
The Tree Inclusion Problem: In Optimal Space

and Faster

Philip Bille and Inge Li Gørtz

IT University Technical Report Series

TR-2005-54

ISSN 1600–6100 January 2005

Copyright c© 2005, Philip Bille and Inge Li Gørtz

IT University of Copenhagen

All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

ISSN 1600–6100

ISBN 87-7949-078-6

Copies may be obtained by contacting:

IT University of Copenhagen

Rued Langgaards Vej 7

DK-2300 Copenhagen S

Denmark

Telephone: +45 72 18 50 00

Telefax: +45 72 18 50 01

Web www.itu.dk

The Tree Inclusion Problem: In Optimal Space and Faster

Philip Bille†∗ Inge Li Gørtz†

January 11, 2005

Abstract

Given two rooted, ordered, and labeled trees P and T the tree inclusion problem is to determine
if P can be obtained from T by deleting nodes in T . This problem has recently been recognized as
an important query primitive in XML databases. Kilpeläinen and Mannila (SIAM J. of Comp. 1995)
presented the first polynomial time algorithm using quadratic time and space. Since then several improved
results have been obtained for special cases when P and T have a small number of leaves or small depth.
However, in the worst case these algorithms still use quadratic time and space. In this paper we present
a new approach to the problem which leads to a new algorithm which use optimal linear space and
has subquadratic running time. Our algorithm improves all previous time and space bounds. Most
importantly, the space is improved by a linear factor. This will make it possible to query larger XML
databases and speed up the query time since more of the computation can be kept in main memory.

1 Introduction

Let T be a rooted tree. We say that T is labeled if each node is a assigned a symbol from an alphabet Σ
and we say that T is ordered if a left-to-right order among siblings in T is given. All trees in this paper are
rooted, ordered, and labeled. A tree P is included in T , denoted P v T , if P can be obtained from T by
deleting nodes of T . Deleting a node v in T means making the children of v children of the parent of v and
then removing v. The children are inserted in the place of v in the left-to-right order among the siblings of
v. The tree inclusion problem is to determine if P can be included in T and if so report all subtrees of T
that include P . The tree P and T is often called the pattern and target, respectively.

Recently, the problem has been recognized as an important query primitive for XML data and has received
considerable attention, see e.g., [28, 33, 32, 34, 27, 31]. The key idea is that an XML document can be viewed
as an ordered, labeled tree and queries on this tree correspond to a tree inclusion problem. As an example
consider Figure 1. Suppose that we want to maintain a catalog of books for a bookstore. A fragment of the
tree, denoted D, corresponding to the catalog is shown in (b). In addition to supporting full-text queries,
such as find all documents containing the word ”John”, we can also utilize the tree structure of the catalog
to ask more specific queries, such as ”find all books written by John with a chapter that has something to do
with XML”. We can model this query by constructing the tree, denoted Q, shown in (a) and solve the tree
inclusion problem: is Q v D? The answer is yes and a possible way to include Q in D is indicated by the
dashed lines in (c). If we delete all the nodes in D not touched by dashed lines the trees Q and D become
isomorphic. Such a mapping of the nodes from Q to D given by the dashed lines is called an embedding
(formally defined in Section 3).

The tree inclusion problem was initially introduced by Knuth [21, exercise 2.3.2-22] who gave a sufficient
condition for testing inclusion. Motivated by applications in structured databases [18, 23] Kilpeläinen and
Mannila [19] presented the first polynomial time algorithm using O(nP nT) time and space, where nP and
nT is the number of nodes in a tree P and T , respectively. During the last decade several improvements of

∗This work is part of the DSSCV project supported by the IST Programme of the European Union (IST-2001-35443).
†The IT University of Copenhagen, Department of Theoretical Computer Science, Rued Langgaards Vej 7, 2300 Copenhagen

S, Denmark. {beetle,inge}@itu.dk

1

catalog

book book

author chapter author chapter chapter

john XML name title section title

john databases XML queries

(a) (b)

catalog

book book

author chapter author chapter chapter

john XML name title section title

john databases XML queries

(c)

Figure 1: Can the tree (a) be included in the tree (b)? It can and the embedding is given in (c).

the original algorithm of [19] have been suggested [17, 1, 26, 7]. The previously best known bound is due
to Chen [7] who presented an algorithm using O(lP nT) time and O(lP min{dT , lT }) space. Here, lS and dS

denotes the number of leaves of and the maximum depth of a tree S, respectively. This algorithm is based on
an algorithm of Kilpeläinen [17]. Note that the time and space is still Θ(nP nT) for worst-case input trees.

In this paper we improve all of the previously known time and space bounds. Combining the three
algorithms presented in this paper we have:

Theorem 1 For trees P and T the tree inclusion problem can be solved in O(min(nP nT

log nT
, lP nT , nP lT log log nT))

time using optimal O(nT + nP) space.

Hence, for worst-case input this improves the previous time and space bounds by linear and logarithmic
factor, respectively. When P has a small number of leaves the running time of our algorithm matches the
previously best known time bound of [7] while maintaining linear space. In the context of XML databases
the most important feature of our algorithms is the space usage. This will make it possible to query larger
trees and speed up the query time since more of the computation can be kept in main memory.

1.1 Techniques

Most of the previous algorithms, including the best one [7], are essentially based on a simple dynamic
programming approach from the original algorithm of [19]. The main idea behind this algorithm is following:
Let v ∈ V (P) and w ∈ V (T) be nodes with children v1, . . . , vi and w1, . . . , wj , respectively. To decide if P (v)
can be included T (w) we try to find a sequence of numbers 1 ≤ x1 < x2 < · · · < xi ≤ j such that P (vk) can
be included in T (wxk

) for all k, 1 ≤ k ≤ i. If we have already determined whether or not P (vs) v T (wt), for
all s and t, 1 ≤ s ≤ i, 1 ≤ t ≤ j, we can efficiently find such a sequence by scanning the children of v from
left to right. Hence, applying this approach in a bottom-up fashion we can determine, if P (v) v T (w), for
all pairs (v, w) ∈ V (P) × V (T).

2

In this paper we take a significantly different approach. The main idea is to construct a data structure
on T supporting a small number of procedures, called the set procedures, on subsets of nodes of T . We
show that any such data structure implies an algorithm for the tree inclusion problem. We consider various
implementations of this data structure which all use linear space. The first simple implementation gives an
algorithm with O(lP nT) running time. As it turns out, the running time depends on a well-studied problem
known as the tree color problem. We show a general connection between a data structure for the tree color
problem and the tree inclusion problem. Plugging in a data structure of Dietz [10] we obtain an algorithm
with O(nP lT log log nT) running time.

Based on the simple algorithms above we show how to improve worst-case running the time of the set
procedures by a logarithmic factor. The general idea used to achieve this is to divide T into small trees or
forests, called micro trees or clusters of logarithmic size which overlap with other micro trees in at most 2
nodes. Each micro tree is represented by a constant number of nodes in a macro tree. The nodes in the
macro tree are then connected according to the overlap of the micro trees they represent. We show how to
efficiently preprocess the micro trees and the macro tree such that the set procedures use constant time for
each micro tree. Hence, the worst-case running time is improved by a logarithmic factor to O(nP nT

log nT
).

Our results rely on a standard RAM model of computation with word size Ω(log n). We use a standard
instruction set such as bitwise boolean operations, shifts, and addition.

1.2 Related Work

For some applications considering unordered trees is more natural. However, in [24, 19] this problem was
proved to be NP-complete. The tree inclusion problem is closely related to the tree pattern matching problem
[16, 22, 11, 9]. The goal is here to find an injective mapping f from the nodes of P to the nodes of T such
that for every node v in P the ith child of v is mapped to the ith child of f(v). The tree pattern matching

problem can be solved in O(n logO(1) n) time, where n = nP + nT . Another similar problem is the subtree
isomorphism problem [8, 29], which is to determine if T has a subgraph which is isomorphic to P . The
subtree isomorphism problem can be solved efficiently for ordered and unordered trees. The best algorithms
for this problem use O(n1.5

P nT / log nP) for unordered trees and O(nP nT / log nP) time ordered trees [8, 29].
Both use O(nP nT) space. The tree inclusion problem can be considered a special case of the tree edit distance
problem [30, 35, 20]. Here one wants to find the minimum sequence of insert, delete, and relabel operations
needed to transform P into T . The currently best worst-case algorithm for this problem uses O(n2

P nT log nT)
time. For more details and references see the survey [6].

1.3 Outline

In Section 2 we give notation and definitions used throughout the paper. In Section 3 a common framework
for our tree inclusion algorithms is given. Section 4 present two simple algorithms and then, based on these
result, we show how to get a faster algorithm in Section 5.

2 Notation and Definitions

In this section we define the notation and definitions we will use throughout the paper. For a graph G we
denote the set of nodes and edges by V (G) and E(G), respectively. Let T be a rooted tree. The root of T
is denoted by root(T). The size of T , denoted by nT , is |V (T)|. The depth of a node v ∈ V (T), depth(v), is
the number of edges on the path from v to root(T) and the depth of T , denoted dT , is the maximum depth
of any node in T . The set of children of a node v is denoted child(v). A node with no children is a leaf and
otherwise an internal node. The set of leaves of T is denoted L(T) and we define lT = |L(T)|. We say that
T is labeled if each node v is a assigned a symbol, denoted label(v), from an alphabet Σ and we say that T
is ordered if a left-to-right order among siblings in T is given. All trees in this paper are rooted, ordered,
and labeled.

3

Let T (v) denote the subtree of T rooted at a node v ∈ V (T). If w ∈ V (T (v)) then v is an ancestor of
w, denoted v � w, and if w ∈ V (T (v))\{v} then v is a proper ancestor of w, denoted v ≺ w. If v is a
(proper) ancestor of w then w is a (proper) descendant of v. A node z is a common ancestor of v and w
if it is an ancestor of both v and w. The nearest common ancestor of v and w, nca(v, w), is the common
ancestor of v and w of largest depth. The first ancestor of w labeled α, denoted fl(w, α), is the node v such
that v � w, label(v) = α, and no node on the path between v and w is labeled α. If no such node exists
then fl(w, α) = ⊥, where ⊥ 6∈ V (T) is a special null node.

For any set of pairs U , let U |1 and U |2 denote the projection of U to the first and second coordinate,
that is, if (u1, u2) ∈ U then u1 ∈ U |1 and u2 ∈ U |2.

Lists A list, X , is a finite sequence of objects X = [v1, . . . , vk]. The length of the list, denoted |X |, is the
number of objects in X . The ith element of X , X [i], 1 ≤ i ≤ |X | is the object vi and v ∈ X iff v = X [j] for
some 1 ≤ j ≤ |X |. For any two lists X = [v1, . . . , vk] and Y = [w1, . . . , wk], the list obtained by appending
Y to X is the list X ◦Y = [v1, . . . , vk, w1, . . . , wk]. We extend this notation such that for any object u, X ◦u
denotes the list X ◦ [u]. For simplicity in the notation we will sometimes write [vi | 1 ≤ i ≤ k] to denote
the list [v1, . . . , vk]. A pair list is a list of pairs of object Y = [(v1, w1), . . . , (vk, wk)]. Here the first and
second element in the pair is denoted by Y [i]1 = vi and Y [i]2 = wi. The projection of pair lists is defined
by Y |1 = [v1, . . . , vk] and Y |2 = [w1, . . . , wk].

Orderings Let T be a tree with root v and let v1, . . . , vk be the children of v from left-to-right. The
preorder traversal of T is obtained by visiting v and then recursively visiting T (vi), 1 ≤ i ≤ k, in order.
Similarly, the postorder traversal is obtained by first visiting T (vi), 1 ≤ i ≤ k, and then v. The preorder
number and postorder number of a node w ∈ T (v), denoted by pre(w) and post(w), is the number of nodes
preceding w in the preorder and postorder traversal of T , respectively. The nodes to the left of w in T is the
set of nodes u ∈ V (T) such that pre(u) < pre(w) and post(u) < post(w). If u is to the left of w, denoted by
u C w, then w is to the right of u. If u C w, u � w, or w ≺ u we write u E w. The null node ⊥ is not in the
ordering, i.e., ⊥ 6 v for all nodes v.

Deep Sets A set of nodes V ⊆ V (T) is deep iff no node in V is a proper ancestor of another node in V .

Minimum Ordered Pair Let V1, . . . , Vk be deep sets of nodes and let Φ(V1, . . . , Vk) ⊆ (V1 × · · · × Vk),
be the set such that (v1, . . . , vk) ∈ Φ(V1, . . . , Vk) iff v1 C · · · C vk. If (v1, . . . , vk) ∈ Φ(V1, . . . , Vk) and there
is no (v′1, . . . , v

′
k) ∈ Φ(V1, . . . , Vk), where either v1 C v′1 C v′k E vk or v1 E v′1 C v′k C vk then the pair (v1, vk)

is a minimum ordered pair. The set of minimum ordered pairs for V1, . . . , Vk is denoted by mop(V1, . . . , Vk).
Figure 2 illustrates mop on a small example. We note the following property of minimum ordered pairs.

Lemma 1 For any deep sets of nodes V1, . . . , Vk we have, (v1, vk) ∈ mop(V1, . . . , Vk) iff there exists a vk−1

such that (v1, vk−1) ∈ mop(V1, . . . , Vk−1) and (vk−1, vk) ∈ mop(mop(V1, . . . , Vk−1)|2, Vk).

Proof. We start by showing (v1, vk) ∈ mop(V1, . . . , Vk) ⇒ ∃vk−1 such that (v1, vk−1) ∈ mop(V1, . . . , Vk−1)
and (vk−1, vk) ∈ mop(mop(V1, . . . , Vk−1)|2, Vk).

First note that (w1, . . . , wk) ∈ Φ(V1, . . . , Vk) ⇒ (w1, . . . , wk−1) ∈ Φ(V1, . . . , Vk−1). Since (v, vk) ∈
mop(V1, . . . , Vk) there must be a minimum vk−1 such that the tuple (v1, . . . , vk−1) ∈ Φ(V1, . . . , Vk−1). We
have (v, vk−1) ∈ mop(V1, . . . , Vk−1). We need to show that (vk−1, vk) ∈ mop(mop(V1, . . . , Vk−1)|2, Vk).
Since (v1, vk) ∈ mop(V1, . . . , Vk) there exists no w ∈ Vk such that vk−1 C w C vk. Assume there ex-
ists a w ∈ mop(V1, . . . , Vk−1)|2 such that vk−1 C w C vk. Since (v, vk−1) ∈ mop(V1, . . . , Vk−1) this im-
plies that there is a w′ B v1 s.t. (w′, w) ∈ mop(V1, . . . , Vk−1). But this implies that there is a tuple
(w′, . . . , w, vk) ∈ Φ(V1, . . . , Vk) contradicting that (v1, vk) ∈ mop(V1, . . . , Vk).

We now show that if there exists a vk−1 such that (v1, vk−1) ∈ mop(V1, . . . , Vk−1) and (vk−1, vk) ∈
mop(mop(V1, . . . , Vk−1)|2, Vk) then (v1, vk) ∈ mop(V1, . . . , Vk). Clearly, there exists a tuple (v1, . . . , vk−1, vk) ∈
Φ(V1, . . . , Vk). Assume that there exists a tuple (w1, . . . , wk) ∈ Φ(V1, . . . , Vk) such that v1 C w1 C wk E vk.
Since wk−1 E vk−1 this contradicts that (v1, vk−1) ∈ mop(V1, . . . , Vk−1). Assume that there exists a tuple

4

v1 v2 v5 v6 v7

v3 v4

(a)

=S1 =S2 =S3 =S4

v1 v2 v5 v8 v9

v3 v4 v6 v7

(b)

Figure 2: In (a) we have {(v1, v2, v3, v6, v7), (v1, v2, v5, v6, v7), (v1, v4, v5, v6, v7), (v3, v4, v5, v6, v7)} =
Φ(S1, S2, S1, S3, S4) and thus mop(S1, S2, S1, S3, S4) = {(v3, v7)}. In (b) we have Φ(S1, S2, S1, S3, S4) =
{(v1, v2, v3, v5, v7), (v1, v2, v6, v8, v9), (v1, v2, v3, v8, v9), (v1, v2, v3, v5, v9), (v1, v4, v6, v8, v9), (v3, v4, v6, v8, v9)}
and thus mop(S1, S2, S1, S3, S4) = {(v1, v7), (v3, v9)}.

(w1, . . . , wk) ∈ Φ(V1, . . . , Vk) such that v1 E w1 C wk C vk. Since (v1, vk−1) ∈ mop(V1, . . . , Vk−1) we have
vk−1 E wk−1 and thus wk B vk−1 contradicting (vk−1, vk) ∈ mop(mop(V1, . . . , Vk−1)|2, Vk). �

The lemma shows that we can compute mop(V1, . . . , Vk) iteratively by first computing mop(V1, V2) and then
mop(mop(V1, V2)|2, V3) and so on.

3 Computing Deep Embeddings

In this section we present a general framework for answering tree inclusion queries. As in [19] we solve the
equivalent tree embedding problem. Let P and T be rooted labeled trees. An embedding of P in T is an
injective function f : V (P) → V (T) such that for all nodes v, u ∈ V (P),

(i) label(v) = label(f(v)). (label preservation condition)

(ii) v ≺ u iff f(v) ≺ f(u). (ancestor condition)

(iii) v C u iff f(v) C f(u). (order condition)

An example of an embedding is given in Figure 1(c).

Lemma 2 ([19]) For any trees P and T . P v T iff there exists an embedding of P in T .

We say that the embedding f is deep if there is no embedding g such that f(root(P)) ≺ g(root(P)). The
deep occurrences of P in T , denoted emb(P, T) is the set of nodes,

emb(P, T) = {f(root(P)) | f is a deep embedding of P in T}.

Note that emb(P, T) must be a deep set in T . Furthermore, by definition the set of ancestors of nodes in
emb(P, T) is the set of subtrees T (u) such that P v T (u). Hence, to solve the tree inclusion problem it is
sufficient to compute emb(P, T) and then, using additional O(nT) time, report all ancestors (if any) of this
set.

We show how to compute deep embeddings. The key idea is to construct a data structure that allows a
fast implementation of the following procedures. For all V ∈ V (T), U ∈ V (T) × V (T), and α ∈ Σ define:

ParentT (V). Return the set R := {parent(v) | v ∈ V }.

NcaT (U). Return the set R := {nca(u1, u2) | (u1, u2) ∈ U}.

DeepT (V). Return the set of nodes in R that are not ancestors of any other node in R.

5

MopT (U, V). Return the set of pairs R such that for any pair (u1, u2) ∈ U , (u1, v) ∈ R iff (u2, v) ∈
mop(U |2, V).

FlT (V, α). Return the set R := {fl(v, α) | v ∈ V }.

Collectively we call these procedures the set procedures. With the set procedures we can compute deep
embeddings. The following procedure EmbT (v), v ∈ V (P) recursively computes the set of deep occurrences
of P (v) in T .

EmbT (v) Let v1, . . . , vk be the sequence of children of v ordered from left to right. There are three cases:

1. k = 0 (v is a leaf). Set R := DeepT (FlT (L(T), label(v))).

2. k = 1. Recursively compute R1 := EmbT (v1).
Set R := DeepT (FlT (DeepT (ParentT (R1)), label(v))).

3. k > 1. Initially, compute R1 := EmbT (v1), R2 := EmbT (v2). Let U1 := {(r, r) | r ∈ R1} and
compute U2 := MopT (U1, R2). Then, in order of increasing i, 3 ≤ i ≤ k, compute Ri := EmbT (vi)
and Ui := MopT (U, Ri). Finally, compute R := DeepT (FlT (DeepT (NcaT (Uk)), label(v))).

If R = ∅ stop and report that there is no deep embedding of P (v) in T . Otherwise return R.

Figure 3 illustrates how Emb works on a small example.

Lemma 3 For any two trees T and P , EmbT (v) computes the set of deep occurrences of P (v) in T .

Proof. By induction on the size of the subtree P (v). If v is a leaf we immediately have that emb(v, T) =
DeepT (FlT (L(T), label(v))) and thus case 1 follows. Suppose that v is an internal node with k ≥ 1 children
v1, . . . , vk. We show that emb(P (v), T) = EmbT (v). Consider cases 2 and 3 of the algorithm.

If k = 1 we have that w ∈ EmbT (v) implies that label(w) = label(v) and there is a node w1 ∈ EmbT (v1)
such that fl(parent(w1), label(v)) = w, that is, no node on the path between w1 and w is labeled label(v).
By induction EmbT (v1) = emb(P (v1), T) and therefore w is the root of an embedding of P (v) in T . Since
EmbT (v) is the deep set of all such nodes it follows that w ∈ emb(P (v), T). Conversely, if w ∈ emb(P (v), T)
then label(w) = label(v), there is a node w1 ∈ emb(P (v1), T) such that w ≺ w1, and no node on the path
between w and w1 is labeled label(v), that is, fl(w1, label(v)) = w. Hence, w ∈ EmbT (v).

Before considering case 3 we first show that Uj = mop(EmbT (v1), . . . ,EmbT (vj)) by induction on j,
2 ≤ j ≤ k. For j = 2 it follows from the definition of MopT that U2 = mop(EmbT (v1),EmbT (v2)). Hence,
assume that j > 2. We have Uj = MopT (Uj−1,EmbT (vj)) = MopT (mop(EmbT (v1), . . . ,EmbT (vj−1)), Rj).
By definition of MopT , Uj is the set of pairs such that for any pair (r1, rj−1) ∈ mop(EmbT (v1), . . . ,EmbT (vj−1)),
(r1, rj) ∈ Uj iff (rj−1, rj) ∈ mop(mop(EmbT (v1), . . . ,EmbT (vj−1))|2, Rj). By Lemma 1 it follows that
(r1, rj) ∈ Uj iff (r1, rj) ∈ mop(EmbT (v1), . . . ,EmbT (vj)).

Next consider the case when k > 1. If w ∈ EmbT (v) we have that label(w) = label(v) and there are
nodes (w1, wk) ∈ mop(emb(P (v1), T), . . . , emb(P (vk), T)) such that w = fl(nca(w1, wk), label(v)). Clearly,
w is the root of an embedding of P (v) in T . Assume for contradiction that w is not a deep embedding,
that is, w ≺ u for some node u ∈ emb(P (v), T). Since w = fl(nca(w1, wk), label(v)) there must be nodes
u1 C · · · C uk, such that ui ∈ emb(P (vi), T) and u = fl(nca(u1, uk), label(v)). However, this contradicts
the fact that (w1, wk) ∈ mop(emb(P (v1), T), . . . , emb(P (vk), T)). If w ∈ emb(P (v), T) a similar argument
implies that w ∈ EmbT (v). �

When the tree T is clear from the context we may not write the subscript T in the procedure names. Note
that since the EmbT (v) is a deep set we can assume in an implementation of Emb that Parent, Fl, Nca,
and Mop take deep sets as input. We will use this fact in the following sections.

6

P T

a1
a

b2 a4
b b a

a3
a a b a b

a
(a) (b)

a a

b b a b b a

a a b a b a a b a b

a a
(c) (d)

a a

b b a b b a

a a b a b a a b a b

a a
(e) (f)

Figure 3: Computing the deep occurrences of P into T depicted in (a) and (b) respectively. The nodes in P
are numbered 1–4 for easy reference. (c) Case 1 of Emb: The black nodes correspond to the set EmbT (1).
Since 1 and 4 are leaves and label(1) = label(4) we also have that EmbT (1) = EmbT (4). (d) Case 2 of Emb.
The black nodes is the set EmbT (2). Note that the middle child of the root of T is not in the set since it
is not a deep occurrence. (e) Case 3 of Emb: The two minimal ordered pairs of the sets of 1 and 2. (f)
The nearest common ancestors of the pairs in (e) both give the root node of T which is the only (deep)
occurrence of P .

7

4 A Simple Tree Inclusion Algorithm

In this section we a present a simple implementation of the set procedures which leads to an efficient tree
inclusion algorithm. Subsequently, we modify one of the procedures to obtain a family of tree inclusion
algorithms where the complexities depend on the solution to a well-studied problem known as the tree color
problem.

4.1 Preprocessing

To compute deep embeddings efficiently we require a data structure for T which allows us, for any v, w ∈
V (T), to compute ncaT (v, w) and determine if v ≺ w or v C w. In linear time we can compute pre(v) and
post(v) for all nodes v ∈ V (T), and with these it is straightforward to test the two conditions. Furthermore,

Lemma 4 ([15]) For any tree T there is a data structure using O(nT) space and preprocessing time which
supports nearest common ancestor queries in O(1) time.

Hence, our data structure uses linear preprocessing time and space.

4.2 Implementation of the Set Procedures

To answer tree inclusion queries we give an efficient implementation of the set procedures. The idea is to
represent the node sets in a left-to-right order. For this purpose we introduce some helpful notation. A node
list, X , is a list of nodes. If vi C vi+1, 1 ≤ i < |X | then X is ordered and if v1 E vi+1, 1 ≤ i < |X | then X
is semiordered. A node pair list, Y , is a list of pairs of nodes. We say that Y is ordered if Y |1 and Y |2 are
ordered, and semiordered if Y |1 and Y |2 are semiordered.

The set procedures are implemented using node lists and node pair lists below. All lists used in the
procedures are either ordered or semiordered. As noted in Section 3 we may assume that the input to all of
the procedures, except Deep, represent a deep set, that is, the corresponding node list or node pair list is
ordered. We assume that the input list given to Deep is semiordered and the output, of course, is ordered.
Hence, the output of all the other set procedures must be semiordered.

ParentT (X). Return the list Z := [parent(X [i]) | 1 ≤ i ≤ |X |].

Nca(X). Return the list Z := [nca(X [i]) | 1 ≤ i ≤ |X |].

DeepT (X). Initially, set v := X [1] and Z := []. For each i, 2 ≤ i ≤ k, compare v and X [i]: If v C X [i] set
Z := Z ◦ v and v := X [i]. If v ≺ X [i], set v := X [i] and otherwise (X [i] ≺ v) do nothing.

Finally, set Z := Z ◦ v and return Z.

MopT (X, Y). Initially, set Z := []. Find the minimum j such that X [1]2CY [j] and set x := X [1]1, y := Y [j],
and h := j. If no such i exists stop.

As long as h ≤ |Y | do the following: For each i, 2 ≤ i ≤ |X |, do: Set h := h + 1 until X [i]2 C Y [h].
Compare Y [h] and y: If y = Y [h] set x := X [i]1. If y C Y [h] set Z := Z ◦ (x, y), x := X [i]1, and
y := Y [h].

Finally, set Z := Z ◦ (x, y) and return Z.

FlT (X, α). Initially, set Y := X , Z := [], and S := []. Repeat until Y := []: For i = 1, . . . , |Y | if
label(Y [i]) = α set Z := Insert(Y [i], Z) and otherwise set S := S ◦ parent(Y [i]).

Set S := DeepT (S), Y := Deep∗
T (S, Z), S := [], and R := [].

Return Z.

8

The procedure Fl calls two auxiliary procedures: Insert(v, Z) that takes an ordered list Z and insert the
node v such that the resulting list is ordered, and Deep∗(S, Z) that takes two ordered lists and returns the
ordered list representing the set Deep(S ∪ Z) ∩ S. Below we describe in more detail how to implement Fl

together with the auxiliary procedures.
We use one doubly linked list to represent all the lists Y , S, and Z. For each element in Y we have

pointers Pred and Succ pointing to the predecessor and successor in the list, respectively. We also have a
pointer Next pointing to the next element in Y . In the beginning Next = Succ for all elements, since all
elements in the list are in Y . When going through Y in one iteration we simple follow the Next pointers.
When Fl calls Insert(Y [i], Z) we set Next(Succ(Y [i])) to Next(Y [i]). That is, all nodes in the list not in Y ,
i.e., nodes not having a Next pointer pointing to them, are in Z. We do not explicitly maintain S. Instead
we just set save Parent(Y [i]) at the position in the list instead of Y [i]. Now Deep(S) can be performed
following the Next pointers and removing elements from the doubly linked list accordingly to procedure
Deep. It remains to show how to calculate Deep∗(S, Z). This can be done by running through S following
the Next pointers. At each node s compare Pred(s) and Succ(s) with s. If one of them is a descendant of s
remove s from the doubly linked list.

Using this linked list implementation Deep∗(S, Z) takes time O(|S|), whereas using Deep to calculate
this would have used time O(|S| + |Z|).

4.3 Correctness of the Set Procedures

Clearly, Parent and Nca are correct. The following lemmas show that Deep, Fl, and Mop are also
correctly implemented.

Lemma 5 Procedure Deep(X) is correct.

Proof. Let u be an element in X . We will first prove that if X ∩ V (T (u)) = ∅ then u ∈ Z. Since
X ∩ V (T (u)) = ∅ we must at some point during the procedure have v = u, and v will not change before u
is added to Z. If u occurs several times in X we will have v = u each time we meet a copy of u (except the
first) and it follows from the implementation that u will occur exactly once in Z.

We will now prove that if X ∩ V (T (u)) 6= ∅ then u 6∈ Z. Let w be the rightmost and deepest descendant
of u in X . There are two cases:

1. u is before w in X . Look at the time in the execution of the procedure when we look at w. There are
two cases.

(a) v = u. Since u ≺ w we set v = w and proceed. It follows that u 6∈ Z.

(b) v = x 6= u. Since any node to the left of u also is to the left of w and X is an semiordered list we
must have x ∈ V (T (u)) and thus u 6∈ Z.

2. u is after w in X . Since w is the rightmost and deepest ancestor of u and X is semiordered we must
have v = w at the time in the procedure where we look at u. Therefore u 6∈ Z.

If u occurs several times in X , each copy will be taken care of by either case 1. or 2. �

To show that Fl is correct we need the following proposition.

Proposition 1 Let X be an ordered list and let v be an ancestor of X [i] for some i ∈ {1, . . . , k}. If v is an
ancestor of some node in X other than X [i] then v is an ancestor of X [i − 1] or X [i + 1].

Proof. Assume for the sake of contradiction that v ⊀ X [i − 1], v ⊀ X [i + 1], and v ≺ w, where w ∈ X .
Since X is ordered either w C X [i− 1] or X [i + 1] C w. Assume w C X [i− 1]. Since v ≺ X [i] and X [i− 1] is
the left of X [i], X [i − 1] is to the left of v contradicting v ≺ w. Assume X [i + 1] C w. Since v ≺ X [i] and
X [i + 1] is the right of X [i], X [i − 1] is to the right of v contradicting v ≺ w. �

Proposition 1 shows that the doubly linked list implementation of Deep∗ is correct. Clearly, Insert is
implemented correct be the doubly linked list representation, since the nodes in the list remains in the same
order throughout the execution of the procedure.

9

Lemma 6 Procedure Fl(V, α) is correct.

Proof. Let F = {fl(v, α) | v ∈ X}. It follows immediately from the implementation of the procedure that
Fl(X, α) ⊆ F . It remains to show that Deep(F) ⊆ Fl(X, α). Let v be a node in Deep(F)), let w ∈ X be
the node such that v = fl(w, α), and let w = v1, v2, . . . , vk = v be the nodes on the path from w to v. In
each iteration of the algorithm we have vi ∈ Y for some i unless v ∈ Z. �

Lemma 7 Procedure Mop(X, Y) is correct.

Proof. We want to show that for 1 ≤ j < |X |, 1 ≤ t < |Y |, (X [j]1, Y [t]) ∈ Z iff (X [j]2, Y [t]) ∈ mop(X |2, Y).
Since X |2 and Y are ordered lists

(X [j]2, Y [t]) ∈ mop(X |2, Y) ⇔ Y [t − 1] E X [j]2 C Y [t] E X [j + 1]2. (1)

First we show that (X [j]1, Y [t]) ∈ Z ⇒ (X [j]2, Y [t]) ∈ mop(X |2, Y). We will break the proof into three
parts, each showing one of the inequalities from the right hand side of (1).

• Y [t−1]EX [j]2: We proceed by induction on j. Base case j = 1: Immediately from the implementation
of the procedure. j > 1: We have x = X [j − 1]1 and y = Y [h] for some h ≤ t. By the induction
hypothesis Y [j − 1] E X [j − 1]2. If X [j]2 C Y [h] then h = t since Y [h− 1] E X [j − 1]2 C X [j]2 and thus
Y [t − 1] C X [j]2. If X [j]2 D Y [h] then h ≤ t − 1 and thus Y [t − 1] E X [j]2.

• X [j]2 C Y [t]: Follows immediately from the implementation of the procedure.

• X [j+1]2DY [t]: Assume X [j+1]2CY [t]. Consider the time in the procedure when we look at X [j+1]2.
We have y = Y [t] and thus set x := X [j + 1]1 contradicting (X [j]1, Y [t]) ∈ Z.

It follows immediately from the implementation of the procedure, that if X [j]2 C Y [t], Y [t− 1] E X [j]2, and
X [j + 1]2 D Y [t] then (X [j]1, Y [t]) ∈ Z. �

4.4 Complexity of the Set Procedures

For the running time of the node list implementation observe that, given the data structure described in
Section 4.1, all set procedures, except Fl, perform a single pass over the input using constant time at each
step. Hence we have,

Lemma 8 For any tree T there is a data structure using O(nT) space and preprocessing which supports each
of the procedures Parent, Deep, Mop, and Nca in linear time (in the size of their input).

The running time of a single call to Fl might take time O(nT). Instead we will divide the calls to Fl into
groups and analyze the total time used on such a group of calls. The intuition behind the division is that
for a path in P the calls made to Fl by Emb is done bottom up on disjoint lists of vertices in T .

Lemma 9 For disjoint ordered node lists V1, . . . , Vk and labels α1, . . . , αk, such that any node in Vi+1 is an
ancestor of some node in Deep(FlT (Vi, αi)), 2 ≤ i < k, all of FlT (V1, α1), . . . ,FlT (Vk, αk) can be computed
in O(nT) time.

Proof. Let Y , Z, and S be as in the implementation of the procedure. Since Deep and Deep∗ takes time
O(S), we only need to show that the total length of the lists S—summed over all the calls—is O(nT) to
analyze the total time usage of Deep and Deep∗. We note that in one iteration |S| ≤ |Y |. Insert takes
constant time and it is thus enough to show that any node in T can be in Y at most twice during all calls
to Fl.

10

Consider a call to Fl. Note that Y is ordered at all times. Except for the first iteration, a node can be
in Y only if one of its children were in Y in the last iteration. Thus in one call to Fl a node can be in Y
only once.

Look at a node u the first time it appears in Y . Assume that this is in the call Fl(Vi, αi). If u ∈ X then
u cannot be in Y in any later calls, since no node in Vj where j > i can be a descendant of a node in Vi.
If u 6∈ Z in this call then u cannot be in Y in any later calls. To see this look at the time when u removed
from Y . Since the set Y ∪ Z is deep at all times no descendant of u will appear in Y later in this call to
Fl, and no node in Z can be a descendant of u. Since any node in Vj , j > i, is an ancestor of some node in
Deep(Fl(Vi, αi)) neither u or any descendant of u can be in any Vj , j > i. Thus u cannot appear in Y in
any later calls to Fl. Now if u ∈ Z then we might have u ∈ Vi+1. In that case, u will appear in Y in the first
iteration of the procedure call Fl(Vi+1, αi), but not in any later calls since the lists are disjoint, and since
no node in Vj where j > i + 1 can be a descendant of a node in Vi+1. If u ∈ Z and u 6∈ Vi+1 then clearly u
cannot appear in Y in any later call. Thus a node in T is in Y at most twice during all the calls. �

4.5 Complexity of the Tree Inclusion Algorithm

Using the node list implementation of the set procedures we get:

Theorem 2 For trees P and T the tree inclusion problem can be solved in O(lP nT) time and O(nP + nT)
space.

Proof. By Lemma 8 we can preprocess T in O(nT) time and space. Let g(n) denote the time used by
Fl on a list of length n. Consider the time used by EmbT (root(P)). We bound the contribution for each
node v ∈ V (P). From Lemma 8 it follows that if v is a leaf the cost of v is at most O(g(lT)). Hence,
by Lemma 9, the total cost of all leaves is O(lP g(lT)) = O(lP nT). If v has a single child w the cost is
O(g(|EmbT (w)|)). If v has more than one child the cost of Mop, which dominates the time for Nca and
Deep, is

∑

w∈child(v) O(|EmbT (w)|). Furthermore, since the length of the output of Mop (and thus Nca) is

at most z = minw∈child(v) |EmbT (w)| the cost of Fl is O(g(z)). Hence, the total cost for internal nodes is,

∑

v∈V (P)\L(P)

O

(

g(min
w∈child(v)

|EmbT (w)|) +
∑

w∈child(v)

|EmbT (w)|

)

≤
∑

v∈V (P)

O(g(|EmbT (v)|)). (2)

Next we bound (2). For any w ∈ child(v) we have that EmbT (w) and EmbT (v) are disjoint ordered lists. Fur-
thermore we have that any node in EmbT (v) must be an ancestor of some node in DeepT (FlT (EmbT (w), label(v))).
Hence, by Lemma 9, for any leaf to root path δ = v1, . . . , vk in P , we have that

∑

u∈δ g(|EmbT (u)|) ≤ O(nT).
Let ∆ denote the set of all root to leaf paths in P . It follows that,

∑

v∈V (T)

g(|EmbT (v)|) ≤
∑

p∈∆

∑

u∈p

g(|EmbT (u)|) ≤ O(lP nT).

Since this time dominates the time spent at the leaves the time bound follows. Next consider the space
used by EmbT (root(P)). The preprocessing of Section 4.1 uses only O(nT) space. Furthermore, by in-
duction on the size of the subtree P (v) it follows immediately that at each step in the algorithm at most
O(maxv∈V (P) |EmbT (v)|) space is needed. Since EmbT (v) a deep embedding, it follows that |EmbT (v)| ≤ lT .
�

4.6 An Alternative Algorithm

In this section we present an alternative algorithm. Since the time complexity of the algorithm in the previous
section is dominated by the time used by Fl, we present an implementation of this procedure which leads to

11

a different complexity. Define a firstlabel data structure as a data structure supporting queries of the form
fl(v, α), v ∈ V (T), α ∈ Σ. Maintaining such a data structure is a well-studied problem known as the tree
color problem. This is a well-studied problem, see e.g. [10, 25, 12, 4]. With such a data structure available
we can compute Fl as follows,

Fl(X, α) Return the list Z := [fl(X [i], α) | 1 ≤ i ≤ |X |].

Theorem 3 Let P and T be trees. Given a firstlabel data structure using s(nT) space, p(nT) preprocessing
time, and q(nT) time for queries, the tree inclusion problem can be solved in O(p(nT) + nP lT · q(nT)) time
and O(nP + s(nT) + nT) space.

Proof. Constructing the firstlabel data structures uses O(s(nT)) and O(p(nT)) time. As in the proof of
Theorem 2 we have that the total time used by EmbT (root(P)) is bounded by

∑

v∈V (P) g(|EmbT (v)|), where

g(n) is the time used by Fl on a list of length n. Since EmbT (v) is a deep embedding and each fl takes
q(nT) we have,

∑

v∈V (P)

g(|EmbT (v)|) ≤
∑

v∈V (P)

g(lT) = nP lT · q(nT).

�

Several firstlabel data structures are available, for instance, if we want to maintain linear space we have,

Lemma 10 (Dietz [10]) For any tree T there is a data structure using O(nT) space, O(nT) expected pre-
processing time which supports firstlabel queries in O(log log nT) time.

Plugging in this data structure we obtain,

Corollary 1 For trees P and T the tree inclusion problem can be solved in O(nP lT log log nT) time and
O(nP + nT) space.

Note that since the preprocessing time p(n) of the firstlabel data structure is expected the running time
of the tree inclusion algorithm is also expected. However, the expectation is due to a dictionary using
perfect hashing and we can therefore use the deterministic dictionary of [14] with O(nT log nT) worst-case
preprocessing time instead. This does not affect the overall complexity of the algorithm.

5 A Faster Tree Inclusion Algorithm

In this section we present a new tree inclusion algorithm which has a worst-case subquadratic running time.
As discussed in the introduction the general idea is cluster T into small trees of logarithmic size which we
can efficiently preprocess and then use this to speedup the computation with a logarithmic factor.

5.1 Clustering

In this section we describe how to divide T into micro trees and how the macro tree is created. For simplicity
in the presentation we assume that T is a binary tree. If this is not the case it is straightforward to construct
a binary tree B, where nB ≤ 2nT , and a mapping g : V (T) → V (B) such that for any pair of nodes
v, w ∈ V (T), label(v) = label(g(v)), v ≺ w iff g(v) ≺ g(w), and v C w iff g(v) C g(w). If the nodes in the
set U = V (B)\{g(v) | v ∈ V (T)} is assigned a special label β 6∈ Σ it follows that for any tree P , P v T iff
P v B.

Let C be a connected subgraph of T . A node in V (C) incident to a node in V (T)\V (C) is a boundary
node. The boundary nodes of C are denoted by δC. A cluster of C is a connected subgraph of C with
at most two boundary nodes. A set of clusters CS is a cluster partition of T iff V (T) = ∪C∈CSV (C),
E(T) = ∪C∈CSE(C), and for any C1, C2 ∈ CS, E(C1) ∩ E(C2) = ∅, |E(C1)| ≥ 1, root(T) ∈ δC if
root(T) ∈ V (C). If |δC| = 1 we call C a leaf cluster and otherwise an internal cluster.

12

We use the following recursive procedure ClusterT (v, s), adopted from [5], which creates a cluster
partition CS of the tree T (v) with the property that |CS| = O(s) and |V (C)| ≤ dnT /se. A similar cluster
partitioning achieving the same result follows from [3, 2, 13].

ClusterT (v, s). For each child u of v there are two cases:

1. |V (T (u))| + 1 ≤ dnT /se. Let the nodes {v} ∪ V (T (u)) be a leaf cluster with boundary node v.

2. |V (T (u))| > dnT /se. Pick a node w ∈ V (T (u)) of maximum depth such that |V (T (u))| +
2 − |V (T (w))| ≤ dnT /se. Let the nodes V (T (u))\V (T (w)) ∪ {v, w} be an internal cluster with
boundary nodes v and w. Recursively, compute ClusterT (w, s).

Lemma 11 Given a tree T with nT > 1 nodes, and a parameter s, where dnT /se ≥ 2, we can build a cluster
partition CS in O(nT) time, such that |CS| = O(s) and |V (C)| ≤ dnT /se for any C ∈ CS.

Proof. The procedure ClusterT (root(T), s) clearly creates a cluster partition of T and it is straightforward
to implement in O(nT) time. Consider the size of the clusters created. There are two cases for u. In case
1, |V (T (u))| + 1 ≤ dnT /se and hence the cluster C = {v} ∪ V (T (u)) has size |V (C)| ≤ dnT /se. In case
2, |V (T (u))| + 2 − |V (T (w))| ≤ dnT /se and hence the cluster C = V (T (u))\V (T (w)) ∪ {v, w} has size
|V (C)| ≤ dnT /se.

Next consider the size of the cluster partition. We say that a cluster C is bad if |V (C)| ≤ c/2 and good
otherwise. We will show that at least a constant fraction of the clusters in the cluster partition are good. Let
c = dnT /se. It is easy to verify that the cluster partition created by procedure Cluster has the following
properties:

(i) Let C be a bad internal cluster with boundary nodes v and w (v ≺ w). Then w has two children with
at least c/2 descendants each.

(ii) Let C be a bad leaf cluster with boundary node v. Then the boundary node v is contained in a good
cluster.

By (ii) the number of bad leaf clusters is no larger than twice the number of good internal clusters. By (i)
each bad internal cluster C is sharing its lowest boundary node of C with two other clusters, and each of
these two clusters are either internal clusters or good leaf clusters. This together with (ii) shows that number
of bad clusters is at most a constant fraction of the total number of clusters. Since a good cluster is of size
more than c/2, there can be at most 2s good clusters and thus |CS| = O(s). �

Let C ∈ CS be an internal cluster v, w ∈ δC. The spine path of C, π(C), is the path between v, w
excluding v and w. A node on the spine path is a spine node. A node to the left and right of v, w, or any
node on π(C) is a left node and right node respectively. If C is a leaf cluster with v ∈ δC then any proper
descendant of v is a leaf node.

Let CS be a cluster partition of T as described in Lemma 11. We define an ordered macro tree T M .
Our definition of T M may be viewed as an ”ordered” version of the macro tree given in [5]. For each
internal cluster C ∈ CS, v, w ∈ δC, v ≺ w, we have the node s(v, w) and edges (v, s(v, w)), (s(v, w), w).
Furthermore, we have the nodes l(v, w) and r(v, w) and edges (l(v, w), s(v, w)) and (r(v, w), s(v, w)) ordered
such that l(v, w) C w C r(v, w). If C is a leaf cluster and v ∈ δC we have the node l(v) and edge (l(v), v).
Since root(T) is a boundary node T M is rooted at root(T). Figure 4 illustrates these definitions.

To each node v ∈ V (T) we associate a unique macro node denoted i(v). If u ∈ V (C) and C ∈ CS, then

i(u) =

u If u is boundary,

s(v, w) if u is a spine node and v, w ∈ δC,

l(v, w) if u is a left node and v, w ∈ δC,

r(v, w) if u is a right node and v, w ∈ δC,

l(v) if u is a leaf node and v ∈ δC.

13

v v

s(v, w)

l(v, w) r(v, w)

w w

(a) (b)

v v

l(v)

(c) (d)

Figure 4: The clustering and the macro tree. (a) An internal cluster. The black nodes are the boundary
node and the internal ellipses correspond to the boundary nodes, the right and left nodes, and spine path.
(b) The macro tree corresponding to the cluster in (a). (c) A leaf cluster. The internal ellipses are the
boundary node and the leaf nodes. (d) The macro tree corresponding to the cluster in (c).

Conversely, for any macro node x ∈ V (T M) define the macro-induced subgraph, denoted I(x), as the induced
subgraph of T of the set of nodes {v | v ∈ V (T), x = i(v)}. We also assign a set of labels to x given by
label(x) = {label(v) | v ∈ V (I(x))}. If x is spine node or a boundary node the unique node in V (I(x))
of greatest depth is denoted by first(x). Finally, for any set of nodes {x1, . . . , xk} ⊆ V (T M) we define
I(x1, . . . , xk) as the induced subgraph of the set of nodes V (I(x1)) ∪ · · · ∪ V (I(xk)).

The following propositions states useful properties of ancestors, nearest common ancestor, and the left-
to-right ordering in the cluster partition and in T . The propositions follows directly from the definition of
the clustering.

Proposition 2 For any pair of nodes v, w ∈ V (T), the following hold

(i) If i(v) = i(w) then v ≺T w iff v ≺I(i(v)) w.

(ii) If i(v) 6= i(w), i(v) ∈ {s(v′, w′), v′} and i(w) ∈ {l(v′, w′), r(v′, w′)}, then v ≺T w iff v ≺I(i(v),s(v′,w′),v′)

w.

(iii) In all other cases, w ≺T v iff i(w) ≺T M i(v).

Proposition 3 For any pair of nodes v, w ∈ V (T), the following hold

(i) If i(v) = i(w) then v C w iff v CI(i(v)) w.

(ii) If i(v) = l(v′, w′), i(w) ∈ {s(v′, w′), v′} then v C w iff v CI(l(v′,w′),s(v′,w′),v′) w.

(iii) If i(v) = r(v′, w′), i(w) ∈ {s(v′, w′), v′} then w C v iff w CI(r(v′,w′),s(v′,w′),v′) v.

(iv) In all other cases, v C w iff i(v) CT M i(w).

Proposition 4 For any pair of nodes v, w ∈ V (T), the following hold

14

(i) If i(v) = i(w) = l(v′) then ncaT (v, w) = ncaI(i(v),v′)(v, w).

(ii) If i(v) = i(w) ∈ {l(v′, w′), r(v′, w′)} then ncaT (v, w) = ncaI(i(v),s(v′,w′),v′)(v, w).

(iii) If i(v) = i(w) = s(v′, w′) then ncaT (v, w) = ncaI(i(v))(v, w).

(iv) If i(v) 6= i(w) and i(v), i(w) ∈ {l(v′, w′), r(v′, w′), s(v′, w′)} then
ncaT (v, w) = ncaI(i(v),i(w),s(v′,w′),v′)(v, w).

(v) If i(v) 6= i(w), i(v) ∈ {l(v′, w′), r(v′, w′), s(v′, w′)}, and i(w) �T M w′ then
ncaT (v, w) = ncaI(i(v),s(v′,w′),w′)(v, w′).

(vi) If i(v) 6= i(w), i(w) ∈ {l(v′, w′), r(v′, w′), s(v′, w′)}, and i(v) �T M w′ then
ncaT (v, w) = ncaI(i(w′),s(v′,w′),w′)(w, w′).

(vii) In all other cases, ncaT (v, w) = ncaT M (i(v), i(w)).

5.2 Preprocessing

In this section we describe how to preprocess T . First we make a cluster partition CS of the tree T with
clusters of size s, to be fixed later, and the corresponding macro tree T M in O(nT) time. The macro
tree is preprocessed as in 4.1. However, since nodes in T M contain a set of labels, we store for each node
v ∈ V (T M) a dictionary of label(v). Using perfect hashing the total time to compute all these dictionaries is
O(nT) expected time. Furthermore, we modify the definition of fl such that flT M (v, α) is the nearest ancestor
w of v such that α ∈ label(w).

Next we show how to preprocess the micro trees. For any labeled, ordered, forest S and M, N ⊆ V (S)
we define, in addition, to the set procedures the following useful procedures.

AncestorS(M). Return the set of all ancestors of nodes in M .

leftofS(M, N). Return a boolean indicating whether there is at least one node v ∈ M such that for all
nodes w ∈ S, v E w.

leftS(M). Return the leftmost node in M .

rightS(M). Return the rightmost node in M .

matchS(M, N, O), where M = {m1 C · · · C mk}, N = {v1 C · · · C vk}, O = {o1 C · · · C ol}, and oi = vj for
some j. Return the set R := {mj | oi = vj , 1 ≤ i ≤ l}.

MopS(M, N) Return the triple (R1, R2, bool). Where R1 = mop(M, N)|1 and R2 = mop(M, N)|2, and bool

indicates whether there is any node in v ∈ M such that for all nodes w ∈ N , v D w.

MaskS(α), α ∈ Σ. Return the set of nodes with label α.

We show how to implement these procedures on all macro induced subforest S of each cluster C ∈ CS.
Note that a cluster contains at most a constant number of such subforests. For the procedures ParentS ,
AncestorS , DeepS , NcaS , leftofS , leftS , rightS , matchS , and MopS we will simply precompute
and store the result of any input for all forests S with at most s nodes. We assume that the input and output
node sets of the above procedures is given as a bitstring of length s. Hence, for any forest S the total of
number of distinct node sets is at most 2s. Since at most 3 input sets occur in the procedures and the total
number of forest of size at most s is O(22s) it follows that there are 2O(s) distinct inputs to each procedure
to precompute and store. Furthermore, it is straightforward to compute all results within the same time
bound. If c is the constant hidden in the O notation we set s = 1

c
log nT and the total preprocessing time and

space used becomes 2cs = 2log nT = nT . Furthermore, since the size of the input to procedures is logarithmic
we can lookup the result of any input in constant time.

15

Next we show how to compute the remaining procedures MaskS and FlS . Note that since the size of
the alphabet is potentially Ω(nT), we cannot precompute all values for these procedures in O(nT) time.
Instead we implement MaskS using a dictionary for each subforest S indexed by the labels in S. Again,
using perfect hashing we can build all such tables in O(nT) excepted time using linear space. Hence, we can
lookup MaskS in constant time. Finally, we can compute Fl in constant time with the other procedures
since FlS(M, α) = DeepS(AncestorS(M) and MaskS(α)), where and denotes a bitwise and operation.

As discussed in Section 4.6, if we require worst-case running times instead of the expected O(nT) time
above we may instead use a deterministic dictionary without changing the overall running time of our tree
inclusion algorithm.

5.3 A Compact Representation of Node Sets

In this section we show how to implement the set procedures in sublinear time using the clustering and
preprocessing defined in the previous section.

First we define a compact representation of node sets. A micro-macro node set (mm-node set) V for
a tree T with macro tree T M is a set of pairs V = {(x1, M(xk)), . . . , (xk, M(xk))}, such that for any pair
(x, M(x)) ∈ V :

(i) x ∈ V (T M),

(ii) M(x) ⊆ V (I(x)),

(iii) M(x) 6= ∅.

Additionally, if for any pairs (x, M(x)), (y, M(y)) ∈ X :

(iv) x 6= y,

we say that V is canonical. For any mm-node set V there is a corresponding set of nodes S(V) ⊆ V (T) given
by S(V) = ∪(x,M(x))∈VM(x). Conversely, given a set of nodes V there is a unique canonical mm-node set V
given by:

V = {(x, M(x)) | M(x) = V (I(x)) ∩ X 6= ∅}.

We say that V is deep iff the set S(V) is deep. Note that by Lemma 2(ii) an mm-node set V may be deep
even though the node set V|1 is not. Since the size of the macro tree is O(nT / log nT) we have that,

Lemma 12 For any canonical mm-node set V, |V| ≤ O(nT / log nT).

As with node lists, we define a micro-macro node list (mm-node list), X = [(x1, M(xk)), . . . , (xk, M(xk))],
as a list where each element is an element of an mm-node set. We say that X is ordered if x1 CT M · · ·CT M xk

and semiordered if x1 ET M · · · ET M xk.
In the following we show how to implement the set procedures using mm-node lists. As before we assume

that the input to each of the procedures is deep. Each of the procedures, except Deep, accept as input mm-
node lists which are semiordered, canonical, and deep and return as output semiordered mm-node list(s).
The input for Deep is semiordered and canonical and the output is semiordered, canonical, and deep. Since
the output of the procedures is not necessarily canonical and Deep requires canonical input we need the
following additional procedure to make Emb work:

Canonical(X), where X is a semiordered mm-node list. Return a semiordered canonical mm-list R such
that S(R) = S(X).

We simply run this procedure on any input mm-node list to Deep immediately before executing Deep.

16

5.4 Implementation of the Set Procedures

The implementation of all set procedures is described in this section.

Parent(X). Initially, set R := []. For each i, 2 ≤ i ≤ |X |, set (x, M(x)) := X [i]. There are three cases:

1. x ∈ {l(v, w), r(v, w)}. Compute N = ParentI(x,s(v,w),v)(M(x)). For each macro node s ∈
{x, s(v, w), v} (in semiorder) set R := R ◦ (s, N ∩ V (I(s))) if N ∩ V (I(s)) 6= ∅.

2. x = l(v). Compute N = ParentI(x,v)(M(x)). For each macro node s ∈ {x, v} (in semiorder) set
R := R ◦ (s, N ∩ V (I(s))) if N ∩ V (I(s)) 6= ∅.

3. x 6∈ {l(v, w), r(v, w), l(v)}. If N = ParentI(x)(M(x)) 6= ∅ set R := R ◦ (x, N). Otherwise, if
parentT M (x) 6= ⊥ set R := R ◦ (parentT M (x), first(parentT M (x))).

Return R.

Consider the three cases of procedure Parent. Case 1 handles the fact that left and right nodes may have a
spine node or a boundary node as parent. Since no left or right node can have a parent outside their cluster
there is no need to compute parents in the macro tree. Case 2 handles the fact that the nodes in a leaf node
may have the boundary node as parent. Since none of the nodes in the leaf node can have a parent outside
their cluster there is no need to compute parents in the macro tree. Case 3 handles boundary and spine
nodes. Since the input to Parent is deep there is either a parent within the micro tree or we can use the
macro tree to compute the parent of the root of the micro tree.

Nca(X). Initially, set R := []. For each i, 1 ≤ i ≤ |X |, set (x, M(x)) := X [i]1 and (y, M(y)) := X [i]2 and
compare x and y. There are two cases:

1. x = y: Let z := x. There are two subcases:

If z is a boundary node then set R := R ◦ (z, z). Otherwise set

S :=

I(z, v), if z = l(v),

I(z, s(v, w), v), if z ∈ {l(v, w), r(v, w)},

I(z), if z = s(v, w).

Compute M := NcaS(M(x), M(y)). For each macro node s in S (in semiorder) we set R :=
R ◦ (s, M ∩ V (I(s))) if M ∩ V (I(s)) 6= ∅.

2. x 6= y: Compute z := NcaT M (x, y). There are two subcases:

If z is a boundary node then set R := R◦ (z, z). Otherwise z must be a spine node s(v, w). There
are three cases:

(a) If x ∈ {l(v, w), s(v, w)} and y ∈ {s(v, w), r(v, w)} compute M := NcaI(x,y,s(v,w),v)(M(x), M(y)).

(b) If x = l(v, w) and y �T w compute M := NcaI(x,s(v,w),w)(M(x), w).

(c) If y = r(v, w) and x �T w compute M := NcaI(y,s(v,w),w)(w, M(y)).

Set R := R ◦ (z, M ∩ V (I(z))).

Return R.

Consider the two cases of procedure Nca. Case 1 handles the cases (i), (ii), and (iii) from Proposition 4.
Case 2 handles the cases (iv), (v), (vi) and (vii) from Proposition 4.

Deep(X). Initially, set (x, M(x)) := X [1] and R := []. For each i, 2 ≤ i ≤ |X |, set (xi, M(xi)) := X [i] and
compare x and xi:

1. x C xi: Set R := R ◦ (x,DeepI(x)M(x)), and (x, M(x)) := (xi, M(xi)).

17

2. x ≺ xi: If xi ∈ {l(v, w), r(v, w)} and x = s(v, w) compute N := DeepI(xi,s(v,w))(M(x) ∪ M(xi)).
Then, set (x, M(x)) := (x, N(x)) and if N(xi) := N ∩ I(xi) 6= ∅ set R := R ◦ (xi, N(xi)).
Otherwise (xi 6∈ {l(v, w), r(v, w)} or x 6= s(v, w)) set (x, M(x)) := (xi, M(xi)).

3. xi ≺ x: As above, with x and xi replaced by each other.

Return R.

The above Deep procedure resembles the previous Deep procedure implemented on the macro tree. The
biggest difference is that a mm-node set X may be deep even though the set X|1 is not deep in T M . However,
this can only happen for nodes in the same cluster which is straightforward to handle (see Proposition 2(i)
and (ii)).

Mop(X ,Y). Initially, set R := [],X ′ := X|1, Z := X|2, r := ⊥, s := ⊥, i := 1, and j := 1. Repeat the
following until i > |X | or h > |Y|:

If Z[i]1 = l(v, w) set j := j + 1 until Z[i]1 E Y[j]1 or Y[j]1 = s(v, w). If Z[i]1 = s(v, w) set
j := j + 1 until Z[i]1 EY[j]1 or Y[j]1 = r(v, w). Otherwise set j := j + 1 as long as Z[i]1 BY[j]1.

Set (x, M(x)) := X ′[i], (z, M(z)) := Z[i], and (y, M(y)) := Y[j]. There are two cases:

1. z C y: If s C y set R := R ◦ (r, s). Set r := (x,rightI(x)(M(x))), s := (y, leftI(y)(M(y))),
and i := i + 1.

2. Either

(a) z = y,

(b) z = l(v, w) and y = s(v, w),

(c) z = s(v, w) and y = r(v, w).

If s C y then set R := R ◦ (r, s).
If s = y and leftofI(z)(M(z), M(y)) = true then set R := R ◦ (r, s).
Compute (M1, M2, match x) := MopI(z,y)(M(z), M(y)). If M1 6= [] then compute M :=
match(M(x), M(z), M1), and set R := R ◦ ((x, M), (y, M2)). Set r := ⊥, s := ⊥, and
j := j + 1. If match x = false set i := i + 1.

Return R.

The above Mop procedure resembles the previous Mop procedure implemented on the macro tree in one of
the cases. Case 1 in the above iteration is almost the same as the previous implementation of the procedure.
Case 2(a) are due to the fact that we can have nearest neighbor pairs within a macro-induced subtree I(x).
Cases 2(b) and 2(c) takes care of the special cases caused by the spine nodes.

Fl(X , α). Initially, set R := [] and S := []. For each (x, M(x)) := X [i], 1 ≤ i ≤ |X | there are 2 cases:

1. x ∈ {l(v, w), r(v, w)}. Compute N = FlI(x,s(v,w),v)(M(x), α). If N 6= ∅, then for each macro node
s ∈ {x, s(v, w), v} (in semiorder) set R := R◦ (s, N ∩ V (I(s))) if N ∩ V (I(s)) 6= ∅. Otherwise, set
U := U ◦ parent(v).

2. x 6∈ {l(v, w), r(v, w)}. Compute N = FlI(x)(M(x), α). If N 6= ∅ set R := R◦(x, N) and otherwise
set U := U ◦ parent(x).

Subsequently, compute S := FlT M (U, α), and use this result to compute the mm-node list S :=
[(S[i],FlI(S[i])(first(S[i]), α)) | 1 ≤ i ≤ |S|]. Merge the mm-node lists S and R with respect to
semiorder and return the result.

The Fl procedure is similar to Parent. The cases 1 and 2 compute Fl on a micro tree. If the result is
within the micro tree we add it to R and otherwise we store the node in the macro tree which contains
parent of the root of the micro tree in a node list S. We then compute Fl in the macro tree on the list S
and use this to compute the final result.

Finally, we give the trivial Canonical procedure.

18

Canonical(X). For each node x ∈ V (T M) maintain a set N(x) ⊆ I(V (x)) initially empty. For each i,
1 ≤ i ≤ |X | set N(X [i]1) := N(X [i]1) ∪X [i]2. Then, set R := [] and traverse T M in any semiordering.
For each node x ∈ V (T M), if N(x) 6= ∅ set R := R ◦ (x, N(x)).

Return R.

5.5 Correctness of the Set Procedures

In this section we show the correctness of the mm-node set implementation of the set procedures.

Lemma 13 Procedure Parent(X) is correct.

Proof. Follows immediately by looking at all different kinds of macro nodes, and by the comments below
the implementation of the procedure. �

Lemma 14 Procedure Nca(X) is correct.

Proof. Let (x, M(x)) := X [i]1 and (y, M(y)) := X [i]2. We will show that v ∈ ncaT (M(x), M(y)) iff
v ∈ S(R). We first show v ∈ ncaT (M(x), M(y)) ⇒ v ∈ S(R). There must exist u ∈ M(x) and w ∈ M(y)
such that v = ncaT (u, w). Consider the cases of Proposition 4. In case (i), (ii), and (iii) we have x = y. This
is Case 1 in the procedure. It follows immediately from the implementation that v ∈ R. Case (iv)-(vi). This
is Case 2(a)-(c) in the procedure since the input is semiordered. Case (vii) is taken care of by both case 1
and 2 in the procedure (z is a boundary node).

That v ∈ ncaT (M(x), M(y)) ⇐ v ∈ S(R) follows immediately from the implementation and Proposi-
tion 4. �

Lemma 15 Procedure Deep(X) is correct.

Proof. The input to Deep is canonical and semiordered. Let u ∈ S(X) and M = S(X)∩ V (T (u)). We will
show M = ∅ iff u ∈ S(R). At some point during the execution of the procedure we have u ∈ M(xi).

We first prove M = ∅ ⇒ u ∈ S(R). Consider the iteration where u ∈ M(xi). It is easy to verify that
either u ∈ S(R) after this iteration or u ∈ M(x). Now assume u ∈ M(x). It is easy to verify that we have
u ∈ M(x) until (x,DeepI(x)(M(x))) is appended to R. Since M = ∅ we have u ∈ DeepI(x)(M(x)) and thus
u ∈ S(R). �

To prove the correctness of procedure Mop we need the following proposition.

Proposition 5 Let R = [(ri, M(ri)) | 1 ≤ i ≤ k] and S = [(si, M(si)) | 1 ≤ i ≤ l] be deep, canonical lists.
For any pair of nodes r ∈ M(ri), s ∈ M(sj) for some i and j, then (r, s) ∈ mopT (S(R), S(S)) iff one of the
following cases are true:

(i) ri = sj and (r, s) ∈ mopI(ri)(M(ri), M(sj)).

(ii) ri = l(v, w), sj = s(v, w) and (r, s) ∈ mopI(ri,sj)(M(ri), M(sj)).

(iii) ri = s(v, w), sj = r(v, w) and (r, s) ∈ mopI(ri,sj)(M(ri), M(sj)).

(iv) ri = l(v, w), sj = r(v, w), ri+1 6= s(v, w), sj−1 6= s(v, w), r = right(M(ri)), s = left(M(sj)), and
(ri, sj) ∈ mopT M (R|1,S|1).

(v) ri, sj ∈ C ∈ CS, ri 6= sj, either ri or sj is the bottom boundary node w of C, r = right(M(ri)),
s = left(M(sj)), and (ri, sj) ∈ mopT M (R|1,S|1).

19

(vi) ri ∈ C1 ∈ CS, sj ∈ C2 ∈ CS, C1 6= C2, r = right(M(ri)), s = left(M(sj)), and (ri, sj) ∈
mopT M (R|1,S|1).

The proposition follows immediately, by considering all cases for ri and sj , i.e., ri = sj , ri and sj are in the
same cluster, and ri and sj are not in the same cluster. Using Proposition 5 we get

Lemma 16 Procedure Mop(X ,Y) is correct.

Proof. Let (x, M(x)) = X ′[i] and (z, M(z)) = Z[i]. We call r, t a corresponding pair in (M(x), M(z)) iff r
and t are the ith node in the left to right order of M(x) and M(z), respectively. Let

S := {(r, s) | r, t corresponding pair in (M(x), M(z)), and (t, s) ∈ mopT (S(Z), S(Y))}.

We first show (vx, vy) ∈ S ⇒ (vx, vy) is a corresponding pair in (R[i]1,R[i]2). Let (vz , vy) be the pair in
mopT (S(Z), S(Y)), where vz ∈ M(zi) and vy ∈ M(yj), and look at each of the cases from Proposition 5.

- Case (i), (ii), and (iii). This is case 2 in the procedure. We have vx ∈ M and vy ∈ M2, which are both
added to R.

- Case (iv), (v), and (vi). This is case 1 in the procedure. Here we set r := (x,rightI(x)(M(x))) and
s := (y, leftI(y)(M(y))), where such vx ∈ M(x) and vy ∈ M(y). We need to show that (r, s) is
added to R before r and s are changed. If the next case is (i) again then it follows from the fact
that (zi, yj) ∈ mopT M (Z|1,Y|1). If the next case is (ii) then we must have s C y or s = y and
leftofI(z)(M(z), M(y)) = true since (zi, yj) ∈ mopT M (Z|1,Y|1).

We now show if (vx, vy) is a corresponding pair in (R[i]1,R[i]2) then (vx, vy) ∈ S. Look at the two cases from
the procedure. In case 1 we set r := (x,rightI(x)(M(x))), s := (y, leftI(y)(M(y))) because z C y. The pair
(r, s) is only added to R if there is no other z′ ∈ Z|1, zCz′ such that z′Cy, or if z′ = Cy and there are nodes
in M(y) to the left of all nodes in M(z′). This corresponds to case (iv), (v), or (vi) in Proposition 5. In
case 2 it is straightforward to verify that it corresponds to one of the cases (i), (ii), or (iii) in Proposition 5. �

Lemma 17 Procedure Fl(X , α) is correct.

Proof. We only need to show that case 1 and 2 correctly computes Fl on a micro tree. That the rest of the
procedures is correct follows from case (iii) in Proposition 2 and the comments after the implementation.

That case 1 and 2 are correct follows from Proposition 2. Since we always call Deep on the output from
Fl(X , α) there is no need to compute Fl in the macro tree if N is nonempty. �

Lemma 18 Procedure Canonical(X) is correct.

Proof. Follows immediately from the implementation of the procedure. �

5.6 Complexity of the Tree Inclusion Algorithm

For the running time of the macro-node list implementation observe that, given the data structure described
in Section 5.2, all set procedures, except Fl, perform a single pass over the input using constant time at
each step. Procedure Fl(|X |) uses O(|X |) time to compute R and U since each step takes constant time.
Computing S takes time O(nT / lognT) and computing S takes time O(|S|). Merging R and S takes time
linear in the length of the two lists. It follows that Fl runs in O(nT / lognT) time. To summarize we have
shown that,

20

Lemma 19 For any tree T there is a data structure using O(nT) space and O(nT) expected preprocessing
time which supports all of the set procedures in O(nT / lognT) time.

Next consider computing the deep occurrences of P in T using the procedure Emb of Section 3 and Lemma 19.
Since each node v ∈ V (P) contributes at most a constant number of calls to set procedures it follows
immediately that,

Theorem 4 For trees P and T the tree inclusion problem can be solved in O(nP nT / lognT) time and
O(nP + nT) space.

Combining the results in Theorems 2, 4 and Corollary 1 we immediately have the main result of Theo-
rem 1.

21

References

[1] L. Alonso and R. Schott. On the tree inclusion problem. In Proceedings of Mathematical Foundations
of Computer Science, pages 211–221, 1993.

[2] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Minimizing diameters of
dynamic trees. In Automata, Languages and Programming, pages 270–280, 1997.

[3] Stephen Alstrup, Jacob Holm, and Mikkel Thorup. Maintaining center and median in dynamic trees.
In Scandinavian Workshop on Algorithm Theory, pages 46–56, 2000.

[4] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problem. In Proc. of Foundations
of Computer Science (FOCS) 1998, pages 534–543, 1998.

[5] Stephen Alstrup and Theis Rauhe. Improved labeling scheme for ancestor queries. In SODA ’02:
Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 947–953.
Society for Industrial and Applied Mathematics, 2002.

[6] Philip Bille. A survey on tree edit distance and related problems, Submitted, 2004.

[7] Weimin Chen. More efficient algorithm for ordered tree inclusion. Journal of Algorithms, 26:370–385,
1998.

[8] M. J. Chung. O(n2.5) algorithm for the subgraph homeomorphism problem on trees. J. of Algorithms,
8(1):106–112, 1987.

[9] Richard Cole, Ramesh Hariharan, and Piotr Indyk. Tree pattern matching and subset matching in
deterministic o(n log3 n)-time. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete
algorithms, pages 245–254. Society for Industrial and Applied Mathematics, 1999.

[10] P. F. Dietz. Fully persistent arrays. In F. Dehne, J.-R. Sack, and N. Santoro, editors, Proceedings of
the Workshop on Algorithms and Data Structures, volume 382 of Lecture Notes in Computer Science,
pages 67–74, Berlin, 1989. Springer-Verlag.

[11] Moshe Dubiner, Zvi Galil, and Edith Magen. Faster tree pattern matching. In Proceedings of the 31st
IEEE Symposium on the Foundations of Computer Science (FOCS), pages 145–150, 1990.

[12] P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object oriented languages.
In Proc. of the 4th European Symp. on Algorithms (ESA). Lecture Notes in Computer Science, pages
107–120, 1996.

[13] Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. In IEEE Symposium on Foundations of Computer Science, pages 632–641, 1991.

[14] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dictionaries. J. Algorithms,
41(1):69–85, 2001.

[15] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal of
Computing, 13(2):338–355, 1984.

[16] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees. Journal of the Association
for Computing Machinery (JACM), 29(1):68–95, 1982.

[17] Pekka Kilpeläinen. Tree Matching Problems with Applications to Structured Text Databases. PhD thesis,
University of Helsinki, Department of Computer Science, November 1992.

22

[18] Pekka Kilpeläinen and Heikki Mannila. Retrieval from hierarchical texts by partial patterns. In Pro-
ceedings of the 16th Ann. Int. ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 214–222. ACM Press, 1993.

[19] Pekka Kilpeläinen and Heikki Mannila. Ordered and unordered tree inclusion. SIAM Journal of Com-
puting, 24:340–356, 1995.

[20] P.N. Klein. Computing the edit-distance between unrooted ordered trees. In Proceedings of the 6th
annual European Symposium on Algorithms (ESA) 1998., pages 91–102. Springer-Verlag, 1998.

[21] Donald Erwin Knuth. The Art of Computer Programming, Volume 1. Addison Wesley, 1969.

[22] S. Rao Kosaraju. Efficient tree pattern matching. In Proceedings of the 30th IEEE Symposium on the
Foundations of Computer Science (FOCS), pages 178–183, 1989.

[23] Heikki Mannila and K. J. Räihä. On query languages for the p-string data model. Information Modelling
and Knowledge Bases, pages 469–482, 1990.

[24] Jiri Matoušek and R. Thomas. On the complexity of finding iso- and other morphisms for partial k-trees.
Discrete Mathematics, 108:343–364, 1992.

[25] S. Muthukrishnan and Martin Müller. Time and space efficient method-lookup for object-oriented pro-
grams. In SODA ’96: Proceedings of the seventh annual ACM-SIAM symposium on Discrete algorithms,
pages 42–51. Society for Industrial and Applied Mathematics, 1996.

[26] Thorsten Richter. A new algorithm for the ordered tree inclusion problem. In Proceedings of the 8th
Annual Symposium on Combinatorial Pattern Matching (CPM), in Lecture Notes of Computer Science
(LNCS), volume 1264, pages 150–166. Springer, 1997.

[27] T. Schlieder and F. Naumann. Approximate tree embedding for querying XML data. In ACM SIGIR
Workshop On XML and Information Retrieval, Athens, Greece, 2000.

[28] Torsten Schlieder and Holger Meuss. Querying and ranking XML documents. J. Am. Soc. Inf. Sci.
Technol., 53(6):489–503, 2002.

[29] R. Shamir and D. Tsur. Faster subtree isomorphism. J. of Algorithms, 33:267–280, 1999.

[30] Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the Association for Computing Ma-
chinery (JACM), 26:422–433, 1979.

[31] A. Termier, M. Rousset, and M. Sebag. Treefinder: a first step towards XML data mining. In IEEE
International Conference on Data Mining (ICDM), 2002.

[32] Huai Yang, Li Lee, and Wynne Hsu. Finding hot query patterns over an xquery stream. The VLDB
Journal, 13(4):318–332, 2004.

[33] Liang Huai Yang, Mong Li Lee, and Wynne Hsu. Efficient mining of XML query patterns for caching.
In Proceedings of the 29th VLDB Conference, pages 69–80, 2003.

[34] P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree signatures for XML querying and navigation. In
LNCS 2824, pages 149–163, 2003.

[35] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between trees and
related problems. SIAM Journal of Computing, 18:1245–1262, 1989.

23

