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Abstract

Extending the result for pure bigraphs given in [Mil04], we axiomatize static congruence for binding bigraphs
as described in [HM04, Chapter 11], and prove that the theory generated is complete. In doing so, we also define a
normal form for binding bigraphs, and prove that the four forms are unigue up to certain isomorphisms.

Compared with the axioms stated by Milner for pure bigraphs, we have extended the set with 5 axioms concerned
with binding; and as our ions have names on both faces, we have two axioms — handling inner and outer renaming.
The remaining axioms are transfered straightforwardly.



Preliminary Remarks

We assume familiarity with pure and binding bigraphs as described in [HM04]. Furthermore, this work is a direct
extension of the work presented in [Mil04]. As a consequence, we expect that having read these papers will ease the
reading of the present paper considerably.



Chapter 1

Introduction

We aim to extend the axiomatization of pure bigraphs given in [Mil04] to binding bigraphs as described in [HMO04,
Chapter 11]. In other words we wish to specify a sufficient set of axiomatic equalities s.t. all valid equations between
between (binding) bigraph expressions are provable in the generated theory.

In Chapter 2 we define a set of (classes of) elementary bigraphs, which — considered as expressions — will serve as
the set of expression constants. In choosing this set, we elect to simply extend the elementary forms for pure bigraphs
with a simple variant ofoncretion and to take a slightly more complex variant of tinee discrete iorallowing
multiple local inner names to be bound to the same binding port. Furthermore, we swtapligraphs trivially, in
order to make them able to swap sites with local names. The set of expressions in the binding bigraph term language
will be the ones built by composition, identities, tensor product,arstraction from this set of constants.

The choice to adjust the ion-construct is motivated by the wish to treat bound and global linkage as equal, as
possible. Further, as we intend to base our normal form on a variant of discreteness, we would like to formulate a
(simple) syntactic property on expressions that characterizes discreteness.

To achieve this, in particular, we shall use that we can add arbitrary bound edge linkage with our ion-construct.
Further, we base our normal form for binding bigraphs on a variant of discreterss;discretenesahich impose
the same level of constraint on linkage upon local and global names. For a further discussion of the rationale behind
these choices, see the definition of binding ion in Section 2.5, and Sections 3.1 and 3.2.

In Chapter 3 we formally define the term language and four particular forms of expressions, which when taken
together will define four levels of a discrete normal form (BDNF) for binding bigraphs. Apart from the obvious result
— that we can produce a BDNF expression for any bigraph — we shall prove that at each level BDNF-expressions are
unique up to certain isomorphisms. This will be helpful in proving our axiomatic theory complete, as we will define
and provesyntacticnormal forms as straight correspondents of each form, above.

In Chapter 4 we address the main problem of specifying and proving a set of axioms complete for the binding
bigraph term language. We assume the same approach as Milner in [Mil04], and prove the theory complete for several
subclasses of bigraphs before we turn to full completeness.

In particular, we defindinearity — a simple restriction on the term language disallowing nonlinear substitutions
— and prove that it is a syntactic correspondent of name-discreteness. Linearity is also useful in proving the theory
complete for ionfree expressions, which is used as an inductional basis in proofs by mathematical induction on the
number of ions in the expression.

Finally, in Section 4.9, we prove full completeness as a corollary of linear completeness.

1.1 Notation and terminology

To ease the notational burden for the reader who has read some or both of [HMO04] or [Mil04], with a few exceptions,
we use the same notation for bigraphs and expressions.



A notable exception from this principle is that we use a slightly shortened form for the underlying set-definition of
bigraphs. Specifically, we define a bigraph(defined over a signatuv€) as
G = (V, E, ctrl, prnt, link) : <m,)?,X> — <n,§7,Y>.

V andF are as usual finite sets of nodes and edgesarid V — K is the control map mapping a control to each
node. But as opposed to [HMO04], we inline the components unique to the place graph and link graph components. So
hereprnt is theparent mapandlink is thelink map(see [HMO04] for the full definitions). The binding interfaces are
defined as usual. See [HMO04, Chapter 11] for details.

We shall need notation for ports on nodes with binding controls to precisely specify concrete link maps. For node
v with control K : b — f, we letpg, ..., p}_; range over thdree ports ofv, andpé’o), e ,p'(b_l) ranges over the

bindingports ofv.
We also define a precise notation for the underlying set of vectors of names. Given a vector of disjoint name sets

Y, {¥} denotes the disjoint union of the sets in the vector,{iié} % Wieiv Y1il).

1.2 Variants of discreteness
We shall need to consider and distinguish several forms of discreteness, which we define below.
Definition 1.2.1(Variants of discreteness)
e We say that a bigraph discreteiff every free link is an outer name and has exactly one point.
e A bigraph isname-discretéf

— Every free link is an outer name and has exactly one point.
— Every bound link is either an edge, or (if it is an outer name) has exactly one point.

e A bigraph is inner-discrete iff every inner name has exactly one peer.
Discreteness and name-discreteness share several nice properties.

Lemma 1.2.2.If A andB are discrete, thel ® B, (Y)A, and A o B are also discrete.
Same for name-discrete bigrapHdsand B.

Proof. (Omitted (Follows easily from the definition of composition for link maps (see Definition 8.3 in [HMO4]))



Chapter 2

Elementary bigraphs

In the following section we present the elementary bigraph forms, we intend to use a basis for a binding bigraph term
language.
In this note we considabstractbigraphs; equivalence classededin-supporconcrete bigraphs. Specifically, we
are interested in axiomatizing static equivalence of bigraphs up to renaming of nodes and edges (and disregarding idle
edges).
To be able to define the elementary forms precisely, though, we give definitions in the foomaétebigraphs.
Further, in proving properties of bindind bigraphs, it shall be helpful to sometimes give names to vertices and edges.
To be precise any concrete form, we give, is actualiygmesentativef an equivalence class of concrete bigraphs,
which is an abstract bigraph with any idle edges discarded and node- and edge-identities forgotten.

2.1 Placings

We define three kinds gflacings corresponding closely to the placings defined for pure bigraphs in [Mil04]:

Definition 2.1.1(Placings) We define théarren root1, the merge bigraph, and thewap b|graphym (Ko, X0)

def

1< (0,0,0,0,0): (0,0),0) — (1,(0),0)
merge = (0,0,0,{0 — 0,1 0},0) : (2,(0,0),0) — (1,(0),0)
Vg (Goy = (0,0,0,prt, Idxgx, )
(mo +ma, Xo X1, {Xo} & {X1}) — (my + mo, X1 X0, {Xo} & {X1})

WherEprntz{OHmo,...,ml—1»—>m1+m0—1,m1|—>O,...,mo+m1—ln—>m0—1},and|fi|:mi.

We note thafl andmerge are defined exactly as for pure bigraphs, but the swap blgva,pn (X, X0) has been
redefined and extended slightly.

As compared to the swap bigraph defined for pure bigraphs, when deﬁinmgx Xy e have to decide how
(or whether) to take care of local names. Each site might have a number of local mameé( S|mply lets the
local names follow the site they stem from, in the only way allowed by the scope rule.

The swap bigraphs are used for generafipgnutationsa subclass of isomorphisms with which we can permute
the numbering of the components in any bigraph by composition.

More formally, with regard to Proposition 9.2b of [HMO04], we define:

Definition 2.1.2 (Permutation) Given a permutation map on numberd0, ..., m — 1}, abigraph permutatiorr is
an iso
™= ((2)7 (2)7 (Z)a T, Id{X_‘B}LﬂXF) : <m7 XB7 {XB} W XF> - <m7 77-(*)(13)7 {XB} W XF>



which combines the permutationon the placegragh with an Id on the name:{X}} W X, andw applied to the
locality-vectorX g. In particular note that this way of mapping the local names, is the only way to medspect the
scope rulg(see [HMO04, Chapter 11]).

In every composition where a permutation is used, the sets of local names that are moved around are given from
the context. When the namesets are known, permutations are fully given by their underlying permutation map, so in
the following we overload the meaning of the symbmolandp, and let these symbols range both over the underlying
number permutations, and over arbitrary permutations (bigraphs) given by these number permutations, as defined in
Definition 2.1.2.

Using placings we can express permutations in many ways. In particular, it can be shown that any permutation can
be expressed as the product of a composition of swappings and a global identity on hames.

As we will need an extended form of swappings later, to state the axioms succinctly, we start by extending swap-
bigraphs to all interfaces with a derived form.

Definition 2.1.3(Extended swapping)

def

= - - 1 |
Vio,I1 Vi ma (X0, X7) ®idxy Widy1

wherel; = (m;, Xi, {)5;'3} WXL,
Now we can state the proposition hinted at above.

Proposition 2.1.4(Any permutation is a product of swappinggyny permutationr : (I, Xz, {Xz} & Xp)
(I,7(Xp),{Xp}w Xp) can be expressed as finite number of compositions of products of extended swaps:

1

T = KpO...0Kp_1 fOrsomep
where for alli, there exists: s.t.
ri= Qi
i<k
where o
= (!, Z0,{Z1}), Kl = (nd,U,{U} 6 Xp),
and

Somitnl=1, HZwU!=Xg
i<k i<k
We definemerge, inductively as for pure bigraphs:
Definition 2.1.5. For allm > 0, let
mergeg ECI |

merge,, ,, of merge o (id; @ merge,,)

2.2 Linkings

For globallinkingswe transfer the constructs for pure bigraphs directly.

Definition 2.2.1(Linkings). We define thelosure/x of a namer, and thesubstitutiony/ X as follows

Jo = 0Aeh 0,0, {z — e} (0,0, {2} = (0,0,0)
w/X E0.0.0.0. (w0 =y i = ) £ (0.0.X) = 0.0, ()

whereX = {zg,..., 2}

1we simply let the permutation map, which consists of mappingsilike j, be theprnt component.



In particular note that a substitution need not be surjectiveXi.e: 0)), thus the dual of closure — name introduction
y : € — y —Is a substitution.
We define the following derived forms:

Definition 2.2.2 (Derived linkings)

e A wiring is a bigraph with zero width (and hence no local names) generated by composition and tefasor of
andy/X.

e ForX ={xq,...,2,_1} andk > 0 we define anultiple closure/ X as/zy ® ... ® /xp_1.

e ForY ={yo,...,yk—1}, k > 0, and disjoint setXy, . . ., X; we define anultiple substition
7/ X o Yo/Xo® ... ® yr—1/Xp—1.

e A renamingis a bijective (multiple) substitution, i.e. eadfj above is of cardinality 1.

As in [Mil04] we letw range over wiringsg range over (multiple) substitutions andand3 range over renamings.

2.3 Concretions

We define asimple concretioms a discrete prime which maps a &eof local inner names severally to equally named
global names. In other words it globalizes all its local inner names. Formally:

Definition 2.3.1. Given a set of name&, asimple concretioris

X7 Y 0,00, 1do, Idx) : (1,(X), X) — (1, (0), X).
(Note that a special case of a simple concretiodis="0".)
This bigraph is referred to a asanpleconcretion, serving to signify that the temancretionG : (1, (XWY), X W
Y) — (1,(Y),X wY) as itis defined in [HM04] ranges over a larger class of bigraphs, which globalagssabf
its local inner names. As simple concretions are primes, general concretions can be generated by localizing a subset
of the names that the simple concretition globalizes by usingtetraction We expand upon this in the following
section.

2.4 Abstractions

Abstraction is a construction defined for every primeFormally:

Definition 2.4.1. For every primeP = (V, E, ctrl, prat, link) : (m, Z,{Z}) — (1,(Y5),Y), let

(X)P = (V,E, ctrl,prat,link) : (m,Z,{Z}} — (1, (YpuW X),Y),
whereX C Y \ V5.

We say that X ) P is anabstractionon P.

An abstraction binds a subsét of the global names aP in the resulting bigraph. (Note that the scope rule is
respected since the inner face Bfis required to be local a® is prime). As opposed to concretions, abstractions
are defined exactly as in [HMO04]. Abstractions can be seen as the dual to concretions, and the axioms concerning
abstraction and concretion reflect this (see Table 4.1).

Using abstraction we can express concretions in the sense of [HM04]. As we will need them later, we introduce a
special notation to distinguish such concretions from the simple ones

Definition 2.4.2. We define a concretionY ™ : (1, (X W Y), X WY) — (1,(X),X & Y) in terms of a simple
concretion and abstraction as
Yy X ) rx ey



As a special case of concretions we get local identitiés;) = (X) "X, and with the help of linkings we get
local wirings— bigraphs that by composition can change the linkage of local names.

Definition 2.4.3(Local wiring). We define docal renaming(for vectors of nameg andz s.t. |y = |Z|) as
— wdef , /o> . _
#)/(&) = (D(F/Z@idy o "Z7)
We extend this notation to multiple substitutions, and define
— S\ def , o\, o, . =
(#)/(X) = () (F/X @idy o T{X}7)

We can generate all isomorphisms in the precategory of binding bigraphs using permutations, renamings, and local
renamings (viz. [HMO04, Proposition 9.2b])

Proposition 2.4.4. Every binding bigraph isomorphism,: (m, Z, {Z} W U) — (m, X, {)?} W Y) (of widthm)
can be expressed uniquely in the following form

t=(T@a)o(r®...0Vy_1®idy)
where these requirements hold:
e m=X|=7,
e a:U—Y,
e Viem: v =(5;)/(5) for X = ({0}, ..., {zm_1}),andZ = ({2}, ..., {zm1}).

2.5 Binding ion
Last, to allow for nodes with both free and binding ports, we define a variant of ions for binding bigraphs.

Definition 2.5.1. For a non-atomic contrdk : b — f € K, lety/ be a sequence of distinct names, ana sequence
of sets of distinct names. L&f = {X} andY = {§}, s.t.|X| = band|Y| = f.
Thebinding ionK; ¢ : (1, (X), X) — (1, (0),Y) is a prime bigraph with a single node of contélwith free
ports linked severally to global outer namgsand each binding poite b linked to all local inner names iX;.
Formally, we define a concrete binding ion as:

Kﬂ()?) o ({v}, {eo, .- ep—1},{v— K}, {0— v,v— 0}, link) :
(L (X), X) = (1,(0),Y),

where
‘ Py = €
link = Dy — Y
T e forallz € X;

This form is a straightforward generalization of thiee discrete ioras defined in [HMO04, Chapter 11]. We can
recapture these by requiring every setiinto be a singleton. Whe& = ({z0},...,{zs_1}), we overload our
notation and write{ ;7 to mean a free discrete ion.

Vice versa, using local wiring weould express a binding ion as a derived form, in the following way:

Kz 0 (2)/(X).

But we shall not do so, as it will be helpful to take the slightly more complex binding ion as a constant, when stating
the axioms and proving completeness of the derived theory. From the definition it is immediate that both constructs are



discrete (and free), but we will use that d{%(}g)’s are notinner-discretewhich Kz 's are. (For a further discussion
on this topic, see section 3.1.)
As a derived form we define the natural extension of ionsolecules

Definition 2.5.2. For any discrete prim& : I — (1, (X), X & Z) and ionKy, we define dree discrete moleculas
(Kyzy®idz) o P:1—(1,(0),YwZ)

Note that even though we use the more general ion-construct in the definition above, our definition of free discrete
molecules are equal to the one given in [HMO04, Chapter 11], in the sense that it covers the same set of bigraphs.
As P is discrete and prime it is easily seen thidtis also discrete and prime. In fact,

Proposition 2.5.3. A free discrete moleculis a name-discrete, prime bigraph with a single outermost node.

This relies on the fact that both name-discreteness and discreteness is preserved under composition and tensor
(Lemma 1.2.2). Further, every free discrete bigraph is also name-discrete.
Vice versa,

Proposition 2.5.4. Any free discrete prime bigraph with a single outermost node is a free discrete molecule.

For nodes of atomic control, we adopt the discrete free atom of [HM04]. We shall not concern ourselves with
particularly with atoms, though, as they have no internal structure, and hence have no (useful) binding ports. As a
consequence we can express themkgg o 1.

2.6 Concluding remarks

Comparing the elementary forms above with the elementary forms for pure bigraphs given in [Mil04], we have intro-
duced two new formabstractionsandconcretionsand modified two constructswaps andionsto handle local inner
names.

For easy reference, we have collected an overview of all the eight elementary forms into a small table (See Table
2.1).

In this table and in the following sections we shall allow ourselves a more extensive use of the shorthands for
interfaces introduced in [HMO04].



Placings

1 @ e—1 a barren root
merge : 2—1 map two sites to one root
IYmO,ml;(X‘O,X'l) : <m0+m1,X0X1,X0H'JX1> —
{mq + mo, )51)50, Xo W Xy) swapmg with m, places (with local names)
Linkings
Jx T x—e€ closure of single name
y/X 1 X—uy substitution foralk € X : z — y
Concretions
X7 0 (X)) (X) a (simple) concretion
Abstractions
(X)P : I—-{(XwY) 2) abstractiononaprim® : I — ((Y), Z)
(XWY C 2)
lons
Kyx) ({X}) = (Y) a binding ion

Table 2.1: Elementary forms

10



Chapter 3

A term language and a normal form

We define a term language for binding bigraph built by composition, tensor product, identities and abstraction (on
primes) from the constant forms specified in Table 2.1.
Naming the term languadgBexp we consider, we see that it is defined inductively from 6 expression constants:
L, Merge, Yoo my (X0, %1): Jx, y/ X, "X, Kg()g)
and 3 formation rules — one for each of composition, tensor product, and abstraction (with the obvious interface
requirements).

3.1 A note on discreteness

We intend to base the normal form we define belowdistretenessin moving towards proving completeness for
a term language for binding bigraphs, we shall formulate and prove syntactic analogues to the normal forms, we
establish semantically below.

Towards establishing those proofs, we would like to be able to formulate a Simlpletiveproperty on expressions
that characterizes discreteness (exactly likditrearity property defined in [Mil04].)

In conjunction with the term language we consider, the proplisigrete does not immediately seem to lend itself
directly towards this purpose. The trouble is that we wish to ussaheeelementary construction,/ X, to construct
arbitrary nondiscretglobal wiring andlocal wiring.

By composing with concretions and using abstraction, we can construct a nondiscrete bigraph from a discrete
bigraph, and vice versa. Givdn, a discrete bigraph of width

(® FXi‘l) oD

<n

is not necessarily discrete.
And given a nondiscrete prime : I — ((X), X ¢Y)

(Y)P:I— (XWY)

is discrete.
I.e. we conjecture that, when we wish to treat bound and free linkage unifalistyetenesss not inductive by
nature.

3.2 A name-discrete bigraph

We have defined name-discreteness as a step towards an inductive property that will help us formulate a syntactic
analogue to some sort of discreteness. Recall that a bigrayphmis-discretdf every free link is an outer name and

11



has exactly one point, and every bound link is either an edge, or (if it is an outer name) has exactly one point. This is
a simple specialization of the discrete property.

With the current purpose in mind it has the added feature, that it imposes nearly the same level of constraints on
bound linkage and global linkage. As a consequence, both abstraction and composition with concretions preserves
both name-discreteness and non-name-discreteness.

Name-discrete bigraphs still allow arbitrary wiring of bound edges, though. Exactly for that reason, we have
chosen to take the binding iaﬁdg(f) as a constant in our term language.

Having the binding ion, in our term language we can restrict the usaggXf to get a simple inductive property
that characterizes name-discreteness. We simply use the binding ion, and the fact thattiitner-discrete, to add
arbitrary bound edge-linkage.

3.3 BDNF

We proceed by defining four forms of bigraphs that generate all bigraphs uniquely up to certain specified isomorphims.
Based on the considerations above, we define a normal form, which is based on name-discrete forms.

Proposition 3.3.1(Binding discrete normal form)

1. Any free discrete molecul® : I — (1, (0),Y W Z) can be expressed as
M = (Kyz @idz) o P
whereP : I — (1,(X), X W Z) is a name-discrete prime.
Any other such expression fo¢ takes the form
. /
(Kyoen ©idz) o P
where the following requirements hold:
i i oc . 7 v R loc _ .
o there exists a local renaming'°® : ({X’}) — ({X}) s.t. Ky 0a® = Ky ¢, and
e P=(a®idy)oP.
2. Any name-discrete prime : (n+ k, Z,{Z}) — (1,(Y5),{Y5} @ Yr) may be expressed as
P = (Yp) ((merge, @ a)o(My®@...Q Mp—1 ®"Xo ' ®...0"X,,_1 ") o)

where evenM; : J; — (1, (X]), X}) is a free discrete molecule, every;™ is a simple concretion, and is a

3

permutation. The renaming have the interfacer : I — Yp W Y, wherel! is the union of all outer names of
the concretion$ X; " and molecules/;, i.e. I = Wy, ., Xi W Wy, X

Any other such expression féttakes the form
(YB) ((merge,, ®a’) o (M@ ... Mj_, ®" X" ®...0"X,_ ") on’)

where the following requirements hold:

e There existarenaming: I — Js.t.a/ = aog.
e There exist permutations p; (i € k), p/, renamingsx$ (i € n), anda!™ (i € k) s.t.
- ®i6n af ® ®i6k o =P,
- af? o M = M, o p;,
—afo™ X/ ="X,", and
- (Po®...® pr_1® idx;) ®...® id(XﬁLfl)) on’ =p om.

12



e Furthermore, let denote the vector of inner widths of the product .
(MQ® LM 1R TX) T ® ... ® '_Xn_lj), let X’ = (X(/), R ’XIIC—l)’ and letX = (Xo, C

Theny' is determined uniquely by, [, X, and X’ asp’ = Pr ¢ ¢ as defined in Lemma 4.2.1.
3. Any name-discrete bigrapb (of outer widthn) can be expressed as
D=(P®... Pp_1)om)®@«

where eveny; is a name-discrete primey is a renaming, and is a permutation.
Any other such expression bftakes the form

(Pp®...@P,_4)om’) @«
where there exists permutatiops (i € n),s.t. P, = P,o p;,and(py ® ... ® pp—1) o’ = .
4. Any bigraphG : I — (n, Ys,Yp W Yr) can be expressed as

G= (@(m)/(ﬁ) ®w> oD

<n

—

whereD : I — (n, X, X @ Z) is name-discretey : Z — Yj is a wiring, and(y;)/(X;) : (X) — (Yp)isa

local substitution of widtlw on the bound names @i.
Any other such expression Gftakes the form

(®<yz>/<)&> ®w’> o D'

i<n

where there exists a renamings.t. ' = w o a, andn local renamingsalo¢ : (X;) — (X,), s.t.

5/ (Xi) 0 @<, 1°° = (41)/(X"3), and (®,.,, 2 ® @) 0 D' = D.

Furthermore, for every class of expressions the given BDNF-expression is welldefined and gemdydtiggaphs of

the appropriate type.

In the following section we go into detail with a few of the parts of the proof of Proposition 3.3.1.

13



3.4 Proof of Proposition 3.3.1

There are three properties to prove for each part of the proposition.
only That the given BDNF-expression is welldefined and geneibsbigraphs of the appropriate type.
all That the given BDNF-expression generaaéigraphs of the appropriate type.

uniguenessThat all BDNF-expressions generated by a form differ only by certain simple properties, i.e. that the given
BDNF-expression is unique up to certain isomorphims on subcomponents.

Proof of Proposition 3.3.1, case For theall and only part, we simply note that the definition of a free discrete
molecule (see Definition 2.5.2) is exactly the chosen BDNF expression for this form.
Now consider some other BDNF-expression fdr

(K7

. /
g% @ idz)o P

By Proposition 2.5.3M must have a single outermost node of confolWe conclucieK’ =K.

Furthermore, we have to match the outerfé€es Z) of M. This requires us to hauwg = yandZ’ = Z.

This leaves the possibility of using another vector of namesetsor the composition to be defined we must have
a set of local name&X "} on the outer face of’. I.e., we conclude that’ must have outer facé{X'}), {X'} v Z).

K' = K implies|X’| = |X|, as in particular the binding arity is equal. Further, for each |X’| we have
|X";| = | X, as the number of peers of th binding port on the outermost node must be equal. RAnd P’ are
name-discrete thah binding port will get exactly)?i| peers.)

Hence, as we are able to establish a bijective correspondence bekvaed X, it is possible to construct the
local renamingy'*c = (X)/(X’) : ({X'}) — ({X}).

Checking the conditions for the renaming, we first see that it is immediate (by a welldefined composition and the
definition of ions (Definition 2.5.1)) thaﬂ(ﬁ(x) oaloc = ng,).
Having established this, we check the second requirementaf3én

M = (Kyg ®idz)oP (3.1)
= (Kg()g,)®idz)oP’ (3.2)
= ((Kjz ca ) ®@idg)o P! (3.3)
= ((Kyg ®@idz) o (a'°@idy)) o P’ (3.4)

Proceeding from top to bottom (3.2) simply restates the fact that the two BDNF expressions denote the same
bigraph. In (3.3) we use the equality stated in the paragraph above, and in (3.4) we use distributivity of the tensor
product.

(K ¢ ®idz) is a monomorphism, as it only has one site, and no two inner names are peers (see [HM04, Prop.
7.6, 8.7, and 9.5b]). Therefore, from (3.1) and (3.4) we conclude that

P = (! ®@idg)o P'

We see that as'°® ® id 7 is an isomorphism (viz. Proposition 2.4.4),and P’ are equal up to isomorphism. This
reflects the fact that they differ only on the naming of the local names of their outer faces. O

Proof of Proposition 3.3.1, case Recall that a name-discrete prime is a bigrapthat satisfies the following condi-
tions:

e P has outer width 1frime)
e P has onlylocal inner namesgrime)

e every link of P is either a separate outer name or a bound edgmé¢-discrete
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The prime conditions can be checked directly by looking at the interfRoaiust have the interfacén, Z, Zy —
(1,(U),UWY). Not so for the name-discreteness constraint, since this is a property of the link graph and the controls
of ports of vertices inP.

We first look on theonly part of the proof, and check each of the conditions above against the expression stated in
Proposition 3.3.1, case 2.

Outer width 1 Consider just the placegraph generated by the given BDNF-expression. By definitiamgef, ;. (see Defin-

ition 2.1.5) then + k roots of the molecules and concretions are merged into 1 single root by the composition
with the merge,, |, element. The renaming only work on the link graph, and the abstractidrg ) just works
as an identity on the place graph.

We conclude that any bigraph generated by the given BDNF-expression has a single root, i.e. an outer width of
1.

Local innerfaceBy Definition 2.1.2, a permutation has a local outer face iff it has a local inner face. In this case the permutation

m is composed from the left with a product of molecules and concretions.

All free discrete molecules and concretions have local inner faces (by Proposition 2.5.3 and Definition 2.3.1),
and since a product of bigraphs with local inner faces is easily seen to also have a local inner face, we conclude
thatz, and hence als®, must have a local inner face.

Name-discreteEvery single component aP is name-discrete, and since name-discreteness is preserved by composition and

tensor,P is also name-discrete.

For theall part, we are given an arbitrary name-discrete prime
G = (V, E, ctrl, prat, link) : (m, Z,{Z}) — (1,(Ug),Us & Ug).

By decomposind~ into progressively smaller components, we show that it is possible to construct a BDNF for
any name-discrete prime.
First, we construct thireediscreté prime Gf

G* = (V, E, ctrl, prnt, link) : (m,Z,{2}> —(1,(0),Up W UF).

By Definition 2.4.1, it is immediate that we can recreatérom G* by an abstractiotiUp), i.e. (Ug)Gf = G.
The constituent parts of the 5-tuple@fandG* are equal since abstraction only works on the interfaces.
We decomposé&? into another free discrete print&fd, and a wiring we calG":

G = (V,E,ctrl,prat, link) : (m, Z,{Z}) — (1,(0),{Z} w U).
Gl = (®7®7®a Id07link”) : <15 (0)7{2} &J U/> - <1a (Q)vUB W UF>7

wherelink’, link” andU’ is constructed fronkink as follows:

We shall need to construct a number of new names — at most as many as the number of free ports on the nodes in
G*. We use the notatiopf = v(p) to signify thatp’ is a new name corresponding to the part.et U’ denote the set
of these new names.

Furthermore, lef” be the set of all ports of nodes n.

1Recall that when concerned with free bigraphs, name-discreteness and discreteness are equal properties.
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Consider every point € P4 7 :

case link(p) e UpwUpApe Z

link'(p) = p,link” (p) = link(p) (3.5)
case link(p) e UgwWUr Ap & Z

letp’ = v(p) e U’

in link’(p) = p, link” (p) = link(p) (3.6)
case link(p) € E
link' (p) = link(p). (3.7)

SinceGt is discrete, every link that is an edge must have a binder on it. By the construction above we contain all
edges and binders ififd. G4 is discrete since all links to an outer name is explicitly made discrete, by either making
it an identity-link (for every inner name —in (3.5)), or creating a new name for it (for every port — in (3.6)).

It is easily seen that the constructed bigraphs are actually a faithful decomposi@idnigf. G! o G4 = G¥f.

Let us consider first!. Recalling the definition of substitutions (Definition 2.2.1), it is easy to see that

G'=id; ® a, forsomen : {Z} WU’ — Up @ Ug.

We infer thatc is in fact a renaming, i.e. elementsff} & U’ andUp & Uy are inl — 1 correspondence, as a
direct consequence of the assumption thas name-discrete, and the constructioriioft” .

Briefly, the name-discreteness@ftells us, that the points linked to namesirie in 1 — 1 correspondence with
Up v Up. The construction ensures us tigatis just asname-discrete a§, in the sense that (3.5) and (3.6) creates
a separate inner name @for each point linked to a name . Sincelink” mimicslink on all these points;! is
name-discrete ift7 is.

3.4.1 Deconstruction ofGf into free prime components

We now considerzfd. As it is prime the place graph is a tree. The immediate children of the root are a number of
nodes and sites. In the following &}, denote the toplevel nodeg:, = {v|v € V A prnt(v) = 0}, andTy the
top-level sitesT = {i|i € m A prnt(i) = 0}.

Gt is constructed to be free and discrete, so we know that there is no linkage between the components. In
particular, as there are no binders on the outer face, the scope rule ensures us that all links with binders are contained
within the top-level nodes.

We will deconstructzf into a number of free, prime and discrete bigraphs, each one of them containing one of
the toplevel components froffi W T, together with all its internal structure. For eac&™: will contain a toplevel
nodev € T, and all its substructure, and for eacty: will contain a toplevel sitg € T5.

From these components we will construct a bigraph expressidagffowith the help of products, permutation and
merging.

The expression we construct, will yield a bigraph that is equaki® up to reordering of the sites. We will
comment briefly on site (re)ordering first, and then turn to the actual construction.

Handling ordering of sites Recall that in the product of two bigrapbs, andGg, G 4 ® G g, we loose the original
ordering of the sites (see Definition 7.5 [HMO04]). So, to reconstruct a particular given site ordering, we have to
somehow recapture this structure; but this is simple, as we know we can produce any permutation of the ordering of
sites by composing from the right with a permutatiariWe simply have to give the permutation map

To this end, and for specifiying into which components local names of the sif&8 should go, we will sometimes
need to talk about theriginal site-number of sites in the components we construct.

Formally, we defines; = {s|s € m A prnt*(s) = v; A k > 0}. We will useS, together withT’, to specify which
sites will go in eaclG™: that we construct below.
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When performing the deconstruction @f? we give below, we can simply note the original sitenumbers of sites
in S; and the toplevel sites iff,. (Recall, that we argivenG and have ourselves constructe®!, so by simple
inspection we have this information available.)

For ease of notation, we will sometimes tréaiandS; as maps defined dff;| and|S;| respectively. The intention
is (usingS; as an example) that the map should, when given the number of a €i®imeturn the number of the
corresponding site iGfd.

Returning to the construction of an appropriate permutation; we have contained the information we need to con-
structm in the T,'s and theS;’s considered as maps. We will not go into full detail here (it is not hard, but quite
tedious), suffice to say that given these maps, the names local to each site, and the ordering of the sites in the bigraph
expression we construct belowgcan be constructed.

3.4.2 Construction of an expression for each toplevel component

Toplevel sites For each of the sites i, we constructz<: in the following way
Vi€ |T| + G = (0,0,0, Ido, Idx,) : (1,(X:),{Xi}) — (1, (0), {Xi}),

whereX; = Zr, (), i.e. the names local to a corresponding sit&ffl. By comparing with Definition 2.3.1, we see
thatG® = "Zr, (;) ' —a concretion.

Toplevel nodes For each of the toplevel nodesin T, we aim to define a free discrete molecw®, i.e.
Vi€ |T,| : G™ = (V™ E™ ctri™ prot™  link™) (mZ,Z_;’,{Z_;’D — (1,(0), Z!")

For the components concerning only the place graph, we restrict the place gi@fshaafcordingly:

m; = |8,
Vi = {vlv e V Apratt(v) =v; Ak >0},
ctri™i = ctrl | V™,
o, N m, B prnt(S;(z)) if z € my,
Ve e V™ wm; @ prat™ (z) = { prot(x) if € V™,

We construct the link graphs by restricting the domain of the link ma@®fto the inner names and ports inside
the free discrete molecule, and, for the edgeset, by taking exactly those edgeSfrahat are in the codomain of
the new link map:

link™ = link' | P™ W Z!
whereP™ = {p|pisaportonw € V™ },
E™ = cod(link™)NE

We have not yet specified how the inner and outer names of the molecules are constructed. This can be specified
with the help ofZ — the vector of local inner names 6f4 — by treatingS; as a map:

Z/i = (Zsi(o))"'7ZSi(77Li)) y
andz! = 2w {ulue U’ Alink™'(u) € V™)

Each ofG™: is by construction free, prime and discrete and with a single outermost node. Thus by Proposition
2.5.4 we know that each of them is a free discrete molecule.
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3.4.3 A bigraph expression forG*d

By the arguments given in the previous section concerning the ordering oft&ifesve are able to construct an
appropriater, s.t.:

G = (mergewrk ® 'd{)?}w{z7'}) o <®G ® ®Gc ) om
ick iEn
wheren = |T|, k = |T,,|.
We have constructed the outer names of the concretions and the molecules only by distribution of the zames in
sowe havg X} W {Z"} = {Z}. Collecting all the pieces, we arrive at

G = (Up) ((id1 ® «a)o (me’l"genJrk ® idZ+U’) o <® G™i @ ®Gm> O7T>

i€k i€En

= (Us) ((mergemrk ®a)o <® o™i ®Gci> . 77)

ick €N

which is on the required form.

Briefly consideringuniquenes®f this form, we can perform an analysis similar in spirit to the one for free dis-
crete molecules above, proceeding inwards towards the composition of the product of molecules and concretions, and
the permutation. We sketch the arguments involved below.

Yp is restrained by the outer face &f and hence cannot vary. Equally, we cannot change the number of top-
level sitesn or nodesk. As the renamingyx is partially dependent on the names in the concretions, which we i)
specify explicitly, and iiJare able to vary, the inner face of the renaming can change accordingly — as specified in the
requirements upon’.

There are two interdependent ordering issues to consider for the molecules, concretetions and permutation.

The proposition states essentially that there is a one-one correspondence between the prime components of the
two expressions (given by), s.t. we can reorder the sites of one component, by composing from the right with a
permutatiorp;, to make them equal.

Further, as the molecules and concretions are merged into a single prime root, we need not have written them in
the same order in the two expressions.

As the expressions denote the same bigraph, it is not surprising, that up to reordering of sites and renaming the
underlying expressions must generate the same place- and link-structure.

The crucial arguments, in proving the stated restrictions on the ordering of molecules and concretions in the
expressions foP, relies on a lemma stating that a permutation can be 'pushed’ through any product of primes. We
prove this algebraically in the following section when developing the axiomatic theory for bigraph expression (see
Lemma 4.2.1).

We refer the reader to this section, and turn briefly to look at the normal forms for name-discretes and general
bigraphs, before turning to the development of the axiomatic theory.

O

Proof of Proposition 3.3.1, case 3Sketch As we have observed name-discreteness is preserved by tensor and com-
position, and since every component of the expression in case 3 is name-discrete, the expressisrafco name-
discrete.

For theall part we are given an arbitrary name-discrete bigr&phBy a similar procedure as used for name-
discrete primes, itis quite easy to first split of a renaming, and then decorGjingea number of name-discrete primes
(and an appropriately built permutation). Instead of partioning the structure for each toplevel node, we simply do this
for each root.
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Foruniquenesthe proposition states essentially thatlland P/ must be equal, but for the ordering of their sites.
That this is the case is quite easily seen, as the outer faberestricts the ordering of the roots, and each prime must
have the same internal structure, for the two expressions to denote the same bigraph. O

Proof of Proposition 3.3.1, case 4Sketch For this case, there is nothing to check for tmdy part.

For theall part of the proof, it is straightforward to decompose any bigr&pimto two bigraphs: One name-
discretebigraph containing all the structure(®f except all points linked to names or free edges are now linked to
fresh outer names, and another bigraph mapping each corresponding fresh inner name to the original outer name or
edge inG. It is easily seen that the outer bigraph can be modelled as a product of a global wiring and a local wiring
with width of G.

Concerninguniquenessve can change the names, with which to transfer linkage from the underlying name-

discrete bigraph to the global and local wiring expressions. This is essentially analogous to the transfer of linkage
from the underlying name-discrete prime of a molecule. O
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Chapter 4

An axiomatic theory for the binding
bigraph term language

In the following sections we turn to the main question of stating and proving a set of equations, that will serve as the
basis for an axiomatization of (static) equality of bigraphs.

We have collected the axioms in Table 4.1 for the binding bigraph term land@@B&ep, we consider (see Chap-
ter 3). Note that, as tensor product is defined only when name sets of the interfaces are disjoint, and as abstraction
is defined only on prime bigraphs with the abstracted names in the outer face, we only require the equations to hold
when both sides are defined.

Compared with the axioms stated by Milner for pure bigraphs [Mil04], we have extended the set with 5 axioms
concerned with binding; and as our ions have names on both faces, we have two axioms — handling inner and outer
renaming. The remaining axioms are straight transfers (or very minor adjustments in the case of swap bigraphs).

Assuming the strategy of [Mil04], we aim to prove completeness for increasingly larger categories of expressions.
To distinguish provable equality and equality of bigraphs we will isd = B, to denote syntactic equality, and
just A = B or (when disambiguation is needed) A = B to denote equality of bigraphs (semantic equality). In

equational proofs we shall typically qualify derivations by referring to an axiom, definition, lemma or proposition

above the equality sign, like this: AZBork AY2'B,

We shall start by defining a few derived bigraph constructs and proving some useful facts.

4.1 Commutativity of wiring

To start off, we prove a few useful properties of increasing complexity based on the symmetric properties recorded in
axioms (C6) through (C8).

We record a simple, but important, fact about global wiring — namely that they commute for tensor product with
all bigraph expressions.

Lemma 4.1.1(Wiring commutes with all binding bigraphs expressionsyr all bigraph expressions: : Iy — I,
(wherely = (m, Z,{Z}wU) andI; = n, X,{X} WY, and for all wiringsw : (0, (), Yy) — (0, (), Y1) = Jo — J1

FGRw = w®G
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Categorical axioms
(C1)
(C2)
(C3)
(C4)
(C5)
(C6)
(C7)
(C8)

Global link axioms
(L1)
(L2)
(L3)

Global place axioms
(P1)
(P2)
(P3)

Binding axioms
(B1)
(B2)
(B3)
(B4)
(BS)

lon axioms
(N1)

(N2)

Aoid =

Ao (Bo()

Agid, =

A® (B®C)

(A1 ® By) o (Ao ® By)
VI,e

YJ,1° 1,7

V1,5 © (A® B)

Jyoy/x
Jyoy
z/(Y Wy) o (idy ®y/X)

merge o (1 ®idy)
merge o (merge ® idy )
merge © y1.1,(0,0)

(0)P

(Y)FY"I

("X ®idy) o (X)P
(Y)(P)®idx) oG
(XWY)(P)

s e

=ido A

(AoB)oC

=id.® A

(Ao B)@C

(A1 0 Ap) ® (B o By)
id;

idre.s

(B®A)oym,y

Jx
ide
z/(Y W X)

id;
merge o (id; ® merge)
merge

Id(y)

P
(Y)(P®idx)oG)
(X)((Y)(P))

Table 4.1: Axioms for binding bigraphs

(A:H—-I1,B:J—K)

(P:1—(1,(2),Z6eXwY)

(where{} = {X})



Proof of Lemma 4.1.1We rewrite, working from left to right

1,07

FGow = 7J1,I107117J10(G®w)
C
= Y, L O(W®G) © Vo, Jo
D2.1.3 . .
20 (o) @idven ) 0 (0 60 (10,2 @ dven)
C6 . . . .
= (Id<n’()z${)?})> ® Idy@yl) o(w®G)o ('d(m$(zﬁ,{zﬂ})) & IdU&JY())
C1

= w®G

4.2 Pushing permutations through prime products

We will need a 'push-through’ lemma analogous to the one stated for pure bigraphs in [Mil04], that says that one
can push a permutation through any series of primes. As the proof for the corresponding lemma for pure bigraphs, it
relies essentially on iterating the main symmetry axiom (C8). The bookkeeping just gets a bit more messy when the
permutations also have associated vectors of local names.

Lemma 4.2.1(The push-through lemma) et
Pi : <m17X1;XZ> - <17(Y'B)7}/1B&J}/;F>a

T o (n,YBY) = (n,7(YB),Y)
and
yh= L_H YiF7 yB = (YOBv' - >YnB71)a
i<n
}/i:)/iBu—J}/iF7 Y:Lﬂ}/“
<n
Xi= W (X);, X=(Xo,....Xu0).

J<my

There exists a permutatiaf), ¢ which depends solely an m, and X, s.t.
Fro (P() ®...Q Pn—l) = (Pﬂ'(O) ®...Q Pﬂ-(n—l)) Oﬁm,)?

Recall that by Proposition 2.1.4, we know thatcan be written as a sequence of compositions of products of
extended swappings (see 2.1.3) and a global identity on names. Hawimthis form® allows us to prove the lemma
by straightforward induction.

Proof of Lemma 4.2.1In the following proof, letr? denote a permutation that can be expressed can be expressed
usingp products of swappings{ = (kg o ... 0 Kkp_1)).
We prove the lemma by induction over— the number of products of swappings — or the numbek’'sfin

7= (Koo...0Kp_1).
Case(Base) Trivially true.
Case(Induction step) Assume the lemma holds faf’ = (kg o ... 0 k,_1). l.€., we assume

F(koo...0kp1)0 (P ®...Q0 Pho1) = (Pro(0) ® ... @ Progn-1)) o7,

1As the theory is complete for permutations we can expressy way, we like.
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Consider a permutation® o ®j<k v1,,K,; composed with a product of primes:

(IioO...OI{pl ®"}/1KOP0® ®Pn_1)
i<k

We start by using (C5) to partition and rearrange the product of primesjiptrts matching each corresponding
VI; K-
Let (by,...,bj,...,bk41) range over the indices we partition at. We alsoblebe dependent on the widths bf
andK;, so that we can better illustrate the effect of swapping on the product of primes. (Of course, formally we must
assume that the;’s is a valid partioning. l.e. that it is an increasing vector of indice®jm] and thatb, = 0, and

bpt1 = n.)
F...g)(lioo...olﬁp_l)o®’yIKO ® P® ® R))

J<k bj<i<bjt1 bj+1<i<bjt2
And now byk applications of (C8) we can exchange the prime products composed with each swap.
Cs
:(/ﬁoo...onp,l)o®(( ® P® ® P;)ovyu,,i;)
i<k bj+1§7;<bj+2 bj S’i<bj+1

where H;, J; are the inner faces of each corresponding product of primes (as determined in the side condition for
(C8)).
Now we reverse the procedure and pick apart the product of primes and swappings again usihdifes) (
C
Sroo-omp)o @ QAo QP
i<k b]'+1§i<bj+2 bJ Si<bj+1 <k
Now we are nearly done. Applying the induction hypothesis we get
IH —
=R Q@ Popy® & Puw)o T, % © Q) va,.0,
J<k bj41<i<bji2 bj <i<bji1 <k

which is on the required form.
Checking, we see that the pushed-through permutation depends onffén= 77 o ®j<k v1,.K;, @and on the
inner faces of (widths and local names) of the prinis ‘
O

4.3 A merge construct for local bigraphs

Definition 4.3.1. We wish to extend the place merging constructieerge to local interfaces. Lekmerge y, x,) the
bindingmerge bigraph be defined as

def .
bmerge x, x,) = (XoWX1)((merge ®idx,ux,)o ("Xo ' ®"X17))

We also define an inductive derived fotmerge, . ¢

bmergeyy = 1
bmerge, . 3 e bmerge x: x,, .y ° (bmerge, | ¢ ®idx,, )
where X = (X0, o, X2, Xrn_1)
X'/ = (X07 s ,Xm—Q)
X=X
<m
Y x
i<m—1

23



We proceed by showing that we can prove a few useful lemmas abauye y, x,)-

4.3.1 Foldoutlemma

It is a good exercise to prove, that we could have just as well have deffinedye,, ¢ using merge,, the induc-
tive version of themerge. In other words, we wish to prove the intuitive fact that the inductive definition above of
bmerge, ¢ is equal to its unfolding.

Lemma 4.3.2(Foldout lemma fobmerge,, ¢).

F bmerge,, ¢ = (X)((merge,, ®idx) o Cy,)

where
def .
C'0 = |de7
def
Cn ¥ Qi
<m

Proof of Lemma 4.3.2By induction onm:

Case(Base) By (B1), (C3) and the definition afiergeg
F (0)((mergey @idg) oide = 1
Case(Induction step) Assume
= bmerge x: x,,_,)© (bmerge,, | ¢ ®idx,, ) = (X)((merge,, @idx)o ®rXf)
i<m
We need to show
F bmerge xrwx,, 1, x,,) © (bmerge(XQXmA) o (bmergem_lj, ®idx,, ,)) @id(x,.))
= (XWX,,)((merge,,, 1 ®idxwx,,) © ® TX;M

1<m-+1

We start by using the induction hypothesis (IH) and the definitidmefrge x/vx,, , x,.) = bmerge x x, ) (D4.3.1),
and proceed straightforwardly

E... t bmerge x x,. o((X)((mergem®idx)0®’_XZ-—')®id(Xm))

<m

B2 (X X (merge @ idxux,, o (TX7® X ) o (X)(merge,, @ idx) o (QTXiT) & (X) Xom )

<m

B4.Co.C2 (X W X,,)((merge ® idxwx,, o ("X o ((X)((merge,, ®idx) o ®FXZ-7) QXm0 (X)X M)
i<m
B3 . .
= (X W X,,)((merge @ idxwx,,) o ((merge,, ®idx) o ®’_X,;—‘ @"XnT)

<m
We have to use a few standard tricks on the latter part to collapsedhg’s and concretions. We insert and shift to
the right a convenient product of identities
€1,05,C4,C2

(X W X)) ((merge ® idxwx,,) o ((merge,, ®idx ®id; ® idx) o ® TX;M)
i<m+1
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Next, we use the symmetries (C6,C7,C8) to exchadgeandid, 2. The last few steps follows from the pure place
axioms and the inductive definition aferge,, |

P (X W X)) (merge @ idxw,,) o (merge,, @ id ®idy @ idx) o Q) X))
i<m+1
P2,05,01 (X W X)) (((merge o (id; ® meryge,,)) ® idxwx,,) © ® TX;M
i<m-+1

D2.1.5 (X W X)) ((merge,, ;| ®idxux,,)© ® TX;7)

i<m—+1

4.3.2 Binding merge and permutation

Composingbmerge x, x,) With an appropriate swap bigraph 1 (x,.x, ), should yield the dual binding merge, i.e.
bmerge x, x,)-

Lemma 4.3.3.

= bmerge x, xy) © V1.1,(X0.X,) = bmerge x, x,)
(Reca” that7171,(X07X1) : <2, (X(),Xl), Xo W X1> — <2, (Xl,X()),XO } X1>)

Proof of Lemma 4.3.3Straightforward after an application of axiom (B4)

= bmerge x, xy) © V1,1,(X0,X1)

D4.3.1,B4 .
= (XO W Xl)(<me7nge & IdXOLﬂXl) © (’_Xl—l ® I—XO—I) © 71,17(X0,X1))
S (Xo W Xy)((merge ®idxoux,) © (71,1,0.0) @ idxpux,) 0 ((Xo7 @ TX1 7))
o5.B3.c (Xo W X1)((merge ® idx,wx,) o ("X ®7X17))
D4.3.1

= bmerge(Xle)

This result can be generalized to permutations and binding merge bigraphs of arbitrary width.
Lemma 4.3.4.

= bmerge, A(X) O = bmerge, <

Proof of Lemma 4.3.4(Sketch
After an application of (B4) analogous to the proof for 4.3.3, the proof proceeds by straighforward use of the

definition of bmerge,, ¢, Lemma 4.3.2, and the push-through lemma (Lemma 4.2.1). O
4.3.3 Merging products of binding merge
We will also need to prove that a merging a product of binding merges yields a binding merge.

Lemma 4.3.5.

= bmerge,, o (® bmergemhii) = bmerge,, ¢
i<k

wherem = 3", _, m; and X = Xp... X4_1.

2Lemma 4.1.1 records the fact, that this procedure can, of course, always be done for pure link and place expressions.
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Proof of Lemma 4.3.5(Sketch
Use Lemma 4.3.2 to fold outmerge, 3, and a straight transfer of [Mil04, Lemma 5.1 (2)] (which establishes the
similar property for simplenerge’s) for the global subexpressions.
O

4.4 Place, expressions

We define the subclagdace , of bigraph expressions as all expressions in the term language, which are generated by
id’s, o, and® from bmerge,  andy; ;. l.e. Place , holds all place bigraph expressions extended only with identies
on local names. (Recall that special casesmtrge, B instantiate to elementsandmerge.)

We aim to prove that the theory is complete Rjace_ expressions.

Note that, in a strict symmetric monoidal category the categorical axioms are known to be compietadop
of the symmetries; ; - hence in particular the theory is complete for permutations.

We start by showing a normal form félace ,, expressions.

Lemma 4.4.1(Normal form forPlace ,, expressions)For everyPlaceg , expressiort

FE = (bmerge, ¢ ©...® bmerge Jom

mMy—1,Xk—1
for somek > 0 and permutation expressions.t. the composition is welldefined.

Proof of Lemma 4.4.1By structural induction on expressions:

Case(Base) Immediate.
Case(Induction step)

Assume- E = ), bmerge, ¢ o mand- F = Q),;_, bmerge,, ny ¥, © 7.

The case forF ® F' is immediate by a single use of (C5). Fbro F we need to push the middle permutation
throughF' (Lemma 4.2.1), and use Lemma 4.3.5 to collapse the two products of binding merge’s:

L4.2.1 b '
FEoF M2 ® bmerge,, ¢ © (® bmergenw(ﬁym)) o(Typom)
i<k i<l
L4.3.5 = !
= ®bme7’ge g, 0 (Tygon)
i<k

r_ ; r_
wheremy =37, nqgy, andfori > 0,m; =3 i M)

As the expression is on the required form, we are done. O

Now we are ready to state completenessHiarce ,, expressions.

Lemma 4.4.2(Completeness fdPlace ,, expressions)If - £ = ), bmerge,, ¢ o mand
FE =@, bmerge,, . o 7’ and= F = F,then- E = F.

Proof of Lemma 4.4.2Using Proposition 3.3.1 — by F = F, we know that = [, and (for alli) thatm; = n; , and
there existy); s.t.

bmerge, ¢ = bmerge,  op; (4.1)
(po®...0p_1)om = = (4.2)

Eq. (4.2) is provable in our theory by completeness for permutation expressions.
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Eqg. (4.1) is just an instance of Lemma 4.3.4, when we note that in particular it implies that the number of merged
sites, and the names local to each root must be equal. But the locality of these names (wrt. to the inner face) can be
permuted by;. I.e. we haven; = n; andY; = p;(X;) 3.

This implies that

FF = ®bmergenj7}7jo(p0®...®pl_1)o7r
j<l

= ®(bmergenj v, © pj)om
j<i '

= FE

4.5 Linkg expressions

We consider next the class of global link expressions, those bigraph expressions generated by closure and substitution.
We simply note, that we have transfered exactly the global link constructs used in [Mil04].

As we also have the exact same axioms for global link expressions, it is easily seen that we can straightforwardly
adapt also the proof that the axiomatic theory (for the binding bigraph term language) is complete for global link
expressions. We will refer to this class of expressionisials .

4.6 A syntactic analogue of name-discreteness

We defindinearity for binding bigraph expressions:
Definition 4.6.1 (Linearity). A binding bigraph expression is linear iff it contains only wiring of the forméat.

In other words, in linear expressions all substitutions are renamings — an inductive property with reBBestto
which we will utilize to full effect in the following sections. We shall see that any name-discrete bigraph has a linear
expression.

Having establish linearity, we can proceed along the same lines as set out in [Mil04] — using structural induction
as our main proof principle.

We start by establishing a few basic properties of linear expressions.

Lemma 4.6.2. If E is linear, then- E = E’ ® o, whereFE is linear with local innerface.

Proof. (Omitted (Straightforward structural induction.)

O
Lemma 4.6.3. If E is linear with local innerface, then
FE o Qi) (Z:) = (Q@)/(X:) @ idv) o E,
<m <n
whereFE’ is linear with local innerface.
Proof. (Omitted (Structural induction.)
O

3More directly we infer that\; = p/(Y;), and then thap) = p; (see Lemma 4.2.1).

27



We shall use the following lemma to help show completeness for ionfree expression in the following section.
Importantly, it also constitutes a step toward a syntactic normal form for all expressi&meip, analogous to the
normal form we established in Proposition 3.3.1.

Proposition 4.6.4(Underlying linear expression)or any expressiold: denoting a bigraph of outer width, there

—

exists a wiringv, a linear expressiortr, and a local renaming), _,, (7:)/(X;), s.t.

HG = (®(g2)/()?l) Qw)oE

i<n

Proof. (Sketch

By structural induction. The cases for elementary linear expressions are straightforward. As are the cases for
tensor product and composition with the help of the two previous lemmas.

We only consider the case for abstraction@im more detail. It is only welldefined for primg, i.e.m = 1:

~mE = O (@) ewoE)
B4,B5,D2.4.3 (U w {7}) (((g/X ®idy) o {X}) ® “") oL

L2 ) ((@/X @ @/V @id) o (X} @idp) @) o F,
wheret w = @/V ® o', andU = {ii}.

We use (B3) to introduce appropriate abstractions and concretions, mé¥& it~} © id;) under the outermost
abstraction with the help of (B5), and use (C5) to rearrange:

PEE wuigh ((@/X 0@/ eid) o ({X} @idp) e V) @ (W oidr) o (V)E,

whereT is the domain ofv'.
Applying (B3) again, now in reverse, and cleaning up the expressions, we reach an expression on the required
form:

L e (@K /v oid) o (X} uvT) o) (VE,

4.7 lonfree expressions

With the help of the following lemmas, as a corollary of the established properties for linear expressions, we find that
the theory is complete for ionfree bigraphs expressions.

Lemma4.7.1.If E = E; o Ey is linear, ionfree, and with local inner- and outerface, thEnand £, are also lineatr,
ionfree with local inner and outer face.
Same forE = F; ® Es.

Proof. (Sketch

Clearly, any subterm of a linear and ionfree term are also linear and ionfree. Further, in the dase for ® Fs,
by definition of the tensor produck, has local inner- and outerface iff; and E; have.

Consider the case fdt = F; o F». It isimmediate tha#; must have local outer face, whilg, must have local
inner face. As their inner and outer face must match, we could assume that they shared a glohahesme

By linearity and ionfreeness d; and E5, we know that the global inner namewould need to be connected to a
(separate) local outer name Bf, hence violating the scope rule.

O
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The next lemma states a normal form for linear, ionfree expressions with local inner- and outerface.

Lemma 4.7.2.If Eis linear and ionfree of width with local inner and outer face, thenE = @, _,, (#i)/(Zi) o G*,
whereGF € Place ,,.

Proof. (Sketch

With the help of the previous lemma and completenes®facq ,-expressions, the proof is by structural induc-
tion.

We consider only the case for composition. It requires us to push a product of local substi@tiongy;)/(;),
through an expression of the for®, _,, (7;)/(Z;) o G from the right. This is tedious, but not hard.

Consider the normal form fd?lace , expressions. We start by pushing local wiring through the permutation using
the push-through lemma (Lemma 4.2.1), then by (B3) dissolve each matching pair of abstraction and concretion, in
each pair of local wirindy!)/(z}) and binding merge.

We can also dissolve each abstraction ondhter faces of the binding merges with a matching concretion in
), (W:)/(Z;). We are left with pushing a global substitution through a product of elementary merge’s and global
identitities. To establish the required form, we also need to compose the products of binding merge'’s, but by com-
pleteness oPlace ,, andLink ¢ (in particular, Lemma 4.3.5) this is all possible. O

Next, we turn to a normal form for linear, ionfree expressions. The following lemma is a specialization of
Lemma 4.6.2.

Lemma 4.7.3.If E is linear and ionfree, then for suitable concretions
FE=(Q®,.,"Xi"% o E') ® a, whereE" is linear and ionfree and has local inner and outer face.

Proof. Structural induction. The cases for elements and tensor product are simple.

(Y)E = (Y)(("X'? o E') ® ) is only defined wherE is prime, andy” C X. With applications of (B4) and
(B5), we can move the renaming out from under the abstraction, and combine the abs{iagtivith the abstraction
in "X %, Hence, we prove (Y)E = ("X %%Y o E') ® a, which is on the required form.

ConsiderE o F', and assume that we have for linear, ionfree and with local inner- and outeBaéés

FE=(Q X7 oE)®a, and FF = (Q)7Y; "V o F') @ 8.
i<n i<m

We have- a = o ® Q,_, of, where the domain of" matches the outer names @fand the domains of
X;n af is ;. Yi — the global outer names of the concretions in the expressiafi.for
Rearranging, and introducing global identitigs, corresponding to the outer facesddf, we have

FEoF = (R X7 @idy,) o (E'®@@af) o (R)Yi" o F)@ (a0 ).
<n i<n <m

We shall need to split the expressi@i and F' into prime parts, and compose them to geprime expressions to
reach the required form. By Lemma 4.7.2 and completenesd3#or ,, expressions, we have, that we can rewrite the
expression above to get first

Fooo = QX @idy,) o (Bj@a®)) o (Q)Yi™ o F') @ (aF 0 B),

<n <m

for prime expression®&’/. Next, rewriting the expression fdf and composing, we get

Fooo= QX @idy,) o (B]®a®) o F)) @ (¥ 0 B).

i<n

for suitableF;, stk F = ,_,. Vi Vi o F' = Q,_,, Fi.
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By repeated applications of (B5) and (B3), we arrive at

F P & (X w Y0P o (V) (B @ a%) o FY)) @ (o o ),

i<n

Which is on the required form. Checking, we see that each prime comp@igiitE; ® o) o F}) has local inner-
face asl” has local innerface, and local outerfacefZshas local outer face, and the entire codomain®©fis bound
by the abstraction. O

Completeness of all ionfree expressions follows by the established properties for linear and linear-ionfree expres-
sions. We start by establishing a normal form, based on the previous lemmas.

Lemma 4.7.4(A normal form for ionfree expresssiondyor all ionfree epxression& of widthn

FG=uwt® <®(Yz) ((w; ®idy) o '—XZ-—')> oGP,

<n
whereG* € Place,.

Proof. By Proposition 4.6.4, Lemma 4.7.2, and Lemma 4.7.3, for any ionfree expressi@have

Ha = (@@)/(X) ®w)o ((@erXi o () (i) o GP)) ® a) ;

i<n <n <n
P
whereG* € Place .

By completeness d?lacq , expressions, we can proveG? = Ricn GT for suitableGY . Rearranging with the
help of (C5), and using applications of (B5) and (B3) to remove matching concretion — abstraction pairs, we get

PR e QUaD) (/X @ wf @idy) o (@5 @id) 0 T{@}i o GF ),
<n

where- w = w" ® ), _,, wf.
By completeness dfink g expressions, we can compose and rearrange the global link expressions, to get

Fo= W @ () (Wi @idy o il 0 GF))

As G* has local outer face, it does not need to be under the abstraction

- B <®({y7}) (e @idi) o r{ﬂ'}f)> oG,

i<n

and we have an expression on the required form. O

With the help of the lemmas above, we have established a normal form for ionfree expressions [Pdaed gex-
pressions andink ¢ expressions with necessary abstractions and concretions. Completeness for ionfree expressions
follows easily.

Corollary 4.7.5 (The theory is complete for ionfree expressions)

Proof. (Sketch
Given two ionfree expressions, which denote the same bigraph, we rewrite to the normal form, above. We get two
expressions with wirings anéllace , expressions that are provable equal by completenekmbkis andPlace ,.
Constrained by the local names of the inner- and outerfaces, and the inner face (red2lh¢hat expressions are
identities on the link graph), the abstractions and concretions in the middle term must also be equal. We are left with
two global wirings, which are also provable equal.
O
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4.8 Syntactic normal forms

We define four levels of a syntactic normal form, BDNF, on expressioB8iexp. We define each form correspond-
ing exactly to the four classes of expressions described in Proposition 3.3.1.

Definition 4.8.1.

MBDNF: M (K %) ®idz) o P

PBDNF: P := (Y)((merge, , ®a)o(My®...0 M1 @ "Xo'®...0"X,_1")omn)
DBDNF: D := (Ph®...QP,_1)om)Q«

BBDNF: B = (®,.,@)/(Xi)®w)oD

To formally prove the correspondence between BDNF and the bigraph classes in Proposition 3.3.1, we need a few
lemmas. We omit the proofs for the following lemmas, which go by mathematical induction on the number of ions. As
we have established completeness for ionfree expressions, we have the base case. The inductive steps are analogous
to the proofs for the similar lemmas for pure bigraphs [Mil04, Lemma 5.11].

Lemma 4.8.2(All BDNF forms are closed under composition with isos)
We also need that DBDNF expressions are closed under composition.

Lemma 4.8.3(DBDNF is closed under compositianffor all composabl®©BDNF's C, D, there exists @BDNF D’,
stFDoC=0D".

Now we state formally, the proposition that formally establishes the correspondence between our semantic normal
form, and the syntactic normal form, above. Also, we formally state that linearity is, in fact, a syntactic correspondent
of name-discreteness (item 3 in the following proposition):

Proposition 4.8.4. Let E be a linear expression, an@ any expression.
1. If E denotes a discrete free molecule, thei’ = M for someMBDNF-.
2. If F denotes a name-discrete prime, thety = P for somePBDNF P.
3. F E =D forsomeDBDNF D.
4. + G = B for someDBDNF B.

Proof. (Sketch By structural induction and inspection of the normal forms. We briefly sketch the proof below.

We start by proving the correspondence between linearity and name-discreteness (3). We look only at the cases
for abstraction and composition. The cases for elements and tensor product are straightforward.

Assume

FE = (®Pi0771)®041,

<n

FE, = (®Qi0ﬂ2)®az,

<m

where each’; and(; are PBDNF's.
Abstraction(X) E is only defined whem = 1, and then by (B5) and (B4), we can rewrite

F(X)(Pyom®a)=(XWY)Pjor)® a,

wherel- (Y) P = P,. This expression is on the required form.
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Turning to composition, by an application of (C5) and Lemma 4.2.1, we have:

FE okF, = (®PiO7T1)®OZ1O(®QiO7T2)®Oé2
<n <m

©c5.L4.21 (X Pio @) Qi) 0 (F1072)) @ (a1 0 az),

<n <m

whereT is 7; pushed througly), .., Q:. By Lemma 4.8.3, this expression is provably equal to a DBDNF.

Consider (2); by (3) we know that £ = D, whereD is a DBDNF. But asD is prime, we have: = 1 and
«a = id, and as a permutation is an iso, by Lemma 4.8.2, we are done.

For case (1), we note that by (2) we have thatk = P, a name-discrete prime. Knowing th&tdenotes a free
discrete molecule, we get that the expression collapses, i.e. we hakvefhat (0)((merge,; ® @) o M o), whereM
isa MBDNF. By axioms for abstraction and ions; the definitiomafrge; and Lemma 4.8.2, we see thatk = M’,
an MBDNF.

Case 4 follows from (3) and Proposition 4.6.4. O

4.9 Completeness

And finally we are able to state the formal completeness proposition, using our results for linear expressions to bridge
the gap to the full binding bigraph term language.

Not surprisingly, the proofs are similar to the ones for pure bigraph expressions [Mil04, Prop. 5.13 and Theorem
5.14], as we have laboured to establish properties, forms, and axioms that allow us similar manipulations.

Proposition 4.9.1(Linear completeness)f £ and E’ are linear expressions andl = E’, then+ E = E'.

Proof. (Sketch

As we have established correspondence between each level of BDNFform and each level of Proposition 3.3.1, we
proceed by case analysis on the form of bigraph Biénd hencer’) denotes. A< is linear, it is either a molecule,
a name-discrete prime, or a name-discrete bigraph.

By induction onn — the number of ions iy and E’. We assume that the proposition holds for. ions.

Case(Free discrete molecule)f E andE’ with n ions denote a free, discrete molecule, then by Proposition 4.8.4(1),
and Proposition 3.3.1(1) we have MBDNFs, s.t.

HFE = (Kg();) ®idz) o P

FE = (Kg()z,) ® Idz) oP.
By an application of axiom (N2), and a little rearranging (mainly by (C1), and (C5)) we see that

FE Y (K @idg) o ((X)/(X))id) o P,

wherel= ((X)/(X’)id,) o P’ = P. By the induction hypothesis this is provable, and we are done.

Case(Name-discrete prime)E andE’ with n ions denote a name-discrete prime.
We have, by Proposition 4.8.4(2), and Proposition 3.3.1(2), provable PBDNFs:

FE = (Yg) | (merge, ®a)o ®Mi® ®er7 om
i<k j<m
FE' = (Yp)| (merge, p ®a)o ®o¢§“0Mi’®®oz;?orX§j or |,

i<k j<m
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where renamings, concretions, molecules and permutations respect the conditions as specified in Proposition 3.3.1(2).
As each underlying molecule contain no more thaons, by the case for molecules, we have that éd¢chorresponds

to " o M for somei andj, except for ordering of sites. With the help of Lemma 4.2.1, by the requirementswpon
and7’, we are able to conclude that the two PBDNFs are equal, and hence fhat F’.

Case(Any name-discrete)Consider now the case wheFg E’ with n ions denote any name-discrete bigraph. Then

by Proposition 4.8.4(3), and Proposition 3.3.1(3) we have provable DBDNFs:

<®Pio7r> ®a

i<m

<® P/ o7r'> ® a,

FE

FE

<m

where there exists permutatiops (i € n), s.t. P/ = P,op;, and(pg ® ... ® pp—1) o = « (@and P;, P/ are
PBDNFs).

Both these requirements are provable (by Lemma 4.8.2 and completeness for permutation expressions, respec-
tively) so by a few simple applications of (C5) we see thdf = E’.

O
Theorem 4.9.2(Full completeness)For any expression§ andG’, if G = G/, then- G = G'.

Proof. (Omitted (Follows straightforwardly from linear completeness. Proposition 4.8.4, case 4 and Proposition
3.3.1, case 4 yields a few equations which are provable by the earlier completeness results.) O
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