
An introduction to solving interac-
tive configuration problems

A Technical Report at the ITU

Tarik Hadzic
Henrik Reif Andersen

IT University Technical Report Series
TR-2004-49

ISSN 1600–6100 August 2004

Copyright c© 2004, Tarik Hadzic
Henrik Reif Andersen

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-071-9

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

AN INTRODUCTION TO SOLVING INTERACTIVE
CONFIGURATION PROBLEMS

TARIK HADZIC
HENRIK REIF ANDERSEN

Abstract. Configuration problems emerged as a research topic in the late
1980s as the result of manufacturing shift from mass-production to mass-
customization. The essential part of a configuration problem is assembling
the parts that satisfy given specifications. Several theoretical frameworks
have attempted to formalize this core notion and each of them have facil-
itated many diverse solution techniques for handling different application
areas.

In this paper we have concentrated on the increasingly important appli-
cation area of interactive configuration which denotes a process of a user
interactively specifying a product (a service). In particular, we explored the
solution techniques using the frameworks of constraint satisfaction problems,
binary decision diagrams and boolean satisfiability solving.

1. Introduction

What is configuration. Configuration problems have been recognized as top-
ics of research since the 1980s. They have emerged from a change of industry
orientation from mass-production toward mass-customization of products. In
order to maintain the advantages of high volume production while meeting the
demand for the increased needs for customization, configuration of products
becomes an important issue.

There are many view points on configuration from the modelling of product
knowledge to the development of efficient algorithms for ensuring intuitive and
valid interactions. While some authors are developing adequate formalisms for
describing knowledge-based configuration [25, 30, 4], others are exploring user-
friendly requirements and underlying algorithms [22] or exploring the impact
of configuration technology on existing business models.

Also, there are very different industrial applications of configuration in the
companies’ business processes. Not all configuration frameworks meet the de-
mands equally well. Some of them are based on different theoretical concepts,
not very fit for some functionalities, but still deliver satisfying functionality on
other parameters.

One of the first attempts to define configuration in a domain independent
way was by Mittal and Frayman in 1989 [21]. It describes configuration as
a design activity of assembling an artifact that is made of a fixed set of well
defined component types where components can interact only in predefined

Key words and phrases. configuration, constraint satisfaction, binary decision diagrams,
satisfiability.

1

2 TARIK HADZIC HENRIK REIF ANDERSEN

ways. Our formal definition captures this as a mathematical object with three
elements: variables (often also called parameters), domains (or values) for the
variables defining the combinatorial space of possible assignments, and formulas
(or rules) defining which of the assignments are valid.

Definition 1. A configuration problem C is a triple (X ,D,F) where X is a set
of variables x1, x2, . . . , xn, D a set of their finite domains D1, D2, . . . , Dn and
F = {f1, f2, . . . , fm} a set of propositional formulas over atomic propositions
xi = v where v ∈ Di, specifying conditions that the variable assignments have
to satisfy.

Formulas F are given by the following syntax:

f ::= xi = v | f ∧ g | f ∨ g | ¬f | f ⇒ g | f ⇔ g (v ∈ Di)

Each formula fi induces a relation Ri over some subset of X , containing
exactly those tuples that satisfy fi. The terms fi and Ri will be used inter-
changeably. We will also use the term valid configuration or just configuration
to describe an assignment (to all the variables) that satisfies all the formulas
simultaneously.

Interactive configuration. We are going to focus on the problem of interac-
tive configuration i.e. a process of a user interactively specifying a product (a
car, PC) or a service (an insurance policy, airplane ticket) for his specific needs
using the supporting software called a configurator.

The user makes a choice for some specific component of a product (a specific
feature of a service), i.e. he assigns a value v from some domain Di to a variable
xi. After that, the configurator makes calculations on what are valid choices
for the other available (undecided) variables. The configurator deletes those
values from the domains that will inevitably lead to violation of some of the
formulas F . If a domain for an undecided variable has only one value left, the
configurator automatically assigns that value to the variable. The user keeps
selecting variable values until he has completely specified the desired product
(i.e. a valid assignment to all variables is reached).

Let us just note that configuration does not have to be interactive. One of
the possible scenarios is that a user selects his preferences to a product, i.e., he
assigns values to variables, and possibly gives priority to each choice. After that
the configurator searches for a valid configuration based on user preferences, i.e.
the product specification that is closest to the user preferences. This, so called
batch configuration [26] has been implemented in a rule-based reasoning system
described in [28].

User-friendly aspects of interactive configuration. Because of the in-
teractive nature of the configuration process, the configurator’s response time
plays a crucial role in the user experience. If it is too slow, the system will be
unpleasant to use. In fact, it is recommended that the response time should not
be slower than 250 msec to ensure the interactive feeling of working in real-time
(as advised by user interface designers, see e.g. [23]).

CONFIGURATION PROBLEMS 3

A user should not be forced to make choices in a predefined order. He should
be able to make selections for any particular feature at any time. This allows
him to concentrate first on those features that are most important to him.

While respecting these user-friendly requirements, the configurator has to
deliver a number of functionalities. The most important one is calculating valid
domains for undecided variables. We will name this as the Calculate Valid Domains
(CVD) function. It should satisfy two properties:

Inference: Any value that is included in a calculated domain is extendible
to a valid configuration. This implies that after selecting any value
from a calculated domain, a user will be able to continue to a valid
configuration.

Completeness: Any value that can be extended to a valid configuration
should be included in a calculated domain. This implies that if there is
a valid configuration, a user should be able to specify it.

As a consequence, calculated domains contain those and only those values
that are part of a valid configuration. We will refer to these two properties as
completeness-of-inference (CI).

Other important functionalities are restoration and assisted conflict resolu-
tion. Restoration refers to the functionality of a user undoing the choice for
some already assigned variable with the configurator recalculating valid do-
mains. Assisted conflict resolution allows a user to force an invalid choice for a
variable. In response, he gets a minimal list of choices that need to be changed
in order to restore consistency. Different authors have also identified a number
of other functionalities [22] such as: automatic completion of a partial config-
uration or full information on the consequences of a choice (pricing, delivery).
In this article we will describe and discuss implementations of some of the core
functionalities, concentrating first of all on the CVD function.

The remainder of the paper is organized as follows. In Section 2, we explore
concepts in the area of constraint satisfaction problems (CSPs), and use them
to describe and implement CVD-function. In Section 3, we show how to encode
a solution space symbolically as a binary decision diagram (BDD) and illustrate
the underlying interactive configuration algorithm. In Section 4, we investigate
the possible implementation of interactive configuration using Boolean satisfia-
bility solving (SAT). Section 5 presents some of the other configuration related
research. Finally in Section 6, we conclude and consider directions for future
work.

2. Configuration as a Constraint Satisfaction Problem

Configuration is often viewed as a Constraint Satisfaction Problem (CSP).
For more than a decade the CSP community has been developing formalisms to
adequately describe essential features of configuration [10, 21, 25, 20]. It has also
developed general algorithms that can be used to implement some configurator
functionalities. However, most promising are CSP compilation techniques used
to reduce complexity of interactive configuration.

4 TARIK HADZIC HENRIK REIF ANDERSEN

2.1. Classical CSP framework. There are a lot of good surveys on classical
CSP [16, 19, 24]. In this article we decided to base our CSP terminology on Ed-
ward Tsang’s comprehensive overview ”Foundations of constraint satisfaction”
[29]. We will present some of the most important classical CSP concepts, that
will later help us to describe more easily interactive configuration.

Definition 2. Constraint satisfaction problem is defined by a set of variables
X = {x1, x2, . . . , xn}, set of constraints C = {C1, C2, . . . , Cm}, and set of
nonempty domains D = {D1, D2, . . . , Dn} for each variable xi. Each constraint
Ci is defined over some subset {xi1 , xi2 , . . . , xik} of the variables X and specifies
the allowed combinations of these variable values Ci ⊆ Di1 ×Di2 × . . . ×Dik .
The goal is to find one or more assignments to the variables X , satisfying all
the constraints C simultaneously.

The (partial) assignment to a subset of variables {xa1 , . . . xar} ⊆ X , is de-
noted as ρ. The k-ary constraint Ci is called relevant under ρ if all it’s vari-
ables are instantiated, i.e. if {xi1 , . . . xik} ⊆ {xa1 , . . . xar}. The assignments
to all variables X that satisfy all constraints C simultaneously will be referred
to as solution tuples. We will denote the set of all possible solution tuples
Sol ⊆ D1 ×D2 × . . . ×Dn as the CSP solution space. On the other hand, for
the set of all possible assignments S = D1×D2× . . .×Dn we will use the term
CSP search space.

Most of CSP algorithms and theoretical concepts are designed only for CSP
problems where the constraints are defined over maximum 2 variables. These
CSP problems are called binary CSPs. If a CSP concept is also adequate for
non-binary CSPs, then sometimes the prefix ”general” is added to stress that
fact. Therefore, both the terms general CSP and CSP are used to describe
CSP problems that do allow non-binary constraints.

The CSP framework can uniformly express a wide range of problems from
graph coloring and resource allocation to scheduling. This uniform view of var-
ious problems leads to development of general theoretical concepts and solving
techniques. This help us to achieve deeper understanding of the problems and
when combined with problem-specific features the general solving techniques
can deliver satisfying solutions.

2.2. Graph-related concepts. A lot of research is directed on exploring graph-
related concepts and their connections with CSP solving techniques. Namely,
the complexity of solving a CSP problem is tightly connected with the topology
of the related graphs. These concepts also present an important step to a more
structured representation of CSP problems, facilitating more powerful solving
techniques. Here we introduce some of the most relevant terminology.

Definition 3. The constraint graph of a binary CSP (X ,D, C) is an undirected
graph where each node represents a variable, and each arc represents a con-
straint between variables represented by the end points.

Definition 4. The constraint hypergraph of a CSP (X ,D, C) is a hypergraph
(V, E) in which each node represents a variable in X (V = X), and each hyper-
edge represents a constraint in C (E ⊆ Pow(V)).

CONFIGURATION PROBLEMS 5

Definition 5. The primal graph of a CSP (X ,D, C) is an undirected graph in
which each node represents a variable in X , and for every pair of distinct nodes
whose corresponding variables are involved in any k-constraint in C there is an
edge between them.

Definition 6. The dual graph of a CSP (X ,D, C) is an undirected graph in
which each constraint in C is represented by a node, and there is a labelled
arc between any two nodes that share variables. The arcs are labelled by the
shared variables.

If a constraint graph of a binary CSP has a structure of a tree, then a solu-
tion to the CSP problem can be found efficiently [8, 9]. This is a well explored
concept, especially used for finding more than one solution, where more compu-
tational power is invested in transforming an original CSP to a tree-structured
one.

2.3. Problem Reduction. Problem reduction is a CSP solving technique
which transforms an original CSP to a problem that is easier to solve or is
recognized as insolvable. This technique is especially useful in combination
with CSP search algorithms.

Definition 7. A value from domain Di is redundant if it is not the part of any
solution tuple (satisfying assignment).

Definition 8. A k-tuple (k ≤ n) over variables xi1 , xi2 , . . . , xik is redundant if
it cannot be extended to any solution tuple.

The process of removing redundant values from variable domains and remov-
ing redundant tuples from constraints is called problem reduction.

Definition 9. A domain Di is called minimal if it contains only those values
that can be extended to a solution tuple with respect to the set of already made
assignments ρ.

Most of the reduction algorithms usually operate on symbolic representation
of constraints, and are therefore based on removing redundant values (Def.
7). Removing redundant tuples (Def. 8) requires explicit representation of
constraint tuples, which can lead to a memory blow-up. Also note that the
notion of minimal domain (Def. 9) is closely related to the inference-property
of interactive configurator (page 3). We will now introduce the most important
consistency concepts.

Definition 10. A CSP is 1-consistent if every value v in every domain Di

satisfies all unary constraints on variable xi. A CSP is k-consistent (k ≥ 2)
if for any assignment {xi1 = v1, xi2 = v2, . . . , xik−1

= vk−1} satisfying all the
relevant constraints (page 4), and for any additional variable xik there exists a
value vk ∈ Dik such that assignment {xi1 = v1, xi2 = v2, . . . , xik−1

= vk−1, xik =
vk} satisfies all the relevant constraints.

Because k-consistency does not imply (k − 1)-consistency we introduce an-
other term:

6 TARIK HADZIC HENRIK REIF ANDERSEN

Definition 11. A CSP problem is strongly k-consistent if it is 1, 2, . . . k − 1, k
consistent.

The most explored levels are 1-consistency and strong 2-consistency. They
are equivalent to well studied node consistency and arc consistency for binary
CSPs.

Definition 12. A binary CSP is node-consistent if and only if for all variables,
all values in its domain satisfy the constraints on that variable.

Definition 13. An arc (xi, xj) in the constraint graph of a binary CSP is arc-
consistent if and only if for every value v in the domain of xi which satisfies the
constraint on xi, there exists a value in the domain of xj which is compatible
with xi = v

A CSP is arc-consistent if and only if every arc in its constraint graph is
arc-consistent. Some concepts for binary CSPs can be extended to general case
if we introduce the two (equivalent) terms: general arc consistency and hyper
arc consistency.

Definition 14. A k-ary constraint C is generalized arc consistent if the domains
of all the variables involved in C are minimal with respect to C (Def. 9)

Definition 15. Constraint Ci ⊆ Di1 ×Di2 × . . . ×Dik is hyper-arc consistent
if for all j = 1, . . . , k and all v ∈ Dij there exist a k-tuple (v1, . . . , vk) ∈ Ci such
that vj = v

2.4. Search algorithms and other solving techniques. Finding a satisfy-
ing assignment to all CSP variables is usually based on search algorithms. The
basic search algorithm is called chronological backtracking. It performs depth-
first search in CSP search space: Variables are instantiated sequentially. After
each instantiation, all the relevant constraints are checked, and if there is any
violation, backtracking is performed to the last instantiated variable that still
has alternative values available.

This algorithm performs thrashing, ie. failing for the same reasons over and
over again (in the same search spaces). Therefore, improvements to the al-
gorithms were made so it could learn from conflicts and perform intelligent
backtracking. These are well studied CSP concepts and are explained in most
of the existing literature.

Another way to improve our backtracking search is to combine it with consis-
tency algorithms to prune future search spaces. If after each assignment we re-
move those values from the remaining domains that contradict the assignment,
we have a forward checking algorithm. If instead of just removing those val-
ues, we impose (general, hyper) arc-consistency on remaining domains we have
a (general) maintaining-arc-consistency (MAC) algorithm. Actually, impos-
ing completeness-of-inference in CVD-function is nothing more than imposing
specific type of consistency which we will refer to as completeness-of-inference
(CI) consistency. In that sense, our interactive configuration resembles running
a sort of (general) MAC algorithm.

Unfortunately, all of these general CSP solving techniques have exponential
worst-case complexity. In practice they might perform fast enough when we

CONFIGURATION PROBLEMS 7

are required to automatically find just one solution. However, when reasoning
about all possible solutions, especially in interactive setting, this is too slow.

Beside reduction and search techniques, there is another approach that is
especially well suited for finding all satisfying solutions. We call it the solution
synthesis approach. It consists of gradually extending all non-redundant tuples
(Def. 8) with new variable assignments that are not violating any constraint.
At the end, we have a list of all complete assignments. However, this solving
technique in addition to exponential time complexity has exponential space
complexity as well.

2.5. Implementing CVD-function. Expressing the configuration problem C
in CSP framework is a straight forward task. Variables and domains (in Def.
1 on page 2 and Def. 2 on page 4) mean exactly the same. Constraints Ci are
identical to relations Ri induced by formulas fi. The interactive-configuration
process can be expressed as:

Naive Interactive-Configuration
1: completely specified = FALSE
2: WHILE completely specified = FALSE
3: DO CHOOSE xi = v , (v ∈ Di)
4: Calculate Valid Domains (xi = v)
5: IF all variables xi are assigned a value THEN
6: completely specified = TRUE

In line 3, a user selects a value for one of the unassigned variables. He does
so by choosing from currently valid domains. The computationally hard part
is in line 4, where based on user selection (xi = v) the configurator restricts
domains for other unassigned variables, i.e. imposes completeness-of-inference
(CI) consistency on remaining domains.

Implementation of CVD-function based on symbolic CSP-representation is
rather naive and inefficient. After adding a new constraint xi = v we get a new
CSP, denoted as CSPxi=v. The configurator now has to make each domain
minimal (Def. 9) in CSPxi=v. This is an NP-hard task ([29]). In other words,
every time a user selects a variable, we have to solve an NP-hard problem.

A way to overcome this NP-hardness is to transform the original CSP-
problem to an equivalent one (having the same solution space) that enables
backtrack-free search.

Definition 16. A search in CSP is backtrack-free under an ordering of variables
if for every variable that is to be labelled, one can always find a value which is
compatible with already labelled variables.

This means, that as long as we are assigning variable values that are satisfying
all relevant constraints (involving only currently assigned variables), we are
guaranteed that we will be able to continue to the complete valid assignment.

However, this is accomplished under fixed ordering of variables: x1 < x2 <
. . . < xn, meaning that the user will not be able to choose the order in which he
wants to make selections. This violates one of our user-friendly requirements
described in chapter 1. Despite that, we will still explore how to utilize this

8 TARIK HADZIC HENRIK REIF ANDERSEN

concept in possible implementations in order to illustrate how classical CSP
concepts can be used for more efficient handling of interactive configuration.

A lot of research was carried on transforming CSPs to equivalent backtrack-
free CSPs (mainly due to Freuder and Dechter during the 1980s). Transforma-
tions were accomplished either through imposing strong k-consistency where k
is greater than the width of a primal graph, or by imposing adaptive consis-
tency [29, 9]. This is a NP-hard problem, but it suffices to solve it only once.
Subsequent CVD calls become polynomially fast.

Our interactive configuration reduces to:

Backtrack-free Interactive-Configuration
1: Transform CSP to a backtrack-free CSP.
2: k = 0
3: WHILE k < n
4: k = k + 1
5: DO CHOOSE xk = v
6: Calculate Valid Domains (xk = v)

When imposing CI-consistency (line 6), it is sufficient only to prune do-
main Dk+1 by deleting only those values that are violating constraints involving
{x1, x2, . . . , xk}. The task is now tractable and more adequate for interactive
use. The NP-hard transformation in line 1 can be made offline leading to an
idea of compilation.

2.6. Compilation in CSP. The CSP compilation refers to the computation
of the ”unchanging parts of constraint satisfaction problems into structures cor-
responding to a condensed representation of solution spaces” [30]. The choice
of condensed representation (i.e. the data structure used for representing a so-
lution space) varies depending on what kind of queries and transformations we
want to perform on that data structure [4]. For example, the symbolic represen-
tation of constraints in a CSP problem is very condensed but does not support
efficient queries and transformations (i.e. calculating valid domains). On the
other hand, representation in form of the explicit enumeration of complete valid
assignments allows efficient extraction of valid domains, but is not condensed
and leads in all non-trivial instances to a memory blow-up.

Acyclic constraint networks and the tree clustering algorithm [9, 7] are used
to represent CSP solution space in a more compact way, organizing it as a
tree of solved subproblems. The generated structure offers polynomial time
guarantees (in the size of the generated structure) for extracting valid domains.
However, the size of the subproblems can not be controlled for all instances and
would lead to exponential blow up. The complexity of the original problem is
dominated by the complexities of subproblems - which are exponential in both
space and time. Nevertheless, this is one of he first compilation approaches used
to solve CSP problems. Additional compression of constraint networks by using
cartesian product representation can improve the performance as indicated in
[17].

CONFIGURATION PROBLEMS 9

Minimal synthesis trees [30] are also data structures used to compactly rep-
resent the set of all solutions in a CSP. It takes advantage of combining con-
sistency techniques with decomposition techniques and interchangeability idea
[30]. Unlike acyclic constraint networks that can be possibly exponentially
large structures, while offering online polynomial time guarantees, the minimal
synthesis trees are the polynomial-size structures that still require exponential
time for finding the solution. The experimental evaluation indicates that this
exponential worst-case rarely happens.

The compilation approach is not unique for the CSP community. The idea of
representing the solution space in a more compact way in order to achieve better
interaction algorithms can be treated as compilation from one language describ-
ing a problem to another language that supports some polynomial transforma-
tions and queries (like CVD function). This treatment within the knowledge
representation community is reported in [4]. One of the described languages
(data structures) that supports several desired poly-time queries and transfor-
mations is Binary Decision Diagrams.

3. Binary Decision Diagrams in Configuration

Binary Decision Diagrams (BDDs) is a data structure that has been widely
used in the research community for symbolic computation, especially in the area
of formal verification. BDDs came into focus of attention after Bryant’s 1986
article [2]. They have proven to compactly represent large sets of satisfying
assignments for many real-world problem instances in formal verification. In
addition they allow certain poly-time queries and transformations [4] needed to
efficiently implement CVD function. Therefore, they seem a reasonable choice
for a data-structure representing the configuration solution space. Since there
is not much work on using BDDs in interactive configuration, we will describe
this approach in more details.

Definition 17 (Taken from [1]). A Binary Decision Diagram (BDD) is a
rooted, directed, acyclic graph with

• one or two terminal nodes of out-degree zero labelled 1 and 0
• a set of variable nodes u of out-degree two, each labelled by a variable

var(u). The two outgoing edges are given by labelling children nodes
with low(u) and high(u)

A BDD is Ordered (OBDD) if on all paths through the graph the variables
respect a given linear order x1 < x2 < . . . < xn. An OBDD is Reduced
(ROBDD) if it satisfies the following properties:

Uniqueness: No two distinct nodes u and v have at any time the same
variable name (var(u)) and low- and high-successor, ie. var(u) =
var(v) ∧ low(u) = low(v) ∧ high(u) = high(v) ⇒ u = v

Non-redundant tests: No variable node u has an identical low- and
high-successor, i.e. low(u) 6= high(u)

A Boolean function F defined over variables x1, x2, . . . , xn, can be encoded
into a (RO)BDD structure. Each non-terminal node represents a variable,

10 TARIK HADZIC HENRIK REIF ANDERSEN

and two outgoing edges represent a choice for the variable assignment (low(u):
var(u) is assigned 0, high(u): var(u) is assigned 1). For example, the function
F (x1, x2) ≡ ¬(x1 ⇔ x2) is represented by the BDD in the Figure 1.

X1

0

X2 X2

1

Figure 1. A decision tree for ¬(x1 ⇔ x2). Dashed lines denote
low-branches , solid lines high-branches.

ROBDD offers a canonical representation of any Boolean function with re-
spect to a chosen variable ordering. This means that for any boolean function
f : Bn → B (B = {0, 1}) there is exactly one ROBDD, with variable ordering
x1 < x2 < . . . < xn, that is representing the function f .

Also, each non-terminal node has two outgoing arcs, and if we denote |A| as
the number of arcs in a ROBDD, and |V | as a number of vertices, then a simple
relation holds:

|A| = 2 · (|V | − 2)
As a result, the problem of finding a satisfying assignment (complete config-
uration) has a Θ(|V |) complexity. The problem of checking if the formula is
satisfiable can be reduced to checking that the graph is not just a single termi-
nal node labelled 0 (constant time), and calculating a ROBDD that represents
a Boolean function f induced by the assignment to a subset of its variables
f [x1 = v1, . . . , xm = vm] (vi ∈ {0, 1}) is also linear in the size of the orig-
inal ROBDD for f . In addition, implementing general binary operator ”op”
on ROBDDs u1 and u2 representing functions f1 and f2 has the complexity
Θ(|V1| · |V2|), where |V1|, |V2| are the numbers of vertices in u1 and u2 respec-
tively. We will use f to denote both the Boolean function and the BDD repre-
senting that function [2], when there is no danger of creating confusion.

3.1. Offline compilation. As we mentioned, we will use ROBDDs to represent
solution space of the original configuration problem. To do so, we first need to
translate the finite-domain variables and formulas to Boolean-domain. Then,
we encode the solution space of the equivalent Boolean-domain configuration
problem to the ROBDD and during the interaction with a user, we translate

CONFIGURATION PROBLEMS 11

back the meanings of Boolean values to finite domain. We refer the reader to
works of Hadzic et al. and Van der Meer [12, 18] for detailed description of this
compilation approach. The translation to ROBDDs are based on Hu’s work
[14].

First, we need to encode finite domain variables xi ∈ X to Boolean vari-
ables. Each value v ∈ Di is mapped to a binary sequence −→v ∈ BNi , where
Ni = dlog |Di|e. Then, for each variable xi we introduce Ni Boolean variables
x0

i , x
1
i . . . , xNi−1

i , where variable xk
i represents the k-th bit in the binary repre-

sentation −→v .
For example, for domain D = {0, 1, 2} we have N = dlog 3e = 2, so we could

map 0 ∈ D to 00 (x0 = 0, x1 = 0), 1 ∈ D to 01 (x0 = 1, x1 = 0), and 3 ∈ D to
10 (x0 = 0, x1 = 1).

Now, we encode the propositional formulas fi ∈ F over atomic propositions
to Boolean functions fB

i ∈ FB. It is enough to replace each atomic proposition
xi = v (v ∈ Di) with −→xi = −→v , ie. with x0

i = v0 ∧ x1
i = v1 ∧ . . .∧ xNi−1

i = vNi−1,
vk ∈ {0, 1}.

Finally, we have to impose additional restrictions on our Boolean variables
since not every sequence of values vk encodes a valid value v ∈ Di. For example,
the combination 11 does not encode a valid value in D = {0, 1, 2}. Therefore
we explicitly forbid these combinations by adding domain constraints. A do-
main constraint in our example would be fD(x0, x1) ≡ ¬(x0 = 1 ∧ x1 = 1).
Domain constraint for the entire configuration problem C(X ,D,F) would be
fD =

∧
D∈D fD.

After translating to the Boolean domain, we fix a variable ordering and build
a ROBDD representing the Boolean function F ≡ ∧

f∈FB f ∧ fD. The effi-
cient way to build the ROBDD of a given Boolean function F (as presented
in [14, 18]) is done by building small ROBDDs starting from terminal nodes,
and incrementally building ROBDDs from existing ones by performing Boolean
BDD operations with simultaneous enforcing of canonicity.

This building of ROBDD is the most sensitive part of the compilation process
because the bad variable ordering can lead to a memory blow-up. But, since
we are performing this step offline, we are usually able to fine tune the variable
ordering, and overcome this NP-hard part of the problem.

3.2. Online interaction. After the generation of our ROBDD, we can start
the interaction with the user.

BDD Interactive-Configuration
1: Generate ROBDD representing solution space.
2: completely specified = FALSE
3: WHILE completely specified = FALSE
4: DO CHOOSE xi = v , (v ∈ Di)
5: Calculate Valid Domains (xi = v)
6: IF all variables xi are assigned a value THEN
7: completely specified = TRUE

Note that although the variable-order plays a significant role in generating
the BDD, it does not enforce the order in which the user is making his choices.

12 TARIK HADZIC HENRIK REIF ANDERSEN

The CVD-function in line 5 takes an assignment xi = v, translates it into the
appropriate conjunction of Boolean assignments −→xi = −→v and generates a new
ROBDD f ′ = f [−→xi = −→v] (a linear-time operation).

Now the valid domain for an undecided variable xk can be efficiently cal-
culated by going through the list of all possible values v ∈ Dk and checking
whether the ROBDDs corresponding to the xk = v (i.e. the f ′[−→xk = −→v]) are
reduced to the terminal node 0 (constant time). If the ROBDD is not just a
terminal 0, the choice xk = v can be extended to a valid configuration and v is
therefore added to the valid domain. Each assignment f ′[−→xk = −→v] takes O(|f ′|)
steps, and if we denote the k as the size of the largest domain in D, n the num-
ber of variables in X , then even the naive implementation takes O(|f ′| · n · k)
steps which is linear in the size of the original ROBDD f ′. Since translation
between original (finite-domain) representation and Boolean representation is
(time,space) efficient, the overall CVD-function takes polynomial time in the
size of the ROBDD.

3.3. Restoration and Assisted conflict resolution. There are at least two
ways to implement restoration. First, an easy trick that could also be imple-
mented using other techniques is to memorize every intermediate ROBDD, and
if the user decides to unassign the last decision, we simply switch to the previ-
ous ROBDD. The problem is that the user can unassign variables only in the
predefined order (reverse to the assignment sequence).

Second, a more BDD-specific idea is to operate only with the original ROBDD
f , and at each step to perform an entire set of assignments f [x1 = v1, . . . , xm =
vm]. This will not introduce significant rise in complexity since the assignment
algorithm is efficient.

One simple way to implement assisted conflict resolution is after the user
enforces conflict with invalid assignment xi = vi in the sequence of assignments
x1 = v1, x2 = v2, . . . , xi = vi, to simply move the assignment xi = vi to the
beginning of the assignment queue (xi = vi, x1 = v1, x2 = v2, . . . , xi−1 = vi−1)
and restart with the rest of the assignments until a conflict is reached (xi =
vi, x1 = v1, . . . , xk = vk). We remove the conflicting choice xk = vk and continue
until we reach another conflict or reach the last assignment xi−1 = vi−1. At the
end, we will have a list of choices that need to be changed in order to restore
consistency. This implementation can be enhanced by applying a number of
heuristics to the ordering of the sequence of remaining assignments (for example
by giving preferences to which choice is more important to keep).

In this section, we have presented only the core user-friendly requirements,
and we have described only the basic implementations. The BDD framework is
robust enough to support a number of additional enhancements to these fun-
damentals. This is because the BDDs are investing more space in order to
represent more information (the structure). This happens to be especially ef-
ficient when dealing with the structured instances (such as in a configuration
domain). However, the robustness comes with the price of the large memory
requirements, and possible compilation failures, when dealing with the unstruc-
tured problem instances. A possible solution to this problem might be to com-
bine the BDD approach with other technologies that are able to handle large

CONFIGURATION PROBLEMS 13

numbers of variables without investing space in representing the structure. One
of the most mature technologies with these properties is boolean satisfiability
solving (SAT).

4. Using SAT in configuration

The satisfiability problem has both great theoretical and practical impor-
tance. It was the first problem shown to be NP-complete [3]. Today, significant
performance improvements have been made to SAT-solving algorithms, and
have found their way to applications in industry, from Automatic Test Pattern
Generation to Theorem Proving and Verification. This performance efficiency
of mature SAT techniques motivates us to explore its possible use in configura-
tion. Since there is almost no work on this issue, and there are no experimental
data to support any general conclusions, we will only describe the possible
implementation and suggest some improvements to the basic model.

4.1. Solving satisfiability problems. Given a boolean formula F specified
over variables x1, x2, . . . , xn, the boolean satisfiability problem (SAT) asks whether
there exists an assignment to the variables such that the formula F evaluates
to true.

The formula F is usually written in conjunctive normal form (CNF), which is
a logical conjunction of clauses that are logical disjunctions of literals. A literal
is a variable with or without negation. For example: F = (x1 ∨ x2 ∨ ¬x3) ∧
(¬x1 ∨ x2 ∨ x3) represents a CNF form of the boolean formula F consisting of
two clauses, over variables x1, x2, x3.

The history of the SAT solving algorithms begins with a 1960 article from
Davis and Putman [6], that suggested an algorithmic solution based on explicit
resolution. In 1962, another article [5] from Davis, Logemann, Loveland pro-
posed a solution based on backtracking-search, which is usually referred to as
the DPLL algorithm, and represents the core of the state of the art SAT solvers
today.

In the 1990s, there were some major advancements [11, 31, 27], mainly by in-
troducing (conflict-driven) learning and non-chronological backtracking. Learn-
ing is a pruning technique that adds clauses to a clause database (and effectively
forbids entering the same search space), while non-chronological backtracking
means exactly the same as in a CSP community: backtrack is performed to a
variable assignment that has caused the conflict.

We will now present a pseudo-code for a DPLL-based algorithm with learning,
taken from Zhang et al. [31].

SAT solving algorithm
1: while(1) {
2: if (decide next branch()) {
3: while(deduce()==conflict) {
4: blevel = analyze conflicts();
5: if (blevel < 0)
6: return UNSATISFIABLE;
7: else back track(blevel);
8: }

14 TARIK HADZIC HENRIK REIF ANDERSEN

9: else //no branch means all variables got assigned.
10: return SATISFIABLE;
11: }

This listing compactly represents some key operations:
Branching: In the decide next branch() function, a new variable is cho-

sen and a value (0 or 1) is assigned to it. If all the variables are al-
ready assigned a value, then the satisfying assignment has already been
reached and the function returns false, effectively terminating the algo-
rithm. If there are unassigned variables, the choice of a variable and the
choice of a value is made based on a number of well explored variable-
ordering and value-ordering heuristics. The function then returns true
and proceeds to the deduction function.

Deducing: A unit propagation or boolean constraint propagation is per-
formed, meaning that after assigning a value to the variable, some
clauses might become one-literal clauses, and it is immediately deduced
that this literal must evaluate to true which leads to the new assign-
ment that in turn might generate a new one-literal clause etc... If the
conflict is reached, the function proceeds to learning procedure in the
analyze conflicts() function. Actually, the DPLL based algorithm is
performing a unit propagation most of the processing time, and it is
essential to have efficient implementation of this function.

Learning: If the conflict is reached, a conflict clause is generated and
added to a clause database. This is very useful for pruning the remaining
search space of structured problems. In addition, the source of the
conflict is found (in the form of the backtracking level) enabling the
intelligent backtracking.

Backtracking: Backtracking means unassigning variables to the level of
conflicting assignment. Different implementation techniques are pro-
posed to accomplish restructuring of original clauses.

4.2. Mapping configuration to SAT problem. Translating a configuration
problem to a SAT instance is quite similar to an already described approach
for BDDs. The encoding to Boolean domain is similar. The only difference is
that the function

F =
∧

f∈FB
f ∧ fD

needs to be transformed to CNF instead to ROBDD.
An alternative approach would be to use multivalued propositional formulas

f ∈ F from original configuration problem C instead of encoding to Boolean
domains, creating

F =
∧

f∈F
f

and transforming it to an instance of multivalued SAT (MV SAT). We would
then be able to use the full power of well explored SAT techniques extended to
work with finite domains. It would be reasonable to expect better performance
compared to Boolean encoding, since both approaches take advantage of the

CONFIGURATION PROBLEMS 15

same SAT solving techniques, while the multivalued version does not involve
adding domain constraints. However, this remains to be experimentally verified.

4.3. Naive CNF-based implementation. According to [4] the CNF lan-
gauge is too flat and does not support certain polytime queries and transfor-
mations. It is easy to see that CNF-based representation requires solving an
NP-hard problem every time a user selects a variable (just as in the case of
symbolic CSP representation).

Actually, without proper knowledge representation, the implementation of
CVD-function reduces to solving a huge number of SAT instances, each without
polynomial guarantees for response time. A naive implementation could look
something like:

SAT based Interactive-Configuration
1: FOR all undecided variables x DO
2: FOR all values v ∈ Dx DO
3: IF F [x = v] is SATISFIABLE add v to D′

x

4: END FOR
5: END FOR

The F [x = v] denotes a restriction of an original problem with an additional
constraint x = v. D′

x denotes a valid domain for variable x.

The main strength of the SAT approach is the maturity of its technology that
is performing extremely fast even when handling huge numbers of clauses and
variables. It could be the case that although we do not have strong theoretical
guarantees, the SAT solver is fast enough to provide a satisfying interactive per-
formance. However, this performance should be tested on a number of instances
before any conclusions can be drawn. Another advantage of the SAT approach
is the extremely condensed representation of constraints. Significantly larger
instances could be described using CNF-language instead of structured CSP or
BDD representations.

There are several strategies we could use to improve this naive implemen-
tation. We could reduce complexity by avoiding redundant work via exploit-
ing similarities among SAT instances using incremental satisfiability techniques
[15, 13] or by storing complete (partial) solutions and reusing them for enhanc-
ing future searches. Still, there are no complexity guarantees.

We could also modify the user-friendly requirements by allowing the user to
view valid domains one at a time. Unlike a backtrack-free search in a CSP
community, were variables come in a predefined order, we offer the user to first
choose the variable (component type), and then calculate the valid domain for
that variable. The process of calculating the remaining valid domains can be
continued in silent mode, while the user is exploring already available options.
However, although significantly faster our function still has no response-time
guarantees.

If the user has chosen variable x, and |Dx| = k, the calculation of the valid
domain D′

x is reduced to solving k highly connected SAT instances. Exploiting
incremental satisfiability could be very useful, especially if we take advantage

16 TARIK HADZIC HENRIK REIF ANDERSEN

of the fact that only the value for x will be changed. We could encode it to
variable ordering heuristics, so the last variable to be instantiated will be x.

4.4. Compilation for SAT. The CNF language obviously cannot give ade-
quate theoretical performance guaranties. One of the reasons is, as we have
already noticed, unability to represent and exploit structure of the original
problem. For example, the efficiency of synthesis trees or BDDs is tightly re-
lated with this ability. We list a few ideas that could help in circumventing this
theoretical inadequacy, trying to push more effort into the offline phase.

Divide to subproblems: Analogously to decomposition techniques for
CSP (tree-clustering), we could exploit logical independencies among
some variables. For example, we could identify subsets of highly related
variables, transform constraints (clauses) to get independent subprob-
lems, and improve efficiency by solving SAT subproblems.

Precompute variable and value heuristics: We could exploit topol-
ogy of the problem by identifying those variables whose assignment
could prune the most of the search space, and make these assignments
earlier.

Transform SAT to more adequate structure: Certain classes of CNF
formulas can be solved in polynomial time. This is the case if all the
clauses have the length of 2 (literals) or if we are dealing with horn
formulas.

5. Other configuration-related research

An important paradigm in configuration community is distinction between
configuration knowledge and configuration task. The first term relates to captur-
ing and representing information about components (variables), domains and
rules. The latter term corresponds to manipulation of knowledge by executing
user driven queries and transformations (which leads to specification of ac-
tual product). Our configuration knowledge was represented by synthesis trees,
ROBDDs, and CNF formulas. Our configuration tasks were CVD-function,
restoration and assisted conflict resolution.

Most of the research papers about configuration are dealing with configura-
tion knowledge. They investigate representation models that will capture the
essence of configuration problems. We have already mentioned some investi-
gated properties: logical independence between certain variables (decomposi-
tion technique), interchangeability between variables (introducing meta vari-
ables). However, these are only consequences of the hierarchical nature of the
configuration data. (we could look at synthesis trees as a way to capture some of
that hierarchy). Researchers are extending existing frameworks and inventing
new ones in order to naturally represent that hierarchy (good model supports
faster processing algorithms).

The second aspect of configuration that we did not consider at all within our
framework is called dynamicity. The number of variables that will be relevant to
the final configuration is not known in advance. Different choices for the same
component can require configuring different sets of other components (some
motherboards in PC configuration support more functionalities than others).

CONFIGURATION PROBLEMS 17

There was a lot of research on extending CSP frameworks to capture dynamicity.
This leads to introducing Dynamic CSPs [20] where activity constraints were
introduced to reason about activity of the variables. Constraints will be checked
only if all of the variables they are specifying are active. In [18] both of these
aspects are investigated under the term of modularity.

There are also other configuration topics (dealing mostly with configuration
knowledge). Some of the researchers are developing formalisms for describing
knowledge bases. Others are exploring additional desirable properties that a
knowledge representation should satisfy etc. It is a wide spectrum of topics
and views on what configuration is and even a wider spectrum of implementa-
tions satisfying completely different user-friendly requirements and delivering
different functionalities.

6. Conclusion

In this paper we have described interactive configuration problems and il-
lustrated several approaches to solve them using the concepts and terminology
from CSP, BDD and SAT community. In some cases we have moved from de-
scribing existing approaches to suggesting possible implementations. This was
particulary the case for the SAT approach where applications to configuration
were particulary rare.

Future work includes implementing interactive configuration using SAT-solvers.
We hope to generate enough experimental data to evaluate the performance of
SAT-based technology. Further, we plan to concentrate on exploring other
data-structures and solving techniques in interactive configuration.

References

[1] Henrik Reif Andersen. An introduction to binary decision diagrams, 1999. Lecture notes
for Efficient Algorithms and Programs, IT University of Copenhagen.

[2] Randy Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 35:677–691, 1986.

[3] Stephen A. Cook. The complexity of theorem proving procedures. ACM Symposium on
Theory of Computing, 1971.

[4] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17:229–264, 2002.

[5] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, July 1962.

[6] Martin Davis and Hilary Putman. A computation procedure for quantification theory.
Journal of ACM, 7:201–215, 1960.

[7] Rina Dechter. Constraint Networks. In Stuart C. Shapiro, editor, Encyclopedia of Artifi-
cial Intelligence, volume 1. Addison-Wesley Publishing Company, 1992. Second Edition.

[8] Rina Dechter and Judea Pearl. Network-based heuristics for constraint-satisfaction prob-
lems. Artificial Intelligence, 34:1–38, 1988.

[9] Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial Intelli-
gence, 38:353–366, 1989.

[10] Esther Gelle and Mihaela Sabin. Solving methods for conditional constraint satisfaction.
In Eighteenth International Joint Conference On Artificial Intelligence, Workshop on
Configuration, 2003.

[11] Evgueni Goldberg and Yakov Novikov. Berkmin: a fast and robust sat-solver. July 11
2002.

18 TARIK HADZIC HENRIK REIF ANDERSEN

[12] Tarik Hadzic, Sathiamoorthy Subbarayan, Rune M. Jensen, Henrik R. Andersen, Jesper
Moller, and Henrik Hulgaard. Fast backtrack-free product configuration using a precom-
piled solution space representation. In Conference Proceedings of nternational Conference
on Economic, technical and Organisational aspects of Product Configuration Systems.
Department of Manufacturing, Engineering and Management, Technical University of
Denmark, June 2004.

[13] John N. Hooker. Solving the incremental satisfiability problem. Journal of Logic Pro-
gramming, 15(1-2):177–18, January 1993.

[14] Alan John Hu. Efficient Techniques for Formal Verification Using Binary Decision Dia-
grams. PhD thesis, Stanford University, December 1995.

[15] Joonyoung Kim, Jesse Whittemore, and Karem Sakallah. On solving stack-based incre-
mental satisfiability problems. In IEEE International Conference on Computer Design:
VLSI in Computers and Processors (ICCD’00), pages 379–382, Washington - Brussels -
Tokyo, September 2000. IEEE.

[16] Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. The AI Maga-
zine, pages 32–44, 1992.

[17] Jeppe Madsen. Methods for interactive constraint satisfaction. Master’s thesis, DIKU,
February 2003.

[18] Erik Van Der Meer. On Modular Configuration. PhD thesis, IT University of Copenhagen,
To appear.

[19] Ian Miguel and Qiang Shen. Solution techniques for constraint satisfaction problems:
Foundations. Artificial Intelligence Review, 15(4):243–267, 2001.

[20] Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction problems. In Pro-
ceedings of the 8th National Conference on Artificial Intelligence, pages 25–32, Hynes
Convention Centre, July–August 1990. MIT Press.

[21] Sanjay Mittal and Felix Frayman. Towards a generic model of configuration tasks. In
Proceeedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI-
89), pages 1395–1401, 1989.

[22] Bernard Pargamin. Vehicle sales configuration: the cluster tree approach. In ECAI 2002
Configuration Workshop, pages 35–40, 2002.

[23] Jef Raskin. The Humane Interface. Addison Wesley, 2000.
[24] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, chapter 5.

Constraint Satisfaction Problems, pages 137–160. Prentice Hall, second edition, 2003.
[25] Daniel Sabin and Eugene C. Freuder. Configuration as composite constraint satisfac-

tion. In Artificial Intelligence and Manufacturing Research Planning Workshop, AAAI
Technical Report, pages 28–36, 1996.

[26] Daniel Sabin and Rainer Weigel. Product configuration frameworks - a survey. IEEE
Intelligent Systems, 13(4):42–49, 1998.

[27] Joao Marques Silva and Karem Sakallah. GRASP: A new search algorithm for satisfi-
ability. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, pages 220–227, Washington, November 10–14 1996. IEEE Computer Society
Press.

[28] Carsten Sinz, Andreas Kaiser, and Wolfgang Kuchlin. Formal methods for the validation
of automotive product configuration data. Artificial Intelligence for Engineering Design,
17:75–97, 2002.

[29] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1993.
[30] Reiner Wiegel and Boi Faltings. Compiling constraint satisfaction problems. Artificial

Intelligence, 115:257–287, 1999.
[31] Lintao Zhang, Sharad Malik, Matthew Moskewicz, and Conor Madigan. Efficient conflict

driven learning in boolean satisfiability solver. In Proceedings of the 2001 International
Conference on Computer-Aided Design (ICCAD-01), pages 279–285, Los Alamitos, CA,
November 4–8 2001. IEEE Computer Society.

E-mail address: tarik@itu.dk, hra@itu.dk

