
Event-Based Runtime Checking of Timed LTL

Kåre J. Kristoffersen
Christian Pedersen
Henrik R. Andersen

IT University Technical Report Series TR-2003-37

ISSN 1600–6100 November 2003

Copyright c
�

2003, Kåre J. Kristoffersen
Christian Pedersen
Henrik R. Andersen

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-050-6

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www.it-c.dk

Abstract. In this paper we describe an event-based algorithm for runtime verification of timed linear tempo-
ral logic. The algorithm is based on a rewriting of the formula expressing a desired or undesired property of a
timed system. Rewriting takes place, at discrete points in time, but only when there is a relevant state-change
taking place in the timed system, or a deadline, determined by the formula, has been passed. By limiting
the rewriting to only points in time where an event occurs, and not at all discrete time-points, makes the
algorithm useful in situations where there are large data sets and large differences in the relevant time scales
(ranging perhaps from milliseconds to months as in business software).

The algorithm works by rewriting, for each event, the timed LTL formula into a residual formula that
takes into account the time and system state at the occurence of the event. The residual formula will be the
requirement for the timed system in the future, to be further rewritten at the occurrence of the next event.

Keywords: Timed LTL, Disjunctive Normalized Equation Systems, Residual formula, Smallest Interesting
Timepoint, Timed Based Fixed Point Reduction, Charaterization of Runtime Verification.

1 Introduction

Runtime verification is a branch of verification in which a running program is supervised by
a concurrently running verifier. In this paper we shall look at timed runtime verification, in

���
���

������
� �

��� �� � �
	
�

��
�����������������
��������������

verifier
Runtime Timed

system verifier
Runtime

� � ��
��
��
 � �� � �!��������
����� ��"�!�����

Timed
system

t

Fig. 1. A runtime verifier supervising a timed system. In the figure to the left, state information is transmitted from the timed system
at each discrete time point #!$&%�$�'�$&()(*(. The runtime verifier computes a new residual formula + at each step, resulting in one of three
situations, indicated by the three-coloured traffic light. “Red” corresponds to the situation where an error has been detected, i.e.,
the formula has reduced to false. “Green” corresponds to acceptance, i.e., the formula has reduced to true and the verifier can stop.
“Yellow” corresponds to the situation where so far no error has been found but the verifier cannot yet stop. In the figure to the right
the verifier only computes when an event happens, at the time points , �.- ,*/ -10)0)0 . An event is either a state change in the timed
system or a timeout. Timeouts are set by the verifier and computed as what we shall refer to as the smallest interesting timepoint as
given by the formula + .

which time will be an important parameter in the task of the verifier. Our verifier will use a
discrete notion of time but it is developed such that there will not be a discrete sampling of
state at the choosen resolution but only at “relevant” points in time. The relevant points are
given by events coming from state changes in the non-timed part of the timed system, and
timeout defined by the formula under verification. The verifier is capable of dealing with time
even when the time scale spans from milliseconds to days or months. This is crucial for getting
a useful verifier in systems with large amounts of data and events timed at milliseconds but
with consequences that might be in days or months. This will be important in application
areas such as business software (also sometimes commercially called Enterprise Resource
Planning systems), where transactions occur at the millisecond level but for instance paying
conditions might span weeks or months. Figure 1 illustrates the situation comparing a state-
based “polling scheme” with an event-driven timed verifier.

Properties are formulated in a real-time logic called 24352 . The logic 26352 is an exten-
sion of LTL with real time constructs embodied by a freeze quantifier together with atomic
clock constraints making it possible to express real time logical properties of a system (fol-
lowing [7]). This logic is suitable for expressing timed safety, liveness and fairness properties.
An example of a bounded liveness property for a bank account could be: If Balance is nega-
tive then within 10 days the Balance should be positive or zero. In 26352 this could be written
as follows (assuming the resolution and scale of time is days):

798�:<;>=�;
?A@!B<CEDGFIHKJMLONEHQPSRTDVUW:<;>=�;
?A@!BYXZD
[

In the above expression the variable
L

is the global time, or more precisely the time of the
observation trace generated by the system being monitored. In this paper we use states with
discrete time. This corresponds to time stamps with real time at a given accuracy (for in-
stance, milliseconds). The semantics of the freeze formula

HKJ�\
is that when evaluated, the

value of
H

is replaced by the current time.
We introduce a normal form for formulae in 26352 and show that all formulae may be

written in this normal form. A formula on normal form consists of a collection of mutually
dependent formula identifiers each stating as a disjunctive normal form:

1. What should hold now (i.e. a propositional part).
2. What identifiers should hold in the next state (i.e. a temporal part).

Initially the property to be verified is a distinct idenfier (the top identifier) of the equation
system corresponding to the original formula. As the verifier proceeds this will be expanded
to a disjunctive normal form of identiers referred to as a residual formula. The number of
equations in the normal form will be linear in the number of temporal operators of the origi-
nal property. However, the total size might be exponential in the worst-case due to conversion
of some sub-formulae into disjunctive-normal forms.

Related work

The traditional field of application for formal methods and especially verification is within
safety critical and embedded systems for which correctness is of vital importance. Errors are
either fatal or they are costly. Therefore a lot of energy has been put into developing tools
for checking such systems at design time, that is, prior to execution i.e. SPIN [4]. As an alter-
native, attempts have been made to check a running java program in Java PathExplorer [1].
Common for these efforts is that what is verified is a program, and typically a program taking
input from a very restricted set of possibilities. This implies that the program under investi-
gation can be regarded as a closed system, which may be checked alone.

Financial applications and business software (ERP Systems) as well as traditional back
end databases are a class of applications that have attracted very little attention from the
formal methods community. Such a system can be given a semantics which resemples that
of timed traces, namely a sequence of states where each state consists of predicates true in
this state and then a time stamp explaining when the state is measured. One reason that these
systems have not gained very much interest from the verification communuty is that they are
typically not of a safety–critical nature and hence correctness is of less importance compared
with traffic control or production systems. At the same time these systems differ from the
beforementioned in that they can (and should be able to) consume unboundedly many differ-
ent input data. As such they suffer severely from the well–known ”State Explosion Problem”
and consequently exhaustive verification is not feasible.

There could be several angles of attack on solving the timed run-time verification problem.
One line could be to translate the timed LTL-formula into a timed automaton. The main
challenge here is how to deal with the freeze operator. The logical clocks should correspond
to clocks of the automaton, however, there is no simple bound of the number of needed clocks.
Consider for instance a punctuality property like

798�� F HKJ�� 8���� L	�SHQPSRTD D D
[[�

expressing that always, when
�

holds, then after exactly 1000 time units,
�

should hold. If
�

change as often as possible then it might change 500 times before the first time
�

should be
verified to be true. All these time points must be remembered indicating that the automaton
will need up to at least 500 clocks. It means that it would be impractical to try to compute a
full automaton in advance and an on-the-fly construction employing a variation of alternating
automaton seems to be a way to find a solution. In [11] this problem is avoided by limiting
the expressive power of the timed logic to upper-bounds. They avoid having any acceptance
condition and there is no blow-up in the number of neeeded clocks. We work with the full
logic.

The approach taken here is that of computing a residual formula, taking into account the
states seen sofar, and expressing the property to hold for the timed system in the future. This

is a bit like computing “weakest pre-conditions” but in a forwards manner: a “strongest post-
condition”, as it has been classically done for program verification in the pioneering work of
Dijkstra and Hoare.

The current approach also has a relationship to [16] and [15] in terms of rewriting a spec-
ification with respect to state information. In [16] it is shown how to build a (branching time)
transition system into a modal logic specification by constructing a quotient. This method is
used as an efficient verification procedure for parallel systems. In [15] the same exercise is
repeated for real time systems. In both these works the quotient consists of a new (and larger)
set of formulae whose number and size are sought to be kept small by applying a number of
heuristics for minimization. Our work differs significantly from that of [16] and [15] in two
substantial ways. First, by rewriting the specification to a normal form prior to verification
we obtain a specification whose size is fixed throughout verification. Second, at runtime (cor-
responding to verification time in their work) we need only to maintain a formula which is a
disjunctive normal form of identifiers that will need to hold in the next state.

Outline

The paper is organized as follows. In Section 2 we present the logic 26352 as well as its in-
terpretation in timed traces. In Section 3 we present our normal form for formulae in 24352
and show that any formula may be written in this normal form. In Section 4 we present our
algorithm and state that our method is sound and relatively complete with respect to satisfi-
ability. In Section 5 we present the notion of smallest interesting timepoint and in Section 6
we present a notion of time based fixed point reductoins which improves the efficiency of our
method. Finally we conclude and give directions for further work.

2 Temporal Logics for Real Time

Let ��� ��� �
 �
��
 J J J��
be a set of atomic propositions and let

L
	��

be a discrete time. We

denote a timed state by a pair
8��
 L�[

where
��� ��� whose meaning is that the propositions in�

, and only these, are true at time
L
. The time component can be thought of as a time-stamp

on a snapshot of a system’s state.

Definition 1. A (discretely) timed trace over ��� is an infinite sequence of states

� � � � ����������� � �����

where each � � �I8�� �
 L � [is a timed state. We require that
L � C L ��� � for all � . A timed trace is

complete if
L � � D

and for all � : L ��� � �SL � PSR
. We denote by � the set of all timed traces and we

denote by �� the set of all complete timed traces.

We use the notations
�>8 � � [and

L 8 � � [for the propositional respectively timed part of a timed
state. We use superscripting with � for the sub-sequence � � , which starts at � � , i.e., the se-
quence � � � � � � ��� ������� . An incomplete trace can always be completed and in [5] the algo-
rithmic framework rested on an assumption that this was done. In this paper we will relax
this condition, and allow a more natural notion of timed traces with the possibility of taking
timesteps a size larger than one time unit. More precisely we will show that under certain
(and quite commonly appearing) circumstances it is possible to skip the processing of some
of the states in a timed trace. That is, given that the propositional part is unchanged and that

none of the timing constraints in the specification changes value a new state does not need to
be considered, since the residual formula would not change anyway.

Definition 2. Timed LTL, 26352 , is given by the following abstract syntax
\������ ����� ��� \ �	� \�
�� \ � � \�
��TL�
 HQP @��THKJ \�� \ � U9\�
�� \ ��� \�
�� � \

where
� 	 ��� ,

L
refers to the “current time” in a timed trace,

H
is a discrete formula clock,@�	 �

and

	 �>C
 N
��
��
 X �

.

The syntactic elements are: atomic propositions and negations of them, logical connectives,
time constraints, the freeze operator which “records” the current time in the clock variableH

, and the temporal operators until, release (the dual of until) and next. We shall use stan-
dard abbreviations such as

7 \ ��� ;>= � B � \ for the always operator,
�<\ � L ��� B U9\

for the
eventually operator, and implication etc. as logical connectives.

The purpose of the standard temporal operators until (
U

) and release (�) is that they
capture real-time properties:

\ � U9\�
 holds if there is some time in the future
L

where
\�

holds
and on all time points up to (not including) this one,

\ � holds. When working with discrete
time and completed traces, this corresponds quite closely to the existence of an index � , such
that �

�
satisfy

\�

and for all smaller indices � ,

\ � holds. With discrete time and completed
traces, the next operator also has a natural semantics: “next” refers to the next point in time,
which is the time associated with the next timed state of the trace.

The resulting logic can be viewed as an extension of the normal untimed linear time tempo-
ral logic extended with the notion of clocks, which are capable of recording time (=positions)
in the trace using the freeze operator and relate them to other times (=positions) in the trace
using time constraints.

In the logic we only have negation at the level of propositions, but assume that the user can
still freely use it since a negation may be pushed inside to the propositions using the standard
procedure interchanging conjunction with disjunction and until with release (the operator�).

The specification language for our runtime verification will be that of closed 26352 ex-
pressions. Neither we shall use the

�
–operator nor the � –operator. However, the reason to

include them in the logic is that they are needed when we rewrite specifications to normal
form, see Section 3.

Given an environment for formula clocks � as a partial mapping from the set of clocks
to
�

, we can define the semantics � � \�� � �! �� of a formula
\

with free clock variables in the
domain of an enviroment � , inductively as follows:

� � �"� � � � � � 	 �� � � 	 �>8 � � [�
� � � �"� � � � � � 	 �� � �$#	 �>8 � � [�

� � \ � � \�
�� � � � � � \ � � � �&%'� � \�
(� � �
� � \ �	� \�
�� � � � � � \ � � � �&)'� � \�
(� � �

� � L�
 HQP @*� � � � � � 	 �� �TL 8 � � [�
 � 8�H [KP @ �
� � HKJ�\+� � � � � � 	 �� � � 	 � � \�� � �,� L 8 � � [.- H+���

� � \ � U9\�
(� � � � � � 	 �� �	/ � J 8 � � 	 � � \�
(� � � and 01�
 D N � C � J �+2 	 � � \ � � � � [�
� � \ �.� \�
�� � � � � � 	 �� � 0�� J � � 	 � � \�
(� � � or83/ � J �+2 	 � � \ � � � � and 0��
 D N � N � J � � 	 � � \�
(� � � [�
� � � \+� � � � � � � � �)8 � � \�� � � [�

where � � � � �)8�� [� � � 	 �� � � � 	�� �
.

A complete timed trace � is now said to satisfy a closed formula
\

if � 	 � � \�� � � for an
environment � where all clocks have value zero written as � � � \

. A timed trace � satisfy a
formula if the completion of it, �� , satisfy the formula.

Using the next-operator, we can find an alternative characterization of the until and re-
lease operators in terms of fixed-points. We use the lattice �

��
of subsets of �� ordered by set-

inclusion. Then for any monotonic function � � � ���� �
��

there will be a minimum fixed-point	 � � and a maximum fixed-point
�� � [17]. Observe, that the following functions are
monotonic:

� � /�� ��
 � � 8�� [� 8 � � \ � � � � %�� � � � ��� [)�� � \�
(� � �
� � /�� �
 � � 8�� [� 8 � � \ � � � � %�� � \�
(� � � [) 8 � � � � ��� %$� � \�
(� � � [

The until and release operators are now given by a minimum and a maximum fixed-point:

Lemma 3. For any formulae
\ �
�\�
 with free variables in the domain of � , the following holds:

� � \ � U9\�
(� � � � 	 � � /�� ��
 � �� � \ �.� \�
(� � � �
�� � / � ��
 � �

For convenience, fixed-points can be written as equations. We thus write for instance, � ���
� 8 � [

for an equation system with the solution � � 	 � , see for instance [16] for an example
of how this is done in the modal 	 -calculus.

Using the lemma it is straightforward to write down a formula as an equivalent set of
equations using only the temporal next-operator leaving out the until and the release opera-
tors. For convenience, the algorithm will work with equation systems.

3 Disjunctive Normalized Equation Systems

In this Section we present our notion of Disjunctive Normalized Equation Systems and argue
why it forms a suitable basis for runtime verification of Timed LTL.

Definition 4. A Normal Form Equation System � over formula identifiers
� � �
 J J J
 ��� � and

formula clocks � � �TH �
 J J J
 H�� � is a set of defining equations

� � 8�� � [� \ �
...

��� 8�� � [� \ �
where for all � 	 �>R
 J J J
 ? �

,
� � is a (possibly empty) vector of variables from � , such that

� �
includes all the free variables in

\ � . The right-hand sides
\ � are each on the following form :

\ � ����� �
2! #" �

� J�8%$ � 2 � � &
' �(�) �

' 8�� ' [[

where * � is an index set, 2 � 2 �>R
 J J J
 ? �
is a subset of indices

R
to
?

,
$ � 2 is a non-temporal

formula composed of the propositional part of 24352 : atomic propositions, clock constraints and
Boolean connectives, and finally

�
is a (possibly empty) vector of formula clocks from � .

Notice, that the actual arguments to the formula identifiers are always exactly the same as
the declared formal parameters. Some of the variables might be bound by the freeze operator
and their values might be restricted by constraints in the propositional part,

\ � .
Intuitively the normal form means the following: There is a set of possibilities each of

which describes:

1. What should hold now (i.e. a propositional part) and
2. Which identifiers should hold in the next state (i.e. a temporal part).

This disjunctive normal form is particularily suitable for performing runtime verification,
since here we are at all times faced with the job of ’processing’ one single state and this job
really implies two things: First, checking whether the current state is ok and second keeping
track of what should hold for the future, i. e. what the residual formula should be. The nor-
mal form introduces the

�
–operator as suggested by the functions � � /�� ��
 � � and � � / � ��
 � � in

Section 2. We refer to [5] for a translation procedure from Timed LTL to Disjunctive Normal
Form.

Example 5. Consider the closed 24352 expression which states that
�

becomes true before the
elapse of � time units and that

�
holds until then.
\ �SHKJ 8 8 � � LOC HQP � [U � [

Rewriting to disjunctive normal form using the procedure sketched above we obtain the fol-
lowing equation system � � :

� � 8*[� HKJ 8 8�� � L C HQP � � � � � 8 H [[[� �

� � 8�H [� 8�� � LOC HQP � � � � � 8 H [[� �

As can be seen we use numbers rather than formulae themselves as indexes on formula identi-
fiers. This is more convenient. For a formula

\
we shall be using � � instead of � � . Sometimes

we shall be refer to � � as the top identifier. In the example above the equations for � � and
� � are not the only ones generated, in fact also equations for e.g. the propostions

�
and

�
will

be constructed. However, since these are not referred to either directly or indirectly by � � we
shall omit these for clarity reasons. Further notice that the right-hand side of � � is repeated
in the right-hand side for � � due to the rewriting into normal form.

Theorem 6. Let
\

be a formula in 243 2 . Then
\

may be rewritten to a Normal Form Equation
System � 8*\ [

such that for all
8 �
 L�[it holds that
8 �
 L�[� � \�� F 8 �
 L�[� � � � 8 � � [

The number of identifiers in a normalform equation system will b equal to the number of
temporal oprators in the formula plus 1.

4 Verification using Normal Form Equations

Our runtime verification procedure consists of a residual formula construction ’/’ defined
below. We use � ��� $ for denoting whether the state � � fulfills the non-temporal formula

$
. It

will thus be either true or false.

Definition 7. (Residual Formula) Let
\

be an 243 2 formula, let � � be the Normal Form Equa-
tion System for

\
and let � � be a timed state. Then the residual of

\
with respect to � � is obtained

using the following transformations��
�
2! #" �

� J�8%$ � 2 � � &
' �(�) �

' 8�����[����- � � � �
2! #" �

8 � � � $ � 2 � L � - � � � &
' (� 2 �

' 8�����[� L�� - � ��[
��
�
2! #" �

&
' (� 2 �

' 8
	 [����- � � � �
2! #" �

&
' �(�) �

' 8
	 [.- � �
� ' 8
	 [�- � � � � \.8 � ' 8�� [�[� 	 - � � - � �

In the definition above
�

denotes the formal parameters
H �
 J J J
 H � (formula clocks) while	

denotes the corresponding actual parameters. Initially we will be using � � 8�D
 J J J
 D
[as the
top identifier, which is all right since any use of a formula clock

H � will be preceeded by a
freeze of this clock.

Regarding correctness, if
\ - � � � L � � B

then it holds that for all suffixes �
�

that � � � � � � \
.

And if
\ - � � � � ;>= �TB

then for no suffix �
�

it holds that � � � � � � \
. If

\�- � � gives a result
\��

other
than the constants

L � � B
and

� ; = �TB
then for any suffix � � it holds that �

� � � \
�
if and only if� � � � � � \

. In other words, our property transformer is sound. Now ideally, a tautology
\��

should be reduced to the constant value
L ��� B

, and similarly, an unsatisfiable formulae should
preferably be reduced to the constant value

� ;>= �TB
. But this demands the incorporation of a

SAT solver which would seriously hamper the efficiency of our method. Thus, our method
can be said to be relative complete. Moreover, formulae which are not tautologies or falsities
may be bigger than necessary. However, by application of heuristics in the style of [9, 16, 15]
it is possible to apply a range of formula reductions towards a smaller specification (possiblyL � � B

or
� ;>= �TB

).
In the following we shall be using the notation

\ - � � to denote the residual obtained from
of the the � first timed states from the complete trace � with respect to the formula

\
. For

complete timed traces this devises an algorithm for runtime verifiation, see the following
example. In the next section we shall see how to reduce the number of residual constructions
when taking into account the smallest interesting timepoint.

Definition 8. Let � � � � ���
 J J J � � � ��� � J J J be a timed trace. Then we define

\ - � � � \ - � �\ - ��� � � � 8*\ - � � [�- � ��� �

Example 9. Let � � 8 � � �
 D [8 � ���
 R [8 � �
 � �
 � [��� be a timed trace, and let
\

be the formulaHKJ 8 8�� � LQC H P � [U � [
that states that

�
should hold before � time units and

�
should hold

until then, see example 5. Clearly � satisfies
\

regardless of ��� and we shall now apply the
residual construction to see this. Therefore we first compute the residual of � � 8*[�WHKJ�8�8�� � LOC

H P � [� � � � 8 H [[� �
with respect to

8 � ���
 D
[
.

� � 8*[�- 8 � � �
 D
[� � \ 8 � � 8*[[�- 8 � ���
 D
[� HKJ�8�8�� � L C H P � � � � � 8�H [�[� � [.- 8 � � �
 D
[
� 8 8 � � �
 D
[� � � LOCED P � [� � � 8�D [[� 8 � � �
 D
[� �
� 8�L � � B � � � 8�D
[[� � ;>= � B� � � 8�D
[

This means that in order for � to satisfy � � 8�[then � � should satisfy � � 8�D [. Consequently, we
therefore compute the residual of � � 8�D
[and the first state of �

�
namely

8 � � �
 R [
.

� � 8�D
[�- 8 � � �
 R [� � \ 8 � � 8�D
[�[.- 8 � � �
 R [� 8�� � L CED P � � � � � 8�D
[� � [.- 8 � � �
 R [
� 8 8�8 � � �
 RT[� � � LOC � [� � � 8�D
[[� 8 � � �
 R [� �
� 8�L � � B � H � 8�D
[[� � ;>= � B
� � � 8�D
[

Still, no final conclusion may be drawn, so, we compute the residual of � � 8�D [with respect to
the first state of �

, i.e.

8 � �
 � �
 � [

� � 8�D
[�- 8 � �
 � �
 � [� � \ 8 � � 8�D
[�[.- 8 � �
 � �
 � [� 8�� � L CWD P � � � � � 8�D
[[� � - 8 � �
 � �
 � [� 8 8�8 � �
 � �
 � [� � � LOC � [� � � 8�D
[[� 8 � �
 � �
 � [� �
� 8�L � � B � � � 8�D
[[� L ��� B� L ��� B

The result
L ��� B

means that no matter what ��� might be, then we may now once and for all
conclude that � satisfies

\
.

5 Smallest Interesting Timepoint

Having time constraints in the logic implies that the elapse of time alone may cause a formula
to change truth value. Consider the time constraint

LVC @
, where

L
is a discrete clock, which

is moving forward, and
@

is a constant. Before time
@

this constraint is true. However, at time@
it becomes false, and moreover, it will remain false. Therefore, if we for a moment assume

that time is the only changing parameter in a timed trace, we may say that
@

is the smallest
interesting timepoint for the time constraint

L1C @
. Similarly, the time constraint

L X @
has

the property that it is false until time becomes c, after which it becomes true, and remain
so in all future. Consequently we shall say that

@
is the smallest interesting timepoint for the

constraint
L X @

. As a special case we have
L � @

which is false all the time except in the
timepoint where the time is exactly

@
, therefore when the time is

@�P R
we can conclude, thatL �S@

, will never be true again. Henceforth,
@ P R

is the smallest interesting timepoint for
@ P R

.
Common for all time propositions on the form

L�
 @
is that at time

@
(or

@6P R
) we are able to

conclude that their future truth value will remain unchanged.
The above considerations may be employed to avoid the tedious task of considering a com-

plete timed trace. Assume a timed trace like
8 � � �
 D
[8 � � �
 R [8 � � �
 � [A8 � � �
��
[8 � � �
��>[8 � � �
 � [8 � ���
��
[!J�J�J

i.e. a trace where the propositional part does not change, and assume we are interested in
checking a property like

7V8�� � L C RTD
[
. In this case it is enough to check that proposition�

holds at time
D

(which it does) and then jump directly to time
R D

, which is the smallest
interesting timepoint for the formula, since it is here where

L C RTD
changes truth value

The smallest interesting timepoint (SIT) is defined in Definition 10 on the structure of
formulae.

Definition 10. (Smallest Interesting Timepoint) Assume a normal form equation system over?
identifiers � �
 J J J
 ��� . Let *
 2 2 	 �

and let
�

be a function mapping any pair
8�=
 � [to a

number in
�>R�J J J�? �

.

� � 3 8�� "2�� ��� ()' � � ��� � 2 � ' � 8 	 2 ' [
T8 �
 L�[[�	� � ? � � � 3 8�
 8 ��� � 2 � ' � 8�� � � 2 � ' � [[� 	 2 ' - � � � 2 � ' � �
 8 �
 L�[�[� R N � N *
 R NS= N 2 2 �� � 3 8 � "2�� � \ 2
T8 �
 L�[[�	� � ? � � � 3 8*\ 2
 8��
 L�[[�
� � 3 8��OJ 8�$ � � &

� �
 �
� 8 H [[
T8 �
 L�[[�

��� ��
L PSR

if
8��
�L�[� $ � L�- � � and

�
not empty� if

8��
�L�[#� $ � L�- � � and
�

not empty� � 3 8�$
 8 �
 L�[
if
�

is empty� � 3 8*\ � � \�

T8 �
 L�[[� � � 3 8*\ �	� \�

T8 �
 L�[[
��� � ? � � � 3 8*\ �
 8 �
 L�[�[
 � � 3 8*\�

 8��
 L�[[�� � 3 8��
 8��
 L�[[� � � 3 8 � �
 8��
 L�[[� �

� � 3 8�L � @
T8 �
 L�[[� � � 3 8�L NZ@
T8 �
 L�[[� @6PSR
� � 3 8�L �S@
T8 �
 L�[[� � � 3 8�L CW@
 8 �
 L�[�[� � � 3 8 L XS@
 8 �
 L�[�[� @

The only case where the smallest interesting timepoint will be as small as
L
P R

, i.e. the time in
the next state, is when (1) new clock variables are bound and (2) the propositional formula

$
is satisfied, since in this case new identifiers (previously hidden behind the

�
–operator) are

now instantiated in the residual formula.
The following theorem states that the residual computation need not take place for a timed

state if it has the same propositional content as its predecessor and further that its time (i.e.
the current time) is below the smallest interesting timepoint for the current residual.

Theorem 11. Let � � � � ��� �
 be a timed trace
8 � � � 8 � �
 L � [and ��� � 8�� �
 L � [[and let

\
be a

24352 residual formula, such that
L � C � � 3 8�\ - � � [

then ���
 �
 � � \ - � � if and only if �
 � � \ - � � .
Example 12. Let us consider the punctuality property

7V8 � F HKJ 8 � 8 L �SH�P R D � � [[[
[7]. After

translating to disjunctive normal form we get the following equation system:

� � � � � � � � �� HKJ 8�� � L ��� B � � 8 � � 8�H [� � � [�[� HKJ 8�� � � � L	�ZHQPSRTD � � � � [

� � 8�H [� � � � 8 H [� ��� L	�ZHQPSRTD

Checking the trace � � 8 � � �
 D
[8 � �
 RT[8 � �
 � [8 � �
��
[J J J 8 � �
�� [8 � �
��
[8 � � �
 R D
[J J J we get that� � must satisfy the residual formula � � 8�D
[� � � . Now, using Definition 10 we have that� � 3 8 � � 8�D
[� � �
 8 � � �
 D
[�[is 1. This means that we also have to compute the residual for

the next state
8 � �
 R [

. The residual thus obtained is � � 8�D
[� � � and as a smallest interesting
timepoint we get 10 since

� � 3 8�H � 8�D
[
T8 � �
 R [�[� R D
and

� � 3 8�H �
 8 � �
 R [�[� � . And now, since
the propositions do not change from �
 through ��� we do not have to compute the residual
since it will be not change, see Theorem 11. At time 10 we will have to compute the residual
since this is the next interesting timepoint and the residual now becomes � � because propo-
sition

�
is true here. Had

�
not been true at time 10 the whole residual would reduce to

� ;>= � B
.

The example above suggests that we really need to rewrite any timed trace to its complete
version, but in practice this will not happen. If the program being monitored only dumps
information when the state is changed then the runtime checker will at any timepoint know
that “no news” means that the propostional part of the state is unchanged.

6 Time Based Fixed Point Reductions

In exhaustive verification a property
���

(eventually
�

) will be concluded to be not satisfied if
the state graph of the system being checked has an infinite

�
–free execution trace, i.e. a loop

for which no states satisfies predicate
�

. In Runtime Verification, unfortunately, cycles go
undetected and hence we are not able to reach such a conclusion. We are, however, able to do
something else of great value, namely to exploit the passage of time as a basis of strengthening
the completenes of our method. Consider for instance a formula

� 8�� �VLOC � [(
�

becomes true
before time �), which in Disjunctive Normal Form becomes the minimal fixed point equation
� � � � � � 8 � � L C � [. Obviously, if for a given trace,

�
is not satisfied at neither timeD
 R
 �
�� or

�
then the property is not satisfied no matter what the continuation might be.

Unfortunately, our OK transformer does not quite capture this. For all timed states in which�
does not hold, i.e.

8 � �
 � [�
 � 	 �

we get that � - 8 � �
 � [� � which means that after time

�

there is still a “hope”, namely if � can be satisfied (but this is really a false hope!). Therefore,
at time � we do need to rewrite the defining equation of � to � � � � � � � ; = �TB , which again
is equivalent to

� ;>= � B
since for this definition of � no finite number of unfoldings exists. In

very much the same fashion we may conclude that time constraints with a lower bound (i.e.L � @
 L X @
) from certain timepoints (which in this particular case are

@ P R
and

@
) becomes

true and utilize this fact to rewrite maximal fixed point equations.

In the following we therefore introduce two things. First, a formula transformer
L
R (At

Time
L

Reduction) whose purpose it is, given a (possibly closed) 24352 formula
\

and a timed
state � � , to attempt to determine future truthhood (or falsehood) of timing constraints in-
side

\
. And second, a fixed point reduction technique which attempts to use these rewritten

equations to draw conclusions.

Definition 13. (At Time
L

Reduction)

Let � � � � ��� J J J be a timed trace, let � � be the top identifier in an equation system on dis-
junctive normal form and let

\ � � � � 2 � � 2 8
	���� [be the residual formula obtained by computing
� � - ��� � � . Then the ‘At time

L � reduction of
\

’, denoted t � 8*\
 L � [is defined as follows

t � 8%$ �	� $

�L � [� t � 8%$ �
 L � [� t � 8%$

 L � [
t � 8%$ � � $

�L � [� t � 8%$ �
 L � [� t � 8%$

 L � [

t � 8 � �
�L � [� � �
t � 8�HKJ \
�L � [� HKJ \

t � 8��
�L � [� �

t � 8 � �
�L � [� � �
t � 8�LOC @
�L � [��� false if

L � X @
L CE@

otherwise

t � 8�L NZ@
�L � [� � false if
L � �W@

L NZ@
otherwise

t � 8�L �S@
�L � [� � false if
L � �W@

L	� @
otherwise

t � 8�L � @
�L � [� � true if
L � �W@

L �E@
otherwise

t � 8�L XZ@
�L � [� � true if
L � XZ@

L XZ@
otherwise

Returning to the example with the minimal fixed point equation � � � � � � 8�� � L C
� [we have that t � 8 � � � 8�� � L C � [
 � [� � � � 8 � � L C � [for � � D
 J J J
��

which
nicely resembles the fact that up to time

�
there is still a hope to satisfy the property. But

t � 8 � � � 8�� � LYC � [�
 � [� � � � 8�� � � ;>= �TB [� � � � � ;>= �TB and thus the definition of �
reduces to � � � � � � � ; = �TB which does not have a solution.

In general we can say that if the righthandside of a minimal fixed point equation, � ���
� 8 � [

, has no next–free disjuncts which are different from the constant
� ; = �TB

then � is itself
equivalent to false. And in our tool TimeChecker employ this to reduce the residual formula.
A dual reduction for maximal fixed point equations exists: If the righthandside contains a
disjunct for which the propositional requirement is not present the solution is all timed traces
because the solution to � ��� � � is all timed traces.

The entire framework for runtime verification presented in this paper, is implemented in
a tool called TIMECHECKER. This includes a translation from a 24352 formula to a disjunc-
tive normalform together with full implementation of the resisual construction with smallest
interesting time point, and time based fixed point reduction. At the current stage we have
checked the validity of the method on a set of smaller examples. In the future we are going to
apply the method in a real environment.

7 Conclusion and Future Work

In this paper we have improved our runtime verifier for timed LTL [5] from being state-
based to become event-based, making the algorithm feasible for systems with big differences
in the magnitudes of the relevant time points. We have expanded our previously presented
framework for runtime verification of timed LTL, in such a way that we have improved
both completness and performance. Completness has been improved since we are able to de-
tect timeouts in time constraints which is used in context of detecting if a minimial fixpoint
formula can or cannot be satisfied within a limited number of formula unfoldings. The in-
troduction of smallest interesting timepoint is a big performance improvement since we are

now able to skip processing a lot of the statesequences, from the complete trace. Therefore it
is also a big step towards a logic with dense time instead of discrete time.

In [11] an automaton-based solution is presented for the limitation of having only tem-
poral operators with upper-bounds. It would be interesting to investigate to what extent
restricting our logic to only upper bounds could allow for further improvements in the al-
gorithm. It is for instance not difficult to see that if the residual formula is for instance
� � 8 � [� � � 8 �>[� � � 8 � [and there are only upper bounds in the equations, then this will be
equivalent to � � 8 �
[(because the two last will be implied by the first).

Another type of improvement to search for, could be in a better computation of the small-
est interesting timepoint in the case of freeze-operators. In the current version this will some-
times simply be the next timepoint, which is the smallest possible step to take. This might
happen with formulae as

7V8�� F HKJ \ [
, where, whenever

�
holds, a new freeze must be per-

formed. If
�

holds for a longer period, e.g., from timepoint
D

to
R D D D

, many freeze-operations,
being reflected as identifier-instantiations with different parameter values, will be performed.
Here, it might be beneficial to instead use change-propositions expressing the change of a
proposition like

�
. These would be

���
for

�
goes “high” and

���
for

�
goes “low” and express

the properties with these instead. This would make the logic more like an interval logic (as
e.g. duration calculus [12]) and the timing properties could be thought more of as properties
of timing diagrams known from hardware design and analysis.

In general, timed LTL is undecidable ([7]), which means that it will not be possible to
guarantee completeness in the sense that the verifier should in each step always be able to
reduce the residual formula to false (if it is unsatisfiable) respectively true (if it is a tautology).
However, for the fragments of timed LTL that are decidable, it should be possible to improve
the verifier, by using the appropriate decision procedure.

Though our framework can be used in several contexts it is constructed with ERP-systems
in mind. Therefore a future development will be to expand TIMECHECKER in such a way, that
it is able to concurrently monitor several processes each having their own residual formula.
In addition to this, we shall begin to address the important problem of how to automatically
instrument an ERP system (or any other running program) with the ability to present its
current timed state in a form which can be used by the TIMECHECKER.

References

1. K. Havelund, G. Ruso. Monitoring Java Programs with Java PathExplorer. First Workshop on Runtime Verification
(RV’01), Paris, France, 23 July 2001. Electronic Notes in Theoretical Computer Science, Volume 55, Number 2, 2001

2. D. Giannakopoulou, K. Havelund. Automata-Based Verification of Temporal Properties on Running Programs. Auto-
mated Software Engineering 2001 (ASE’01), San Diego, California, 26-29 November 2001, IEEE Computer Society.

3. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple onthe -fly automatic verification of linear temporal logic. Proc.
15th International Symposium on Protocol Specification, Testing and Verification (PSTV XV), pp 318, Chapman and
Hall, 1995.

4. G. Holzmann. The Model Checker SPIN. IEEE Trans. on Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-295.
5. K. Kristoffersen, C. Pedersen and H. R. Andersen. Runtime Verification of Timed LTL using Disjunctive Normalized

Equation Systems. Appears in Preliminary Proceedings of Third International Workshop on Runtime Verification RV
’03, Boulder, Colorado, USA. July 13, 2003. (Technical Report MS-CIS-03-21, University of Pensylvania). To appear in
Issue 89.2 of Electronic Notes in Theoretical Computer Science.

6. Time-Rover Corp. Temporal Business Solutions. The DB Rover. 2000.
7. R. Alur, T. Henzinger. Logics and Models of Real Time: A Survey. Real Time: Theory in Practice, Lecture Notes in

Computer Science 600, Springer-Verlag, 1992, pp. 74-106.
8. T. Henzinger. It’s About Time: Real-Time Logics Reviewed. Proceedings of the Ninth International Conference on

Concurrency Theory (CONCUR), Lecture Notes in Computer Science 1466, Springer-Verlag, 1998, pp. 439-454.

9. K. Havelund, G. Ruso. Monitoring Programs using Rewriting. Automated Software Engineering 2001 (ASE’01), San
Diego, California, 26-29 November 2001, IEEE Computer Society.

10. M.C.W. Geilen, D.R. Dams. An on-the-Fly Tableau Construction for a Real-Time Temporal Logic. Proceedings of the
Sixth International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT2000, 20-22
September 2000, Lecture Notes in Computer Science Vol.1926 Pune, India, Ed. M. Joseph, pp. 276-290, c

�
Springer-

Verlag, Berlin, 2000.
11. M.C.W. Geilen. An improved on-the-fly tableau construction for a real-time temporal logic. Computer Aided Verifica-

tion, CAV 2003, Proceedings. Boulder, Colorado, USA, July 8 – 12, 2003.
12. Z. Chaochen, C.A.R. Hoare, A.P. Ravn: A Calculus of Durations, Information Processing Letter, 40, 5, pp. 269-276,

1991.
13. E. M. Clarke, O. Grumberg, D. A. Peled. Model Checking. The MIT Press 2001.
14. J. S. David. Three Events that Defines an REA Methodology for Systems Analysis, Design and Implementation. 2001.
15. K. G. Larsen, P. Pettersson and W. Yi. Compositional and Symbolic Model-Checking of Real-Time Systems. Proceedings

of the 16th IEEE Real-Time Systems Symposium, Pisa, Italy, 5-7 December, 1995.
16. H. R. Andersen. Partial Model Checking (Extended Abstract). Proceedings of LICS’95. La Jolla, San Diego, June 26-29,

1995, IEEE Computer Society Press, pp. 398-407.
17. A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications, Pacific. J. Math., 55 (1955), pp. 285-309.

