

Semi-Automatic Foreground Extraction For Natural Images

Andreas Rishede Hyllested
Martin Wallengren Nilsson

IT University Technical Report Series TR-2005-64

ISSN 1600-6100 March 2005

Copyright  2005, Andreas Rishede Hyllested
 Martin Wallengren Nilsson

 IT University of Copenhagen
 All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

 ISSN 1600-6100

 ISBN 87-7949-094-8

Copies may be obtained by contacting:

 IT University of Copenhagen
 Rued Langgaards Vej 7
 DK – 2300 Copenhagen S
 Denmark

 Telephone: +45 72 18 50 00
 Telefax: +45 72 18 50 01
 Web: www.itu.dk

�

�

�

�

�

�

�

�

�

�

�

�

�

Semi-Automatic Foreground Extraction
For Natural Images

Andreas Rishede Hyllested (arh) 190578-2971
Martin Wallengren Nilsson (mwn) 150976-2321

March 2005

 Supervisor: Ole Fogh Olsen
IT University of Copenhagen

Abstract

The work described in this thesis was carried out at the IT University of Copen-
hagen, Denmark from September 2004 to March 2005. The focus of the work
has been defined together with the collaboration partner Laerdal-Sophus A/S who
seeks to replace a current manual segmentation method with a semi-automatic seg-
mentation method.

The thesis produces a method for and describes the framework of interactive seg-
mentation of foreground objects in natural images. The basis technology is seg-
mentation by graph cut. To increase interactivity speed the graph construction
is preceded by a toboggan watershed segmentation of the input image. The wa-
tershed segmentation is implemented in a multi-scale framework where differ-
ent normalisation methods are tested. Based on the watershed segmented im-
age is built a graph, in which every watershed segment corresponds to one node.
The minimum-cut is efficiently computed using the new augmenting path based
Boykov-Kolmogorov algorithm. To increase performance of the algorithm an ini-
tial pre-augmentation of all terminal links is proposed.

For fine tuning of the segmentation we propose a new method that uses a local
graph representation to perform a pixel-based minimum-cut in specified areas. The
method has automatic input of seed points. For difficult parts of the object bound-
ary the locally found minimum-cut improves the result by overriding the global
segmentation.

Two new methods to enter seed points for the min-cut/max-flow algorithm are
demonstrated. The first method is based on finding shortest paths through elon-
gated image structures and converting the found paths into dense rows of seed
points. The other method automatically enters background seed points by subtrac-
tion of a background image.

The advanced Bayesian framework for alpha matting proposed by Chuang et al.
is tested. It shows to have the potential for producing good alpha mattes even for
difficult segments, but it occurs to be too slow to match Laerdal-Sophus A/S’s need
for interactivity. Instead, by applying Gaussian low-pass filtering to the alpha chan-
nel we obtain decent alpha transitions for simple borders in a few seconds. This
simple approach can be allowed, at least, in the specific case Laerdal-Sophus A/S,
because their image segments usually have simple borders.

All implementation is done in C++ to integrate with Picture Factory, which is an
image editing application currently used by Laerdal-Sophus A/S.

1

Acknowledgments

We would like to thank our academic supervisor Ole Fogh Olsen, Associate Pro-
fessor at the IT University of Copenhagen, Denmark, for excellent supervision
throughout the thesis period.
Thanks to Ken Friis Larsen and Asger Kunuk Ottar Alstrup, from Laerdal-Sophus
A/S, for friendly cooperation and guidance.

2

Contents

1 Introduction 6
1.1 Problem Statement . 6
1.2 Introduction to Laerdal-Sophus A/S 7
1.3 Current Image Manipulation . 8

1.3.1 Image Segmentation . 8
1.3.2 Shadowing of Segments 9
1.3.3 Quality Control . 10

1.4 Objectives . 11
1.5 Thesis Outline . 11

2 Method Selection 13
2.1 Review of Some Existing Methods 13

2.1.1 Boundary-Based Methods 13
2.1.2 Region-Based Methods 14

2.2 Evaluation of Five Methods . 15
2.2.1 User Input . 16
2.2.2 Possibilities of Fine Tuning 16
2.2.3 Segmentation Time . 16
2.2.4 Quality of Results . 16
2.2.5 Possibilities for Shadow Creation 17
2.2.6 Difficulty of Implementation 17
2.2.7 Method Grading . 17

2.3 Summary . 18

3 Energy Minimisation and Graph Cut 19
3.1 Energy Minimisation . 19

3.1.1 Pixel Labeling by Energy Minimisation 20
3.2 Energy Minimisation by Graphs Cut 20

3.2.1 Building the Graph . 21
3.2.2 Graph Cut . 22
3.2.3 The Ford-Fulkerson Algorithm, Augmenting Paths 23
3.2.4 Seed Points . 24
3.2.5 The Boykov-Kolmogorov Algorithm 25

3

CONTENTS

4 Lazy Snapping 29
4.1 Overview . 29
4.2 Pre-Segmentation . 30

4.2.1 Toboggan Watershed Segmentation 30
4.3 Creating the Graph . 38
4.4 Setting the Energy Function . 38

4.4.1 Likelihood Energy,Dp(·) 39
4.4.2 Prior Energy,Vp,q(·) . 40

4.5 Entering Seed Points . 41
4.5.1 User Interaction . 41
4.5.2 Minimum Requirement 41
4.5.3 Colour Statistics . 42
4.5.4 The Neighbourhood . 42
4.5.5 The Neighbourhood Weight 42
4.5.6 LS Segmentation Example 43
4.5.7 Entering Seed Points Into Elongated Structures 45
4.5.8 Background Subtraction 48

4.6 Fine Tuning by Adding Seeds 52
4.6.1 Recomputation of All t-links 52
4.6.2 Recomputation of t-links at New Seeds 53
4.6.3 Recomputation of All Edge Capacities 54

4.7 Local Graphs . 55
4.7.1 Building the Local Graph 55
4.7.2 Automatic Seed Point Selection 56
4.7.3 Setting the Energy Functions 56
4.7.4 Splitting Up Pre-Segments 58
4.7.5 Summary . 60

5 Alpha Estimation 61
5.1 Gaussian Transition . 62
5.2 Local Alpha Estimation . 63
5.3 Alpha Matting Using a Bayesian Framework 67

5.3.1 Method Overview . 67
5.3.2 Obtaining the Trimap . 67
5.3.3 Compute Processing Order 67
5.3.4 Pixel Sampling . 68
5.3.5 K-Means Clustering . 68
5.3.6 Bayesian Matting . 69
5.3.7 The Bayesian Matting Algorithm 72
5.3.8 Alpha Matting Examples 74

4

CONTENTS

6 Implementation Details 78
6.1 Choice of Programming Language 78
6.2 Program Structure . 78

6.2.1 Filtering in the Fourier Domain 80
6.3 Graphical User Interface . 82

7 Test 84
7.1 Limited Functional Test . 84

7.1.1 Manual Minimum-Cut 85
7.1.2 Run-time Versus Worst Case Complexity 86
7.1.3 Separating Energy Terms 88

7.2 Time Study . 91
7.2.1 Pre-Segmentation . 91
7.2.2 Graph Cut Segmentation 93

7.3 The Neighbourhood Weight . 99
7.4 Directed Versus Undirected Graphs 103

7.4.1 Initial Segmentation . 103
7.4.2 Fine Tuning . 103
7.4.3 Discussion . 104

7.5 Graph Update . 106
7.6 Overall Performance . 107

7.6.1 Case 1 . 108
7.6.2 Case 2 . 112
7.6.3 Case 3 . 115
7.6.4 Case 4 . 118
7.6.5 Case 5 . 121
7.6.6 Difficult Image Example 124

7.7 Discussion . 128

8 Conclusion and Further Work 131
8.1 Conclusion . 131
8.2 Further Work . 134

5

Chapter 1

Introduction

The work for this thesis is carried out as a part of the fulfillment of a Master of
Science degree in Multi Media Technology at the IT University of Copenhagen,
Denmark. It has been carried out in the period September 2004 to March 2005.
The thesis is done in cooperation with Laerdal-Sophus A/S.

Interactive foreground extraction in natural images describes the process of sep-
arating a foreground object in a digital image from the background. It is referred
to as image segmentation but is a subpart of general image editing. The relevance
for efficient interactive tools for image segmentation has increased as digital image
compositing has become more and more commonly used both by the professional
graphics industry and by private users. Therefore, segmentation methods for in-
teractive use have been an area of significant research and interest for many years.
The problem is to provide a tool that assists a user in obtaining a segmentation of
varying types of objects, in less time and in higher quality than could be obtained
by manual processing. Providing such a tool calls for combining efficient algo-
rithms for image analysis with a graphical user interface.

Though having general relevance, the objective of this thesis rise from the spe-
cific need for an interactive segmentation tool from Laerdal-Sophus A/S. Laerdal-
Sophus A/S seeks to replace their current manual segmentation method with a
semi-automatic segmentation method. Most image material tested in this thesis
will therefore be provided by Laerdal-Sophus A/S.

1.1 Problem Statement

We wish to describe the framework of and develop a prototype tool for semi-
automatic segmentation of foreground objects in natural images. The tool is de-
veloped in collaboration with Laerdal-Sophus A/S to whom we wish to propose a
more efficient alternative to their current manual segmentation method. Shadow-
ing of the segmented objects, which is an important part of Laerdal-Sophus A/S’s

6

1.2. INTRODUCTION TO LAERDAL-SOPHUS A/S

production, will be addressed to some extend. To allow future integration with
Laerdal-Sophus A/S’s production and to encourage further development based on
the prototype tool, it should be implemented in C++ as an add-on to their image
editing tool Picture Factory.

1.2 Introduction to Laerdal-Sophus A/S

Laerdal-Sophus A/S (LS) has specialised in making computer simulators for train-
ing of medical personal such as paramedics, doctors and military doctors. The
simulators display 2D scenes that are composed by a range of segments coming
from real photographs of a staff of actors.

When a scene in the simulator is composed, different personal such as doctors
and patients and various medical equipment is combined in numerous ways. It is
possible to swap the background of the scene independently of the foreground con-
tents. Figure 1.1 illustrates the concept of taking a segment from one image and
putting it into a new background setting.

Figure 1.1: a
b c d a) Crop of an original studio image of size 3072x2048 pixels. b) Hand

made greyscale mask used to extract the desired segment. c) The desired segment. d) The
segment composed into a new background.

7

1.3. CURRENT IMAGE MANIPULATION

The use of real photos has a high priority at LS because they want to present their
users with realistic situation in the simulators. Image segments are therefore ex-
tracted from original images of a high resolution ranging from 6 to 11 megapixel
in 24 bit colour. LS shoots up to 10.000 images in the making of a simulator.
From each image they extract one or more segments. All pictures are manually
segmented and the segments are combined to form new scenes.
A simplified production line for an LS simulator is shown in Figure 1.2. LS has
special interest in optimising the image manipulation step. This step consists of
three main tasks:

1. Segmenting objects from the original images

2. Creating shadows for the segmented objects

3. Quality control

of which we will focus on the segmentation task. The reason for LS’s special

Figure 1.2: Simplified production line for an LS simulator. This thesis will be about the
”Image manipulation” step.

interest in this particular step of the process is that manual segmentation and shad-
owing are very time consuming processes. On average it takes a trained operator 15
minutes to segment, shadow and perform quality control on a single image. More
than half the time it takes for LS to create a new product is used for manual image
manipulation. A reduction in the time spent on image manipulation would reduce
the total production time and lower the production cost. This in turn would allow
LS to enhance the quality of existing product types or present a wider selection of
products to their costumers.

1.3 Current Image Manipulation

This section briefly describes the current image segmentation and shadowing tasks
at LS. This is meant to provide the relevant background knowledge for the reader
to understand the setting in which this thesis is worked out.

1.3.1 Image Segmentation

The first step is the image segmentation where the desired part of the image is iden-
tified and cut out.

8

1.3. CURRENT IMAGE MANIPULATION

Figure 1.1a shows a crop from an original image containing the object to be seg-
mented. An operator manually draws along the border of the object and uses the
alpha channel to indicate what is part of the foreground object and what is back-
ground. An 8 bit alpha channel is used to control the opacity for each pixel. Alpha
values range from 0 to 255 - where 0 is a fully opaque (for background pixels), and
255 is fully transparent (for foreground pixels).
The alpha channel shown in Figure 1.1b is then used as a ”cookie cutter” to cut out
the relevant object as seen in Figure 1.1c.

Before a segment is ready to use, the borders are softened to give a better blend
with the new background image. The softening is done manually by blurring the
border in the alpha channel. For the blurring is used a Gaussian kernel. Figure 1.3
shows the improvement achieved by softening.

Figure 1.3: a b a) Applying this non-softened mask to the original image would give a
segment with hard edges. b) The softened mask is used to give a better blend with the
background.

In the current procedure the operator locally varies the width of the smooth tran-
sition in the alpha channel according to the hardness of the edge in the original
image. Soft edges require a wide transition whereas hard edges are almost pre-
served using a transition only a few pixels wide.

1.3.2 Shadowing of Segments

Shadowing of segments is the second step in the image manipulation procedure.
The attentive reader may have noticed in Figure 1.1d that the inserted segment
looks rather unnatural in its new surrounding. The segment needs a shadow to con-
vince the eye that the man in the image is really present in a 3D world with natural
light sources.

Similarly to the border softening the shadows are created in the alpha channel.
As illustrated in Figure 1.4 the shadow effect is obtained by making a soft transi-
tion in the alpha values across the segment boundary.
If done correctly, this will be perceived as a shadow in the composed scene because
it will graduate the amount of colour passing through from the background image.

9

1.3. CURRENT IMAGE MANIPULATION

Figure 1.4: a b a) Normally softened mask. b) Softened mask combined with shadow.

Figure 1.4 shows an example of a shadow in the alpha channel. In Figure 1.5 we
see the difference the shadow makes to the realism of the segment.

Figure 1.5: a b a) The shadowed segment. b) The shadowed segment on a new back-
ground. It adds a lot to the impression of realness.

LS currently have four different methods for creating shadows, each of which are
suitable for different situations. We will not go into details with the methods, but
sum up by saying that all four methods are tedious manual work.

1.3.3 Quality Control

The third step of the image manipulation procedure is testing the quality. The
quality control is purely visual to see whether both the segment and the associated
shadow look natural in various backgrounds. Quality control is currently done
in two different parts of the production. First by the employee that makes the
segmentation and later by a superior staff member.

10

1.4. OBJECTIVES

1.4 Objectives

Given an overview of the current production at LS we will now setup some ob-
jectives for this thesis. The aim for this thesis is to put forward a proposal for a
new image manipulation tool for LS. For this reason LS’s expectations and needs
have been important for the priorities. Obviously, it would be preferable for LS if
this thesis resulted in a tool that could be used directly in their production. This
is, however, not a direct goal because we also focus on the academic relevance of
each topic we investigate. We have sought to accomplish a suitable balance be-
tween commercial interests and academic novelty.

Based on the above the following objectives with respect to implementation should
be obtained:

• We should implement a prototype of an interactive segmentation tool that en-
ables us to test the possibility of replacing LS’s current manual segmentation
method

• In order to test the total segmentation time including user input and applica-
tion run-time the implementation should include a graphical user interface

• The prototype tool should be implemented, tested and documented within
the time span of the thesis

• The prototype tool should be implemented as an integrated part of LS’s C++
based image editing application, Picture Factory

Our interactive segmentation tool should not lower the quality of the segments
compared to the current segmentation quality at LS. Furthermore, the total seg-
mentation time used to obtain the necessary quality should not surpass the current
segmentation times at LS. This calls for the following restrictions:

• The implementation should allow fast user input.

• The implementation should provide fast user feedback.

• The implementation should provide possibilities for fine tuning.

1.5 Thesis Outline

The structure of the rest of the thesis is as follows. Chapter two discusses a selec-
tion of previous works in the field of interactive foreground extraction. An existing
technique is chosen to be the starting point for our work. Chapter three presents the
theoretical framework for solving the segmentation task, while chapter four goes
into more detail on the specific method chosen. Chapter four also addresses essen-
tial aspects of interactivity in the segmentation work. Chapter five addresses the

11

1.5. THESIS OUTLINE

problem of preparing image segments for compositing against new backgrounds.
Chapter six comments on the choice of software platform and describes the struc-
ture of the made implementation. In Chapter seven various tests are presented and
performance in terms of image segment quality and time usage is discussed. Fi-
nally, Chapter eight summarises the thesis and gives directions for possible further
work.
We have reserved the test in Chapter seven for the final application. Therefore,
throughout the thesis we will perform closed tests of parts that are not included in
the final application and parts that are smaller subparts of the final application.

Throughout the thesis we present a large amount of image examples. For detailed
study of the image material we have included a digital version of the thesis on the
attached CD-Rom.

12

Chapter 2

Method Selection

We wish to develop a customised interactive segmentation method that matches the
above list of objectives. For this purpose we are interested in finding an existing
method to be the starting point for our work. In this chapter we first give a review
of some existing interactive segmentation techniques. Then we present a list of
specific selection criteria that a given segmentation method should meet in order to
be a possible candidate. Finally, by grading each method in each of the categories
of the selection criteria, we will find the most suited method.

2.1 Review of Some Existing Methods

Our literature study has led us to a range of appealing articles that describe vari-
ous approaches to the segmentation problem. Before selecting a method we will
make a small review of some existing techniques. The existing interactive seg-
mentation methods can roughly be divided into two groups: boundary-based and
region-based. This review is based on reviews made by [11], [19] and [14] supple-
mented by our own comments.

2.1.1 Boundary-Based Methods

Boundary-based methods are methods that assist the user in marking the boundary
surrounding the object of interest. Typically, the methods assist the user either by
providing a snapping effect of a line or by enabling the user to paint the boundary
with a wide pencil hereby lowering the precision needed for the boundary input.

2.1.1.1 Intelligent Scissors or Magnetic Lasso

This group of methods assist the user to directly select the object boundary using
the mouse. By clicking near the object boundary the user will activate a line that,
while dragging the mouse cursor in the image, snaps to the object contour. The
user anchors the computed line by placing seed points on the object contour. To
make a snapping line the method relies on finding the minimum cost path from the

13

2.1. REVIEW OF SOME EXISTING METHODS

last seed point to the current cursor position. The method has been a part of the
Photoshop toolkit for some years [22].
As a couple of later references on the subject we can mention Mortensen & Barret
[15] and Schenk et al. [20]. In Mortensen’s review on ”Vision-Assisted Image
Editing” [14] he states that with a few additions ”..., Intelligent Scissors should
stay on the cutting edge of vision-assisted image editing.”
Blake et al. [19] and Li et al. [11], however, are both less enthusiastic about the
Intelligent Scissors. The general opinion is that the method requires too much user
input to get a satisfying result and therefore is to time consuming to use. [11],
furthermore, complains that”If a mistake is made, the user has to ’back up’ the
curve and try again.”and ”The close control required interferes with the user’s
ability to get an overview of their progress. It is difficult to zoom in and out of the
image while you are dragging the pixel-accurate boundary line”. We have worked
with the tool in Photoshop and must agree that it is hard to correct mistakes without
starting all over.

2.1.1.2 Matting

For matting methods the user specify a trimap. A trimap is an image overlay that
divides the image pixels into three areas: foreground, background and unknown.
Based on the knowledge of definite foreground and background the idea of matting
is to estimate an alpha value (the degree of transparency) for all pixels in unknown.
This will result in a smooth transition between foreground and background. The
concept is often referred to asalpha mattingand can solve very difficult segmen-
tation tasks e.g. boundaries that consist of thin straws of hair.
The most used newer method for alpha matting is Bayesian matting [3]. This
method uses a Bayesian framework and solves the problem using a maximum a
posteriori (MAP) technique to estimate theα-value for each pixel in the unknown
area. There exist newer matting techniques such as [21] and [19] which both claim
to outperform [3] in both quality and speed.
Because of the smooth transition on the object boundary, matting methods are often
used when the aim is to composite the segment into a new background. It seems,
however, that matting methods are very slow and require a lot of user interaction.
Furthermore, the methods require a lot of tuning parameters to be set by the user,
which makes them less ideal for unexperienced users. Therefore, alpha matting is
rarely used as an interactive stand-alone segmentation method.
Matting methods are however often combined with other segmentation methods to
make the boundary blend into a new background. This is done in [15],[11] and
[19].

2.1.2 Region-Based Methods

In region-based methods the user selects a region inside the desired object. Using
this input the methods present the user with a segmentation suggestion that, de-

14

2.2. EVALUATION OF FIVE METHODS

pending on the method, can be adjusted by specifying additional regions inside the
object.

2.1.2.1 Magic Wand

This method is based on colour statistics alone. The user selects a point or region
inside the object, and the method computes a segment of connected pixels that have
similar colour statistics to the selected. The technique has been referred to asre-
gion growing[6].
This method has been a part of the Photoshop toolkit for many years [22]. The
method, however, receives a lot of criticism in the literature:”Because the distri-
bution in colour space of foreground and background pixels have a considerable
overlap, a satisfactory segmentation is not achieved.”[19]. ”...in terms of algorith-
mic properties, it seems somewhat slow, unintelligent, and unpredictable. Further,
there is no ability to interact after the mouse click and the override capability is
limited to backing up or combining results from multiple mouse clicks.”[14].
Again, we have tried the tool in Photoshop and must agree with the above criticism.

2.1.2.2 Graph-Based Methods

This group of methods are based on pixel labeling by energy minimisation. The
user loosely selects some foreground and background pixels (seed points) using the
mouse. This information is then used in an energy equation which is minimised
using a graph-based minimum-cut/maximum-flow algorithm. The produced seg-
ment can be adjusted by entering more foreground and background points.
Graph-based methods are among the newest methods. [1] was the first to introduce
graph cut methods as an interactive image editing method. [19] and [11] have,
however, recently introduced their segmentation tools ”GrabCut” and ”Lazy Snap-
ping”. These are both graph-based methods but include some additional tools to
improve speed, user interaction and quality of the segments.
From earlier student projects at the IT-University of Copenhagen, [16] and [18],
it is our impression that graph-based methods can be rather slow. However, [19]
and [11] use a new optimised algorithm presented by Boykov & Kolmogorov [2],
to speed up the graph cut segmentation. They claim that their methods can give
almost instant user feedback.

2.2 Evaluation of Five Methods

Based on the list of objectives from Section 1.4 we have set up a more thorough
description of the selection criteria. The criteria are highly related and therefore
difficult to separate.
We have made a preliminary selection of articles and have chosen five of the most
appealing. Most of these articles are brand new (from 2004) and represent state-
of-the-art methods within the field of interactive foreground extraction for image

15

2.2. EVALUATION OF FIVE METHODS

editing and compositing.
After the presentation of the selection criteria we will make a grading of these 5
articles. The grades will be given in the range of 1-5, where 5 is the best and 1
the worst. We emphasise that the evaluation is done from our own experience and
general impression of the articles. However, it is still a useful tool to direct us in
our work.

2.2.1 User Input

The amount of user input is of great importance for this thesis. For many segmen-
tation purposes it is considered an advantage if the method works automatically,
without any user input. This is, however, not the aim for this thesis. Since the
segmentation tasks at LS have a high variation in both complexity and types of
foreground objects, the segmentation tool has to rely on a trained operator to pro-
vide some assistance when segmenting. The tool should simply make it faster for
the operator to segment a given image without lowering the quality of the seg-
ment. The amount of user input reflects how much work the operator has to do to
get a segment. This often has a high correlation with the total segmentation time.
Therefore, we will value methods where a low amount of user input is needed.

2.2.2 Possibilities of Fine Tuning

Since we expect an operator to assist in the segmentation procedure, it is important
that he can fine tune the result to ensure a high quality of the segment. The possi-
bility of fine tuning is very important for a segmentation method to become fully
interactive. Methods that allow a high degree of flexible user control are preferable.

2.2.3 Segmentation Time

Here we estimate whether the method will reduce the total time used for segmen-
tation at LS. This means that the criteria combines the program runtime with the
time expected for user interaction. It both requires a low amount of user input and
a fast algorithm to, ideally, provide instant user feedback. The fastest method will
get the highest grade.

2.2.4 Quality of Results

An important property of a given method is the quality of the results it produces.
But to discuss the quality issue in a meaningful way, we have to define what a
good result is. In order for LS to make direct use of an implementation done in the
course of this thesis, it must meet the same requirements as their current manual
segmentation.
The quality estimation is done based on the examples shown in the articles. How-
ever, since we have already made a preceding sort out of articles, the remaining
articles all show results that seem good enough for the task at hand.

16

2.2. EVALUATION OF FIVE METHODS

2.2.5 Possibilities for Shadow Creation

Even though it is not within the scope of this thesis to make a tool for shadow
creation we keep in mind that this task also has high priority for LS. Hence, we
will try to assess each method’s ability to combine with a future shadow creation
or shadow segmentation method.

2.2.6 Difficulty of Implementation

Though hard to evaluate, it is relevant to consider the implementation difficulty for
each method. We find it important to choose a method we expect that we will be
able to implement, test and document within the time limits of the thesis.
In this category we look at how well documented the methods are. A high grade is
given if an article leaves us with a good impression of how the method should be
implemented. Low grades will be given to the articles that are quite superficial on
the used algorithms and implementation details.

2.2.7 Method Grading

Table 2.1 shows the grade that were given to each of the selected methods

User Fine
Article/Method Input Tuning Speed Quality Shadows Difficulty Sum

Graph-Based

Lazy Snapping [11] 4 4 5 4 3 4 24

GrabCut [19] 5 3 4 4 3 3 22

Matting

Poisson-Matting [21] 1 5 1 5 4 2 18

Bayes-Matting [3] 2 2 1 4 4 3 16

Intelligent Scissors

Toboggan-Based
Intelligent Scissor [15] 3 3 3 4 3 5 21

Table 2.1: Method grading. Grades from 1-5 are given where 5 is best and 1 is worst.

We will here make a few additional comments on some of the given grades.

User Input In this category the GrabCut method [19] receives the highest grad-
ing because the initial user input is made very simple and intuitivly by dragging a
rectangle around the object of interest. On the other extreme we find the matting
methods that seem to require expert knowledge in order to set program parameters
to obtain good results.
The Toboggan-based Intelligent Scissors gets a middle grading. It has an intuitive
means of input, but, unfortunately, it is a tedious work to mark the entire border.

17

2.3. SUMMARY

Fine Tuning Here Poisson matting receives the highest grade because the article
describes the broadest selection of clever fine tuning tools. The Lazy Snapping
gets the grade 4 for a range of interesting fine tuning features and usability study
included in the article.

Speed In terms of speed we estimate that Lazy Snapping and GrabCut are best
and second best in both speed of input and computation. The iterative scheme used
in GrabCut and the fact that it uses a pixel-based graph may slow computation,
thus it is only given the grade 4.
The matting methods are known to be rather time-consuming, so they are given the
lowest grade in this category.

Quality All methods seem to be able provide the necessary quality. Poisson
matting receives a higher grade because it shows impressive result for very difficult
images.

Shadows In this category the matting techniques receive a higher mark because
we believe that the unknown area in their trimaps can become useful in a future
automatic computation of a shadow for the segment.

Difficulty Here the best grading goes to the Toboggan-based Intelligent Scissors
for a very well-documented algorithm. Lazy Snapping is also quite well described,
and conceptually it seems more intuitive than GrabCut.
The Poisson matting gets a low grading for lack of details on the fine tuning tools.

2.3 Summary

As can be seen from Table 2.1 the method Lazy Snapping [11] receives the highest
total score. We think that the method will meet the requirements for LS’s segmen-
tation problem and furthermore we think that the method will be a good set off for
our work in the field of interactive segmentation. Therefore, we decide to use Lazy
Snapping as our primary focus for this thesis.
Lazy Snapping is a wide combination of different techniques such as watershed
segmentation, graph cut, alpha matting and different GUI-techniques. In our fur-
ther work with the method we may decide to omit or replace parts of Lazy Snap-
ping. Nevertheless, we will still refer to the method as Lazy Snapping.

18

Chapter 3

Energy Minimisation and Graph
Cut

In the previous chapter we decided on using a graph based method to approach
the segmentation problem at LS. Before going into a more detailed description
of Lazy Snapping, we will in this chapter make a more general description on
how graph cut can be used to solve an energy minimisation problem in computer
vision. Furthermore, this section contains a detailed description of the Boykov-
Kolmogorov augmenting path algorithm that we used to find the minimum cut of a
graph.

3.1 Energy Minimisation

A common approach to a range of image processing tasks has been to formulate
the problem in terms of an energy function for which the global minimum give
the optimal solution to the problem. One example is the deformable contours - or
snakes which are driven by minimisation of an energy function consisting of the
so-called internal and external forces, [27]. The internal term carries information
about the curve surrounding the object and is, at no time, influenced by image data.
Minimising this term alone would cause the curve to shrink. The external term
carries information about local edges in the image. Minimising this part alone
would make the snake settle close to nearby edges in the image.
Another example of the use of energy minimisation is for finding the optical flow in
an image sequence. This can be used to facilitate segmentation of moving objects
in the sequence. A method for computing the optic flow was first presented by Horn
and Schunk [7]. Horn and Schunk propose a two-term energy function. The first
term assumes that the pixel intensity of an image does not change over time. The
second term is a smoothness term used to encode the assumption that neighboring
pixels have approximately the same local displacement vectors. By minimising
this energy function for all pixels in two successive images, a displacement vector
for each pixel can be estimated.

19

3.2. ENERGY MINIMISATION BY GRAPHS CUT

3.1.1 Pixel Labeling by Energy Minimisation

Not least, energy minimisation has been used for pixel labeling to achieve a seg-
mentation of an image. In this thesis we will address the segmentation problem as
an image labeling problem by energy minimisation.
Markov random field (MRF) provides the basis theory for image labeling. MRF is
a branch of probability theory for analysing contextual dependencies [10]. In the
case of image labeling, a label takes a discrete value in a set of M labels:

L = {L1, L2, ..., LM} (3.1.1)

An image labeling problem is to assign a labelL to each of the pixels in the image.
In our case we only need to divide pixels into two labels, foreground and back-
ground,L = {F (= 1), B(= 0)}. The energy function used is therefore the special
case of the Gibbs distribution where only two labels are needed.

E(L) =
∑

p∈P
Dp(Lp) + λ

∑

(p,q)∈N
Vp,q(Lp, Lq), (3.1.2)

whereP is the set of pixels we want to label andN is all sets of neighboring pixels.
Dp(·) is a regional data function,V (·) encodes neighbour relations. The goal is to
find a labelingL of all pixels inP that minimisesE.

The energy termDp(·) can be interpreted as the posterior probability that a pixel
belongs to eitherF or B. This energy term is based on having some information
about the foreground and background. In Section 3.2.4 we will come back to how
this information is obtained.
The neighbourhood energy term,Vp,q(·), is a local energy that represents the prior
probability of coherency between two neighbouring pixelsp andq. This term is
often referred to as the smoothness term, in that it penalises discontinuities in the
pixel neighbourhood.

3.2 Energy Minimisation by Graphs Cut

For different minimisation problems there are different minimisation schemes. To
some problems there exist direct solutions whereas others require some sort of it-
erative process (e.g. gradient descent). However, the problem of finding the global
minimum for image labeling is often difficult and time consuming because the en-
ergy functions generally are non-convex and in many dimensions. The problem
can be solved using simulated annealing. Simulated annealing is, however, very
time consuming, and it is shown that a guaranteed global minimum can only be
found in infinite time [23].

Within the last few years minimisation problems for pixel labeling have effectively
been solved using graph-based minimisation schemes. The basic idea is to make a

20

3.2. ENERGY MINIMISATION BY GRAPHS CUT

graph based on the energy function such that the minimum cut/maximum flow of
the graph minimises the energy function. For more details on which functions are
well suited for this approach we refer to [9]. It is, however, not within the scope of
this thesis to address which functions can be minimised, but it is shown in [9] that
Equation 3.1.2 can be minimised using graph cut.

3.2.1 Building the Graph

In a graph,G
G = 〈V, E〉 (3.2.1)

whereV andE represent nodes and edges respectively, each node corresponds to
one pixel in the image, such that all non-boundary pixels have connecting edges
(n-links) to 4 other pixels if we assume a 4-neighbourhood.
The graph also has a two terminal nodes which are connected to all ordinary nodes
by edges called t-links. Each of the terminals correspond to the different labels that
can be assigned to nodes during the segmentation. The two terminals are referred
to as thesourceterminals, that is associated withF , and thesink terminalt, that
is associated withB.
Each edgee ∈ G has a capacityc. This capacity is directly associated with the
energy terms of Equation 3.1.2. The capacities of all t-links (c(p, terminal)) cor-
respond toDp(·), and similarly the capacities of all n-links (c(p, q)) correspond to
Vp,q(·). The graph structure and the belonging vocabulary can be viewed in Figure
3.1.

A graph can be either directed or undirected. In our implementations we have
been working with both graph representations, so we provide a brief description of
each.

t

s

n-links,

capacity

computed

by Vp,q

terminal,

source

terminal,

sink

t-links,

capacity

computed

by Dp

nodes,

corresponding

to pixels

Figure 3.1: This figure illustrates the structure of the graph we use and the vocabulary
used in connection with the graph.

21

3.2. ENERGY MINIMISATION BY GRAPHS CUT

3.2.1.1 Directed Graphs

In a directed graph each edge has a direction [4]. For our vision application a
directed graph is constructed as described in [2]. Every pair of nodes(p, q) are
doubly neighbour-linked (n-link)p À q by opposite directed edges(p, q) and
(q, p).
All ordinary nodes are connected to both terminals by one edge. These t-links have
the direction from the source to the ordinary node,s → p and from there further to
the sink,p → t. The directed graph is illustrated in Figure 3.2a.

Figure 3.2: a b c a) A directed graph with two terminals. The thickness of the edges
correspond to the edge capacities. b) An undirected graph with two terminals. c) A cut in
a graph.

3.2.1.2 Undirected Graphs

In an undirected graph the edges do not have a direction. The undirected graph that
we use in our work has a similar structure to the directed. Every pair of nodes(p, q)
are connected by only one edge (p−q). The ordinary nodes in the undirected graph
also have t-links to both terminals. The undirected graph can be seen in Figure 3.2b.

3.2.2 Graph Cut

To obtain a segmentation of an image we seek to cut the graph for instance as shown
in Figure 3.2c. A cut set,C is defined as all the edges that lie on the segmentation
boundary,C ⊂ E . The cut results in the graph

G(C) = 〈V, E\C〉 (3.2.2)

in whichs andt have been separated.
We are interested in finding a suitable graph cut algorithm that is capable of divid-
ing the nodes of the graph into two disjoint subsets,F andB. In the end all nodes,

22

3.2. ENERGY MINIMISATION BY GRAPHS CUT

in theF will correspond the segmented object and all nodes inB will correspond
to the background. An example of this is shown in Figure 3.3.

Figure 3.3: a b a) Unlabeled grey-scale image. b) Final labeling of the image after a
min-cut has been made.

There exist two prevailing groups of algorithms for minimising via graph cuts.
The type of algorithms that we exclusively deal with in this thesis is known as
augmenting paths. The other group of algorithms that we shall barely mention is
known aspush-relabelmethods. We have chosen only to work with the new aug-
menting path algorithm presented by [2]. The authors show that though is has a
worse worst case complexity their algorithm in practice outperforms existing meth-
ods, including various push-relabel methods, that used to be the fastest for many
years.

3.2.3 The Ford-Fulkerson Algorithm, Augmenting Paths

The augmenting path method was presented by Ford-Fulkersen [4] to find the max-
flow in a graphG = 〈V, E〉. Each edgee ∈ E has a capacityc. Besides the graph
G we maintain a residual graphGf which holds the remaining capacitiescf . Gf

limits the possible flow that is allowed to pass throughG. Initially Gf = G.

The Ford-Fulkersen algorithm is given below:

Ford-Fulkersen Algorithm

while (path found s → t)

find the bottleneck capacity ∆f of P

subtract ∆f from all edges in P going from s → t

add ∆f to all edges in P going from t → s

end while

In each iteration of the algorithm we find a path,P from s → t and augment this
path. Augmenting the path means finding the minimum remaining capacity (or
bottleneck capacity)∆f alongP and subtract∆f from all capacities inP .

for all cf ∈ P from s → t do : cf = cf −∆f (3.2.3)

23

3.2. ENERGY MINIMISATION BY GRAPHS CUT

The rule of skew symmetry for directed graphs implies that∆f is added to all
edges in the opposite direction [4], such that

for all cf ∈ P from t → s do : cf = cf + ∆f (3.2.4)

A saturated edge (an edge for whichcf = 0) cannot be a part of the pathP .
The principle is illustrated in Figure 3.4. As can be seen from Figure 3.4c each

Figure 3.4: a b c a) A directed graph with initial capacities. b) A path from sink to source
with indication of the bottleneck capacity. c) The residual graph resulting from pushing
∆f through the path,P .

augmented path results in at least one saturated edge. Each saturated edge is a part
of the cutC. The algorithm terminates when no more augmenting paths can be
found froms → t. At this point we have obtained the min-cut or equivalently the
max-flow

maxflow = |C| =
∑

e∈C

ce (3.2.5)

The equivalence between the min-cut and max-flow is described in [4].

3.2.4 Seed Points

As mentioned in Section 3.1 we need some colour information from the image
to compute the first energy termDp(·). This information is obtained by choosing
some pixels from the image. These pixels are referred to as seed points or seeds and
correspond directly to nodes in the graph. There are two kinds of seeds, one related
to the foregroundp ∈ F , and one related to the backgroundp ∈ B. Foreground
seeds should be placed inside the object, to be segmented and background seeds
outside the object.
Apart from providing the relevant colour information about the foreground and
background, the seeds also impose a hard constraint on the final segmentation.
This means that pixelsp ∈ F will definitely end up inside the foreground object
and pixelsp ∈ B will become background.

24

3.2. ENERGY MINIMISATION BY GRAPHS CUT

3.2.5 The Boykov-Kolmogorov Algorithm

In the following we will consider the new min-cut/max-flow algorithm proposed by
Boykov and Kolmogorov [2]. The algorithm is based on the Ford-Fulkerson aug-
menting paths, but contains some new features that makes it faster than existing
algorithms. One new feature is that it simultaneously performs two breadth-first
searches from the two terminals,s andt. This results in two search trees,S and
T , with their roots ins andt, respectively. The other new feature that dramatically
increases the speed is that the algorithm reuses the search trees and never rebuilds
them from scratch.
In [2] the authors compare the new algorithm with the older Ford-Fulkerson based
Dinic algorithm and two push-relabel algorithms. They mention that the new algo-
rithm has a higher worst case complexity than these existing algorithms (see Table
3.2.5), because it does not necessarily find the shortest paths. However, they pro-
ceed to argue that this is not a major concern since their algorithm in practice is
significantly faster than the others in various vision applications.

Method Worst Case Complexity

Dinic O(mn2)

Push-Relabel-1 (†) O(n3)

Push-Relabel-2 (†) O(n2√m)

Boykov-Kolmogorov O(mn2|C|) (‡)

Table 3.1: Theoretical worst case run time complexities for some min-cut/max-flow algo-
rithms, wheren is the number of nodes andm is the number of edges. (†): Two different
push-relabel methods by Goldberg & Tarjan. (‡): The of the Boykov-Kolmogorov algo-
rithm depends on cost of the min-cut,|C|. Run times are taken from [2].

The Boykov-Kolmogorov algorithm runs a repeated three-stage procedure of so-
called ”growth”, ”augmentation” and ”adoption”. In the growth stage the two
search treesS andT are grown until an augmenting path,P (s → t) is found.
The augmentation stage is whereP is augmented to saturate at least one edge in
P . Finally, the adoption stage ensures that branches of the search trees, that have
been cut off by saturated edges, are replaced in the search tree or set free. The over
all algorithm is given bellow.A is a list of active nodes,O is a list of orphan nodes.
In the following subsections we will give more details about the individual stages.

25

3.2. ENERGY MINIMISATION BY GRAPHS CUT

Boykov-Kolmogorov Algorithm

Initialise: S = {s}, T = {t}, A = {s, t}, O = ∅
while true

grow S or T to find an augmenting path P from s to t

if P = ∅ terminate

augment on P

adopt orphans

end while

s

P P P A P P

P P P A P P

P P A A A P P P

P A A P P P

A

A

A

t

Figure 3.5: Two searches treesS (red) andT (blue) are grown froms andt. Active nodes
(’A’), passive nodes (’P’) and free nodes with black border. The yellow line indicates an
augmenting path caused by the two trees touching each other.

3.2.5.1 Growth

Initially, all nodes are free in the sense that they do not belong to either of the
search treesS andT . In the growth stage the two search trees expand by annexing
free neighbouring nodes until the trees meet each other. When a node is annexed,
it becomes active and is put in the active listA. Initially only the terminal nodes
s andt are in the active list. An active nodep can only annex a neighbourq if q
is free and the connecting edge hascf (p → q) > 0. When an active node has no
more neighbouring nodes to annex, it becomes passive and is removed from the
active list. The concept is illustrated in Figure 3.5. This figure show a planar graph
which is not the graph we are working with. The planar graph, however, illustrates
the concept better.
If the algorithm runs in a directed graph, the residual capacity iscf (p → q) when
S grows andcf (p ← q) whenT is grows.
When the search treesS andT meet, it results in a new augmenting path,P , s → t
and the algorithm proceeds to the augmentation stage. Eventually, the algorithm
stops when the whole graph has been searched, i.e. whenA is empty. When
this happens, all the nodes in the search tree,S makes up the resulting segmented
foreground object.

26

3.2. ENERGY MINIMISATION BY GRAPHS CUT

3.2.5.2 Augmentation

In the augmentation stage the pathP found in the growth stage is augmented as
described in Section 3.2.3. Here the bottleneck capacity∆f is found and pushed
through the path. At least one edge in the path is saturate. As a result of this
saturation some nodes inS andT may become separated from their search trees
because they no longer have valid parents, i.e. the edge from its parentq is zero,
cf (q → p) = 0. A node severed from the tree is called anorphannode and is
pushed into the orphan listO. When the whole path is augmented, the algorithm
proceeds to the adoption stage.

3.2.5.3 Adoption

The orphan list,O is used to keep track of orphans nodes. During the adoption
stage the nodes inO look for new parents. A neighbourq is a valid new parent to
the orphan nodep if the following criteria are met:

• p andq belong to same search tree

• The residual capacity,cf (q → p) > 0

• q has root in either of the terminals

• q is not a child ofp

If an orphan cannot find a valid parent it becomesfree. A freed node is discon-
nected from its search tree and behaves as if it never belonged to any tree. As such,
free nodes are open to annexation in the next growth stage. All children of a freed
node become orphans and are added toO. These new orphans must also look for
new parents within the current adoption stage.

The adoption stage ends when there are no more nodes inO.

3.2.5.4 Choosing the Shortest Path

Choosing the shortest path froms → t increases the speed of the augmenting path
algorithm. Boykov & Kolmogorov [2] argues that their algorithm only finds the
shortest path the first time a path is found, which leads to a worse worst case com-
plexity than the Dinic algorithm (Table 3.2.5). For a graph like the one we use,
Figure 3.2, it is obvious that the shortest path froms → t is through the t-links,
resulting in the paths → p → t. Since all pixels are connected to boths andt by
t-links, it should be possible to find as manyshortest pathsas the number of nodes
n in the graph. We therefore argue that it is possible to augmentn shortest paths
in the start of the algorithm. This will initially result in the saturation of half of the
t-links in the graph. After augmenting thesen shortest paths, it is not possible to
predict the length of the paths.
The above observation will show to have significant influence on the runtime of the

27

3.2. ENERGY MINIMISATION BY GRAPHS CUT

search algorithm. Since we now know that half the t-links can be saturated in the
first n paths, we argue that this saturation can be done already when calculating the
t-link capacities of a node which would result in a pre-augmentation of t-links. Do-
ing this will be faster than letting the algorithm search the graph to saturate these
edges. To illustrate the concept we have in Figure 3.6 made an example showing
the graph for which half the t-links have been saturated before running the Boykov-
Kolmogorov search algorithm. The graph is made from the image in Figure 3.3.
The test in Section 7 will show that this approach reduces the segmentation time
but still finds the min-cut of the graph.

Figure 3.6: By pre-augmentation half of the t-link are initially saturated.

Another means of reducing the length of paths is used in the adoption stage. If
an orphan node has more than one valid parent, it chooses the parent closest tos or
t. This will reduce the average path length, but it will still not ensure that we find
the shortest path.

28

Chapter 4

Lazy Snapping

This chapter presents the chosen method, Lazy Snapping. The method is presented
in the article by Li et al. [11], but our implementation will differ from the article at
some points. We will come back to this throughout the chapter. First, we will give
an overview of the method.

4.1 Overview

Lazy Snapping is based on energy minimisation via graph cut. However, it differs
from the more traditional graph segmentation method described in [1] by carrying
out an initial pre-segmentation of the image. Instead of building a graph where
each node is a pixel, we now build a graph where each node represent a small seg-
ment. The purpose of the pre-segmentation is to reduce the size of the graph which
will increase the segmentation speed.
An important part of the Lazy Snapping method is the possibility to fine tune the
segmentation result. [11] describes three fine tuning methods. The first is based on
inserting more background and foreground seeds which is a standard fine tuning
method in the framework of graph cut segmentation.
For the second and third method is made a curve representation in which the seg-
ment boundary is represented by vertices connected by line segments. Both meth-
ods are based on changing the position of the vertices which in turn changes the
segment. Due to the time constraint of this thesis we will not include the curve
based fine tuning method.
We will, however, present a new fine tuning method based on a local graph in the
image. This method allows fine tuning by applying graph cut based locally on
pixels instead of small segments.

29

4.2. PRE-SEGMENTATION

4.2 Pre-Segmentation

For the pre-segmentation step we perform an oversegmentation of the image into
small regions. For this purpose watershed segmentation methods have good prop-
erties because they provide a fast segmentation of the whole image. Furthermore,
watershed methods do not necessarily need any user input, which enables pre-
segmentation to be done automatically without user interaction. Lazy Snapping
uses the watershed method proposed by Vincent & Soille [25]. We have, however,
chosen to use the toboggan based watershed method described in [15]. The reason
for this choice is that we operate with floating point gradient magnitude images.
The Vincent-Soille [25] algorithm requires a sorting of all pixels in the gradient
magnitude image, which is very costly when the image consists of floating points.
The toboggan based method is not slowed down by a floating point gradient mag-
nitude images, and is therefore more efficient than [25]. Furthermore, [15] states
that: ”The regions produced by tobogganing are effectively identical to the catch-
ment basins produced by applying Vincent-Soille [25].”, which tells us that the
quality of the pre-segmentation is kept intact.

4.2.1 Toboggan Watershed Segmentation

The toboggan based watershed method is quite intuitive to understand. Having a
landscape one can imagine a toboggan sliding downhill until a bottom of a valley
is reached. If the landscape is represented by a gradient magnitude image,G, then
the bottom of the valley represent a local minimum inG. Every local minimum is
labeled with a unique label. For each local minimum there will be a new segment.
All pixels that were passed on the way down hill are labeled with the same label as
the local minimum. If we slide into an already labeled pixel on the way down, all
pixels in the toboggan path are given this label without sliding all the way to the
local minimum.
Before going into further details with the toboggan algorithm, we will describe
how the gradient magnitude image is obtained in a multi-scale framework.

4.2.1.1 Multi-Scale Gradient Magnitude

To compute the gradient magnitude we differentiate the two-dimensional Gaussian
kernel

Nσ(x, y) =
1

2
√

2πσ
e
− 1

2

�
x2+y2

σ2

�

(4.2.1)

with respect to bothx andy

∂Nσ

∂x
= Nσ(x, y) · −x

σ2
,

∂Nσ

∂y
= Nσ(x, y) · −y

σ2
(4.2.2)

Since we are working with colour images, we have to decide on how to compute
the gradient magnitude for an image with three channels. [15] suggests to sum the

30

4.2. PRE-SEGMENTATION

squared gradient magnitude over each colour channel:

Gσ =
∑

b

[
Ib ∗ ∂Nσ

∂x

]2

+
[
Ib ∗ ∂Nσ

∂y

]2

(4.2.3)

whereIb is a colour channel of the original imageI.

Another method is, however, to use the max-norm where the maximum gradient of
each of the colour channels is selected

Gσ = max
b

([
Ib ∗ ∂Nσ

∂x

]2

+
[
Ib ∗ ∂Nσ

∂y

]2
)

(4.2.4)

Which of these two methods produces the best segmentation will be tested in Sec-
tion 4.2.1.4.

To consider both large and small structures in the image the gradient magnitude
is found in a multi-scale fashion. The scale selection is done by selecting the max-
imum of allGσ values in every point in the image

G(x, y) =
√

max
σ

(Gσ(x, y)) (4.2.5)

4.2.1.2 Scale Normalisation and Scale Selection

In [15] it is described that the gradient magnitude is selected among the largest
Gσ(x, y). However, according to Lindeberg [13]:”...the amplitude of the varia-
tions in a signal will always decrease with scale”. This means that high values of
σ, Gσ is less likely to be chosen in Equation 4.2.5. This leads [13] to suggest a
normalisation ofGσ over scale. The normalised gradient magnitude,Gσnormal, is
found by multiplying withσ2:

Gσ2−normal = σ2Gσ(x, y) (4.2.6)

Furthermore, [12] introducesγ-normalisation whereγ is a tuning parameter which
depends on what sort of feature is extracted (edges, ridges, corners or blobs).

Gγ−normal = (σ2)γ/2Gσ(x, y) (4.2.7)

For edge detection, as in our case, [12] suggests to setγ = 1
2 . In order for us

to decide which normalisation scheme to use, we have made a comparison of the
three different approaches. For each normalisation method Figure 4.1 illustrates
which scales were used to obtainG(x, y). Black pixels show where the lowest
scale was used and white pixels where the highest scales were used. Grey pixels
show the in-between scales. When evaluating this figure we take the account that:

31

4.2. PRE-SEGMENTATION

Figure 4.1: a b
c d All images shown here is subpart of a 1024x1024 image. Black pixels

represents the lowest scale, white highest scale, gray the in-between scales.σ={1, 2, 4,
8}. a) Original image. b) No normalisation. c) Normalised as in Equation 4.2.6. d)
γ-normalised as in Equation 4.2.7,γ = 1

2 .

• Sharp edges should be kept intact and should not be blurred. This means that
if a sharp edge occur, we will prefer that a low scale is selected because this
will blur the edge the least.

• In equally colored areas we prefer that a higher scale is selected because this,
when applying the watershed segmentation, will result in larger segments
(and therefore fewer segments). This is preferable in later steps of the Lazy
Snapping method because fewer segments will result in reduced computation
time.

• If the same scale is always selected, the multi-scale framework is useless and
a waste of computation time. In this case we might as well only calculate
for only one scale.

32

4.2. PRE-SEGMENTATION

Figure 4.1 shows that it is important which normalisation method is used. In Figure
4.1c the contour of the man is selected from the highest scale. This would result in
a blurring of the edges and consequently a less accurate pre-segmentation.
We would choose not to normalise as in Figure 4.1b, or to useγ−normalisation
as in Figure 4.1d. Both of these cases select the lowest scale at sharp edges which
would preserve the edges well. However,γ−normalisation selects the highest scale
more often, which gives the least amount of segments. In Section 4.2.1.4 we will
look at pros and cons of the types of normalisation.

Since we are not interested in blurring edges but still interested in using the ad-
vantages of multi-scale edge detection, an additional proposal could be to test the
method proposed by Perona & Malik [17]. This method preserves sharp regional
boundaries in a scale-space framework. However, because of the time limits for
this thesis, we will not explore this area any further.

4.2.1.3 The Toboggan Algorithm

When we have the gradient magnitude image we can proceed to compute the tobog-
gan watershed segmentation as described in Section 4.2.1. The image is scanned
in row major order and we keep sliding until all pixels are labeled.
Below is given the toboggan algorithm taken from [15]:

Toboggan Algorithm

Input: G(p) (Gradient magnitude at pixel position vector p.)

Data Structures: N(p) (4 connected neighborhood of p.)

Output:
T(p) (Toboggan direction vector at p.)

L(p) (Region label at p (initialized to nil for all p).)

Algorithm:
regions ←0; (Initialize # of regions.)

for each p do begin (Scan image in row major order.)

q←p;
repeat (Slide to labeled pixel or local minimum.)

min←G(q); q´ ←q;
for each r ∈(q) do begin (Find lowest gradient neighbor.)

if G(r) ≤min then begin
min←G(r); q´ ←r;

end if
end for
T(q) ←q´- q; q ←q´; Set slide direction and slide.

until L(q) 6=nil or T(q)=0
if L(q)=nil then begin (If local minimum is unlabeled,)

L(q) ←regions; (assign a unique label.)

regions ←regions+1;
end if
r ←p;
repeat (Repeat slide to label unlabeled pixels.)

L(r) ←L(q); r ←r+T(r);
until L(r) 6=nil

end for

In Figure 4.2 is given an example of the use of the toboggan algorithm. To con-

33

4.2. PRE-SEGMENTATION

Figure 4.2: a b
c d Pre-segmented image using the toboggan watershed algorithm. The colour

of each small segment is calculated as the average colour of the pixels in the segment.
a) Original image. b) Segmented without normalisation, NR=15.4. c) Segmented with
normalisation as in Equation 4.2.6, NR=41.5. d) Segmented withγ-normalisation as in
Equation 4.2.7,γ = 1

2 , NR=17.8.

tinue the discussion from last section on scale normalisation, we run the watershed
segmentation on all three gradient magnitude images, i.e. the non-normalised, the
scale normalised and theγ-normalised. Since the purpose of the pre-segmentation
is to reduce the size of the graph, we want to set up a measure for how much it
is reduced. This is done by calculating the pixel-to-segment ratio (referred to as
the Node Ratio (NR= number of pixels

number of segments)). A high NR value indicates a high re-
duction in size. For comparison [11] has NR values in the range of 10-24 in their
examples.

Figure 4.2c shows, as expected in Section 4.2.1.2, that normalisation byσ2 blurs
the edges too much which results in rather unprecise segments and very high NR
value (NR=41.5). Figure 4.2b and 4.2d show very good pre-segmentations, with

34

4.2. PRE-SEGMENTATION

4.2d having a slightly higher NR value as expected (NR=17.8).

4.2.1.4 Examination of Small Segments

When finding the gradient magnitude for colour images, we discussed whether to
use the sum over each colour channel (Equation 4.2.3) or the maximum over each
channel (Equation 4.2.4). In Figure 4.3 we have made a small test of the two cases.
This test clearly shows that choosing the maximum over each colour channel gives
the better result. Figure 4.3b shows that the man’s ear is cut of when using the sum
over each colour channel while, when using the max over each colour channel,
Figure 4.3c, the ear is well preserved.

Figure 4.3: a b c σ={1, 2, 4, 8} a) Original image. b) Pre-segmentation using the sum
over colour channels Equation 4.2.3. c) Pre-segmentation using maximum over channels
Equation 4.2.4.

To show that normalisation gives larger segments we have in Figure 4.4 given an
example that shows a zoom of the toboggan watershed segmented image from be-
fore. This example shows that usingγ-normalisation gathers some of the smaller
segments into one bigger. However, other examples show that usingγ-normalisation
sometimes blurs some edges too much which results in a segment being created
across edges. Figure 4.5 shows two examples of this. Since the pre-segmentation
is a preliminary step for the graph cut segmentation, errors like these will effect
the quality of the graph cut segmentation. Thus, we find it more safe not to use
γ-normalisation though it may result in a larger graph.

35

4.2. PRE-SEGMENTATION

Figure 4.4: a b c
d e f a) Crop of original image. b) No scale normalisationσ={1, 2, 4, 8}. c)

No scale normalisationσ={1, 2, 4, 8, 16, 32}. d) σ=1. e)γ-normalisationσ={1, 2, 4, 8}.
f) γ-normalisationσ={1, 2, 4, 8, 16, 32}.

36

4.2. PRE-SEGMENTATION

Figure 4.5:
a

b c d
e f g

a) Original image showing zoom areas. b) Zoom of original. c) Water-

shed of b, no normalisation,σ={1, 2, 4, 8}. d) Watershed of b,γ-normalisation,σ={1, 2,
4, 8}. e) Zoom of original. f) Watershed of e, no normalisation,σ={1, 2, 4, 8}. g) Water
shed of e ,γ-normalisation,σ={1, 2, 4, 8}.

37

4.3. CREATING THE GRAPH

4.3 Creating the Graph

Having the pre-segmented image the next step is to create the graph. As mentioned
earlier, we intend to use every small segment from the toboggan watershed seg-
mentation as a node in the graph. The concept is illustrated in Figure 4.6.

Figure 4.6: a) Segments from the toboggan watershed segmentation. b) Nodes and edges
in the graph. c) Boundary from the graph cut segmentation. (Image from [11])

Since a node is now representing a segment, it has to carry more information than
if it had represented a pixel. The colour of a node is calculated as the average of
the pixels it represents.

On pixel level we normally have 4 or 8 neighbours per pixel. When pre-segmenting,
the number of neighbours varies from node to node. We define two nodes as being
neighbours if the small segments they represent have a shared boundary. Poten-
tially, this means that a node can have as many neighbours as the number of pixels
on its border. However, our experiments with the toboggan watershed algorithm in
section 4.2.1.3 show that each segment in average has 5 to 6 neighbours.

4.4 Setting the Energy Function

In section 3.1 we described the energy function we are minimising:

E(L) =
∑

p∈P
Dp(Lp) + λ

∑

(p,q)∈N
Vp,q(Lp, Lq) (4.4.1)

However, no specific formulae were given for the energy termsDp(·) andVp,q(·).
In the following we will go into more detail on how the two terms are set.

38

4.4. SETTING THE ENERGY FUNCTION

4.4.1 Likelihood Energy,Dp(·)
This term represents how similar the colour of a node is to the selected foreground
and background seeds, denotedF andB respectively. Furthermore, for the graph
G, Dp(·) represents the t-link capacities,c(p, s) andc(p, t). To make the similarity
estimation the user starts by entering foreground and background seed. How this is
done will be described in Section 4.5. The colour samples of seeds inF andB are
clustered by the K-means method intoK clusters. For each nodep in the graphG
we calculate the shortest distance in colourspace from the node colourC(p) to all
clusters in each of the sets,KF

n andKB
n :

dFp = min
n
||C(p)−KF

n || , dBp = min
n
||C(p)−KB

n || (4.4.2)

Dp(·), or equivalent the edge capacity to each of the terminal nodess andt, is then
calculated as shown in Table 4.1.

t-link capacity for

e(p, s)

∞ p ∈ F
0 p ∈ B
dBp

dFp +dBp
p ∈ P, p /∈ F ∪ B

e(p, t)

0 p ∈ F
∞ p ∈ B
dFp

dFp +dBp
p ∈ P, p /∈ F ∪ B

Table 4.1: Terminal edge capacities. It should be noted that the edge weights specified
in this table differ from what is described in [11]. We are however sure that [11] made a
printer’s error and unintendedly exchanged the edge capacities fors andt.

The edge capacities specified in Table 4.1 ensures that seeds selected by the user
to be inF or B remain in the selected group. Nodes, that are not in eitherF or B,
are encouraged by the above equation to have a label similar to the seeds inF or
B. The equation is made so that the total t-link capacity for a node sums up to one.

c(p, s) + c(p, t) = 1 (4.4.3)

If c(p, s) > c(p, t), p is initially most likely to be part of the foreground and vice
versa.

4.4.1.1 K-Means Clustering

To cluster the two sets of seeds,F andB, we use a standard K-means clustering
algorithm as described in [26]. There are two major reasons to cluster foreground

39

4.4. SETTING THE ENERGY FUNCTION

and background seeds. Firstly, if we did not cluster the seeds, we would have to
compare all nodes in the graph with all seeds inF andB in order to obtain the
minimum distances to each set of seeds.F andB can easily include more than a
thousand seeds each. Thus, to compare all nodes in the graph with all seeds inF
andB would be very time consuming. However, by clusteringF andB into K
mean centres, we reduce the number of comparisons. As [11] we will setK = 64.

The other important benefit of clusteringF andB is that it reduces noise because
we now use a mean colourKF

m andKB
m in the computation ofDp(·)

4.4.2 Prior Energy,Vp,q(·)
The prior energy termVp,q(·) represents a nodep’s similarity with its neighbourq.
In the graphG, Vp,q(·) represents the n-link capacityc(p, q). c(p, q) is calculated
as a gradient expression

Vp,q(·) = c(p, q) =
1

||C(p)− C(q)||2 + 1
(4.4.4)

One, is added in the denominator to ensure that it does not become, zero when
C(p) = C(q). The capacity betweenp andq will be high if they are similar in
colour and low if they are different in colour. The neighbour capacity is shown as a
function of the colour gradient in Figure 4.7. This fits well with what was explained
in Section 3.2.3 on how the minimum cut is found. Edges in the graph with low
capacities will be saturated first making it likely to get a cut between neighbouring
nodes that are very different in colour.

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c(
p,

q)

Figure 4.7: Showing the neighbour capacityc(p, q) as a function of the colour gradient
||C(p)− C(q)||2 betweenp andq.

40

4.5. ENTERING SEED POINTS

4.5 Entering Seed Points

This section presents some important issues related to the seed points that are es-
sential to the min-cut/max-flow algorithm. It is relevant to look at which impli-
cations the human operator has on the system in entering seed points. Obviously,
seed points entered by an operator allows a portion of subjectivity into the segmen-
tation process. This can be thought of as a weakness of algorithm, however, if used
correctly, it can be turned into great benefit in terms of quality of segmentation
result.
The seed points both serve as a sampling spot for the regional colour statistics and
as a hard constraint for the image labeling. We will look at the details of these
roles to show how the quality of the segmentation is effected by the number of
seed points and their location.
We will present some rules that can be followed when entering seeds in order to
obtain a good segmentation.

4.5.1 User Interaction

As described in Section 4.4.1 after the user has entered seed points in both fore-
ground and background the t-links capacities are set according to Table 4.1.
The actual input is done in a graphical user interface using a mouse-controlled
brush tool. The user chooses between the two types of seeds by left and right
clicking and enters a suitable number of points by drawing in the input image. All
nodes touched by the brush will become seeds of the chosen type. It is possible to
change the size of the circular brush to include more or less nodes per mouse click.
Foreground seeds are marked with green, and background seeds are marked with
red.

4.5.2 Minimum Requirement

The minimum requirement for the algorithm to run is one foreground seed and one
background seed. However, this will only suffice for simple artificial images e.g. a
binary image with a white box on a black background as in Figure 4.8.

Figure 4.8: An example of a simple image, for which only one foreground seed and one
background seed is needed.

For larger and more complex images like natural images, more seeds are needed
to produce the desired segmentation. Therefore, it is convenient to have a drawing

41

4.5. ENTERING SEED POINTS

tool, for entering seeds. In the following we will describe the role of the seeds in
more detail.

4.5.3 Colour Statistics

For every seed point,p ∈ F or p ∈ B a colour sample is added to either the
foreground or background statistics. The number of seeds should be large enough
to provide sufficient colour information from all the different parts of both fore-
ground and background. What is sufficient depends highly on the image. The
operator should consider the relative colour variation of the different areas. A rule
of thumb is that many seeds should be placed in highly inhomogeneous areas,
whereas few seeds are needed to capture the relevant information from an almost
equally coloured area.

4.5.4 The Neighbourhood

The neighbourhood term regards discontinuities between neighbouring nodes. This
means that diffuse or soft edges are more difficult to segment than hard and very
distinct edges.
For the images we are looking at there can appear hard edges on the border of the
desired segment, but also inside the segment. This fact can result in a disconnected
segmentation if nothing is done to prevent it. A rule of thumb is therefore always
to enter seed points across hard edges inside the segment. This will enforce a
connected segment. The concept is illustrated in Figure 4.9.
Another important property that relates to the graph neighbourhood is the fact that
when a node is pointed out as a seed point, it is ensured that the t-link to the
respective terminal,term ∈ {s, t} is never saturated becausec(p, term) = ∞.
Therefore, the seeds are guaranteed to remain direct children of their terminal, and
are as such extremely important for the structure of the two search trees. In Section
3.2.5.4 we described how orphan nodes should choose the parent closest to the
terminalss or t in order to reduce the length of the path. Keeping this rule in mind,
the fact that seeds have their terminal as parent means that orphans will always be
adopted by seeds in preference to non-seed valid parents. This leads us to argue
that shorter paths,s → t can be obtained by entering more seeds. Shorter paths in
turn are known to result in a faster segmentation.

4.5.5 The Neighbourhood Weight

The neighbourhood term,Vp,q(·) has a weighting parameter,λ, that increases or
decreases the capacities of the n-links.λ balances the amount of influence coming
from the neighbourhood compared to the influence from colour statistics. That is,
an increase inλ gives relatively higher capacities in the n-links, which means that
t-links are more likely to saturate first. This in turn yields a denser segmentation
result that is less likely to contain disconnected segments (”islands”).

42

4.5. ENTERING SEED POINTS

Figure 4.9: a b
c d a) Entered seed points used to get segment in b. b) The segmentation

result from the seeds in a. Observe that the segment is disconnected because a hard edge
appears between the arm and the shirt. c) Entered seed points used for d. d) By entering
seeds across the hard edge we obtain a connected segment.

If λ = 0, all n-links are initialised to zero in which case only the colour input from
the seeds control the segmentation. This is probable to result in a highly scattered
segmentation since all information on the neighbourhood smoothness is omitted.
On the other extreme, ifλ is set to a very high value we practically disregard the
colour information. This would correspond to setting all non-seed t-links to zero,
which would reduce the role of the seeds to entry points for the graph search into
image. This would force the operator to input seeds of the relevant type into all
parts the image to get a correct segmentation. We will to test this in Section 7.1.3.

4.5.6 LS Segmentation Example

We have received a number of segmentation examples form LS. A quick study
of these images shows some image features that are likely to be difficult for our
segmentation method. We show an example to analyse some common types of
problems we may encounter when the segmentation is done semi-automatically.

43

4.5. ENTERING SEED POINTS

Figure 4.10a shows a crop of a typical LS image. The manual segmentation result
in Figure 4.10b done by an LS employee is what we want to achieve using the
semi-automatic method. In Figure 4.10a the medic’s shirt contains different shades

Figure 4.10: a b a) A 612x758 crop of an original LS image. The aim is to segment the
medic’s torso, head and right arm as well as the forceps. b) Result of manual segmentation.

of its main colour, blue. Thus, to get a good colour representation a sweep by the
seed brush should be made across the shirt.
It may also be a good idea to input a line of seeds crossing the transitions from head
to shirt and from shirt to his right arm. This is done to ensure that the subparts are
gathered in one connected segment.
Also the forceps in Figure 4.10a may need some extra attention. Foreground seeds
should be placed closely in such elongated structures, to avoid problems of satu-
ration of edges inside the desired foreground area. Too long distance between the
seeds could give a scattered segment consisting of separated parts. This effect may
even be increased since the forceps also have spots of highlights, that have a differ-
ent colour. Thin elongated structures in general present a challenge for graph-cut
based segmentation methods because entering seeds into this type of objects re-
quire high precision from the user. We will return to this topic in the next section
and propose a method for easier entering of seeds into such structures.

44

4.5. ENTERING SEED POINTS

4.5.7 Entering Seed Points Into Elongated Structures

By the example of the forceps in the previous section, we argued that it would be
both tedious and difficult to input all the necessary seed points correctly. An ad-
ditional tool for inputting seeds in thin elongated structures would be of outmost
convenience.
In the following we will look at a problem that is sufficiently similar to our case to
suggest that we can benefit directly from its solution.
Dam and Lillholm [5] present a graph-based tool calledInteractive Route Mea-
suring for finding routes along streets in a scanned street map. The user enters
a number of control points in a map and the program computes the shortest path
along streets that connects the points. A special edge cost function is constructed
to force all parts of the path to follow and remain inside the streets in the image.
The method uses a standard Dijkstra shortest path algorithm [4] to find the shortest
path between the control points.
We claim that the method can be extended and applied in our context as an ef-
ficient help in entering seed points into thin elongated structures. The operator
would then have to enter a few control points inside the elongated object and the
program would find a path through the object and convert this into the necessary
seed points.

4.5.7.1 Building the Graph

Compared to the graph widely referred to in this thesis this method uses both dif-
ferent graph structure and a different cost function. We build a graph, such that
each image pixel corresponds to one node, and edges connect all adjacent nodes in
an 8-neighbourhood. The costs of the edges are computed using a weighted cost
function based on contributions from

1. Distances between pixels,dist(p, q)

2. Differences in pixel intensities,dist(Cp, Cq)

3. Local orientation of the path,Ori(θ)

The first contribution is set to 1 for edges connecting horisontal and vertical neigh-
bours and

√
2 for edges between diagonal neighbours. This cost alone can be used

to find shortest paths between control points.
The second contribution is based on differences in pixel intensities between neigh-
bouring pixel. This term is used to penalise quick intensity changes, to make it
more expensive to leave the street than to continue on the street.
The purpose of the third contribution is to penalise edge directions that do not con-
form with the local orientation. The computation of orientation takes into account
the second-order information of the image to analyse the curvature. The second-

45

4.5. ENTERING SEED POINTS

order information is represented in the Hessian matrix:

H(I) =
(

Ixx Ixy

Ixy Iyy

)
, (4.5.1)

whereIxx = ∂2I
∂x2 .

The eigenvalues and eigenvectors of the Hessian describe the principal curvature
and the direction of the principal curvature. A street in the image can be thought
of as a ridge. Hence, for each ”street pixel” the local orientation is the direction
perpendicular to the direction of the principal curvature - that is along the street.
The method uses the scale space framework to handle streets of different size. The
image is convolved with second order gaussian derivatives of different standard
deviations (σ0, σ1, ..., σi) before the directional information is extracted. The final
scale selection is preceded by a scale normalisation by factor,σi.
The above analysis results in an indication of the local pixel orientation (θ) over
scale. Finally, the orientation term of the cost function is computed by

Ori(θ) = exp

(−(π
2 − θ)2

δ2

)
(4.5.2)

whereδ = 1
2 .

The three terms are added in the weighted cost function

cost(p, q) = dist(p, q) + α dist(Cp, Cq) + β Ori(θ) (4.5.3)

which is used to compute the edge costs of the graph.

4.5.7.2 User Input

In Figure 4.11 we show two examples of the tool operated with LS image data.
The examples have been produced independently from our main program using
the original implementation by the authors of [5].
The program finds the curvature of the objects quite well, and the centre of the
found paths is inside the structures in their entire range. This indicates that the tool
could save the operator from a lot of tedious work if it became a part of our graph
cut implementation. The only thing missing is a way of converting the path into a
dense row of seed points.

46

4.5. ENTERING SEED POINTS

Figure 4.11: Two examples of the Interactive Route Measuring tool applied on LS image
data. In both images the full range of the elongated structures is found by inputting only a
few control points.

47

4.5. ENTERING SEED POINTS

4.5.8 Background Subtraction

Included in the image material from LS are some images of the empty scene. These
pictures can be thought of as background pictures. It is a standard routine for LS
to take a picture of an empty scene i.e. we can always rely on having a background
image when segmenting. Until now we have not made use of the background
image, but we got the idea to use the background image to automatically input
background seeds. The idea is to subtract the background image (Ibg) from the
foreground image (Ifg) hereby leaving the object of interest and some noise due to
camera variance and lack of registration. We should then be able to mask out the
background and use this as input of background seeds. Doing this should have two
positive effects:

• By using the background image to enter background seeds the user only has
to enter foreground seeds.

• Using the background image we will have the ability to enter a very high
amount of background seeds which should speed up the minimum cut algo-
rithm because more nodes are labeled initially. Furthermore, it could have a
positive effect on the segmentation quality.

To test the use of background subtraction we have made a small test application in
Matlab to see if we should include the idea in the final C++ application. For the
test we assume thatIfg andIbg are properly registered.

We wish to find a binary maskM(x, y) for which:

M(x, y) =
{

1 , |Ifg(x, y)− Ibg(x, y)| ≥ t, foreground
0 , |Ifg(x, y)− Ibg(x, y)| < t, background

(4.5.4)

wheret is a threshold that sorts out small differences inIfg andIbg. However,
Equation 4.5.4 results in a noisy mask due to camera noise and registration errors.
To reduce the noise we perform a morphological noise removal as follows:

M = (M ◦E) •E (4.5.5)

whereE is the structuring element.

An example of background subtraction is shown in Figure 4.12, in which we use an
image of size 1421x1455. The colour values are in the range of [0;255],t is set to
5 andE is of size 15x15. From Figure 4.12e we can see that the background sub-
traction works fairly well. In some areas, like the head in Figure 4.12f, we actually
get a mask very close to the foreground object, which is good. However, the exam-
ple also reveals some weaknesses of the method. Large parts of the mask are far
from the foreground boundary even for areas clearly belonging to the background.
There are two main reasons for this:

48

4.5. ENTERING SEED POINTS

Figure 4.12: a b c
d e f Example of background subtraction. a) Background imageIbg. b)

Foreground imageIfg. c) Result of subtractingIbg from Ifg as in Equation 4.5.4. d)
Result of morphological noise removal onc as in Equation 4.5.5. e) Result of applyingd
on b. f) Zoom in on man’s head to show how precise the mask is.

• As can be seen from Figure 4.12a there are objects lying in the background
which are not in the foreground image. These objects result in holes in the
mask outside of the actual foreground object.

• The foreground objects throw shadows on the floor. These shadows have
a large effect on the final mask. In the upper part of the mask in Figure
4.12e, where no shadows are present, the mask border is very close to the
foreground object. In the lower part, where shadows fall on the floor, the
mask border is far from the object.

One immediate positive result of the example is that non of the pixels marked
as background intersect the foreground persons. This means that we can test the
idea of using the difference image to input background seeds. However, since the
desired foreground object is rarely alone in the scene, the user is still left with
marking other objects as background.

49

4.5. ENTERING SEED POINTS

4.5.8.1 Using the Background Image as Input

Figure 4.13a and 4.13b show the result using background subtraction for input of
background seeds. The seeds found in Figure 4.12 were used together with the nor-
mal background seeds (marked with red) in Figure 4.13a to represent background
seeds. For comparison, we have made a normal segmentation where all seeds are
entered by the user, see Figure 4.13c and 4.13d. There are no significant difference
in the quality between the two segmentations. Table 4.2 specifies the segmenta-
tion time in the two cases. Here, however, we see that the time spent on K-means
clustering when using background subtraction by far surpass the time reduction
for the graph search. Having this knowledge we decide not to include background
subtraction in our further work.

Method K-Means Graph Search Total

Bg. Subtraction 6.3s 0.6s 6.9s

Normal 2.5s 0.8s 3.3s

Table 4.2: Run-times for different parts of the segmentation process using two different
approaches for input of seed points.K-Meansshow the time used for clustering the colour
of seed points by K-Means, andGraph Searchshow the time used to run the Boykov-
Kolmogorov augmenting path algorithm.

50

4.5. ENTERING SEED POINTS

Figure 4.13: a b
c d a) Seed points added in addition to the background seeds found in the

example in Figure 4.12. b) Segmentation result using background subtraction. c) Input of
seeds without the use of background subtraction. d) Segmentation result of c.

51

4.6. FINE TUNING BY ADDING SEEDS

4.6 Fine Tuning by Adding Seeds

The resulting segmentation based on the initial seed points may not be satisfactory.
Thus, it is relevant to provide a possibility of fine tuning the segmentation. The
standard fine tuning methods in graph cut is to add additional seeds into the graph.
Entering of new seeds is done just the same way as for the initial seeds. However,
the subsequent procedure of how the seeds are treated and which updates are made
to the graph is subject to discussion. The only source to our knowledge which
provides details on how new seeds are added is Boykov & Jolly [1]. Their method
becomes central to the following discussion of different ways of computing the
min-cut after adding more seeds.

4.6.1 Recomputation of All t-links

Assume that we have a graphG for which we have found a min-cut/max-flow which
results in an initial segmentation. The user now adds a new seed to correct the seg-
mentation, and we need to compute a new min-cut/max-flow to obtain the updated
segment. Intuitively, reuse of the previous flow is an attractive property because it
would be much faster than recomputing the entire flow from scratch. Since new
seeds change the basis for the colour statistics on which t-links are based, it would
be obvious to recompute all t-links based on the updated sets of seedsF andB.
Conversely, the n-links ofG should be kept intact because they are invariant to
changes in the colour statistics.

This method, however, gives the problem that the revised residual capacities of
some t-links can become negative because the original capacities ofG are recom-
puted to values lower than the flow that they have already carried. This results
in Gf containing negative edge capacities, which is an unsupported property for
graphs in the framework of flow networks [4]. Figure 4.14 illustrates the concept
of this problem. There is no trivial way of handling this incorrectness, and since

c(p,q) = 6 cf(p,q) = 2Δf = 4

Original

Residual Graph Gf
Flow Δf

Original

Graph G

cf(p,q) = -1

Updated

Residual Graph Gf

s

p

c(p,q) = 3

Updated

Graph G

s

p

s

p

s

p

s

p

Figure 4.14: a b c d e a) The original capacity of the t-link between terminals and pixel
p. b) The flow∆f in edges − p. c) The residual capacity,cf (s, p) = 6 − 4 = 2 d) The
updated graph based on new seeds. e) A negative residual capacity,cf (s, p) = 3−4 = −1
is not allowed.

52

4.6. FINE TUNING BY ADDING SEEDS

the optimisation problem has been changed, it can no longer be solved using min-
cut/max-flow algorithms. Therefore, we need another approach for updating the
graph.

4.6.2 Recomputation of t-links at New Seeds

Boykov & Jolly [1] present an updating method that reuses the initial flow and is
claimed to still find the global minimum of the original problem after new seeds are
added. They only change the t-link capacities of the new seeds,p, and the problem
of negative flow is circumvented by adding a constantcp to the two t-links at all
p ∈ F ⋃B. According to [1] this does not affect the optimal cut since a constant
contribution cannot influence which one of the two t-links atp that is cut first.
However, the article [1] is not very clear about howcp is derived, or how it is pos-
sible to find a consistent optimal solution to the original problem when changes to
the graph are only made locally around new seeds. Moreover, the article is based
on greyscale images and therefore uses different cost functions for both n-links and
t-links.
We find it reasonable to believe that [1] uses a value forcp so that the negative
t-links fromp ∈ F ⋃B become exactly zero.
Though having different settings from [1], we are inspired to propose a new fine
tuning method that reuses the flow from the initial segmentation. The t-link capac-
ities of the new seeds are modified, according to Table 4.3.

for new seeds
t-link capacity where

e(p, s)
∞ p ∈ F
0 p ∈ B

e(p, t)
0 p ∈ F
∞ p ∈ B

Table 4.3: Modified terminal edge capacities for new seeds.

Since the colour of the new seed is not added to the global colour statistic, the new
seeds will only effect local parts of the segment. The effect is that when we add a
new foreground seed in an area that has been labeledB during the initial segmen-
tation, we force-label the node,p ∈ F to F . Neighbour nodesq ∈ Np of similar
colour top will have a high neighbour capacityc(p, q). This combined with the
infinite t-link capacity,c(p, s) = ∞ makes it likely for neighbouring nodes to also
change label toF .
Using this method results in fast fine tuning, and we avoid the problem of negative
edges in the graph. However, since new seeds do not influence regional colour

53

4.6. FINE TUNING BY ADDING SEEDS

statistics through t-links the initially entered seeds become very important. Hence,
it becomes very important to be thorough when entering seeds initially. We no
longer solve for the global minimum of the original problem since we modify the
flow between the first and the second run of the algorithm. But as we will show
throughout the test in Chapter 7, this method produces good results for local fine
tuning and is very fast.

4.6.3 Recomputation of All Edge Capacities

Alternatively, we could suggest a global recomputation of all edges in the graph, in
which t-links are based on the updated sets of seedsF andB. The min-cut would
then be recomputed from scratch in the new graph.
Recomputing the t-link capacities for all nodes based on a new K-means clustering
for both foreground and background would of course be much slower, than making
local changes to the graph.
However, if we choose this approach it is important to reuse the previously com-
puted cluster centres as starting points in the new K-means computations. This
would eliminate the risk of random changes in the segmentation result, due to sud-
den changes in the colour clustering. Furthermore, the computation of updated
centres will converge much faster, under the assumption that the existing seeds
outnumber the new seeds.

54

4.7. LOCAL GRAPHS

4.7 Local Graphs

As mentioned, Lazy Snapping presents three fine tuning methods. The first is the
traditional fine tuning method where the user enters additional seed points as de-
scribed in Section 4.6. The last two are based on a curve representation of the
segment border and are used to correct minor segmentation errors on the border.
We have not included the curve representation in our implementation and can there-
fore not provide the last two fine tuning methods presented by [11].

In this section we will, however, present our own fine tuning method, based on
building local graphs in the image. This method provides many of the same prop-
erties as the two omitted fine tuning methods from Lazy Snapping. Our method
continues using a graph cut framework as the basis to obtain a pixel labeling. The
difference from the graphs we have worked with until now is that we do not use
the whole image to build a graph but only a local part of the image. Therefore,
we refer to the method as alocal graph. The local graph does not require a curve
represented of the border, and since it is graph based, it is possible for us to reuse
our graph cut implementation.

4.7.1 Building the Local Graph

The local graph used for fine tuning is not a stand-alone segmentation method,
but requires that the image has been segmented e.g. using the global graph cut
segmentation described in previous sections. The local graph is based on the user
selecting an area on the segment border that has not been satisfyingly segmented.
This selection is done using a mouse guided brush tool identical to the brush used
to enter seed points in the global graph. The concept is shown in Figure 4.15. In

Figure 4.15: a b c d a) Seed points entered for the global segmentation. b) Result of global
segmentation. c) Input of local graph marked in blue. d) Result of local segmentation
combined with global segmentation

Figure 4.15a and 4.15b we have made a segmentation using the global graph cut

55

4.7. LOCAL GRAPHS

method. The result is, however, not satisfying on several parts of the border. Figure
4.15c shows a local graph, marked with blue, entered on the border of the man’s
head. This area is referred to as the unknown areaU . The graph is build in theU
alone. Contrary to the global graph, the local graph is build using 4-neighbourhood
pixels as nodes instead of the watershed pre-segments. For the global segmentation
pre-segmentation was done mainly to reduce the runtime. However, since the local
graph is build in such a small area of the image, the runtime is no longer a problem.
Eventually, the local segmentation overrides the global segmentation locally and
results in Figure 4.15d.

4.7.2 Automatic Seed Point Selection

In order to make the use of the local graphs as easy as possible seed points are
chosen automatically. We solve this by using the initial segmentation as guide for
what is foreground and background. Therefore, the unknown area has to be placed
on the border of the initial segment. This restriction enables us to find a row of
pixels on each side of the unknown area to be foreground and background seeds
respectivly. This is done using a sequence of morphological operations. Having a
maskM from the initial segmentation and the unknownU selected by the user, the
two sets of seedsF andB are obtained through the following two operations

F = { p | p ∈ (M − U) − [(M − U)ªE] } (4.7.1)

B = { p | p ∈ [(M ∪ U)⊕ E] − (M ∪ U) } (4.7.2)

whereE is a 3x3 structuring element.

The example from Figure 4.15 is continued in Figure 4.16. Here we see how the
rows of foreground and background pixels (Figure 4.16d and 4.16e) are obtained
by applying Equation 4.7.1 and 4.7.2 to the initial maskM (Figure 4.16b) and the
user selected unknown areaU (4.16c). Finally, in Figure 4.16f we illustrate the
combination of unknown area and seed points.

This way of entering seed points is very fast and fully automatic. Furthermore,
it is ensured that the foreground and background seeds are selected inside and out-
side the initial segmentation. A drawback with this approach is, however, that
the unknown area has to be selected along the border of the initial segment. It is
therefore not possible to enter a local graph entirely inside or outside the the initial
segment, which sometimes might be preferred.

4.7.3 Setting the Energy Functions

Using graph cut locally in the image has advantages related to both the t-link and
n-link capacities. The colour information used to compute the t-link capacity is
gathered from the local surroundings of the border we want to fine tune. Compared

56

4.7. LOCAL GRAPHS

Figure 4.16: a b c
d e f a) Crop of original image used for the local graph. b) The maskM

obtained from the global segmentation. c) Unknown areaU selected by the user. d) Result
of performing morphological sequence from Equation 4.7.1. Mask used for foreground
seeds. e) Result of preforming morphological sequence from Equation 4.7.2. Mask used
for background seeds. f) Illustration of how the local graph is build combined with seeds.

with the global graph cut this has the advantage that background objects with the
same colours as foreground objects are less likely to occur. The colour statistics
for the foreground and background seeds are therefore less likely to overlap.
A poor initial segmentation often occurs in areas of the image where there are low
contrasts separating foreground and background. The function selected to set the
n-link capacity for the global graph, described in Section 4.4.2, has been chosen to
fit well with a global segmentation. However, for the local graph we have the pos-
sibility to choose a function more suitable for detecting low gradient boundaries.
The function we propose is a slightly modified version of the function used for the
global segmentation in Equation 4.4.4.

Vp,q(·) = c(p, q) =
1

[||C(p)− C(q)||2 + 1]s
(4.7.3)

57

4.7. LOCAL GRAPHS

In Equation 4.7.3 we simply add an exponents to the denominator. Increasings
will cause the function to decent faster which causes lower gradients to result in
even lower capacities for n-links in the graph. In Figure 4.17 we show the capacity
c(p, q) plotted as a function of the gradient for different values ofs.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|C(p)−C(q)|

c(
p,

q)

s=1

s=1.5

s=2

s=2.5

s=3

Figure 4.17: Illustration of varying the exponents for the proposed neighbour weight
function. Higher values ofs result in faster falloff which accentuate lower gradients.

4.7.4 Splitting Up Pre-Segments

Besides the advantages described in relation to the local colour statistics and the
neighbour weight function, one of the most important properties of the local graph
is that it allows splitting up pre-segments down to single pixels. In order to pre-
segment the image we filter the image using a gaussian edge detection filter. Doing
this may cause low gradient edges to be blurred away which can result in pre-
segments being created across edges. This can make it impossible to obtain the
desired segmentation in the global segmentation step if the global segmentation is
based on the pre-segmented image alone. However, having the local graph we have
become able to correct these mistakes.
In Figure 4.18 and 4.19 we show three examples of how a poor pre-segmentation
causes the global segmentation to fail. In all three examples we additionally show
how a the local graph corrects the errors.

Another issue released to the pre-segmentation which can cause problems is the
fact that the colour of a pre-segment is set to the average of the pixels it contains.
The problem is illustrated in Figure 4.20. Figure 4.20a shows the original image
and 4.20b shows the pre-segmentation of the original. If we focus on the darker

58

4.7. LOCAL GRAPHS

Figure 4.18:
a

b c
d e

f g
h i

a) Original image showing the zoom in areas of the two examples.
b) Pre-segmented image of the left zoom in. c) Segmentation result of global segmen-
tation. d) Left zoom in of original image. e) Segmentation result using local graph. f)
Pre-segmented image of the right zoom in. g) Segmentation result of global segmentation.
h) Right zoom in of original image. i) Segmentation result using local graph.

Figure 4.19: a b c d e a) Showing zoom in area. b) Pre-segmented image. c) Result of
global segmentation. d) Zoom in of original image. e) Segmentation result using local
graph

area of hair on the border of the man’s scull, it is clear that the transition to this
area appears more smooth in the original than in the pre-segmented image. The
problem is due to the averaging of pixel colours over pre-segments which results in
a step wise transition causing a poor segmentation (Figure 4.20c). Using the local
graph on the border of the head results in a much better segmentation shown in
Figure 4.20d.

59

4.7. LOCAL GRAPHS

Figure 4.20: a b
c d a) The original image. b) The pre-segmented image. c) Result of global

segmentation. d) Result of segmentation using global graph.

4.7.5 Summary

The local graph has many good properties as a fine tuning tool. It uses local colour
information which lowers the probability of overlapping colour statistics for fore-
ground and background seeds. It allows detection of lower gradient edges. The
graph is based on pixels which makes it possible to split up the pre-segmented
image. Furthermore, because the local graph is build in a very small area of the
image, it delivers instant user feedback which fits well into the interactive segmen-
tation framework.
A drawback of the method in its present form is that it has to be entered on the
border of the global segment. The similar fine tuning method presented in [11]
does not have this restriction and therefore allow a higher level of user control. On
the other hand, our implementation does not require any spline representation of
the segmentation boundary and is therefore easer to implement. In addition, the
graph cut implementation used for the global segmentation can be reused for the
local graph.

When testing the performance of the final interactive segmentation method in Sec-
tion 7, we will, however only include the local graph as a fine tuning tool to adjust
the global segmentation.

60

Chapter 5

Alpha Estimation

In Chapter 1.2 we described how LS uses the alpha channel to soften the borders
of their segments to produce a smooth transition from foreground to background
when the segments are composited against new backgrounds. This smoothing has
shown to be an extremely important part of the work related to image composition.
Therefore, we have chosen to spend some effort on finding a softening method
suitable for the task at LS.

As can be seen from the two new interactive segmentation methods for image edit-
ing [19] and [11] they also combine a hard segmentation1 method with a method
for softening the borders of the segments. In order to compare segmentation results
with these state-of-the-art methods, we ourselves are interested in combining our
segmentation method with a softening method.
The task boils down to estimating an alpha value for each pixel within some dis-
tance of the hard segment border found during the segmentation step.

In this chapter we will demonstrate three different methods for automatic estima-
tion of alpha. In the first method we use a Gaussian low-pass filter to blur the alpha
channel. The second method only operates locally on the border of the segments
and uses a sigmoid function to estimate alpha values across the segment border.
The first two methods are computationally fast ways of getting an rough alpha esti-
mate for simple borders. We refer to borders as simple if there are no fine structures
like long straws of hair or transparent objects that let through colour from the back-
ground of the original image.

The third method, which we mentioned in Section 2.1.1.2 is a state-of-the-art al-
pha matting method based on a Bayesian probabilistic framework [3]. As pre-
viously mentioned matting techniques are known for their capability of solving
highly complex alpha estimation tasks. Matting methods are, however, also known
to be rather time-consuming.

1A hard segmentation method can be described by a binary mask with no degree of transparency.

61

5.1. GAUSSIAN TRANSITION

5.1 Gaussian Transition

A very simple and computationally inexpensive way of obtaining a soft transition
at the segment border is to apply a smoothing filter on the alpha channel. In Fig-

Figure 5.1: a b
c d Shows the alpha before and after filtering. a) Image overview. b) A hard

segment border. c) A softened segment border obtained by applying a Gaussian 3x3 kernel
to the hard segment. d) Softened using a Gaussian 5x5 kernel.

ure 5.1c and 5.1d are seen the results of applying a 3x3 and a 5x5 Gaussian filter,
respectively, to soften the alpha channel. Figure 5.2 shows the result of combining
the original image with the hard and the two softened alpha channels. A compar-
ison of the three resulting images shows that the segment border in 5.2c and 5.2d
has become softer. It is also seen that the Gaussian filtering smoothes small irreg-
ularity along the border. This is a visually good effect and the segment becomes
more ready for compositing against a new background.

Despite the fact that it is a rather simple method, the Gaussian filtering solves the
task convincingly well for a simple border as the one in Figure 5.1 and 5.2. Since
the majority of the actors used in LS’s simulators are men with very short hair, it
would be reasonable to assume that most segments have simple borders.
An important note to make is that the Gaussian filtering only takes a few seconds,
which is very suitable for our interactive context. Another advantage is that it is
quite trivial to implement the filter, and that it is already a part of our platform
Picture Factory.
However, there are some problems with this global approach to the alpha channel.

62

5.2. LOCAL ALPHA ESTIMATION

Figure 5.2: a b
c d Shows how the original image has been softened by combining it with the

filtered alpha channel. a) Image overview. b) A hard segment border. c) A softened seg-
ment border obtained by applying a Gaussian 3x3 kernel to the hard segment. d) Softened
using a Gaussian 5x5 kernel.

Firstly, the size of Gauss that produces an excellent transition in one part of the
segment may be too big and ruin an otherwise good segmentation elsewhere. Sec-
ondly, the removal of irregularities along the border also may get out of hand, i.e.
we risk to remove small but important image structures.
For these reasons we are interested in an adaptive approach that takes local condi-
tions into account.

5.2 Local Alpha Estimation

In this section we demonstrate the concept of a fairly simple local approach to the
alpha estimation problem. We only process pixels close to the border of the seg-
ment and use a sigmoid function to model the transition.

The alpha value at each pixel is computed as a function of the distance to the
segment border. All pixels are processed in one sweep in which both distance and
alpha value are computed.

The computation of distances is preceded by a few morphological operations.
Based on the segmentation maskM and the 3x3 structuring elementE we find

63

5.2. LOCAL ALPHA ESTIMATION

the two rows of pixels located on each side of the border. The pixels on the inside
are found by

Borderin = M − (M ª E). (5.2.1)

And the outside pixels are found by

Borderout = (M ⊕ E)−M (5.2.2)

For all pixelsp ∈ Borderout ∪ Borderin the distance to the border is 0.5 pixels.
Repeatedly, new rows of pixels are found using a breadth-first search scheme on
an 8-neighbourhood. For every new row the distance value is increased by 1. Fig-
ure 5.3 illustrates this concept. When the distance to the border is found, we can

2.5 2.5

2.5 1.5

1.5 1.5

1.5 0.5

0.5 0.5

0.5 0.5

1.5 1.5

1.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 1.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 1.5

1.5 1.5

1.5 2.5

0.5

0.5

1.5

1.5

2.5

2.5

1.5 Distance to border

Inner border row

Outer border row

Border

Pixel in mask

Pixel outside mask

Figure 5.3: An illustration of the hard border and the distances to the border. The rows of
pixelsDin andDout are located respectively inside and outside the segment.

compute the alpha value. We have modeled the border transition using a sigmoid
function oriented perpendicularly to the border

f(x) =
1

1 + e(x0−x)/σ
, (5.2.3)

wherex is the distance from the border andσ is used to vary the steepness of the
transition. The sigmoid is centered around the border and yields values in the range
0 ≤ f(x) ≤ 1, which is the range we need for alpha estimation. As opposed to
the Gaussian function the sigmoid is symmetric and has the the same falloff on
both sides of the border. This is important because it results in identical blurring of
foreground and background pixels. See plots of the sigmoid in Figure 5.4. Figure
5.5 shows an example of the sigmoid used to soften the border of a segment.
The border is rather simple because the person has very short hair, but the result
shown in Figure 5.5c is not quite satisfactory. The blurring of the border creates a
disturbing jagged pattern.
The second example in Figure 5.6a shows a crop of some hair on a woman’s head.
The estimated alpha channel in Figure 5.6b and the result in Figure 5.6c also show
the jagged pattern in a yet worse edition.

64

5.2. LOCAL ALPHA ESTIMATION

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1.6 3.1 4.66.1
7.6

Figure 5.4: Plots of the sigmoid function from Equation 5.2.3 for 6 different values ofσ.

Figure 5.5: a b c a) 140x161 crop from original LS image. b) Locally sigmoid estimated
alpha channel usingσ = 0.5. c) Resulting segment after alpha blending.

One of the potentials of the local approach is that we can let the local amount
of softening depend on the local image gradient perpendicular to the border. This
would probably help the problem related to the Gaussian filtering method that some
parts of the border become too blurred.
However, the jagged patterns in the two examples are enough to discard the method
in its current state. We believe that the patterns stem from the oversimplified dis-
tance measure obtained from the breadth-first search. Hence, we expect that a
more precise distance measure would improve the results significantly. We choose
to leave this problem for further work.
In this section and the previous section we have shown that simple methods for al-
pha estimation can be used if the border we are trying to model is simple. However,
in order to estimate a useful alpha channel for more complex borders i.e. borders

65

5.2. LOCAL ALPHA ESTIMATION

Figure 5.6: a b c a) 140x161 crop from original LS image. b) Sigmoid estimated alpha
channelσ = 2.5. c) Resulting segment after alpha blending.

containing hair straws we need an actual matting method.

66

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

5.3 Alpha Matting Using a Bayesian Framework

In this section we will demonstrate the capabilities of the Bayesian matting [3] al-
gorithm to model complex border transitions. The choice of matting method fell
upon Chuang et al. [3] because it is the foundation for many of the newer matting
methods and therefore is a well tested technology. Another reason is that many of
the newer matting methods are poorly documented with respect to implementation
details.
First we will go into a detailed theoretical description of alpha matting in a Bayesian
framework. Subsequently, show some we will results of applying the matting
method to difficult segment borders.

5.3.1 Method Overview

In addition the the image the input for a matting method is a trimap that specifies
an unknown area together with known foreground and background areas. For all
pixels in the unknown area the goal is to estimate an opacity value,α, that blends
between the foreground object and any new background that the object is placed
into.
Samples from the known foreground and background along with already estimated
pixels are gathered in the neighbourhood of the current unknown pixel. These
samples are divided into clusters which form the statistical foundation to estimate
the alpha value in a Bayesian framework.

5.3.2 Obtaining the Trimap

If alpha matting is used as a stand-alone application, the trimap is usually entered
by the user. However, when using alpha matting to soften the border of a hard
segmentation, the most common approach, used both by [11] and [19], is to dilate
the border of the hard segmentation with a 4-6 pixels wide structuring element.
The dilated border is the unknown areaU . Knowing the maskM for the hard
segmentation we are able to obtain the foreground areaF and the background area
B:

U = M ⊕ E, (5.3.1)

F = M − U, (5.3.2)

B = M c − U, (5.3.3)

whereE is a structuring element for which the size determines the width ofU .

5.3.3 Compute Processing Order

Estimating the alpha value is done for all pixels in the unknown area one at a time.
We will refer to the pixel in processing as the current pixel. When estimating the al-
pha value for unknown pixels, we rely on known foreground and background pixels

67

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

but also on already estimated surrounding pixels. These pixels are often closer to
the current pixel and are therefore more likely to present a good representation for
the current pixel. However, if an error was made in the computation of a previous
pixel, using this pixel in the estimation of the current pixel could cause the error to
accumulate. In order to minimising errors in accumulating we start the algorithm
by processing the pixels closest to the known foreground and background areas and
work our way towards the centre of the unknown area. In practice this means that
we start by processing the pixels with the shortest distance to the nearest known
foreground and background area.
To determine the distance to the nearest foreground and background pixel we use a
breadth first growing technique and grow from the border of both the knownF and
B. This yields an integer distance to the foreground and background border which
is not a precise distance measure, but it is sufficient to ensure a correct processing
order. The computed distances are saved in two distance mapsDF andDB repre-
senting the distances to the nearest known foreground pixel and known background
pixel respectively.DF andDB will be used in the next step of the matting method.

5.3.4 Pixel Sampling

To model the distribution of foreground and background colours we perform a
pixel sampling in the surrounding area of the current pixel. The area in which we
sample should cover both known foreground and background pixels, and pixels
close to the current pixel for which an alpha value is already estimated. There
are, however, different approaches to this sampling. Chuang et al. [3] sample in a
circle within a radius of the current pixel as shown in Figure 5.7a. The radius of
the circle should be large enough to cover both known foreground and background
pixels which therefore will include a very high number of samples. Karlsson [8],
however, states that the number of samples have a drastic effect on the run-time
of the matting algorithm. He therefore suggests a different approach where sam-
pling is done in the surroundings of the nearest foreground and background pixel
and the current pixel, (see Figure 5.7b). Since our aim is to provide an interactive
segmentation tool, and [8] shows that his sampling approach is much faster than
the approach of [3], we decide to use the sampling approach shown in Figure 5.7b.

To find the nearest known foreground and background pixel we use the previously
estimated distance mapsDF andDB. Using the distance maps as two gradient
images we can ”slide down hill” to the newest foreground and background pixel
much like the toboggan watershed shed algorithm explained in Section 4.2.1.3.

5.3.5 K-Means Clustering

From the sampling step we now have a set of foreground pixels and a set of back-
ground pixels. The two sets are partitioned into clusters using K-means clustering.
Clustering is done to reduce the amount of data and to reduce noise in the sampling

68

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

Computed

Current pt

Nearest FG

Nearest BG

Computed

Current pt

Previous pt

Foreground Foreground

Background Background

Unknown Unknown

Figure 5.7: a b a) Sampling approach suggested in Bayesian matting [3]. b) Sampling
approach suggested by Karlsson [8].

sets. Inspired by [8] we use a slightly changed version of K-means. This version is
characterized by dynamically choosing the number of clusters,K. This is done by
increasingK until all samples are closer to their cluster centre than some threshold
T . The concept is shown in the algorithm below:

Dynamic K selection for K-means clustering

Set K to 0

while max(dist(data point, cluster centre))>T

K=K+1

Choose the point for which max(dist(data point, cluster centre)

perform normal K-means

end while

5.3.6 Bayesian Matting

Having a foreground areaF and a background areaB the goal of of Bayesian
matting is to find the most likely estimates for a foreground colour~F , a background
colour ~B and anα-value given an observed colour~C for all pixels inU . As the
name of the method indicates, this is done in a Bayesian framework using the
maximum a posterior (MAP) technique to solve for the most likely~F , ~B andα.
The probabilityP is described by Bayes’s theorem as follows:

arg max
~F , ~B,α

P (~F , ~B, α|~C) = arg max
~F , ~B,α

P (~C|~F , ~B, α)P (~F)P (~B)P (α)

P (~C)
(5.3.4)

This expression can be split up into sums of log likelihoodsL(·):

69

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

arg max
~F , ~B,α

P (~F , ~B, α|~C) = arg max
~F , ~B,α

L(~C|~F , ~B, α) + L(~F) + L(~B) + L(α),

(5.3.5)

whereP (~C) is a normalisation term that is constant with respect to~F , ~B andα
and can therefore be left out.

5.3.6.1 Defining the Log-Likelihoods

The problem is now to define the log-likelihoodsL(~C|~F , ~B, α), L(~F), L(~B) and
L(α).
The first term models the log-likelihood of~C given the optimization parameters~F ,
~B andα. This term models the error measurement between the observed colour~C
and the estimated~F , ~B andα. It can be interpreted as a measure of how well they
fit each other.L(~C|~F , ~B, α) is defined as:

L(~C|~F , ~B, α) =
−||~C − α~F − (1− α) ~B||2

σ2
C

, (5.3.6)

whereσC is the camera variance or camera noise. This camera variance is mod-
eled by a Gaussian probability distribution centered atC̄ = α~F + (1− α) ~B. This
distribution is illustrated as the centre circle in Figure 5.8.

Figure 5.8:

Modeling the distributions of the foreground and background coloursL(~F) and
L(~B) is done using the clustered samples from known and estimated foreground
and background pixels.
To make a more robust model each pixel in the foreground clusters is applied a
weightwi. The weight is a product of two factors. Firstly, foreground samples are

70

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

weighted byα2
i to give more confidence to pixels with high alpha values. Back-

ground samples a similarly weighted with(1 − αi)2. Secondly, all samples are
weighted by their distance to the current pixelxi giving more weight to pixels
close toxi. The distance weight is modeled using a Gaussian falloff centered atxi.
The combined weight function for foreground samples are given as

wi =
α2

i e
−(~xi−~µ)2

2σ2

σ
√

2π
. (5.3.7)

As Chuang et al. [3] we useσ =8 in the weight function.

Having a set of foreground clusters with weighted pixels the next step is to cal-
culate the weighted mean colour̄F and the weighted covariance matrixΣF for
each cluster. This is done as follows:

F̄ =
∑

i∈N wi
~Fi∑

i∈N wi
, (5.3.8)

ΣF =
∑

i∈N wi(~Fi − F̄)(~Fi − F̄)T

∑
i∈N wi

, (5.3.9)

whereN is the set of all pixels in a cluster. Similar formulas are given forB̄ and
ΣB.

Using the weighted mean̄F and covariance matrixΣF the log-likelihoodL(~F)
can be models as an oriented Gaussian distribution. This is illustrated in Figure 5.8
where the upper ellipse is the foreground distribution and the lower ellipse is the
background distribution.̄F is the centre of the ellipse andΣF is the largest radius
of the ellipse. The general formula forL(~F) andL(~B) is given as:

L(~X) =
−(~X − X̄)Σ−1

X (~X − X̄)
2

(5.3.10)

Chuang et al. [3] have made an important correction to their article related to the
camera noiseσC . The correction can be viewed from the article homepage but we
will describe it here below.
As mentioned earlier an amount of camera noiseσC is added to the observation
colour ~C. Because foreground and background samples are observations from the
same camera, the camera noise should be added to these observations. This is
done by decomposing the covariance matrix for each cluster using a singular value
decomposition (SVD) and adding the noiseσ2

C to each of the three axes. The
approach is shown in the following equation.

Σ = U ·D · V T , D′ =

[
d1+σ2

C 0 0

0 d2+σ2
C 0

0 0 d3+σ2
C

]
, Σ = U ·D′ · V T (5.3.11)

71

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

Doing this has another effect. The covariance matrix for a cluster is constructed
from pixels which are often similar or even identical. When pixels are identical
the covariance matrix becomes singular which makes the calculation of the inverse
covariance matrixΣ−1 impossible. However, by adding noise to the matrix as in
Equation 5.3.11, the number of singular matrices is reduced.

Chuang et al. [3] assume the log-likelihoodL(α) to be constant. This term is
therefore omitted in the maximization in Equation 5.3.5.

5.3.6.2 Maximizing the Log-Likelihoods

Having defined each of the log-likelihoods we now go on to estimate the parameters
for ~F , ~B andα which maximizes Equation 5.3.5.~F and ~B are3×1 vectors, which
gives a total of seven unknowns to determine. Since we only have three equations,
the problem is decomposed into two sub-problems. First, we maintain a constant
α value and solve for~F and ~B in the equation below (from [3]).


Σ−1

F + Iα2

σ2
C

Iα(1−α)
σ2

C
Iα(1−α)

σ2
C

Σ−1
B + I(1−α)2

σ2
C




[
~F
~B

]
=


 Σ−1

F F̄ + ~Cα
σ2

C

Σ−1
B B̄ +

~C(1−α)
σ2

C


 (5.3.12)

I is a 3 × 3 identity matrix. The matrixes are of size6 × 6, 6 × 1 and6 × 1
respectively. Having found~F and ~B, α is found as a projection of~C onto the line
~F − ~B.

α =
(~C − ~B)(~F − ~B)

||~F − ~B||2
(5.3.13)

By alternating the two above equations, using the result of the previous iteration,
~F , ~B andα is found whenα converges. Initially,α is set to the average of its eight
neighbouring pixels.
Foreground and background pixels are divided into clusters and for each cluster
there is a mean and covariance matrix associated with every cluster. To find the
pair of foreground and background clusters that yields the highest maximum of
Equation 5.3.5, the above optimization is made for all combinations of foreground
and background clusters. The optimal~F , ~B andα values are chosen from the
combination of clusters which results in the highest likelihood.

5.3.7 The Bayesian Matting Algorithm

The previous sections described the general approach of Bayesian matting. The
method, however, contains a large number of steps. To ease the understanding of
each of the order of the these steps we provide the Bayesian alpha matting algo-
rithm below.

72

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

Bayesian Matting Algorithm

Create distance map

Compute processing order

for all unknown pixels

Acquire foreground and background samples

Compute weight wi for all samples

Cluster foreground and background samples using K-Means

for all foreground and background clusters

Compute mean colour

Compute covariance matrix

end for

for each pair of foreground and background cluster

repeat

Find best foreground and background color given α

Find best α given foreground and background color

until α converges

Compute current likelihood= L(~C|~F , ~B, α)+L(~F)+L(~B) of

converged parameters for cluster pair

if current likelihood > previous best likelihood then

Set current likelihood to best likelihood

end if

end for

end for

73

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

5.3.8 Alpha Matting Examples

After going through the theory related to the Bayesian matting technique we now
show some examples of the method applied to a few images. Subsequently, we will
address some pros and cons of our matting implementation compared to the more
simple softening methods.

The first problem we encountered when testing Bayesian matting was the run-time
of the algorithm. Table 5.1 shows the run-times of our implementation on 3 dif-
ferent images. In the columnUnknown sizeare found the number of pixels in the
unknown area for each example. The immediate impression is that the time-per-
pixel ration is very high. Studying the Bayesian matting algorithm we suspected

Image Image Size Unknown Size Time Used

Man’s scull 130x83 1289 14.0 s

Woman’s hair 76x200 8829 127.7 s

Author’s eye 98x130 2244 58.4 s

Uncropped Image≈1400x1000 ≈70000 -

Table 5.1: The run-times for the 3 example images are listed along with the image sizes in
pixels.Unknown sizeis the number of pixels in the unknown area.

the method to be slow but were surprised of these run-times. However, since our
project period were rather advanced by the time we encountered this problem we
have not been able to optimise our alpha matting implementation to an extend that
reduced the run-times notably. It occurs to us that our implementation of the de-
scribed algorithm is not optimal, since the our processing times by far surpass those
stated in [8].

Having a slow implementation has forced us to test the alpha matting on very small
images as shown in Table 5.1. To save time we drew the trimaps manually to get
small unknown areas centered around the most interesting image details. This re-
duced the size of the unknown area which meant that we managed to focus our
effort on the most difficult parts of the borders.

For the larger non-cropped image (listed in Table 5.1) we obtained the trimap by
dilation as described in Section 5.3.2. The unknown area contained approximately
70.000 pixels in a 13 pixels wide band around the entire segment. Due to the long
processing time we have not been able to determine useful programme parameters
to provide a meaningful matting example for images of this size.

The first example seen in Figure 5.9 shows matting applied to a simple border.
The cropped image is the scull of one of LS’s short haired actors. In Figure 5.9b

74

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

we have specified a trimap in which the dark grey area indicates the unknown area
of pixels to be processed. Figure 5.9c shows the matte derived from the original im-
age and Figure 5.9d shows the resulting segment on a new background. Apparently,

Figure 5.9: a b
c d a) Original image cropped to size 130x83. b) User specified trimap. The

unknown area (marked with dark grey) contains 1289 pixels to be processed. Foreground
pixels are light grey and background pixels are black. c) Matte derived from the original
image. d) The resulting segment on a new back background.

the result is less good than those previously obtained using the Gaussian transition.
From the matte we see that the method has caused an exaggerated blurring within
the entire unknown area. The amount of blurring obtained on the actual border
varies a lot. In the right part of the processed area there is a hole where the border
has not been softened at all. It seems like the error arises at the border of the un-
known area and propagates from there.

The second image example in Figure 5.10a is cropped from the head of an LS
female actress. The crop mainly contains straws of hair which is known to rep-
resent a problem to the simple methods and for segmentation methods in general.
A look at the derived matte in 5.10c should convince the reader that the matting
method is capable of something that the simple methods cannot present. We argue
that the matting to some extend has been successful because the individual straws
of hair are easily distinguished. There are, however, some problems with this es-
timation. For instance in Figure 5.10d the yellow colour of the background shines
very intensely through the foreground in the upper part. This happens because the
algorithm cannot differ the colour of the original background from the elongated
highlight in the hair. In general, a more successful matte should probably have
fewer transparent pixels in the dense area close the foreground.

The third example is a 98x130 crop of the eye of one of the authors shown in

75

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

Figure 5.10: a b c d a) Original image cropped to size 76x200. b) User specified trimap.
The unknown area (marked with dark grey) contains 8829 pixels to be processed. Fore-
ground pixels are light grey and background pixels are black. c) Matte derived from the
original image. d) The resulting segment on a new back background.

5.11a. In this image the most challenging feature should be the eyelashes. These
are estimated rather well as seen in the matte in Figure 5.11. Still, the ends of the
individual straws of hair are blurred away. For the area around the eye the problem
is the same - the matte is too transparent.

Figure 5.11: a b c d a) Original image cropped to size 98x130. b) User specified trimap.
The unknown area (marked with dark grey) contains 2244 pixels to be processed. Fore-
ground pixels are light grey and background pixels are black. c) Matte derived from the
original image. d) The resulting segment on a new back background.

Our general impression of the Bayesian matting algorithm is that is it has a great
potential when it comes to estimating alpha transitions for complex segment bor-
ders. However, even though we have shown some of our best results none of the
presented matting examples are fully satisfactory. A possible cause of the problems
we have encountered is that we have not been able to find an optimal combination

76

5.3. ALPHA MATTING USING A BAYESIAN FRAMEWORK

of the many program parameters for the algorithm.

Another concern is the time spend to process even relatively small images. Based
on our observations in this section we conclude that our present matting implemen-
tation does not match the demand for interactivity and therefore cannot be a part of
our prototype application.

77

Chapter 6

Implementation Details

In this chapter we will go through some details of our program implementation.
First, we explain our choice of C++ as main implementation language. Second, we
will deal with the program structure and explain important decisions regarding the
design. Finally, we will discuss the relevance of the implemented graphical user
interface.
The source code can be viewed from the CD-Rom that is attached to this thesis.
Because of licence restrictions we have not included a version of the running ap-
plication on the CD-Rom.

6.1 Choice of Programming Language

All implementation for this thesis is done in C++. This is primarily because it has
been the aim to make an implementation that is an integrated parts of LS’s C++
based Picture Factory.
The use of C++ allows us to use fast pointer operations and avoid massive reallo-
cation of big memory block when we pass large images back and forth between
different part of the program.
With C++ we can also benefit from intuitive object oriented design possibilities.
This means that the program code can be broken down into semantically meaning-
ful objects. The implementation is then accomplished by composing the objects
into a final structure.
Finally, the choice of C++ has allowed us to use well-tested third-party packages
such as CVM and IPP from Intel.

6.2 Program Structure

This section provides a brief description of the main components of our imple-
mentation. To help the understanding a diagram of program structure is shown in
Figure 6.1. In the figure ”Main Method” refers to the graphical user interface of
the Picture Factory framework.

78

6.2. PROGRAM STRUCTURE

Figure 6.1: Simplified UML diagram showing the overall structure of the implemented
program.

Graph The Graph class plays a leading role in our program structure. The
component contains references to all nodes, and it has methods to handle seed
points and run the graph cut algorithm. TheGraph class is constructed based on
a pre-segmented image. It creates all nodes in the graph and build their internal
neighbourhood relations.

Node As the name indicates this class is used to represent the node entities in
the graph. Because aNode represents a pre-segment, it contains references to
the pixels it embodies. The node computes, and stores their average colour of the
segment. Moreover, it has a knowledge of neighbouring nodes and it can compute
edge capacities for connecting edges. In the relation to the Boykov-Kolmogorov
algorithm it has knowledge of which of the two search treess or t it belongs to and
whether it is an active node.

KMeans Receiving a list ofF or B seeds this class computes and stores the
K-means cluster centres used to compute the t-link capacities.

Presegment ThePresegment class performs the toboggan watershed segmen-
tation based on a given input image.

LocalGraph The LocalGraph class receives a pointer to the original image,
the initially segmented mask and a list of pixels that describes the area of which
the local graph is build.LocalGraph has an instance of theGraph class and
all pixels in the input list are created as nodes in the graph. By using the mask
LocalGraph is automatically defines seeds for the graph and finds the min cut.

BorderBlending The class contains methods used to create a simple softening
of segment borders.

79

6.2. PROGRAM STRUCTURE

AlphaMatting TheAlphaMatting class contains advanced methods used to
estimate an alphamap for segments with complex borders.

KMeansAlpha TheKMeansAlpha class does the clustering of the colour sam-
ples fromAlphaMatting .

IppiImage 32f & IppiImage 8u Our original idea was to implement everything
using the image class in Picture Factory provided by LS. However, the image class
related to Picture Factory,CxImage stores pixels aschar values with no pos-
sibilities of floating point precision. We need floating point precision to, among
other things, work correctly with fourier transformed images. Therefore, we need
a different image representation. Early in the process we decided to use the image
library IPPI, which is part of Intel Performance Primitives (IPP).

IPPI contains a lot of image processing functionalities. These are, however, imple-
mented in a low-level structure to optimise performance. In order for us to get easy
access to image data, we have implemented two almost identical wrapper classes
IppiImage 32f andIppiImage 8u , which are based on IPPI and have access
to the functionalities of IPPI. As the name indicates the classIppiImage 32f is
constructed to contain 32 bit floating point pixel data.IppiImage 8u is used to
store unsigned 8 bit i.e. ranging from 0 to 255. To facilitate interaction with Picture
Factory we have implemented methods in the IppiImage classes that convert back
and forth betweenIppiImage 32f /8u andCxImage .

6.2.1 Filtering in the Fourier Domain

In Section 4.2.1 we performed a filteringIb ∗ ∂Nσ
∂x in the making of the gradient

magnitude image. We have chosen to filter in the frequency domain because LS
have very large images (3072x2048), and we want the process to be as fast as pos-
sible.
The size of the used filter also influences our choice of domain. Implementing the
filtering in a multi-scale framework we may want to use larger scales. For instance
a value ofσ = 32 would give a filter of size 288x288 if we wanted to represent
±3σ.
Convoluting one of LS’s colour images with a filter of the above size in the spatial
domain would be very demanding in terms of computational time. Therefore, we
choose to do the filtering in the frequency domain.

IPPI contains an implementation of Fast Fourier Transformation (FFT) of images.
However, in order to perform an FFT in IPPI, the image has to be an order-two
size. We solve this by zero padding both the image and the filter. An example is
shown in Figure 6.2.
At this point in time the size of LS’s images represents a problem to the overall
performance of our program. When running the multi-scale filtering method, we

80

6.2. PROGRAM STRUCTURE

Figure 6.2: a b a) The input image of size 190x140 is zero padded to the nearest order-two
size 256x256. b) The filter∂Nσ

∂x is also zero padded to size 256x256.

allocate space according to 5 colour images in the memory. LS’s images are in size
3072x2048 and are zero padded to size 4096x2048. Since we are working with 32
bit floating point 5 colour images require approximately 490 MB of memory. Ta-
ble 6.1 shows which images we allocate space for. Since our test computer is only

Image Channels Memory

Original image 3 98.3 MB

FFT of the original image,F (X) 1 32.8 MB

Spatial filter 1 32.8 MB

FFT of the filter,H(X) 1 32.8 MB

H(X)F (X), x-direction 3 98.3 MB

H(X)F (X), y-direction 3 98.3 MB

Final gradient magnitude image 3 98.3 MB

Total 491.6 MB

Table 6.1: A list of images that we allocate memory for when preforming frequency edge
detection filtering. The memory sizes are computed for 32 bit floating point images of size
4096x2048.

equipped with 512 MB RAM, it starts to swap to the hard drive, which slows down
the processing enormously. We will come back to this time issue and possible ways
around in Section 7.2.1.

81

6.3. GRAPHICAL USER INTERFACE

6.3 Graphical User Interface

As has been mentioned widely throughout this thesis, our segmentation method is
supposed to be used interactively. This in general term means that a user gives
some input, and the program swiftly and accordingly returns an output.
Furthermore, since the min-cut/max-flow algorithm is based on initial user input,
we need a user interface. We have set up a temporary graphical user interface
(GUI) to facilitate the interaction needed during the developing and testing of our
program. The GUI is temporary the sense that it is not finally customised to fit into
LS’s production.
Figure 6.3 shows a screen dump from a segmentation task using our implemen-
tation. The left window is used to input seed points, and the segmentation result
is shown in the right window. At the bottom is the segmentation toolbox dialog,
which is also shown in larger format in Figure 6.4. To the left in the dialog are too

Figure 6.3: Picture Factory GUI during interactive segmentation.

Figure 6.4: The segmentation dialog box.

82

6.3. GRAPHICAL USER INTERFACE

buttons used to carry out the initial pre-segmentation and to construct a graph over
the input image. These functionalities should probably not be in a final GUI, since
they precede the interactive part of the segmentation process.
The rest of the instruments in the dialog are gathered in boxes containing related
functionalities. First we have the components used to enter seeds. Here the user
has the possibility to change the size of the brush used to input seeds, and he can
choose to either update the segmentation or re-segment from scratch. The neigh-
bour weight can be changed ahead of re-segmentation.
The centre box contains the functionalities used for local graphs.
In the right side of the dialog box are presently features associated with our imple-
mentation of the local alpha estimation.

We have identified three additional features that would greatly increase the use-
ability of the GUI with respect to the segmentation task. The most important is an
”undo” feature for deleting erroneous seeds. The second would be the possibility
of entering seeds directly in the result window. A third convenient functional-
ity would be an intelligent resizing of the image windows to fit the size of the
processed image.

83

Chapter 7

Test

This chapter presents tests of various aspects of the produced implementation. First
section contains what we call a limited functional test. Here we want to show that
the most critical part of our program, namely the Boykov-Kolmogorov algorithm
behaves predictably under changing circumstances. This is taken as an indication
of the correctness of the implementation.
Secondly, we present a time study that illuminates important performance issues in
the implementation.
Finally, we will make a qualitative assessment of the image segments outputted
from our program. A part of this test will be to compare the produced segments
with the manually segmentation results from LS’s current working procedure.

Throughout the test we use image material provided by LS. Images of paramedics
in blue shirts and dark trousers seem to be over-represented in the provided mate-
rial. This image type, however, represents some of LS’s most important products
which is why we show our implementation’s performance on these images in par-
ticular. We have received a few other images which we also include in the test.

7.1 Limited Functional Test

The purpose of this section is to investigate whether our implementation works
correctly.
Firstly, we compare segmentation result for a very small image with ground truth
to be convinced that our graph cut implementation finds the correct segment.
Secondly, we test whether the run-time for our implementation stays within the
worst case upper-bound for the Boykov-Kolmogorov algorithm.
Thirdly, we look at the relative importance of the neighbourhood criteria versus
the colour statistics. The neighbourhood weight,λ is adjusted to test the influence
from the terms separately.

84

7.1. LIMITED FUNCTIONAL TEST

7.1.1 Manual Minimum-Cut

We have made a manual minimum-cut on a very small image. We run the Boykov-
Kolmogorov min-cut algorithm by hand in order to obtain ground truth for the
image. This is done to see whether our implementation finds the same paths and
ultimately the same segment.
Figure 7.1a contains an illustration of the 4x4 pixel input image. A graph is con-
structed over the image. Two pixels are chosen as foreground seed and background
seed, and we compute edge capacities according to the equations in Section 4.4.
The initial graph is seen in Figure 7.1b. Note that all the shortest paths,s → p → t,
through all nodes,p, have been pre-augmented to saturated half of the t-link before
the the graph search is started.
Subsequently, we follow the stages of the algorithm as described in Section 3.2.5
which results in the cut shown in Figure 7.1c. The manually found cut is identical

11

6
2

8

0

7

1
0
0

3
5

0

3

5
0

2
1

0

12

0

53

8
9

13

0

104

5
0

14

0

30

2
9

15

0

1
0
0
0
0

8

0

53

4
2

3
9

9

0

10

4
2

0

10

5
0

53

9

0

4

9
0

401

1
4

0

5

7
6

104

1
6

0

6

6
6

42

4
2

0

0

1
0
0
0
0

53

2
0
1

0

1

7
1

26

2
0
1

0

2

6
0

15

2
3

0

12

0

53

8
9

13

0

66

5
0

14

0

0

1
0

15

0

9
9
6
2

8

0

39

4
2

3
9

9

0

0

2

0

10

5
0

53

0

0

11

6
2

0

0

4

9
0

401

0

0

5

7
6

104

0

0

6

6
6

42

2
5

0

7

1
0
0

1
7

0

0

9
9
4
6

11

1
8
7

0

1

7
1

0

1
8
5

0

2

5
9

7

4

0

3

5
0

1
3

0

cut

Figure 7.1: a
b c a) In the manual graph cut segmentation is used a grey scale image of size

4x4. b) The initial graph is based on the input image. The red edges are t-links connecting
the nodes tos whereas the blue edges connect tot. Black edges are n-links. For the
seeds we set the t-link capacities to 10000 to encode infinite capacity to their respective
terminals. For convenience all edge capacities are scaled by a factor 100. Initially, only the
terminalss andt are in the active list. c) The green line through the graph indicates the cut
that has been made.

85

7.1. LIMITED FUNCTIONAL TEST

to the one found using our implementation. We interpret this as an indication that
we have implemented the algorithm correctly.

7.1.2 Run-time Versus Worst Case Complexity

Boykov and Kolmogorov [2] argue that their augmenting path algorithm in prac-
tise outperforms other algorithms though it has a worse worst case complexity, see
Section 3.2.5. The worst case complexity for the Boykov-Kolmogorov algorithm
is O(mn2|C|). If [2] is right we should expect a run-time significantly better for
our implementation than the worst case run-time.

There is a practical problem in having the worst case complexity expressed in
terms of the cut capacity,|C|. The problem is that even for the same image the
value of|C| may vary depending on which segment we find in the segmentation.
To make a proper comparison we must make a series of tests in which we maintain
a constant cut capacity|C| and vary the size of the graphmn2.

Our approach has been to make a large number of tests and choose the test re-
sults that fall into a certain range of a constant|C|. This approach has resulted in
the two graphs shown in Figure 7.2. We have used|C| ≈ 6000 and|C| ≈ 10000.
The actual values of|C| vary within±5% of the chosen constants.
From both Figure 7.2a and 7.2b it is clear that the time evolvement of our imple-
mentation has a significantly lower gradient than its worst case for the algorithm.
This indicates two things. First, it indicates that Boykov and Kolmogorov are right
to say that their algorithmin practiceperforms very good though having a worse
worst case complexity than other algorithms used to find a minimum cut. This
being true, this test secondly indicates that our implementation of the algorithm is
done correctly.

86

7.1. LIMITED FUNCTIONAL TEST

Constant Cut |C|~6000

0

500

1000

1500

2000

2500

3000

0 5E+14 1E+15 2E+15 2E+15 3E+15

mn^2

T
im

e Worst Case
Test Values

Constant Cut |C|~10.000

0

200

400

600

800

1000

1200

1400

1600

0 1E+15 2E+15 3E+15

mn^2

T
im

e Worst Case
Test Values

Figure 7.2: a
b Plots of actual run-times vs. worst case run-times.|C| is held constant

while the graph complexitymn2 is varied. The worst case times are calculated and scaled
to fit the graph. a) For|C| ≈ 6000 b) For|C| ≈ 10000

87

7.1. LIMITED FUNCTIONAL TEST

7.1.3 Separating Energy Terms

The following test is performed to test the effect of varyingλ. We will see whether
the program behaves as expected when segmenting simple synthetic images for
which we are able to predict the result. Inspired by Boykov & Jolly [1] we have
prepared a synthetic image (see Figure 7.3) to test the relative importance of the
neighbourhood versus the colour statistics. Referring to the energy equation (Equa-
tion 3.1.2) it is seen thatλ = 0 corresponds to minimising only the colour statistic
term,Dp(·). On the other hand extremely highλ-values will in practice correspond
to minimising only the neighbourhood termVp,q(·).

We are going to segment the image using the two different sets of seeds. In Fig-
ure 7.4 we only placed foreground seeds inside the black boxes to obtain a clear
difference in the colour statistics between foreground and background. With these
seeds we expect to segment only the black boxes in the image, when we use low
λ-values.

Figure 7.3: The input image is a synthetic greyscale image of size 400x400. We added
some Gaussian noise to the image to obtain more interesting colour distributions for the
entered seed points.

Indeed, forλ = 0 no capacity is given to the n-links, and predictably we get the de-
sired result as seen in Figure 7.4 since the segmentation is purely based on colour.
The result is repeated for all values ofλ < 83. After this point the n-links get
enough importance to effect the segmentation, and some of the boxes are omitted
from the segment. Ultimately forλ ≥ 250 the relative importance of the t-links
has become so insignificant that only boxes which have been explicitly marked
with foreground seeds become part of the segment.

In figure 7.5 foreground seeds are inputted as a sweep over the black boxes and
the grey background in between. With these seeds we expect to segment all the
boxes along with parts of the background that are between the boxes.
The sweep of foreground seeds gives overlapping colour distributions for fore-
ground and background. Forλ = 0 this results in a scattered segmentation be-
cause the algorithm only relies on colour information. All over the image some

88

7.1. LIMITED FUNCTIONAL TEST

λ = 0 λ = 30 λ = 83

λ = 100 λ = 150 λ = 200 λ = 250

Figure 7.4: Segmentation results for different values ofλ using the seeds shown in the
upper left image.

λ = 0 λ = 2 λ = 100

λ = 200 λ = 500 λ = 1000 λ = 4000

Figure 7.5: Segmentation results for different values ofλ using the seeds shown in the
upper left image.

pre-segments get the foreground label apart from in the areas explicitly marked as
background.
For λ = 2 it has already changed significantly - there are only some islands here
and there. The results support our expectation that an increase inλ yields a more
dense segment, because the neighbour term enforces coherence. In the segmenta-
tion result forλ = 100 all the boxes and almost all the area in between are included
in the segment. The n-links have become sufficiently important to remove islands
and to close holes between the boxes.

89

7.1. LIMITED FUNCTIONAL TEST

For λ > 100 the segmentation omits an increasing number of boxes from the seg-
ment. It is no longer sufficient for the boxes to have similar colour to the foreground
statistics. Finally, forλ = 4000 we see that only boxes marked as foreground are
included in the segment, because we practically disregard the colour statistics.

The two tests in this section confirm our expectation that the influence from the
two terms of the energy equation can be controlled using different values forλ.
We used extremeλ-values to show the separate effect of the two terms. All results
indicate that each of the two energy terms have the expected and desired properties.

90

7.2. TIME STUDY

7.2 Time Study

In this section we go into a detailed test of algorithmic run-times for different parts
of the segmentation method. The purpose of this test is to determine the conditions
under which our application can be used as an interactive segmentation method.
Furthermore, the test should give the reader a general impression of the applica-
tion’s speed and bottlenecks etc.

All tests in this section are run on a Pentium M 1.6 GHz with 512 Mb RAM.
The run-times have an average error of±10ms [24].

7.2.1 Pre-Segmentation

The pre-segmentation consists of two major parts: obtaining a gradient magnitude
image in a multi-scale framework, and running the toboggan watershed algorithm.
As explained earlier the gradient magnitude image is obtained using an edge de-
tection frequency filter. The fact that the FFT function we use requires image and
filter to be of order 2 size has the effect that the filtering time can be divided into
groups of order 2 images. We illustrate this in Figure 7.6. The figure shows fil-
tering run-times on images for sizes ranging from 512x256 to 4096x2048. For all
runs four scales were used in the multi-scale edge detection,σ={1, 2, 4, 8}. The

4096x2048

110-120 s

2048x2048

13.5-15.0 s

2048x1024

6.5-7.5 s

1024x1024

3.5-4.5 s

1024x512

1.3-1.8 s512x512

0.5-0.6 s

512x256

0.2-0.3 s

Figure 7.6: Illustration showing frequency filtering run-times for different sizes of order 2
sized images.

run-time specified for the largest image 4096x2048 is significantly higher than the
others. The reason for this is that for images of this size the test computer runs out
of conventional RAM and starts to swap to the hard drive. This, of course, slows
the filtering process a lot. We have, however, included this example to show the

91

7.2. TIME STUDY

limitation of the implementation. A computer with 1024 Mb of RAM would have
been able to filter images of this size without running out of RAM.
Exact run-times can be seen in Table 7.1 for eight images of different size.

Having the gradient magnitude image the next step is to run the toboggan wa-
tershed algorithm. The toboggan watershed run-times can be viewed in Table 7.1
for the eight example images.

No. of Toboggan
Size Nodes NR Filtering Watershed Total

256x359 4400 20.9 0.24s 0.11s 0.4s

500x692 16007 21.6 1.38s 0.40s 1.8s

899x881 47580 16.6 3.45s 0.92s 4.4s

1195x885 83349 12.7 6.67s 1.21s 7.9s

1082x1228 99413 13.4 13.79s 1.53s 15.3s

1794x1305 159990 14.6 14.00s 2.77s 16.8s

1629x1602 190635 13.7 15.00s 3.13s 18.1s

3072x2048 554778 11.3 110.00s 9.75s 119.8s

Table 7.1: Time table for the pre-segmentation step. The table shows the time used to ob-
tain the gradient magnitude image and the time used for the toboggan watershed algorithm.
The total time reflects the time the operator has to wait before the actual segmentation can
take place.

Figure 7.7 shows the measured toboggan run-times. The plot shows that our im-
plementation runs in linear time. When evaluating the total time used for pre-

0

2

4

6

8

10

12

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Pixels

T
im

e
(s

ec
)

Figure 7.7: A plot showing that our implementation of the toboggan algorithm runs in
linear time.

segmentation, we must keep in mind that the pre-segmentation is done to obtain
interactivity in the graph cut segmentation. This means that the time used to pre-

92

7.2. TIME STUDY

segment should not surpass the time won by running the graph cut algorithm on a
smaller graph. We will, make come back to this in Section 7.2.2.1.

As seen from Table 7.1 the pre-segmentation of small images is almost instant. For
larger images the time used for pre-segment increases significantly. In LS’s case the
images are very large - 3072x2048 pixels, which means that the pre-segmentation
time will be in the area of12 minute, which is too much idle time for an operator.
LS should consider the possibility of pre-segmenting all images offline as a pre-
processing step. The operator would then load pre-segmented images and perform
the graph cut segmentation interactively.

An alternative solution to the time problem could be to allow the operator to make
a crop in the image before pre-segmenting. This would also serve to speed up the
graph cut segmentation.

7.2.2 Graph Cut Segmentation

The time used for graph cut segmentation can be split up in smaller sub-groups.
In this section we will run tests on the same eight images as in the previous sec-
tion. The settings used for the preceding pre-segmentation will therefore also be
the same as in the previous section. For all test we will use an undirected graph.

Table 7.2 gathers the test results for the eight images. The table contains in-
formation about the following: TheSizeof the original image. The number of
Nodes, in the graph corresponds to the number of pre-segments from the initial
pre-segmentation.No. of pathsis the number of paths augmented to obtain the
segmentation.Av. path lengthis the average length of all augmented paths where
the length of a path is given as the number of edges in the path.Build graphis the
time used to construct the graph having a pre-segmented image.Set n-linksis the
time spend to compute the n-link capacities.K-meansis the time used to perform
the K-means clustering of all foreground and background seeds.Set t-linksis the
time used to compute the t-link capacities.Graph searchis the time used to run the
Boykov-Kolmogorov augmenting path algorithm.

To see the effect of the number of seeds added for each segmentation we have
run some of the tests with two different amounts of seeds. Run-times for the graph
construction and the assignment of edge capacities only appear once per image
example because they are independent of the number of seeds used. The times
specified in Table 7.2 can be divided into two groups: The time spend before user
input and the time spend after user input. Building the graph and computation of
n-link capacities are done before user input and K-means, computation of t-links
as well as graph search is done after.

Table 7.2 shows that the time used before user input is low even for very large

93

7.2. TIME STUDY

No. of No. of Av. Path Build Set Set Graph
Size Nodes Seeds Paths Length Graph n-links K-Means t-links Search Total

256x359 4400 1038 5444 2.63 0.08s 0.01s 0.02s 0.05s 0.01s 0.17s

500x692 16007 3041 19686 3.56 0.29s 0.04s 0.09s 0.19s 0.09s 0.70s

899x881 47580
5677 55698 4.12

0.79s 0.12s
0.25s

0.59s
0.23s 1.98s

9830 55469 4.88 0.48s 0.43s 2.36s

1195x885 83349
3307 88177 2.29

1.12s 0.20s
0.10s

0.99s
0.17s 2.58s

12739 87884 2.25 0.45s 0.17s 2.94s

1082x1228 99413
8937 111291 3.17

1.39s 0.24s
0.49s

1.18s
0.36s 3.67s

16699 111259 3.07 0.99s 0.34s 4.16s

1794x1305 159990
8941 181608 3.96

2.33s 0.38s
0.30s

1.88s
0.85s 5.75s

24515 177570 3.31 1.21s 0.63s 6.44s

1629x1602 190635
11930 216021 3.58

2.70s 0.46s
0.53s

2.24s
0.86s 6.80s

30041 213686 3.38 1.76s 0.79s 7.99s

3072x2048 554778 30035 569104 2.27 14.68s 1.34s 1.26s 6.57s 1.13s 24.99s

Table 7.2: Table showing run-times for different parts of the graph cut segmentation
method. The test is run on eight different images of different size. For some images
the test include adding a higher number of seeds, which explains why some images cover
two lines in the table. All tests are run using an undirected graph.

images. This, in combination with our own experience with the program, leads
us to conclude that the initial processing does not affect the interactivity of the
method.

The table also shows that the time spend after entering seeds is highly depended
on the number of seeds entered. We would expect a faster graph search with more
seeds because more seeds are initially labeled. This is also the general trend, but
the extra time used on K-means clustering because of more seeds by far surpasses
the time saved in the graph search. This leads us to conclude that more seeds do not
reduce the total segmentation time. It might, however, increase the segmentation
quality, which we shall see in Section 7.4.

An interesting observation from Table 7.2 is that more seeds not always result in
faster graph search. To find an explanation for this we have to look at the average
path length which has a high correlation with the run-time of the graph search. The
image of size 899x881 has higher run-times for more seeds. This is due to the
placement of seeds that evidently results in longer paths.

Computing the t-link capacity is the most time consuming task after the input of
seeds. This might seem a little odd compared with the time spend on computing the
n-link capacity. The reason is, however, that computing the t-links requires com-
parison of all nodes with all K-means clusters in the foreground and background

94

7.2. TIME STUDY

sets.

7.2.2.1 Directed Versus Undirected Graphs

To make a time comparison of the directed graph and the undirected graph we
have run the exact same examples as in Table 7.2 using a directed graph. Figure
7.8 shows the run-times for the graph search using graph types. The figure shows

0,0

0,2

0,4

0,6

0,8

1,0

1,2

25
6x

35
9

50
0x

69
2

89
9x

88
1

11
95

x8
85

10
82

x1
22

8

17
94

x1
30

5

16
29

x1
60

2

Image Size

T
im

e
(s

)

Undirected Graph
Directed Graph

Figure 7.8: Shows the differences in run-time of the graph search for the directed and the
undirected graph.

that the undirected graph is faster than the directed. The differences are, however,
not large enough to discharge the directed graph. The decision of which graph type
to use will therefore be dependent on the quality of the segments they produce.

7.2.2.2 Pre-Augmentation of t-links

In Section 3.2.5.4 we argued that is it was possible to saturate half of all t-links
before running the Boykov-Kolmogorov augmenting path algorithm. This would
correspond to augmenting the number of nodesn shortest pathes in the graph. In
the following test we show that making the pre-augmentation has a significantly ef-
fect on the segmentation run-time. Practically, the pre-augmentation is done when
we calculate the t-link capacities. Table 7.3 show the graph search run-times for
three different image sizes. For the first row for each image we have used pre-
augmentation of t-links and in the second we have not used pre-augmentation.
From the table we can clearly see that by pre-segmentation the average path length
decreases which results in a much faster graph search. Because be do the pre-
augmentation when we set the t-links we see a small increase in the time used in
this step. This is, however, of minor concern compared with the times used for
graph search.

To ensure that the pre-augmentation step does not affect the result of the graph

95

7.2. TIME STUDY

Av. Path Set Graph
Method Size Length t-links Search

Pre-augmentation
500x692

3.6 0.20s 0.09s

No Pre-augmentation 24.9 0.20s 1.09s

Pre-augmentation
1195x885

2.3 1.01s 0.18s

No Pre-augmentation 64.3 0.95s 28.28s

Pre-augmentation
1794x1305

4.0 2.01s 0.89s

No Pre-augmentation 53.0 1.84s 49.48s

Table 7.3: Time table for running the Boykov-Kolmogorov augmenting path algorithm
with and without initial pre-augmentation of t-links.

cut segmentation we have compared output images for each of the approaches and
the these show exactly the same segmentation. We have, however, decided not to
show two identical segmentations.
Boykov & Kolmogorov [2] does not describe this pre-augmentation step in their
algorithm. However, comparing our run-times above with run-times presented in
[2] it could indicate that they in fact do something similar to our pre-augmentation
step.

7.2.2.3 Graph Cut Without Pre-Segmentation

The main reason for pre-segmenting the image before building the graph is to lower
the size of the graph, which in turn lowers the segmentation time. Table 7.4 shows
run-times for the three first examples from the previous section - but now without
the initial pre-segmentation. Each pixel in the image now represents a node in the
graph. These three examples clearly show that pre-segmenting the image has

No. of No. of Av. Path Build Set Set Graph
Size Nodes Seeds Paths Length Graph n-links K-Means t-links Search Total

256x359 91904 1082 133987 6,4325 0,61s 0,19s 0,01s 1,51s 1,03s 3,34s

500x692 346000 3168 373458 15,9106 2,02s 0,65s 0,01s 6,32s 15,16s 24,17s

899x881 792019 10186 831435 10,7532 4,38s 1,48s 0,15s 13,32s 23,45s 42,78s

Table 7.4: Table showing run-times for the three first test examples without pre-
segmentation. The number of nodes in the graph is now equal to the number of pixels
in the graph.

a significant importance in order to get an interactive segmentation method. In
Figure 7.9 we illustrate the difference in run-time between using a pre-segmented
image and a not pre-segmented image. The run-times shown for the pre-segmented
case include the time used for pre-segmentation but still it is significantly faster.
It should, however, be noted that some optimisation could be done if the graph

96

7.2. TIME STUDY

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

256x359 500x692 899x881
Image size

T
im

e
(s

)

Total run-time incl. pre-
segmentation
Total run-time excl. Pre-
segmentation

Figure 7.9: Shows the differences in run-time between running a segmentation on a pre-
segmented image and an image with no pre-segmentation. The time used for filtering and
watershed segmentation is included in the figure.

was specially designed to always work on a pixel-based graph. This is a probable
explanation to why the run-times for the pixel-based graph presented in [11] are
much lower than our.

7.2.2.4 Adding Additional Seeds

As explained in Section 4.6 we can fine tune the segment by inputting additional
seeds. The fastest way to do this is to reuse the graph obtained from the initial
graph search. We have made two examples showing the time used for an updating
graph search after new seeds have been added. The results are shown in Table 7.5.
For each of the two images we have added more seeds twice. The table shows how
many seeds were added and how many additional paths were augmented.

No. of No. of Av. Path Build Set Set Graph
Size Nodes Seeds Paths Length Graph n-links K-Means t-links Search

899x881 47580

6312 57458 5,21 0,77s 0,14s 0,20s 0,55s 0,41s

96 182 5,24 0,01s - - - 0,04s

57 332 5,37 0,01s - - - 0,07s

1629x1602 190635

17195 219723 4,54 2,77s 0,56s 0,87s 2,16s 1,32s

358 209 4,54 0,04s - - - 0,14s

1549 431 4,55 0,05s - - - 0,18s

Table 7.5: Table showing run-times for performing an updating graph search after adding
additional seeds. The times specified underBuild Graphcover the initial construction of
the graph and reset of the search trees when adding more seeds.

Table 7.5 shows very fast updating times when adding new seeds. In practise, when
the user lets go of the mouse button, the segmentation result will update instantly.

97

7.2. TIME STUDY

This, of course, fits very well into the interactive segmentation framework.

As mentioned in Section 4.6 we should, however, keep in mind that reusing the
graph prevents us from using the colour statistic for all t-links in the graph. If we
wish to use the newly obtained colour information, we have to reset the flow for
the whole graph and find the minimum cut from scratch. This would be just as time
consuming as the initial segmentation.

98

7.3. THE NEIGHBOURHOOD WEIGHT

7.3 The Neighbourhood Weight

In Section 7.1.3 we tested the effect of varying the neighbourhood weight. In this
section we also vary theλ-value, but this time the purpose is to estimate which
λ-values are useful for real imaging tasks. The tests in this section are made on
natural images.

The test shows several segmentations of 3 images with reuse of seeds for each
image. For each run of the segmentation the value ofλ is varied. We have picked
out results ofλ-values that give interesting differences in the segmentation. The
segments found in this test are not expected to be perfect since no fine tuning has
been done.

The first test image is seen in Figure 7.10a. Here we use the seeds from Figure
7.10b to segment torso, head and arms of the man to the right. We show results for
λ = {1, 5, 10, 30, 50, 100} in Figure 7.11.

Figure 7.10: a b a) Input image cropped to size 1024x1024 b) User inputted seed points

In this exampleλ = 50 gives a dense segment with no disconnected island and the
arm and the hand to the left are found quite well. Later atλ = 100 the segment
is changed slightly. There are more or less insignificant changes as some parts of
the fingers are missing and a part of the background is added to the segment at the
elbow junction. On the overall the returned segment is still of decent quality.
For low values ofλ there appears a track of the ”seed point brush” in the left part
of the segmented images. Due to overlapping colour distributions for foreground
and background the area is labeled as foreground in the parts that are not marked
explicitly as background. As expected the effect is not present for higherλ-values,
because the neighbourhood is emphasised more relative to the colour statistics.
The second test image - seen in Figure 7.12a is segmented using the user input
shown in Figure 7.12b. The segmentation results forλ = {1, 5, 10, 30, 60, 100}
are given in Figure 7.13.
In this example we see a dense segment already fromλ = 30. Again there is a track

99

7.3. THE NEIGHBOURHOOD WEIGHT

λ = 1 λ = 5 λ = 10

λ = 30 λ = 50 λ = 100

Figure 7.11: Segmentation results for different values ofλ.

Figure 7.12: a b a) Input image cropped to size 1024x1024 b) User inputted seed points

100

7.3. THE NEIGHBOURHOOD WEIGHT

λ = 1 λ = 5 λ = 10

λ = 30 λ = 60 λ = 100

Figure 7.13: Segmentation results for different values ofλ.

of the ”seed point brush” under the lower arm. This comes from the similarity in
the skin colours of the men in the image. Forλ = {30, 60, 100} there is no clear
conclusion to make regarding the quality of the segment. The high values give the
best results at the man’s arms, but forλ = 100 his forehead is less good.

The third test is run on the image seen in Figure 7.14a with the seeds from Figure
7.14b. In this example we show results forλ = {1, 5, 10, 30, 50, 100} in Figure
7.13. This time we see that last island does not disappear until we reachλ = 50.
At λ = 100 the region between the man’s body and arm is filled and erroneously
labeled pre-segments appear near the borders of his arms and legs.

The presented examples demonstrate that there is no universal value forλ that
always gives the best result. The placement of seeds in relation to the desired cut
plays an important role for our choice ofλ. Generally, a higher value is needed
to achieve a correct segmentation if foreground and background have overlapping
colour distributions.

101

7.3. THE NEIGHBOURHOOD WEIGHT

Figure 7.14: a b a) Input image cropped to size 1024x1024 b) User inputted seed points

λ = 1 λ = 5 λ = 10

λ = 30 λ = 50 λ = 100

Figure 7.15: Segmentation results for different values ofλ.

As a rule of thumb we say that the value should be above 30 to produce a non-
scattered segment. On the other hand, we argue that too highλ-values overem-
phasise the neighbourhood causing the segmentation to cross the existing borders
in the image. On this basis we choose to useλ-values, between 30 and 50 for the
remaining tests in this chapter.

102

7.4. DIRECTED VERSUS UNDIRECTED GRAPHS

7.4 Directed Versus Undirected Graphs

We now go on to compare the quality of segments produced by the two different
graph representation types that we have been working with - directed and undi-
rected. The purpose is to decide which of the two our final implementation should
be based upon.

7.4.1 Initial Segmentation

In the first test we want to show the difference in the initial segmentation using the
two graph types. To test this properly we reuse initial seeds for each image, and
only substitute the graph implementation before rerunning the segmentation.
We have been studying many LS images and found that in general there is no
significant difference in the result of the initial segmentations. Figures 7.16a and
7.16d represent an example of this.
We have also seen some examples of limited differences as between Figure 7.16b
and Figure 7.16e. Here the directed graph performs slightly better, but the differ-
ence is not quite big enough to discard the undirected graph on this basis.
The third example illustrates typical behavior of the undirected graph. In Figure
7.16f we see a jagged pattern on the segment boundary. There are often a few pre-
segments which are missing here and there in the segmentation produced by the
undirected graph. This illustrates a general trend that the directed graph produces
the most rounded and complete segments in the initial segmentation.

7.4.2 Fine Tuning

In this second test we show how the graphs respond differently to the updates we
make after adding new seeds. Therefore it is not relevant to use the same set of
seeds in both graphs. Instead, we show a few representative examples from the
fine tuning phase. The examples illustrate how effectively errors can be repaired
depending on the underlying graph.

The first example (Figure 7.17) shows a zoom on a man’s leg. In the upper row the
directed graph was used and below the undirected was used.
The first two images of each row show the initial seed points and the resulting
initial segmentation. Both of the segmentations in Figure 7.17b and Figure 7.17f
show some problems with the heel of the shoe and with the shadow under the leg.
In the case of the heel the directed graph gives a better initial segment. The undi-
rected graph produces a very jagged initial segment. In the fine tuning phase new
seeds are entered as seen in Figure 7.17c and Figure 7.17g. In the undirected rep-
resentation a lot of seeds are inputted to fix the heel - but still Figure 7.17h presents
a bad result compared to Figure 7.17d. Figure 7.17h shows that there are still holes
in the segmentation after the update.

103

7.4. DIRECTED VERSUS UNDIRECTED GRAPHS

Figure 7.16: a b c
d e f A comparison of initial segmentation results for the two graph types.

a, b & c) Results for the directed graph. d, e & f) Results for the undirected graph.

The same effect is seen for the shadow under the leg. In both Figure 7.17c and
7.17g we enter additional seeds to remove the shadow from the segment. Figure
7.17h shows that the undirected graph leaves a few pre-segments behind, these
could of course be removed by yet more seeds.

Figure 7.18 shows more examples of the behavior illustrated by Figure 7.17. A
comparison of Figure 7.18d and 7.18h shows that an almost identical portion of
additional seed gives very different fine tuning results. Again, for the undirected
graph some pre-segments remain after the first fine tuning.

7.4.3 Discussion

After studying the relative performance of the two graph representations we get
the overall impression that the directed graph yields the best quality. With respect
to the initial segmentation the difference is less significant than for the fine tun-
ing. Generally, the directed graph has better properties for adding and removing
coherent subparts of the image during the fine tuning. The reason is that the double

104

7.4. DIRECTED VERSUS UNDIRECTED GRAPHS

Figure 7.17: a b c d
e f g h Illustration of the fine tuning results for the directed graph and the

undirected graph. The upper row shows results for the directed graph and below are results
for the undirected graph. a & e) Initial seeds. b & f) Initial segmentation. c & g) Additional
seeds. d & h) Updated segmentation.

Figure 7.18: a b c d
e f g h Illustration of the fine tuning results for the directed graph and the

undirected graph. The upper row shows results for the directed graph and below are results
for the undirected graph. a & e) Initial seeds. b & f) Initial segmentation. c & g) Additional
seeds. d & h) Updated segmentation.

connection between neighbouring nodes in the directed graph allows a saturated
edge to opened again. This has the effect that larger areas of neighbouring nodes
can shift search tree when we add flow into a local area of the graph. This is also
the reason why the directed graph produces more smooth and finished segment
borders when more seeds are adding.

105

7.5. GRAPH UPDATE

7.5 Graph Update

Here we will briefly demonstrate and comment on the different behaviors of the
two graph update methods put forward in Section 4.6. One method uses a local ap-
proach that only modifies t-links at new seeds, whereas the other method is global
in the sense that it assigns new values to all edges in the graph. In Figure 7.19 we
show that the local updating method is quite vulnerable to a poorly chosen initial
seed points.

The first version of the colour statistics is made from the initial seeds in Figure
7.19a. When new seeds are added in (Figure 7.19c) in the attempt to include the
entire paramedic in the segment the local updating method gives the unsatisfying
result shown in Figure 7.19d. It is evident that the bad segmentation of his head
and arms stems from insufficient colour statistics for these areas. If we instead use
the global graph update method we recompute the all t-links based on the updated
sets of seeds and n-links are reset to their original capacities. This results in the
segmentation shown in Figure 7.19e.
The conclusion made from this small demonstration is not that the local updating
method is useless, but rather that one should be thorough in inputting initial seeds.
In fact, as will be seen from the rest of the test chapter the local method is very
efficient, when used correctly.

Figure 7.19: a b
c d e a) Very few initial seeds are used. b) The segmentation result only

includes the blue shirt. c) More seeds are entered in the attempt to include the entire
paramedic in the segment. d) The result making local updates to the graph around the new
seeds. e) The result of performing a re-segmentation based on the full updated sets of seed
points.

106

7.6. OVERALL PERFORMANCE

7.6 Overall Performance

In this section we will test the overall performance of our implementation. Below
we have listed the subparts that comprise our final application.

• Graph cut segmentation based on a pre-segmented image. We use a directed
graph.

• Two methods for fine tuning. Firstly, the possibility to enter additional seeds.
Secondly, the local graph (marked with blue in all the following tests).

• For border blending we blur the alpha channel with a 5x5 Gaussian filter.

The test is done by letting a test person segment five specific tasks. Hereafter, we
evaluate the segmentation quality and total time spent to obtain the segment. Be-
cause LS have trained operators, we have chosen a trained operator (one of the
authors) as the test person. The time shown is the overall segmentation time which
include the time used for user-input as well as the run-time of the program. The
time does, however, not include the time used for pre-segmentation.

Throughout this test we will compare our results with hand-made segments from
LS when these are available. These segments can be thought of as a sort of ground
truth. However, since LS’s primary goal is to make their segments look good they
sometimes manipulate the segments. These manipulations are not included in our
segmentations.

For each segmentation tested we let one of our contacts at LS evaluate the seg-
ments and give some comments. These comments are cited at the end of every
test.

107

7.6. OVERALL PERFORMANCE

7.6.1 Case 1

Figure 7.20 shows the original image for case 1. We aim to segment the paramedic
in the image.

Figure 7.20: Original image for case 1. Image size 1794x1305. We aim to segment the
paramedic.

Figure 7.21 shows three steps in the segmentation process. Figure 7.21a and 7.21b
show that the operator relatively fast (40s) can obtain a global segmentation of the
paramedic close to the wanted. However, a closer look reveals many smaller errors
that have to be corrected. After 1m40s (Figure 7.21c, 7.21d) many of the errors
have been corrected, but in order to obtain a satisfying result more fine tuning has
to be done. Eventually, after 3m30s the result is satisfying. In the last fine tuning
step we have made use of the local graph. The local graph has shown to be very
useful in areas where entering of additional seeds would require high precision.

108

7.6. OVERALL PERFORMANCE

Figure 7.21:
a b
c d
e f

. Three steps in the segmentation process. a & b) Seeds and result

obtained in 40s. c & d) Seeds and result obtained after 1m40s (1 minute 40 seconds). e &
f) After 3m30s.

109

7.6. OVERALL PERFORMANCE

Figure 7.22: a b
c a) Our segmentation. b) LS segmentation. c) Showing segmentation

difference. Cyan areas are where our segmentation is larger than LS and red areas are
where LS’s segmentation is larger than ours.

Figure 7.22a shows the segmentation result where the alpha channel has been
blurred with a 5x5 Gaussian to give a more smooth transition on the border. Com-
paring with the segmentation from LS (Figure 7.22b) we see a few minor differ-
ences. The difference is clearly seen in Figure 7.22c where we have performed a
different operation on the two alpha masks. Cyan marks where our segmentation
is larger than LS’s - and red shows the opposite First of all, LS has filled out the
hole where the patient’s foot covers the man’s knee. Our implementation does not

110

7.6. OVERALL PERFORMANCE

include methods to make this kind of image editing. Therefore, this difference will
not be regarded as an error. One of the most striking differences is the part of the
man that touches the floor. Because the paramedic has very dark trousers and at
the same time throws very dark shadows on the floor, the contrast between floor
and trousers is very low. In our segmentation this results in a rather uneven border.
Besides from the shadow areas we evaluate this segmentation as being very good.

Comments from LS ”There are problems with the shoes, the lower part of the
right leg, around the fingers on the right hand and of course the knee which is
manipulated in the LS segment. Besides this the segment looks good. In a few
areas your solution is better than ours. Both your solution and our solution have
a total lack of shadows. My impression is that the problem with the shoes and the
lower part of the leg can be solved totally by including shadows in the segment.
After this the need for manually labor is limited to the fingers and knee.”

111

7.6. OVERALL PERFORMANCE

7.6.2 Case 2

Figure 7.23 shows the original image for case 2. Again, we aim to segment the
paramedic in the image.

Figure 7.23: Original image for case 2. Image size 829x1166. We aim to segment the
paramedic.

Figure 7.24 shows three steps in the segmentation process. Again, we see that a
satisfying result is obtained using in the area of 3m. However we must conclude
that most of the time is used for fine tuning.

112

7.6. OVERALL PERFORMANCE

Figure 7.24:
a b
c d
e f

. Three steps in the segmentation process. a & b) Seeds and result

obtained in 30s. c & d) Seeds and result obtained after 1m. e & f) After 3m.

113

7.6. OVERALL PERFORMANCE

Figure 7.25: a b c a) Our segmentation. b) LS segmentation. c) Showing segmentation
difference. Cyan areas are where our segmentation is larger than LS and red areas are
where LS’s segmentation is larger than ours.

Figure 7.25 compares our segmentation with that of LS. Generally, the result is
good, but the comparison reveal that LS sometimes cut into the segment. This is
done on the lower part of the paramedic’s legs. In difference image, Figure 7.25c,
the large cyan areas show where LS has cut into the segment. It seems that LS in
general cuts a few pixels into the segment. Our segmentation is, however, good,
and we estimate that the differences does not lower the quality of the segment.

Comments from LS ”A really good segmentation which can almost be used
directly in our production. The only problem is the lower part of the left foot and
the leg. Again, this problem can be solved by including shadows. In general, the
segment lacks shadows.”

114

7.6. OVERALL PERFORMANCE

7.6.3 Case 3

Figure 7.26 shows the original image for case 3. We aim to segment the paramedic.

Figure 7.26: Original image for case 3. Image size 929x1166. We aim to segment the
paramedic.

Figure 7.27 shows three steps in the segmentation process. We see the results after
40s, 1m50s and 4m.

115

7.6. OVERALL PERFORMANCE

Figure 7.27:
a b
c d
e f

. Three steps in the segmentation process. a & b) Seeds and result

obtained in 40s. c & d) Seeds and result obtained after 1m50s e & f) After 4m.

Figure 7.28 compares our segmentation with the LS segment. What makes this
segmentation difficult is that the paramedic is holding his white glove over the

116

7.6. OVERALL PERFORMANCE

Figure 7.28: a b c a) Our segmentation. b) LS segmentation. c) Showing segmentation
difference. Cyan areas are where our segmentation is larger than LS and red areas are
where LS’s segmentation is larger than ours.

patient’s white shorts. This is, of course, a problem because the two white objects
are hard to split up. Another difficult area is the lower part of the paramedic’s right
hand. Since this part of the hand is in the shadow, it becomes almost black and is
therefore hard to separate from the background.
Figure 7.28c shows the difference between our segmentation and LS’s segment.
Generally, LS has cut one or two pixels into the segment, which is why there is a
difference all around the segment.
The quality of this segment is not totaly satisfying. The hands and syringe presents
a challenge that cannot be segmented probably using our segmentation tool.

Comments from LS ”Some problems with the left foot, the fingers and lower
part of the legs. A piece of the lower part of the right hand is missing. No shadows
in your solution.”

117

7.6. OVERALL PERFORMANCE

7.6.4 Case 4

Figure 7.29 shows the original image for case 4. We aim to segment the upper part
of the body and the suction-tube.

Figure 7.29: Original image for case 4. Image size 608x833. We aim to segment the upper
part of the body and the suction-tube.

Figure 7.30 shows three steps in the segmentation process. We see the results
after 40s, 2m and 4m. We obtain a satisfying result in 4 m. As mentioned in
Section 4.5.7 it is generally difficult to segment elongated structures because it
requires many seeds placed closely all along the long structure. In this test we,
however, discovered that the local graph very efficiently segmented the suction-
tube structure.

118

7.6. OVERALL PERFORMANCE

Figure 7.30:
a b
c d
e f

. Three steps in the segmentation process. a & b) Seeds and result

obtained in 40s. c & d) Seeds and result obtained after 2m. e & f) After 4m.

119

7.6. OVERALL PERFORMANCE

Figure 7.31: a b c a) Our segmentation. b) LS segmentation. c) Showing segmentation
difference. Cyan areas are where our segmentation is larger than LS’s segment and red
areas are where LS’s segmentation is larger than ours.

Figure 7.31 compares our segmentation with that of LS. There are some problems
in the segmentation around the right arm, the left ear and the lower part of the shirt.
The right arm is problematic because the border of the arm is almost black and
therefore blends in with some black lines in the floor. Similarly, the area around
the left ear is problematic because the colour of the head is almost the same colour
as the floor. The difference between the two segmentations can be seen in Figure
7.31c.

Comments from LS ”Some of the head is missing in the right side and half the
tube is missing too. The man’s right arm is poorly segmented and a bit of the left
arm is missing. Minor problems on the lower part of the shirt.”

120

7.6. OVERALL PERFORMANCE

7.6.5 Case 5

Figure 7.32 shows the original image for case 5. For this segment we have no
segmentation from LS. However, in order to demonstrate that our segmentation
tool works on something different from paramedics in blue shirts we show this
case. We aim to segment the arms and the respiratory device.

Figure 7.32: Original image for case 5. Image size 1396x1440. We aim to segment arms
and the respiratory device.

Figure 7.33 shows three steps in the segmentation process. We see the results after
40s., 1m40s. and 3m.

121

7.6. OVERALL PERFORMANCE

Figure 7.33:
a b
c d
e f

. Three steps in the segmentation process. a, b) Seeds and result obtained

in 40s. c, d) Seeds and result obtained after 1m40s. e, f) After 3m.

Figure 7.34 show a very good segmentation result. The irregularities on the lower
part of the arm is caused by the similarity with the patient’s skin colour.

122

7.6. OVERALL PERFORMANCE

Figure 7.34: Our segmentation.

Comments from LS ”Very good. There are some irregularities on the lower
part of the arm and on the glove.”

123

7.6. OVERALL PERFORMANCE

7.6.6 Difficult Image Example

For the next four examples we will only show the entered seeds and the result.
These examples are made to show how our implementation handles difficult tasks
such as transparent objects, overlapping colour distributions and thin hair struc-
tures.

Figure 7.35 show the segmentation of a transparent mask. The segmentation is

Figure 7.35: a b
c d Image size 512x980. a) Original image size 334x274 b) Entered seeds

c) Final hard segmentation obtained after 30 seconds. d) Final segmentation after blurring
the alpha channel with a 5x5 Gaussian filter.

good, but this segment require some aftercare because the transparent mask would
look strange on a new background.

124

7.6. OVERALL PERFORMANCE

Figure 7.36: a b c d a) Original image size 512x980 b) Entered seeds c) Final hard seg-
mentation obtained after 5 minutes. d) Final segmentation after blurring the alpha channel
with a 5x5 Gaussian filter.

The resulting image in Figure 7.36 shows a very good segmentation of a difficult
image. The segment has many colours in common with the background. It is,
however, possible to segment the nurse without appreciable difficulties though it
took 5m of work to obtain a satisfying segment.

125

7.6. OVERALL PERFORMANCE

Figure 7.37: a b
c d a) Original image size 1145x1097 b) Entered seeds c) Final hard seg-

mentation obtained after 2m30s. d) Final segmentation after blurring the alpha channel
with a 5x5 Gaussian filter.

Figure 7.37 shows another difficult segmentation task. Thin structures like the
woman’s hair are of course extremely difficult to segment properly. Not surpris-
ingly, the segmentation result shows that the hair is impossible to segment. The
segmentation simply cuts of all the loose straws of hair. Even though the segmen-
tation in practise fails one can argue that the visual impression is not too bad.

126

7.6. OVERALL PERFORMANCE

Figure 7.38: a b
c d a) Original image size 435x573 b) Entered seeds c) Final hard segmen-

tation obtained after 5m. d) Final segmentation after blurring the alpha channel with a 5x5
Gaussian filter.

The final example in Figure 7.38 shows that colours which are too similar cannot
be separated. The hand of the doctor blends almost totally together with the patient.
Though obtaining a good result for many parts of the segmentation, we were not
able to separate the doctors hand and the syringe from the background.

127

7.7. DISCUSSION

7.7 Discussion

The above test shows that our method performs well even for many difficult seg-
mentation tasks. There are, however, some examples which are harder to segment
than others. Adjacent foreground and background areas of similar colour and shad-
ows often present a problem for our implementation. In many cases very dark shad-
ows fall on the floor and blend together with dark trousers and shoes. These areas
are particularly difficult to segment and in many cases it is even difficult for the
human eye to distinguish between object and shadow. Because of the light setting,
the underside of many objects are in shade and thus have a darker tone than the
rest of the object. This phenomena has also presented a problem that often appears
when segmenting bright objects like the white gloves of the paramedics. We saw
an example of this in case 3.

In the comparison with the segments provided by LS we discovered that LS’s seg-
ments in general are a few pixels smaller all around the segmentation border. The
reason is that when LS manually segment the images they cut into the border of the
object. Doing this still produces very realistic looking segments which is the main
priority at LS. However, our implementation cannot take visual interpretations into
account, but has to rely on the obtained min-cut. This explains the general differ-
ence between our segments and LS’s.

The local graph has proven to be very important to obtain the necessary quality
of the segments. The fact that the local graph can be entered rather unprecise helps
the user in fine tuning complex structures more efficiently than by entering more
seeds. Furthermore, the local graph often provided the necessary fine tuning prop-
erties in areas where the pre-segmentation failed. It was interesting to notice how
well the local graph segmented elongated structures, which we predicted would be
very difficult. There are, however, some problems connected with the use of the
local graph. First of all, local graphs can only be entered on the border of the initial
segment which limits the use. Furthermore, the result of the local graph can in
some situations be slightly unpredictable which means that the user has to delete it
and enter a new. Doing this is very time consuming and slows down the fine tuning
process.

Looking at the overall performance in Section 7.6, it is evident that our imple-
mentation yields a good initial result in short time. It is possible to fine tune the
segmentation to obtain even higher quality. Fine tuning has, however, shown to be
the most time consuming part of the segmentation task. Our two possibilities of
fine tuning, entering more seeds and the local graph, can produce good results, but
in some cases much time could be saved by letting the user enter a hard constraint
by editing the boundary directly. A method for this could for example the direct
vertex editing tool described by [11]. Therefore, we must conclude that further
development of our application should be concentrated on producing a faster and

128

7.7. DISCUSSION

more predictable fine tuning tool.

Throughout the test we have had LS comment on the results. Their comments
are in general positive though they have some reservations with respect to some
parts of the segmentation quality. Many of the comments are related to shadowing
the segments to make them look more realistic on a new background. Shadowing
has, however, not been a priority for us and therefore problems in terms of missing
shadows etc. should not affect the overall assessment of our method. Nevertheless,
we are of course interested in making an application that is open to the possibility
of creating or segmenting shadows. We made a small experiment together with
our contact at LS. Given a segmentation result in which we included the existing
shadow (see Figure 7.39b) he manually modified the shadow in just 30 seconds to
nearly fit their standards. Since it is often easier to include the existing shadows
in the segment than to remove it, this tells us that we may already have a shadow
solution that to some extend is useful for LS.

Figure 7.39: a b c a) Input of seeds with the intend to include existing shadows in the
segment. b) Segment including existing shadows. c) Manually modified shadow made
with starting point in the existing shadows.

As a last finish for all cases we have blurred the alpha channel with a 5x5 Gaussian
filter. This have proven to soften the border of the segment, which gives a nice
visual effect.

On average LS uses 15 minutes to segment one image. This time includes seg-
mentation, shadowing and quality control. Since we do not have the exact time
that an LS operator uses for the segmentation task alone, we cannot perform a di-
rect comparison. The times used to obtain our segmentations are in the area of 3-6
minutes depending of the segment difficulty. We do, however, not always obtain
the necessary quality within this time range. Even if we used more time to add
additional seeds our implementation does not guarantee the necessary quality. For
this reason, our implementation cannot replace LS’s current manual segmentation

129

7.7. DISCUSSION

method completely. Nevertheless, we are confident that our implementation, in
its present state, can easily be combined with some manual adjustments to correct
the last minor quality problems. We think that this would show to make LS’s pro-
duction more efficient. Furthermore, we believe that further development of our
implementation can result in an application that successfully combines segmenta-
tion and shadowing.

130

Chapter 8

Conclusion and Further Work

8.1 Conclusion

In this thesis work we have presented a prototype tool for interactive segmentation
of natural images. The tool has been implemented to test the possibility of replac-
ing the manual segmentation method currently used at Laerdal-Sophus A/S who
has been our collaborator for this project.

The basic technology for the segmentation method is graph cut segmentation. Be-
cause we aimed to provide an interactive segmentation method with fast user feed-
back we were inspired by [11] to precede the graph cut segmentation by a pre-
segmentation of the image. Nodes in the graph represented small segments instead
of pixels. As apposed to Li et al. [11] we used a toboggan watershed method to ob-
tain the pre-segmented image. This method proved to be very efficient and provide
good pre-segments. The gradient magnitude image used for the pre-segmentation
was obtained in a multi-scale framework. We tested different normalisation meth-
ods for multi-scale edge detection. From this test we must conclude that normal-
isation over scale blurred edges too much for our use. This led us to not use any
normalisation method. The test showed that using a multi-scale framework resulted
in fewer pre-segments which in turn reduced the size of the graph. Constructing
the graph based on a pre-segmented image has proven to be essential to obtain an
interactive segmentation method with almost instant user feedback.

To obtain the min-cut/max-flow in the graph we used the augmenting path algo-
rithm by Boykov-Kolmogorov. This algorithm proved to efficiently find the min-
cut/max-flow in a graph. We have, however, shown that half of all the t-links in
the graph can be saturated before running the graph search algorithm. This has,
at least for our implementation, increased the speed of the segmentation method
significantly without affecting the segmentation output.

For entering seeds, we have tested two methods that deviate from the common way

131

8.1. CONCLUSION

of entering seeds. For the purpose of entering seeds into elongated structures we
tested the applicability of an interactive pathfinder to automatically enter a dense
row of seeds into the object. Though, we have not included the method in our final
solution the method shows high potential.
We also tried to use subtraction of a background image as a method for automatic
entering of background seeds. The idea proved to work but the general benefit was
small, that is we did not gain any quality and additionally the segmentation time
increased.

We have included two methods for fine tuning the segmentation. First, there is the
traditional fine tuning method where the user enters additional seeds in the graph.
This method is an indispensable tool to obtain high quality segmentation. After
adding seeds we update the graph locally reusing the initially obtained flow. This
way of updating the graph has shown to be very fast, but does not take new seeds
into account in the colour statistics. Therefore we must conclude that when using
the proposed local updating method it is important to have a good initial input of
seeds.
As a second fine tuning method we have proposed a local graph with automatic
seed point selection. By using local image information the local graph has proven
to optimise areas where the global segmentation fails. The fact that the local
graph is constructed on pixel basis enables it to correct errors related to the pre-
segmentation step. Though in many cases being indispensable to obtain a high
quality segmentation, the local graph has for some cases shown to be somewhat
unpredictable. This has unfortunately shown to increase the total segmentation
time.

With the aim to create a soft transition on the segment border we tried using
Bayesian matting. The method showed potential in the direction of producing high
quality mattes even on very complex borders. Bayesian matting, however, showed
to be very slow. Moreover, to obtain good results the method required individ-
ual settings of the program parameters for each image. These facts led us to omit
Bayesian matting from the final solution. Instead, we propose to use a simple, but
fast, Gaussian filtering of the alpha channel. Though simple, Gaussian filtering had
a good visual effect on the segments, and because LS in general have very simple
segment borders this method is often sufficient.

We have made a C++ implementation of the segmentation method along with a
GUI in the framework of LS’s image editing program Picture Factory. The com-
bination of the two allowed us to test our implementation in an environment very
close to the environment that a potential operator at LS would be presented with.
Therefore, we conclude that the final overall performance test yields a good im-
pression of the potential of our segmentation tool related to the segmentation task
at LS.
We have conducted a thorough time study of our implementation. Their are two

132

8.1. CONCLUSION

mains things to conclude. First, we recommend that pre-segmentation is done off-
line as a pre-processing step, prior to the actual segmentation. Second, we have
shown that the feed-back time for our implementation allows for an interactive use
of the tool.
To evaluate the overall performance of the final segmentation tool, we have com-
pared our segmentation results with segmentations done manually by LS. These
results show that we were able to produce segments very close to the quality of LS
and in a few cases perform better than LS. The results were obtained in the range of
3-6 minutes per image. Our implementation does, however, not guarantee to find
the necessary quality even when using more time to enter additional seeds.

It has been outside the scope of this thesis to create an actual tool for shadowing of
segments. In the meanwhile, it has become clear throughout our work that shadows
are necessary for LS before the produced segments can be used in their production.
With help from one of our LS contacts it was shown that our implementation in
its current state can already be used to help creation of segment shadows based on
segmentation of existing shadows from the original images.

Finally, we conclude that LS can benefit from semi-automation of their image
manipulation process. The tool we have presented in this thesis can provide the
foundation for this semi-automation. However, in order to replace the current seg-
mentation method at LS our implementation needs further development.

133

8.2. FURTHER WORK

8.2 Further Work

Fine tuning The fine tuning step of our implementation showed to be the most
time consuming part of the segmentation. For some types of initial segmentation
errors it would have been easier and less time consuming to correct the segmen-
tation manually. However, we have seen from [11] that it is possible to make a
fine tuning tool that combines entering of hard constraints with direct editing of
the segment boundary. This makes the input of the hard constraint easier and less
time consuming. In the further development of our implementation a tool similar
to that of [11] would be of high value.

Local graphs If the method is developed further, we are confident that it has
the potential of being a good stand-alone interactive boundary-based segmentation
method. The idea is that the user draws on the border of the desired segment using
a wide brush. For each brush stroke a new local graph is entered into the image
and a local min-cut/max-flow is found for each local graph. Combining all entered
local graphs should eventually yield the segment boundary.

Better distance measure for alpha estimation To increase the quality of both
Bayesian matting and local alpha estimation the distance measure in the unknown
area should be more precise. This could be done by using a more advanced distance
measure such as level set methods.

Bayesian matting using dynamic programming To increase the speed of the
alpha matting algorithm it would be interesting to explore whether the problem can
be solved using dynamic programming (DP). Many of the operations in the alpha
matting algorithm are highly dependent on previous estimates. Furthermore, many
operations, like sampling and clustering, are repeated for the same foreground and
background samples. The algorithm therefore opens for a potential use of DP.

Colour space transformation Throughout this thesis we have only used the
RGB colour domain. However, other colour domains, such as the HSI domain,
have different properties that might improve parts of our implementation. Espe-
cially, subtraction of a background image for shadow detection in the HSI colour
domain would be interesting to investigate.

Removal of irregularities along segment borders Many of the LS’s segments
have been further enhanced by removing irregularities in the direction along the
border. This has a positive effect on how realistic a segment is perceived and there-
fore could be subject to further work. We have used a simple Gaussian filter on the
alpha channel which proved a good visual effect despite its simplicity. We believe
that experimenting with other noise removal filters along the segment border can

134

8.2. FURTHER WORK

have a similar positive effect, with only little effort. These filters could e.g. be
median filters or standard morphological operations.

135

Bibliography

[1] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary and
region segmentation of objects in n-d images.In Proc. IEEE Int. Conf. on
Computer Vision, 2001.

[2] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision.IEEE Trans.
Pattern Anal. Mach. Intell., 26(9):1124–1137, 2004.

[3] Yung-Yu Chuang, Brian Curless, David H. Salesin, and Richard Szeliski.
A bayesian approach to digital matting. InProceedings of IEEE CVPR
2001, volume 2, pages 264–271. IEEE Computer Society, December 2001.
http://grail.cs.washington.edu/projects/digital-matting/image-matting/.

[4] Cormen, Leiserson, and Rivest.Introduction to Algorithms. MIT Press, Cam-
bridge Mass., 1990.

[5] Erik B. Dam and Martin Lillholm. Interactive route measuring. Technical
report, DTU, 2001.

[6] R. C. Gonzalez and R. E. Woods.Digital Image Processing. Addison-Wesley,
Reading, MA, 2002.

[7] B.K.P. Horn and B.G. Schunck. Determining optical flow.AI, 17:185–203,
1981.

[8] Fredrik Karlsson. Matting of natural image sequences using bayesian statis-
tics. Master’s thesis, Department of Science and Technology Institutionen för
teknik och naturvetenskap Linköpings Universitet, 2004.

[9] Vladimir Kolmogorov and Ramin Zabih. What energy functions can be min-
imizedvia graph cuts?.IEEE Trans. Pattern Anal. Mach. Intell., 26(2):147–
159, 2004.

[10] S. Li. Markov Random Field Modeling in Computer Vision.Springer, 1995.

[11] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Lazy snapping.
ACM Trans. Graph., 23(3):303–308, 2004.

136

BIBLIOGRAPHY

[12] Tony Lindeberg. Scale-space: A framework for handling image structures
at multiple scales. InProc. CERN School of Computing, Egmond aan Zee,
Netherland, September 1996.

[13] Tony Lindeberg. Feature detection with automatic scale selection.Interna-
tional Journal of Computer Vision, 30(2):79–116, 1998.

[14] Eric N. Mortensen. Vision-assisted image editing. 1999.

[15] Eric N. Mortensen and William A. Barrett. Toboggan-based intelligent scis-
sors with a four parameter edge model.In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 99), pages 452–458,
1999.

[16] Jakob Nielsen and Martin Wallengren Nilsson. Segmentering ved hjælp af
grafsnit. Technical report, IT University of Copenhagen, 2003.

[17] P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12(7):629–639, 1990.

[18] Peter Pilgaard Rasmussen and Ditte-Maria Christensen. Billedsegmentering
ved hjælp af grafsnit. Master’s thesis, IT University of Copenhagen, 2004.

[19] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: interac-
tive foreground extraction using iterated graph cuts.In Proceedings of ACM
SIGGRAPH., 2004.

[20] Andrea Schenk, Guido P. M. Prause, and Heinz-Otto Peitgen. Efficient semi-
automatic segmentation of 3d objects in medical images. InMICCAI ’00:
Proceedings of the Third International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 186–195. Springer-Verlag,
2000.

[21] Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. Poisson mat-
ting. ACM Trans. Graph., 23(3):315–321, 2004.

[22] Adobe Creative Team.Adobe Photoshop CS Classroom in a Book. Adobe
Press, 1 edition, 2003.

[23] Wikipedia the free encyclopedia.
http://en.wikipedia.org/wiki/Simulatedannealing.

[24] Chih-Hao Tsai. Test report: Millisecond resolution timing with visual c++
and windows 95/98. 1998.http://technology.chtsai.org/w98timer/.

[25] Luc Vincent and Pierre Soille. Watersheds in digital spaces: An efficient
algorithm based on immersion simulations.IEEE Trans. Pattern Anal. Mach.
Intell., 13(6):583–598, 1991.

137

BIBLIOGRAPHY

[26] Eric W. Weisstein.K-Means Clustering Algorithm. MathWorld–A Wolfram
Web Resource.
http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html.

[27] C. Xu, D. L. Pham, and J. L. Prince. Medical image segmentation using
deformable models. InHandbook of Medical Imaging – Volume 2: Medical
Image Processing and Analysis, pages 129–174. SPIE Press, 2000.

138

