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Preface and Summary

This technical report consists of 4 chapters that elaborate on technical report nr. 36, and focus on 2+1D Symme-
try Sets: 2D Symmetry Sets in either a one-parameter family of pertubations, or radius space, or a multi-scale
context. These chapters are included in article format, since they are all either published, or submitted, or
intended to be submitted to conferences. Therefore, some overlap in text and / or figures occurs.

They are inspired by the results of the research written down in the deliverable 10. One part of this deliv-
erable was presented at ECCV 2004 (focussing on the data structure induced by the Symmetry Set) [28], while
a second part was presented at S+SSPR 2004 (concerning alternative representations of Symmetry Set, e.g. the
pre-Symmetry Set) [26].

e Chapter 1 focusses on the changes that can occur in the Pre-Symmetry Set. They follow directly from
possible changes of the Symmetry Set. It allows descriptions by means of a dynamic 2+1D Symmetry Set.
This chapter has been presented at ICPR 2004 [27] and is the result of close collaboration with Ole Fogh
Olsen (ITU) and Peter Giblin (Liverpool).

e Chapter 2 describes a possible application of the usage of the transitions, viz. amending the pre-Symmetry
Set. It is a way to remove small details in the (pre-)Symmetry Set. This chapter is the result of collabora-
tion with Ole Fogh Olsen (ITU).

e Chapter 3 describes a fast and elegant extraction of the Medial Axis once the (pre-)Symmetry Set is
known. It uses the radius space as described in deliverable 10. This chapter is the result of collaboration
with Ole Fogh Olsen (ITU).

e Chapter 4 describes a general multi-scale frame work, where the pre-Symmetry Set is embedded in a
mean curvature motion structure - the intrinsic heat equation for shapes. It yields a hierarchical structure
suitable for describing and comparing shapes. It is the result of collaboration with Ole Fogh Olsen (ITU),
Peter Giblin (Liverpool), and Dirk Siersma (Mathematics, Utrecht).
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Chapter 1

Transitions of the Pre-Symmetry Set

Abstract

The Symmetry Set (SS) and its subset the Medial Axis (M.A4), can be used to describe a shape. The representation
of the SS in parameter space is called the pre-Symmetry Set. Changes in the shape are directly related to so-called
transitions (topological changes) of the SS. They have also effect on the Pre-SS. Since the Pre-SS can be used to
represent the shape efficiently, it is important to study the transitions of the pre-SS and their impact. We present
these transitions, as well as the presence of the M4 in the pre-SS.

1.1 Introduction

In shape analysis, much effort has been put into the research on the skeleton, or Medial Axis (M.A) [2], as a
way to represent the shape in a more simplified way. As it was soon realized, the M A it itself didn’t carry
enough information and sophisticated extensions were built. Next, the potential changes (transitions) of the
MA were investigated [15]. In that way different shapes can be related to each other for shape indexing and
retrieval [35, 39]. The results on transitions boiled down from the results on the possible transitions [3] of the
Symmetry Set (SS) [4]. This set contains the M4 as subset. The SS has its advantage in being easily described
in mathematical sense, but its visualization is less pleasant for the eye. So most of the research has been focused
on the (augmented) MA.

Recently, however, a data structure was presented for the SS [28], that can be visualized by a sequence of
nodes, that are pair wise joined. This structure is related to the arc-annotated sequence used in RNA research
[1]. Its main advantage over the graph structure used for the M A4 is that it allows operations on it with a lower
complexity.

In this paper we present a way to visualize the SS in a more pleasing manner, by using the pre-SS. Here we
use pairs of points on the shape that give rise to a SS point. So this avoids precise calculation of the SS points
in the plane. We present the possible transitions of the pre-SS and discuss the relation of it to both the shape
and its SS. This opens ways to manipulate both by editing the pre-SS, as presented in [28].

1.2 Symmetry Set

The Symmetry Set is defined as the closure of the loci of the circles tangent to a shape [4, 15]. In Figure 1.1a,
the shape is given by the oval. Inside a circle is tangent to it at two locations, so the unit normals A; and A> are
equal for the shape and the circle. The centre of the circle is found by multiplying minus the radius r with the
normals. Note that this is also a M.A point. Next, also outside a circle is tangent to the shape at two locations,
where the unit normals N; and N} are equal for the shape and the circle.

From this image it follows immediately that a point on the shape relates to at least two points on the SS, in
contrast with the M. A recipe for finding the SS is the given by the following observations.
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Figure 1.1: a) Circles tangent to a shape b) Computing the Symmetry Set (see text).

Let a circle be tangent to the shape as in Figure 1.1b. Then call the points at which it is tangent p; and p..
Then the vector p; — p» is perpendicular to the vector N; + A when the circle is tangent twice from the same
side as shown in these images, or to the vector A; — N5, when tangent from two different sides (see [15]). So
to find these locations it suffices to have a point p; fixed and try all other points p; along the shape and find
zero crossings of (p; — p;).(N; £ N;) Next, the centre of the circle - the location of the SS point - is given by
pi —TN; =pj £TN;

Another tool that is used in the analysis of the SS is the evolute. Let k(t) = (ziyu — yexe)/(x7 + y?) /2
be the curvature of the shape S, then the evolute is given by S + A//x. In Figure 1.2a a shape, its evolute (thick
line connecting endpoints in cusps) and the SS (both lines) are shown. Its M.A is the vertical curve.

1.2.1 Points on the Symmetry Set

Due to the geometry of the shape and the order of tangency, four distinct types of points generically occur on
the full SS [4, 15].

A2 points: the midpoints of circles tangent at two distinct points of the shape. These points are dense on the
SS.

An A3 point: the midpoint of a circle located at the evolute and tangent at the point of the shape with the
local extremal curvature. The endpoint of a branch of the SS.

An A; As point: the midpoint of a circle tangent at two distinct points of the shape but located at the evolute.
A turning point on the SS.

An A3$ point: the midpoint of one circle tangent at three distinct points of the shape. An intersection of three
branches of the SS.

An A?/A? point: the midpoints of two circles with different radii coincide and two branches of the SS
intersect.

These points can be seen in Figure 1.2a,b.

1.2.2 Transitions

In the following we briefly state the possible transitions of the SS. For more details and figures the reader is
referred to [3, 15].



Figure 1.2: a) A shape (thickest), its evolute (thick) and the SS with special points b) Close up. c) Pre-SS.

At an A} transition a collision of A3 points appears. Before and after the transition four A3 points occur
and the SS doesn’t change. The result on the M.A, however, is a reordering of the connections of two connected
Y-parts of the skeleton.

At an A; A; transition, a cusp of the evolute (and thus an end part of a SS branch including an A3 point)
intersects a branch of the SS and an A3$ point as well as two A; A, points are created or annihilated. The 43
point lies on the A3 containing branch, while the other branch contains a "triangle”” with the A3 and the A; A,’s
as corner points.

The A4 transition corresponds to creation or annihilation of a swallowtail structure of the evolute and the
creation or annihilation of the enclosed SS branch with two A3 and two A; A, points.

At an A2 A, transition two non-intersecting A; A»-containing branches meet a third SS branch at the evo-
lute, creating or annihilating two situations where three different branches intersect at two A3 points.

The A2 moth transition describes the creation or annihilation of a SS branch containing only four 4; A,
and no Az points. These points lie pair wise on two opposite parts of the evolute. Each point is connected via
the SS to the two points on the opposite part of the evolute.

When going through an A2 nib transition, two branches of the SS, each containing an 4; A, point, meet
and exchange a sub-branch.

1.3 Pre-Symmetry Set

The pre-SS is obtained by visualizing the Symmetry Set in parameter space, so essentially it is visualizing the
zero crossings of (p; — p;).(N; = N;). This is done in Figure 1.2b. On the axis one finds the parameters p; and
p;j- The black curved lines represent the zero crossings.

Firstly, it needs to be remarked that the diagram repeats across its borders: the parameter moves along a
closed curve. So the diagram represents a torus. Furthermore, the axis are to be identified, since they both
relate to the same parameter along the shape. So the image is symmetric in the diagonal and the plot represents
in fact a Mdbius strip, with the diagonal as its boundary. In Figure 1.2c, one can see two curves ranging over
the entire domain and one closed loop.

1.3.1 Points on the Pre-Symmetry Set

Since curves in the pre-SS generically don’t intersect, one easily obtains separate branches. On these branches
the points are classified as follows:

At A; points, one has p; = p;. They are located at the diagonal since they don’t concern two different points
on the shape.

At A; As points the SS hits the evolute and is reflected. This implies that one of the two involved points
is also reflected. The pre-SS therefore has a horizontal or vertical tangent (identical due to symmetry in the



Figure 1.3: MA in the (Pre-) Symmetry Set.

diagonal).

At an A3 point three parts of the SS intersect. In the pre-SS these points are detectable as the occurrence
of the triple point sets (p1,p2), (p1,p3), and (p2, p3) (and, of course, the diagonal symmetric counterpart). This
is visualized by the box-set in Figure 1.2b and c.

All other points are A? points.

The MA also lives in the pre-SS space, see Figure 1.3. It starts at a diagonal point, moves along a curve
until an A3 point is encountered (a Y-junction of the skeleton). There it jumps to the branch to which the box
is connected. There it continues until another A3 point is encountered. This may be the same as before, but in
mirrored sense. Hence the M.4-walk went to an endpoint of the skeleton and returned. Finally, the tour ends
in the starting diagonal point and the M.A has been traversed twice, starting and ending in an endpoint.

1.4 Transitions of the pre-symmetry set

The list of transitions valid for the SS, also apply to the pre-SS. In the following we state the consequences
of these events for the pre-SS. Firstly, branches can be created or annihilated in the pre-SS. They can be
qualified on- and of-diagonal. Secondly, curves in the pre-SS can be smoothened (or pronounced). This relates
to the annihilation or creation of pairs of local extrema on them. Thirdly, curves can meet and exchange
branches. Finally, two types of special constellations of A3 — points can occur, one being related to the creation
or annihilation of two A$—points.

1.4.1 Curves on the diagonal: A,

The A4 transition (Figure 1.4) corresponds to creation or annihilation of a closed loop on the diagonal, thus
containing two A3z points on the diagonal and two A; A, points as the horizontal and vertical tangents (note that
the diagonal is a axis of symmetry).

1.4.2 Curves of the diagonal: A2 moth

When going through an A2 nib transition (Figure 1.5), a closed of-diagonal loop is created or annihilated. It
cannot intersect the diagonal. Note that in the visualization two loops occur due to diagonal symmetry.



Figure 1.4: A, transition in the Pre-Symmetry Set.

Figure 1.5: AZ-moth transition in the Pre-Symmetry Set.
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Figure 1.6: A; A3 transition in the Pre-Symmetry Set.

Figure 1.7: AZ-nib transition in the Pre-Symmetry Set.

1.4.3 Smoothing curves: A; A;

At an A; A3z transition (Figure 1.6), one curve goes through an inflection point and changes from zero to two
local extrema (horizontal or vertical tangents) - which are A; A, points. Outside the two extrema two positions
of the A3 are located, the third one is located on the curve that represents the other SS-branch involved in the
interaction.

1.4.4 Swapping of branches: A2 nib

When going through an A2 nib transition (Figure 1.7), two branches approach with their local 4; A, points
with the same kind of tangent. They meet, forming an intersection, exchanging connection and afterwards they
move away with again the same kind of tangent, but opposite to the one before (horizontal vs. vertical, or vice
versa).

1.4.5 Collision of four A3— points: Af

At an Af transition (Figure 1.8) a collision of four A2 points appears. This implies that in the pre-ss four box-
sets, each combining the three positions out of (p1, p2, p3, p4) and six pairs (p;, p;), coincide. Before and after
the transition there are four boxes / twelve pairs of points on six curve parts, on each of them two A3. The only
thing that changes is the position of the A3 points on each curve.



Figure 1.8: A} transition in the Pre-Symmetry Set.

1.4.6 (Dis)appearance of two A?—points: 424,

At A? A, transition (Figure 1.9) two A3 —points are created or annihilated at two A; A, points. So two box-sets
meet or emerge at the two A4; A, points at (p1, p2) and (p1,ps3), and at (ps, p3) on a third branch. So necessarily
each A; A, point needs to be surrounded by the two A$ points.

1.5 Summary and Conclusions

In this paper we presented a new way and powerful tool to visualize changes of the Symmetry Set. The method
depends on the pre-SS, which is the SS in the parameter space. We listed the possible changes of the pre-SS,
derived from those for the SS and gave examples how the look like. They relate to annihilation or creation of
curves in the pre-SS, smoothing of them, exchanging sub-branches, and interactions of 43-points.

Besides these transitions we gave an example of the presence of the Medial Axis in both the SS and the

Figure 1.9: A2 A, transition in the Pre-Symmetry Set.



pre-SS. Although the structure of the pre-SS is hardly affected by the transitions involving A3-points, the M.A
is.

The knowledge of these changes can be used to change the pre-SS accordingly and so smoothing and/or
simplifying the pre-SS and thus the SS and its data structure [28]. This includes in the pre-SS removal of fine
and complicated details, as well as editing of global structures. For the SS this yields removal of points and
structures *far away’ from the shape, as well as simplification of the SS branches and its data structure [28].
By selecting branches in the pre-SS one can select branches of the SS.

Acknowledgements
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Chapter 2

Amending the pre-Symmetry Set

Abstract

The Symmetry Set (SS) and its representation in parameter space, the pre-Symmetry Set, can be used to describe
a shape with a data structure that is related to the so-called arc-annotated sequence. Operations on it have a
complexity less than that on graph-structures, obtained by the Medial Axis (a subset of the SS). Changes in the
data structure and the Pre-SS are directly related to so-called transitions (topological changes) of the SS. In this
paper we discuss the abilities of the pre-SS and parts of it, in describing the shape. By editing the pre-SS, the SS
and the data structure can be simplified, for example for smoothing or simplifying purposes.

2.1 Introduction

In shape analysis, much effort has been put into the research on the skeleton, or Medial Axis [2], as a way to
represent the shape in a more simplified way. As it was soon realized, the Medial Axis it itself didn’t carry
enough information [14] and sophisticated extensions were built, like the Shock Graph method [41]. Basically,
each points on the Medial Axis is endowd with some augments related to the distance to the shape itself or
related to its neighbours. Next, the potential changes of the Medial Axis were investigated, yielding a set of
possible transition [15]. In that way different shapes can be related to each other for shape indexing and
retrieval [35, 39].

The results on transitions boiled down from the results on the possible transitions of the Symmetry Set. This
set, containing the Medial Axis as subset, has been thorougly studied in [4]. Its transitions are described in [3].
The Symmetry Set has its advantage in being easily described in mathematical sense, but its visualization is less
pleasant for the eye. So most of the research has been focused on the (augmented) Medial Axis.

Recently, however, a data structure was presented for the Symmetry Set [], that can be visualized by a
sequence of nodes, that are pair wise joined. This structure is related to the arc-annotated sequence [1] used in
RNA research. Its main advantage over the graph structure used for the Medial Axis is that it allows operations
on it with a lower complexity.

In this paper we present a way to visualize the Symmetry Set in a more pleasing manner, by using the pre-
Symmetry Set. Here we use pairs of points on the shape that give rise to a Symmetry Set point. So this avoids
precise calculation of the Symmetry Set points in the plane. Secondly, it has the nice property that parts with
small support remain small in the visualization. So a small perturbation of the shape gives a small perturbation
in the set.

We also present the possible transitions of the pre-Symmetry Set and discuss how this can be used to amend
the (pre-) Symmetry Set. It this way the original shape can be locally smoothed.

2.2 Symmetry Set

The Symmetry Set is defined as the closure of the loci of the circles tangent to a shape. See Figure 2.1. The

15



Figure 2.1: Definition of the Symmetry Set. See text for details.

shape is given by the oval. Inside a circle is tangent to it at two locations, so the unit normals N7 and N, are
equal for the shape and the circle. The centre of the circle is found by multiplying minus the radius r with the
normals. Note that this is also a Medial Axis point Next, also outside a circle is tangent to the shape at two
locations, where the unit normals A; and N are equal for the shape and the circle.

From this image it follows immediately that a point on the shape relates to at least two points on the Sym-
metry Set, in contrast with the Medial Axis. A recipe for finding the Symmetry Set is the given by the following
observations.

Let a circle be tangent to the shape as in Figure 2.2a. Then call the points at which it is tangent p; and p-
(Figure 2.2b). Then the vectorp; — p is perpendicular to the vector N; + A, when the circle is tangent twice
from the same side as shown in these images, or to the vector N7 — A5, when tangent from two different sides
(see [15]). So to find these locations it suffices to have a point p; fixed and try all other points p; along the shape
and find zerocrossings of

(pi — pj)-Ni £ Nj) (2.1)
Next, the centre of the circle - the location of the Symmetry Set point - is given by
pi —rNi = p; £1Nj (2.2)

Another tool that is used in the analysis of the Symmetry Set is the evolute. Let x be the curvature of the
shape S, in parametrised form s(t) = (ziyu — yexu)/ (@7 + y3)~%/2, or k(z,y) = —(L2Lyy — 2L LyLy, +
L2 Lyp) (L2 + L2) —3/2 in spatial coordinates, the the evolute is given by S + A /«. In Figure 2.2c the ellipse, its
evolute and its Medial Axis (horizontal line) and Symmetry Set (both lines) are shown.

2.2.1 Points on the Symmetry Set

Due to the geometry of the shape and the order of tangency, five distinct types of points generically occur on the
Symmetry Set [4]. They are:

e An A? point: the “common” midpoint of a circle tangent at two distinct points of the shape.

e An A point: the midpoint of a circle located at the evolute and tangent at the point of the shape with the
local extremal curvature. The endpoint of a branch of the SS.
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Figure 2.2: Deriving the Symmetry Set. See text for details.

e An A; A, point: the midpoint of a circle tangent at two distinct points of the shape but located at the
evolute. A turning point on the SS.

e An A3 point: the midpoint of one circle tangent at three distinct points of the shape. An intersection of
three branches of the SS.

e An A2 A2 point: the midpoint of two circles tangent at two pairs of distinct points of the shape with
different radii. Since this produces only an intersection due to projection on the plane, it is omitted in the
forth going.

They are important, since transitions occur in special arrangements of points.

2.2.2 Transitions

In the following we briefly state the possible transitions of the SS. For more details the reader is referred to [3].

At

At an Af transition a collision of A3 points appears. Before and after the transition six lines, four A3 points
occur. The result on the M A is a reordering of the connections of two connected Y-parts of the skeleton. For
the SS, however, the Y-parts are the visible parts of SS branches going through A3 points. So for the SS
representation nothing changes.

Ay Az

Atan A; A3 transition, a cusp of the evolute (and thus an endpart of a SS branch including a A3 point) intersects
a branch of the SS and an A$ point as well as two A; A, points are created or annihilated. The A3 point lies on
the A3 containing branch, while the other branch contains a "triangle” with the A3 and the A; 4»’s as corner
points.



Figure 2.3: Shape and the Symmetry Set with special points

Ay

The A4 transition corresponds to creation or annihilation of a swallowtail structure of the evolute and the
creation or annihilation of the enclosed SS branch with two A3 and two A; A, points.

A2 A,

At an A? A, transition two non-intersecting A; A,-containing branches meet a third SS branch at the evolute,
creating two times three different branches intersecting at two A% points. Or the inverse transition occurs.

A% moth

The A2 moth transition describes the creation or annihilation of a SS branch containing only four 4; A, and
no As points. These points lie pairwise on two opposite parts of the evolute. Each point is connected via the SS
to the two points on the opposite part of the evolute.

AZ nib

When going through an A2 nib transition, two branches of the SS, each containing an A; A, point, meet and
exchange a subbranch.

2.3 Pre-Symmetry Set

The pre-SS is obtained by visualizing the Symmetry Set in parameter space, so essentially it is visualizing the
zerocrossings of Eq. 2.1. This is done in Figure 2.4.
On the axis one finds the parameters p; and p;. The black curved lines represent the zerocrossings.
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Figure 2.4: Visualizing the Pre-Symmetry Set. See text for details.

Firstly, it needs to be remarked that the diagram repeats across its borders: the parameter moves along a
closed curve. So the diagram represents a torus. Furthermore, the axis are to be identified, since they both
relate to the same parameter along the shape. So the image is symmetric in the diagonal and the plot represents
in fact a Moebius strip, with the diagonal as its boundary.

In this Figure, one can see two curves ranging over the entire domain and one closed loop (bottom left with
parts bottom right and (the symmetric counterpart) top left).

2.3.1 Points on the Pre-Symmetry Set

Since curves in the pre-SS don’t intersect, one easily obtains separate branches. On these branches the points
are classified as follows:

e A3 At A3 points, one has p; = pj;, since they are located at the diagonal and don’t concern two different
points on the shape.

o A; Ay At A1 A, points the SS hits the evolute and is reflected. This implies that one of the two involved
points, say p;, is also reflected. The pre-SS therefore has a horizontal or vertical tangent.

o A3: At an A3 point three parts of the SS intersect. In the pre-SS these points are detectable as the
occurrence of the triple pointsets (p1,p2), (p1,p3), and (p2,ps) (and, of course, its diagonal symmetric
counterpart). This is visualized by the box-set in Figure 2.4.

e A2: All other points are A? points.

2.3.2 Transitions

The list of transitions valid for the SS, also apply to the pre-SS. In the following we state the consequences of
these events for the pre-SS.



A

Atan A} transition a collision of A3 points appears. This implies that in the pre-ss four box-sets, each combining
the three positions, coincide. Before and after the transition there are six curves with, each of them two A3. The
only thing that changes is the ordering of each pair of A} points on each curve. This boils down to inverting the
order of the four box-sets.

A1 As

At an A, A3 transition, one curve goes through an inflection point and changes from zero to two local extrema
(horizontal or vertical tangents) - which are A; A, points. Outside the two extrema two positions of the A3 are
located, the third is located on the curve that represents the other SS-branch involveld in the interaction.

Ay

The A4 transition corresponds to creation or annihilation of a closed loop on the diagonal in the pre-SS, thus
containing two A3z points on the diagonal and two A; A» points as the horizontal and vertical tangents (note that
the diagonal is a axis of symmetry).

A24,

At an A2 A, transition two branches with each an A4; A, point surrounded by two A3 points meet and leave
without the A3 points. The A; A» points have the same tangent. On a third branch two A3 points meet and
vanish. Or, of course, the opposite (creation) event occurs.

A2 moth

When going through an A2 nib transition, a closed of-diagonal loop is created or annihilated in the Pre-SS. It
cannot intersect the diagonal. Note that in the visualization also a loop occurs due to mirroring in the diagonal.

A2 nib

When going through an A2 nib transition, two branches approach with their local A; A, points with the same
kind of tangent. They meet, forming an intersection, exchanging connection and afterwards they move away
with again the same kind of tangent, but opposite to the one before (horizontal vs. vertical, or vice versa).

24 Amendingthe pre-ss

Since the distinct curves of the pre-SS resemble distinct branches of the SS, editing the pre-SS directly implies
editing the SS. In order to avoid arbitrary changes, one should amend according to the transitions as given
above. Furthermore, creating new structures is mostly not wanted since it complicates the SS. And finally,
when amending, one usually wants to smooth local structures. So when removing structures, they should not
be too large.

2.4.1 Smoothing the pre-ss branches

To simplify the SS in a predefined manner, one can apply the A% moth to remove of-diagonal loops and the A4
to remove on-diagonal loops. This resembles removal of a branch of the SS. Applying the A; A3 yields removal
of local humps, that is: a pair of A; A, points, together with an A3 point. An example of the latter is given in
Figure 2.5.

On the left, a part of Figure 2.4 is taken with 2 A; A, points. Smoothing this part yields removal of the 41 A,
parts. In the SS this relates removing a swallowtail part.

Applying the A; A3 and the A4, the SS and pre-SS change as shown in Figure 2.6.
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Figure 2.6: Amending the Pre-Symmetry Set: Results on the SS (top) and the Pre-SS (bottom).



Figure 2.7: Tool-shape and its SS.

2.4.2 Selecting pre-ss branches

As a more real example, see the shape of a tool in Figure 2.7. The points of the shape are the thick dots. The thin
dots are the points of the Symmetry Set. Due to concavities, points can lie at infinity (i.e. where the curvature is
zero). The Symmetry Set thus consists of lines through infinity. Therefore, the Symmetry Set itself is not really
pleasant for the eye.

Considering the pre-SS, Figure 2.8, these infinity problems are avoided. In fact, of the twelve curves present
in the pre-ss, nine only relate to points 'far away’.

When the pre-SS branches are sorted on their length - i.e. largest support -, the three not-only-far-away
branches relate to the first three pre-SS branches. The are, together with their SS counterparts, depicted in
Figure 2.9.

One can observe that the first branch relates to the symmetry line’ in the shape from top-left to bottom
right. Considering the second and third branch, one obtains Figure 2.10. Here we see a Simplified Symmetry
Set that is in between the Symmetry Set and the Medial Axis.

Similarly, when considering the fish of Figure 2.11, with its SS and pre-SS, one can select proper pre-SS
branches, in this case 1 and 5 of the 34 present, see Figure 2.12, to visualize a simplified SS as shown in Figure
2.13.

One can see that branch 1 represents the main axis of the fish. In the middle, a lot of extra structure is
present due to the fins. This extra structure is clearly visible in the pre-SS. It can be removed by further
amending the pre-SS.

2.5 Summary and Conclusions

In this paper we presented a new way and powerful tool to visualize and edit the Symmetry Set. The method
depends on the pre-SS, which is the SS in the parameter space. This avoids the problem that branches of
the §S go to infinity if the curvature on the shape is zero. By selecting branches in the pre-SS one can select
branches of the SS. By the presented transitions for the pre-SS, derived from those for the SS, one can amend
the pre-SS and thus the SS. This includes in the pre-SS removal of fine and complicated details, as well as
editing of global structures. For the SS this yields removal of points and structures *far away’ from the shape,
as well as simplification of the SS branches.
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Figure 2.8: Pre-SS of the tool.

As a result, one ends up with a structure the can be considered as a Simplified Symmetry Set, being in
between the Medial Axis and the Symmetry Set. Secondly, it relates directly to simplifying the arc-annotated
sequence-like data structure as proposed in [], allowing simpler data structures.
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Figure 2.9: First three branches of the Pre-Symmetry Set (left) and SS (right).



Figure 2.10: Simplified SS of the tool.

Figure 2.11: Left: Fish, with its SS. Right: Pre-SS of the fish.
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Figure 2.12: Selecting Pre-Symmetry Set branches and their related SS branches: branch 1 (top) and branch 5 (bottom)
of the fish.



Figure 2.13: Simplified SS of the fish using only the branches 1 and 5.






Chapter 3

Geometric Skeletonization

Abstract

In this paper we present a method to derive the skeleton of a shape by means of its Symmetry Set. We use the
property that the Medial Axis is a subset of the Symmetry Set, the latter being the midpoints of circles tangent to a
shape at at least two points, the former those circles that do not contain other circles, the so-called maximal circles.
The Symmetry Set points are derived by means of zero crossings of two equations, based on geometric arguments.

3.1 Introduction

The skeleton of a shape is defined by the set of points that have at least two different points on the shape as
closest points. It is a well-known aspect of a shape that carries information in an easier way [2]. In order to
derive the skeleton several different approaches are proposed. The first methods detects ridges, or singularities
of the distance map of points on the shape. [7, 40, 43] Secondly, Voronoi diagram can be used [20, 34, 44].
Thirdly, by simulating a grass-fire flow [30, 42], thinning [6] of the object bounded by the shape, is preformed.
Although all methods perform theoretically similar, on real discrete shapes the outcome may be different.

In this paper we propose a method based on the geometry that is embedded in the definition of the skeleton.
If two points are the closest points, they actually lie on a circle tangent to the shape at these points, while its
midpoint is the skeleton point.

A little geometry based on this tangency aspect, together with the locations of the points give a methodology
to find the skeleton point, as described in section 3.2. It actually gives more than the skeleton, viz. the Symmetry
Set, but a more careful inspection of the collection of points reveals a simple method to extract the skeleton
points.

3.2 Background

In this section we describe the geometric tools Symmetry Set, Medial Axis and the pre-Symmetry Set.

3.2.1 Medial Axis and Symmetry Set

The Symmetry Set is defined as the closure of the loci of the circles tangent to a shape [4, 15]. The Medial Axis
is the subset containing maximal circles (i.e. those circles that contain no other circles).

Let a circle be tangent to the shape as in Figure 3.1b. Then call the points at which it is tangent p; and p..
Then the vector p; — p» is perpendicular to the vector A; + N> when the circle is tangent twice from the same
side as shown in these images, or to the vector N7 — A5, when tangent from two different sides (see [15]). So to
find these locations it suffices to have a point p; fixed and try all other points p; along the shape and find zero
crossings of

(pi — pj)-Ni £ Nj) (3.1)
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Figure 3.1: a) Circles tangent to a shape b) Computing the Symmetry Set (see text).

Next, the centre of the circle - the location of the SS point - is given by
pi —rN; =pj 1N (3.2

If the normal vectors are parallel for a pair of shape points, the set of points obtained as the midpoints of
these two points on the shape is called Anti-Symmetry Set. Another tool that is used in the analysis of the SS is
the evolute. Let x be the curvature of the shape S, then the evolute is given by S + A/ /k. In Figure 3.2a a shape,
its evolute (thick line connecting endpoints in cusps) and the SS (both lines) are shown. Its M A is the vertical
curve.

3.2.2 Points on the Symmetry Set

Due to the geometry of the shape and the order of tangency, four distinct types of points generically occur on
the full SS [4, 15].

A? points: the midpoints of circles tangent at two distinct points of the shape. These points are dense on the
SS.

An Az point: the midpoint of a circle located at the evolute and tangent at the point of the shape with the
local extremal curvature. The endpoint of a branch of the SS.

An A; A, point: the midpoint of a circle tangent at two distinct points of the shape but located at the evolute.
A turning point on the SS.

An A3 point: the midpoint of one circle tangent at three distinct points of the shape. An intersection of three
branches of the SS.

An A?/A? point: the midpoints of two circles with different radii coincide and two branches of the SS
intersect.

3.2.3 pre-Symmetry Set

The pre-SS is obtained by visualizing the Symmetry Set in parameter space, so essentially it is visualizing the
zero crossings of (p; — p;)-(N; £ N;). This is done in Figure 3.3. On the axis one finds the parameters p; and
p;j- The black curved lines represent the zero crossings.



Figure 3.2: A shape (thickest), its evolute (thick) and the SS with special points

Firstly, it needs to be remarked that the diagram repeats across its borders: the parameter moves along a
closed curve. So the diagram represents a torus. Furthermore, the axis are to be identified, since they both
relate to the same parameter along the shape. So the image is symmetric in the diagonal and the plot represents
in fact a Mobius strip, with the diagonal as its boundary. In Figure 3.3, one can see two curves ranging over the
entire domain and one closed loop.

3.2.4 Points on the Pre-Symmetry Set

Since curves in the pre-SS generically don’t intersect, one easily obtains separate branches. On these branches
the points are classified as follows:

At A3 points, one has p; = p;. They are located at the diagonal since they don’t concern two different points
on the shape.

At A; A> points the SS hits the evolute and is reflected. This implies that one of the two involved points
is also reflected. The pre-SS therefore has a horizontal or vertical tangent (identical due to symmetry in the
diagonal).

At an A3 point three parts of the SS intersect. In the pre-SS these points are detectable as the occurrence
of the triple point sets (p1, p2), (p1,p3), and (p2, p3) (and, of course, the diagonal symmetric counterpart). This
is visualized by the box-set in Figure 3.3.

All other points are A? points.

3.2.5 regularisation

If the shape is given as an unorganised point cloud, a parametrization is needed in order to use the above men-
tioned method. This can be obtained by taking one point and taking its closest neighbour from the remaining
points. Next, the parametrization is regularized by convolution with a Gaussian kernel at a small scale. In this
way also the derivatives at each point can be computed. An example is given in Figure 3.4. The left image shows



Figure 3.3: Pre-SS of the oval.
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Figure 3.4: A pointcloud representing a fish and a regularized version of it.



Figure 3.5: The pre-Symmetry of the regularized fish shape.

the points, while the right image shows the shape as it is obtained from these points.
The zero crossings of Egs. 3.1 and 3.2 can easily be computed, yielding the pre-Symmetry Set for the fish
shape of Figure 3.4 as shown in Figure 3.5.

3.3 Usingthepress

Given the pre-Symmetry Set and the Symmetry Set, one can find the Medial Axis by taking the maximal circles
- by definition. They consist of those points (p;,p,;) of the Symmetry Set where the radius is minimal for p;
with any point p; that yields a zero crossing of Eq. 3.1. So for each horizontal (or equivalently, vertical) line in
the pre-Symmetry Set we select a point p; and find the points p;, where this line intersects with curves of the
pre-Symmetry Set. For these k& points we select the one with the smallest radius.

If we are only interested in the part of the skeleton that is inside the shape, we simply have to select the one
with the largest negative value (i.e the negative value closest to zero), as the normals point outwards.

3.3.1 Branch types

Given the pre-Symmetry Set and the sturcture of the Medial Axis in general, we can note that the Medial Axis
consists of two types of branches.

Firstly the branches with an endpoint, that end in a bifurcation point, or fork. That is, a part from an A;
point, an endpoint, or local extremum of the curvature, to an A$ point.

Secondly, there are parts going from a fork to a fork, or from an A$ point to an A3 point.

Now both A3 and A3 points can be found in the pre-Symmetry Set as points on the diagonal and as corners
of the boxes, as in Figure 3.3.

A next observation for Az points yields, that these are local extrema of the curvature, and the reciproke of
the radius. So only the negative local minima possibly count for the Medial Axis. Since they are on the diagonal
in subsequential maximum - minimum order, they can be labelled subsequentially with odd and even numbers
and only -say- odd numbers do have to be taken into account. So the Medial Axis in the pre-Symmetry Set
contains at least a set of curve-parts through the diagonal.



Next, also fork-to-fork are (in almost all cases) present. They can be understood as the set of points (p;,p;)
with ¢ increasing and j decreasing along the shape that suddenly meet a third point p,, causing the combinations
(pi,p;), (ps,pr), and (pg, p;) with equal radius. Increasing i and decreasing j now the skeleton is formed by
the two parts derived from the combinations (p;, px,) and (px,,p;), with i and k. increasing and j and k;
decreasing. In the pre-Symmetry Set this is represented as a jump. Since all points of the shape contribute once
to the Medial Axis, one of two essential loops of the pre-Symmetry Set contains fork-to-fork parts. This curve
of the pre-Symmetry Set can be considered as the main skeleton axis

Finally, for Shock Graph applications, also necks als oconsidered: these are the circles with locally maximal
or minimal radii when moving along the Medial Axis. In the pre-Symmetry Set they are straightforwardly
obtained as the points that have parallel tangent, i.e. Symmetry Set points that are also Anti-Symmetry Set
points.

3.3.2 Algorithm

The construction of the skeleton thus takes place by taking the minimal radius, selecting the points (p;, p;)
contributing to this radius, and repeating this for the remainder of the points.

1. Solve Egqs. 3.1 and 3.1 for all points p; on the shape, vyielding
triplets gr = (ps,p;,r(pi,p;)). Note that each p; and p; can occur
nmultiple tines.

2. Set Q= {qllr<0}: select only the interior points.
3. Set MA=1
4. Find R=rmax €Q and pr = (Pa,pp, R).
5. Add pgr to MA
6. Renove all points in @ containing p, and pg.
7. Go back to 4 until @ is enpty.
3.4 Example

For the fish shape, the parts of the Medial Axis in the pre-Symmetry Set are shown in Figure 3.6. Next, the fish
with its Medial Axis is shown in Figure 3.7. The distinct parts of the Medial Axis are labelled, with numbers
for end-point-to-fork branches, and capitals for fork-to-fork branches. The point labelling starts most left and
anti-clock wise. Therefore the left tailbranch gets label 1.

For a detailled discussion on the branches, consider also Figure 3.8, where the Medial Axis is shown in the
pre-Symmetry Set space.

Firstly, note that the end-point-to-fork branches all intersect the diagonal. They are numbered according
the point labelling along the shape, so in simple increasing order. Since always two different points are found,
there are no pairs (p;, p;), but only pairs (p; + 1, p;) and (p;, p; + 1) that are part of diagonal intersecting curves.
Therefore, the first branch is only visible top left and (connected to) bottom right. The branches 5 and 7 each
contain 1 point, and especially branch 7 is hardly visible. It almost coincides with the other points.

Secondly, the inner fork-to-fork branches are - in this case - all located on the essential curve. This curve
connects the left tail (branch 1) to the nose (branch 6). This can be regarded as the main axes of the fish.

The traversal along the branches can be traced in both Figures. Starting at the nose, branch 6, at a certain
moment branch 5 comes in, formin a fork with branch A. This branch meets branch 7 and branch B. The latter
meets branches 4 and the very small branch C, that immediately meets branch 8 and branch D. In Figure 3.7
these combinations are rather obvious, in Figure 3.8 they can be traced by drawing the boxes that define the
A3 points. In this Figure, one can distinguish between left and right parts of the shape. Firsty, the beginpoint
of the parameterization can be chosen such, that it is located at the end of an essential loop, just as in this
example. This is due to the fact that the parameterization is rotationally invariant. Therefore, one can define
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Figure 3.6: The pre-Symmetry Set of ther fish shape with the Medial Axis part in thick.

Figure 3.7: Medial Axis of the fish, with labels (see text)
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Figure 3.8: Medial Axis in the Pre-Symmetry Set of the fish, with labels (see text).



an “anti-diagonal”’, by the points (p;, p,—;), with n the number of points. Along this anti-diagonal the main
medial axis will approminately be located. Points under or left of this anti-diagonal lie on the same side (say
left] of the main medial axis, vice versa. In the example, one can verify that the branches 2 to 5 are indeed on
the left, while 7 to 10 are on the right

Note that in this example the fork-to-fork branches are aligned. Obviously, this need not be the case in
general.

3.5 Summary and Conclusions

In this paper we presented a method to extract the skeleton, or Medial Axis, in a novel way. The method is
based on the Symmetry Set and used the fact that the Medial Axis is a subset of the Symmetry Set. It boils
down to select those Symmetry Set points that give rise to maximal circles - which is exactly the definition of the
Medial Axis as subset of the Symmetry Set. By construction, for each pair of points we find exactly one skeleton
point, so the number of skeleton points is approximately half of the number of shape points. The normal vectors
required for the algorithm are obtained by a small regularization of the shape, while the computation doesn’t
introduce new (interpolated) points. Therefore, the result will be a collection of point. For visualization or other
post-processing purposes, the skeleton can off course be smoothened, connected (which is fairly trivial using the
branches of the pre-symmetry Set) or complemented with additional points.






Chapter 4

The Structure of Shapes

Abstract

Images simplify due to the heat equation, yielding a Gaussian scale space image. Shapes simplify similiarly due to
the intrinsic heat equation and form a scale space shape. For images, the resulting structure is known to embed a
hierarchical structure, based on singularity theory, and investigated to some extend. Shapes, when simplified under
certain conditions, also undergo specific singularities. In this paper we present the general framework of a shape
scale space, based on a Medial Axis carrying structure called Symmetry Set.

4.1 introduction

Among attempts to represent shapes differently, the skeleton [2], or medial axis, takes an important role. It
is defined as the closure of the centers of maximal circles tangent to the shape at at least two points. Popular:
the set of points that have the same minimal distance to at least two points on the shape. Modifications of the
skeleton made it more stable [36]. The Shock Graph approach [41] incorporates distance information at some
points. and recently, promising results were presented on matching of these descriptions [35] using the possible
changes of the Shock Graphs.

The medial axis is a subset of the symmetry set [4]. Changes of this set (transitions, singularities) [3] are directly
responsible for changes of the medial axis [15]. The symmetry set can easily be computed and appears to be able
to be represented as a string-like data structure that allows operations with very low computational complexity
[24, 28]. An extra advantage is that all extremal curvature points are taken into account.

All these methods start from the given shape and do not take into account the scale as a free parameter. In
general, the radius of the circle is considered as scale, but the radius is introduced by definition of the medial
axis.

A solution to the problem of scale comes from mathematics. In order to be able to treat discontinuous data
in a continuous way, one needs regularize the data or, equivalently, to use test-functions [38], or perform a
local integration at observation points. One suitable testfunction is the Gaussian filter [9, 10]. By keeping the
variance of the filter a free parameter, one obtains a multiscale extension of the original image, as originally
proposed by Koenderink [22], and followed by many others, see e.g. [8, 18, 29, 47, 19, 33, 21, 17]. Investigation
of the deep structure, i.e. the image at all scales simultaneously, led, among other things, to the discovery of a
topological hierarchy within the image extended with a scale variable [23].

This idea can be directly transferred to shapes. For shapes, the intrinsic heat equation is the Mean Cur-
vature Motion, see e.g. [5]. An example is shown in Figure 4.3. The changes in the Symmetry Set (the local
situations) are theoretically known [3], also under the influence of Mean Curvature Motion [45].

In this paper the Symmetry Set method is embedded in a multiscale context - just as zero crossings of the
curvature in the Curvature Scale Space method. This novel approach creates a multiscale symmetry set that
reveals a hierarchical simplification of the Symmetry Set as the scale increases.
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Figure 4.1: Applying Gaussian blurring on the (x(t), y(¢)) coordinates separately doesn’t equal applying Mean Cur-
vature Motion, but can cause selfintersections and cusp points. The example is taken from Cao [5].

4.2 Background

We firstly provide some background theory regarding shapes, their evolution, and their symmetry set-based
repesentations.

4.2.1 Shapes

Let S(z,y) = {(z,y)|L(z,y) = 0} denote a closed 2D shape. Then N'(z,y) = (Lq, Ly)(L2 + L2)~/* denotes
its unit normal vector, and x(z,y) = —(L2Lyy — 2Ly LyLay + L2 Lo, ) (L2 + Li)*/2 its curvature. The evolute
E(t) is given by the set S+ A /k. Even if the curve is smooth and differentiable, the evolute contains non-smooth
and non-differentiable points, viz. those where the curvature is zero or takes a local extremum, respectively.

4.2.2 Evolution

Let S(x(p),y(p)) be a curve given in its parameterized coordinates, and p taken on the unit circle S*. Then the
simplest way of regularizing the curve is by convolving it with the simplest smooting kernel, a Gaussian (see
Cao [5] for more details). Then the heat equation is solved for each of the coordinates:

or 0%z Oy Oz
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Now the coordinates z(p, t) and y(p, t) are smooth, but the curve may become non-smooth, see Figure 4.1
The reason for this is the fact that the parametrization parameter p describes a curve that shrinks as the
scale increases. The overcome aforementioned problem, the curve needs a renormalization s, at every scale

o, as proposed by Mokhtarian and Mackworth [32]. Solving the heat equation between two infinitesinal close
instances (and renormailsations) yields
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called the intrinsic heat equation. The parameter s is also called the arc-length. This gives the mean curvature
motion:

oc  o*°C

ot  0s2
where & is the curvature and N the unit length normal. Note that in this equation the arc-length s depends on
t, so the equation is non-linear. Each point on the curve moves in the direction of the normal, proportinal to
the curvature. Some results of motion are due to Gage and Hamilton [11] and Grayson [16]: a curve becomes
convex and shrinkstoapointatt = T, T = Aq/2m, Ap the area enclosed originately by the curve. The curve will
stay smooth during evolution (no selfintersections or cusp points). This compares to the properties of Gaussian
blurring for images.

When the curve is considered as a level line (an isophote) of an image L, N equals ||VL||V - (VL/||VL|)),
or in short gauge coordinates, L,,: the second order derivative in the direction tangentional to the isophote.
The image evolution is called Euclidean shortening flow.

When the zero-crossings of the curvature over scale are traced, one applies a Curvature Scale Space [32].
This appeared to be a powerful and fast shape description that is taken into the MPEG7 Standardization [31].

kN

4.2.3 Symmetry Set

The Medial Axis (M.A) of a shape is defined as the closure of the set of centers of circles that are tangent to
the shape at least two points and that contain no other tangent circles: the are so-called maximal circles. The
Symmetry Set SS is defined as the closure of the set of centers of circles that are tangent to the shape at least
two points [4, 3, 13, 12]. Obviously, the M A is a subset of the SS [12].

To calculate these sets from above definition, the following procedure can be used: Let a circle with unknown
location be tangent to the shape at two points. Then its center can be found by using the normal vectors at these
points: it is located at the position of each point minus the radius of the circle times the normal vector at each
point. To find these two points, the location of the center and the radius, do the following: Given two vectors
p; and p; (right, with ¢ = 1 and j = 2) pointing at two locations at the shape, construct the difference vector
p; — p;. Given the two unit normal vectors IV; and N; at these locations, construct the vector N; + N;. If the
two constructed vectors are non-zero and perpendicular,

(pi — pj)-(Ni + N;j) =0, (4.1)
the two locations give rise to a tangent circle. The radius r and the center of the circle are given by

In Figure 4.2a, the shape is given by the oval. Inside a circle is tangent to it at two locations, so the unit
normals N; and N> are equal for the shape and the circle. The centre of the circle is found by multiplying
minus the radius r with the normals. Note that this is also a M.A point. Next, also outside a circle is tangent to
the shape at two locations, where the unit normals N; and N, are equal for the shape and the circle. From this
image it follows immediately that a point on the shape relates to at least two points on the SS, in contrast with
the M.A. Changes in the shape yield changes in the symmetry set and are well-known [3]. The symmetry set
can be represented as a string structure (while the MA requires a graph), whose changes are directly inherited
from the symmetery set [28].

4.2.4 pre-Symmetry Set

The pre-Symmetry Set is defined as the Symmetry Set in parameter space: instead of the centers of the circles
defining the Symmetry Set, the points on the shape were these circles are tangent, are taken. This yields the
same (data), but in this case the representation is clearer [28, 26]. The pre-Symmetry Set representation of
Figure 4.3 is shown in Figure 4.4. In a pre-Symmetry Set diagram, the two axes represent points on the shape.
If two points p; and p; give rise to a Symmetry Set point, the corresponding points (p;, p;) and, due to symmetry,
(pj,pi) are marked in the diagram. The diagram shows curves that continue along the boundaries. Each curve
represents a distinct part of the Symmetry Set.
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Figure 4.2: a) Circles tangent to a shape b) Computing the Symmetry Set (see text).

On the pre-Symmetry Set, the changes of the structure can be detected as well, they can even be labeled
with relevance with respect to changes in number of elements (curves), smoothness of elements, swapping of
branches of two curves, and changes in the number of special points related to the junctions of the skeleton
[27, 25].

4.3 Representation

In this section we elaborate on the pre-SS representation, give properties of it and propose a novel representa-
tion with properties that are inherited from the pre-SS.

4.3.1 Properties of the pre-Symmetry Set

An intersection of curves in the pre-SS is due to a swap-transition. The endpoints of the SS are located at the
diagonal of the pre-SS. They relate to points of extremal curvature on the shape. The points can be sequentially
numbered. Along the diagonal, the type of extremum alternates, just as along the shape. So without loss of
gerenality we may think of minima as odd numbered intersections and maxima as even ones. For closed curves,
the pre-SS contains two essential loops, loops that range over the complete parameter domain. They connect
points of equal type of curvature extremum: one connecting two even intersections, one connecting two odd
ones. All other curves connect curvature extrema of different types (even-odd intersections).

Created or annihilated curves always involve an even-odd couple. Swappings always involve an even-odd
couple and an arbitrary couple, and must result in an even-odd and an arbitrary one. For example two even-odd
couples (say 1-2 and 3-4) result in two even-odd couples (1-4 and 2-3), and an even-odd and an even-even couple
(say 3-4 and 2-6) result in an even-odd and an even-even couple (2-3 and 4-6). Note that the non-intersecting
property puts restrictions on the possibilities. In the first example, the couples 1-3 and 2-4 are forbidden, since
these curves have to intersect in the pre-SS. The same holds for the couple 3-6 and 2-4 in the second example.
There can be only two essential loops. One can think of then as the probing of the shape with two circles, one
inside the shape and one outside, or alternatively, one loop (axis of symmetry) for each dimension of space in
which the shape is embedded.
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Figure 4.3: The fish shape top left transforms into a circle under influence of Mean Curvature Motion

Also non-diagonal intersecting closed curves exist, so-called moths. Since they are only relevant when they
interact in a swapping event - which basically makes another curve longer, we will ignore them in the latter.

4.3.2 Gauss diagram

The pre-Symmetry Set has a dual type of representation, viz. that of a circle with chords. The circle represents
the closed curve and is obtained by taking the diagonal in the pre-Symmetry Set, connecting both ends. The
cords represent the distinct parts of the Symmetry Set, the curves in the pre-Symmetry Set. Just as the pre-
Symmetry Set diagram, this chord diagram has special properties. It is very alike the Gauss diagram known
from Knot theory [37, 46]. The most evident property is the fact that exactly two cords are intersecting, dividing
the circle in four quarter. These cords represent the two essential loops. Each quarter contains nested or
sequential cords. The moth circles appear as small circles within a quarter.

Transitions of the Gauss diagram relate directly to those of the pre-SS: we can have annihilations (creations)
of cords as their length tends to (start from) a point on the circle. And we can have swappings of cords. Note
that we can add extra information on the cord.

4.4 Multi-scale shape hierarchy

Given a set of data points of a shape, regularization of these points is needed in order to obtain more detailed
information with respect to their location and their derivatives. A small Gaussian kernel applied to the coor-
dinates can do this. However, why choose one specific scale? A more thrustworthy way is choosing no a priori
scale. As discussed in Section 4.2, a Gaussian is not the best kernel to convolve with. For shapes the intrinsic
heat equation is appropriate. Figure 4.3 shows the fish image under the influence of mean curvature motion.
For each scale the pre-SS can be calculated. This yields surfaces in the pre-SS scale space. For large
scales two sheets remain, representing the essential loops. The transitions of the SS under MCM have been
described by Teixeira [45]. The only allowed transitions are annihilations, swappings, and smooting and curving
of curves. Annihilations imply that closed loops of the pre-SS shrick to circular structures and disappear.
The manifolds are cones. Swappings imply that two manifolds are connected at one point, the “swapping-



Figure 4.4: The pre-Symmetry Set of the fish shape transforms to four parallel lines (two essential loops) under
influence of Mean Curvature Motion.

transition”. Smooting and curving of curves means that manifolds can be waving-like. The pre-SS representing
the simplifying fish sequence is shown in Figure 4.4

4.4.1 Comparison with Curvature Scale Space

Although the concept of Curvature Scale Space (CSS) also uses the idea of evolution due to Mean Curvature
Motion, there are significant differences. CSS investigates the zero crossings of the curvature over scale and is
not related to medial axis methods. For instance, all convex shapes have the same (zero) Curvature Scale Space
representation. Here zero crossings of derivative of curvature are considered (i.e. the extrema of &) instead of
zerocrossings of the curvature itself.

In Figure 4.6 the CSS of the fish is shown on the left. Note that all branches end at a certain scale, when the
shape becomes convex. In the middle, the extrema of the curvature are shown. Now exactly 4 branches remain,
resembling the 4 extremal curvatures of an oval. On the right these curves are shown as function of their spatial
and scale positions.

The essential difference is that these curves show the connections with respect to their annihilations, while
the Symmetry Set connections are related to all their intermediate connections, which may - and almost alway
do - change.

4.4.2 Gauss Diagrams under Mean Curvature Motion

Next, also the Gauss diagrams change under MCM. Their inherit the transitions from the pre-SS scale space.
They are: annihilations of cords, swapping of cords and changing of labels on a cord. The diagrams represent-
ing the simplifying fish sequence is shown in Figure 4.7.

For all possible shapes we can construct a space of gauss diagrams. Given the simplification of structure as
scale increases, we can construct a directionality into this space, as shown in Figure 4.8. At the top the simplest
shape, an ellips, is represented by two intersection cords. At each subsequent level, a cord is added. At a specific
level, the positions of cords can change due to swappings.



Figure 4.5: The pre-Symmetry Set of the fish shape transforms to four parallel lines (two essential loops) under
influence of Mean Curvature Motion.
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Figure 4.6: Left: CSS of the fish. Middle: evolution of the extrema of the curvature of the fish. Right: Position of the
curvature extrema of the fish in scale space.



) o
P

Figure 4.7: The Gauss diagrams of the fish shape transforms into a circle with two intersecting chords under influence
of Mean Curvature Motion.

Figure 4.8: The Gauss diagrams under influence of Mean Curvature Motion form a hierarchy. The horizontal level
represents the number of cords (of A3 points, or extrema of curvature). They change under A, transitions in a simpli-
fying manner: cords disappear. At the horizontal levels cords swap due to A2nib transitions. A further refinement can
be achieved by adding the A; A, along the cords.



Figure 4.9: The state space of Gauss diagrams is a directed graph. Simplification can be achieved in different ways,

One thus obtains hierarchical metameric classes. Obviously, adding information to the cords enlarges the
possible diagrams and decreases the size of the class. The swapping is not the only reason that the graph is not
atree. Also the disappearing of cords can relate to causes a childnode to be possibly related to multiple parents,
in contrast to trees, as shown in Figure 4.9.

At a certain level, two subsequent swappings can as well take place in one swap, see Figure 4.10.

Given an arbitrary closed non-intersecting curve, applying MCM vyields a convex shape shrinking to a point
at a sufficiently large scale. So the accompying Gauss diagrams are related to a path through the space of all

possible diagrams. Each shape will have its own path, and “more of less” similar shapes will have paths that
coincide at some stage. So the difference of the shapes can be expressed as the difference in paths.

45 Conclusions

In this paper we presented a truly multiscale hierarchy for shapes, based on the symmetry set. The multi scale
hierarchy is obtained by evolving the shape and its symmetry set under mean curcature motion, the intrinsic
heat equation for shapes. As data structure the pre-symmetry set, visualized in a Gauss diagram is taken. This
allows one to map the data on a circle, and effectively represent the multiscale representation as a cilinder with
conncted points at each scale, i.e. a cilider with sheets. Changes as scale increases are well-defined and known,
which makes this structure suitable as a descriptive space for shapes. Since all shapes converge to the same
structure, difference in shapes can be expressed in difference of convergence paths.
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Figure 4.10: At a specific level multiple A2nib transitons are possible for changing the cords of the Gauss diagrams.
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