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Abstract

We introduce strings, based on the Symmetry Set, to describe shapes. These strings
denote links between pairs of extrema of the curvature together with a length measure.
An algorithm is given to match strings of different types of shapes. Examples show the
usability of the presented theory.

1 Intr oduction

In shapeanalysis,much effort hasbeenput into the research on the skeleton,or Me-
dial Axis [2], as a way to representthe shapein a more simplified way. As it was
soonrealized, the Medial Axis it itself didn’t carry enough information [8] and so-
phisticated extensionswere built, lik e the ShockGraph method [17]. Basically, each
points on the Medial Axis is endowed with someaugmentsrelated to the distanceto
the shapeitself or relatedto its neighbours.Next, the potential changesof the Medial
Axis were investigated,yielding a setof possibletransition [9]. In that way differ ent
shapescanbe relatedto eachother for shapeindexing and retrieval [15, 16].

The resultson transitions boiled down fr om the resultson the possibletransitions
of the Symmetry Set. This set, containing the Medial Axis as subset,has beenthor-
oughly studied in [4]. Its transitions are describedin [3]. The Symmetry Sethas its
advantagein beingeasilydescribedin mathematicalsense,but its visualization is less
pleasant for the eye. So most of the research has beenfocusedon the (augmented)
Medial Axis [10].

Recently, however, adatastructur ewaspresentedfor the SymmetrySet[13], using
information of the evolute of the shape. The data structur e can be visualized by a
sequenceof nodesthat are pair wise joined. It wasclaimed that its main advantage
over the graph structur e usedfor the Medial Axis is that this sequencewould allow
operationson it with a lower complexity.

In this paper we usethe idea of representingSymmetry Setsas a sequence.In
contrast to [13], we relate this sequencedir ectly to the shape. As differ ent shapes
havediffer ent sequences���������	��

����� � and ������������
������ � , weproposeto build a matrix �
with entries ��������������� . The similarity of shapesis then measured as the path  "!
���#��$�%&�('*)���� thr ough � that contains eachrow and column at most once,and has a
maximal sumof the elements�+��, � .

2 Symmetry Sets

The Symmetry Setis definedasthe closureof the loci of the circlestangent to a shape.
SeeFigure 1. The shapeis given by the oval. Inside a circle is tangent to it at two
locations,sothe unit normals -.
 and -0/ are equal for the shapeand the circle. The
centreof the circle is found by multiplying minus the radius 1 with the normals. Note
that this is alsoa Medial Axis point Next, alsooutsidea circle is tangent to the shape
at two locations,where the unit normals -2
 and -43 are equal for the shapeand the
circle.

From this imageit follows immediately that a point on the shaperelatesto at least
two points on the Symmetry Set,in contrast with the Medial Axis. A recipefor finding
the Symmetry Setis the givenby the following observations.

Let a circlebetangent to the shapeasin Figure2a. Then call the points at which it
is tangent 5 
 and 5 / (Figure2b). Then the vector 5 
76 5 / is perpendicular to the vector
-.
98:-;/ whenthe circle is tangent twice fr om the samesideasshown in theseimages,
or to the vector -.
 6 -0/ , when tangent fr om two differ ent sides(see[9]). Soto find
theselocations it sufficesto have a point 59� fixed and try all other points 5<� along the
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Figure1: Definitionof theSymmetrySet.Seetext for details.
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Figure2: Deriving theSymmetrySet.Seetext for details.



Figure3: A fish shapeandits correspondingsequentialrepresentation.

shapeand find zero crossingsof

�?5 �@6 5 � �
AB�C- �9D - � � (1)

Next, the centreof the circle - the location of the Symmetry Setpoint - is givenby

59� 6 1
-0��!E5<� D 1
-:� (2)

2.1 Representations

A branch of the Symmetry Set is given by a connectedsetof centersof circles. The
end points of a branch are the closuresof thesesets,obtained when the two points 5 �
and 5 � coincide. For the Medial Axis, such a point is an end point of the graph. In
the Symmetry Set,thesepoints comein pairs, asthe Symmetry Setconsistsof distinct
curves.

At thesepoints the circle has a third order of contact at the shape,or in other
words, the shapehasa local extremumof the curvature F at that point. Consequently,
eachlocal extremum of the curvature can be mapped to another local extremum of
the curvature.

Next, the end points are part of the evolute, which is the curve GH8I-KJLF , since
1M!ON�JPF for thesepoints. Following the evolute, onecan label the order of appearance
of the end points, yielding a sequenceof end points. Connecting the end points pair
wiseand augmentingeachconnectionwith ’specialpoints’ that ariseon the Symmetry
Set,givesthe string structur eproposedin [13].

An exampleis given in Fig. 3. On the left, a fish shapeis taken fr om a common
data set[15, 16]. On the right, the string structur e- without specialpoints - is shown.

3 Closedform representation

The evolute can becomecomplicated,especiallyfor concave shapes.Then sometimes
FQ!SR and the evolute movesto infinity . The sameholds for Symmetry Setbranches
and the Medial Axis part outside the shape. It is therefore convenient to relate the
Symmetry Setdir ectly to the shape.

This can easilybe donewhile computing the Symmetry Set in Eq. 2 by using the
locations of the tangencyof the circle, instead of its centre. This results in pairs of
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Figure4: A fish shapeandits correspondingsequentialrepresentation.

so-called’pr e-SymmetrySet’ points, known in robotics[1]. They areshown in Figure
4 on the left.

In this diagram, branchesof the Symmetry Setarevisible ascurves.Note that the
shapeis closed,sothe left part of the diagram is connectedto the right part, and the
bottom to the top. At end point of the Symmetry Setbranches,57�T!U5<� , which is the
diagonal. This diagonal can alsobe regardedasan identity mapping of the shapeon
itself, and thereforeasthe shape.

Consequently, points on the shape(diagonal)areconnectedto points on the shape
(diagonal)via the curvesin the pre-SymmetrySet.As the shapeis closedand not self-
intersecting, it can be representedasa circle. The connectionsof points on the shape
arevisible ascords. An exampleis given in Figure4 on the right.

Next, eachcord can be assigneda weight. This weight is the number of points
on a branch in the pre-SymmetrySet,divided by the sum of all branchesin the pre-
Symmetry Setthat intersect the diagonal. Sothe weightssumup to N . In Figure4 this
number is givenasa percentage.

3.1 A String representation

A straightforward manner to store the information given by the circle with cords,
is by creating a vector with the samedimension as the number of end points. Each
coordinate of the vector then get the value of the relative length of the cord that is
relatedto it. Consequently, the coordinatessum up to 2.

When all cords have differ ent length, the cords can easily be reproduced fr om
this vector. However, the connectivity information is lost if two cords have the same
length. Therefore, eachcoordinate of the vector containsbesidesthe length also the
coordinate to which it relates.

4 Matching strings

Giventwoshapes,comparisoncandonevisually by comparing their circlediagrams �
and � . As the information of thesediagramsconsistsof points andcord, the pointsare
mappedsuch,that the number of coinciding cords is highest.Obviously, the ordering
of points may not change. As the parameterization has an arbitrary begin point,
alsoall rotated versionsof � up to VXW must be taken into account. Furthermor e, the
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Figure5: Two circlesdescribingdifferentshapes.

number of cordsof both circlesmay differ, aswell asthe way the cordsareconnected,
seeFigure5.

From the transitions of the Symmetry Set [3] it follows that a cord (a branch of
the Symmetry Set)may (dis-) appear in a transition where two end points meetand
a cord (dis-) appears. As the removal of a cord in one circle to optimize matching
relatesto intr oducinga cord in the other circle,it sufficesto considerremoving cords.
Consequently, a cord connectingtwo neightbouring end points is allowed to vanish -
in the mapping sucha cord may be removed.

4.1 Cost Matrix

The matching of two circlediagrams � and � canbe doneasfollows. Let ��� � � ����
������ �
and ��� � � ����
������ � denotethe vectorswith the lengthsof the branches. Then �#�Y$��('Z��!
����� � �[� � � is the costmatrix, where � is somedistancemeasure. In the remainder we
shall use ����\]��^<�2!_\]A ^`Jbac\�aPac^da , but other choices,lik e ����\]�e^b�0!fa
\ 6 ^@a , can be
applied aswell.

If � = � and the starting positionsare equal, tr � describesthe inner product be-
tweentwo identical vectorsand equalsone. If the starting positionsarediffer ent, the
trace of a rotatedversionof � equalsone.

To maximize the matching, a path  g!g���#�Y$�%&�h'i)(��� is to be found in � , suchthat
eachrow and column $�% and '*) arepresentonly once- eachpoint canbematchedonly
once. For the two examplesgiven above, this is simple. For differ ent shapes,it must
be taken into accountthat two neighbouring points and their connectingcord may be
removed. This relatesto the matrix in removing two subsequentrowsor columns.

Next, when two points are matched, automatically the two points to which they
are connected,must be matched. For simplicity, one can state that when two cords
are given by �Y$ % �e$ %
j�
 � and �	' ) �(' )Cj�
 � , $ % and ' ) can only be matched, if $ %
j�
 and ' )Cj�

arematched,and that the matchings �#�Y$ % �h' )Cj�
 � and �#�Y$ %
j�
 �(' ) � are forbidden.

An exampleof a matrix � is given in Figure6. The origin is bottom left. The line
thr ough the matrix denotesthe optimal match. As one can see,the matrix contains
zeros, denoting the forbidden entries. When two subsequentvalues along the line
are equal, the off-diagonal neighbouring points are zero, asdescribedabove. As the
vectors have differ ent length, the line makesa jump. The jump skips two rows. In
general, jumps skip an even number of rows or columns,sincea jump resemblesthe
removal of a number of cords,eachwith two points.
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Figure6: Costmatrix andoptimalpathfor theshapecirclesin Figure5.

4.2 Implementation

The derivation of the Symmetry Setgiven a shapeis describedin [4, 13]. It basically
boils down in computing all zero crossingsin Eqs.1-1for all point pairs �?5 � �k5 � � . These
points pairs form the pre-Symmetry Set as shown in Fig. 4, left. Then the distinct
Symmetry Setbranchesthat intersect the diagonal are derived, with the locationsat
the diagonaland their lengths.This givesa setwith elements����!l��mL
L��m�/X�[no��� , with mL

and m�/ the m�p�q
 and m�p�q/ position on the diagonal,and r the relativelength of the branch.

Next, on eachcord that is allowed to vanish, the two points are marked as’begin’
or ’end’ point. Note that if two cords are nested,both are allowed to vanish. If the
crosseachother, they cannot be removed. For more details on the type of cords, see
[12].

Let nT�tsu� and n��vsu� , then the costmatrix is built up as �#��$[�h'Z�w!gR if ��� and
� � area combination of a begin and an endpoint, and �#�Y$��('Z�x!Kn � n � , elsewhere.

The path with maximal value is found by using a shortest path algorithm [6] on
6 � . � can be transferr ed into a graph with asverticesthe rectangular grid, given
by the dimensionsof � , and edgesfr om �#��$��('Z� asfollows.

y If �#��$<8zN{�('T8zN��|!}�#�Y$��('Z� and �#�Y$b8zNP�h'&��!}�#�Y$��('t8EN��|!UR two beginpoints
of a cord are matchedand the only allowed edgeis �#��$�8}NP�('~8�N������#��$[�h'Z�
with cost �#�Y$@8�N{�('�8UN�� .

y If �#��$d8}N{�('~8}N���!gR , this position is not allowed and the only allowed edges,
denotinga possibleskip, are �#��$�8�NP�h']8.N������#�Y$�8�NP�h'Z� and �#��$�8�NP�h']8.N����
�#�Y$��('�8UN�� , both with cost R .

y Elsethr eeedgesarepossible: �#�Y$�8.NP�h'd82N������#�Y$��h'&� with cost �#��$�82N{�('d8.N�� ,
and �#��$Z8ENP�('o8+N��x���#�Y$<8+N{�('Z� and �#�Y$Z8ENP�h'T8EN��x���#��$[�h'T8EN�� , both with
cost R .

Obviously, to computethe completepath fr om a point to itself, oneshould handle
the boundaries of � properly. To find the shortest path solution, it sufficesto take
the shortestpaths thr ough the entriesof onecolumn or row and take the minimum of
them.



Figure7: A fish image,fish shapeanda blurredfish shape.

5 Results

In the remaining we usedshapesfr om an existing data base[15, 16]. Theseshapes
are the boundary of N�VP�~��N�VL� pixel sizedblack and white images,asshown in Figure
7, left. Of eachimagethe boundary is extracted and the points are ordered, yielding
a sequenceof points, Figure 7, middle. The number of points rangestypically fr om
1200to 1500.

The derivatives of a Gaussianfilter are applied to this sequenceto find a rea-
sonableestimation of the derivatives[7] of the shapeparameterization. The normal
vector is obtained at a scaleof �`A�� pixels. We note that using a small scaleresembles
applying a (small) mean curvature motion to the shape[5]. The shapein Figure 7,
middle, is thereforeslightly blurr ed,seeFigure7, right.

This blurring of shapeshas the property that it removessmall details. This may
be regardedasa disadvantage,but on the other hand no removal of spurious details,
or whatever adjustmentsto the data needto be carried out.

The correspondingstring, pre-SymmetrySetand circlediagram areshown in Fig-
ures3-4.

Next, 10 differ ent fish shapesare compared. The resultsare shown in Figure 8.
The imagesshow the fish, the numbers the scoreof the match. The first colum shows
the best match, secondcolumn the second-bestmatch and so on. As the matching
of any shapewith itself matches N , the first column also representsthe shapeto be
matched.

The fishesin row thr eeand four are artificially drawn, and they are eachothers
second-bestmatch. Furthermor e, the matching has a preferencefor matching fins.
This is due to the fact that fins are intr oducingprominent extremaof curvature.

The secondgroup of shapesconsistsof 7 tools,asshown in Figure9. Although tool
number 7 is significantly smaller than the others, it is still matchedwith larger tools.
This is due to the normalization of the lengthsof the branchesof the pre-Symmetry
Set.

The third test shows the comparison of all 10 fishesand 7 tools. The resultsare
shown in Figures10-11.Most fishesand tools haveasthe 5 bestmatchesshapesfr om
the samecategory. In the fishes-part,Figure 10,a wrenchoccasionallyappears.This
tool is considered as a fish with only two tail fins and no other fins. For the same
reasonsomefishesappear in the tools-part, Figure11.

6 Summary and Conclusions

We intr oduced a new way to representand compare shapesbasedon the Symme-
try Set, a generalization of the Medial Axis. This string representationusesthe end



1. 0.9964 0.9784 0.9671 0.9639 0.9545 0.9461

1. 0.9944 0.9618 0.9584 0.9533 0.9406 0.9372

1. 0.9964 0.9886 0.9657 0.9634 0.9585 0.9538

1. 0.9886 0.9784 0.9678 0.9638 0.9584 0.9543

1. 0.9671 0.9585 0.9366 0.9278 0.9263 0.9167

1. 0.9944 0.9638 0.9634 0.9554 0.9545 0.9402

1. 0.9729 0.946 0.936 0.9351 0.9305 0.9238

1. 0.9729 0.9543 0.9538 0.9418 0.9372 0.9366

1. 0.9483 0.9461 0.946 0.9414 0.9402 0.9302

1. 0.9678 0.9657 0.9639 0.9618 0.9554 0.9278

Figure8: Matchingof fishes.



1. 0.9854 0.9708 0.9532 0.9439 0.902 0.8944

1. 0.9522 0.9456 0.9394 0.9128 0.9063 0.8944

1. 0.9673 0.9532 0.9525 0.9468 0.9308 0.9063

1. 0.9673 0.9641 0.9522 0.9501 0.9439 0.9307

1. 0.9854 0.97 0.9501 0.9468 0.9456 0.9131

1. 0.9708 0.97 0.9641 0.9525 0.9228 0.9128

1. 0.9394 0.9308 0.9307 0.9228 0.9131 0.902

Figure9: Matchingof tools.



1. 0.9964 0.9784 0.9671 0.9639

1. 0.9944 0.9618 0.9608 0.9584

1. 0.9964 0.9886 0.9657 0.9634

1. 0.9886 0.9784 0.9678 0.9638

1. 0.9671 0.9585 0.9366 0.9317

1. 0.9944 0.9679 0.9638 0.9634

1. 0.9729 0.946 0.936 0.9351

1. 0.9729 0.9543 0.9538 0.9418

1. 0.9483 0.9461 0.946 0.9414

1. 0.9678 0.9657 0.9639 0.9618

Figure10: Matchingof fishesandtools;thefish part.



point of the Symmetry Setbranchesand the relative length of the branch in the pre-
Symmetry Set diagram. The end points representthe extrema of curvature of the
shape.

Therefore,the representationlinks theseextremapair wise.This ideaof pair wise
linking of points on the shaperelatesconceptually to that of Curvature ScaleSpace
[14], albeit that wedonot usea scalespaceto establisha linking, but usethe Symmetry
Set.

1. 0.9854 0.9708 0.9603 0.9532

1. 0.9522 0.9456 0.9394 0.9128

1. 0.9673 0.9532 0.9525 0.9468

1. 0.9673 0.9641 0.9522 0.9501

1. 0.9854 0.97 0.9679 0.9608

1. 0.9708 0.97 0.9641 0.9525

1. 0.9394 0.9308 0.9307 0.9252

Figure11: Matchingof fishesandtools;thetoolspart.

The representationallows the matching of shapesby comparing strings, for in-
stanceby taking the inner product of appropriate sub setsof thesestrings. The sub
setsare defined by applying allowed changesof the Symmetry Set. The maximal
matching is found by an adapted shortest pad algorithm that finds the optimal sub
sets.



Examplesshow the usability of the proposedmethod. Futur e work will focuson
impr ovementof the shortestpath basedalgorithm and on the influenceof alternative
differ encemeasuresbesidesthe inner product.
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