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DES Controller Synthesis and Fault Tolerant Control
A Survey of Recent Advances

Rune M. Jensen

Abstract

This report surveys recent advances in computer aided synthesis of controllers for discrete event systems. The
report aims at providing an overview of the most successful symbolic synthesis approaches developed within the area
of supervisory control. In addition, it describes approaches to fault tolerant control developed within control theory,
diagnosis, and planning.

1 Introduction

Today a wide range of powerful tools exist for formal verification of discrete systems (e.g., [16, 22]). Verification
problems are decision problems and thus - at a first glance - seem much easier to solve than synthesis problems. There
are, however, reasons to believe that this is not always the case in practice:

1. A buggy design may lack the symmetry that makes symbolic approaches scale. For a synthesis problem, the
structure of the underlying system is preserved given a correct system model and specification, and these are
often fairly easy to obtain,

2. Verification involves reasoning about all the reachable states of the manual design. This set of states may be
much larger than the set of states traversed by the synthesis algorithm.

Moreover, software protocols, controllers, and logic designs are tedious to construct and thus error prone. To the
largest possible extend, computers should be employed to solve these tasks automatically leaving only the abstract
system model and its specification to be manually defined.

So far, however, automated synthesis of controllers for Discrete Event Systems (DES) has received very little
attention. In control theory, Ramadge and Wonham have introduced a theoretical framework based on language theory
to investigate supervisory control of DES [46]. A considerable amount of work on decidability and controllability has
been produced in recent years based on this framework. Only a few synthesis tools, however, have been developed. In
automated planning, algorithms have been developed for generating discrete, untimed, and stateless controllers (non-
deterministic plans). The focus has been on defining different solution classes and improving the performance of the
planning algorithms by combining heuristic and symbolic approaches [31].

The first part of the survey introduces the RW framework and presents work on automated controller synthesis
within control theory. The second part of the survey is a more detailed examination of previous work on fault tolerant
control. We cover models of fault tolerance and synthesis techniques developed within control theory, planning and
diagnosis.

Major information sources are papers and reports generated by the research groups at University of Toronto and
Chalmers University of Technology centered around R. Murray Wonham and Martin Fabian. In addition, standard
search tools including Google, INSPEC, Citeseer, CAMEO, IEEE Explore, and ACM Digital Library have been used.

The remainder of the survey is organized as follows. In Section 2, we introduce the supervisory control theory of
Ramadge and Wonham and its major extensions. Section 2 gives an overview of work on symbolic controller synthesis
and in particular describes the approach developed at Chalmers University of Technology. Section 4 describes previous
work on fault tolerant control models and synthesis techniques developed in control theory, diagnosis and planning.
Finally, we draw conclusions of the survey in Section 5.
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2 DES Control Theory

This section introduces Ramadge and Wonham’s supervisory control theory (RW theory,[46]) (mostly copied from
[12]) and lists subsequent work described in Wonham’s DES notes [62]. The motivation for the RW theory is a unified
framework to describe DES control [46]:

“While numerous practical examples are described in the literature on simulation, there is at present time
apparently no unifying theory for the control of discrete event processes. Nor is it entirely clear what
such a theory ought to encompass. Numerous approaches to the modeling of discrete event processes
have appeared in the literature. A general sampling of these could include Boolean models [...]; Petri
nets [...]; formal languages; temporal logic [...]; and port automata and networks [...]. All of this work is
concerned, in one way or another, with the problem of how to achieve or verify the orderly flow of events;
and to this end how to bring together ideas from logic, language and automaton theory. However, while
control problems are implicit in much of the work just cited, control-theoretic ideas as such have found
little application there. The variety of approaches reflect the diversity of areas in which discrete event
processes play an important role. It also indicates that to date no dominant paradigm has emerged upon
which a theory of control might be based.”

Thus the purpose of the RW theory is to provide a general framework for DES control theory research.

2.1 Basic Concepts of the RW Theory

The plant to be controlled is modeled by an automaton ���������
	������������	���� where � is an alphabet of event labels,
	 is a set of states, ������	 is the initial state, 	�����	 is the set of marker states, and �����! �	#"$	 , the transition
function, is a partial function defined at each state in 	 for a subset of � . The plant is assumed to be an automaton of
the physical plant restricted to behavior satisfying its specification.

Let �&% denote the set of all finite string over � including the null string ' . Then � can be extended to ��% by defining
�(�)'������*�+�,� and �.-0/1�2����34�2� % �*�(�53�/0����6�+�7�(�)/0���(�538����� . Then � is characterized by two subsets of � % called the
closed behavior of � , written 9��)��� , and the marked behavior of � , written 9*���)��� . The language 9��)��� is defined as

9��)���:�;�#<�3�= 3>�2� %�?A@CB �(�538������:DFE B(GIHJ@KGLB0M
and is interpreted to mean the set of all possible event sequences which the plant may generate. The language 9N�4�)���
is defined as

9O�P�)���*�;�Q<R3�= 3S��� % ?�@CB �(�538������*�T	S� M
and is intended to distinguish some subset of possible plant behavior as representing completed tasks.

To impose supervision on the plant, we define some of its events as controllable and some as uncontrollable,
thereby partitioning � into the disjoint sets �6U , the set of controllable events, and �*V�U , the set of uncontrollable events.
A supervisor is then an agent which observes a sequence of events as it is generated by � and enables or disables
any of the controllable events at any point in time throughout its observation. By performing such a manipulation
of controllable events, the supervisor ensures that only a subset of 9N�)��� , called a sublanguage, is permitted to be
generated. Formally, a supervisor W is a pair �5XY�
Z0� where X is an automaton which recognizes a language over
the same event set as the plant � and Z called a feedback map, is a map from the event set and states of X to the
set <8[ (enable), \ (disable) M . If ] denotes the set of states of X , then Z^�O�Q 1]_"`<8[8�\ M satisfies Za�)/0�bc�d�e[ if
/f�f� VRU �bg��] and Za�)/0�bc�N�h<i[A��\ M if /j�k� U �lb1�2] . The automaton X tracks and controls the behavior of � . It
changes state according to the event generated by � and in turn, at each state b of X , the control rule Za�5/0�lbc� dictates
whether / is to be enabled or disabled at the corresponding state of � . The behavior of the closed loop system, i.e.,
the sequence of events generated while the plant is under the control of W#�m�5XY�
Zc� , is represented by an automaton
W*n�� whose closed behavior, denoted by 9��.W*n���� , permits a string to be generated if the string is in both � and X and
if each event in the string is enabled by Z . The marked behavior of 9&���.W*n���� is,

9o�P�pW*n����*�;�79N�.W&n����rqs9O���)���
Thus the marked behavior of W&n�� consists exactly of the strings in 9&�P�5��� that “survive” under supervision of W . Let
9O���.W&n���� denote the prefix closure of 9:�P�pW*n���� . We say that W is non-blocking (for � ) if

9o�P�pW*n����o��9N�pW*n����It
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That is, each string that can be generated by the controlled system can be extended to a marked string. An approach
for synthesizing least restrictive non-blocking supervisors is provided in the basic RW theory.

In [2] it is noted that the RW framework is somewhat awkward for real systems. The plant model proposed in
supervisory control theory assumes that the plant “generates” events spontaneously. The control mechanism of the
controller is to disable some of these events. However, real systems usually reacts to input commands generated by the
controller. Thus, it is more natural to consider controllable events inputs to the plant and uncontrollable events outputs
from the plant.

In the DES literature it is further unclear what the main purpose of the supervisor is: to ensure that the supervised
system produce the marked language, or to make the supervised system reach the marked states. RW theory focus
on least restrictive non-blocking supervisors, but these seems to be the least suited for reaching the marked states.
Thus, in classical RW theory the object of the supervisor is the primary. However, the latter view is taken in several
subsequent works (e.g., for generating optimal and fault tolerant controllers [56, 12, 13]).

2.2 Modular Synthesis

In this approach [47, 38, 49] the overall supervisory task is divided into two or more subtasks. Each of the latter is
solved with the ordinary RW approach, and the resulting individual supervisors are run concurrently to implement a
solution of the original problem. One of the problems studied is under which conditions the local supervisors form a
global non-blocking supervisor.

2.3 Hierarchical Supervision

The broader the temporal horizon of a control and its associated subtasks, or the deeper its logical dependency on
other controls and subtasks, the higher it is said to reside in a control hierarchy. The question addressed is mainly
hierarchical consistency e.g., under what circumstances timely and sufficiently detailed information can be send to the
high-level supervisor for various critical low-level situations to be distinguished (e.g., to achieve non-blocking control)
[64, 61].

2.4 Supervisory Control with Partial Observation

It is assumed that only a subset of the event labels generated by the plant is observable. It is still assumed, though, that
the supervisor may disable unobservable events. The presented work, investigates the basic control concepts under
this restriction [38].

3 Symbolic Controller Synthesis

Most control theory papers do not focus on developing efficient algorithms and data structures for synthesizing con-
trollers. Algorithms are often provided that are polynomial in the size of the state space, but given the state explosion
problem, such algorithms are not of much practical use. Wonham’s group has developed a computer program called
TCT based on explicit state manipulation. It was improved by a Masters student (SmartTCT, [63]) using Integer De-
cision Diagrams (IDDs). However, this work seems intellectually isolated. In particular, it has no references to related
work in symbolic model checking and re-invents basic techniques such as automatic variable reordering and caching.
Another synthesizer is Lafortune’s UMDES, but it apparently also uses an explicit state representation.

Symbolic synthesis of supervisory controllers was probably first investigated by [27]. It has been shown in [46]
that the least restrictive non-blocking supervisor can be computed as a greatest fixed point. In [27], this fixed point
computation is performed using the VER package by David Dill, Andreas Dexler, and Alan Hi based on Brace, Rudell,
and Bryant’s BDD package [7]. The paper does not mention application of sophisticated techniques such as transition
relation partitioning and variable reordering. Their approach is elaborated in [2] which is widely cited.

Model checkers have been used to verify controllers. A recent paper summarizes model checking approaches for
verifying and synthesizing controllers for embedded systems [8]. SPIN [28] and UppAll [3] have been used to verify a
timed batch plant controller as a part of the European Esprit project on verification of hybrid systems (VHS). Another
work rooted in computer science is [1]. This paper provides a simple but general definition of controller synthesis
covering DES including discrete games (via a controllable predecessors function). They then show the straight forward
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symbolic solution to the problem. However, no particular efficient symbolic model checking techniques are introduced.
Verification of PLC code using SMV is described in [48].

3.1 High Performing Approaches

The only work we are aware of applying state-of-the-art symbolic approaches to reduce the complexity of supervi-
sory control synthesis is by Arash Vahidi, Bengt Lennartson, Dennis Arkeryd, and Martin Fabian at the Control and
Automation Laboratory of Chalmers University of Technology [58, 57].

They use the following algorithm to compute a non-blocking and controllable synchronous composition of the
system and the controller (from [57]):

	��� � � D�� G�@� � [
[��
	��� � BR ���5	 � �
	 � �	��
��
	 � �� � BR Vc�5	�j	 � � �
	 � � � 	 � ����
��7	 � ����� ��	 � �	��
 �� 	 � � ��������� � � ��� [��! #"$�	" �l[��

	&% V(' � 	�f	 � �

	 is the set of states in the synchronous composition of the plant and the controller. 	 �� is the union of the forbidden
states (stated in the problem) and set of uncontrollable states in 	 found during the composition (i.e., states from
which the plant can generate an uncontrollable event that the controller does not allow). As usual 	�� denotes the
marked states. BR �5XY�*)�� denotes the set of states that are backward reachable from X (including X itself) without
passing through one of the forbidden states ) . BR Vc�5X � denotes the set of states reachable from X only via uncon-
trollable events. In each iteration, the algorithm extends the set of forbidden states 	 � � by finding all states within the
current controller that are backward reachable by states outside the controller via uncontrollable events. The resulting
supervisor is stored in 	+% V�' . A small example from [57] shown in Figure 1. The synchronous composition of the
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e8e2

a e3

q0

q2

q5q4 q7q3
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e2 e8

e3 !x
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Figure 1: A specification Sp and plant P. The state ,.- is marked ( 	�����<*,$- M ). Events prefixed with an exclamation
mark are uncontrollable. There are no forbidden states.

specification and the plant is shown in Figure 2(a). State �	/0,21 is forbidden since the uncontrollable event b is blocked
by the supervisor, while it is enabled in the plant. Figure 2(b) shows the states 	 � 
 backward reachable from the marked
state in the composition ��-*,$- without passing through the forbidden state ��/3,#1 . The state � 
 , 
 , however, is backward
reachable via the uncontrollable event 4 from the state ��56, 
 outside the supervisor. Thus, the resulting supervisor
shown in Figure 2(c) is stripped for the branch leading to ��50, 
 .
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Figure 2: (a) The synchronous composition of the specification and the plant. (b) 	 � 
 . (c) The computed supervisor.

BDDs are used in [58, 57] to represent the transition relation �4�538��3 � � of the synchronous composition of the
specification and the plant. Partitioning of the transition relation [10] and pruning of functional dependent variables
[29] have been applied. In addition, a method called smoothing has been developed where only a subsystem of the
transition relation is expanded in each iteration of a fixed point computation. In this way, each subsystem is “saturated”
in turn such that the symmetry of the global system is preserved. This leads to smaller BDDs of frontier sets.

The approach has been applied to a class of resource allocation problems. These problems are often encountered
in industrial automation systems where e.g. robots book physical locations before moving into them. The presented
results are fairly similar to results obtained in planning. E.g., for a resource allocation version of the dinning philoso-
phers the best result for 20 philosophers (monolithic transisiton relation) is 0.47 seconds on a 600 MHz Pentium III
PC with a 850 MB RAM limit running Linux kernel 2.2, while 0.49 seconds were used for a planning version of the
problem executed on a 500 MHz Pentium III PC with a 50 MB RAM limit running Linux kernel 2.2 [?].

4 Fault Tolerant Controller Synthesis

The INSPEC query “Fault Tolerant Control” gives 1300 records of which about 25 are related to fault tolerant con-
troller synthesis and diagnosis for DES. We have used the references in these papers, the author search facility in
IEEE Explore, and Google/CAMEO to find additional papers (We also went manually through the proceedings of the
American Control Conference since 1996). As mentioned in the introduction, the primary goal has been to investigate
if any previous work has considered symbolic synthesis of state feedback controllers with limited fault tolerance. This
is apparently not the case, but the idea of limited fault tolerance (single fault tolerance) has been investigated to some
extend.

4.1 Transition Based Fault Models

Most papers (e.g., [11, 13, 21]) regard faults as unexpected changes in a system that tends to degrade the overall
system performance rather than causing a total breakdown. The term failure suggests a complete breakdown of a
system component or function. It is essential [21] to differentiate between temporary faults and permanent faults,
where permanent faults are caused by mal-functions that are triggered every time certain states are entered. It seems
natural to model both temporary faults and permanent faults with a single class of fault transitions. Permanent faults
would then be initiated by a fault transition changing a state variable that indicates permanent fault (e.g., machine-1-
broken).

The usual way to model faults in the RW theory is to consider them uncontrollable events [2, 13].
The work in [44] specifies fault tolerance for mission critical systems. A masking fault tolerant system can recover

from (mask) any fault. A � -fault tolerant system can mask up to � faults during its life time. A gracefully degrading
fault tolerant System resumes operation during recovery, but less efficient. The paper models a system by an automaton

5



with start states, but no marked states are considered. In addition, no algorithms or theory for controller synthesis are
provided.

4.2 State Based Fault Models

Another approach is to separate the process state space into ranges of operation. In [36], three ranges are considered:
normal operation range, admissible error range, and non-admissible error range. In this frame, the first and second
range belongs to specified operation, whereas the non-admissible error range belongs to non-specified operation. In
the non-admissible error range the plant will be damaged or produce damage to others. In [41, 40] the domain is
divided into “good” and “bad” states.

In [41, 40] Stability is defined to visit the good states infinitely often. Thus, a controller is stable if it from any
reachable bad state can force a trajectory that in a finite number of steps reaches the good states. Stabilizability is
defined to choosing state feedback such that the closed loop system is stable.

A related approach [42] defines Lyapunov stability of a class of DES. Consider a set of states ]s� that are invariant
in the plant. That is, any execution starting in any state in ] � stays within ]d� . ] � is stable in the sense of Lyapunov
if for any '��!\ a max distance (given by some metric) ���!\ can be found such that any execution starting at a state
within � from ] � ends up in a state less than ' from ]d� .

The two stability concepts of [41, 40] and [42] are shown to be to be exclusive of each other in [12] where a trivial
example is given which is stable in the sense of error recovery but unstable in the sense of Lyapunov.

4.3 Symbolic Synthesis Approaches

In [2] a symbolic approach for synthesizing non-blocking controllers is described. Faults are modeled as uncontrollable
events.

A symbolic approach for synthesizing protective controllers to prevent occurrence of forbidden states in chemical
processes is presented in [36]. As described earlier, the state space is divided into three ranges: : normal operation
range, admissible error range, and non-admissible error range. The purpose of the controller is to find a middle
ground between the normal operation range and admissible error range such that no states in the non-admissible error
range are visited. The plant model is an input/output extension of [46]. In particular, it is assumed that controllable
events can be forced to happen (because they are considered inputs to the system). Synthesis algorithms are defined
in Boolean Differential Calculus which, for more complex problems, could be implemented using BDDs and iterative
squaring. An approach for this is, however, not presented.

In [21] a framework for analyzing and verifying fault tolerant behavior of state machines is presented. The state
machine can be thought of as the closed loop of the plant and controller. Errors are modeled explicitly as separate
entities (erroneous states) such that temporal and permanent faults can be modeled uniformly. Furthermore, the frame-
work can describe fault-masking and � fault tolerance. It is based on a automaton where transitions are labeled with
expected events. The automaton � is paired with a binary tolerance relation � on the state space ���4���C� . The tolerance
relation defines acceptable unexpected state changes due to faults. An error of ���4���C� is a binary relation Z over the
state space. Errors causes the events with similar “start state” to change behavior such that they lead to the errors “end
state” instead of the end state given by the transition associated with the event. An error is temporary if it is applied
only once, otherwise it is permanent. An error is compatible, if Z!��� . A fault masking automata has compatible
and small errors (where small errors is given a reasonable meaning). ���4���C� is � fault tolerance if up to � faults can
happen simultaneously in each transition in any execution from the initial state without the system leaving its tolerance
bounds given by � . An approach for stating the fault tolerance requirements in CTL is given, and it is suggested to use
symbolic model checking to verify them. However, no empirical work in this direction is reported. The paper is also
interesting due to its application of an algebra of binary relations.

4.4 Explicit Synthesis Approaches

Seong-Jin Park and Jong-Tae Lim from Department of Electrical Engineering at the Korea Advanced Institute of
Science and Technology have contributed a large body of research on fault tolerant control of DES. After investigating
stability concepts [12], they model faults as abnormal uncontrollable events in an ordinary RW DES model [15, 14, 13].

A frequently cited paper is [13], where they consider synthesizing supervisors for a fault-tolerable plant. A system
is fault-tolerable if supervisor can be constructed that drives the state from the initial state to a marked state despite
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of any faults. Notice that the purpose of the controller is to reach the marked states. In [14], the work is extended
to an uncertain plant model. In [15], a multiagent supervisory control approach for antifault propagation in serial
production systems is studied. Basically, the problem is to find out in which cases an internal fault in one of the work
cells can be fixed by subsequent work cells.

4.5 Diagnosis

Diagnosis of DES has mainly focused on analysing event sequences in order to determine if a fault has happened, and
if so, which kind of fault [51, 52, 53, 55].

4.6 Planning

A planning domain is a tuple ��XY� �4�
" � where X is a finite set of states, � is finite set of actions, and "!�(X  �h X
is a deterministic transition relation. A planning problem is a tuple � � ��3��8����� where

�
is a planning domain, 3�� an

initial state, and � is a set of goal states. A planning language (e.g., STRIPS, ADL, ��� [24, 43, 17]) is used to
define planning domains and planning problems. In most planning languages an action is described by a precondition
expression that must hold in the state, the action is applied, and a effect expression that describes how the action
deterministically changes the state.

A plan is a sequence of actions leading from the initial state to a goal state. Since all actions are assumed to
be deterministic and controllable, there is no explicit way to model non-determinism caused by faults. The focus in
classical planning has been on developing efficient and optimal (in terms of the number of actions in the produced plan)
algorithms for generating plans (e.g., by abstraction [23], learning search control rules [59], using search heuristics
[6, 5], and symbolic representation [34, 17]).

Non-deterministic domains have only received minor attention in planning. The traditional approaches are condi-
tional planning and re-planning [50]. In conditional planning, the truth-value of a set of state predicates is assumed
to be unknown. They can become known during plan execution by applying sensing actions. The conditional plan
branches out into two separate plans after a sensing action according to its two possible outcomes. Conditional plan-
ning can be used to synthesize fault tolerant controllers, where fault checks are carried out by sensing actions. A major
problem, however, is the lack of efficient algorithms for synthesizing conditional plans. To date only explicit state
algorithms have been developed.

As a response to the high complexity of conditional planning, re-planning and reactive planning have been consid-
ered [37, 25]. The re-planning approach observes plan execution. If the plan fails, a new plan is generated. Thus, it is
an indirect way of handling non-determinism. The PRS reactive planner [26] mixes execution and planning. Reactive
planning has been applied to fault recovery. The remote agent experiment on the Deep Space 1 probe was a fault
tolerant reactive planner [60, 30, 35]. However, a general problem with all reactive planning approaches is that they
are incomplete. In addition, for re-planning, response latency is a problem.

Universal planning [54], in its original form, is another indirect way of handling non-determinism. Given a de-
terministic domain model, a plan for each state is generated. During execution the state is observed to pick a plan
to apply. Schoppers represented plans by decision trees. A more recent and interesting approach uses BDDs [9]
and techniques from symbolic model checking [39] to generate and represent universal plans [17, 19, 20]. In this
work, non-determinism is explicitly modeled. A universal plan � is a map from states to relevant actions to execute
�h�8Xf"��	� . a universal plan corresponds to state feedback controller. For a non-deterministic domain

�
( " is now a

non-deterministic transition relation) the closed-loop system of � and
�

behaves like
�

where each state 3 is pruned
for transitions of actions not in ���53R� . An execution is a possible state sequence produced by the closed-loop system
starting in 3L� . A universal planning domain summarizes the effect of uncontrollable events as non-determinism of
controllable actions. Three classes of universal plans are introduced in [19, 20]: strong, strong cyclic, and weak. Their
executions respectively satisfy the CTL formulas: AF � , AGEF � , and EF � .

The allowed behavior of a non-blocking supervisor is equal to a strong cyclic universal plan. However, a non-
blocking supervisor is more general. Its control states are separated from the plant states. The control states of a
universal plan on the other hand is the plant states.

Subsequent work has extended the domain model with uncontrollable actions [32] and considered adversarial
environments [33]. Universal planning has further been extended to conformant planning [18] where the state is
assumed to be unobservable, universal planning for CTL goals [45], and universal planning with partial observable
states [4].
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5 Conclusion

The impression from the literature is that the RW theory still is young. Wonham’s group reports work mainly on the ex-
istence of non-blocking controllers in different classical situations (modular and hierarchical systems). Non-blocking
controllers are not particularly interesting if the objective for the controller is to drive the plant into the marked states
(as several subsequent application oriented papers assume). It is surprising that the DES literature apparently contains
so little work on classifying the “strength” of controllers with respect to a class of reasonable control objectives. Ag-
gressive work on reducing the computational complexity of controller synthesis of supervisory controllers seems to be
limited to [58, 57], and this work does not go beyond standard techniques developed in symbolic model checking.

As far as we know, work on fault tolerant control within the RW framework has only been studied recently. No
unified framework has emerged. Limited fault tolerance has been suggested [21, 44], but not in the form considered in

� fault tolerant planning. The solution in [13] can be regarded as a � -fault tolerant plan. Planning has not specifically
considered fault tolerance, except the DS1 remote agent experiment and related work centered around Brian Williams
at MIT.
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[40] C. M. Özveren. Output stabilization of discrete-event dynamic systems. IEEE Trans. on Automatic Control,
pages 925–935, 1991.
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