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Abstract. Interactive configuration denotes a process of a user interactively
specifying a product (or a service) using a supporting program called a con-
figurator. Choices for each available product component are usually modelled
as variables over finite domains, and the knowledge about the valid product
specifications is encoded as propositional constraints over these variables.
Interactive configuration over finite domains is NP-hard. Most solution ap-
proaches therefore either give up on some interactive requirements or move
the NP-hard part to an offline phase by first compiling the set of valid as-
signments to efficient structures (such as reduced ordered BDDs) and then
performing polynomial interactions online.

In this paper we consider the case when all the constraints are linear
inequalities and when the variable domains are the set of real numbers.
Using results from the field of linear programming (LP) we show that in
this case the interactive configuration can be performed in polynomial time.
We moreover show how the simplex algorithm (in worst-case exponential
but performing very well in practice), can be efficiently adapted to sup-
port interactive configuration. We also identify and implement some new,
LP-specific configuration functionalities, and illustrate how the concept of
interactive configuration can be used in classical LP problems, especially to
provide support for interactively selecting values for variables.

1 Introduction and Related Work

Configuration problems emerged as a research topic in the 1980s as the result of a
manufacturing shift from mass-production to mass-customization. Interactive con-
figuration is an important application area where a user interactively tailors a prod-
uct (a car, a PC, a device driver,...) to his specific needs using a supporting program
called the configurator. Choices for each available component are usually modelled
as variables over finite domains, and the knowledge about the valid product speci-
fications is encoded as propositional constraints over these variables.

Interactive configuration functionalities (such as giving feedback to user about
available choices) should satisfy a number of well defined user-friendly requirements
under fast response time limitations. The interactive configuration problem is NP-
hard. Constraint satisfaction problem (CSP) approaches [7, 6] therefore give up
on some of the user-friendliness requirements, while symbolic approaches have to
divide the computational effort to an offline and an online phase. First they compile
valid assignments to efficient data structures, such as reduced ordered BDDs [8, 20].
If the compiled representation is small enough, then the already available efficient
algorithms deliver basic configuration functionalities satisfying all the requirements.
A limitation for symbolic approaches is the inability to efficiently model arithmetic
constraints over infinite domains.

Presently, we investigate systems modelled only by linear arithmetic constraints.
This might be used for later efficient modelling of more involved hybrid systems. The



field of linear programming (LP) has extensively studied the optimization involving
only linear arithmetic constraints, and has provided us with efficient algorithms and
strong theoretical results. Using these results, we show that the configuration func-
tionalities can be delivered in polynomial time. We also demonstrate how the idea
of interactive configuration could be utilized in classical LP optimization problems.

Related work in symbolic model checking of real-time and hybrid systems [14, 4]
addresses the problem of combining both propositional and arithmetic constraints
without considering the requirements imposed by interactive configuration.

Hybrid approaches for handling both discrete and linear constraints using CSP
and LP techniques are becoming increasingly popular [13, 9]. Most of these ap-
proaches are used for problems in the area of combinatorial optimization.

Sensitivity analysis is often used in linear programming to improve the perfor-
mance of solving several closely related LP problems, or to answer how much the
coefficients in the objective function can be changed without violating the optimal
basis [22]. Therefore, it provides valuable feedback to the user about the entire range
of possible solutions based on the optimal solution. This resembles the interactive
configuration which provides (richer and stronger) feedback for any partial solution,
at the price of greater computational cost.

The remainder of the paper is organized as follows. In Sect. 2, we formally define
interactive configuration. Basic linear programming results are described in Sect.
3. In Sect. 4, we illustrate the use of interactive configuration in LP problems.
In Section 5, we show how to implement the basic configuration functionalities.
Finally, we demonstrate LP-specific configuration functionalities in Sect. 6 and draw
conclusions in Sect. 7.

2 Interactive Configuration

Configuration formalisms are tightly related to product configuration, which is the
primary application area since the 1980s. Our formal definition introduces variables,
domains for the variables defining the combinatorial space of possible assignments
and constraints defining which combinations are valid assignments. Each variable
represents a product component, the variable domain refers to the options available
for its component and constraints specify the rules that the product must satisfy.

Definition 1. A configuration problem C is a triple (X ,D,F) where X is a set
of variables {x1, x2, . . . , xn}, D a set of their finite domains {D1, D2, . . . , Dn} and
F = {f1, f2, . . . , fm} a set of propositional formulas over atomic propositions xi = v
where v ∈ Di, specifying conditions that the variable assignments have to satisfy.

Formulas F are given by the following syntax:

f ::= xi = v | f ∧ g | ¬f (1)

(where values v ∈ Di)
For a configuration problem C, we denote the solution space S(C) ⊆ D1 ×D2 ×

. . . × Dn as the set of all valid assignments, i.e. the set of all assignments to the
variables X that satisfy the rules F . Many interesting questions about configuration
problems are hard to answer. Just determining whether the solution space is empty
is NP-complete, since the Boolean satisfiability problem can easily be reduced to it
in polynomial time.

Example 2. Consider specifying a T-shirt by choosing the color (black, white, red,
or blue), the size (small, medium, or large) and the print (”Men In Black” - MIB
or ”Save The Whales” - STW). There are two rules that we have to observe: if
we choose the MIB print then the color black has to be chosen as well, and if
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we choose the small size then the STW print (including a big picture of a whale)
cannot be selected as the large picture of a whale does not fit on the small shirt.
The configuration problem (X, D, F ) of the T-shirt example consists of variables
X = {x1, x2, x3} representing color, size and print. Variable domains are D1 =
{black ,white, red , blue}, D2 = {small ,medium, large}, and D3 = {MIB ,STW }.
The two rules translate to F = {f1, f2}, where f1 = (x3 = MIB) ⇒ (x1 = black)
and f2 = (x3 = STW ) ⇒ (x2 6= small). There are |D1||D2||D3| = 24 possible
assignments. Eleven of these assignments are valid configurations and they form
the solution space shown in Fig. 1.

(black , small ,MIB) (black , large,STW ) (red , large,STW )
(black ,medium,MIB) (white,medium,STW ) (blue,medium,STW )
(black ,medium,STW ) (white, large,STW ) (blue, large,STW )
(black , large,MIB) (red ,medium,STW )

Fig. 1. Solution space for the T-shirt example

Interactive configuration refers to the process of a user interactively assigning
values to variables under given constraints by using a supporting program called a
configurator. Each step in the user-configurator interaction includes a user selecting
a value from a domain, and the configurator calculating valid domains for the other
unassigned variables. Formally, let ρ denote a sequence of user assignments: ρ =
[xi1 = vi1 , . . . , xik

= vik
] where all i1, . . . , ik are different and vij

∈ Dij
. Then, for

each unassigned variable xj the configurator calculates its valid domain V ρ
j ⊆ Dj

with respect to assignments ρ. We use Vj = V
[ ]
j when ρ is empty.

Unlike batch configuration [18, 19] where a system automatically finds one solu-
tion that respects user preferences, in interactive configuration the user explores the
entire solution space by getting immediate feedback about the consequences of his
assignments in the form of calculated valid domains. This is the core configurator
functionality, and we refer to it as Domain Calculation (DC). The DC functionality
has to satisfy the following requirements:

– Completeness: For each unassigned variable, any value that can be extended to
a valid total assignment should be included in the calculated domain (i.e., we
can specify any valid solution).

– Validity : Calculated domains should contain only those values that can be ex-
tended to a valid total assignment (i.e., we cannot make a selection that will
eventually force us to backtrack).

– Responsiveness: The configurator’s response time should be fast enough to pro-
vide a truly interactive user experience.

Validity and completeness ensure that the user cannot pick a value that is not
a part of a valid solution, and furthermore, a user is able to pick all values that
are part of at least one valid solution. These two requirements are hard to meet
and often they are not satisfied in existing configurators, either exposing the user
to backtracking or making some valid choices unavailable. When we add demand
for short response-time the DC functionality becomes even harder to implement.

Example 3. For the T-shirt problem, the assignment x2 = small will, by the second
rule, imply x3 6= STW and since there is only one possibility left for variable x3,
it follows that x3 = MIB . The first rule then implies x1 = black . Unexpectedly, we
have completely specified a T-shirt by just one assignment.
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Other important interactive functionalities have been identified [17]. Restoration
refers to the functionality of a user undoing the choice for some already assigned
variable with the configurator recalculating valid domains. For example, should
the user decide to remove assignment xir = vir from ρ, the configurator would
have to recalculate valid domains V

ρ\{xir =vir}
j with respect to the new sequence of

assignments ρ\{xir
= vir

} = [xi1 = vi1 , . . . xir−1 = vir−1 , xir+1 = vir+1 , . . . , xik
=

vik
].
Assisted conflict resolution allows a user to force an invalid choice for a variable

xj = vj (vj ∈ Dj\V ρ
j ). In response, he gets a minimal list of choices that need

to be changed in order to restore consistency. This could be a list of assignments
ρr ⊆ ρ that has to be removed before the valid domains V

ρ\ρr

j are recalculated, and
possibly a suggestion ρ′r for new assignments to these variables.

In this paper, we consider the problem of providing domain calculation, restora-
tion and assisted conflict resolution functionalities, while satisfying completeness,
validity and responsiveness requirements for linear programming problems.

3 Linear Programming

We consider the canonical form of the linear programming problem:

Definition 4. Given a set of n non-negative real variables X = {x1, . . . , xn}, a
linear objective function: z = c1x1+c2x2+. . .+cnxn and a set of m linear constraints
C = {C1, . . . , Cm} of the form

Ci : ai1x1 + ai2x2 + . . . + ainxn ≤ bi

(aij , bi, cj ∈ IR, i = 1, . . . ,m, j = 1, . . . , n), the problem of finding the assignment
for x = (x1, . . . xn) that maximizes (minimizes) the objective function is called the
linear programming (LP) problem.

There are other, equivalent forms of the LP problem. In general form constraints
are of the form Ci : ai1x1 + ai2x2 + . . . + ainxn ≈ bi where ≈ ∈ {=,≤,≥}, and
variables xi don’t have to be nonnegative. However, our (canonical) definition of a
linear program is not limiting, since every problem in general form can be translated
to a canonical one. Namely, a constraint of the form ai1x1 +ai2x2 + . . .+ainxn ≥ bi

is equivalent to (−ai1)x1 + (−ai2)x2 + . . . + (−ain)xn ≤ −bi, and any equality
constraint

∑
aijxj = bi can be replaced by

∑
aijxj ≤ bi and

∑
aijxj ≥ bi. Any

unrestricted variable xi can be represented as the difference xi = x+
i − x−i of two

nonnegative variables x+
i , x−i . In addition, the problem of minimizing of a function

z is equivalent to the problem of maximizing of function −z.
For convenience we introduce the following notation: vector c ∈ IRn represents

the coefficients in the objective function c = (c1, . . . , cn), vector b ∈ IRm represents
the right-hand coefficients b = (b1, . . . , bm) in the inequalities C. A vector x ∈
IRn is the decision vector (x1, . . . xn) and a matrix A ∈ IRm×n stores the variable
coefficients from C. (A coefficient aij ∈ A is multiplied with the variable xj in the
inequality Ci.) The problem of maximizing the objective function under the given
constraints can now be written as:

max cT x, subject to Ax ≤ b, x ≥ 0 (2)

(where cT is the transpose of the n× 1 matrix c).
For a set of constraints C (which we sometimes refer to as the model of the LP

problem) and any linear function d = d0 + d1x1 + . . . + dnxn (di ∈ IR) we write
LP(max, d, C) and LP(min, d, C) to denote the results of maximizing/minimizing
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of the function d. Therefore, the optimization of the objective function cT x can be
written as:

LP(max, cT x, C) for the result of: max cT x, subject to Ax ≤ b, x ≥ 0
LP(min, cT x, C) for the result of: min cT x, subject to Ax ≤ b, x ≥ 0

Given a sequence of user assignments ρ = [xi1 = vi1 , . . . , xik
= vik

], we write Cρ

for the set of constraints {Cρ
1 , . . . Cρ

m}, where each constraint Cj : aj1x1 + aj2x2 +
. . . + ajnxn ≤ bj has been transformed to Cρ

j by assigning the variables from ρ and
moving the resulting constants aji1vi1 , . . . , ajik

vik
to the right side of the inequality.

Coefficients relating to variables in X \ {xi1 , . . . , xik
} remain unchanged while the

right-hand constant bρ
j becomes bρ

j = bj − aji1vi1 − . . .− ajik
vik

.

We also write Aρ ∈ IRm×(n−k), xρ ∈ IRm−k, and bρ ∈ IRm for the corresponding
matrices and vectors, i.e., xρ is the vector of the unassigned variables while bρ is
the vector of the modified right-hand constants bρ

j . We write cρ ∈ IR(n−k) for the
vector of coefficients standing with remaining unassigned variables. However, a new
constant cρ

0 = cji1vi1 + . . . + cjik
vik

has emerged and the new objective function is:
cρ
0 + (cρ)T xρ

LP problems have an interesting geometric interpretation. Linear inequalities
C describe a convex polytope which bounds a feasible region S(C) (corresponding
to configuration solution space, also denoted as S(C)). If the polytope is nonempty
(i.e. there is at least one solution satisfying all the constraints) and if the polytope
is bounded (i.e. the objective function cannot have an arbitrarily large maximum)
then any optimal value is obtained at a vertex of the polytope [16].

We distinguish between the two representations of a polytope - a halfspace rep-
resentation (a polytope is the intersection of a finite number of halfspaces) and a
vertex representation (a polytope is the convex combination of a finite number of
vertices). The LP model C is the halfspace representation.

The convexity property of the polytopes guarantees that the valid domains Vj

are always of the interval form [lj , uj ], i.e. that all values between the minimum and
maximum value for a variable xj belong to the set of valid values for this variable
(Fig. 2).

-
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Fig. 2. Valid domains Vj are always of the interval form [lj , uj ] since the polytopes are
convex geometrical figures. In the plane, the polytope is actually a polygon.

The valid domains can be found as follows:

Vj = [lj , uj ],where lj = LP (min, xj , C), uj = LP (max, xj , C), (3)
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In addition, when the sequence of user assignments ρ is given, we denote the valid
domains under these assignments as V ρ

j = [lρj , uρ
j ], i.e.

V ρ
j = [lρj , uρ

j ],where lρj = LP (min, xj , Cρ), uρ
j = LP (max, xj , Cρ), (4)

The simplex algorithm (Dantzig, 1947) solves the LP problem by pivoting, i.e.
walking down the edges of a polytope. So far, all variants of the simplex algorithm
are in the worst case exponential. However, empirical observations indicate the
remarkable fact that the ”simplex method typically requires at most 2m to 3m pivots
to attain optimality” [21]. Some LP-solving packages [15] report m + n empirically
observed complexity.

The ellipsoid algorithm [12] was the first LP solving algorithm with worst-case
polynomial complexity. Although in practice performing worse than simplex, it is of
great theoretical importance, proving that the LP problem is of polynomial com-
plexity. The interior-point method [11] is an algorithm that obtains both a worst-
case polynomial bound and performs well in practice (comparably to the simplex
algorithm).

4 Interactive Configuration in LP-problems

In this chapter we will illustrate how the concept of interactive configuration could
be used in classical LP problems.

The Diet Problem

The diet problem was first considered in the US Army for constructing the cheapest
yearly diet plan for soldiers on the field, that would minimize the cost while satis-
fying all nutritional needs. It was one of the first problems used to test the simplex
algorithm [5].

Example 5. Consider a choice of n foods and m nutrients. The quantity of i-th
nutrient in a unit of the j-th food is denoted by aij . The unit price of j-th food is
cj (i = 1, . . . ,m, j = 1, . . . , n). Let xj (j = 1, . . . , n) denote the yearly consumption
of each food and the maxi,mini (i = 1, . . . ,m) the maximum and minimum yearly
requirements of the i-th nutrition. Then the LP formulation of the diet problem can
be expressed as:

minimize
∑

cjxj

subject to:
∑

aijxj ≥ mini∑
aijxj ≤ maxi

xj ≥ 0
(i = 1, . . . ,m, j = 1, . . . , n)

The Interactive Diet Problem

This form of the diet problem is inadequate for delivering personalized diet plans.
It provides a single, fixed diet plan, which is unlikely to be used in our daily lives.
For example, we might want to specify that we require (at least) 1kg of chocolate
per year, and get the feedback on what are valid choices for other food quantities,
that would not violate restrictions on maximum sugar consumption. We might also
want to limit the maximum price we want to pay, and check the effects on the
maximum amount of chocolate we can now include. A system delivering interactive
configuration functionalities could help in making a cost efficient and pleasant diet
plan.
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In a simple scenario, the system first precalculates valid domains [lj , uj ] for
each variable xj . Then the sequence of interactions starts with a user at each step
assigning a value to a specific variable xj = vj , vj ∈ [lj , uj ] . In response, the
system calculates the minimum/maximum quantities for other foods [li, ui](i 6= j),
i.e. calculates valid domains respecting the completeness and validity requirement.
This user-configurator interaction stops when the user has assigned values to all
variables. Alternatively, the user may decide to stop the assignment process before,
leaving certain variables unassigned and letting the configurator find the optimum
assignment to the remaining undecided variables. In Fig. 3 we show how this process
might look from the user perspective.

x1

x2

x3

x4

l1 |

l2 |

l3 |

l4 |

u1|

u2|

u3|

u4|

-x2 = v2

x1

x2

x3

x4

| |l1 u1

x2 = v2

| |l3 u3

| |l4 u4

Fig. 3. Interactive LP configuration. After the user has assigned x2 = v2 the domains
[lj , uj ] are recalculated. They will always become smaller, or at least no larger than before.

The diet example illustrates how the concept of interactive configuration can be
used to increase the usability of existing systems in solving LP problems. Instead
of each time solving a separate LP problem tailored for a specific user, the system
should make it easy for a user to interactively explore the entire solution space, thus
effectively accommodating different users and their preferences.

5 LP Implementation of Configuration Functionalities

5.1 Naive Algorithm for DC

Since the convexity property of the polytopes guarantees that the valid domains
Vj always have the form [lj , uj ], it is sufficient to find a maximum value uj and a
minimum value lj in order to calculate Vj . This leads to the algorithm for calculating
valid domains for the undecided variables under the given model C and a sequence
of user assignments ρ, presented in Fig. 4.

CVD(C, ρ)
1: FOR EACH xj 6∈ dom(ρ)
2: lρj = LP (min, xj , Cρ)
3: uρ

j = LP (min, xj , Cρ)
4: IF lρj = uρ

j THEN ρ := ρ † [xj = lρj ]

Fig. 4. Calculating Valid Domains. The notation ρ † [xi = vi] denotes appending the
element [xi = vi] to the list ρ.

The entire interaction is modelled by the algorithm presented in Fig. 5.

Theorem 6. The DC algorithm has worst-case polynomial complexity.

Proof. In each step of the user-configurator interaction DC solves 2 · (n − k) (k =
|ρ|, n = |X |) LP problems (line 8), two for each unassigned variable. Since LP-
problems are polynomially hard, so is the entire interaction as it solves at most a
linear number of polynomially hard problems.
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DC(C)
1: FOR EACH xj ∈ X
2: lj = LP (min, xj , C)
3: uj = LP (max, xj , C)
4: sufficiently specified := FALSE, ρ := [ ]
5: WHILE sufficiently specified = FALSE

6: USER CHOICE (xi, vi) where (xi 6∈ dom(ρ), vi ∈ V ρ
i )

7: ρ′ := ρ † [xi = vi]
8: CVD(C, ρ′)

9: ρ := ρ′

10: IF dom(ρ′) = X OR user wants to end THEN

11: sufficiently specified := TRUE

Fig. 5. The Domain Calculation Algorithm. USER CHOICE(xi, vi) in line 6, denotes the
user choosing an assignment xi = vi.

However, if we chose to use the simplex implementation of the LP solver, then
although we do not get any polynomial guarantees for the DC functionality, we
can expect a very fast running time in practice. Each call to DC has an expected
empirical performance (using the MINOS package, [15]) of 2(n − k) · (m + n − k)
pivoting steps, (k - number of already assigned variables, n = |X |, m = |C|) which
is of low-degree polynomial complexity.

5.2 An Improved Simplex Algorithm for DC

LP problems guarantee that all local optimums are global optimums. Therefore,
the simplex algorithm is sure to have reached the global optimum as soon as no
improvements to the objective function are possible. The basic idea behind the
improved algorithm to be presented is in the greedy nature of simplex. If we are
maximizing a variable xj simplex is in each step exploring a vertex of the polytope
with an increased xj coordinate. The intuition is to start the simplex search from
the vertex with the highest xj coordinate. For this, we can take advantage of the fact
that we are solving many highly related LP problems. We maintain the list V that for
every variable xj stores 2 vertices V(xj ,min),V(xj ,max) with a minimal/maximal
j coordinate encountered so far. We refer to these vertices as extreme points. Since
in every LP call the simplex visits a number of intermediate nodes, we update the
structure V every time an intermediate node has a maximal/minimal coordinate for
some variable xj . Every subsequent simplex call to maximize/minimize xj starts
from the appropriate extreme point V(xj ,max) / V(xj ,min). This guarantees that
no intermediate node will be visited twice.

We write LPv(min, xj , C), LPv(max, xj , C), for the results of the simplex algo-
rithms starting at vertex v. The improved algorithm differs from the DC algorithm
(page 8) by the way the lj , uj are calculated (line 8):

ImprovedCVD(C, ρ,V)
1: FOR EACH xj 6∈ dom(ρ)
2: v = V(xj , min), lj = LPv(min, xj , C) (update V)
3: v = V(xj , max), uj = LPv(max, xj , C) (update V)

Fig. 6. The improved version of the CVD algorithm. A list of ”good” vertices V is used
to select the starting vertex in the simplex iteration.
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We consider this only as the first step towards more efficient DC algorithms. One
could think of other, more involved ways to quickly reach the ”good” starting vertex
v, with a maximal/minimal coordinate. However, the bad theoretical guarantee
for the simplex makes it hard to give stronger theoretical guarantees for such an
algorithm.

5.3 Restoration and Assisted Conflict Resolution

A user’s decision to undo the assignment to a variable is called restoration. We have
already described a way to implement this functionality in section 2. The algorithm
of Fig. 7 follows that description:

Restoration:

1: USER CHOICE (xir) (xir ∈ dom(ρ))
2: ρ′ = ρ\[xir = vir ]
3: FOR EACH xj 6∈ dom(ρ′)

4: lj = LP (min, xj , Cρ′), uj = LP (max, xj , Cρ′)

Fig. 7. Restoration algorithm for unassigning user choices. ρ\[xir = vir ] denotes removing
the element xir = vir from the list ρ.

It is easy to see that this is a worst-case polynomial algorithm, since we can use
the worst-case polynomial version for LP-solvers in line 4.

If the user enforces a conflicting assignment, the system should offer a list of
choices that need to be changed in order to restore consistency while keeping the
last assignment. This functionality is called assisted conflict resolution. As suggested
in section 2, one way to implement assisted conflict resolution is to generate a list
of conflicting assignments ρr ⊆ ρ that needs to be removed.

A simple way to implement it is to move the conflicting assignment xk = vk

to the beginning of the user assignment list, and apply the rest of the original
assignments in ρ until a conflict is reached. We remove conflicting assignments and
continue until we reach the last assignment xk = vk. At the end, after calculating
valid domains with a reduced user assignment list V ρnew

j , we will restore consistency
(Fig. 8).

Assisted Conflict Resolution:

1: USER CHOICE (xc, vc) (vc 6∈ V ρ
c )

2: ρnew := [xc = vc]
3: FOR j = i1 to ik ([xj = vj ] ∈ ρ)
4: lj = LP (min, xj , Cρnew ), uj = LP (max, xj , Cρnew )
5: IF vj ∈ [lj , uj ] THEN ρnew := ρnew † [xj = vj ]

Fig. 8. Assisted conflict resolution algorithm.

The total number of LP calls (in line 4) is 2k, where k = |ρ|. Obviously, this
algorithm has a worst-case polynomial bound. The list of choices that has to be
removed ρ\ρnew is minimal in the sense that the list of reduced assignments ρnew

cannot be extended with any assignment from ρ without enforcing a conflict. Of
course, this does not have to be the minimum among all possible divisions ρ\ρnew.

Theorem 7. Given the sequence of user assignments ρ, and the user assigned vari-
able xj = vj, the Restoration algorithm unassigns the variable and correctly re-
calculates the valid domains. Given the sequence of user assignments ρ, and the
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conflicting user assignment xc = vc (vc 6∈ V ρ
c ) the Assisted Conflict Resolution al-

gorithm correctly calculates the list of assignments that has to be removed in order to
restore consistency. Restoration and Assisted Conflict Resolution have polynomial
worst-case complexity.

6 LP Specific Configuration Functionalities

When all the constraints are linear inequalities, the interactive configuration be-
comes an easy (polynomial) problem. Therefore, we are able to provide more func-
tionalities than in the combinatorial case. The convexity property enables an effi-
cient manipulation of the solution space based on maximum/minimum values for a
specific variable while the geometric interpretation facilitates new ways for a user
to perceive and explore the solution space.

6.1 Domain Restriction

Providing interactive configuration functionalities to the diet problem can be addi-
tionally improved by allowing a user not just to assign a value to a variable xj , but
also to restrict the existing domain Vj = [lj , uj ] to [l′j , u

′
j ], where lj ≤ l′j ≤ u′j ≤ uj .

The other domains Vi (i 6= j) could be calculated by adding constraints l′j ≤
xj ≤ u′j to the existing model C and recalculating the valid domains.

Naive Domain Restriction

1: USER CHOICE (xj , l
′
j , u

′
j), (l′j , u

′
j ∈ [lj , uj ], l

′
j ≤ u′

j)

2: C′ = C
⋃

(l′j ≤ xj ≤ u′
j)

3: FOR EACH xi 6= xj

4: li = LP (min, xi, C′) , ui = LP (max, xi, C′)

Fig. 9.

However, we could do better by noting that in the recalculated domains Vi (i 6= j)
the extreme points V(xi,min), V(xi,max) that do not violate l′j ≤ xj ≤ u′j , remain
extreme points. Therefore, by using the same structure V introduced in the improved
version of the DC algorithm (page 8), we can identify which extreme points have
been violated (i.e. which are not in the feasible region any more), and perform an
LP calculation only for those points.

Even more, the new extreme points are always found in the defining hyperplanes:
xj = l′j and xj = u′j . Therefore, for the set of all the extreme points violating
inequality l′j ≤ xj (denoted as V<l′

j
) we perform optimization in the hyperplane

xj = l′j . Similarly we perform optimization in the hyperplane xj = u′j for V>u′
j
.

This leads to the algorithm in Fig. 10.

Manipulation With the Objective Function

A user could ask what values can the variables have if he requires that the cost of
the final solution is within some fixed limits [L,U ]. This question can be answered
by adding a constraint L ≤ c1x1 + . . . + cnxn ≤ U , to the model and manipulating
it like any other domain restriction constraint. Actually, from the user’s point of
view, a new variable z = c1x1 + . . .+ cnxn can be introduced, with its valid domain
Vz = [L,U ].

Given the set of assignments ρ in the DC algorithm, Vz can be calculated by
2 LP calls: U = LP (max, cρ

0 + (cρ)T xρ, Cρ) and L = LP (min, cρ
0 + (cρ)T xρ, Cρ).
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Improved Domain Restriction

1: USER CHOICE (xj , l
′
j , u

′
j), (l′j , u

′
j ∈ [lj , uj ], l

′
j ≤ u′

j)

2: ρ := [xj = l′j ]
3: FOR EACH v ∈ V<l′

j

4: IF v = V(xi, min) THEN l′i = LP (min, xi, Cρ) (update V)
5: ELSE (v = V(xi, max)) u′

i = LP (max, xi, Cρ) (update V)
6: ρ := [xj = u′

j ]
7: FOR EACH v ∈ V>u′

j

8: IF v = V(xi, min) THEN l′i = LP (min, xi, Cρ) (update V)
9: ELSE (v = V(xi, max)) u′

i = LP (max, xi, Cρ) (update V)

Fig. 10.

In addition, when restricting the domain Vz = [L,U ] to [L′, U ′] ⊆ [L,U ], we can
calculate domains [li, ui] by updating the model C′ = C

⋃
{L′ ≤ c1x1 + . . .+cnxn ≤

U ′} and calculating li = LP (min, xi, C′), ui = LP (max, xi, C′).
In the diet example, this means we can now interactively reduce the maximum

price we are willing to pay for the food supplies, and explore how it effects the
available choices.

6.2 Two-Dimensional Configuration

We can additionally take advantage of the geometric interpretation of the solution
space. Namely, the valid intervals Vj can be seen as a 1-dimensional projection of the
polytope S(C) to the xj axis. We want to extend this projection to a two-dimensional
(xi, xj) plane. The projected polygon is convex and the vertices of the polygon are
the projections of the polytope vertices. So, the resulting figure has nice geometric
properties and this could help a user get a better insight in the relationship between
the two parameters, and better explore the solution space. Even more, this is the
special case of the general polytope projection (from X to the subset {xi1 , . . . , xik

}),
which is a well explored problem with well established solving methods [1, 10].

To compute the projection, we need either the edge equations (halfspace repre-
sentation) or the vertex coordinates (vertex representation). Although the general
projection methods (block elimination, vertex based approaches) are usually fine
tuned for only one kind of representation, we can choose any of them since in our
case (k=2) both representations have the same complexity (i.e. the number of ver-
tices is equal to the number of edges). In particular, in [10] the authors present an
algorithm with linear complexity in the number of facets of the projection (for a
constant size of a polytope).

7 Conclusion

We have shown how to use techniques from linear programming in interactive config-
uration of solution spaces described by the set of linear inequalities. The polynomial
time algorithms for linear programming provide polynomial time algorithms for in-
teractive configuration. Moreover, we have shown how to provide a polynomial time
interactive dialog with the classical LP problems in order to provide a new way of
finding a solution that is not only optimal but also meets some needs of a user that
are not expressed in the linear inequalities.
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