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Abstract. Interactive configuration is the problem of assisting a user in
selecting values for parameters that respect given constraints. The problem
was introduced as a problem of product configuration with the emergence
of the mass-customization paradigm in product manufacturing but has also
been applied to other application areas. Examples include specifying a prod-
uct (a PC or a car), a service (a plane ticket or an insurance) or setting up
equipment (a VCR or heating controller). Intuition is that in these situations,
there is no definable unique best solution, and therefore a user should instead
be guided in selecting the appropriate values for the parameters while at the
same time obeying the constraints and meeting user preferences. The guid-
ance takes the form of immediate feedback on the consequences of choices.
There are three main important features required of an implementation of
interactive configuration: It should be complete, backtrack-free, and provide
real-time performance. It is a computational challenge to obtain all three
simultaneously.

In this paper we look at interactive reconfiguration, where the start-
ing point is a full valid configuration, which for external reasons becomes
inconsistent and therefore has to be changed back to a consistent configu-
ration. We take the approach of determining a small set of parameters that
need to be changed and on these perform interactive configuration to get
back to a consistent configuration. We present two BDD-based precompila-
tion algorithms for solving the problem. One based on a monolithic BDD-
representation of the solution space and another using a set of BDDs. We
carry out experiments on a set of power supply restoration benchmarks and
show that the set-of-BDDs algorithm scales well. In fact, we are able to per-
form interactive reconfiguration on examples where interactive configuration
is not possible due to explosions in the size of the corresponding monolithic
BDDs. This shows that even systems that are too large for full interactive
configuration could be amenable to reconfiguration.

1 Introduction

Interactive configuration problems are special applications of CSP problems where
a user is assisted by supporting software to interactively assign values to variables.
This software, called a configurator, assists a user by calculating and displaying valid
choices for each unassigned variable in what is called valid domains computations.
Application areas include customizing physical products (such as PCs and cars) and
services (such as airplane tickets and insurances).

There are three main important features required of an implementation of in-
teractive configuration: it should be complete (all valid configurations should be
reachable through user interaction), backtrack-free (a user is never forced to change
an earlier choice due to incompleteness in the logical deductions), and provide real-
time performance (feedback should be fast enough to allow real-time interactions).
The requirement of obtaining backtrack-freeness and at the same time keep com-
pleteness makes the problem of calculating valid domains NP-hard. The real-time



performance requirement enforces further that runtime calculations are bounded in
polynomial time and preferably in practice within approximately 250 milliseconds
according to user-interface design criteria for experiencing real-time interaction [1].
Therefore the current approaches that meet all three conditions use offline precom-
putation to generate an efficient runtime data structure representing the solution
space [2–5]. The challenge for the data structure is that the solution space is almost
always exponentially large and it is NP-hard to find. Despite the bad worst-case
bounds, it has nevertheless turned out in real industrial applications that the data
structures can often be kept small [6, 4, 3].

The interactive configuration algorithms work from an initially empty assign-
ment of values for the parameters and proceed towards a full assignment of values
to all the parameters in interactions with the user. However, in this paper we take
the viewpoint of starting from a complete configuration that becomes inconsistent
because of a change to one or more of the parameters forced upon the configuration
for external reasons. For example, in configuring a PC on a web-site, an earlier saved
configuration could be revisited and it could be discovered that a certain component
is no longer available for sale and another consistent configuration would have to
be found.1 In power supply distribution, a fault could cause a power distribution
line to be shut down and a new configuration of the distribution network must be
found.

Our approach is that in the reconfiguration situation, a subset of the parameters
have to be changed in order to restore consistency. Often it will be desirable to
change as few parameters as possible but other criteria that were also important
in creating the original configuration will probably also be relevant to consider.
Our point of view is that the user should be given control to interactively reassign
variables in real-time in a complete and backtrack-free manner, and thus effectively
explore the trade-offs between different criteria, such as selecting in his opinion
the second best PC component instead of the out-of-stock component, or find a
configuration of the power distribution network that tries to maximize the number
of customers regaining electricity without shutting down distribution to important
nodes such as hospitals and at the same time taking into account the plans for next
week’s planned maintenance on some of the supply lines.

We introduce interactive reconfiguration as a formulation of the problem of go-
ing from a full valid configuration, to a forced inconsistent configuration and back
to a full valid configuration using interactive configuration in obtaining it. We de-
scribe two different BDD-based reconfiguration algorithms. A monolithic algorithm,
which can be used when the entire problem can be compiled into a single BDD. A
set-of-BDDs algorithm, which works with a set of BDDs and scales to much larger
instances where a single BDD cannot be found, thus allowing us to perform interac-
tive reconfiguration even when interactive configuration is not possible. We evaluate
the performance of the algorithms on a newly introduced set of benchmarks from
the field of Power Supply Restoration (PSR), where reconfiguration is the daily
mode of operations.

Interactive reconfiguration is related to the computation of explanations and
restorations [7, 8, 2]. However, these concepts are usually defined in order to support
the interactive configuration process and not in order to deal with an initial invalid
configuration. The relationship is further elaborated in section 5.

The remainder of the paper is organized as follows. In section 2, we formally
define interactive reconfiguration and describe the reconfiguration algorithms. The
Power Supply Restoration benchmarks are described in section 3. In section 4,

1 At the time of writing this happens at one of the main PC vendor’s website, except that
reconfiguration is not supported. The configuration is simply dropped as being invalid.
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we present the empirical evaluation of our approach. Related work is presented in
section 5, while section 6 concludes the paper.

2 Interactive Reconfiguration

The basis for our discussion of interactive reconfiguration is closely related to con-
straint satisfaction problems with the only difference being that instead of con-
straints as explicit sets of tuples, we use (the more compact) propositional formulae
for representing constraints.

Definition 1. A configuration problem (CP) C is a triple (X, D, F ) where X is a
set of variables {x1, . . . , xn}, D = D1 × . . . × Dn is the cartesian product of their
finite domains D1, . . . , Dn and F = {f1, ..., fm} is a set of propositional formulae
over atomic propositions xi = v, where v ∈ Di, specifying conditions on the values
of the variables.

A total configuration is an assignment ρ of values v1, . . . , vn to each of the vari-
ables represented as a set of pairs (xi, vi) such that vi ∈ Di. A partial configuration
ρ is an assignment to a subset of the variables. We let dom(ρ) denote the domain of
the assignment ρ, i.e., dom(ρ) = {xi | ∃vi ∈ Di.(xi, vi) ∈ ρ}. With these definitions
a partial assignment for a configuration problem has dom(ρ) ⊆ X and is total if
dom(ρ) = X. A total configuration ρ is valid if it satisfies all the formulae, i.e.
ρ |= fj for j = 1, . . . ,m, which we also abbreviate as ρ |= F . A partial configuration
ρ is valid, abbreviated as ρ |=p F , if it can be extended to a total valid configu-
ration ρ′ ⊇ ρ. Notice, that while determining a total configuration is valid is easy
by a straightforward evaluation of all the formulae, determining whether a partial
configuration is valid, involves solving an NP-hard satisfiability problem.

Interactive Configuration Given a configuration problem C = (X, D, F ) and a
partial configuration ρ, interactive configuration is the process of assisting a user in
interactively reaching a total valid configuration starting from ρ. The key operation
in the interaction is that of computing for each unassigned variable xi ∈ X \dom(ρ)
the valid domain Dρ

i ⊆ Di such that it contains those and only those values that
can be extended to a total valid configuration, i.e. Dρ

i = {v ∈ Di | ∃ρ′ : ρ′ |=
F ∧ ρ ∪ {(xi, v)} ⊆ ρ′}. We call this the valid domains computation. For ease of
presentation, we shall take Dρ

i = {vi} for (xi, vi) ∈ ρ and refer to the tuple of all
the Dρ

i ’s as Dρ.
At each step of the interaction, the configurator reports the valid domains to the

user based on the current partial assigment of his earlier choices ρ. The user then
picks an unassigned variable xj ∈ X \dom(ρ) and selects a value from the calculated
valid domain vj ∈ Dρ

j . The partial assignment is then extended to ρ∪{(xj , vj)} and
another interaction step is initiated.

In previous work [4, 9] this functionality was obtained by representing the set
of solutions to C, all the total valid configurations, as a Binary Decision Diagram
(BDD) [10]. The BDD represents the set Sol = {ρ | ρ |= F} through a proper
encoding of the finite domains with Boolean variables. For a given valid partial
assigment ρ, we denote by Solρ = {ρ′ ∈ Sol | ρ ⊆ ρ′, ρ′ |= F} the set of total
solutions consistent with ρ.

The interactive configuration algorithm InCo in figure 1 summarizes the inter-
active process starting from the compiled representation of the set of solutions Sol
and a valid partial assignment ρ, which in typical applications initially is empty.

The InCo algorithm helps us to reach a valid total configuration as an extension
of the argument ρ.
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InCo(Sol, ρ)
1: while |Solρ| > 1
2: compute Dρ = ValidDomains(Sol, ρ)
3: report Dρ to the user

4: the user chooses (xi, v) for some xi 6∈ dom(ρ), v ∈ Dρ
i

5: ρ← ρ ∪ {(xi, v)}
6: return ρ

Fig. 1. Interactive configuration algorithm working on a monolithic representation of the
solutions Sol as a BDD

Interactive Reconfiguration For reconfiguration, we need to model externally
forced changes to the current total assignment ρ. We model the external events
as a partial assignment ρf (f for fixed: it must not be changed in the process of
obtaining a new valid configuration). An assignment ρ can be updated with another
assignment ρf by overwriting assignments in ρ with assignments on overlapping
variables in ρf . We denote this operation by

ρ[ρf ] = {(xi, vi) | (xi, vi) ∈ ρf or (xi 6∈ dom(ρf ) and (xi, vi) ∈ ρ)}.

Reconfiguration comes into play when ρ[ρf ] is invalid. We want to keep most of the
existing assignments unchanged and therefore we try to compute a small release set
of variables R ⊆ X \ dom(ρf ) that need to be unassigned from ρ1 = ρ[ρf ] in order
to reach a valid partial configuration ρ2 ⊇ ρf . The partial configuration ρ2 is found
as ρ1 ↑ R = {(xi, vi) ∈ ρ1 | xi 6∈ R}.

Definition 2 (Interactive Reconfiguration). Given a configuration problem C(X, D, F ),
a starting valid total configuration ρ |= F and a forced partial assignment ρf such
that the updated total configuration ρ1 = ρ[ρf ] is invalid. The reconfiguration prob-
lem is to find a (small) release set R ⊆ X\dom(ρf ) such that the partial assignment
ρ2 = ρ1 ↑ R is valid if such a set exists or report that it does not exist.

Notice, that if ρf by itself is invalid it will be impossible to find a release set. After
computing R, we provide the user with interactive configuration functionalities on
ρ2, in order to again arrive at a total configuration.

We now explain the two different approaches to interactive reconfiguration:
monolithic and set-of-BDDs.

2.1 Monolithic Approach

The algorithm in figure 2 presents interactive reconfiguration in the monolithic
approach.

InRecoMono(Sol, ρ, ρf ) /* ρ is valid and total */

1: ρ1 ← ρ[ρf ] /* ρ1 is invalid and total */

2: R← PickReleaseSetMono(Sol, ρ, ρf )
3: ρ2 ← ρ1 ↑ R /* ρ2 is valid and partial */

4: ρ′ ← InCo(Sol, ρ2) /* ρ′ is valid and total */

5: return ρ′

PickReleaseSetMono(Sol, ρ, ρf )
1: R← ShortestPath(Solρf , ρ, cost)
2: return R

Fig. 2. Interactive reconfiguration algorithm
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The key part of the algorithm is the PickReleaseSetMono function (line 2) which
computes a release set R given the BDD for the full solution space Sol. We first
restrict Sol to Solρf as BDD operations. We then find the set of variables corre-
sponding to the path of lowest cost using the cost function that has zero cost on
BDD edges corresponding to assignments in ρ, and a positive cost on all other as-
signments. The algorithm works as a depth-first traversal of the BDD and can thus
be implemented to run in linear time.

A similar algorithm for finding minimum cost paths is explained in more details
in [11].

2.2 Set-of-BDDs Approach

Sometimes the monolithic approach is not feasible because the intermediate or re-
sulting BDD for representing the solutions Sol becomes too big. We therefore develop
an algorithm based on a set of BDDs. There will be a BDD for each of the formulae
fj ∈ F . We denote the j’th BDD by Solj and the full set of BDDs by SSol. In
the precompilation step, SSol will be computed. When reconfiguration has to take
place, we will find a release set R in an incremental fashion and compute a single
BDD RelSol of the relevant part of the solution space to be used for reconfiguration.
The BDD RelSol is found as a conjunction of the BDDs Solρ2

j corresponding to the
BDDs Solj restricted with the assignment ρ2. The algorithm in figure 3 illustrates
this approach.

InRecoSoB(SSol, ρ, ρf ) /* ρ is valid and total */

1: ρ1 ← ρ[ρf ] /* ρ1 is invalid and total */

2: R← PickReleaseSetSoB(SSol, ρ, ρf )
3: ρ2 ← ρ1 ↑ R /* ρ2 is valid and partial */

4: RelSol←
Vm

j=1 Solρ2
j

5: ρ′ ← InCo(RelSol, ρ2) /* ρ′ is valid and total */

6: return ρ′

Fig. 3. Interactive reconfiguration algorithm for sets of BDDs

A key element in the algorithm, is the incremental computation of the release
set (line 2). There are many ways in which this could be done. We formalize it as a
function next(Y ) which from a set of variables Y finds a next larger set of variables
to be tried for a release set. In each incremental step, we verify whether the current
candidate for a release set will provide a valid partial configuration by checking that
if the set of variables is indeed released, the resulting partial configuration has at
least one extendable solution through a satisfiability check. The satisfiability check
is performed with the algorithm SoBSAT(SSol, ρ) which determines whether there
exists a total ρ′ ⊇ ρ fulfilling all the BDDs in SSol.

The algorithm SoBSAT is implemented as a Propositional Constraint Solver
that is based on a BDD representation of individual (propositional) constraints,
using the learning and conflict-resolution mechanisms of modern SAT solvers [12,
13]. It is implemented on top of the BDD-package Buddy [14].

The computation of the release set is presented in figure 4.
For the function next(Y ) (line 7) we require that it always adds at least one

variable unless Y is the full set of variables: next(Y ) ⊇ Y and next(Y ) = Y implies
Y = X. Otherwise the function can be chosen depending upon the application. It
could for instance use structural information in the problem in order to try to select
variables that are close to the variables given as arguments so that there is some
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PickReleaseSetSoB(SSol, ρ, ρf )
1: ∆← dom(ρf )
2: ρ1 ← ρ[ρf]

3: R← ∅
4: while not SoBSAT (SSol, ρ1 ↑ R) do

5: if R ∪∆ = X then

6: halt /* all variables tried, no solution: ρf 6|= F */

7: R← next(R ∪∆) \∆
8: end

9: return R

Fig. 4. Pick release set algorithm in the set-of-BDDs approach

locality in the spreading of release set approximations. The function could even be
given a priori by a user describing preferred sequences of release sets to try out or
interactively by adding in variables on the fly. In the present experiments we used
two domain specific heuristic algorithms for computing next(Y ) as described in the
experiments section.

2.3 Complexity Issues

The complexity of checking whether ρf is restorable (i.e. answering whether ρf |=p

F ) depends on the underlying data representation. In the monolithic case this task
is trivial. It is equivalent to checking wether the BDD for Sol is the terminal node
corresponding to false. If all the rules are represented separately as a set of BDDs
it is NP-hard since the Boolean satisfiability problem [15] can be reduced to it.

The task of finding the optimal release set in the monolithic case is linear in
the size of the BDD representation of solutions Sol. The complexity of computing a
release set in the set-of-BDDs approach is NP-hard since in every incremental step,
the algorithm checks restorability of a partial configuration ρ1 ↑ R (Fig. 4, line 4).
It is expected however that the NP-hard part of the problem will not inflict too
heavy a computational overhead in the real world instances where the unassigning
heuristic (next(Y ) function) exploits the domain specific structure encoded into the
instance and works only on a small subset of the entire configuration. This intuition
is supported by our experiments with Power Supply Restoration.

3 Power Supply Restoration

Distribution Network The supply of electrical power involves power generation
at power plants, transmission over larger areas via high-voltage transmission grids,
and transmission to consumers via local distribution networks.

A distribution network is organized in substations, local power sources that
supply a number of radial feeders which are tree structures of powered electric
lines. Each line has two switching devices at both ends (which when both turned off
effectively isolates the line from the electric system). Nodes are connection points
between the lines, and can be just a branching point or also a connection to a sink,
a transformer station that consumes electricity from the network and delivers it to
final consumers. For a more detailed description, please refer to [16–19].

Electric lines can become faulty, for example during bad weather conditions,
when trees fall down, in which case the feeder supplying the line is turned off. This
affects the entire area supplied from the feeder, and the problem is in reconfiguring
the network by opening and closing lines, to resupply the maximum number of
consumers in the affected areas while addressing a number of other domain specific
goals (minimize the number of intrusive actions [20], minimize the change of the
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standard network topology, do not overload lines or do that for just a short period,
prioritize in resupplying specific areas).

Model For each line L we introduce two variables: L dir and L load. The variable
L dir represents a flow direction in a line which can be: off, forward, or backward
(depending on whether the line is off or on and from which direction it is being
supplied). The current load in the line (L load) is a finite domain integer (in our
case the domain is integers from 0 to 13). Every sink that is powered consumes
one unit of current. A sink is modelled via a Boolean variable S powered which
represents a sink being either off or on. A power source (a substation) can also be
supplying energy or not, which is also modelled as a Boolean variable P powered.

One of the main requirements in modelling the PSR network is to forbid feeding
a node from two different directions, and to model physical laws regulating current
loads in the lines. To do this, we generated explicit set of direction rules for each
node and used Kirchoff’s laws stating that the current going into a node must equal
the coming out of the node. For a detailed description refer to [19].

Instances We use a number of new instances from the Power Supply Restoration
domain. They were created by Stuart Henney, Tine Bak, Rene Jensen and Lars
Sonne [18, 19] in collaboration with NESA - the Danish power distributor in the
Copenhagen area [21]. All the instances are made available for download at [22].
Structural properties of these instances are reported in Table 1.

Table 1. Benchmark properties

Benchmark name #Lines #Sinks #Rules #Variables Size(KB)

Std-diagram 13 7 72 36 215
1-6+22-32 21 17 122 61 455

Complex-P2 24 18 138 75 3.282
Complex-P3 28 19 159 88 61.240

1-32 38 32 222 110 -
Large 66 56 386 190 -

Complex-P1 102 82 592 299 -
Complex 146 119 849 414 -

The first column in the table lists the name of the benchmark. Subsequent 2
columns list the number of lines and sinks in the network topology of the instance.
The following 2 columns (#Rules and #Variables) indicate the number of declared
variables and rules in our encoding of the instance. Finally, in case the compilation
of entire network was possible, the last column indicates the size of resulting BDD
in Kilobytes.

4 Experimental Evaluation

We implemented the reconfiguration algorithms, on top of CLab [23], a library of
interactive configurator based on a single BDD representation. All the experiments
were carried out on a Pentium-Xeon machine with 4GB RAM and 1MB L2 Cache,
running Linux.
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Two Set-of-BDDs heuristics We implemented two domain specific heuristics in
the set-of-BDDs approach for the next-computations, and measured their perfor-
mance.

The first heuristic H1 unassigns all the variables (L dir, L load) representing
the lines that are downstream the fault line (i.e. the lines that were supplied with
electricity coming through the fault line), and unassigns only the load variables for
the lines upstream the fault line (the lines on the path from the power source to
the fault line). The heuristic additionally unassigns all the border lines, the healthy
lines that were turned off in the original configuration since their neighboring lines
were supplied from different feeders. Heuristic H1 allows a maximum number of 50
variables to be unassigned (referred to as the threshold).

The second heuristic H2, additionally, through the border lines, identifies neigh-
boring feeders, and selects the ones with the biggest capacity (i.e. feeders that can
additionally supply the biggest number of sinks) and unassigns load variables for all
the lines on the path from the border line to the power source for the neighboring
feeder. The heuristic increases the threshold to 70 variables.

The first heuristic puts more emphasis on response time while the second one
invests more in the restoration quality. Namely, the number of released variables
influences the time needed to compile the BDD representing the restricted solution
space RelSol, and the smaller the threshold, the less time is used and lesser quality
of restoration is reached.

The intuition behind these heuristics is that we usually need to unassign only
few variables compared to the total number of parameters, since the real-world
instances have a built in structure that can be effectively exploited (by appropriate
heuristics) to restrict the effects of external updates ρf to the locally affected area.

Simulation In each simulation, we loaded a precalculated valid initial configuration
ρ, randomly picked a powered line from ρ and made it a fault line which resulted in
an invalid total configuration ρ1. For each heuristic H (H ∈ {H1,H2}) we ran the
reconfiguration algorithm and measured the time t needed to calculate a release set
R, and to compile a resulting BDD RelSol (Fig. 3, page 5). The compilation was
not executed and statistics was not recorded when the release set was greater then
the designated threshold (|R1| > 50, |R2| > 70), a choice made according to the
heuristic goals as described above. In these cases, we believe it is reasonable to use
the valid total configuration found by the satisfiability check SoBSAT to reassign
some of the released variables until the number is reduced below the threshold.

After getting the restoration ρ2 = ρ1 ↑ R and compiling the solution space
RelSol, we measured the average maximum number of variables representing line di-
rections (L dir) that could be left unchanged during configuration with InCo(RelSol, ρ2).
Although this number is maximal only with respect to RelSol (i.e. there might be
a larger maximum for a different R), it still gives us an estimate of the quality of
restoration when comparing against the number of starting powered lines in ρ.

We also measured the average maximum number of resupliable sinks as an-
other indication of the restoration quality. All statistics are reported separately for
heuristics H1 and H2. In Table 2, columns labelled S1, S2 indicate maximum re-
supliable sinks, RDir1, RDir2 maximum unchanged line directions, and t1, t2 the
corresponding running times.

When a single BDD representing the solutions Sol of the entire instance was
compilable, we measured the time t needed to restrict the starting BDD with the
fault line restriction (ρf ). We used the resulting representation of Solρf to measure
the same statistics as in the set-of-BDDs approach: the maximum unaffected number
of line directions RDir and the maximum number of resupliable sinks S. In this
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case, the calculated numbers are global optimums, i.e. it is not possible to keep
more lines unchanged, or to resupply more sinks, whatever the release set R.

For each PSR instance, 100 seed-based pseudo-random simulations were gen-
erated. The same random sequence was used for both approaches. In case of the
instances Complex-P2 and Complex-P3 only 10 simulations were run, due to the
slow response times in the monolithic case. The restoration quality numbers under-
approximate the actual quality in the sense that they compare against the total
number of defined lines and sinks, whether it is possible to reach them or not. This
is best illustrated in the monolithic case, when although we have global optimums,
the numbers indicate less then 100% quality of restoration. In case of the ”Complex”
instance the initial number of powered sinks (104) is smaller then the number of
defined sinks (119) and the above remark does not necessarily apply. We used the
best known variable ordering for the BDD compilation throughout the experiments
(fan-in).

The results are shown in Table 2. The first column lists the name of the bench-
mark. The remaining columns indicate the measured statistics as already described:
the second, third and fourth column list the estimate of the maximum number of
resupliable sinks (one for the monolithic approach and the other two for heuris-
tics H1 and H2). The following three columns indicate the maximum number of
unchanged line directions while the last three columns indicate the corresponding
running times.

Table 2. Combining Experimental Results

Restoration quality Avg. RT (sec)
Benchmark

S(%) S1(%) S2(%) RDir(%) RDir1(%) RDir2(%) t t1 t2

Std-diagram 98 96.00 96.00 75.54 75.54 75.54 0.17 0.87 1.31
1-6+22-32 100 99.47 99.47 77.33 77.33 77.33 0.50 0.16 0.25

Complex-P2 100 85.19 97.22 84.17 77.31 84.17 3.88 0.14 0.36
Complex-P3 100 90.00 98.42 91.07 91.07 91.07 132.02 0.12 4.44

1-32 - 91.53 99.00 - 91.82 91.82 - 0.10 0.28
Large - 93.98 98.73 - 94.89 94.89 - 0.27 1.43

Complex-P1 - 79.26 96.94 - 78.96 96.86 - 0.77 15.58
Complex* - 86.5 91.92 - 85.52 91.67 - 3.11 12.05

*There are 119 defined sinks, but only 104 powered sinks in starting assignment. The
numbers reported are comparisons against the latter number.

The numbers in Table 2 indicate that the set-of-BDDs approach scales dramat-
ically better. The biggest instance where the monolithic approach was applicable
was the instance Complex-P3 (28 lines and 19 sinks) with response time of 132.02
seconds, compared to the five times bigger instance Complex (146 lines and 119
sinks) that was handled in 42 times shorter time (3.11 seconds).

The quality of restoration depends on how far we are willing to search throughout
the distribution network. H2 achieves better quality than H1 but worse response
time. Namely, H2 also unassigns lines belonging to neighboring feeders as it tries to
resupply the faulty line. This is best illustrated in case of the instance Complex-P1
where the H2 heuristics achieves approximately 17% better quality at the price of
20 times longer response time. There is an obvious tradeoff between the quality
of the restoration and the running time. As another illustration for this we ran
100 simulations on the Complex instance with a third heuristic H3, where the
H1 heuristic was combined with an increased threshold of 100 variables. We got

9



S3 = 96.23, RDir3 = 96.39 and t3 = 55.35, compared to H1 a 10% gain in quality
for 17 times longer response time.

In comparison to monolithic approach, the H2 heuristic achieves the same (glob-
ally optimal) quality w.r.t. RDir indicator, and achieves the quality within the 2%
of the global optimum w.r.t. to the number of ressupliable sinks.

The high percentage of ressupliable sinks and unaffected lines (most under-
approximated quality estimates are above 90%) supports the intuition about the
locality of external effects in the real world instances (recovery within the 10% of
change in network topology). We hope to further confirm this by running experi-
ments on instances coming from other domains.

5 Related Work

Computing explanations is related to our work, but there is no unique formal def-
inition of that problem. Most research is done within the framework of interactive
configuration, i.e. providing a user with useful reasons for the (un)available options
or inconsistencies during interaction. This affects the underlying implementation
algorithms which are closely interleaved with constraint propagation mechanisms
invoked during search for solutions during user interaction [7, 8, 24, 25]. We however,
start from the finished configuration and cannot reuse the knowledge synthesized
during search.

More related is the problem of restoring a constraint in assumption-based CSPs
[2] where the algorithms determine the subset of the current user assignments that
can be kept while the given constraint is satisfied. In fact, computing the release set
R can be seen as the generalized restoration of the non-unary constraint ρf . How-
ever, besides the general definition, the published algorithms work only on the unary
constraints and base it on the single-automata compiled representation (similar to
our monolithic approach) that suffers from the same scalability problems as our
monolithic approach of sometimes encountering that compilation is not possible.

In [11] the author introduces a scalable tree-of-BDDs approach for computing
restorations of unary constraints. The tree-of-BDDs is a data structure implement-
ing a tree decomposition of the original cyclic constraint problem and when this
can be done, it offers globally optimal restorations. Our set-of-BDDs approach pro-
vides greater scalability, since it works even when tree decomposition is not possible,
although at the price of potentially suboptimal restoration quality.

The term reconfiguration has also been used to describe the problem of adjusting
an existing product configuration to meet new constraints [26]. The focus there is
however on conceptually managing the consistent representation of evolving config-
uration knowledge and not on concrete algorithms for adjusting product individuals
by restoring valid configurations under the assumption of unchanged configuration
knowledge.

There is a number of other, domain-specific approaches for restoring services
in electric power distribution systems [27]. However, we have presented general al-
gorithms exemplified only by power supply restorations examples. The planning
community also uses benchmarks from the PSR domain as a real-world instances
for evaluation of planning algorithms [16, 20]. However, they are solving a differ-
ent problem (planning under uncertainty) and to the best of our knowledge use
benchmarks of much smaller size than those introduced in this paper.

6 Conclusions and Future Work

In this paper we introduced a concept of interactive reconfiguration that addresses
the problem of recovering consistency once the existing valid total configuration has
been invalidated with the external effects over which a user has no control.
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We proposed two implementation approaches, first an exact approach based on
a monolithic BDD representation of the entire problem, and second a set-of-BDDs
approach that heuristically computes release sets when the compilation to a single
BDD is not feasible.

We demonstrated that the set-of-BDDs approach scales dramatically better,
handling instances that are far out of reach for the monolithic approach, with sorter
response time. By implementing two unassignment heuristics we further identified
and highlighted the tradeoff between the quality of restoration and response time
that can be adjusted to domain specific requirements. The high percentage of reach-
able restoration quality confirms our intuition about the local nature of external
effects in the real-world instances.

In the future we plan to work on developing general domain-independent unas-
signment heuristics and compare them against the domain-specific ones. We intend
to further extend the scalability and quality of the set-of-BDDs approach by offering
interactive configuration of released variables directly on set-of-BDDs for instance
when they can be decomposed to a tree-of-BDDs representation [11] instead of the
more restrictive single BDD representation of the relevant solution set.
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