: bigraphs, local names, non-linear process mobility

Introduction

The theory ofBigraphical Reactive Systems (BRS) [JM04] has been proposed as a
topographical meta-model for mobile, distributed agents that can manipulate their
own linkages and nested locations. Bigraphs generalise both the link structure char-
acteristic to theπ-calculus and the nested location structure characteristic to the Mo-
bile Ambients calculus. A bigraph consists of two structures: theplace graph and
the link graph. The place graph is a tuple of unordered trees that represents the
topology of the system (why it is also referred to as the topo graph). The roots of
the trees are referred to asregions and the nodes are often referred to asplaces and
may represent locations or other process constructors suchas e.g. action prefixing.
Some of the leaves may besites (also referred to as holes) making the bigraph a
(multi-hole) context. Each non-site place is typed with acontrol and has a number
of ports linked together by the link graph. Thelink graph represents the connectivity
in the system, corresponding to shared names in theπ-calculus. Free names are rep-
resented by links connected to a set of names in the (outer)interface of the bigraph.
Figure 1 depicts a pure bigraph with 2 regions (r0 andr1) which together with the

∗Funded by the Danish Research Agency grant: 2059-03-0031 (LaCoMoCo) and IT-Vest networking
universities: National Teaching Network: Model-Based Design for Concurrency.

1

r0

y0 y1

v0

v4

s0

v2

r1

y2

x1x0

v1

s2

s1

Figure 1: A pure bigraph

namesy0, y1 andy3 constitute theouter interface 〈2,{y0,y1,y2}〉, and 3 sites (s0,
s1, ands2) which together with the namesx0 andx1 constitute theinner interface
〈3,{x0,x1}〉 of the bigraph. A bigraphG can be composed with a bigraphH if the
outer interface ofH match with the inner interface ofG and the result is that the
contents of the regions ofH is placed in the respective sites ofG and the links in the
outer interface ofH is connected to the links in the inner interface ofG.

In so-calledpure bigraphs, the place and link graph can be considered to be
orthogonal structures, since the nesting of the places and the connections of the links
have no interrelationship. Pure bigraphs are sufficient torepresent calculi such as
the pure Mobile Ambient calculus. The orthogonality breakswhen we move to so-
calledbinding andlocal bigraphs. Binding bigraphs were introduced in [JM03] to
capture the notions of binding and scope of names as found in the π-calculus. In
binding bigraphs we allow for a node to havebinding ports, and require that any
other port linked to the same link as a binding port to be within the node of the
binding port. In [Mil04b], Milner refines the definition ofbinding bigraphs into
local bigraphs. In local bigraphs, the free names (i.e. names in the interface) are
all explicitly located at the regions of the bigraph, the same name possibly located at
several regions. Correspondingly, holes (i.e. sites) are explicitly annotated by a set of
names connected to links. Local bigraphs are used to facilitate the presentation of the
λ-calculus as the bigraphical reactive system´ΛBIG in [Mil04c], which demonstrates
how higher-order processes (process passing) can be presented in the bigraphical
framework using explicit substitutions.

In the present paper we give the first bigraphical presentation of the combination
of active processes in nested locations as present in the Mobile Ambients, non-linear
higher-order process passing (by explicit substitutions)as present in theλ-calculus
and local names as present in theπ-calculus. It turns out that the combination of non-
linear, active process mobility, and local names needs special care, i.e. we can not

2

simply combine the previous presentations of the Mobile Ambients, theλ-calculus,
and theπ-calculus.

We take as our starting point the calculus of Higher-Order Mobile Embedded
Resources (Homer) [HGB04]. Homer is a pure higher-order calculus inspired by
prior higher-order calculi such as Plain CHOCS [Tho93] and HOπ [San92], and can
be regarded as an extension of theλ-calculus to contain nested, active locations and
concurrent synchronisation over (nested) named channels.Basically, Homer has two
prefixes for located resourcesδ〈r〉 (passive) andδ[r] (active) whereδ is a sequence
of names representing the address of the resource. Intuitively, these two prefixes cor-
respond respectively to a passive and an active bigraph control with ports connected
to the linksδ. The interactions are controlled by two corresponding constructors for
moving located resourcesδ(x) . p (receive) andδ(x) . p (take), denoting respectively
the usual input-prefixed process waiting to receive a (passive) process on the chan-
nel δ, and an input action for taking anactive process from locationδ, in both cases
substituting the moved resource in forx in p. The two interactions are captured by
the two "dual" reaction rules.

a〈r〉 . p | a(x) .q ց p | q[r/x] (1)

and
a[r] . p | a(x) .q ց p | q[r/x] (2)

The first rule (1) is the basic interaction as known from Plain CHOCS [Tho93]. Here
the process to the left wants to send out thepassive resourcer along the namea
and the process to the right wants to receive a resource alonga and substitute this
resource in forx in q. As the process variablex in the receiving prefix can bind any
number of occurrences ofx in q we have the possibility to discard the input or copy
the input, resemblingβ-reduction know from theλ-calculus [Bar84], since process
passing in Homer is non-linear.

In Plain CHOCS the processr is passive, meaning thatr cannot compute in-
ternally, nor can it interact with the surrounding environment. Furthermore, if the
receiving processq decides to activate an instance of the received resource, then this
instance cannot be moved again. We have chosen to augment thepassive process
passing of Plain CHOCS withactive process passing, as in (2), where we have a
resourcer computing at locationa and a prefix for taking up the running process at
locationa and bind it tox, respectively. Compared to the passive prefix it is now
possible forr to compute internally while residing at the locationa, i.e.

r ց r′ impliesa[r] ց a[r′] . (3)

Whenq takes the running resourcer, a copy may again be placed at a location where
it can continue to run until it is taken again. So we have active process mobility in
Homer in addition to the passivecode mobility as e.g. found in Plain CHOCS and
HOπ.

We also allow for location prefixes to be nested, hence we have an explicit rep-
resentation of nested, named locations, as also introducedin the Mobile Ambient

3

calculus [CG00] or the Seal Calculus [CVN04]. However, contrarily to these cal-
culi, we allow interactions with arbitrarily deeply nested, active processes by simply
composing addresses. In the example below we send the resource r down to the
nested addressab (composed ofa andb), and it is received at the addressb residing
in the locationa

ab〈r〉 . p | a[b(x) .q | q′] .q′′ ց p | a[q[r/x] | q′] .q′′ . (4)

Dually, we can also take up resources from nested locations as in

a[b[r] . p | p′] . p′′ | ab(x) .q ց a[p | p′] . p′′ | q[r/x] . (5)

In general, we allow interaction with arbitrarily deeply nested sub resources. How-
ever, two processes that are neither locally parallel nor inthe sub/parent process
relation need a common ancestor process to act as a router that mediates commu-
nication. We also allow composite names for active locations and receive prefixes.
Besides making the calculus symmetric, it also allows us to express nested location
names without allowing all sub locations to be moved separately.

As usual, we let(n)p denote a processp in which the namen is local. With local
names we also need to handle scope extension. For most of the process constructors
scope extension is as expected, but for locations we need to take particular care. For
when a resource is moved it may be necessary to extend the scope of a name through
the boundary of a location, e.g. if the resourcer contains the namen free, we will
expect the reaction

a[(n)(b[r] | p)] | ab(x) .q ց (n)(a[p] | q[r/x]) , (6)

where we have extended the scope ofn to cover all possible occurrences of the name
n. In [HGB04] we called this kind of scope extension forvertical scope extension,
to differentiate it from the usual kind of scope extension, where we extend the scope
over parallel processes at the same location. In the Mobile Ambients calculus vertical
scope extension is performed in the structural congruence (along with the usual scope
extension)

m[(n)p] ≡ (n)m[p] , if n 6= m . (7)

However, as discovered in several calculi, this rule is not sound when mobile pro-
cesses may be copied. There exists several solutions to thisproblem, all of them
exclude the vertical scope extension in the structural congruence (7), and instead ex-
tend the scope in the reaction relation. This extension is either doneeagerly, meaning
that we always extend the scope, orif and only if the namen is free inr. In Homer
we have chosen the latter solution, which corresponds to theusual semantics of e.g.
HOπ. Combined with nested locations it has the consequence thata context can test
if a name is free in a process (assuming thatn is free inp)

m[(n)(m′[r] | p)] | mm′(y) .m(x) . (x | x) . (8)

4

Since the scope ofn is extended if and only ifn is free inr, the process reduces (in
two steps) to one of the following processes

(n)p | (n)p (9)

or
(n)(p | p) , (10)

depending on whethern is free inr. Consequently, for for any non-trivial congruence
related processes must have the same set of free names (see, e.g., [HGB04] for a
detailed discussion).

It is sometimes useful, however, to be able to abstract from free, but non-accessible
names, as e.g. in theperfect firewall equation [CG00]

(n)(n[p]) ≈ 0 , (11)

stating that the behaviour of a computing resource at a locallocation is unobservable.
However, when the context can test for free names of a processes this equivalence
will only hold if fn(p) = /0. In [HGB04] the process constructorfree name extension
was introduced to mend this problem. The constructor{n}p extends the free names
of p with the idle namen. Using an example similar to (8) it was shown that name
extension cannot be extended vertically either. So not onlydoes the free names of a
process matter, but thelocality of the names matters as well.

In this paper we chose an equivalent solution by typing processes explicitly with
a set of names ˜n containing the free names. Thetyped perfect firewall equation then
becomes

(n)(n[p]) : ñ ≈ 0 : ñ for fn(p)\{n} ⊆ ñ. (12)

As for the free name extension we need to be able to able to express the same
requirement at all location and send prefixes, as we otherwise loose the information
about the free names of a process when inserting it into a context, as the following
example illustrates. Assume that the processes

p
def
= 0 and q

def
= (m)(m[n[0]]) (wherem 6= n)

are related by our equivalence under the typing{n}, e.g. p : {n} ≈ q : {n}. Then
consider the following context which will first lift the scope of n if and only if the
inserted process contains the namesn free, and the copy the remaining content of the
locationm′.

C
def
= m′[(n)(m′′[(−)] | p′)] | m′m′′(y) .m′(x) . (x | x) , wheren ∈ fn(p′). (13)

Then we have the following reactions

C (p) ց ց (n)p′ | (n)p′ (14)

and
C (q) ց ց (n)(p′ | p′) . (15)

5

So when we insertp andq into a context we loose the information that they were
related with the same type, e.g. that we considered them to have the same free name
n. So we need type annotations on all locations and send prefixes to keep track of
the free names, which is done by extending the syntax of prefixes toδ〈r〉ñ andδ[r]ñ.

Related Work In [HGB04] Hildebrandt et al. introduce the Homer calculus.The
calculus has a simple syntax and semantics that in many ways extends the traditional
process passing calculi for concurrency and mobility. Using an extension of Howe’s
method the authors show that late labelled transition bisimulations are congruences,
and hence a sound characterisation of barbed bisimulation congruence in terms of
a late contextual bisimulation. The authors also propose afree name extension as
a process constructor in calculi with explicit locations, local names, and non-linear
process mobility. Bundgaard et at. presents in [BHG05a] an encoding of the syn-
chronousπ-calculus without summation, replication, and matching inthe calculus
of Homer. The encoding is proven fully abstract with respectto barbed bisimulation
and sound with respect to barbed congruence. These results are proven by utilising
an intermediateπ-calculus with explicit substitutions. In [BHG05b] this result is
extended to aπ-calculus containing replication and matching, and an encoding that
does not utilise any auxiliary names is presented.

Bigraphs is a refinement of the framework ofaction calculi [Mil96], which is
based on process constructors inherited from theπ-calculus (see e.g. [Gar00] for a
gentle introduction to this connection). The graphical notion of action graphs in-
troduced in [Mil96] inspired the bigraphical model. Leiferand Milner discovered
that the categorical notion ofrelative pushout (RPO) could be used to characterise
minimal labels in order to automatically derive bisimulation relations which are con-
gruences [LM00], and these RPO transitions underly the behavioural theory ofbi-
graphical reactive systems (BRS).

There already exists several presentations of well-known calculi for concurrency
and mobility as bigraphical reactive systems. In [JM04, JM03] Jensen and Milner
set up the basic theory of bigraphical reactive systems and exhibit a presentation of
the asynchronousπ-calculus Aπ and prove that the derived LTS and its bisimilarity
match closely the traditional LTS and bisimilarity of asynchronousπ-calculus. A
sketch of a presentation of the Mobile Ambient calculus was also given in [JM04],
but the formal treatment were postponed to Jensen’s Ph.D. Thesis [Jen05]. Mil-
ner presented in [Mil04a] a presentation of condition-event Petri nets using only the
link graph of bigraphs to represent the Petri nets. Again, a standard equivalence of
condition-event nets is recovered using the framework of bigraphical reactive sys-
tems.

In a different direction, Milner has refined the theory of binding bigraphs [Mil04b],
so that the location of a local name can be more than one region. The multiple local-
ity of a name is utilised by Milner in [Mil04c] to present a variant of theλ-calculus
with explicit substitutions, calledΛsub. Several aspects of the presentation given in
the current paper are inspired from Milner’s presentation.Besides bigraphs there ex-
ist several graphical formalisms suitable for presenting calculi for concurrency and

6

mobility: solo diagrams, synchronized hyperedge replacement, tile systems etc., see
e.g. [BL05] for references.

Another topic touched upon in [Mil04c] is confluence. Milneruses the notion
of support of a bigraph to determine if, and how, two ground redexes occurring
in a ground bigraph overlap, and he uses the notion of relative pushouts to carry
out “syntactic analysis” of bigraphs. O’Conchuir examinesΛsub in [O’C04] and
compares it to anotherλ-calculus with explicit substitutionsλxgc [Ros96a, Ros96b]
by Rose.

Currently, several other aspects of bigraphs are being investigated, such as the
connection to XML in [HW05] by Hildebrandt and Winther (the prototype imple-
mentation of Reactive XML is extended to a distributed setting in [HNOW05]) and
Conforti et al.’s logics for bigraphs [CMS05b] and its application to XML [CMS05a].

Explicit substitutions have been widely applied in the setting of functional pro-
gramming languages, but primarily to bridge the gap betweenthe abstract mathe-
matical definition of a programming language and the concrete implementation of
this language. In the seminal work of Abadi et al. [ACCL91] onλσ, a λ-calculus
with explicit substitutions, the explicit substitutions are propagated throughout the
term and applied locally. The approach chosen in this paper differs from this solu-
tion, in the same way as Milner’s lambda calculus did, since we also perform the
substitution ‘at a distance’. Theλxgc [Ros96a, Ros96b] calculus resemblesλσ, but
retains the variables names instead of introducing De Bruijn indices. Furthermore, in
λxgc there is no composition of substitutions and the calculus has an explicit garbage
collection of substitutions.

Explicit substitutions have also appeared in process calculi for concurrency and
mobility. Ferrari et al. presented in [FMQ96] aπ-calculus with explicit substitutions,
πξ, where the substitutions are recorded in a global environment ξ. The motivation
for splitting up the name instantiation from the transitional semantics is to utilise
the structural operational semantics meta-theory developed for traditional process
calculi such as CCS in the setting of theπ-calculus. Another investigation of aπ-
calculus with explicit substitutions was performed by Hirschkoff in [Hir99] using De
Bruijn indices and handling the name instantiation using a term rewrite system. The
calculus of explicit fusions, pi-F, [GW00] by Gardner and Wischik contains fusions,
processes of the formx = y, explicitly in the syntax enabling the interchange of the
namesx andy in the surrounding context. Zimmer utilised in [Zim04] aπ-calculus
with explicit substitutions and channels as an intermediate language for proving that
the synchronousπ-calculus can be encoded in a restricted Mobile Ambient calculus
containing only the mobility primitives and the hierarchical structure of the ambients.

Structure of the Paper In Section 1 we present briefly the main concepts of local
bigraphs of Milner. In Section 2 we introduce the two variants of the calculus of
Higher-Order Mobile Embedded Resources. In the first variant we have substituted
the existing free name constructor{n}p with simple type annotations at locations
and send prefixes, and only consider typed relations between processes. In the sec-
ond variant, Homerσ, we augment the calculus with explicit substitutions. We prove

7

that there is an operational correspondence between the twovariants. Section 3 con-
tains the presentation of Homerσ as a bigraphical reactive system, the translation
of Homerσ terms into bigraphs, and the translation of path contexts and the reac-
tion rules. We prove that structural congruence of Homerσ corresponds to graph
isomorphism in bigraphs. In Section 3.5 we present the operational correspondence
between Homerσ and its presentation´Homerσ. In Section 4 we present a generali-
sation of local bigraphs in which links can be further localised, called localised links.
In Section 4 we also examine the problems arising from representing the restriction
constructor using a closed free link in bigraphs. We conclude and propose further
work in Section 5.

1 Local Bigraphs

In this section we introduce the main concepts of local bigraphs [Mil04b] of Milner.
We refer the reader to [JM04] for additional information regarding the basic theory
of (pure and binding) bigraphs and [Mil04b] and [Mil04c] forthe remaining details
about local bigraphs.

In this paper we will primarily use a simple term language, introduced in the
above mentioned papers, instead of the graphical representation of bigraphs. The
term language consists of the following constructors:h || g andh | g are theparallel
product andprime parallel product of two bigraphsh andg, respectively. Whereas
the prime parallel product merges the regions of two single-region (prime) bigraphs,
the parallel product juxtaposes the regions. Theclosure constructor/n ◦ g is the
bigraphg, where we have removed the outer namen by replacing the name with an
edge ing.

A bigraphical reactive systems is defined with respect to a signature that specifies
the controls and their properties (e.g. the number of ports on the control, and whether
the control is passive, active or atomic). Each node in a bigraph is associated with a
control. The following definitions are defined as in [Mil04b].

Definition 1.1 (local signature). A local signature K is a set whose elements are
calledcontrols. For each controlK it provides a pair of finite ordinals, the binding
arity h and the free arityk, indexing respectively thebinding and thefree ports of
any K-node, writtenK : h → k. The signature also determines which controls are
atomic, and which of the non-atomic controls areactive. Controls which are not
active (including the atomic controls) are calledpassive. If K is atomic thenh = 0.

Definition 1.2 (local interface). A local interface takes the formI = 〈m,~X〉, where
m is the width of the interface and~X is a vector of lengthm, such thatXi is the set of
names local to thei′th site. We callIu = 〈m,∪0≤i<mXi〉 the pure interfaceunderlying
I.

We will often write~X or 〈m, loc,X〉, whereX = ∪0≤i<mXi and loc ⊆ m {〉X is
a locality relation, for the local interface〈m,~X〉. We will also often writeX for the
local interface〈1,X〉.

8

Definition 1.3 (local bigraph). If I and J are local interfaces, a(concrete) local
bigraph G : I → J consists of anunderlying pure bigraphGu : Iu → Ju satisfying the
same scoping conditions as in [Mil04b]. For a local bigraphG : I → J we callI and
J the inner and outerface of G, respectively.

We can compose two local bigraphsH andG, if the outer face ofG and inner
face ofH matches, resulting in the bigraphH ◦G, where the content of the regions
of G have been inserted into the respective sites ofH, and the links of corresponding
local names have been fused together. We call a local bigraphG with unit inner
face,G : ε → J, aground bigraph and write it asG : J. We define thedynamics of a
bigraphical reactive system in terms of reaction rules and areaction relation, which
are defined precisely as in [Mil04b].

Definition 1.4 (reaction rule, reaction relation). A ground reaction rule is a ground
pair (r,r′), redex andreactum, with the same outer face. Given a set of ground rules,
the reaction relation _ over agents is the least, closed under support equivalence
(≏), such thatD◦ r _ D◦ r′ for each activeD and each ground rule(r,r′).

In order to easen the specification of the reaction relationwe use parametric reac-
tion rules, which allows rules that arbitrarily transform their parameters. Differently
from the original definition in [Mil04b], we require that all outer names of a param-
eter are specified explicitly by the parametric reaction rule, to ensure that we handle
scope extension properly. In the definition of parametric reaction rule we have also
left out the specification of~ι, as we do not need any renaming in any of the rules.
But first we need that we can factorise a bigraph if none of itslinks cross regions.

Proposition 1.5(factorisation). We can uniquely factorise any ground bigraph c : ~X
with outer width m into primes, if none of its links cross regions, as

c = c0 || · · · || cm−1 , with ci : Xi .

The instantiation maps a parameter for the redex to a parameter for the reactum in
a parametric reaction rule and allows for the rule to replicate some of the parameters
and discard others.

Definition 1.6 (instantiation). An instantiation f from I to J, written f :: I → J,
where I = 〈m,~X〉 and J = 〈n,~Y 〉 are local, is induced by an underlying function
f : n → m. We define the instantiation

f : ~X →~Y

in the following way. For interfaces we havef (I) = ~Y , whereYj
def
= X f (j) for all

j ∈ n. For a ground bigrapha : ~X with no links crossing regions, we know that we
can factorise it uniquely as

a = c0 || · · · || cm−1 , with ci : Xi .

9

Let d j ≏ c f (j) for j ∈ n have disjoint supports, we then define the instantiation ofa
local bigraph as

f (a) :~Y
def
= d0 || · · · || dn−1 .

Parametric reaction rules allow for the rules to contain parameters, that can be
replicated, discarded, or just moved.

Definition 1.7 (parametric reaction rule). A parametric reaction rule has aredex R
andreactum R′, and takes the form

(R : I → K,R′ : I′ → K, f)

with the inner facesI = 〈m,~X〉 andI′ = 〈m′,~X ′〉 and f : m′ → m is a map of ordinals,
inducing the instantiationf . For every parameterd : I the parametric reaction rule
generates a ground reaction rule on the form

(R◦ d,R′ ◦ f (d)) , where f (d) : I′.

2 Higher-Order Mobile Embedded Resources

In this section we present two variants of the calculus of Higher-Order Mobile Em-
bedded Resources (Homer), a non-linear, pure higher-orderprocess calculi with local
names and named, nested locations. The first variant of Homer contains explicitly
typed locations and send prefixes instead of the process constructor,interface exten-
sion, {n}p that was introduced in [HGB04]. The interface extension operator,{n}p,
extended the free names ofp with the (possible idle) namen. The solution taken
in this paper is that we explicitly annotate every location (and send prefix) with a
set of names that must include the free names of the process contained in the pre-
fix. Furthermore, we will only consider relations that relate processes with the same
top-level type. The reason why we need to be able to type sub-locations, as well, is
that interface extension cannot be extended vertically through a location barrier, as
explained in the introduction.

In the second variant of Homer we also add explicit substitutions to the calculus,
resembling the approach taken by Milner in [Mil04c]. This variant of Homer serves
as an intermediate step between the traditional Homer calculus and our presentation
as a bigraphical reactive system, since we need the explicitsubstitutions to represent
the higher-order processes-passing of Homer.

2.1 Syntax and notation

We assume an infinite set ofnames N ranged over bym and n, and let ˜n range
over finite sets of names. We letγ range over (possibly empty) sequences of names,
and letδ range over non-empty sequences of names, referred to asaddresses and let
|δ| denote the length of the pathδ, also we letϕ ::= δ | δ. We assume an infinite
set ofprocess variables V ranged over byx andy, and let ˜x range over finite sets

10

Processes:
p,q,r ::= 0 inactive process

| π . p action prefixing
| p | q parallel composition
| (n)p let n be local inp
| x process variable

Prefixes:
π ::= δ(x) receive a resource atδ and bind it tox

| δ(x) take computing resource fromδ and bind it tox
| δ〈r〉ñ send a passive resourcer having type ˜n to δ
| δ[r]ñ computing resourcer at locationδ having type ˜n

Table 1: Higher-Order Mobile Embedded Resources

of variables. The setP of process expressions is then defined by the grammar in
Table 1.

The processes constructors are the usual process constructors from higher-order
concurrent process calculi. As usual, we let the restriction operator(n) bind the
namen and the prefixesϕ(x) bind the variablex. Note that the restriction operator
also can bind the names that occur in a type annotation.

The prefixδ(x) represents the possibility to receive a passive resource sent from a
local processes or a processes in a parent-location, whereas the prefixδ(x) represents
the possibility to take an active resource from a local location or a sub-location.
The prefixesδ〈r〉ñ andδ[r]ñ are responsible for sending apassive resourcer locally
(or down) to the addressδ and providing anactive resourcer locally (or up) on
the locationδ, respectively. In both cases we explicitly annotate the prefix with a
set containing the free names of the resource. The prefixesδ〈r〉ñ andδ(x) are the
usual prefixes of Plain CHOCS [Tho93], except that we allow sequences of names
as addresses instead of only a name. The prefixesδ[r]ñ andδ(x) are responsible for
adding active process mobility to the calculus, as explained in the introduction.

We define the free names and free variables in Definition 2.1. Note that we
define the free names of the prefixesϕ[〈r〉]ñ as fn(ϕ[〈r〉]ñ) = fn(ϕ)∪ ñ, so the type
annotation of a send or a location prefix determines the freenames of the resource
in the prefix, under the assumption that the type annotationcontains the free names
of the resource. We will throughout the paper tacitly assumethat this requirement is
satisfied.

Definition 2.1 (free names and variables). We define the setsfn(p) andfv(p) of free

11

x̃ ⊢ 0 : ñ

x̃ ⊢ p : ñ1 x̃ ⊢ q : ñ2

x̃ ⊢ p | q : ñ1∪ ñ2

x̃x ⊢ x : ñ

x̃ ⊢ p : ñn

x̃ ⊢ (n)p : ñ

x̃x ⊢ p : ñ

x̃ ⊢ ϕ(x) . p : ñ∪ fn(ϕ)

x̃ ⊢ r : m̃ x̃ ⊢ p : ñ

x̃ ⊢ ϕ[〈r〉]m̃ . p : m̃∪ ñ∪ fn(ϕ)

Table 2: Typing rules for Homer

names andfree variables of p inductively in the structure ofp.

Free names Free Variables
fn(0) = /0 fv(0) = /0

fn(ϕ[〈r〉]ñ . p) = fn(ϕ)∪ ñ∪ fn(p) fv(ϕ[〈r〉]ñ . p) = fv(r)∪ fv(p)
fn(ϕ(x) . p) = fn(ϕ)∪ fn(p) fv(ϕ(x) . p) = fv(p)\ {x}

fn(p | q) = fn(p)∪ fn(q) fv(p | q) = fv(p)∪ fv(q)
fn((n)p) = fn(p)\ {n} fv((n)p) = fv(p)

fn(x) = /0 fv(x) = x

The setsbn(p) andbv(p) of bound names andbound variables are defined according
as usual.

We define capture-free substitution in usual manner, though with the proper up-
date of type annotation.

Definition 2.2 (substitutions). We define the processp[q : ñ/x] to bep with all free
occurrences ofx replaced byq of type ñ, where we have changed the annotations
of all sub-termsϕ[〈r〉]m̃ in p to ϕ[〈r〉]m̃∪ñ, if and only if r contains a free occurrence
of x, and if necessaryα-convertingp such that no free names and variables inq are
bound.

As mentioned in the beginning of this section, compared to [HGB04] we have
removed the process constructor{n}p that extends the set of free names of a process
p with the (possibly idle) namen and instead added type annotations at every location
and send prefix.

Definition 2.3 (well-typed process). We define the valid typing judgements of the
form x̃ ⊢ p : ñ inductive by the rules in Table 2.

From now on we will only consider well-typed processes. Notethat a processp
is well-typed with respect to a finite set of variables ˜x and names ˜n, written x̃⊢ p : ñ, if
and only if the free names (variables) ofp are included in the set ˜n (x̃), and for every

12

sub-termϕ[〈r〉]m̃ andq[x := r : m̃] in p we have thatr can be typed with the type ˜m.
We will say that the annotations in a process arevalid if for all sub-termsϕ[〈r〉]m̃ it is
the case that ˜m ⊇ fn(r). We say that a process with no free variables isclosed and let
Pc denote the set of closed processes. We writep ≡α q, if p andq areα-convertible
(both with respect to names and variables), we letP/α (andPc/α) denote the set of
α-equivalence classes of (closed) process expressions, andwe consider processes up
to α-equivalence.

Notation. We omit trailing0s, and hence writeπ instead ofπ .0. We write⊢ p : ñ for
/0 ⊢ p : ñ, and we let prefixing and restriction be right associative and bind stronger
than parallel composition, hence writing e.g.π . p | (n)q | r instead of(π . p) | ((n)q) |
r. For a set of names ˜n = {n1, . . . ,nk} we let(ñ)p denote(n1) · · · (nk)p. We writem̃ñ
for m̃∪ ñ, always implicitly assuming ˜m∩ ñ = /0.

2.2 Reaction Semantics

We provide Homer with a reaction semantics defined in the Chemical Abstract Ma-
chine [BB90] style using structural congruence, evaluation contexts, and reaction
rules.

Definition 2.4 (contexts and congruence). A context C is defined by taking the gram-
mar defined in Table 1 and augmenting the production of process expressions to also
contain a special symbol called ahole

C ::= . . . | (−)ñ

and by requiring that the hole only occur once in the term. We annotate the hole with
a type, meaning we can only place a process with type ˜n into the hole(−)ñ. We write
C (p) for the insertion ofp into the hole of the contextC , assuming that the hole in
C is annotated with the type ˜n and we have⊢ p : ñ. We extendfn() to contexts by
fn(C) = fn(C (0)), and we extendfv() accordingly. For typing contexts, we add the
following rule to the typing rules of Table 2.

x̃ ⊢ (−)ñ : ñ

A binary relationR on well-typed processes is calledwell-typed if and only if
it relates processesp andq with the same type ˜n (x̃), written x̃ ⊢ p R q : ñ. We will
only consider well-typed relations in this paper. A relationR is called acongruence
if and only if it is a well-typed equivalence relation and it satisfies that ˜x ⊢ p R q : ñ
impliesx̃′ ⊢ C (p)R C (q) : ñ′ for all contextsC , where the hole is annotated with the
typeñ and the type of the context is ˜n′.

Structural congruence ≡ is defined as the least congruence on well-typed pro-
cesses relating ˜x ⊢ p ≡ q : ñ, if x̃ ⊢ p : ñ, x̃ ⊢ q : ñ, andp ≡ q can be derived using
the rules in Table 3, as structural congruence does not affect the typing of a process.
The first row of the equations express that(P, |,0) is a commutative monoid, the next
two rows enforce the rules of scope of name restriction.

13

p | 0≡ p (p | p′) | p′′ ≡ p | (p′ | p′′) p | q ≡ q | p

(n)p | q ≡ (n)(p | q), if n 6∈ fn(q) π . (n)p ≡ (n)π . p, if n 6∈ fn(π)

(n)(m)p ≡ (m)(n)p (n)p ≡ p, if n 6∈ fn(p)

Table 3: Structural congruence

As Homer permits reactions arbitrarily deep in the locationhierarchy and also
permits reactions between a process and an arbitrarily deeply nested sub-resource,
we define in Definition 2.5 the concepts of evaluation and path contexts.

Definition 2.5 (evaluation contexts and path contexts). An evaluation context E is a
context with no free variables and whose hole is not guarded by a prefix, nor does it
occur as the object of a send prefix. We define evaluation contexts by the following
grammar

E ::= (−)ñ | E | p | (n)E | δ[E]ñ . p, for p ∈ Pc .

We define a family of multi-holepath contexts Cñ
γ , indexed by a path addressγ ∈N ∗

and a set of names ˜n, inductively inñ andγ

C /0
ε ::= (−)ñ

C ñm̃
δγ ::= δ[(ñ)(C m̃

γ | (−)ñ′)]m̃′ . (−)m̃′′ ,

whenever ˜n∩ γ = /0.

Remark. Note that the evaluation contextδ[E]ñ . p enables internal reactions of active
resources, and that for a path contextC ñ

γ , the path addressγ indicates the path under
which the first hole of the context is found, and the set of namesñ indicates the bound
names of the hole. The side condition in the definition of path contexts ensures that
none of the names in the path address of the hole are bound. Thebound names(ñ)
in the definition of path contexts are needed since the structural congruence does not
permit vertical scope extension, as described in the introduction.

We handle the vertical scope extension and the update of typeannotations of a
location using anopen operator, defined on path contexts.

Definition 2.6 (open operator on path contexts). We define anopen operator on path
contexts ˜m⊙C ñ

γ inductively by:

m̃⊙C /0
ε = C /0

ε

m̃⊙C ñ1ñ2
δγ = δ[(ñ1 \ m̃)(m̃⊙C ñ2

γ | (−)ñ′)]m̃′∪m̃ . (−)m̃′′ ,

if C ñ1ñ2
δγ = δ[(ñ1)(C

ñ2
γ | (−)ñ′)]m̃′ . (−)m̃′′ andm̃∩ ñ1ñ2∩ fn(C ñ1ñ2

δγ) = /0.

14

(send) ⊢ γδ〈r〉ñ .q | C m̃
γ (δ(x) . p,~p) ց q | ñ⊙C m̃

γ (p[r : ñ/x],~p) : ñ′

if m̃∩ (δ∪ ñ) = /0

(take) ⊢ C m̃
γ (δ[r]ñ .q,~p) | γδ(x) . p ց (ñ∩ m̃)

(

ñ⊙C m̃
γ (q,~p) | p[r : ñ/x]

)

: ñ′

if m̃∩ (δ∪ fn(p)) = /0

Table 4: Reaction rules for Homer

Intuitively, the open operator in ˜m⊙C ñ
γ removes the names ˜m from the bound

names of the hole and adds them to the type annotations of the locations that are part
of the address path. When applied in the reaction rule, the latter condition of the
open operator can always be met byα-conversion, the condition ensures us that we
can extend the scope by using the open operator and place the restriction at top level,
without any name captures.

As for the structural congruence, we define the reaction relation for Homer, writ-
tenց, as the least well-typed binary relation between well-typed processes satis-
fying the rules in Table 4 and closed under all evaluation contextsE and structural
congruence. The rules are essentially the reaction rules of[HGB04] altered to use
type annotations instead of the free name constructor.

Remark. The (send) rule expresses how a passive resourcer is sent (down) to the
(sub) locationγ, where it is received at the addressδ and is substituted in forx in
p, possibly in several copies, updating the type annotationsas necessary. The side
conditions ensure that the location path is not bound in the context and that no free
names ofr get bound during movement. Note that the open operator only extends
the type annotations of the locations constituting the location path and does not lift
any restrictions, since ˜m∩ ñ = /0.

The (take) rule captures that a computing resourcer is taken from the (sub) loca-
tion γ, where it is running at the addressδ, and is substituted in forx in p, possibly in
several copies. Again, the side conditions ensure that the location path is not bound
in the context, and that no free name is bound, when we lift therestriction. In this
rule it is possible that the open operator both lifts restrictions and extends the type
annotation of the locations.

In both rules we use multi-hole path contexts. The lastk holes in ak + 1-hole
path context can be filled with an arbitrary process, written as the vector~p, since the
reaction rules only affect the first hole in the path context. The types ensure that no
names can disappear from the free names of a location, a send prefix, or from top-
level during reaction. However, note that locations or sendprefixes in the process
that receives the moved resourcer can get their type annotation extended by the type
of r that do not already appear in their annotation.

15

2.3 Homer with explicit substitutions

In this subsection we present a variant of the Homer calculus, called Homerσ, where
we have introduced explicit substitutions in the syntax instead of the meta-notion
p[q : ñ/x]. We augment the grammar of Homer presented in Table 1 with an explicit
syntactic substitutionp[x := q : ñ], representing the processesp in a context that can
substituteq (of type ñ) in for x. The typing rule for explicit substitution, defined
below, ensures thatq is closed and that the free names ofq are contained in ˜n.

Definition 2.7 (Homer with explicit substitutions). We augment the grammar in
Table 1 with an explicit substitution

p,q,r ::= . . . | p[x := q : ñ] .

We augment Definition 2.1 of free names and variables as follows

Free names Free Variables
fn(p[x := q : ñ]) = fn(p)∪ ñ fv(p[x := q : ñ]) = (fv(p)\ {x})∪ fv(q)

For the typing judgement ˜x ⊢ p : ñ we add the following rule

x̃x ⊢ p : ñ ⊢ q : m̃

x̃ ⊢ p[x := q : m̃] : ñ∪ m̃ .

We letPσc denote the set of closed Homerσ processes and letPσ/α (andPσc/α)
denote the set ofα-equivalence classes of (closed) Homerσ process expressions, and
again we consider processes up toα-equivalence.

Remark. Note that the explicit substitutionp[x := r : ñ] bindsx in p. We let prefixing
and restriction be right associative and bind stronger thanexplicit substitution and
let explicit substitution bind stronger than parallel composition hence writing e.g.
π . p[x := r : ñ] instead of(π . p)[x := r : ñ].

Definition 2.8 (contexts, structural congruence, and evaluation contexts). We define
contexts for Homerσ by augmenting the grammar of Definition 2.7 with a hole

C ::= . . . | (−)ñ

and by requiring that it only appear once in the entire term. As for Homer we require
that only processes of type ˜n are placed into the hole(−)ñ. We define structural
congruence≡σ for Homerσ by extending the rules of Table 3 with the following
rule

(n)(p[x := r : ñ]) ≡σ (n)p[x := r : ñ], if n 6∈ ñ .

One might expect a rule stating that we can move restriction under the object of
an explicit substitution as

(n)(p[x := r : ñ]) ≡σ p[x := (n)r : ñ\ {n}], if n 6∈ fn(p) .

16

(sendσ) ⊢ γδ〈r〉ñ .q | C m̃
γ (δ(x) . p,~p) ցσ q | ñ⊙C m̃

γ (p[x := r : ñ],~p) : ñ′ ,

if m̃∩ (δ∪ ñ) = /0

(takeσ) ⊢ C m̃
γ (δ[r]ñ .q,~p) | γδ(x) . p ցσ (ñ∩ m̃)

(

ñ⊙C m̃
γ (q,~p) | p[x := r : ñ]

)

: ñ′ ,

if m̃∩ (δ∪ fn(p)) = /0

(applyσ) ⊢ C (x)[x := r : ñ] ցσ ñ⊙C (r)[x := r : ñ] : ñ′ ,

if C does not bindx or the names in ˜n

(garbageσ) ⊢ p[x := q : ñ] ցσ p : ñ′ , wherex 6∈ fv(p)

Table 5: Reaction rules for Homerσ

But for the same reasons as mentioned in the introduction this is not sound. The
definition of evaluation contexts and path contexts remains the same for Homerσ as
for Homer, and hence the open operator remains unchanged. Wethen define the
reaction relationցσ for Homerσ as the least binary well-typed relation onPσc/α
satisfying the rules in Table 5 and closed under evaluation contexts and structural
congruence≡σ.

Remark. Compared to Table 4 we have made the following changes to the reaction
relation. We have added a syntactic explicit substitutionp[x := r : ñ] instead of the
substitutionp[r : ñ/x], and we have added rules for applying and garbage collecting
an explicit substitution. The rules (sendσ) and (takeσ) mimic the rules (send) and
(take) of Homer, respectively. The only difference is that we havereplaced the sub-
stitution p[r : ñ/x] with p[x := r : ñ]. The rule (applyσ) replaces one occurrence of
the variable (arbitrarily deep in the context) with the content of the explicit substi-
tution. Note that we have overloaded the use of⊙, since we in (applyσ) apply the
operator to a general context and not only a path context. However, the result of the
operator is the same, it extends the type annotations of all the locations (and send
prefix) containing this occurrence of the variable. The latter condition of the rule
can always be satisfied usingα-conversion of the context. The (garbageσ) rule is
responsible for garbage collecting superfluous substitutions.

2.4 Connection between the two variants

In this subsection we relate the two presented variants of Homer calculus: Homer
and Homerσ. We will in the following subsection sometimes use a Homer process
to denote the Homerσ process with the same syntax, as the set of expressions of
Homer,Pc/α, is a subset of the set of process expressions of Homerσ,Pσc/α (i.e. the
subset of Homerσ processes that has no sub-terms of the formp[x := r : ñ]).

For one direction in the correspondence we use that an explicit substitutionp[x :=
r : ñ] can react (in Homerσ) to become the process that arises from the meta-notation

17

p[r : ñ/x] by utilising the reaction rules (applyσ) and (garbageσ).

Proposition 2.9. If p and r are Homer processes and r is closed, then ⊢ p[x := r :
ñ] ց∗

σ p[r : ñ/x] : ñ.

Lemma 2.10. If ⊢ p ց q : ñ then ⊢ p ց∗
σ q : ñ.

Proof. There are only two rules for inferring a reaction in Homer: (send) and (take).
In both cases the result follows by choosing the matching rule in Homerσ ((sendσ)
or (takeσ)) and applying Proposition 2.9.

For the other direction in the correspondence we need the following function

app : Pσc/α → Pc/α , (16)

which takes a Homerσ processp and applies and garbage collects all the explicit
substitutions inp. Note that the crucial property ofapp is the following

app(p[x := r : ñ]) = app(p[r : ñ/x]) .

We also need the following proposition stating that the function app preserves re-
dexes for the rules (sendσ) and (takeσ).

Proposition 2.11. Assume that p is a Homerσ process and it contains a (sendσ) or
a (takeσ) redex, then the Homer process app(p) also have this redex.

Proposition 2.12. If ⊢ pցσ q : ñ then ⊢ app(p)≡ app(q) : ñ or ⊢ app(p)ց app(q) :
ñ.

Proof. We consider each of the four rules definingցσ in turn.

• (sendσ) Assume that⊢ pցσ q : ñ because of the (sendσ) rule, then⊢ app(p)ց
app(q) : ñ using the (send) rule, since we know from Proposition 2.11 thatapp
preserves the redex and since the rules (sendσ) and (send) only differ in the
substitution andapp gives the same result on this.

• (takeσ) Similar to the case for (sendσ).

• (applyσ) Assume that⊢ p ցσ q : ñ because of the (applyσ) rule, then⊢
app(p)≡ app(q) : ñ, as the only difference betweenp andq is that we have ap-
plied one of the explicit substitutions to one occurrence ofthe bound variable,
and sinceapp will apply and garbage collect all the explicit substitutions.

• (garbageσ) Assume that⊢ p ցσ q : ñ because of the (garbageσ) rule, then⊢
app(p)≡ app(q) : ñ, as the explicit substitution garbage collected by (garbageσ)
is also garbage collected byapp.

18

3 Bigraphical Semantics of Homerσ
In this section we give the bigraphical presentation of Homerσ as the bigraphical re-
active system´Homerσ. First, we present the signature for´Homerσ, and give a fully
compositional translation of Homerσ-terms into bigraphs. Second, we translate the
path contexts and the reaction relationցσ . An important criteria for the presenta-
tion is to show that there is a static and operational correspondence between Homerσ
and its presentation as a bigraphical reactive system, meaning that structural congru-
ence of Homerσ corresponds to graph isomorphism in the bigraphical presentation,
and that reactions match.

Intuitively, we define a signature which has one control foreach syntactic con-
structor in the Homerσ-terms, and use local links and nesting of controls to represent
the structure of the abstract syntax tree of a given Homerσ-term. We have chosen to
represent the path addresses of the respective prefixes with one port for each element
in the sequence. Hence, for each kind of prefix we have an infinite family of controls
indexed by the length of the address. To avoid this infinite number of controls, we
could represent the sequences of names as nested nodes of a certain kind of control,
each with one port connected to an outer name and let nesting of the nodes express
the sequencing, but to keep the presentation succinct we have chosen to elide this
option.

The signature has controlsrece andtake representing the two input prefixes,
andsend and loca representing the two kinds (passive and active) of located re-
sources. We useresi (shorthand forresidual) to hinder reactions behind prefixes.
Controlsvar, sub, anddef represent a variable and the constructs for explicit sub-
stitutions, respectively. Finally, the signature also hascontrolstname (abbreviation
for typename) andann (abbreviation forannotation) to represent the explicit
type annotation of resource and send prefixes. We will discuss this in more detail
after having presented the reaction rules in the bigraphical framework. In total, the
signature for´Homerσ is defined as follows.

Definition 3.1 (́ Homerσ signature). The signature for´Homerσ has an infinite num-
ber of controls.

• The controlsvar: 0 → 1 andtname: 0 → 1 are atomic

• The families of controls:rece|δ|: 1 → |δ|, take|δ|: 1 → |δ|, andsend|δ|: 0 →
|δ| are all inactive

• The family of controlsloca|δ|: 0 → |δ| is active

• The controlsresi: 0 → 0, def: 0 → 1, sub: 1 → 0, andann: 0 → 0 are inac-
tive

Remark. Note that we cannot represent restriction using an enclosing control, since
this would break the static correspondence, as stated in Theorem 3.7. For instance the
rule (n)(m)p ≡σ (m)(n)p would be problematic, since the place graph is defined as a
forest. We will examine this and an alternative definition of restriction in Section 4.2.

19

sub

x

x

def resi

x

var

n

b

tname ann

δ

rece

x

δ

take

x

δ

send

δ

loca

Figure 2: Ions and atoms for´Homerσ

For the same reasons, we do not introduce a control representing the inactive process
0 as the rulep | 0≡σ p would also break the static correspondence.

Notation. In Figure 2 we depict the ions and the atoms used in the translation in
Definition 3.4. As usual we do not depict the arbitrary namesthat can be exported
from the ions, we have also chosen to depict the controltname as just a dot,b, in
order to be able to distinguish graphically betweentname andvar controls.

Following the convention of Milner [Mil04c], we writevarx andtnamen for the
atoms, and we denote the ions as follows

sub(x) ⊕ idZ defx ⊕ idZ resi ⊕ idZ ann ⊕ idZ

receδ(x) ⊕ idZ takeδ(x) ⊕ idZ sendδ ⊕ idZ locaδ ⊕ idZ

using the⊕ operator defined in Definition 3.2 below. Following the convention of
[Mil04c], we write the binding port names in parenthesis andlast.

We need to introduce a variant of the extension operator of local bigraphs in order
to translate Homerσ-terms into bigraphs directly. The idea behind the extension
operator, denoted⊕, of [Mil04b] is that we can allow for a parameter to have more
names than expected by a context, thus extending the inner face of the context. The
insertion of the parameter into the context should then in the same sense extend the
outer face of the context.

The problem with the extension operator, for our usage, is that it is only defined
for G ⊕ ω, if the names in the outer and inner face of the bigraphG and the wiringω
are disjoint (andG andω have equal width). However, in our presentation we need
to be able to express an operation like⊕, but where the outer faces can share names.
To this end we define a derived operator, written⊕, based on the extension operator.
We first define shared extension of outer interfaces, and then shared extension of
bigraphs.

20

Definition 3.2 (Shared extension). For two interfacesJ = 〈m, loc,X〉 andJ′ = 〈m, loc′,X ′〉
of equal width, we define their shared extension,J ⊕ J′ as

J ⊕ J′
def
= 〈m, loc∪ loc′,X ∪X ′〉 .

Given a bigraphG : I → J and a wiringω : I′ → J′ of equal width and disjoint
supports, whereJ = 〈m, loc,X ⊎X ′′〉 andJ′ = 〈m, loc′,X ′ ⊎X ′′〉, and arenaming1

α : X ′′ → X ′′′, whereX ′′′∩(X ∪X ′) = /0, then ifI ⊕ I′ is defined, theshared extension
of G by ω is defined as

G ⊕ ω : I ⊕ I′ → J ⊕ J′
def
= α−1◦ (G ⊕ ((α ⊕ idX ′)◦ω)) ,

whereα−1 is defined as the inverse ofα extended with the identities onX , X′, and
X ′′.

So we define shared extension by first mapping one part of theshared names to
a disjoint set of names, perform the extension, and then on top-level join the shared
names with a substitution. The following proposition states that we can always find
a bijective linking, so that shared extension is defined.

Proposition 3.3. Given a bigraph G : I → J a wiring ω : I′ → J′ satisfying the re-
quirements of Definition 3.2, we can always find a renaming α also satisfying the
requirements of Definition 3.2.

We will only use a simple instance of the⊕ operator in the presentation, since we
only need to extend a bigraph (of inner and outer width 1) withan identity wiring,
hereby extending the inner and outer face of the bigraph. E.g. the ionsendδ ⊕ idZ

hasZ as inner names andZ ∪δ as outer names.

3.1 The Translation

We have a fully compositional translation from Homerσ to bigraphs. The translation
is defined inductively in the typing derivation of a process. The reason for this is
that we need the typings for propagating the relevant links,representing names and
variables, throughout the entire bigraph. As in the presentation in Section 2 we let
m andn range over Homer names, letδ range over non-empty sequences of Homer
names, and letx andy range over Homer variables. We will follow the convention
and writeñ ⊕ x̃ for the bigraph with unit inner face and ˜n ⊕ x̃ outer face.

Definition 3.4 (Translation of Homerσ-terms into bigraphs). We define the transla-
tion of a well-typed Homerσ-term p into a bigraph inductively in the inference of

1a bijective substitution.

21

x̃ ⊢ p : ñ

Jx̃ ⊢ 0 : ñK = ñ ⊕ x̃

Jx̃ ⊢ p | q : ñ1∪ ñ2K = Jx̃ ⊢ p : ñ1K | Jx̃ ⊢ q : ñ2K

Jx̃ ⊢ (n)p : ñK = /n ◦(Jx̃ ⊢ p : ñnK)

Jx̃x ⊢ x : ñK = varx ⊕ ñ ⊕ x̃

Jx̃ ⊢ p[x := r : ñ′] : ñ∪ ñ′K = (sub(x) ⊕ idñ∪ñ′,x̃)(Jx̃x ⊢ p : ñK |
(defx ⊕ idñ′)(J⊢ r : ñ′K | (ann ⊕ idñ′)Jñ′K))

Jx̃ ⊢ δ[r]ñ′ . p : ñ′∪ ñ∪ fn(δ)K = (locaδ ⊕ idñ∪ñ′,x̃)(Jx̃ ⊢ r : ñ′K |
((ann ⊕ idñ′)Jñ′K) | (resi ⊕ idñ,x̃)Jx̃ ⊢ p : ñK)

Jx̃ ⊢ δ〈r〉ñ′ . p : ñ′∪ ñ∪ fn(δ)K = (sendδ ⊕ idñ∪ñ′,x̃)(Jx̃ ⊢ r : ñ′K |
((ann ⊕ idñ′)Jñ′K) | (resi ⊕ idñ,x̃)Jx̃ ⊢ p : ñK)

Jx̃ ⊢ δ(x) . p : ñ∪ fn(δ)K = (receδ(x) ⊕ idñ,x̃)Jx̃x ⊢ p : ñK

Jx̃ ⊢ δ(x) . p : ñ∪ fn(δ)K = (takeδ(x) ⊕ idñ,x̃)Jx̃x ⊢ p : ñK

and we translate the type annotations as follows

JñK = |
n∈ñ

tnamen .

Remark. We represent the inactive process0 as an empty bigraph with the correct
outer face. The parallel composition of Homerσ is represented using the correspond-
ing operator in bigraphs, prime product. We use a closure/n, which closes the open
link n, to represent the restriction of the namen. A variable is represented as a node
of controlvar which is connect to the namex, which is disjoint from the set ˜x.

We represent the explicit substitutions in Homerσ in the same way as [Mil04c].
However, note that the controldef is inactive, since otherwise we could have reac-
tions under prefix, and that we have augmented the explicit substitution with a type
annotation. The translation also ensures that the namex is disjoint from the set ˜x
containing the set of free variables.

The first two prefixesδ[r]ñ . p and δ〈r〉ñ . p are represented by a node of the
matching control (indexed by the length ofδ) containing the representation of the
object of the prefix and the residual process enclosed in a node of controlresi.
We use the controlresi to ensure that the residual processes after a prefix cannot
make reactions. Actually, the control is superfluous in the representation of the send
prefix, since the controlsend itself is inactive, but we have kept it to emphasise the
connection between the two prefixesδ[r]ñ andδ〈r〉ñ.

We have chosen to represent the type annotations as a set oftname nodes en-
closed by a node of controlann. The last two prefixesδ(x) . p and δ(x) . p are
represented straightforwardly by a node of the respective control, where the variable
x is bound in the enclosed representation ofp. As for the representation of the expli-
cit substitution we require thatx andx̃ are disjoint. Finally note that we have decided

22

m n

send

JrK Jr′K
ann

b

resi

JpK
rece

var

Figure 3: Example on translation of the termn〈r | r′〉{m} . p | n(x) . x into a bigraph

to use⊕ throughout the translation, even though we often compose bigraphs where
the names are disjoint.

Example (translation of Homerσ-terms). As an example on the translation from
Homerσ-terms to bigraphs, we depict in Figure 3 the result of the translation of
n〈r | r′〉{m} . p | n(x) .x, where we for clarity have chosen not to draw the free names
of p.

When presenting a calculi as a bigraphical reactive system we would like for the
property that structural congruence of the calculi corresponds to graph isomorphism
in the bigraphical representation.

Lemma 3.5. x̃ ⊢ p ≡σ q : ñ implies Jx̃ ⊢ p : ñK = Jx̃ ⊢ q : ñK.

Proof. Since the translation is compositional we can consider eachof the axioms
defining≡σ separately. We only present some of the cases

• Each of the axioms

x̃ ⊢ p | 0≡σ p : ñ x̃ ⊢ (p | p′) | p′′ ≡σ p | (p′ | p′′) : ñ x̃ ⊢ p | q ≡σ q | p : ñ

follows directly from the translation, since we translate parallel composition
in Homerσ as the prime product in bigraphs ‘|’, which can be shown to be
associative and commutative, and as we translate0 into the unit for|.

• To prove the case for the axiom for reordering of restrictions

x̃ ⊢ (n)(m)p ≡ (m)(n)p : ñ

we show that the two bigraphsJx̃ ⊢ (n)(m)p : ñK andJx̃ ⊢ (m)(n)p : ñK can be
constructed in the same manner (we assume thatm andn are distinct names of

23

p). We constructJx̃ ⊢ p : ñnmK and add two edges to its link graphem anden

and make all points ofm (n) point toem (en). Finally we remove the namesm
andn.

• The axiom for scope extension

x̃ ⊢ (n)p | q ≡σ (n)(p | q) : ñ, if n 6∈ fn(q)

can be proven in the same way. We construct the bigraphsJx̃ ⊢ (n)p | q : ñK
andJx̃ ⊢ (n)(p | q) : ñK in the following way. Without loss of generality we
assume that ˜n = ñ1∪ ñ2, where ˜n1nx̃ andñ2x̃ are the names in the outer face
of Jx̃ ⊢ p : ñ1nK andJx̃ ⊢ q : ñ2K, respectively. First we buildJx̃ ⊢ p : ñ1nK and
Jx̃ ⊢ q : ñ2K, and then we combine them using the prime product, add one edge
en to the link graph of this bigraph, and make all points of the namen point to
en. Sincen 6∈ fn(q) we only touch points inJx̃ ⊢ p : ñ1nK. Finally we remove
the namen.

• For the remaining cases we proceed in the same manner by exhibiting a con-
structing that forms both bigraphs.

Proposition 3.6. If Jx̃ ⊢ p : ñK = g and Jx̃ ⊢ q : ñK = g′ and g and g′ are isomorphic,
then x̃ ⊢ p ≡σ q : ñ.

Theorem 3.7 (Static correspondence). x̃ ⊢ p ≡σ q : ñ if and only if Jx̃ ⊢ p : ñK =
Jx̃ ⊢ p : ñK.

3.2 Representing Path Contexts and the Open Operation

In order to present the reaction rules of Homerσ we need to be able to represent
the path contexts and the open operation. In this subsectionwe describe how we
translate the path contexts defined in Section 2.5. We do notneed to represent the
evaluation contexts of Homerσ, since these are inherent in the bigraphical setting,
due to the specification of controls as being either active or inactive.

Definition 3.8 (path bigraphs). We define the translation of a path contextCñ
γ into

a bigraph of a certain form, called apath bigraph, inductively in the structure ofC ñ
γ

(using Definition 2.5)

J⊢ C /0
ε : m̃′′K = idm̃′′

J⊢ C ñm̃
δγ : m̃′′K = (locaδ ⊕ idm̃′′)(/ñ◦ (J⊢ C m̃

γ : ñ′K | idñ′) |

((ann ⊕ idm̃′)Jm̃′K) | (resi ⊕ idm̃′′))

if C ñm̃
δγ = δ[(ñ)(C m̃

γ | (−)ñ′)]m̃′ . (−)m̃′′ . We letF,F ′ range over path bigraphs. And as
for Homerσ we will sometimes use subscript to denote the address of the hole and
superscript to denote the bound names of the hole.

We also define an operation equivalent to the open operator in Homerσ.

24

Definition 3.9 (open operator on bigraphs). We define anopen operator on path
bigraphs, ˜m⊙b F , extending the type annotations with ˜m

m̃⊙b idm̃′′ = idm̃′′∪m̃

m̃⊙b F = (locaδ ⊕ idm̃′′,m̃)(/(ñ\ m̃)◦ ((m̃⊙b J⊢ C m̃
γ : ñ′K) | idñ′) |

((ann ⊕ idm̃′,m̃)Jm̃′∪ m̃K) | (resi ⊕ idm̃′′))

if F = (locaδ ⊕ idm̃′′)(/ñ◦(J⊢ C m̃
γ : ñ′K | idñ′) | ((ann ⊕ idm̃′)Jm̃′K) | (resi ⊕ idm̃′′) .

Remark. We cannot just juxtaposition the type annotations asJñ′K | Jm̃K, since we
represent the individual elements of a type annotation explicitly with one node per
element in the annotation, since this would result in our annotations being multisets
rather than sets. E.g.Jñ′K | Jm̃K = Jñ′∪ m̃K does not hold in general. So instead we
only add the elements in ˜m that are not already present in the type annotation.

3.3 A Simple Sorting oń Homerσ
In this subsection we present a simple sorting to ensure thatwe only work with
a subset of ground bigraphs, that is the bigraphs that are ‘correct’ with respect to
our presentation of Homerσ. The sorting introduces a requirement on the possible
nesting of nodes and on how the linkage is performed, particularly that the sets of
free names and variables are kept disjoint.

But before stating the definition of the class of bigraphs that we are interested
in we need some nomenclature to differentiate the differentkinds of links and ports.
We have two kinds of ports: name- and variable-ports.

• Thename-ports are either the single port on atname node or all the free ports
of a rece, take, send, or aloca node.

• Thevariable-ports are the free port of adef node or avar node or the binding
port of asub, rece, or atake node.

In the same way we define two kinds of links:

• A name-link is a link with only name-ports, and if free a name.

• A variable-link is a link with only variable-ports connected to it, and if free a
variable name.

Definition 3.10 (bigraphs good for Homerσ). We define a sub-classI of ground
bigraphs in´Homerσ as the bigraphs that satisfy the following requirements

• We only allow name- and variable-links as links in the bigraph.

• A variable-link can be connected to any number ofvar-ports.

– If a variable-link is bound by either arece-or a take-port, then it con-
tains nodef-ports.

25

– If a variable-link is bound by a port on asub-nodev, then it also has
onedef-port, which resides on a child ofv, and this is the only location
where adef node can occur.

• A name-link can be connected to any number of name-ports.

• For every pair of distincttname nodes enclosed in the sameann node their
name-ports must be connected to distinct links.

• Every loca, send, anddef node must contain a uniqueann child node.
Furthermore,loca andsend nodes must contain a uniqueresi child node.
And these are the only locations whereann andresi nodes can occur.

• All tname nodes must be in aann node and no other kind of nodes can reside
here.

• For every outer name of the parameter of aloca, send, or a sub node a
tname node must exist that points to this name.

Remark. We have introduced all the abovementioned restrictions to enforce that we
only work with bigraphs, that have a structure corresponding to how we interpret
Homerσ in bigraphs. In Homerσ the sets of names and variables are by definition
disjoint, but since we use the links of bigraphs to representboth sets, we need some
additional requirements to enforce this distinction in kinds of links.

The requirements enforce that aloca node and asend node contains unique
resi andann nodes. We also require thatdef can only appear as a child of asub
node. Finally, we require that thetname nodes representing a type annotation only
occur in aann node, that they are unique in the sense that they all are linked to
different name-links, and that they contain all free names of the parameter.

Proposition 3.11(invariant). The class of bigraphs I is preserved by the reaction
relation _ defined in Section 3.4 and contains all images of the translation given in
Definition 3.4.

3.4 Reaction rules of́Homerσ
In this subsection we present the reaction rules of ´Homerσ. As mentioned in Sec-
tion 1 we have chosen to present the rules using a term language instead of the
graphical representation, due to the complexities of the rules.

Definition 3.12(reaction rules of´Homerσ). We depict the reaction rules of´Homerσ
in Table 6 (the send and take rules) and Table 7 (applying and garbage collecting the
substitution).

Remark. In all the rules we have chosen to enumerate the holes from left to right in
the terms representing the bigraphs, but omitting the lastk holes in thek + 1-hole
path contextsFγ andFm̃

γ on which the instantiation acts as the identity. In both the

26

R
Send (sendγδ ⊕ idñ′)

(

idñ | (ann ⊕ idñ) | (resi ⊕ idñ′)
)

| Fγ ◦ (receδ(x) ⊕ idñ′)

R′

idñ′ | (ñ⊙b Fγ)◦ (sub(x) ⊕ idñ′)(idxñ′ | (defx ⊕ idñ)(idñ | (ann ⊕ idñ)))

f
{0 7→ 2,1 7→ 3,2 7→ 0,3 7→ 1}

R
Take F m̃

γ ◦ (locaδ ⊕ idñ′)(idñ | (ann ⊕ idñ) | (resi ⊕ idñ′)) | (takeγδ(x) ⊕ idñ′)

R′

/(m̃∩ ñ)◦ ((ñ⊙b Fm̃
γ)◦ idñ′) |

(sub(x) ⊕ idñ′)(idxñ′ | (defx ⊕ idñ)(idñ | (ann ⊕ idñ)))

f
{0 7→ 2,1 7→ 3,2 7→ 0,3 7→ 1}

Table 6: Reaction rules of´Homerσ: send and take

R
Apply (sub(x) ⊕ idñ′)(C ◦varx | (defx ⊕ idñ)(idñ | (ann ⊕ idñ)))

R′

(sub(x) ⊕ idñ′)(ñ⊙b C ◦ idñ | (defx ⊕ idñ)(idñ | (ann ⊕ idñ)))

f
{0,1 7→ 0,2 7→ 1}

R R′ f
Garbage (sub(x) ⊕ idñ′)

(

idñ′ | (defx ⊕ idñ)
)

idñ′ {0 7→ 0}

Table 7: Reaction rules of´Homerσ: apply and garbage collecting

27

rules Send and Take the path bigraphFγ does not bind the names inδ. In both rules
the content of theann node is used in the open operator, that is the set ˜n. Both rules
mimic their counterparts in Homerσ closely. In the rule Apply we utilise a general
homer contextC satisfying the sorting requirement and which does not closethe
variable-linkx. The reaction rule Garbage, which discards the explicit substitution,
is defined as forΛ́BIG in [Mil04c].

As mentioned in Section 1 we have explicitly typed the holes in the rules and
furthermore defined instantiation and parametric reaction rules such that we do not
allow parameters to contain outer names not mentioned explicitly in the rules. We
have done this to ensure that the scope of a restriction is notlifted as part of fitting
a parameter to a parametric reaction rule. For instance, if we look at the last part of
the Apply rule, concerning thedef node in the explicit substitution

(defx ⊕ idñ)(idñ | (ann ⊕ idñ)) ,

then we explicitly state that the names of the process in the substitution and the
names of the annotation must be the same, ˜n. So it is not possible to lift a restriction
from the process, since this would break this correspondence. We will return to this
subject in Section 4.2.

The rules Send and Take in Table 6 differ from the usual specification of bigraph-
ical parametric reaction rules. In addition to the usual parameters the rules are also
parametrised overpath contexts, as in place ofFγ andF m̃

γ , respectively. In Figure 4
we have sketched the reaction rule Send in order to illustrate this point (we have
elided to draw the free names of the sites). In the figure we have drawn the path
contextFγ as a site containing a bigraph representing the receive prefix. So in order
to utilise this reaction rule we need to both instantiate theparameters and the path
context.

There are two reasons why we cannot use awide reaction rule, as Milner [Mil04c],
between two complementary prefixes (e.g. the send and receive prefix) to specify the
reaction. First and foremost, we need some special structure on the context surround-
ing the receive prefix, it cannot just be an arbitrary context, as it constitutes part of
the address path of the receive prefix. In Figure 4 the path contextFγ specifies that
the nested location structure of the path context constitutes the address pathγ. Sec-
ond, the context surrounding the receive prefix can be changed by the reaction rule,
due to the update of the type annotations, hence it cannot be an evaluation context as
evaluation contexts remain fixed under reaction.

One can consider the parametrisation on path bigraphs in theSend and Take
reaction rule as a kind of higher-order operator, which actsas a function on bigraphs,
taking a bigraph as argument and returning a new bigraph. However, only a subset
of bigraphs (the path bigraphs) are valid arguments.

Example (Mimicking reactions). We consider the reaction

on〈r | r′〉{m} . p | o[n(x) . x]{n} ց p | o[r | r′]{n,m}

28

γδ

send

0
ann

1

resi

2

δ

rece

3
x

Fγ

_ 2

sub

3
x

def

0

ann

1

ñ⊙Fγ

Figure 4: Sketch of the rule Send

in Homer and show how the variant Homerσ and its presentation as a bigraphical
reactive system mimics this reaction. Note that we have omitted the top-level type.
The prefixon〈r | r′〉{m} sends down the processr | r′ to the receiving processn(x) .x
residing at locationo and as a side-effect updates the type annotation of the location.
In Homerσ we have the following sequence of reactions

on〈r | r′〉{m} . p | o[n(x) . x]{n} ցσ

p | o[x[x := (r | r′) : {m}]]{n,m} ցσ

p | o[(r | r′)[x := (r | r′) : {m}]]{n,m} ցσ

p | o[r | r′]{n,m}

using the rules,sendσ, applyσ, andgarbageσ. In the second line we have the location
o containing the process variablex enclosed in an explicit substitution, which can
substituter | r′ of type{m} in for x.

In bigraphs we have the matching sequence of reactions depicted in Figure 5.
Note that we have chosen not to draw the free names ofp and the possible free name
m of r andr′.

3.5 Correspondence

In this subsection we present the operational correspondence between Homerσ and
its presentation as a bigraphical reactive system´Homerσ. We prove the operational
correspondence by considering the individual rules constituting the reaction rela-
tionsցσ and_ . By inspecting the translation we can see that evaluation contexts
in Homerσ are translated to active contexts, and conversely if the image under the
translation is an active context then the preimage must havebeen an evaluation con-
text. We follow the same method as Jensen and Milner by first characterising the
reactions in both Homerσ and ´Homerσ by the forms of the expressions involved.

29

m o n

send

JrK

Jr′K

ann
b

resi

JpK

loca

ann
b

rece
var resi

_

mo n

JpK

loca

ann
b b

sub
var def

JrKJr′K
ann

b

resi

_

mo n

JpK

loca

ann
b b

sub

JrK
Jr′K

def

JrKJr′K ann
b

resi

_

mo n

JpK

loca

JrK

Jr′K ann
b b

resi

Figure 5: Mimickingon〈r | r′〉{m} . p | o[n(x) . x]{n} ց p | o[r | r′]{n,m}

Then we use the definition of the translation to connect the characterisations. We
only present two of the cases (garbageσ) and (sendσ) the remaining two are similar.

Proposition 3.13 and Proposition 3.14 characterise the reaction relationsցσ and
_ (for the rules (garbageσ) and Garbage, respectively) in terms of the form of the
processes and bigraphs.

Proposition 3.13. ⊢ p ցσ p′ : ñ by the rule (garbageσ) if and only if p and p′ are
of the forms

⊢ p ≡σ E(q[x := r : ñ′]) : ñ

⊢ p′ ≡σ E(q) : ñ ,

if x 6∈ fv(q) for some evaluation context E and closed processes q and r.

Proposition 3.14. g _ g′ by the rule Garbage if and only if g and g′ are of the forms

g = E ◦ ((sub(x) ⊕ idñ)
(

h | (defx ⊕ idñ′)h
′
)

)

g′ = E ◦ h ,

for some bigraphs h and h′ with outer face ñ and ñ′, respectively, and an active
context E.

Lemma 3.15(operational correspondence on (garbageσ) and Garbage).
⊢ p ցσ p′ : ñ by the rule (garbageσ) and J⊢ p′ : ñK = s if and only if J⊢ p : ñK _ s
by the rule Garbage.

30

Proof. From Proposition 3.13 we know that⊢ p ցσ p′ : ñ if and only if p and p′

have the forms
⊢ p ≡σ E(q[x := r : ñ′]) : ñ

⊢ p′ ≡σ E(q) : ñ ,
(17)

for some evaluation contextE , closed processesq andr, and wherex 6∈ fv(q). From
α-conversion we can assume that all bound names are distinct and disjoint from
the free names, and without loss of generality that the hole of E is annotated with
the type ˜n′′. From the correspondence between structural congruence and graph
isomorphism (Theorem 3.7) and Definition 3.4 (17) holds if and only if

J⊢ p : ñK = J⊢ E : ñK◦ (J⊢ q[x := r : ñ′] : ñ′′K)
= J⊢ E : ñK◦ ((sub(x) ⊕ idñ′′)(J⊢ q : ñ′′K | (defx ⊕ idñ′)(h

′)))

J⊢ p′ : ñK = J⊢ E : ñK◦ (J⊢ q : ñ′′K) ,

sincex 6∈ fv(q) and lettingh′ = J⊢ r : ñ′K | (ann ⊕ idñ′)Jñ′K. By Proposition 3.14,
takingh = J⊢ q : ñ′′K, this holds if and only ifJ⊢ p : ñK _ J⊢ p′ : ñK by the rule Gar-
bage.

We proceed in the same manner with the case for (sendσ). Proposition 3.16 and
Proposition 3.17 characterise the reaction relationsցσ and_ (for the rules (sendσ)
and Send, respectively) in terms of the form of the processesand bigraphs.

Proposition 3.16.⊢ p ցσ p′ : ñ by the rule (sendσ) if and only if p and p′ are of the
forms

⊢ p ≡σ E(γδ〈r〉ñ′ .q | C m̃
γ (δ(x) .q′,~q)) : ñ

⊢ p′ ≡σ E(q | ñ′⊙C m̃
γ (q′[x := r : ñ′],~q)) : ñ ,

if m̃∩ (δ∪ ñ) = /0 for some evaluation context E , path context C m̃
γ , closed processes

r, q, and~q, and some process q′ where fv(q′) ⊆ {x}.

Proposition 3.17. g _ g′ by the rule Send if and only if g and g′ are of the forms

g = E ◦ ((sendγδ ⊕ idñ′′)
(

h | (ann ⊕ idñ′)h
′ | (resi ⊕ idñ′′)h

′′
)

|
Fγ ◦ ((receδ(x) ⊕ idñ′′′)h

′′′))

g′ = E ◦ (h′′ | (ñ′⊙b Fγ)◦ (sub(x) ⊕ idñ′′′)(
h′′′ | (defx ⊕ idñ′)(h | (ann ⊕ idñ′)h

′))) ,

for some bigraphs h and h′ with outer face ñ′, h′′ with outer face ñ′′, and h′′′ with
outer face ñ′′′, and an active context E with inner face ñ′′, and a path bigraph Fγ with
inner face ñ′′′.

Note that we leave the lastk holes in thek +1-hole path contextFγ unspecified,
as the content of these holes remains fixed under the reaction rule.

Lemma 3.18(operational correspondence on (sendσ) and Send). ⊢ p ցσ p′ : ñ by
the rule (sendσ) and J⊢ p′ : ñK = s if and only if J⊢ p : ñK _ s by the rule Send.

31

Proof. From Proposition 3.16 we know that⊢ p ցσ p′ : ñ if and only if p and p′

have the forms

⊢ p ≡σ E(γδ〈r〉ñ′ .q | C m̃
γ (δ(x) .q′,~q)) : ñ

⊢ p′ ≡σ E(q | ñ′⊙C m̃
γ (q′[x := r : ñ′],~q)) : ñ ,

for some evaluation contextE , path contextC m̃
γ , closed processesr, q, and~q, and

some processq′ wherefv(q′) ⊆ {x}, and where ˜m∩ (δ∪ ñ) = /0. Fromα-conversion
we can assume that all bound names are distinct and disjoint from the free names,
and without loss of generality that the hole ofE is annotated with ˜n′′. From the
correspondence between structural congruence and graph isomorphism we have

J⊢ p : ñK = J⊢ E : ñK◦ (J⊢ γδ〈r〉ñ′ .q | C m̃
γ (δ(x) .q′,~q) : ñ′′K)

= J⊢ E : ñK◦ ((sendγδ ⊕ idñ′′)(J⊢ r : ñ′K | ((ann ⊕ idñ′)Jñ′K) |
(resi ⊕ idñ′′)J⊢ q : ñ′′K) | J⊢ C m̃

γ : ñ′′K◦ (receδ(x) ⊕ idñ′′′)J{x} ⊢ q′ : ñ′′′K)

J⊢ p′ : ñK = J⊢ E : ñK◦ (J⊢ q | ñ′⊙C m̃
γ (q′[x := r : ñ′],~q) : ñ′′K)

= J⊢ E : ñK◦ (J⊢ q : ñ′′K | (ñ′⊙b J⊢ C m̃
γ K)◦ (sub(x) ⊕ idñ′′′)

(J{x} ⊢ q′ : ñ′′′K | (defx ⊕ idñ′)(J⊢ r : ñ′K | (ann ⊕ idñ′)Jñ′K)))

By Proposition 3.17 this holds if and only ifJ⊢ p : ñK _ J⊢ p′ : ñK by the rule Send.

Theorem 3.19(Operational Correspondence). For every well-typed process ⊢ p : ñ,
we have

⊢ p ցσ p′ : ñ and J⊢ p′ : ñK = s if and only if J⊢ p : ñK _ s .

4 Extensions and Ideas

In this section we present some of the thoughts and ideas thathave arisen during
the work on this paper. We describe two orthogonal directions: one is a possible
change to the definition of local bigraphs, called localised links, that would simplify
the presentation presented in this paper by facilitating analternative representation
of type annotations. The other address the location of a closed link arising from the
closure operator used to represent the restriction constructor in Homerσ, and how
our type annotations affects this location.

4.1 Localised Links

In the presentation of Homerσ in Section 3 we utilised the dotsb(the nodes of control
tname) to represent the type annotations of location and send prefixes. Since the
type annotations in Homerσ are sets we needed a way to associate an arbitrary num-
ber of links (or names)2 to a node in anunordered way. We chose the same solution

2Throughout this section we will use the words ‘links’ and ‘names’ interchangeably, as the extension
affects both kinds of entities.

32

m n

ann
b b

ann
b b

ann
b

m n

Figure 6: Original representation and using localised links

as presented in the presentation of “The Game of Life” in [DD05]. In the left-hand
side of Figure 6 we have sketched a situation where we have 3 nodes representing
arbitrary Homerσ-prefixes, and where we would like to associate the namem with
all three nodes and the namen only with the two rightmost nodes. The solution used
in this paper is to introduce anann node as a child of the node and let it contain one
tname node per name that we want to associate with the grand-parentnode. The
single port on thetname nodes are then linked to the names. Using this method we
can associate an arbitrary number of names to a node in anunordered way.

A desired solution would be, to be able to associate a name directly to a node
instead of a port on the node, hence to be able to associate names to a node in an
unordered way, as illustrated on the right-hand side of Figure 6. So thenamesm and
n on the right-hand side of Figure 6 arenot connected to any ports on the three nodes,
but directly to the nodes. In this section we will briefly expand on this possibility,
which we will call localised links. A direct consequence of this extension will be
that we can remove the controlstname andann from the presentation and instead
represent the type annotations directly using localised links. In Figure 7 we have
illustrated the final result in Figure 5, the processp | o[r | r′]{n,m}, using localised
links. Note that the nameo is connected to the only port on theloca node, and
the namesm andn are connected to theloca node. We will expand on an additional
advantage of localised links in Section 4.2 in connection with the location of a closed
link.

Recall that for a local bigraph we require that both its interfaces are local, mean-
ing that all names in the interface are given one (or more) places in the interface.
However contrary to the way we define the association between names and nodes,
we define the association between names and places in the interface in an unordered
way. Note that we do not propose localised links as a replacement for traditional
links, but rather as an addition to these, as we in most presentations need the order-
ing of ports. Note that a link can both be a traditional link and a localised link at the
same time. In the presentation ofm[p]{m} using localised links the namem will both
be used as a traditional link, to represent the name of the location, and as a localised

33

mo n

JpK

loca

JrK

Jr′K

resi

Figure 7: Presentingp | o[r | r′]{n,m} with localised links

link, to represent the type annotation{m} of the location.
Formally, we suggest to introduce a new function to the definition of a local

bigraph. For a local bigraphG : 〈m,~X〉 → 〈n,~Y 〉 with the set of edgesE and the
set of nodesV , we let the functionlocalise map edges and outer names to a set of
locations,localise : E ⊎Y → P (V), where we letP (V) denote the powerset of the
set of nodes. We require that this map satisfies a scoping condition as for traditional
links, meaning that for an outer namey it is only mapped to nodes that are located in
regions, where the name is also located. We define the composition of two bigraphs

F : 〈m,~X〉 → 〈n,~Y 〉 with nodesV , edgesE, and functionlocalise

and

G : 〈l,~Z〉 → 〈m,~X〉 with nodesV ′, edgesE ′, and functionlocalise′

as usual for local bigraphs. The localisation function

localise′′ : E ⊎E ′⊎Y → P (V)⊎P (V ′)

for F ◦G is defined as follows (using the link map,link, of F)

localise′′(x) =

{

localise′(x) if x ∈ E ′ ,

localise(x)
U

x′∈X andlink(x′)=x localise′(x′) if x ∈ E ⊎Y ,

So the locations of an edge inE ′ remain unchanged by the composition, whereas for
a name inY or an edge inE we might need to combine the locations oflocalise and
localise′, if a name inX links to the name or edge, respectively.

4.2 The Location of Restriction

As mentioned in the introduction we have to be careful when combining local names
and non-linear process passing. Since the two processes

(n)m[P] and m[(n)P] (assumingn 6= m) (18)

34

loca

(n)m[P]

loca

m[(n)P]

ñ

loca
ann

b b

(n)m[P]ñn

ñ

loca
ann

b

m[(n)P]ñ

Figure 8: Location of a restriction

are not structural congruent in general, they should not give rise to isomorphic bi-
graphs under the translation defined in Section 3.1. If we consider our presentation
without type annotations then the two processes in (18) willgive rise to isomorphic
bigraphs, since we have no means to detect whether the closure occur outside or in-
side the location, as illustrated in the left part in Figure 8(note that we have ignored
the residual process after the location prefix and the name of the location).

Recall that we have decided to use closure/n in bigraphs to represent the restric-
tion constructor in Homerσ. In bigraphical reactive systems which copy parameters
this can lead to the same kind of problems as mentioned in the introduction. In the
right-hand part in Figure 8 we have illustrated how the type annotations helps us in
distinguishing the two bigraphs. If the restricted name appears in the type annota-
tion then the closure must be outside the location and every copy of the parameter
will share this link. On the other hand, if the restricted name does not appear in the
type annotation then the closure must be inside the locationand every copy of the
parameter will have a distinct link.

Even though the type annotations solve the problem in distinguishing the repre-
sentations of the Homerσ processes in (18), the solution does not, however, exactly
match our intuition about where the closure resides. We illustrate this in Figure 9,
where the two bigraphs both represent the process(n)m[P]ñn under the translation.
The problem with our representation of type annotations is that the annotations are
located inside theloca node and not on the “border” or outside of the node as in
Homerσ. So we cannot ensure that the closure remains outside the border of the
loca node. Note that in our syntactic term language representation of bigraphs is
not possible to express the bigraph on the right-hand side ofFigure 9, as this would
imply that a restrictioninside a location can bind the names in the type annotation,
hence breaking the lexical scoping of restriction.

This ambiguity does not, however, affect the reaction relation of´Homerσ as our
reaction rules, presented in Definition 3.12, are explicitly typed and since we define
instantiation without forcing the parameters on discrete normal form. In particular
the explicitly typing of holes in the reaction rules involving type annotations (Send,
Take, and Apply) forces the hole of the resource to have the same set of free names
as the hole of the type annotation. Since we at the same time define instantiation
where the parameter has no superfluous outer names, we can ensure that if the re-

35

ñ

loca
ann

b b

(n)m[P]ñn

ñ

loca
ann

b b

(n)m[P]ñn

Figure 9: Ambiguousness of the location of a restriction

stricted name appears in the type annotation (meaning that the restriction is outside
the node) then every copy of the parameter will share this link. On the other hand,
if the restricted name does not appear in the type annotationthen every copy of the
parameter will have a distinct link.

An immediate suggestion for an alternative to the type annotations is to represent
name closures explicitly as a control with a binding port. However, then the usual
scope condition would require the place with the binding port in the representation of
(n)p to bearound the processp, which would break the usual structural congruence
equalities such as

(n)(m)p ≡σ (m)(n) and (n)p | q ≡σ (n)(p | q), for n 6∈ fn(q). (19)

Recently Jensen and Milner have proposed a solution to the same problem of
copying parameters with closed links unambiguously. In their solution they make
use of an atomicres node for the restriction with a new kind ofoutward-binding
port. The sole purpose of theres node is to facilitate this binding port, but contrary
to the binding ports seen so far this port is outward-binding. As the name implies
an outward-binding port does not bind inside the node (as thenode is atomic), but
instead it binds inside the parent node, however the scope ofthe binding port cannot
extend outside the parent node, so its scope covers sibling nodes and their descen-
dants. In Figure 10 we have illustrated the concept of outward-binding. We have an
outward-bindingres node which scope covers the entire content of the surrounding
loca node. Besides this change in the scope of the binder the outward-binding port
behaves as a traditional binding port.

This explicit representation of restriction using oneres place per restriction be-
haves well wrt the structural equalities in (19), but instead it breaks the equalities:

π . (n)p ≡σ (n)π . p, if n 6∈ fn(π) and (n)p ≡σ p, if n 6∈ fn(p).

In the first case the location of the restriction differs andin the second case the
left-hand side contains an outward-bindingres node whereas the right-hand side
does not. So if we consider our presentation with outward-binding then graph iso-
morphism will correspond to an equivalence strictly finer than structural congruence.
Another solution would be to consider bigraphs quotiented by an equivalence coarser
than lean-support equivalence.

36

loca

res

Figure 10: Outward-bindingres node

More importantly even if we add outward-binding to our presentation we will
still need the type annotations, as we loose information about free names when we
compose bigraphs. We consider the following counterexample from the introduction
with the processes

p
def
= 0

and
q

def
= (m)(m[n[0]]) (wherem 6= n)

as bigraphs with the outer namen. If we insert them into the representation of the
following context (using outward-binding to represent therestriction)

C
def
= (n)(m′[(−)]) ,

then we forp’s case have lost the information that the process residing at location
m′ knows the namen, whereas we still have this information forq. So we can
create a counterexample as done in (13) in the introduction.So without the explicit
localisation of links within active sub locations we loose local information about the
outer names of a process when we place it in a context. So this solution does not
provide the desiredbisimulation congruence.

An alternative solution for making the connection to Homerσ more tight will
probably be to use localised links or to locate theann andresi nodes of a prefix
outside the prefix. In Figure 11 we have sketched how we will represent the Homerσ
processδ[r]ñ . q using this alternative representation. This solution willforce the
closure to be outside theloca node if the name appears in the annotation, as the
scope of the closure must cover both theloca and theann node. The solution with
localised links will also force the closure to be outside theloca node if the name
appears in the annotation, since the localised links representing the type annotation
will be connected on theloca node.

5 Conclusions and Further Work

We have presented a higher-order calculus with non-linear active process mobility
and local names, Homer as a bigraphical reactive system ´Homerσ. To this end

37

δ

loca

JrK

ann

JñK

resi

JqK

Figure 11: An alternative representation of the processδ[r]ñ .q

we have introduced a variant of Homer called Homerσ, where we have introduced
explicit substitutions. The presentation of Homer in this paper also differs from
existing presentations in that we have replaced the free name extension operator with
type annotations and in that we only consider well-typed relations between processes
with the same type.

We prove that structural congruence of Homerσ corresponds to graph isomor-
phism in ´Homerσ and that there is a tight operational correspondence between the
reaction relation of Homerσ and the reaction relation of ´Homerσ. The presenta-
tion highlights the importance of keeping explicit track ofthe names of parameters
in the reaction rules of bigraphs. This ensures us that we canhandle the problems
with local names and non-linear process passing properly. It also address the issue
of localisation of names (links) which suggests an extension to local bigraphs called
bigraphs with localised links. The presentation in this paper extends the one given
in [BH05] to include the full Homer calculus.

Several interesting questions arise from the work done in this paper. First and
foremost, we plan to examine the labelled transition bisimulation congruence deriv-
able using the general theory of bigraphs and compare it to the labelled transition
bisimulation congruences for Homer in [HGB04]. In this process we plan to exam-
ine proof techniques known from calculi for concurrency andmobility in the setting
of bigraphs. Especially we plan to investigate the notion ofup-to proof techniques
related to bisimulation equivalences in bigraphs. We wouldalso like to further ex-
amine the extension of localised links, both with respect tofacilitate presentations as
bigraphical reactive systems and with respect to the behavioural theory of bigraphi-
cal reactive systems. In particular we would like to examineif the extension retains
relative pushouts. Also we would like to examine to which extend we can express
one kind of linkage using the other. In this paper we have briefly sketched how
we can represent localised links using traditional links and nested controls. For the
other direction we would probably need one control for each ordinal, or use nesting,
to represent the ordering of ports on a node. However both solutions seems to require
a large and complicated sorting scheme.

Another direction could be to pursue the alternative presentation sketched in the
last part of Section 4.2 and see how it relates to the presentation presented in this
paper. An immediate consequence of the alternative presentation is that the reaction

38

rules will become more complicated as we need to introduce more linking informa-
tion in the rules. A yet unexamined direction is to investigate a variant of Homer
with type annotations, but without the restriction constructor in the syntax. From a
typed Homer process with type annotations we can calculate which names that are
bound and the scope of the restriction binding them.

Currently several proposals exists for augmenting either the controls or interfaces
of bigraphs with additional information for expressing constraints on the possible
nesting of nodes, the possible linkage between ports etc. Itwould be interesting to
see whether the sorting presented in Section 3.3 can be expressed in these settings,
and whether we can enforce a more strict control with the movement and locations
of closed free links. Hence to capture some of the same informations as the outward-
binding node, but without introducing an explicit node representing the restriction.
A first try could be to augment the controls with informationabout whether a control
permits that closed free links penetrate the boundary of thecontrol.

Acknowledgements The authors would like to thank the members of theBigraph-
ical Programming Languages-group at ITU, in particular Troels C. Damgaard, for
helpful discussions about how to represent certain properties and constructs in bi-
graphs. The authors would also like to thank Søren Debois forcreating the initial
PSTricks macros for drawing bigraphs.

References

[ACCL91] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques
Levy. Explicit substitutions. Journal of Functional Programming,
1(4):375–416, 1991.

[Bar84] Hendrik P. Barendregt.The Lambda Calculus: Its Syntax and Seman-
tics, volume 103 ofStudies in Logic and the Foundations of Mathemat-
ics. North-Holland Publishing Co., 1984.

[BB90] Gerard Berry and Gérard Boudol. The chemical abstract machine. In
Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming laguages (POPL’90), pages 81–94. ACM Press,
1990.

[BH05] Mikkel Bundgaard and Thomas Hildebrandt. Bigraphical semantics
of higher-order mobile embedded resources with local names. In Pro-
ceedings of the Graph Transformation for Verification and Concurrency
workshop (GT-VC’05), Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 2005. To appear.

[BHG05a] Mikkel Bundgaard, Thomas Hildebrandt, and Jens Chr. Godskesen. A
CPS encoding of name-passing in higher-order mobile embedded re-
sources. In Jos Baeten and Flavio Corradini, editors,Proceedings of the

39

11th International Workshop on Expressiveness in Concurrency (EX-
PRESS’04), volume 128 ofElectronic Notes in Theoretical Computer
Science, pages 131–150. Elsevier, 2005.

[BHG05b] Mikkel Bundgaard, Thomas Hildebrandt, and Jens Chr. Godskesen. A
CPS encoding of name-passing in higher-order mobile embedded re-
sources.Theoretical Computer Science, 2005. . Accepted for publica-
tion in a special issue of TCS.

[BL05] Roberto Bruni and Ivan Lanese. On graph(ic) encodings. In Bar-
bara Koenig, Ugo Montanari, and Philippa Gardner, editors,Graph
Transformations and Process Algebras for Modeling Distributed and
Mobile Systems, number 04241 in Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany, 2005.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients.Theoretical
Computer Science, 240(1):177–213, 2000.

[CMS05a] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. Bi-
graphical logics for XML. Submitted for publication, 2005.

[CMS05b] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. Bi-
Logics: Spatial-nominal logics for bigraphs. Submitted for publication,
2005.

[CVN04] Giuseppe Castagna, Jan Vitek, and Fracesco Zappa Nardelli. The Seal
calculus. accepted for publication inInformation and Computation,
2004.

[DD05] Søren Debois and Troels C. Damgaard. Bigraphs by example. Techni-
cal Report TR-2005-61, IT University of Copenhagen, 2005.

[FMQ96] Gianluigi Ferrari, Ugo Montanari, and Paola Quaglia. A π-calculus
with explicit substitutions.Theoretical Computer Science, 168(1):53–
103, 1996.

[Gar00] Philippa Gardner. From process calculi to process frameworks. In
Catuscia Palamidessi, editor,Proceedings of the 11th International
Conference on Concurrency Theory (CONCUR’00), volume 1877 of
Lecture Notes in Computer Science, pages 69–88. Springer Verlag,
2000.

[GW00] Philippa Gardner and Lucian Wischik. Explicit fusions. In Mogens
Nielsen and Branislav Rovan, editors,Proceedings of the 25th Interna-
tional Symposium on Mathematical Foundations of Computer Science
(MFCS’00), volume 1893 ofLecture Notes in Computer Science, pages
373–382. Springer Verlag, 2000. Full version to appear in TCS.

40

[HGB04] Thomas Hildebrandt, Jens Chr. Godskesen, and Mikkel Bundgaard. Bi-
simulation congruences for Homer — a calculus of higher order mobile
embedded resources. Technical Report TR-2004-52, IT University of
Copenhagen, 2004.

[Hir99] Daniel Hirschkoff. Handling substitutions explicitely in theπ-calculus.
In Proceedings of Second International Workshop on Explicit Sub-
stitutions: Theory and Applications to Programs and Proofs (WEST-
APP’99), pages 28–43, 1999.

[HNOW05] Thomas Hildebrandt, Henning Niss, Martin Olsen, and Jacob W. Win-
ter. Distributed reactive XML - an XML-centric coordination middle-
ware. Technical Report TR-2005-62, IT University of Copenhagen,
2005.

[HW05] Thomas Hildebrandt and Jacob W. Winther. Bigraphs and (reactive)
XML — an XML-centric model of computation. Technical ReportTR-
2005-56, IT University of Copenhagen, 2005.

[Jen05] Ole Høgh Jensen.Mobile Processes in Bigraphs. PhD thesis, Depart-
ment of Computer Science, Aalborg University, 2005. Forthcoming.

[JM03] Ole Høgh Jensen and Robin Milner. Bigraphs and transitions. InPro-
ceedings of the 30rd ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages (POPL’03), pages 38–49. ACM Press,
2003.

[JM04] Ole Høgh Jensen and Robin Milner. Bigraphs and mobileprocesses
(revised). Technical Report UCAM-CL-TR-580, University of Cam-
bridge, Computer Laboratory, 2004.

[LM00] James J. Leifer and Robin Milner. Deriving bisimulation congruences
for reactive systems. In Catuscia Palamidessi, editor,Proceedings of the
11th International Conference on Concurrency Theory (CONCUR’00),
volume 1877 ofLecture Notes in Computer Science, pages 243–258.
Springer Verlag, 2000.

[Mil96] Robin Milner. Calculi for interaction. Acta Informatica, 33(8):707–
737, 1996.

[Mil04a] Robin Milner. Bigraphs for petri nets. In Jörg Desel, Wolfgang Reisig,
and Grzegorz Rozenberg, editors,Lectures on Concurrency and Petri
Nets: Advances in Petri Nets, volume 3098 ofLecture Notes in Com-
puter Science, pages 686–701. Springer Verlag, 2004.

[Mil04b] Robin Milner. Bigraphs whose names have multiple locality. Tech-
nical Report UCAM-CL-TR-603, University of Cambridge, Computer
Laboratory, 2004.

41

[Mil04c] Robin Milner. Local bigraphs, confluence andλ-calculus, 2004. Draft
of October 31, 2004.

[O’C04] Shane O’Conchuir. A note onλsub (draft). Unpublished draft, Decem-
ber 2004.

[Ros96a] Kristoffer H. Rose. Explicit substitution — tutorial & survey. Lecture
Series LS-96-3, BRICS, Department of Computer Science, University
of Aarhus, 1996. v+150 pp.

[Ros96b] Kristoffer H. Rose.Operational Reduction Models for Functional Pro-
gramming Languages. PhD thesis, Department of Computer Science,
University of Copenhagen, 1996.

[San92] Davide Sangiorgi.Expressing Mobility in Process Algebras: First-
Order and Higher-Order Paradigms. PhD thesis, Department of Com-
puter Science, University of Edinburgh, 1992.

[Tho93] Bent Thomsen. Plain CHOCS: A second generation calculus for higher
order processes.Acta Informatica, 30(1):1–59, 1993.

[Zim04] Pascal Zimmer. On the expressiveness of pure mobileambients.Jour-
nal of Mathematical Structures in Computer Science, 13(5):721–770,
2004.

42

