
Bisimulation Congruences for Homer
a calculus of Higher-order mobile embedded resources

Thomas Hildebrandt
Jens Chr. Godskesen
Mikkel Bundgaard

IT University Technical Report Series TR-2004-52

ISSN 1600–6100 October 2004

Copyright c© 2004, Thomas Hildebrandt
Jens Chr. Godskesen
Mikkel Bundgaard

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-074-3

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Bisimulation Congruences for Homer
a calculus of Higher-order mobile embedded resources

Thomas Hildebrandt, Jens Chr. Godskesen, and Mikkel Bundgaard

Department of Theoretical Computer Science
IT University of Copenhagen

Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark
{hilde, jcg, mikkelbu}@itu.dk

Abstract. We extend Howe’s method for proving that late labelled transition bisimula-
tions are congruences to a core process passing calculus with local names, extended with
non-linear active process mobility and nested locations, as found in the Seal calculus,
M-calculus, and Kell-calculus. The calculus we consider, called Homer for Higher-order
Mobile Embedded Resources, has a very simple syntax and semantics, which conserva-
tively extend the standard syntax and semantics for process passing calculi. The extension
of Howe’s method gives a sound characterisation of barbed bisimulation congruence in
terms of a late contextual bisimulation. We show that early contextual bisimulation is
complete with respect to barbed bisimulation congruence, but that the late bisimulation
is in fact strictly included in the early bisimulation. We discuss the issue of scope ex-
tension through location boundaries in detail, in particular the difference between fresh
name generation and static local names. We propose free name extension as a primitive
construct in calculi with non-linear process mobility, explicit locations and local names.

1 Introduction

Process passing calculi, such as Plain CHOCS [1], provide an explicit kind of process mobility,
by allowing a process to be passed on a named channel and substituted for a process variable
in the receiving process. This can be expressed by the reaction rule

n〈r〉 ... p ‖ n(x) ... q ↘↘↘ p ‖ q[r/x] , (1)

where r is a process and x is a process variable binding any number of occurrences of x in q.
The process r is usually assumed to be passive, meaning that it can neither compute internally
nor interact with other processes before it has been sent. The receiver may activate any number
of copies of the process, but once a copy has started computing, it cannot be moved again. This
kind of mobility is known as code mobility or weak mobility, as opposed to (active) process
mobility, or strong mobility, allowing processes to move between locations while they compute
and interact with other processes.

The first-order π-calculus [2] allows implicit representations of code mobility as well as
active process mobility. Code mobility is encoded by sending a reference to a process instead
of the actual process, and active process mobility is encoded by representing the location of a
(computing) process by the set of names at which it can communicate (see e.g. [3]). First-order
calculi are usually considered simpler to reason about than higher-order calculi. However, the
fact that location and mobility are derived notions in the π-calculus, makes it less direct to
express properties and interrelations of locations, such as e.g. nesting of locations. Moreover,
the encoding of active process mobility in the π-calculus is intrinsically linear: copyability of
processes must be coded explicitly, such that a process at any step can provide a copy of itself.

Several recent calculi for mobility, such as the Ambient calculus [4] and the Seal calcu-
lus [5], have introduced an explicit notion of, possibly nested, named locations (called ambi-
ents or seals, respectively). In both calculi n[p] denotes an active mobile process p computing

at a location named n. The semantics of these process calculi are as usual first defined by a set
of reaction rules and a notion of barbed congruence. A standard problem is then to provide a
labelled transition bisimulation congruence, which is desirable for co-inductive compositional
reasoning about processes, and preferably prove that it is a sound and complete characterisa-
tion of the barbed congruence defined for the reaction semantics. This problem is well-known
to be hard for higher-order calculi, in particular if one allows local names and active copyable
mobile processes at explicit locations, as in the Seal calculus (for which only sound character-
isations have been provided so far).

A classical method for proving that a higher-order labelled transition bisimulation is a con-
gruence is the method of Howe [6, 7]. The method is to define a congruence inductively in the
structure of the process terms that includes a late labelled bisimulation, and then prove it to be
included in the labelled bisimulation as well. Howe’s method was originally introduced for lazy
functional programming languages, but has been applied to a calculus similar to Plain CHOCS
(with local names and code mobility) by Baldamus and Frauenstein in [8]. The main technical
contribution of the present paper is to extend Howe’s method to local names, code mobility
and non-linear active process mobility and explicit, nested locations. To this end, we introduce
a core process passing calculus with the standard notion of local names, extended with nested
names and a notion of (active) process pulling. These two extensions allow passive processes
to be sent to (sub) locations and active processes to be pulled/moved from (sub) locations. We
call the calculus Homer as short for Higher-Order Mobile Embedded Resources 1.

Active process mobility is introduced in Homer by the prefix n[r] denoting a resource r
residing at the location (or address) n, which may be moved (taken or pulled) by the comple-
mentary prefix, n(x), expressed by a reaction rule

n[r] ... p ‖ n(x) ... q ↘↘↘ p ‖ q[r/x] , (2)

similar to rule (1) for passive process-passing. However, there are two important differences
compared to the passive process passing: The first is that the process r in the prefix n[r] may
perform internal computations, i.e.

r ↘↘↘ r′ implies n[r] ... p ↘↘↘ n[r′] ... p . (3)

This kind of rule was also considered by Boudol in [9]. It allows mobile resources to compute,
but not to interact with other processes before movement. The second difference compared
to passive process passing is that we allow interaction with active mobile resources. It is in-
troduced by allowing nested names as location addresses, as found in nested name spaces of
distributed systems and introduced in the calculus of Mobile Resources (MR) [10]. For in-
stance, a resource r may be sent to the subaddress server : 80 by the reaction

server : 80〈r〉 ... p ‖ server[80(x) ... q′ ‖ q′′] ↘↘↘ p ‖ server[q′[r/x] ‖ q′′] . (4)

Dually, a resource r may be taken from the subaddress server : 80 by the reaction

server[80[r] ... q′ ‖ q′′] ‖ server : 80(x) ... p ↘↘↘ server[q′ ‖ q′′] ‖ p[r/x] . (5)

1 and as a reference to the legend of Troy and the dangerous potential of mobile embedded resources.

2

In general, we allow interaction with arbitrarily deeply nested sub resources. However,
note that two processes that are neither locally parallel nor in the sub/super process relation
need a common super process to act as a router that mediates communication. For instance,
the processes at locations A and B in the process

A[toBat80[r] ... q′ ‖ q′′] ‖ A : toBat80(x) ... B : 80〈x〉 ‖ B[80(x) ... p′ ‖ p′′] ↘↘↘
A[q′ ‖ q′′] ‖ B : 80〈r〉 ‖ B[80(x) ... p′ ‖ p′′] ↘↘↘
A[q′ ‖ q′′] ‖ B[p′[r/x] ‖ p′′]

(6)

cannot communicate synchronously with each other. Thus, Homer respects the recommended
distinction between local synchronous and global asynchronous communication. Only are sub
processes also considered as local processes.

The second feature of Homer, local names, is introduced in the usual way, letting (n)p
denote a process p in which the name n is local. This provides the means to control access
to resources. A standard example is the perfect firewall equation [4], which in the Ambient
calculus is written

(n)(n[p]) ≈ 000 , (7)

expressing that a resource computing at a local location has no observable behaviour.
When a resource is moved from a location it may be necessary to extend the scope of a

name through a location boundary. For instance, if the resource r below contains the name n,
we will expect the reaction

m[(n)(m′[r] ‖ p)] ‖ m : m′(x) ... q ↘↘↘ (n)(m[p] ‖ q[r/x]) (8)

in which the scope of n is extended appropriately. We will refer to this kind of scope extension
as vertical scope extension, since it extends the scope of a name vertically in the location tree,
as opposed to the usual scope extension that extends the scope between parallel processes at
the same location.

In the Ambient calculus vertical scope extension is dealt with in the structural congruence
by introducing the equation

m[(n)p] ≡ (n)m[p] , if n 6= m . (9)

However, when combining local names and non-linear process mobility this equation is
unsound, as also identified in [5, 11, 12]. The vertical scope extension rule identifies the two
processes at the left hand of the reactions

m[(n)p] ‖ m(x) ... (x ‖ x) ↘↘↘ (n)p ‖ (n)p (10)

and
(n)(m[p]) ‖ m(x) ... (x ‖ x) ↘↘↘ (n)(p ‖ p) (11)

but the right hand sides will in general not be equivalent. The solution taken in [11, 12] is
to exclude (9) and (eagerly) perform the vertical scope extension in the reaction rules when
a process is moved. This means that copies of a computing process will always share local
names, and in particular that the left hand process of the reaction (10) will perform a reaction

3

to the right hand process of the reaction (11) above. This choice can be seen as considering the
local name constructor as fresh name generation (with priority over mobility).

In [5] they also exclude (9), but choose to extend the scope of the name n in the reaction
(8) if and only if the name n is free in r. In Homer we take the same view of vertical scope
extension. It means that local names are not necessarily shared between dynamically created
copies of the same running process as demonstrated by (10), that only happens if the scope
of the name is first extended (by (8) for instance) to encompass the process that performs the
copy (as in e.g. (11)). This choice can be seen as considering the local name constructor as a
static local name (e.g. an internal channel or address) of the resource. We believe that both the
fresh and the static local name disciplines are interesting for active process mobility.

The static local name discipline implies that a context can test if a name is free in a mo-
bile process. This can be illustrated by the following example, assuming n is free in p and
combining the reductions (8), (10) and (11) above:

m[(n)(m′[r] ‖ p)] ‖ m : m′(z) ... m(x) ... (x ‖ x) (12)

Since the scope of n is extended if and only if n is free in r, the process reduces to either the
process in (10) or the process in (11), depending on whether or not n is free in r. Consequently,
for any non-trivial congruence related processes r and r′ must have the same set of free names.
We refer to bisimulations between processes with the same set of free names as well typed
relations and refer to the set of free names as the interface of a process. In particular, the
firewall equation (7) will only hold if the process p has no free names. This is remedied by
including a novel process operator {n} in the calculus for extending the interface of a process
with an idle name n. It allows us to state a well typed firewall equation as

(n)(n[p]) ≈ {m1, m2, . . . , mk}000 fn(p)\{n} = {m1, m2, . . . , mk} (13)

where fn(p) is the set of free names in p.
Note that the example (being similar to (12) above)

m[(n)(m′[{n}r] ‖ p)] ‖ m : m′(z) ... m(x) ... (x ‖ x) ,

where n is not free in r can be used to show that interface extension {n} cannot be extended
vertically either.

The above constructions are the only primitives in Homer. In particular, process passing is
the only means of communication, thus, the issue of name passing is separated from process
passing. In [13] we show that the synchronous π-calculus can in fact be encoded in a (simpli-
fied) variant of Homer. The major design criteria behind Homer is to provide a simple setting
in which to study the interrelation between higher-order2, non-linear active process mobility,
nested locations and local names, and the problem of characterising a notion of barbed congru-
ence by a labelled transition bisimulation congruence. In particular, the syntax and semantics
conservatively extend the standard syntax and semantics for local names and process passing
as found in e.g. Plain CHOCS.

2 We use the term higher-order as synonym for process-passing, although Homer in the sense of [14] is
only second-order.

4

Our adaptation of Howe’s method allows us to show that both strong and weak late con-
textual bisimulation are congruences for Homer. This gives sound characterisations of the
respective barbed bisimulation congruences. To get a complete characterisations one needs to
show that the barbed bisimulation congruences are included in the late labelled bisimulation
congruence as well. If the calculus is expressive enough, i.e. it allows to express the appropri-
ate “testing” contexts for all labels in the labelled semantics, it is usually possible to show that
barbed bisimulation congruence is included in an early labelled bisimulation. We prove that
this is indeed the case for strong 3 barbed bisimulation. One may then proceed to show that
early and late labelled bisimulations coincide. However, we show that this is not the case for
Homer. Alternatively, one may try to prove directly that the early bisimulation is a congruence.
We conjecture that this is the case, and are currently working on extending the results of the
present paper to early labelled bisimulations for Homer.

Related Work Homer shares with the Seal calculus [5, 15], the M-calculus [16] (and its recent
successor the Kell calculus [12]), the ability to represent copyable, objectively mobile anony-
mous resources in nested named locations. That the mobile resources are moved objectively
means that they are moved by an outside process. That they are anonymous means that the lo-
cal location boundary and its name disappears when the resource is moved. This is opposed to
the Ambient calculus, where ambients move subjectively (by themselves) together with their
named location boundary, and cannot be copied4. The M-calculus and the Kell calculus of
Schmitt and Stefani share with Homer in being based on process passing and process substi-
tution. The Kell calculus introduces, independently of our work, an active process prefix as
found in Homer.

The syntax and transition semantics of Homer is considerably simpler than for the above
calculi. In particular, seals are moved by an atomic three-party interaction (as in [10]), which
introduces three partial synchronisations for mobility in the labelled transition semantics. Be-
sides complicating the labelled transition semantics, three-party interactions also abstract from
a locking scheme that might be non-trivial to implement in a global, distributed system.

The treatment of vertical scope extension has varied for the various versions of the Seal
calculus. Originally [5], as described above, it was dealt with as in Homer, but formulated using
an auxiliary heating relation. In [15] the authors take a more restrictive stand that bound names
in a process have to be explicit communicated by name passing to the surrounding environment
before the process can be moved. Hence the mobility of a process depends on name-passing,
which means that one needs the primitives for name-passing to be explicit in the calculus.
Moreover, mobile resources are in fact blocked from moving if they require vertical scope
extension, which, as also remarked in [12], seems quite counterintuitive. As in Homer, contexts
can test the free names of a process, which implies that non-trivial congruences must require
related processes to have the same set of free names. This has been added to the definition in
the later version of the paper [17]. It seems to suggest that support for interface extension as
introduced in Homer should be added to the Seal calculus, e.g. to allow proving the firewall
property for non-trivial processes.

3 it also holds for the weak case, if the calculus is extended with a notion of passive process pulling as
in [13].

4 The M-calculus in fact supports both subjective and objective mobility.

5

Thomsen [1] and Prasad, Giacalone, and Mishra [18] provide so-called higher-order la-
belled transition bisimulations for respectively Plain CHOCS and Facile. The ho-bisimulations
are early bisimulations where processes in higher-order labels are required to be bisimilar. As
described nicely by Sangiorgi in [14] ho-bisimulations are too discriminating. He presents an
elegant, and now classical, solution to the problem of giving a fully abstract characterisation
by using triggered processes and normal bisimulation for the higher-order π-calculus. Jeffrey
and Rathke extend in [19] the result to recursive types.

Fully abstract characterisations exist for variants of the Ambient calculus, which all allow
active, linear (in contrast to the more general non-linear mobility of Homer), process mobil-
ity and nested locations. In the seminal paper [20] Merro and Hennessy examines a version
of Safe Ambients, where they augment the synchronous mobility with passwords. For this
calculus they give an early labelled transition system and associated contextual bisimulation
equivalence, which is then proven to coincide with reduction barbed congruence. Merro and
Nardelli have later extended this result to Ambient systems [21] and later to the full Ambient
calculus [22]. Bugliesi et al present in [23] a sound and complete characterisation of reduction
barbed congruence in Boxed Ambients in terms of an early contextual bisimulation equiva-
lence.

In [17] Castagna, Vitek, and Nardelli considers the semantic theory of a revised version of
the Seal calculus [5]. They introduce a reduction barbed congruence, an early labelled transi-
tion semantics, and an early contextual delay bisimilarity (called Hoe bisimilarity). They prove
that the contextual delay bisimulation is a sound characterisation of reduction barbed congru-
ence, but also argue that it is easily shown to be strictly contained in the barbed congruence
and thus fails to be complete. A more delicate reason for incompleteness pointed out by the
authors is a kind of asynchrony of seal movement, implying that it is unobservable if a process
is moved from a seal in the context and placed immediately in a seal with the same name,
analogously to input prefixes being unobservable in the asynchronous π-calculus.

For all of the labelled bisimulation congruences mentioned above, the congruence proof is
roughly carried out by closing the bisimulation under contexts and prove it to be a bisimulation
by a “brute force” case analysis, hence none of the proofs adapts Howe’s method to active
mobile processes at nested locations as carried out in this paper.

We are not aware of any published sound and complete characterisation of barbed bisim-
ulation congruence for a calculus with non-linear active process mobility and local names.
Schmitt and Stefani do announce one in [12], again using a “brute force” proof technique.
However, at the time of writing the details of the proof are still in the making.

Structure of the paper In Sec. 2 and Sec. 3 we present the syntax and reaction semantics of
Homer. In Sec. 4 we provide examples of the expressiveness of the calculus, giving a short
comparison with some related calculi. In Sec. 5 we present the labelled transition semantics,
and then in Sec. 6 we show how to adapt Howe’s method as presented in [8], proving a late
contextual bisimulation to be a congruence, sound with respect to weak barbed bisimulation
congruence. We also show that barbed bisimulation congruence is included in early contex-
tual bisimulation, but that the late bisimulations are strictly included in the early contextual
bisimulations.

6

2 The Calculus

We assume an infinite set of names N ranged over by m and n, and let ñ range over finite
sets of names. We let γ range over (possibly empty) sequences of names, and δ range over
non-empty sequences of names, referred to as addresses. We assume an infinite set of process
variables V ranged over by x and y.

The set P of process expressions is then defined by the grammar:

p, q, r ::= 000 inactive process
| λ ... p action prefixing
| p ‖ q parallel composition
| (n)p let n be local in p
| {n}p let n be free in p
| x process variable

and the set Λ of prefixes is defined by the grammar:

λ ::= δ(x) receive a resource at δ and bind it to x

| δ(x) take computing resource from δ and bind it to x

| δ〈r〉 send a resource r to δ
| δ[r] computing resource r at δ

We let ϕ ::= δ | δ and let ϕ[〈r〉] range over δ〈r〉 and δ[r].
The process constructors are the standard constructors from concurrent process calculi,

extended with process variables as in Plain CHOCS and a constructor {n}p for extending the
interface of a process p with an idle name n. The restriction operator (n) binds the name n and
the prefixes ϕ(x) bind the variable x. The sets bn(p) and bv (p) of bound names and bound
variables, and the sets fn(λ), fn(p) and fv (p) of free names and free variables are defined
accordingly as usual, with the addition that fn({n}p) = {n} ∪ fn(p).

The prefixes δ〈r〉 and δ(x) correspond to the send and receive prefixes in CHOCS, except
that paths, and not only names, are allowed as addresses. As explained in the introduction, the
new prefixes δ[r] and δ(x) add strong mobility to the calculus. We say that a process with no
free variables is closed and let Pc denote the set of closed processes. We write p ≡α q, if p
and q are α-convertible (wrt. both names and variables), and we let P/α (and Pc/α) denote
the set of α-equivalence classes of (closed) process expressions. We consider processes up to
α-equivalence. We define the process p[q/x] to be p with all free occurrences of x replaced by
q, if necessary α-converting p such that no free names and variables in q are bound.

By convenience, we omit trailing 000s and hence write λ instead of λ ... 000. As usual, we
let prefixing and restriction be right associative and bind stronger than parallel composition.
For a set of names ñ = {n1, . . . , nk} we let (ñ)p denote (n1) · · · (nk)p and {ñ}p denote
{n1} · · · {nk}p. We write m̃ñ for m̃∪ ñ, always implicitly assuming m̃∩ ñ = ∅. We will write
n for the set {n} and δ for the set fn(δ), when no confusion can occur.

3 Reaction Semantics

We provide Homer with a reaction semantics as usual defined through the use of evaluation
contexts, structural congruence, and reaction rules.

7

p ‖ 000 ≡ p (p ‖ p′) ‖ p′′ ≡ p ‖ (p′ ‖ p′′) p ‖ q ≡ q ‖ p

(n)p ‖ q ≡ (n)(p ‖ q), if n 6∈ fn(q) λ ... (n)p ≡ (n)λ ... p, if n 6∈ fn(λ)

(n)(m)p ≡ (m)(n)p (n)p ≡ p, if n 6∈ fn(p)

{n}p ‖ q ≡ {n}(p ‖ q), λ ... {n}p ≡ {n}λ ... p {n}{m}p ≡ {m}{n}p {n}p ≡ p, if n ∈ fn(p)

(n){n}p ≡ (n)p (n){m}p ≡ {m}(n)p, if n 6= m

Table 1. Structural congruence.

A binary relation R on P/α is well typed if p R q implies fn(p) = fn(q). In the sequel we
always assume binary relations on P/α to be well typed. R is substitutive if p R q and p′ R q′

implies p[p′/x] R q[q′/x]. R is constructor compatible if p R q and p′ R q′ implies

– ϕ(x) ... p R ϕ(x) ... q,
– ϕ〈p〉 ... p′ R ϕ〈q〉 ... q′,
– p ‖ p′ R q ‖ q′,
– {n}pR {n}q, and
– (n)p R (n)q.

A well typed equivalence relation R on P/α is a congruence if it is substitutive and constructor
compatible.

Structural congruence≡ is then the least congruence on P/α satisfying the rules in Table 1.
The first row of the equations express that (P, ‖,000) is a commutative monoid, the next two rows
enforce the rules for scope of name restriction. Hereafter follows a row with the similar rules
for the scope of interface extension. Finally, the last row describes the relationship between the
name restriction operator and the operator for extending the interface of a process.

Contexts C are, as usual, terms with a hole (−). We write C(p) for the insertion of p in the
hole of context C. Note that free names (and variables) of p may get bound by insertion of p in
the hole of a context. We extend fn() to contexts by fn(C) = fn(C(000)). Evaluation contexts
E are contexts with no free variables, whose hole is neither guarded by a prefix, nor appear in
the value of a send prefix, i.e.

E ::= (−) | E ‖ p | (n)E | {n}E | δ[E] ... p , for p ∈ Pc.

The evaluation context δ[E] ... p enables internal reactions of active resources.
As Homer permits reactions between a process and an arbitrarily deeply nested subre-

source, we define a family of path contexts C ñ
γ indexed by a path address γ ∈ N ∗ and a set

of names ñ. For a context C ñ
γ , the path address γ indicates the path under which the context’s

‘hole’ is found and the set ñ of names indicates the bound names of the hole. We define the
path contexts inductively in ñ and γ by C∅

ε ::= (−) and whenever p, q ∈ Pc,

Cñm̃
δγ ::= δ[(ñ)(Cm̃

γ ‖ p)] ... q ,

8

(send) γδ〈r〉 ... q ‖ Cm̃
γ (δ(x) ... p) ↘↘↘ {ñγδ}q ‖ Cm̃

γ ({δ}p[r/x]) ,
if ñ = fn(r) and m̃ ∩ (δ ∪ ñ) = ∅

(take) Cm̃
γ (δ[r].q) ‖ γδ(x) ... p ↘↘↘ (ñ ∩ m̃)(Cm̃

γ \ñ({ñδ}q) ‖ {γδ}p[r/x]) ,
if ñ = fn(r) and m̃ ∩ (δ ∪ fn(p)) = ∅

Table 2. Reaction rules

where ñ ∩ γ = ∅. The side condition ensures that none of the names in the path address
are bound. The bound names (ñ) are needed since the structural congruence does not permit
vertical scope extension, as described in the introduction. Note that for any evaluation context
E we have E(q) ≡ (ñ)(Cm̃

γ (q) ‖ p) for some ñ, p, and Cm̃
γ .

We define ↘↘↘ as the least binary relation on Pc/α satisfying the rules in Table 2 and closed
under all evaluation contexts E and structural congruence.

The (send) rule expresses how a passive resource r is sent (down) to the (sub) location γ,
where it is received at the address δ, and substituted into the receiving process p, possibly in
several copies. Notice, no free names of r get bound during movement. The (take) rule captures
that a computing resource r is taken from the sublocation γ, where it is running at the address
δ, and substituted into the process p, again possibly in several copies.

We handle the vertical scope extension using an open operator, defined on path contexts
Cñ

γ\m̃ inductively by: C∅
ε \m̃ = C∅

ε and

Cñ1ñ2

δγ \m̃ = δ[(ñ1\m̃)(C ñ2

γ \m̃ ‖ p)] ... q ,

if Cñ1ñ2

δγ = δ[(ñ1)(C
ñ2

γ ‖ p)] ... q and ñ1ñ2∩ fn(Cñ1ñ2

δγ) = ∅. When applied in the reaction rule
(take), the latter condition can always be met by α-conversion, and ensures that we can extend
the scope by using the open operator and place the restriction at top level, without any name
captures.

The interface extensions {ñγδ}, {δ}, {ñδ}, and {γδ} ensure that no names can disappear
from the interface of a process or any of its sub resources during reaction. However, note that
the process that receives the moved resource r gets its interface extended by the free names of
r that do not already appear in its interface.

The use of path contexts allows us to treat movement at the same location between two
parallel processes as just special cases of moving up or down. In this special case γ = ε and
the two rules reduce to the single rule schema:

ϕ[〈r〉] ... q ‖ ϕ(x) ... p ↘↘↘ {ñ}(q ‖ p[r/x]) , for ñ = fn(ϕ) ∪ fn(r),

(using the structural congruence to extend the scope of the interface extension).

4 Examples

In this section we give examples of the expressiveness of Homer related to similar calculi for
mobility.

9

Recursion and replication We may encode recursion (up to weak equivalence) using our ability
to copy resources. The encoding is similar to the one in [1], except that recursion variables may
appear at sub locations, which makes the definition slightly more complicated. Define

rec x ... p =def (a)(recax ... p) ,

where recax ... p = a〈r〉 ‖ r for r = a(x) ... p[(a〈x〉 ‖ x)/x], for a 6∈ fn(p). Intuitively, r
places a copy of recax ... p at all occurrences of x in p, i.e. recax ... p ↘↘↘ p[recax ... p/x]. From
recursion one may encode replication (again up to weak equivalence) in the usual way, defining
!p =def rec x ... (p ‖ x).

Persistent locations (Slots) As described in the introduction, the process δ[p] ... q denotes a
mobile computing resource p at a location named δ, where q is the residual process that remains
when the resource p is moved. Depending on q it is possible to represent different kinds of
locations. Setting q to the nil process 000, one represent an asynchronous, Seal-like location as
described below.

One may expect some locations to be persistent, that is, if a resource is moved from a
location n, this (part of the) location persists, and in particular, one may place a resource at
that (part of the) location again, as e.g. the physical slot of a smart card reader. This was the
idea of the slots introduced in the MR calculus [10], where nb•c denoted an empty (space of
a) location named n at which exactly one resource could be put and nbpc denoted a space of
location n occupied by the resource p. This can be modelled in Homer (using recursion) by

nbpc =def n[p] ... nb•c

nb•c =def rec x ... n(y) ... n[y] ... x

A resource r can then be moved from a slot named n to a slot named m by the reactions:

nbrc ‖ n(x) ... m〈x〉 ‖ mb•c ↘↘↘ nb•c ‖ m〈r〉 ‖ mb•c ↘↘↘↘↘↘ nb•c ‖ 000 ‖ mbrc

(using an extra reaction to unfold the recursion).

Seal-like mobility The basic mobility in Seal allows a computing resource to be moved from
an address m and started again immediately in a number of copies at addresses m1, . . . , mk.
This is expressed by a three-party reaction rule

n{m}.p | m[r] | n{m1, m2, . . . , mk}.q ↘↘↘ p | m1[r] | m2[r] | . . . | mk[r] | q ,

where m[r] is a seal, i.e. a process r computing at location m, and the action prefixes n{m}
and n{m1, m2, . . . , mk} denotes respectively send the content of a seal named m at channel
n, and receive the content on channel n and run it in k copies at locations {m1, m2, . . . , mk}.
We may simulate the three-party interaction as two actions in Homer:

n{m}.p =def m(x) ... n〈x〉 ... p , for x 6∈ fv (p)

n{m1, m2, . . . , mk}.q =def n(x) ... (m1[x] ‖ m2[x] ‖ . . . ‖ mk[x] ‖ q) , for x 6∈ fv (q)

10

giving reductions

n{m}.p ‖ m[r] ‖ n{m1, m2, . . . , mk}.q ↘↘↘ n〈r〉.p ‖ n{m1, m2, . . . , mk}.q

↘↘↘ {n}(p ‖ m1[r] ‖ m2[r] ‖ . . . ‖ mk[r] ‖ q) .

This is of course not a faithful encoding, since the atomicity is broken. To simulate the atomic
three-party movement one needs to encode a locking (and backtracking) scheme, which is
beyond the scope of this paper.

Ambient-like mobility As mentioned in the introduction, the mobility in the ambient calcu-
lus is subjective and ambients preserve their name, as opposed to the anonymous objective
movement of Homer. To simulate subjective mobility in Homer one needs external routers
(appropriately dispersed at any location) that are able to move (and open) ambients at their
request. A naive input router could be modelled by

Inn,m = n : inm(x) ... n(y) ... m(z) ... m[n[y] ‖ z] .

The ambient calculus process n[in m.p ‖ p′] ‖ m[q], which can reduce to m[n[p ‖ p′] ‖ q],
could then be simulated by the process

n[inm[0] ... p ‖ p′] ‖ m[q] ‖ Inn,m ,

which can reduce in the following way

n[inm[0] ... p ‖ p′] ‖ m[q] ‖ Inn,m ↘↘↘

n[p ‖ p′] ‖ m[q] ‖ n(y) ... m(z) ... m[n[y] ‖ z] ↘↘↘

m[q] ‖ m(z) ... m[n[p ‖ p′] ‖ z] ↘↘↘

m[n[p ‖ p′] ‖ q] .

In general, one could use replicated routers at any location and for any possible combination
of ambient names. As for the Seal calculus, one should also implement a locking (and back-
tracking) scheme to ensure atomicity of the movement.

5 Transition Semantics

In this section we provide Homer with a labelled transition semantics. We let π range over the
set Π of labels, formally defined as

π ::= τ | ϕ(x) | (ñ)ϕ[〈r〉] ,

defining (∅)λ = λ. The set of free and bound names in π, fn(π), bn(π), is respectively fn(λ)\ñ
and ñ whenever π = (ñ)λ. As for the reduction semantics we define the transitions for α-
equivalence classes of closed processes. The rules in Table 3 then define a labelled transition
system

(Pc/α,−→−→−→ ⊆ Pc/α × Π ×P/α).

11

(prefix)
λ ... p

λ
−→−→−→ {ñ}p

ñ = fn(λ) (sync)
p1

(ñ)ϕ[〈r〉]
−→−→−→ p′

1 p2
ϕ(x)
−→−→−→ p′

2

p1 ‖ p2
τ

−→−→−→ (ñ)(p′
1 ‖ p′

2[r/x])
ñ ∩ fn(p2) = ∅

(par)
p

π
−→−→−→ p′

p ‖ q
π

−→−→−→ p′ ‖ q
, fn(q) ∩ bn(π) = ∅ (sym)

p ‖ q
π

−→−→−→ p′

q ‖ p
π

−→−→−→ p′

(rest)
p

π
−→−→−→ p′

(n)p
π

−→−→−→ (n)p′
, n 6∈ fn(π) (open)

p
(ñ)ϕ[〈r〉]
−→−→−→ p′

(n)p
(nñ)ϕ[〈r〉]
−→−→−→ p′

, n ∈ fn(r)\(fn(ϕ) ∪ ñ)

(free)
p

π
−→−→−→ p′

{n}p
π

−→−→−→ {n}p′
, n 6∈ bn(π) (nesting)

p
π

−→−→−→ p′

δ[p] ... q
δ ···π
−→−→−→ δ[p′] ... q

, fn(q) ∩ bn(π) = ∅

Table 3. Transition rules.

The rules are completely standard, except for the handling of free names and interaction
with nested resources, which shows in the (prefix), (free), and (nesting) rules. The (prefix)
rule is changed to ensure that interfaces are preserved. The (free) rule expresses that interface
extension does not change the behaviour of processes. The (nesting) rule takes care of the
communication and computation of arbitrarily deeply nested resources. It uses an operation
δ ··· () formally defined by:

– δ ··· τ = τ ,
– δ ··· δ′(x) = δδ′(x), and
– δ ··· (ñ)δ′[r] = (ñ)δδ′[r], for δ ∩ ñ = ∅.

Note that the operation is not defined for take and send labels, since these actions are directed
“downward” and thus not visible outside the resource. When we write δ ··· π, we implicitly
assume that π is a label for which the operation is defined. Since δ ··· τ = τ , the nesting rule
implies that

δ[p] ... q
τ

−→−→−→ δ[p′] ... q, if p
τ

−→−→−→ p′ .

We also have e.g.

n[m[r] ... p] ... p′
nm[r]
−→−→−→ n[{mñ}p] ... p′ and n[m(x) ... p] ... p′

nm(x)
−→−→−→ n[{m}p] ... p′ ,

where ñ = fn(r).
As explained in the introduction, the action prefixes allow two kinds of movement of re-

sources. Since they are completely dual, they are both treated by the rule (prefix) and the

synchronisation rule (sync), defining δ = δ.
As for Plain CHOCS and the π-calculus, scope extension is handled by the (open) rule,

which moves the binding to the output label. The binding is then closed again by the (sync)
rule. The side condition of the (open) rule ensures, as usual, that the bound name is indeed free
in the resource r and neither part of the path nor already bound in the label.

12

6 Bisimulation Congruences

In this section, we address the semantic theory of Homer considering how to describe con-
gruences as bisimulations. First, we define well typed strong and weak barbed bisimulation
congruences based on the reduction semantics and next we define late and early variants of
strong and delay contextual transition bisimulations. We prove that the late contextual transi-
tion bisimulations are congruences using a novel extension of Howe’s method, based on the
approach in [8], and that they are sound with respect to barbed bisimulation congruences.

6.1 Barbed Bisimulation Congruence

We define weak and strong barbs standardly letting↘↘↘ ∗ be the transitive and reflexive closure
of ↘↘↘, and choosing barbs similarly to [20, 17], e.g. the possibility to observe an unrestricted
location n at top level

p ↓ n if p ≡ (ñ)(n[r] ... p′ ‖ q) where n 6∈ ñ, and

p ⇓ n if ∃p′. p ↘↘↘ ∗ p′ and p′ ↓ n .

The following two propositions state the standard correspondence between the reduction
semantics and the transition semantics.

Proposition 1. p ↘↘↘ q iff p
τ

−→−→−→≡ q.

Proposition 2. p ↓ n iff p
(ñ)n[r]
−→−→−→ q for some ñ, r, and q.

We restrict binary relations R on P/α to closed terms by Rc = R∩ Pc/α × Pc/α.

Definition 1. A weak barbed simulation is a well typed binary relation R on Pc/α, such that
whenever p R q,

i) if p ↓ n then q ⇓ n

ii) if p ↘↘↘ p′, then ∃q′. q ↘↘↘ ∗ q′ and p′Rq′

R is a weak barbed bisimulation if R and R−1 are weak barbed simulations. We let ub denote
the largest weak barbed bisimulation. Weak barbed bisimulation congruence ≈b is the largest
congruence such that (≈b)c is a weak barbed bisimulation.

Definition 2. A strong barbed simulation is a well typed binary relation R on Pc/α, such that
whenever p R q,

i) if p ↓ n then q ↓ n

ii) if p ↘↘↘ p′, then ∃q′. q ↘↘↘ q′ and p′Rq′

R is a strong barbed bisimulation if R and R−1 are strong barbed simulations. We let 'b

denote the largest strong barbed bisimulation. Strong barbed bisimulation congruence ∼b is
the largest congruence such that (∼b)c is a strong barbed bisimulation.

13

We may define barbs more systematically from the reduction semantics as follows:

p ↓ γδ if p ≡ (ñ)(Cm̃
γ (δ[r].p′) ‖ q) and δ ∩ ñm̃ = ∅ and γ ∩ ñ = ∅,

p ↓ γδ(x) if p ≡ (ñ)(Cm̃
γ (δ(x).p′) ‖ q) and δ ∩ ñm̃ = ∅ and γ ∩ ñ = ∅,

p ↓ δ if p ≡ (ñ)(δ〈r〉 ... p′ ‖ q) and δ ∩ ñ = ∅,

p ↓ δ(x) if p ≡ (ñ)(δ(x) ... p′ ‖ q) and δ ∩ ñ = ∅,

The barb p ↓ γδ express the existence of a mobile resource at the address γδ, hence our choice
of barbs at the beginning of this section is the special case of p ↓ γδ, where the path has length
one. Define the set of all barbs B by the grammar

b ::= ϕ | ϕ(x) .

Letting b[n/m] denote the barb where we have substituted the name n for the name m, we say
that a subset of barbs B ⊆ B is substitution closed, if b ∈ B implies b[n/m] ∈ B.

Definition 3. For any non-empty, substitution closed subset of barbs B we define weak B-
barbed simulation and subsequently weak B-barbed bisimulation uB by replacing condition
i) in Def. 1 by

i) if p ↓ b for b ∈ B then q ⇓ b

and define weak B-barbed bisimulation congruence≈B to be the largest congruence such that
(≈B)c is a weak B-barbed bisimulation. We define strong B-barbed bisimulation congruence
accordingly.

The proposition below shows (as in [20]) that our choice of barbs is indeed robust. In
particular, one could have chosen to observe the existence of a location path δ. But first we
state a lemma relating the different kinds of barbs.

Lemma 1. For any pair of barbs b, b′ ∈ B there exists a context Cb,b′ such that for all r ∈ Pc

where fn(b′) ∩ fn(r) = ∅, we have r ↓ b if and only if Cb,b′(r) ↘↘↘ r′ and r′ ↓ b′.

Proof. (sketch) Due to the duality of our prefixes and we can define all the contexts Cb,b′ using

the same schema. Letting (̂−) denote the operator that maps a barb to its corresponding prefix:

ϕ̂ = ϕ[〈000〉] and ϕ̂(x) = ϕ(x) we define a family of contexts as

Cb,b′ = (−) ‖ b̂op ... b̂′ ,

where ϕ(x)op = ϕ and ϕop = ϕ(x) Then we have r ↓ b if and only if Cb,b′(r) ↘↘↘ r′ and
r′ ↓ b′.

Compared with [20] these contexts seem almost trivial. There are several reasons for the
simplicity of these contexts, most important is that we have locations as a prefix in the calculus,
hence enabling us to observe the movement of a resource. The objective mobility also aid to
the simplicity.

14

Proposition 3. For any two non-empty, substitution closed subsets of barbs B and B ′ it holds
that ∼B=∼B′ and ≈B=≈B′ .

Proof. We only present the proof of ∼B=∼B′ , the proof of ≈B=≈B′ is similar.
We show that (∼B′)c is a strong barbed B-bisimulation, by symmetry it follows that (∼B)c

is a strong B’-barbed bisimulation. It is clear that both (∼B)c and (∼B′)c are reduction closed,
so the only remaining task is to show that the two different choices of barbs imply each other:

– if p(∼B′)cq and p ↓ b ∈ B then we must be able to show that q ↓ b. Since (∼B)c is a
congruence, we have that p(∼B)cq implies C(p) (∼B)c C(q), for all contexts C. So we
choose a b′ ∈ B′ such that fn(b′)∩ (fn(p)∪ fn(q)) = ∅. By Lemma 1 we know that there
exists an context Cb,b′ . Cb,b′(p) ↘↘↘ p′ and p′ ↓ b′, hence we know that there exists a q′

such that Cb,b′(q) ↘↘↘ q′ and q′ ↓ b′, which in turn implies q ↓ b as desired.

6.2 Labelled Bisimulation Congruence

As standard in context bisimulations, we employ abstractions and concretions for the higher
order output transitions in the definition of our bisimulation. Normally, an abstraction is a
receiving process, with a free variable for which the send process is substituted. As resources
may be moved from arbitrarily deep sublocations, we define abstractions as path contexts in
parallel with a receiving process.

(x)Añ
γ ::= C ñ

γ ‖ p , for fv (p) ⊆ {x},

and we write (x)Aγ for (x)Añ
γ , if ñ = ∅. The extra generality is used for instance when the

resource r in the transition

n[r].q
n[r]
−→−→−→ {nm̃}q

is received by the context
m[(−)] ‖ m : n(x).p

corresponding to the abstraction m[(−)] ‖ p.
As in [8] we consider concretions of the form (ñ, r, q), and write (m̃, r, q) ≡α (m̃′, r′, q′)

whenever (m̃)δ〈r〉 ... q ≡α (m̃′)δ〈r′〉 ... q′, for some δ. We then define the application of an
abstraction (x)Añ

γ = C ñ
γ ‖ p to a concretion (m̃, r, q) by

(x)Añ
γ · (m̃, r, q) = (m̃′ñ′)(C ñ

γ\ñ
′(q′) ‖ p[r′/x]),

if (m̃, r, q) ≡α (m̃′, r′, q′), m̃′ ∩ (fn(Añ
γ) ∪ ñ) = ∅, and ñ′ = fn(r′) ∩ ñ.

We define delay transitions [24] by p
τ

=⇒=⇒=⇒ p and p
(m̃)λ
=⇒=⇒=⇒ q, if p

τ
=⇒=⇒=⇒ p′

(m̃)λ
−→−→−→ q, which

compared to weak transitions do not allow τ -transitions after the visible transition.
We extend well typed binary relations R on Pc/α to open terms the usual way, by defin-

ing p R◦ q if for all r1, . . . , rk ∈ Pc/α, p[r1/x1] . . . [rk/xk] R q[r1/x1] . . . [rk/xk], where
fv (p) = fv (q) = {x1, . . . , xk}, i.e. requiring two open terms to be related after substitution
with closed resources.

15

Definition 4. A late delay context simulation is a well typed binary relation R on Pc/α such
that p R q implies

1. if p
τ

−→−→−→ p′ then ∃q′. q
τ

=⇒=⇒=⇒ q′ and p′ R q′

2. if p
ϕ(x)
−→−→−→ p′ then ∃q′. q

ϕ(x)
=⇒=⇒=⇒ q′ and p′ R◦ q′

3. if p
(ñ)δ〈r〉
−→−→−→ p′ then ∃q′. q

(ñ′)δ〈r′〉
=⇒=⇒=⇒ q′ and ∀(x)Aε. (x)Aε · (ñ, r, p′) R (x)Aε · (ñ′, r′, q′)

4. if p
(ñ)δ[r]
−→−→−→ p′ then ∃q′. q

(ñ′)δ[r′]
=⇒=⇒=⇒ q′ and ∀(x)Am̃

γ . (x)Am̃
γ · (ñ, r, p′) R (x)Am̃

γ · (ñ′, r′, q′)

R is a late delay context bisimulation if both R and R−1 are late delay context simulations. Let
≈l denote the largest late delay context bisimulation. We define late strong context simulation
by replacing =⇒=⇒=⇒ with −→−→−→, and let ∼l denote the largest late strong context bisimulation.

Like in [15] we may introduce an early delay context bisimulation simply by replacing the
second condition in Def. 4 by

2. if p
ϕ(x)
−→−→−→ p′ then ∀r ∈ Pc/α∃q′. q

ϕ(x)
=⇒=⇒=⇒ q′ and p′[r/x] R q′[r/x]

We let ≈e denote the largest early context delay bisimulation and we let ∼e denote the largest
strong early context bisimulation.

Note that the first three conditions in Def. 4 correspond exactly to the conditions for the
late weak context simulation in [8], since (x)Aε = (−) ‖ p and (−) ‖ p · (ñ, r, q) = (ñ)(q ‖
p[r/x]) (assuming fn(p) ∩ ñ = ∅). Thus, the bisimulation is a conservative extension of the
bisimulation in [8] to nested locations.

From Prop. 1 and Prop. 2 it follows standardly that the early contextual bisimulations are
included in the corresponding barbed bisimulations.

Proposition 4. ∼e⊆'b, and ≈e⊆ub .

By defining testing contexts for the different kinds of labels, one can prove that early con-
textual bisimulation, in the strong case, is in fact complete with respect to barbed bisimulation
congruence restricted to closed terms, as stated below.

Proposition 5. (∼b)c ⊆∼e .

The result extends to open processes because ∼b is substitutive:

Theorem 1. ∼b⊆∼◦
e .

For standard reasons (see e.g.[20]) late delay contextual bisimulation is strictly contained in
weak barbed congruence, and so cannot be complete with respect to weak barbed congruence.
We conjecture that it do hold for a proper weak contextual bisimulation.

A perhaps more surprising result is that the late bisimulations are strictly contained in the
early bisimulations. The proof exploits the ability to place, and replicate resources in locally
named locations.

Proposition 6. We have the following inclusions

16

(nil)
000 R◦ p

000 R• p
(var)

x R◦ p

x R• p
(rest)

r R• q (n)q R◦ p

(n)r R• p

(extend)
r R• q {n}q R◦ p

{n}r R• p
(par)

r1 R• q1 r2 R• q2 q1 ‖ q2 R◦ p

r1 ‖ r2 R• p

(in)
r R• q ϕ(x) ... q R◦ p

ϕ(x) ... r R• p
(out)

r1 R• q1 r2 R• q2 ϕ[〈q1〉] ... q2 R◦ p

ϕ[〈r1〉] ... r2 R• p

Table 4. The congruence relation R•.

1. ≈l(≈e.
2. ∼l (∼e (if replication is added to the calculus).

Proof. (sketch) We use replication of processes in the proof. In the weak case we can use the
encoding of replication given in Sec. 4 (assuming that it is indeed an encoding). In the strong
case we assume replication is added to the calculus in the usual way.

Define s =!m[x], p1 = (m)(s ‖ n′[000]), p2 = (m)(s), and p3 = (m)(s ‖ m : m′(z)...n′[000]),
for n′ 6= m.

To prove 1. we define p =!n(x) ... p1 ‖!n(x) ... p2 and q =!n(x) ... p1 ‖!n(x) ... p2 ‖!n(x) ... p3.
We then have that p ≈e q but p 6≈l q.

The crucial step is if q
τ

−→−→−→ n(x) ... p3 ‖ q
n(x)
−→−→−→ p3 ‖ q.

These steps can be matched by p in an early semantics but not in a late semantics. For a

resource r such that r ⇓ m′, the process p can match with p
τ

−→−→−→ n(x) ... p1 ‖ p
n(x)
−→−→−→ p1 ‖ p. We

prove that p1[r/x] ≈e p3[r/x] ≈e {ñ}n′[000], for ñ = fn(r) and using that if r ⇓ m′ then for
all !m[r] =⇒=⇒=⇒ r′ we have r′ ⇓ m : m′.

For a resource r such that r 6⇓ m′, one can match with the transition p
τ

−→−→−→ n(x) ... p2 ‖

p
n(x)
−→−→−→ (m)(s) ‖ p. Here we use that if r 6⇓ m′ then !m[r] 6⇓ m :m′, to prove that p2[r/x] ≈e

p3[r/x] ≈e {ñ}000, for ñ = fn(r).
In the late case, p has either to take the p1 path or the p2 path, which will not fit for all r. If

the input for p1 is chosen, it will not match for a resource r such that r 6⇓ m′, if the input p2 is
chosen it will not match for a resource r such that r ⇓ m′.

In proving 2., we assume replication is added to the calculus (since otherwise the unfolding
can be observed). One may then prove using similar reasoning as above that p ‖!τ ∼e q ‖!τ
but p ‖!τ 6∼l q ‖!τ . The replicated τ process is used in the case where p3 in q performs an
interaction with the received resource.

We now show the main technical result of the paper, that ∼l
◦ and ≈l

◦ are indeed also con-
gruences, by adapting Howe’s method to active mobile processes in nested locations. Define
the usual congruence R• on P/α, of a binary relation R on Pc/α by the rules in Table 4.

It is easy to prove that if R is well typed then R• is also well typed.

17

The key is now to show, since ∼l
• (≈l

•) is a congruence, that ∼l
◦ = ∼l

• (≈l
◦ = ≈l

•). As
in [8] we first prove the following properties.

Proposition 7. Let R be an equivalence relation on Pc/α then

1. R• is reflexive,
2. R◦ ⊆ R•,
3. R•R◦ ⊆ R•,
4. R• is substitutive,
5. R•−1 ⊆ R•∗,
6. R•∗ is symmetric, and
7. R• is constructor compatible.

We extend binary relations R on Pc/α to abstractions by defining (x)Añ
γ RN (x)Bñ

γ if
p R• q and p′ R• q′ implies (x)Añ

γ · (m̃, p, p′) ≡ R• ≡ (x)Bñ
γ · (m̃, q, q′). The use of RN is

a new contribution of the present paper, it is required since in contrast to [8] we do not only
use process terms (with a single free variable) as abstractions, we use abstractions being the
parallel composition of a process and a path context.

From (4) and (7) of Prop. 7 we get

Lemma 2. Let R be an equivalence relation on Pc/α then RN is reflexive.

We will also use substitutiveness for abstractions.

Proposition 8. Let R be an equivalence relation and let p, q ∈ Rc/α. Then pR•q and (x)Añ
γR

N(x)Bñ
γ

implies

(x)Añ
γ ((−) ‖ p) RN (x)Bñ

γ ((−) ‖ q), (x)Añ
γ (δ[(−)] ... p) RN (x)Bñ

γ (δ[(−)] ... q),

(x)Añ
γ

(
(n)(−)

)
RN (x)Bñ

γ

(
(n)(−)

)
, (x)Añ

γ

(
{n}(−)

)
RN (x)Bñ

γ

(
{n}(−)

)
,

whenever the left and right hand sides are well defined abstractions, possibly put on the normal
form for abstractions by use of structural congruence.

In order to establish ≈l
◦=≈l

• the method of Howe utilizes that ≈l
• satisfies the following

bisimulation property.

Lemma 3. Let p, q ∈ Pc/α. Then p ≈l
• q implies:

1. if p
τ

−→−→−→ p′ then ∃q′. q
τ

=⇒=⇒=⇒ q′ and p′ ≡ ≈l
• q′

2. if p
ϕ(x)
−→−→−→ p′ then ∃q′. q

ϕ(x)
=⇒=⇒=⇒ q′ and p′ ≈l

• q′

3. if p
(ñ)δ〈r〉
−→−→−→ p′ then ∃q′. q

(ñ′)δ〈r′〉
=⇒=⇒=⇒ q′ and ∀(x)Aε ≈l

N (x)Bε. (x)Aε · (ñ, r, p′) ≡≈l
• (x)Bε · (ñ′, r′, q′)

4. if p
(ñ)δ[r]
−→−→−→ p′ then ∃q′. q

(ñ′)δ[r′]
=⇒=⇒=⇒ q′ and ∀(x)Am̃

γ ≈l
N (x)Bm̃

γ . (x)Am̃
γ · (ñ, r, p′) ≡≈l

• (x)Bm̃
γ · (ñ′, r′, q′)

A similar bisimulation property for ∼l
• is used to prove ∼l

◦=∼l
•.

18

Theorem 2. ∼l
◦ and ≈l

◦ are congruences.

From Prop. 1 and Thm. 2 it follows that ∼l
◦ and ≈l

◦ are sound with respect to barbed and
weak barbed bisimulation congruence, respectively.

Theorem 3. ∼l
◦ ⊆ ∼b and ≈l

◦ ⊆ ≈b.

Even though we do not have a complete characterisation, a sound characterisation is useful
to prove concrete processes to be barbed bisimulation congruent. For instance, we can prove
the well typed perfect firewall equation (13) from the introduction, because {

(
(n)n[r], {ñ}000

)
|

r ∈ Pc, ñ = fn(p)\n} is a late delay context bisimulation.

7 Conclusions and Future Work

We presented the calculus Homer, which combines higher-order process passing, local names,
nested locations and mobile computing resources. We gave reaction and contextual labelled
transition semantics as conservative extensions of the standard semantics of a pure process-
passing calculi with local names. We presented the first generalisation of Howe’s method to
a calculus with active mobile processes at nested locations and local names, proving that late
(strong and delay) contextual bisimulation is a congruence and a sound characterisation of
(strong and weak) barbed bisimulation congruence. We showed that early contextual bisimu-
lation is complete with respect to barbed bisimulation congruence in the strong case. However,
we also found that the late bisimulations are strictly included in the early bisimulations. We
conjecture that the example also shows that late contextual bisimulation is strictly included
in the barbed bisimulation congruence, which excludes that our late contextual bisimulation
characterisation is complete.

The semantics of Homer highlights the importance of keeping track of the free names
of processes. We therefore introduce an explicit free name operator {n} and consider only
bisimulations between processes with the same set of free names.

We conjecture that early contextual bisimulation is indeed a characterisation of barbed
bisimulation congruence, and are working on extending the congruence results of the present
paper to early labelled bisimulations. One direction we explore is to use the theory of bigraphi-
cal reactive systems [25]. We also investigate if the trigger and normal bisimulation techniques
can be adapted to calculi with non-linear active process mobility and explicit, nested locations.
It could provide us with a bisimulation without universal quantification over contexts. How-
ever this is complicated by the fact that triggered processes cannot be accessed from remote
locations.

We are also considering type systems for Homer, in particular a type system for linear and
non-linear mobile resources, which was presented for an early version of Homer in [26]. In
this setting one can reason about systems containing both copyable as well as non-copyable
mobile resources, which is crucial for systems containing both mobile hardware and mobile
software.

Acknowledgements We acknowledge the anonymous referees of previous versions of the
present paper for their helpful reviews and suggestions.

19

References

1. Thomsen, B.: Plain CHOCS. A second generation calculus for higher order processes. Acta Infor-
matica 30 (1993) 1–59

2. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. Journal of Information
and Computation 100 (1992) 1–77

3. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press
(1999)

4. Cardelli, L., Gordon, A.D.: Mobile ambients. In Nivat, M., ed.: Proceedings of FoSSaCS ’98.
Volume 1378 of LNCS., Springer (1998) 140–155

5. Vitek, J., Castagna, G.: Seal: A framework for secure mobile computations. In: Internet Program-
ming Languages. (1999)

6. Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Information
and Computation 124 (1996) 103–112

7. Howe, D.J.: Equality in lazy computation systems. In: Proceedings of the 4th IEEE Symposium on
Logic in Computer Science. (1989) 198–203

8. Baldamus, M., Frauenstein, T.: Congruence proofs for weak bisimulation equivalences on higher-
order process calculi. Technical Report Report 95–21, Berlin University of Technology, Computer
Science Department (1995)

9. Boudol, G.: Towards a lambda-calculus for concurrent and communicating systems. In Dı́az, J.,
Orejas, F., eds.: Proceedings of Theory and Practice of Software Development (TAPSOFT ’89).
Volume 351 of Lecture Notes in Computer Science., Springer Verlag (1989) 149–161

10. Godskesen, J.C., Hildebrandt, T., Sassone, V.: A calculus of mobile resources. In: Proceedings of
CONCUR’2002. LNCS, Springer (2002)

11. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: Proceedings of LICS
’99, IEEE, Computer Society Press (1999) 56–66

12. Schmitt, A., Stefani, J.B.: The Kell calculus: A family of higher-order distributed process calculi.
In: Proceedings of the International Workshop on Global Computing 2004 Workshop (GC 2004).
Lecture Notes in Computer Science, Springer Verlag (2004)

13. Bundgaard, M., Hildebrandt, T., Godskesen, J.C.: A CPS encoding of name-passing in higher-order
mobile embedded resources. In: Proceedings of the 11th International Workshop on Expressiveness
in Concurrency (EXPRESS’04). Electronic Notes in Theoretical Computer Science, Elsevier (2004)
To appear.

14. Sangiorgi, D.: Bisimulation in higher-order process calculi. Journal of Information and Computation
131 (1996) 141–178 Available as Rapport de Recherche RR-2508, INRIA Sophia-Antipolis, 1995.
An early version appeared in Proceedings of PROCOMET’94, pages 207–224. IFIP. North Holland
Publisher.

15. Castagna, G., Nardelli, F.Z.: The Seal calculus revisited: Contextual equivalence and bisimilarity.
In Agrawal, M., Seth, A., eds.: Proceedings of the 22nd Conference on the Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’02). Volume 2556 of Lecture Notes in
Computer Science., Springer Verlag (2002) 85–96

16. Schmitt, A., Stefani, J.B.: The M-calculus: A higher-order distributed process calculus. In: Proceed-
ings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL’03), ACM Press (2003) 50–61

17. Castagna, G., Vitek, J., Nardelli, F.Z.: The Seal calculus. accepted for publication in Information
and Computation (2004)

18. Prasad, S., Giacalone, A., Mishra, P.: Operational and algebraic semantics for Facile: A symmetric
integration of concurrent and functional programming. In Paterson, M., ed.: Proceedings of the 17th

20

International Colloquium on Automata, Languages and Programming (ICALP’90). Volume 443 of
Lecture Notes in Computer Science., Springer Verlag (1990) 765–778

19. Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order π-calculus revisited. In Brookes,
S., Panangaden, P., eds.: Proceedings of the 19th Conference on Mathematical Foundations of Pro-
gramming Semantics (MFPS’04). Volume 83 of Electronic Notes in Theoretical Computer Science.,
Elsevier (2004)

20. Merro, M., Hennessy, M.: Bisimulation congruences in safe ambients. Computer Science Report
2001:05, University of Sussex (2001)

21. Merro, M., Nardelli, F.Z.: Bisimulation proof techniques for mobile ambients. In: Proceedings of
ICALP 2003. (2003) to appear.

22. Merro, M., Nardelli, F.Z.: Behavioural theory for mobile ambients. In: Proceedings of the 3rd
International Conference on Theoretical Computer Science (IFIP TCS 2004). (2004) to appear.

23. Bugliesi, M., Crafa, S., Merro, M., Sassone, V.: Communication and mobility control in boxed
ambients. Journal of Information and Computation (200X)

24. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University
Press (2001)

25. Jensen, O.H., Milner, R.: Bigraphs and mobile processes (revised). Technical Report UCAM-CL-
TR-580, University of Cambridge, Computer Laboratory (2004)

26. Godskesen, J.C., Hildebrandt, T.T.: Copyability types for mobile computing resources (2003) Inter-
national Workshop on Formal Methods and Security, Nanjing.

21

A Proof of Lemma 3

The proof of Lemma 3 follows closely [8], we provide only a few key cases.

Proof. Suppose p, q ∈ Pc/α, p ≈• q and p
π

−→−→−→ t. We proceed by induction in the derivation

of p
π

−→−→−→ t.

Case (prefix): We only consider the case p
δ[r1]
−→−→−→ t. Then p = δ[r1].p1, t = {ñ}p1 where

ñ = fn(r1) ∪ δ. By the definition of ≈• we get r1≈•r2, p1≈•p2, and δ[r2].p2≈◦q. (We

may assume all processes are closed because ≈• is substitutive.) Because δ[r2].p2
δ[r2]
−→−→−→ {ñ}p2

(fn(r1) = fn(r2) because ≈• is well typed) and δ[r2].p2≈◦q there exists q
(m̃)δ[r]
−→−→−→ q′ such that

for all (x)Añ′

γ , (x)Añ′

γ ·(∅, r2, {ñ}p2)≈◦(x)Añ′

γ ·(m̃, r, q′). Now, ∀(x)Añ′

γ ≈N(x)Bñ′

γ .(x)Añ′

γ ·

(∅, r1, t) ≡ ≈• ≡ (x)B ñ′

γ · (∅, r2, {ñ}p2). Hence, ∀(x)Añ′

γ ≈N(x)Bñ′

γ .(x)Añ′

γ · (∅, r1, t) ≡

≈N(x)Bñ′

γ · (m̃, r, q′) because ≡⊆≈ and ≈•≈◦ ⊆ ≈•.

Case (sync): Assume p
τ

−→−→−→ t = (ñ)(p′1 ‖ p′2[u/x]) because p = p1 ‖ p2 where p1
(ñ)ϕ[〈u〉]
−→−→−→

p′1, p2
ϕ(x)
−→−→−→ p′2, and fn(p2) ∩ ñ = ∅. By the definition of ≈• we get p1≈

•t1, p2≈
•t2, and t1 ‖

t2≈
◦q. By induction we get ∃t1

(m̃)ϕ[〈u′〉]
=⇒=⇒=⇒ t′1 such that ∀(y)Añ′

γ ≈N(y)Bñ′

γ .(y)Añ′

γ ·(ñ, u, p′1) ≡

≈•(y)Bñ′

γ · (m̃, u′, t′1). Also, by induction we get ∃t2
ϕ(x)
=⇒=⇒=⇒ t′2 such that p′2≈

•t′2. By use of
(sync) (and (par) and (sym) to handle the τ steps of the weak transitions) of Table 3 (and using
α conversion to get (fn(t2)∩m̃) = ∅ if necessary), we then get t1 ‖ t2

τ
=⇒=⇒=⇒ (m)(t′1 ‖ t′2[u

′/x]).
Since t1 ‖ t2≈◦q it then follows that ∃q

τ
=⇒=⇒=⇒ q′ such that (m̃)(t′1 ‖ t′2[u

′/x])≈◦q′.
Letting (x)Aε = (−) ‖ p′2 and (x)Bε = (−) ‖ t′2 we get that (x)Aε≈N(x)Bε. It then

follows that t = (ñ)(p′1 ‖ p′2[u/x]) ≡ ≈•(m̃)(t′1 ‖ t′2[u
′/x])≈◦q′. Finally, since ≈•≈◦ ⊆ ≈•

we get t ≡ ≈•q′ as required.

Case (nesting): Assume p
π

−→−→−→ t = δ[t′1] ... p1 because p = δ[t1] ... p1, π = δ · π′, t1
π′

−→−→−→ t′1,
fn(p1) ∩ bn(π′) = ∅. We only consider the case where π′ = (ñ)δ′[v]. By the definition of ≈•

we get t1≈•t2 , p1≈•p2 and δ[t2] ... p2≈◦q. Hence, by induction we get ∃t2
π′′

=⇒=⇒=⇒ t′2 such that
π′′ = (m̃)δ′[v′] and ∀(x)Añ′

γ ≈N(x)Bñ′

γ .(x)Añ′

γ · (ñ, v, t′1) ≡ ≈•(x)Bñ′

γ · (m̃, v′, t′2).
By (nesting) of Table 3 (possibly repeatedly to handle the τ steps of the weak transition)

we then get δ[t2] ... p2
δ·π′′

=⇒=⇒=⇒ δ[t′2] ... p2 (using α-conversion if needed to ensure m̃ ∩ fn(p2) = ∅).

From δ[t2] ... p2≈◦q we then get q
δ·π′′′

=⇒=⇒=⇒ q′ such that π′′′ = (m̃′)δ′[v′′] and ∀(x)Bñ′

γ .(x)Bñ′

γ ·
(m̃, v′, δ[t′2] ... p2)≈◦(x)Bγ · (m̃′, v′, q′).

Now, since for all (x)Añ′

γ ≈N(x)Bñ′

γ we have (x)Añ′

γ (δ[(−)] ... p1)≈N(x)Bñ′

γ (δ[(−)] ... p2)

due to Prop. 8 we obtain (x)Añ′

γ (δ[(−)] ... p1) · (ñ, v, t′1) ≡ ≈•(x)Bñ′

γ (δ[(−)] ... p2) · (m̃, v′, t′2).

Moreover, (x)Añ′

γ · (ñ, v, t) ≡ (x)Añ′

γ (δ[(−)] ... p1) · (ñ, v, t′1) and (x)Bñ′

γ · (m̃, v′, δ[t′2] ... p2) ≡

(x)Bñ′

γ (δ[(−)] ... p2) · (m̃, v′, t′2) so (x)Añ′

γ · (ñ, v, t) ≡ ≈• ≡ (x)Bñ′

γ · (m̃, v′, δ[t′2] ... p2). Then

since (x)Bñ′

γ · (m̃, v′, δ[t′2] ... p2)≈
◦(x)Bγ · (m̃′, v′, q′) we have (x)Añ′

γ · (ñ, v, t) ≡ ≈• ≡

≈◦(x)Bγ · (m̃′, v′, q′). Finally, since ≈•≈◦ ⊆ ≈• and ≡ ⊆ ≈◦ we get (x)Añ′

γ · (ñ, v, t) ≡
≈•(x)Bγ · (m̃′, v′, q′) as required.

22

B Proof of Theorem 2

Lemma 4. ((∼•)c)
∗ and ((≈•)c)

∗ are respectively late and weak late context bisimulations.

Proof. We only show that ((≈•)c)
∗ is a weak late context bisimulation. The proof of ((∼•)c)

∗

being a late context bisimulation is similar. It is enough to show that ((≈•)c)
∗ is a weak late

context simulation because due to Proposition 7 (≈•)∗ is symmetric and hence so is ((≈•)c)
∗.

Let p ((≈•)c)
∗ q. Then for some k ≥ 0, p ((≈•)c)

k q. The rest of the proof is by induction
in k.
Base: k = 0. Immediate because ((≈•)c)

∗ is reflexive.
Step: k > 0. Let

p = p0 (≈•)c p1 . . . pk−1 (≈•)c pk = q

and suppose p
π

−→−→−→ p′.

Case: π = (ñ)δ[r]. By induction, there exists pk−1
(ñk−1)δ[rk−1]

=⇒=⇒=⇒ p′k−1 such that for all (x)Añ′

γ

(x)Añ′

γ · (ñ, r, p′) ((≈•)c)
∗ (x)Añ′

γ · (ñk−1, rk−1, p
′
k−1)

By repeated applications of Lemma 3 using the fact that ≡ is transitive, a late context bisimu-

lation, and ≡ ⊆ ≈◦ and that ≈N is reflexive we obtain the existence of some q
(m̃)δ[r′]
=⇒=⇒=⇒ q′ such

that for all (x)Añ′

γ

(x)Añ′

γ · (ñk, rk, pk) ≡ (≈•)c (x)Añ′

γ · (m̃, r′, q′)

and hence for every (x)Añ′

γ

(x)Añ′

γ · (ñ, u, t) ((≈•)c)
∗ (x)Añ′

γ · (m̃, u′, t′)

because ≡ ⊆ ≈◦ ⊆ ≈•.
Case: π = τ , π = ϕ(x), and π = δ〈r〉. Similar to the case above.

Proposition 9. (((∼•)c)
∗)◦ ⊆ ∼◦ and (((≈•)c)

∗)◦ ⊆ ≈◦.

Proof. It is sufficient to prove that ((∼•)c)
∗ ⊆∼ because (·)◦ is monotone. Since ∼ is the

largest late context bisimulation it is enough to show that ((∼•)c)
∗ is a late context bisimula-

tion. We refer the reader to Lemma 4. The proof is similar in case of (((≈•)c)
∗)◦ ⊆ ≈◦.

The actual proof of Theorem 2 goes as follows:

Proof. We only show that ≈◦ is a congruence, the proof of ∼◦ being a congruence is similar.
Because ≈• is a congruence due to Proposition 7 it suffices to show that ≈◦ = ≈•. From
Proposition 7 we have ≈◦ ⊆ ≈•. ≈• ⊆ ≈◦ follows from Proposition 9 since, due to mono-
tonicity of (·)◦ and (·)c, ≈•⊆ ((≈•)c)

◦ and ((≈•)c)
◦ ⊆ (((≈•)c)

∗)◦.

23

