
Probabilistic models for concurrency
Notes for a minicourse

Daniele Varacca
ENS-Paris

IT University Technical Report Series TR-2005-55

ISSN 1600–6100 January 2005

Copyright c© 2005, Daniele Varacca
ENS-Paris

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-079-4

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www.itu.dk

Probabilistic models for concurrency
Notes for a minicourse

Daniele Varacca
ENS - Paris

Contents

1 Introduction and motivations 3

2 Basic notions of probability 4
2.1 Measure spaces . 4
2.2 Markov chains . 5

3 Probabilistic LTSs 6

4 Reactive systems 8
4.1 Bisimulation and logic .9
4.2 Approximate bisimulation and metrics 9

5 Generative systems 11

6 Segala automata 11
6.1 Notation . 11
6.2 Paths and schedulers . 12
6.3 A verification logic . 14

7 Probabilistic π calculus 15

8 Event structures 16
8.1 Confusion-free event structures 17
8.2 Finite runs . 18
8.3 A process language . 18

9 Exercises 20
9.1 Section 1 . 20
9.2 Section 2 . 20
9.3 Section 3 . 20
9.4 Section 4 . 20
9.5 Section 5 . 22
9.6 Section 6 . 22
9.7 Section 7 . 22
9.8 Section 8 . 22

10 Commented bibliography 23

1

What these notes are

These notes were written to accompany a minicourse given in November 2004 at the IT
University of Copenhagen, in the context of the FIRST PhD school. They can be used as a
quick introduction to the topic by a reader knowledgeable inconcurrency theory.

What these notes are not

These notes are not meant to be complete in any way, and they are indeed quite sketchy.
I wanted to stay within a reasonable size, and many issues arenot even mentioned. An
interested reader should follow the bibliographic links. The reader should also be warned
that the names and the notation I have chosen are not always universally accepted.
If you find any mistakes, or have any suggestions for improvement, please send me a mail
atvaracca@brics.dk.

Acknowledgments

I want to thank Thomas Hildebrandt for inviting me to give this minicourse. Mikkel
Bundgaard and Bartek Klin helped in removing several mistakes from these notes.

2

1 Introduction and motivations

Mathematics seems complicated, but the real world is much more. That is why we study
mathematical models rather than the real world. Different models of computation focus
on different aspects of computation: the aspects that interest us. Some models focus on
sequential computation, some on security properties, someon algorithmic issues, and so
on. In this course we focus on two aspects of the notion of computation: probability and
concurrency.

A model of computation is probabilistic when it is able to represent different choices
and to provide information on the probability of such choices. It differs fromdeterministic
models, where no choice is represented, and fromnondeterministicmodels, where different
choices are represented, but no information is provided on how such choices are resolved.

Probabilistic choice can be considered as a refined version of nondeterministic choice.
When different behaviours are available, we might decide tomake a choice randomly in
order to mislead some kind of “adversary”. This adversary could be the one that finds the
worst case for an algorithm, could be an eavesdropper, or could be a scheduling policy
that maintains an undesirable symmetry. Alternatively, wemight know some information
on how the choice is made by the environment. In both cases we can tell with which
probability each possible action is performed.

There are several algorithms which take advantage of randomchoices during the com-
putation (e.g.[Rab80]). Cryptographic protocols use random choices to increase secu-
rity [GM84]. In a distributed setting, we can use random choices to break symmetries
[Lyn96, HP00]. On the other hand probabilistic models allowus to consider phenomena
(noise, malfunction, intrusion) which in the real world canaffect computations. (Probabil-
ity theory is also a fundamental ingredient in the theory of quantum computation [NC00].)

A model of computation is a model for concurrency when it is able to represent systems
as composed of independent autonomous components, possibly communicating with each
other. The notion of concurrency should not be confused withthe notion ofparallelism.
Parallel computations usually involve a central control which distributes the work among
several processors. In concurrency we stress the independence of the components, and the
fact that they communicate with each other. Parallelism is like ancient Egypt, where the
Pharaoh decides and the slaves work. Concurrency is like modern Italy, where everybody
does what they want, and all use mobile phones.

Mobility is a special case of concurrency, where the topology of the communication
network is not fixed once for ever. In models for mobility, processes can create, pass and
destroy communication links. An excellent introduction onthese issues can be found in
Milner’s book [Mil99].

There are several models for concurrency, and in this coursewe will assume familiarity
with one of them, namelylabelled transition systems. For an overview of models for con-
currency we refer to the Handbook chapter [WN95]. Also, we will assume that the reader
is familiar with the notion ofbisimulation, see [Mil99].

Probability is introduced in models for concurrency in essentially two ways. In the first
kind of models, when a computation can perform different conflicting actions, the model
provides a probability distribution over such actions. We call these modelsprobabilistic.
In the second kind of models, actions are assigned a duration. The length of the duration of
an action is determined by a random variable. When a computation can perform different
conflicting actions, the fastest is performed. We call thesemodelsstochastic. The theory
of stochastic models is closer to the classic theory of stochastic processes, than the theory
of probabilistic models is.

This minicourse will concentrate on probabilistic models.

3

2 Basic notions of probability

2.1 Measure spaces

Probability theory requires that we give probabilities to events. The probability of several
mutually exclusive events should be the sum of the probabilities of the individual events.
Also the total probability should sum up to 1. This brings about a difficulty that we are now
going to explain.

Consider the set[0,+∞] of the extended nonnegative real numbers. Addition and
multiplication are extended to[0,+∞] by

+∞ + x = +∞; +∞ · x =

{

+∞ if x > 0;
0 if x = 0.

LetX be a set and letf : X → [0,+∞]. For everyY ⊆ X we define

f [Y] :=
∑

y∈Y

f(y) := sup
Z⊆finY

∑

z∈Z

f(z) .

If X is a set of events, and iff assigns probabilities to the events inX , the numberf [Y]
represents the probability of the totality of events inY . The difficulty we mentioned above
is expressed by the following proposition.

Proposition 2.1. Let f : X → [0,+∞] be a function, and letY := {x ∈ X | f(x) > 0}
be the set of elements on whichf is strictly positive (thesupportof f). If f [Y] < +∞ then
Y is at most countable.

Proof: For everyn ∈ N consider the setYn := {y ∈ Y | f(y) ≥ 1
n
}. Clearly

|Yn| ≤ n · f [Y], that isYn is finite. Notice thatY =
⋃

n∈N
Yn. Since the countable union

of finite sets is at most countable,Y is at most countable. �

This means that we cannot assign positive probabilities to uncountably many events,
because the total sum would not be 1. However we often have to deal with uncountable
spaces (like the real line for example, or the euclidean 3-dimensional space). To deal with
such cases the notions ofmeasurable spaceand ofmeasurewere introduced.

A σ-algebraon a setΩ is a family of subsets ofX which is closed under countable
union and complementation and which contains∅. The intersection of an arbitrary family of
σ-algebras is again aσ-algebra. In particular ifS ⊆ P(Ω), andΞ := {F | F is aσ-algebra
& S ⊆ F} is the family of allσ-algebras that containS, then

⋂

Ξ is again aσ-algebra and
it belongs toΞ. We call

⋂

Ξ thesmallestσ-algebra containingS.
If S is a topology, the smallestσ-algebra containingS is called theBorel σ-algebra

of the topology. Note that although a topology is closed under arbitrary union, its Borel
σ-algebra need not be. Ameasure spaceis a pair(Ω,F) whereF is a σ-algebra onΩ.
Sets inF are calledF -measurable, or simplymeasurable. A measure space isdiscreteif
F = P(Ω).

A measureon aσ-algebraF is a functionν : F → [0,+∞] satisfying:

• (Strictness)
ν(∅) = 0;

• (Countable additivity) if(An)n∈N is a countable family of pairwise disjoint sets of
F , then
ν(

⋃

n∈N
An) =

∑

n∈N
ν(An) .

Finite additivity follows by puttingAn = ∅ for all but finitely manyn. A measure is called
aprobabilitymeasure, whenν(Ω) = 1. It is called asubprobabilitymeasure, whenν(Ω) ≤
1. (Sub)probability measures over a discrete space are sometimes called (sub)probability
distributions.

4

σ-algebras represent the sets over which it makes sense to give a notion of probability.
Often, if we require the measure to satisfy some reasonable conditions, not all subsets ofΩ
can be made measurable.

Example: consider[0, 1] with the euclidean topology. Define that the measure of every
open interval is its length. This can be extended to a probability measure on the Borel
σ-algebra. It is called theLebesguemeasure.

Another example: consider any setX and a countable subsetX0 ⊆ X . Define a
functionf : X0 → [0, 1] such thatf [X0] = 1. Then the functionν(Y) = f [Y ∩ X0] is
a discrete probability measure onX . The points ofX0 are the points where the “mass is
concentrated”. A special example are the measures where themass is concentrated in only
one point. These measures are calledDirac measures.

2.2 Markov chains

Markov chains are the simplest example of the notion ofstochastic process. To introduce
more general concepts we would need the introduction of the notion of random variable.
This is not necessary in order to introduce Markov chains.

A (discrete, homogeneous)Markov chainis a pair〈X, p〉, whereX is a set (the state
space) andp : X ×X → [0, 1] is a “stochastic matrix” that is for everyx ∈ X

∑

y∈X

p(x, y) = 1 .

A Markov chain represents a process that changes state at every unit of time. The number
p(x, y) represents the probability that, given the fact that the process is now in statex, at
the next unit of time it will be in statey.

x0

1 − ε

ε

2/3

1/3

1

1/2 1/2

Figure 1: A Markov chain

The main feature of Markov chains is that the probability of the next state depends
only on the present state, and it does not depend on thehistory of the process. “Given
the present, the future is independent from the past”: this is sometimes called a Markov
property, or memorylessness. In the more general stochastic processes, the probability of
the next state is allowed to depend on the history of the process, but these “memoryful”
processes cannot be simply expressed using a stochastic matrix.

Markov chains can also be represented in the following way. Given a setX , letV 1
∞(X)

be the set of discrete probability distributions overX .1 A stochastic matrix can be then
seen as a function

p : X → V 1
∞(X) .

1See the introduction of [Var03] if you want to know the reasonof this notation

5

This representation is suitable to be generalised as we willsee later.
We can endow a Markov chain with aninitial state x0. A path of such initialised

Markov chain is a (finite of infinite) sequence of statesx0x1x2x3.... The probability of a
finite path is the product of all thep(xn, xn+1). We could define a probability on infinite
paths as well, but in general every single infinite path will have probability 0. Therefore it
is more interesting to define a measure space on the setΩ of infinite paths.

Let τ be a finite path. TheshadowK(τ) is the set of all infinite paths that extendτ .
We defineF to be theσ-algebra generated by the shadows of finite paths. Using standard

Shadow ofτ

τ

Ω

Figure 2: The set of paths

measure theory results, one can show that there exists a unique probability measureν on
F such that for every finite pathτ , the probability ofτ as described above coincides with
ν(K(τ)).

Now any reasonable event that can be described in words defines a set ofF and it can
be assigned a probability.

Example: random walk. The state space isZ, the set of positive and negative integers.
The stochastic matrix is given byp(n,m) = 1/2 if m = n + 1 or m = n − 1, and
p(n,m) = 0 otherwise. Let’s also put0 as the initial state. Paths are constituted by
sequences of numbers. We can restrict our attention to sequences ofadjacentnumbers, as
every other path has probability0.

What is the probability that an infinite path hits0 infinitely many times? It can be
shown that the set of paths for which0 appears infinitely often is measurable, and that its
measure is1.

3 Probabilistic LTSs

We give a uniform presentation of probabilistic models. This section is based on [BSdV03].
Let P(X) represent the powerset ofX , while byV (X) we will denote the set of dis-

cretesubprobability distributions.2 Note the difference with the previous section, where
we only consider probability distributions. We don’t always need this extra generality, but
it helps giving an homogeneous presentation. The missing probability is usually interpreted
as the probability of blocking.

We saw that a Markov chain can be seen as a function

X → V (X) .

2It should beV ≤1

∞ (X) to be precise.

6

We will present all our probabilistic models in a similar way, following what it is called the
“coalgebraic approach” . This name comes from the fact that in category theory, objects of
the formX → F (X) for some endofunctorF are calledcoalgebras. We will not enter in
any detail of the category theory underlying this approach.It is worth mentioning, though,
that coalgebras are equipped with a natural notion of bisimulation. Presenting models in a
coalgebraic way induces automatically a definition of bisimulation.

Labelled transition systems (LTS) can also be presented coalgebraically. LetA be a set
of labels. Then an LTS with labelsA is given by a set of statesX and a transition relation
t ⊆ X ×A×X . The transition relation can alternatively be seen as a function

t : X ×A→ P(X) ,

which can also be written (by “currying”) as

t : X → (A→ P(X)) .

In this way the LTS is seen as a process that, when it is in a statex, and after receiving in
input a labela, nondeterministically chooses to enter in one of the statesin t(x)(a). This is
thereactiveview of an LTS. Deterministic automata are a special case, where the transition
function is in fact:t : X → (A→ X) .

We can also write the transition as a function

t : X → P(A×X) .

In this way the LTS is seen as a process that, when it is in a state x, nondeterministically
outputs a label and enters in a new state. This is thegenerativeview of an LTS.

The above discussion shows that in a LTS the notion of input and output are not defined.
This is reflected in process languages like CCS, where the synchronization is completely
symmetric, and the distinction between the roles of emitterand receiver is irrelevant.

Let us now substitute nondeterministic choice with probabilistic choice. This amounts
to writingV in place ofP . The first probabilistic model we obtain is given by a set of states
X together with a transition function

t : X → (A→ V (X)) .

This model represents a process that, when it is in a statex, and after receiving in input
a labela, enters the statey with probability t(x)(a)(y). We call such a model areactive
(probabilistic) LTS. They are also known as labelled Markov processes (and in fact they
are called in many other ways!).

The second probabilistic model is given by a set of statesX together with a transition
function

t : X → V (A×X) .

This model represents a process that, when it is in a statex, emits the labela and enters
the statey with probability t(x)(a, y). We call such a model agenerative (probabilistic)
LTS. Unlike the nondeterministic case, generative LTSs and reactive LTSs are not two
aspects of the same notion. In both cases the transition function can be seen as a function
t : X ×A×X → [0, 1] but in a generative LTS we have that for everyx ∈ X

∑

a∈A,y∈X

t(x, a, y) ≤ 1 ,

while in a reactive LTS we have that for everyx ∈ X andfor everya ∈ A

∑

y∈X

t(x, a, y) ≤ 1 .

7

In probabilistic systems it is important to know who is outputting and who is inputting.
But this is not the whole story. The next probabilistic modelwe present is given by a

set of statesX together with a transition function

t : X → (A→ P(V (X))) .

This model represents a process that, when it is in a statex, and after receiving a labela,
nondeterministically chooses a probability distributionν in t(x)(a) and then enters in state
y with probabilityν(y). We call this model asimple Segala automaton. (This model, or
slight variations of it, is known under very many other different names.) Reactive systems
are a special case of simple Segala automata, where for everyx anda the sett(x)(a) is a
singleton.

Note that in Segala automata, the symmetry is regained. In fact, a Segala automaton
in the “reactive” form as above is equivalent to a more “generative” version where the
transition function is of the form

t : X → P(A× V (X)) .

This can be seen as a process that nondeterministically chooses a label and a probability
distribution over next states. We can generalise even more the model to obtain thegen-
eralised Segala automaton. This is given by a set of statesX together with a transition
function

t : X → P(V (A×X)) .

This can be seen as a process that nondeterministically chooses a probability distribution
over labels and next states. The combination of probabilityand nondeterminism is an
important factor. For example it is essential in order to give a semantics to the probabilistic
π calculus.

4 Reactive systems

Recall that a reactive systemS is a pair〈X, t : X → (A → V (X))〉. To simplify the
notation we consider the transition function ast : A → (X → V (X)) and we denote
t(a) asta. For everyx ∈ X, a ∈ A, ta(x) is a subprobability distribution overX . The
most important instances are probability distributions (ta(x)[X] = 1) and “null functions”
(ta(x)[X] = 0). In the second case we say that the labela is not enabledatx.

A reactive system isinitialised when an initial statex0 is specified.

beer

1/3

2/3

1/3

x0

2/3

2E 20DKr

1
1

coffe

Figure 3: A reactive vending machine

8

Figure 3 represents a reactive vending machine that is more likely to give you beer if
you use Danish Kroner. In the picture, if a labela does not appear in any edge with source
x, it means thata is not enabled atx.

4.1 Bisimulation and logic

The main equivalence relation on reactive LTSs is that ofbisimilarity, defined by means of
the notion ofbisimulation.

A bisimulation between two reactive systemsS, S′ is an equivalence relationR on
X ∪ X ′ such that wheneverxRx′, for every equivalence classC of X ∪ X ′/R and for
every labela:

ta(x)[C] = t′a(x′)[C] .

Two states are bisimlar when there is a bisimulation relating them. Two initialised pro-
cesses are bisimlar when their initial states are.

Roughly speaking, two states are bisimilar when for every label, the corresponding
probabilities of reaching bisimilar states are the same.

We can characterise bisimilarity using a logic, that we calltheLarsen-Skoulogic. This
logic is a generalisation of the Hennessy-Milner logic thatcharacterises bisimilarity for
nonprobabilistic LTSs.

The formulas of the Larsen-Skou logic are as follows:

ϕ ::= T | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉qϕ

The semantics of the formulas is given in terms of a satisfaction relation

x �S ϕ

Wherex is a state of the reactive systemS. The semantic of the boolean combinators is
obvious. To express the semantics of the “modal” operator, let [[ϕ]]S denote the set of states
of S that satisfy the formulaϕ. Then we say that

x �S 〈a〉qϕ

whenever
ta(x)[[ϕ]]S > q .

The Hennessy-Milner logic is a special case, where simplyq = 0 in every formula. In
the nonprobabilistic case, two processes are bisimilar if and only if they satisfy the same
formulas of the Hennessy-Milner logic. Similarly to the nonprobabilistic case we have the
following result:

Theorem 4.1. Two states of a reactive system are bisimilar if and only if they satisfy the
same formulas of the Larsen-Skou logic.

The interesting part is that this result is still true for a logic without negation. The proof
involves the use of uncountable spaces, and measure theory.This fact is very important, so
we stress it

Theorem 4.2. Two states of a reactive system are bisimilar if and only if they satisfy the
same formulas of the Larsen-Skou logic without negation.

4.2 Approximate bisimulation and metrics

Bisimulation is a very fine equivalence. A slight differencein the probability distributions
makes two processes non bisimilar. However precise numbersin this framework make little
sense: they should be intended as estimates. Real numbers can never be exactly computed
anyway.

9

These considerations suggest the use of a more flexible notion than the one of exact
equivalence:approximate equivalence. The formal way to define this is via the notion of
metrics.

A metrics on a setX is a function specifying, for every pair of elements ofX , their
relative distance. It has to satisfy some reasonable axiomsthat we are now going to present.

A pseudo-metricson a setX is a functiond : X ×X → [0,+∞] which satisfies:

• d(x, x) = 0 (reflexivity)

• d(x, y) = d(y, x) (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (triangular inequality)

If the pseudo-metrics satisfies alsod(x, y) = 0 =⇒ x = y then it is called ametrics.
Given a pseudo-metricsd, we can define an equivalence relationR by saying that

(x, y) ∈ R if d(x, y) = 0 — if they live in the same “place”.3 The aim is to define a
pseudo-metrics between (states of) processes, with the property thed(x, y) = 0 exactly
whenx andy are probabilistically bisimilar.

To define this distance we use the logics. Formulas before were valued in{0, 1} (either
they are satisfied or they aren’t). We will now make them take values in[0, 1]. The new
formulas are interpreted as functionsf : X → [0, 1]. They are as follows

f ::= 1 | 1− f | min(f1, f2) | sup
i∈I

fi

f ⊖ q | 〈a〉f

Given a reactive systemS = 〈X, t : A ×X → V (X)〉, and fixed a constant0 < c < 1,
these expressions define functionsX → [0, 1] as follows:

• 1(x) = 1;

• f ⊖ q(x) = max(f(x) − q, 0);

• 〈a〉f(x) = c
∑

y∈X ta(x)(y)f(y);

while min, sup, and1− f are defined in the obvious way.
The constantc discounts the future behaviour. The distance between two states is de-

fined as the “Kantorowich” metrics:

d(x, y) = sup
f

|f(x) − f(y)|

It can be proved that this functiond is a pseudo-metrics on the set of states, and that
d(x, y) = 0 if and only if x, y are bisimilar.

The modal operator of the Larsen-Skou logic is split here into two parts: we have a
translationϕ 7→ f such that

x �S ϕ⇔ f(x) > 0

with 〈a〉qϕ 7→ 〈a〉f ⊖ q.
Given this translation, and the logical characterisation of bisimilarity given above, it is

intuitive (although not automatic) thatd(x, y) = 0 if and only if x andy are bisimilar.
The exact value of the distance depends on the constantc. However the constantc is

not important in the sense that different choices for it produce the same topology (in fact
the same “uniformity”). Roughly speaking they define the same notion of “being closer”:
the inequalityd(x, y) ≤ d(x′, y′) does not depend onc.

This distance compares the initial behaviours of systems. If two systems differ at the
beginning, they are far apart. It is possible to define a distance that compares the eventual

3Like Qfwfq, de XueaeuX and Mrs. Ph(i)nk0 - Italo Calvino, “All at one point”, from the collection “Cosmi-
comics”, 1965.

10

infinite behaviour, in such a way that systems that are very different at the start, can be very
close to each other at the limit.

Other metrics, and other notions of approximate bisimilarity are defined in the litera-
ture.

5 Generative systems

An (initialised) generative probabilistic LTS is constituted by〈X,x0, t : X → V (A×X)〉,
wherex0 is the initial state.

Generative systems were used to give semantics to a languagecalled “probabilistic
synchronous CCS”. Given a set of atomic actionsAtom, its syntax is the following

P ::= a.P | P +p Q | P ×Q | recXP |X

wherea ∈ Atom. The operational semantics is given in terms of generative systems on the
set of labelsA = Atom∗, the finite strings of actions inAtom.

a.P
a

1
// P

P
σ

q
// P ′

P +p Q
σ

pq
// P ′

Q
σ

q
// Q′

P +p Q
σ

q(1−p)
// Q′

P
σ

p
// P ′ Q

τ

q
// Q′

P ×Q
στ

pq
// P ′ ×Q′

and the standard rule for recursion.
It is not difficult to prove that the above rules produce a generative system. By imposing

commutativity of the composition inAtom∗, we can also make the operator× commuta-
tive.

6 Segala automata

Segala automata were introduced by Segala in is PhD thesis [Seg95] under the supervision
on Nancy Lynch. A recent presentation in [Sto02]. Similar models can be found elsewhere,
see the bibliographic section.

6.1 Notation

A generalised Segala automaton is given by a set of statesX together with a transition
function

t : X → P(V (A×X)) .

Simple Segala automata are a special case, where every (sub)probability distribution
concerns only one label, so that the transition function canbe seen as

t : X → P(A× V (X)) .

11

Sometimes a special blocking state⊥ is chosen so that the transition function is in fact

t : X → P(A× (V (X) ∪ {⊥}) .

Initialised automata are automata with a special initial statex0.
In the following, for simplicity we will consider only automata without blocking state,

and only subprobability distributions that are in fact probability distributions.
The notation we use comes from [HP00]. Consider a transitionfunctiont. Whenever a

probability distributionν belongs tot(x) for a statex ∈ X we will write

x{
ai

pi

// xi}i∈I

wherexi ∈ X , i 6= j =⇒ (ai, xi) 6= (aj , xj), andν(ai, xi) = pi.
A good way of visualising probabilistic automata is by usingalternating graphs [Han91],

see Figure 4. Black nodes represent states, hollow nodes represent probability distributions.

c b

a

aba

1/2 1/2
1/3 2/3 1 − ε

ε

Figure 4: A Segala automaton

In a simple Segala automaton we can move the labels to the arcsoutgoing a black node,
see Figure 5.

An important notion that we will need is that of (extended)convex combinationof
(sub)probability distributions.

Given a set of probability distributionsD on a setX , we define the setD to be the set
of probability distributionsν onX such that there existνi ∈ D andpi ∈ [0, 1], for i ∈ I
satisfying:

•
∑

i∈I pi = 1;

• for all x ∈ X , ν(x) =
∑

i∈I piνi(x).

A convex combination of probability distributions represents, in some sense, a proba-
bility distribution over probability distributions. To excite the curiosity of the reader I can
say that this corresponds to the multiplication of the probabilistic monad. See [Var03] for
more details.

6.2 Paths and schedulers

A finite pathof an (intialised) Segala automaton is an element in(X×V (X×A)×A)∗X ,
written asx0ν1a1x1 . . . νnanxn. An infinitepath is defined in a similar way as an element

12

2/31/31/21/2

ac
a

ε

1 − ε

Figure 5: A simple Segala automaton

of (X × V (X ×A) ×A)ω . The path isdeterministicif νi+1 ∈ t(xi). It is probabilistic if
νi+1 ∈ t(xi).

The probability of a pathτ := x0ν1a1x1 . . . νnanxn is defined as

Π(τ) =
∏

1≤i≤n

νi(aixi) .

The last state of a finite pathτ is denoted byl(τ). A pathτ is maximalif it is infinite
or if t(l(τ)) = ∅.

A probabilistic schedulerfor a probabilistic automaton with transition functiont is a
partial functionS : (X × V (X ×A) ×A)∗X → V (X ×A) such that

• if t(l(τ)) 6= ∅ thenS(τ) is defined;

• S(τ) ∈ t(l(τ)).

Equivalently, a probabilistic scheduler can be defined as a partial functionS : (X×V (X×
A) ×A)∗X → V (V (X ×A)), requiring thatS(τ)(ν) > 0 =⇒ ν ∈ t(l(τ)).

A deterministicscheduler is a probabilistic scheduler that does not make use of the
convex combinations. That is for a deterministic schedulerwe haveS(τ) ∈ t(l(τ)).

A deterministic scheduler chooses the next probability distribution, knowing the history
of the process. Using the representation with alternating graphs, we can say that, for every
path ending in a black node, a scheduler chooses one of his hollow sons. A probabilistic
scheduler chooses a convex combination of distributions, which corresponds to putting a
probability distribution over probability distributions. Schedulers can also decide to ig-
nore the history, in such a case we talk of memoryless schedulers. For every black node,a
deterministic memoryless scheduler chooses one of his hollow sons.

Now, given an (initial) statex0 ∈ X and a schedulerS for t, we consider the set
B(t, x0,S) of maximal paths, obtained fromt by the action ofS. Those are the paths
x0ν1a1x1 . . . νnanxn such thatνi+1 = S(x0ν1a1x1 . . . νiaixi). A deterministic scheduler
produces deterministic paths, a probabilistic scheduler produces probabilistic paths.

The setB(t, x0,S) of maximal paths obtained by a schedulerS is endowed with the
σ-algebra generated by finite paths, in the similar way as seenfor Markov chains. Let
X := {K(τ) | τ finite} be the set of shadows of finite paths, letF be the smallestσ-
algebra containingX . Letv : X → [0, 1] be defined asv(K(τ)) := Π(τ). It can be proved
thatv extends to a unique probability measureν onF .

13

If we are interested in the labels only, we can remove states and distributions from the
paths and get a probability measure over the set of sequencesAω . This procedure is more
easily understood when applied to finite paths.

The finite paths semantics is given in terms of “probabilistic languages”: given an al-
phabetA, aprobabilistic wordof lengthn overA is a probability distribution over strings in
An. A probabilistic languageis a set of probabilistic words. Given a lengthn, a scheduler
S for a Segala automatont produces a probabilistic word of lengthn as follows. Consider
the paths inB(t, x0,S) that have lengthn with their probability. Leterase(τ) be the string
in An obtained fromτ by erasing states and probability distributions. Given such a string
ρ ∈ An, its probability is the sum of the probabilities of the pathsthat produce it.

Π(ρ) :=
∑

erase(τ)=ρ

Π(τ)

This induces a probabilistic word. Given a class of schedulers for the automaton, its lan-
guage is the set of probabilistic words obtained by the schedulers in the class.

6.3 A verification logic

The logic PCTL has the following syntax. It’s divided in pathformulas and state formulas.

State formulasϕ ::= ⊤ | ¬ϕ | ϕ ∧ ϕ | 〈a〉 | α

∃>pψ | ∀>pψ

Path formulasψ ::= Xϕ | ϕUϕ

The semantics of the formulas is the following (consider only simple Segala automata
for simplicity). For state formulas we define a satisfactionsemantics

x � ϕ

wherex is a state of the automaton. We have

x � 〈a〉

if x{
a

pi

// xi}i∈I . More generally we can have “atomic” propositionsα such that the

set of statesx for which
x � α

is assigned in some way, which is not relevant here (α can represent “internal” properties
of a state).

For path formulas we define
τ � ψ

whereτ is a path of the automaton. Supposeτ = x0ν1a1x1 . . . νnanxn, then we have that

τ � Xϕ

if x1 � ϕ. We have
τ � ϕ1Uϕ2

if there isi such thatxi � ϕ2 and for allj < i, xj � ϕ1. So far the semantics is very similar
to the classic semantics of CTL. Now for the two “probabilistic” operators, we have that

x � ∃>pψ

14

if there exists a schedulerS for t, x such that the set of pathsτ ∈ B(t, x0,S) such that
τ � ψ has measure> p. Dually

x � ∀>pψ

if for all schedulersS for t, x the set of pathsτ ∈ B(t, x0,S) such thatτ � ψ has measure
> p. Of course, in order for this definition to make sense, one hasto check first that the
sets described above are measureable. This is indeed the case.

PCTL is used in probabilistic verification. This involves several algorithmic issues that
are beyond the scope of this course.

7 Probabilistic π calculus

This section is taken from [HP00]. We assume the reader is familiar with theπ-calculus [Mil99].
The probabilistic asynchronousπ-calculus has the following syntax:

Prefixesα ::= x(y) | τ

ProcessesP ::= 0 | x̄y |
∑

i

piαi.Pi | P‖P | νxP |X | recXP

Similarly to the asynchronousπ-calculus, output actions̄xy cannot have a continuation.
This represents the asynchrony of messages: the sender doesnot wait for the message to
be received.

The difference with usualπ-calculus is that the nondeterministic sum is replaced by the
probabilistic sum

∑

i piαi.Pi, wherepi > 0 and
∑

i pi = 1.
The semantic ofπ can be given in terms of generalised Segala automata over labels of

the form
λ ::= x(y) | x̄y | νyx̄y | τ

wherex(y) represents input of a namey along channelx, x̄y represents output of the name
y along channelx, νyx̄y represents output of a fresh name, andτ represents a silent action.
(For the details of the labelled transition semantics ofπ, ask your nearestπ-calculus guru.)

SUM
∑

i piαi.Pi{
αi

pi

// Pi}i

OUT x̄y{
x̄y

1
// 0}

OPEN
P{

x̄y

1
// P ′}

νyP{
νyx̄y

1
// P ′}

x 6= y

PAR
P{

λi

pi

// Pi}i

P‖Q{
λi

pi

// Pi‖Q}i

RES
P{

λi

pi

// Pi}i

νyP{
λi

p′

i

// νyPi}i:y 6∈fn(λi)

Wherep′i is a probability, renormalised over the set of labels whose free names are not
restricted4

p′i =
pi

∑

j:y 6∈fn(λj) pj

4A name is not free only if it is the object of an input or of a fresh output.

15

Then we have the two communication rules. In order to introduce them, we need the
notation

{
λi

pi

// Pi}i∈I ⊕ {
λj

pj

// Pj}j∈J

which represents

{
λi

pk

// Pk}k∈I⊎J

whereI ⊎ J denotes the disjoint union.

COM
P{

x̄y

1
// P ′} Q{

λi

pi

// Qi}i

P‖Q{
τ

pi

// P ′‖Qi[y/zi]}i:λi=x(zi) ⊕ {
λi

pi

// P ′‖Qi}i:λi 6=x(zi)

CLOSE
P{

νyx̄y

1
// P ′} Q{

λi

pi

// Qi}i

P‖Q{
τ

pi

// νy(P ′‖Qi[y/zi])}i:λi=x(zi) ⊕ {
λi

pi

// P ′‖Qi}i:λi 6=x(zi)

The two rules differ only in whether the communicated name isfresh or not. This is-
sue is inherited from theπ calculus. The intuitive behaviour expressed by this rule isthe
following: whenP andQ decide to synchronise onx, such synchronisation happens “max-
imally”, that is for every input action ofQ whose subject channel isx. If Q is listening
over other channels, or doing otherτ transitions, those actions are not affected. The last
rules are the standard congruence rule, where the structural congruence≡ is defined as in
theπ-calculus (so as to make parallel composition commutative,for instance)

CONG
P ≡ P ′ P ′{

λi

pi

// Q′
i}i Qi ≡ Q′

i

P{
λi

pi

// Qi}i

and the standard rule for recursion.

8 Event structures

A different approach to concurrency is represented by the socalledcausalmodels, where
information of causality and concurrency is recorded. One of such models is the one we
present here.

An event structureis a tripleE = 〈E,≤,#〉 such that

• E is a countable set ofevents;

• 〈E,≤〉 is a partial order, called thecausal order, such that for everye ∈ E, the set
of events↓ e is finite;

• # is an irreflexive and symmetric relation, called theconflict relation, satisfying the
following: for everye1, e2, e3 ∈ E if e1 ≤ e2 ande1#e3 thene2#e3.

We say that the conflicte2#e3 is inheritedfrom the conflicte1#e3, whene1 < e2. Causal
dependence and conflict are mutually exclusive. If two events are not causally dependent
nor in conflict they are said to beconcurrent.

A configurationx of an event structureE is a conflict-free downward closed subset of
E, i.e., a subsetx of E satisfying (1) whenevere ∈ x ande′ ≤ e thene′ ∈ x and (2)
for everye, e′ ∈ x, it is not the case thate#e′. Therefore, two events of a configuration

16

are either causally dependent or concurrent, i.e., a configuration represents a run of an
event structure where events are partially ordered. The setof configurations ofE , partially
ordered by inclusion, is denoted asL(E). The set of finite configurations is written by
Lfin(E). We denote the empty configuration by⊥. If x is a configuration ande is an event
such thate 6∈ x andx ∪ {e} is a configuration, then we say thate is enabledat x. Two
configurationsx, x′ are said to becompatibleif x∪ x′ is a configuration. For every evente
of an event structureE , we define[e] := ↓ e, and[e) := [e] \ {e}. It is easy to see that both
[e] and[e) are configurations for every evente and that therefore any evente is enabled at
[e).

We say that eventse1 ande2 are inimmediateconflict, and writee1#µe2 whene1#e2
and both[e1) ∪ [e2] and [e1] ∪ [e2) are configurations. Note that the immediate conflict
relation is symmetric. It is also easy to see that a conflicte1#e2 is immediate if and only if
there is a configuration where bothe1 ande2 are enabled. Every conflict is either immediate
or inherited from an immediate conflict.

8.1 Confusion-free event structures

The most intuitive way to add probability to an event structure is to identify “probabilistic
events”, such as coin flips, where probability is associatedlocally. A probabilistic event can
be thought of as probability distribution over acell, that is, a set of events (the outcomes)
that are pairwise in immediate conflict and that have the sameset of causal predecessors.
The latter implies that all outcomes are enabled at the same configurations, which allows
us to say that the probabilistic event is either enabled or not enabled at a configuration.

Definition 8.1. A partial cell is a non-empty setc of events such thate, e′ ∈ c implies
e#µe

′ and[e) = [e′). A maximal partial cell is called acell.

We will now restrict our attention to event structures whereeach immediate conflict is
resolved through some probabilistic event. That is, we assume that cells are closed under
immediate conflict. This implies that cells are pairwise disjoint.

Definition 8.2. An event structure isconfusion-freeif its cells are closed under immediate
conflict.

If this is the case, cells are the equivalence classes of the reflexive closure of immediate
conflict. In a confusion-free event structure, if an evente ∈ c is enabled at a configuration
x, all the events ofc are enabled as well.

Once an event structure is confusion-free, we can associatea probability distribution
with each cell. Intuitively it is as if we have a die local to each cell, determining the
probability with which the events at that cell occur.

Recall that whenf : X → [0,+∞] is a function, for everyY ⊆ X , we definef [Y] :=
∑

x∈Y f(x).

Definition 8.3. A cell valuationon a confusion-free event structure〈E,≤,#〉 is a function
p : E → [0, 1] such that for every cellc, we havep[c] = 1. A probabilistic event structure
is an event structure together with a cell valuation.

Assuming probabilistic independence of all probabilisticevents, every finite config-
uration can be given a “probability” which is obtained as theproduct of probabilities
of its constituent events. This gives us a weight functionLfin(E) → [0, 1] defined by
v(x) = Πe∈xp(e). This weight function defines a probability measure on the set of maxi-
mal configurationsΩ(L(E)):

For every finite configurationx the setK(x) := ↑x∩Ω(L(E)) is called theshadowof
x. We shall consider theσ-algebraS on generated by the shadows of the compact elements.

Theorem 8.4. Let v be weighting function as defined above. Then there is a uniqueprob-
ability measureµ onS such that for every finite configurationx, µ(K(x)) = v(x).

17

Independence of cells means the following: letµ be a probability measure onS that is
generated by a cell valuation. Then every two configurationsare probabilistically indepen-
dent given the common past

Theorem 8.5. let µ be a probability measure onS that is generated by a cell valuation.
Then for every two finite compatible configurationsx, y

µ
(

K(x) ∩K(y) |K(x ∩ y)
)

= µ
(

K(x) |K(x ∩ y)
)

· µ
(

K(y) |K(x ∩ y)
)

.

(The statement of this theorem requires some more probability theory than that we have
presented. Exercise: understand it!)

What is the meaning of lack of independence? Read [VVW04] :-)

8.2 Finite runs

What is the probabilistic version of finite configurations? If probabilistic words are prob-
ability distributions over words, probabilistic finite configurations should be probability
distribution over finite configurations. But which sets are suitable to be the support of such
distribution? In the case of Segala automata, the sets of runs of the same length do the job.
For event structures this won’t do.

To see why consider the event structure with only two concurrent eventsa, b. The only
maximal run assigns probability 1 to the maximal configuration{a, b}. This corresponds to
a configuration valuation which assigns 1 to both{a} and{b}. Now these are two config-
urations of the same size, but their common “probability” isequal to 2. Not a probability!
The reason is that the two configurations are compatible: they do not representalternative
choices. We therefore need to represent alternative choices, and we need to represent them
all. This leads us to the following definition.

Definition 8.6. Let E be an event structure. Apartial test of E is a setC of pairwise
incompatible configurations ofE . A testis a maximal partial test. A test isfinitary if all its
elements are finite.

Maximality of a partial testC can be characterised equivalently ascompleteness: for
every maximal configurationz, there existsx ∈ C such thatx ⊆ z. The set of tests is
naturally endowed with the Egli-Milner order:C ≤ C′ if and only if

• for everyx ∈ C there existsx′ ∈ C′ such thatx ⊆ x′;

• for everyx′ ∈ C′ there existsx ∈ C such thatx ⊆ x′.

Tests were designed to support probability distributions.They indeed do, as the follow-
ing result shows.

Definition 8.7. Let v be a functionLfin(E) → [0, 1]. Thenv is called atest valuationif
for all finitary testsC we havev[C] = 1.

Theorem 8.8. Letv be a weighting function generated by a cell valuation. Thenv is a test
valuation.

8.3 A process language

Confusion-freeness is a strong requirement. But it is stillpossible to give a semantics to
a fairly rich language for probabilistic processes in termsof probabilistic event structures
with independence. The language we sketch is a probabilistic version of value passing
CCS.

18

Assume a set of channelsA, and a set of valuesV that can be communicated over any
channela ∈ A. The syntax of processes is given by:

P ::= 0 |
∑

v∈V

a!(pv, v).Pv | a?(x).P | P1‖P2 |

if b then P1 elseP2 | X | recXP

Herex ranges over value variables andb over boolean expressions (which make use of
values and value variables). The coefficientspv are real numbers such that

∑

v∈V pv = 1.
A closed process denotes a probabilistic event structure with an additional labelling

function from events to output labelsa!v, input labelsa?v wherea is a channel andv a
value, orτ . We sketch the probabilistic semantics in terms of the non probabilistic se-
mantics of CCS. (See e.g. the handbook chapter [WN95] for an explanation of the event
structure semantics of CCS.)

The nil process0 denotes the empty probabilistic event structure. A closed output
process

∑

v∈V a!(pv, v).Pv outputs a valuev on a channela with probabilitypv, and then
continues as the processPv. EachPv, for v ∈ V , will denote a labelled probabilistic event
structureE [[Pv]]. The event structure denoted by

∑

v∈V a!(pv, v).Pv is the juxtaposition of
the family of prefixed event structures

a!v.E [[Pv]] ,

with v ∈ V , in which the additional prefixing events labelleda!v are put in (immediate)
conflict; the new prefixing events labelleda!v are then assigned probabilitiespv.

A closed input processa?(x).P inputs a valuev on channela and resumes as the closed
processP [v/x]. Such a processP [v/x] denotes a labelled probabilistic event structure
E [[P [v/x]]]. The event structure of the input process is got as the parallel juxtaposition of
the family of prefixed event structures

a?v.E [[P [v/x]]] ,

with v ∈ V ; each new prefixing event labelleda?v is then assigned probability1.
The probabilistic parallel composition corresponds to theusual CCS parallel composi-

tion followed by restricting away on all channels used for communication. In order for the
parallel compositionP1‖P2 to be well formed the set of input channels ofP1 andP2 must
be disjoint, as must be their output channels. So, for instance, it is not possible to form the
parallel composition

∑

v∈V

a!(pv, v).0‖a?(x).P1‖a?(x).P2 .

In this way we ensure that no confusion is introduced throughsynchronisation.
The parallel composition of the corresponding probabilistic event structures s got by

CCS parallel composition followed by restricting away events in a setS:

(E1 ‖E2) \ S

whereS consists of all labelsa!v, a?v for whicha!v appears inE1 anda?v in E2, or vice
versa. In this way any communication betweenE1 andE2 is forced when possible. The
newly introducedτ -events, corresponding to a synchronisation between ana!v-event with
probabilitypv and ana?v-event with probability1, are assigned probabilitypv.

A closed conditional(if b then P1 elseP2) has the denotation ofP1 whenb is true and
of P2 whenb is false.

The recursive definition of probabilistic event structuresfollows that of event struc-
tures [Win87] carrying the extra probabilities along, though care must be taken to ensure
that a confusion-free event structure results.

19

9 Exercises

Questions (Q) and Exercises (E). Exercises can be used for evaluation, questions are more
something one asks oneself.

9.1 Section 1

(Q) Why is the study of semantic models relevant?
(Q) We said that algorithms can use random choices. Human beings can flip a coin to
obtain a random bit. How do computers do?
(Q) What is the difference between “probabilistic” models,and “stochastic” models. Which
ones are the more general?

9.2 Section 2

(Q) What does it mean “to pick a natural number at random”? What it’s the probability that
this number is42?

Consider the Lebesgue probability measure on[0, 1].
(E) Fact: not all subsets of[0, 1] are Borel. Use this fact to prove that the Borelσ-algebra
is not closed under arbitrary union.
(E) What is the probability that a real number picked at random in [0, 1] is rational? Does
this question make sense?
(E**) What is the probability that a real number picked at random in[0, 1] does not contain
the digit5 in the decimal expansion? Does this question make sense?
(E***) Show a set which is not Borel. (This will require a bibliographic research. If you
come up with a solution without looking it up you are a genius.Hint: you should use the
axiom of choice!)

Consider the random walk on the integers.
(E*) Prove that the set of paths that hit0 infinitely often is measurable.
(E**) Prove that the set of paths that hit0 at least once is measurable. What is its measure?
Suppose you know it is 1. Then what is the measure of the set of paths that hit0 infinitely
often?

9.3 Section 3

(E) In which sense is a generalised Segala automaton the mostgeneral model. Show in
which way a generative LTS, a reactive LTS and a simple Segalaautomaton can be inter-
preted as generalised Segala automata.
(E) Can you interpreted a generative LTS as a simple Segala automaton?
(E) In the definitions of probabilistic LTSs we allow the use of subprobability distribution
instead of just probability distribution. The missing probability represents the probability
of blocking. Suppose we give an alternative definition whereonly probability distributions
are allowed. Can you simulate subprobabilities in this restricted setting?

9.4 Section 4

(E) If in the definition of reactive LTS we only allow probability distributions (instead of
subprobability distributions), then every two processes are bisimlar. Prove it.
(E) Consider the following reactive LTSs. For every pair of systems, check whether their
initial states are bisimilar. If they are, describe the bisimulation, if they are not, find a for-
mula of the Larsen-Skou logic that distinguishes them.

20

beer

1/3

2/3

1/3

x0

2/3

2E 20DKr

1
1

coffe

coffe
beer

1/3 1/3

2E 20DKr

1
1

1/3

1/3
1/3

1/3

1

x1

coffe

1

beer

1/3 1/3

2E 20DKr

1
1

1/3
1/3

1

2/3

x2

beer

coffe
beer

(E) Consider the following reactive LTSs. For every pair of systems, find a formula of the
Larsen-Skou logic without negation that distinguishes them.

21

1

1

1

1 − ǫ

2E2E 2E

1 1

coffe

1 − ǫ

2E

1

coffe

ǫ1 − ǫ ǫ

coffe coffe beer

(E*) Assuming the translation from Larsen-Skou logic to thefunctional expressionsϕ 7→ f
such that

x � ϕ⇔ f(x) > 0

prove that if the distance between two states is0, then they are bisimlar.

9.5 Section 5

(E) What is “standard rule of recursion”?
(E*) Define the semantics of the parallel composition

P‖p
qQ

in probabilistic SCCS

9.6 Section 6

(E) Define a notion of bisimulation for Segala automata. Yourdefinition will be OK if,
when restricted to reactive LTSs it coincides with the bisimulation defined in Section 4.
You may or may not need the notion of convex combination.
(E*) Define formally the notion of memoryless scheduler. Define the notion of scheduler
with finite memory of sizen.

9.7 Section 7

(Q) In [HP00] you find an alternative way to defining the rulesCOM andCLOSE. Can
you think of other ways of defining it? Could we havePAR as special case? (Q) Why do
we need Segala automata? Try to define a semantics using generatve or reactive LTS.

9.8 Section 8

(E*) Give a semantics to the probabilistic language of Section 8.3. Would you rather use
generative LTS, reactive LTS or Segala automata?

22

10 Commented bibliography

For a general introduction on probability theory there are several books, see for instance
[Hal50, Bil95, Wil91]. For an introduction more orientatedto random processes (including
Markov chains), see [GS01]. Markov decision process are also relevant to our topic, see
[Put94].

As for applications of probability to computer science, many randomised distributed
algorithms are discussed in [Lyn96]. An important algorithm that uses probability is the
Rabin-Miller primality test [Rab80]. Probability is also very important in the context of
cryptography. A good introduction is [GB99], an important classic paper is [GM84].

For probability in domain theory, the original paper [JP89]is still a gentle introduction,
see also [AM00, TKP04, Var03].

One of the first probabilistic models for concurrency, the alternating model, appears in
[Var85, Han91]. This is a slight variation of simple Segala automata. The reactive model
was introduced in [LS91], where the notion of probabilisticbisimulation, and the Larsen-
Skou logic are also introduced. The distinction between “generative” and “reactive” models
goes back to [vG+90], where a semantics of a probabilistic CCS is sketched. The more
refined logical characterisation of bisimulation is found in [DEP02]. A notion of metrics
is defined in [D+04]. Another recent paper on the subject is [vB+03], which connects with
domain theory and topology. A different notion of approximate bisimilarity appears in
[DP+03].

Segala automata where introduced in [Seg95], where also a version of the logic PCTL
is considered. A gentle introduction to the subject is [Sto02]. A semantic in terms of
probabilistic words is proposed in [dAHJ01]. Segala automata are used for the semantics
of the probabilisticπ-calculus in [HP00]. A verification tool that uses Segala automata is
PRISM [KNP02].

A coalgebraic presentation of all the above models, and more, is to be found in [BSdV03].
Event structures where introduced by Winskel in his PhD thesis. See the tutorial

[Win87] for a good introduction. Probabilistic event structures are introduced in [VVW04].

References

[AM00] Mauricio Alvarez-Manilla. Measure Theoretic Results for Continuous Valua-
tions on Partially Ordered Spaces. PhD thesis, University of London - Imperial
College of Science, Technology and Medicine, 2000.

[Bil95] Patrick Billingsley. Probability and Measure. Wiley & Sons, New York, 1995.

[BSdV03] Falk Bartels, Ana Sokolova, and Erik de Vink. A hierarchy of probabilistic
system types. InElectronic Notes in Theoretical Computer Science, volume 82.
Elsevier, 2003.

[dAHJ01] Luca de Alfaro, Thomas A. Henzinger, and Ranjit Jhala. Compositional meth-
ods for probabilistic systems. InProceedings of 12th CONCUR, volume 2154
of LNCS, pages 351–365. Springer, 2001.

[DEP02] Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation for
labelled markov processes.Information and Computation, 179(2):163–193,
2002.

[D+04] Josée Desharnais, Vineet Gupta, Radha Jagadeesan,and Prakash Panangaden.
Metrics fo labelled Markov processes.TCS, 318(3):323–354, 2004.

[DP+03] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Quantitative rela-
tions and approximate process equivalences. InProceedings of 14th CONCUR,
number 2761 ofLNCS, pages 498–512. Springer, 2003.

23

[GB99] Shafi Goldwasser and Mihir Bellare. Lecture notes in cryptography. Available
at http://www-cse.ucsd.edu/∼mihir/crypto-lecnotes.html, 1999.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption.Journal of Com-
puter Sustem Sciences, 28(2):270–299, 1984.

[GS01] Geoffrey Grimmett and David Stirzaker.Probability and Random Processes.
Oxford University Press, 2001.

[Hal50] Paul Halmos.Measure Theory. van Nostrand, 1950. New edition by Springer
in 1974.

[Han91] Hans Hansson.Time and Probability in Formal Design of Distributed systems.
PhD thesis, Uppsala University, 1991.

[HP00] Mihaela Herescu and Catuscia Palamidessi. Probabilistic asynchronousπ-
calculus. InProceedings of 3rd FoSSaCS, volume 1784 ofLNCS, pages 146–
160. Springer, 2000.

[JP89] Claire Jones and Gordon D. Plotkin. A probabilistic powerdomain of evalua-
tions. InProceedings of 4th LICS, pages 186–195, 1989.

[KNP02] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism:
Probabilistic symbolic model checker. InProceedings of 12th
TOOLS, volume 2324 of LNCS, pages 200–204. Springer, 2002.
http://www.cs.bham.uk/∼dxp/prism/.

[LS91] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing.In-
formation and Computation, 94(1):1–28, 1991.

[Lyn96] Nancy Lynch.Distributed Algorithms. Morgan Kaufmann, 1996.

[Mil99] Robin Milner. Communicating and Mobile Systems: The Pi Calculus. Cam-
brige University Press, 1999.

[NC00] Michael Nielsen and Isaac Chuang.Quantum Computation and Quantum In-
formation. Cambridge, 2000.

[Put94] Martin L. Puterman.Markov decision processes : discrete stochastic dynamic
programming. Wiley, New York, 1994.

[Rab80] Michael O. Rabin. Probabilistic algorithms for testing primality. J. Number
Theory, 12:128–138, 1980.

[Seg95] Roberto Segala.Modeling and Verification of Randomized Distributed Real-
Time Systems. PhD thesis, M.I.T., 1995.

[Sto02] Mariëlle Stoelinga. An introduction to probabilistic automata.Bulletin of the
European Association for Theoretical Computer Science, 78:176–198, 2002.

[TKP04] Regina Tix, Klaus Keimel, and Gordon D. Plotkin. Semantic do-
mains for combining probability and non-determinism. Available at
http://homepages.inf.ed.ac.uk/gdp/publications/, April 2004.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. InProceedings of 26th FOCS, pages 327–338, 1985.

[Var03] Daniele Varacca.Probability, Nondeterminism and Concurrency. Two Deno-
tational Models for Probabilistic Computation. PhD thesis, BRICS - Aarhus
University, 2003. Available at http://www.brics.dk/∼varacca.

24

[vB+03] Franck van Breugel, Michael Mislove, Joel Ouaknine, and James Worrell. An
intrinsic characterization of approximate probabilisticbisimilarity. In Proceed-
ings of 6th FOSSACS, volume 2620 ofLNCS, pages 200–215. Springer, 2003.

[vG+90] Rob van Glabbeek et al. Reactive, generative, and stratified models of proba-
bilistic processes. InProceedings of 5th LICS, pages 130–141, 1990.

[VVW04] Daniele Varacca, Hagen Völzer, and Glynn Winskel.Probabilistic event struc-
tures and domains. InProceedings of 15th CONCUR, volume 3170 ofLNCS,
pages 481–496. Springer, 2004.

[Wil91] David Williams. Probability with Martingales. Cambridge University Press,
1991.

[Win87] Glynn Winskel. Event structures. InAdvances in Petri Nets 1986, Part II;
Proceedings of an Advanced Course, volume 255 ofLNCS, pages 325–392.
Springer, 1987.

[WN95] Glynn Winskel and Mogens Nielsen. Models for concurrency. InHandbook of
logic in Computer Science, volume 4. Clarendon Press, 1995.

25

