.-ﬁ
=

The IT University

of Copenhagen

Ordered Tree Edit Distance with Merge and Split Operations

Philip Bille

IT University Technical Report Series TR-2003-35
ISSN 1600-6100 September 2003

Copyright (© 2003, Philip Bille

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600-6100

ISBN 87-7949-048-4

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67

DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web ww. i t-c. dk

Ordered Tree Edit Distance with Merge and Split Operations

Philip Bille*
September 29, 2003

Abstract

Comparing trees is a fundamental problem in computer seidnatrticular, the ordered tree
edit distance problem, defined as the problem of comparidgred and labeled trees based on
the cost and number of edit operations needed to transforeg @'t into another treds, arise in
many applications. For the simple edit operations of imsgrdeleting and relabeling a node the
problem is a well-studied problem and algorithms with*) time complexity exists. In this paper
we extend the set of operations with merge and split operatid/e argue that this new problem
naturally generalize the old problem and we provide polyiabtime algorithms for solving it.

1 Introduction

Comparing trees is a fundamental problem in computer seignearious areas such as computational
biology, structured text databases, image analysis, aitotieorem proving and compiler optimiza-
tion [Tai79, ZS89, KM95, KTSK00, HO82, RR92, ZSW94]. In pautar, thetree edit distance prob-
lem— the problem of comparing trees based on the cost and nurhbienjgle local operations needed
to transform a tred? into another tredy, — has be studied extensively [Sel77, Tai79, ZS89, ZSS92,
7394, Zha95, Zha96, Kle98, KTSK00, LST01, Che01].

Let 7" be a rooted tree. We cdll' a labeled treeif each node is a assigned a symbol from a
fixed finite alphabe®. We call T an ordered treeif a left-to-right order among siblings iff’ is
given. In this paper we consider edit distance problemsdiasesimple primitive operations applied
to rooted, ordered and labeled trees. The operations ameddfielow. We assume that all of the
operations preserve the left-to-right order, that is leherwise stated, if is to the left ofw before
an operation then will also be to the left ofw after the operation, for any pair of nodesndw in T'.

relabel Change the label of a noden T.

delete Delete a non-root node in 7', making the children ob become the children of the parent of
V.

insert The complement of delete. Insert a nadas a child of a node’ in 7' makingv the parent of
a consecutive subsequence of the children’ of

horizontal-merge Merge a consecutive subsequence of siblings. . , v into a single node. The
children ofvq, ..., vs become the children af.

horizontal-split The complement of horizontal-merge. Split a nedato a consecutive sequence of
siblingswvy, ..., vs. The children ofv become children ofq, ..., vs.

*The IT University of Copenhagen, Glentevej 67, DK-2400 Go@mgen NV, Denmark. Emaibeet |l e@'t - c. dk.
This work is part of the DSSCYV project supported by the ISTgPanme of the European Union (IST-2001-35443).

(@) (b) (©) (d)

Figure 1: Transforming (a) into (d) via editing operatioria) A tree. (b) The tree after deleting the
node labeled. (c) The tree after a horizontal-merge of the nodes labél@ade into a node labeled
(d) The tree after a vertical-split of the node labeleiito the nodes labeledandg. Conversely, we
can transform (d) to (a) via a vertical-merge, a horizostdit and an insert operation.

vertical-merge Merge a sequence of nodes .. ., vs, whereparent(v; 1) = v;, 1 < i < s, into a
single nodev. The children ofvy, ..., v notin the sequence become the childrem.of

vertical-split The complement of vertical-merge. Split a nadmto a sequence of nodes, .. ., vs,
whereparent(v; 1) = v;, 1 < i < s. The children ofv become the children of the sequence
Vlye-. Vg

For unordered trees the operations can be defined similarthis case, the insert, delete, merge and
split operations works osubsetf nodes instead of subsequences. An example of the above edi
operations applied to ordered trees is shown in Figure 1.

We can define a tree edit distance problem for any subs#tthe above operations. L& andT;
be rooted, ordered and labeled trees. Assume that we anme giwest defined on each edit operation
in O. An edit script.S betweenl; andT; is a sequence of edit operations fraturning 77 into 5.
The cost ofS is the sum of the costs of the operationsSinAn optimal edit scriptbetweenl; andT>
is an edit script betweeh; and7; of minimum cost and this cost is thiee edit distance with respect
to O. Thetree edit distance problem with respectais to compute the edit distance with respect to
O and the corresponding edit script.

Let |T}|, D; andL; denote the number of nodes, the maximum depth and the nurhleaves in
T; respectively and similarly definds|, D, and L, for T». The edit distance problem with respect
to the relabel, delete and insert operations, which we balstandard edit distance problens a
well studied problem. The ordered version was introduceddi\|Tai79] as a generalization of the
well-known string edit distance problef\WF74]. The currently fastest algorithms are due Zhang
and Shasha [ZS89] usirn@(|T}||T2| min(L1, D1) min(Le, D2)) time andO(|11||7%|) space, [Kle98]
using O(|T1|?|T»| log |T»|) and O(|T1||T|) space and Chen [Che01] usiGy |1} ||Tz| + L3|Ts| +
L?3 Ly) time andO((|Ty| + L?) min(Ly, D) + |T2|) space.

The unordered version of the problem has been shown to beoNplete [ZSS92] and even MAX-
SNP hard [ZJ94]. Hence, unless P=NP there is no PTAS for thiglgmn [ALM+92].

All of the above algorithms compute the standard edit destigaroblem use the classic technique
of dynamic programmingsee.e.g, [CLRS01, Chapter 15]). Furthermore, the algorithms asetan
a reduction taedit distance mapping#\n edit distance mapping is a compact representation oflan e
script which may be viewed as a set of lines from nodeg;ito nodes inl,. Each line corresponds
to an edit operation. In this paper we introduce several iygeg of edit distance mappings which
generalize the previous definition. This leads to edit distgoroblems extended with the above merge

and split operations. Specifically, we considerhbezontal edit distance probleand thevertical edit
distance problendefined as the edit distance problem with respect to reldbkdte, insert, horizontal-
merge and horizontal-split operations and the edit digtganoblem with respect to the relabel, delete,
insert, vertical-merge and vertical-split operation exgtjvely. We call these problems thgerge edit
distance problemsDefine a merge edit distance problem toAbevay, for some integek > 1, if no
node inT; is the result of merging more tha@nnodes inT; and no node irT; is split into more than

k nodes inls.

Our main result in this paper is that under some restrictibes:-way horizontal edit distance
problem, for any constarit, and the vertical edit distance problem can be solved inruohjial time.
Our algorithms all use dynamic programming to compute am@dtmapping. We only show how
to compute the cost of the edit distances, however, the sfuoreling edit scripts can easily be found
within the same time and space bounds given here.

1.1 Related work

Several other extension of the standard edit distance gmoblave been considered. In [KTSKO0O]
Klein et al. developed an edit distance specifically for computing dista between ordered trees
representing closed shapes in the plane. This edit dis@Boeincludes a type of merge operation.
However, this operation is simpler than ours and involvdstag a subtree rooted at one of the nodes
participating in the merge. Chawatbeal. [CRGMW96] considered an edit distance for ordered trees
with a subtree move operation which moves and entire subtveeone node to another. Building on
this work an algorithm for unordered trees is given in [CGY9his algorithm further extends the set
of operations with a subtree copy operation which copiesngineesubtree from one node to another
node. Both of the algorithms in [CRGMW96, CGM97] dreuristig that is, they do not guarantee
that the solution they produce is the optimal. InteresyingLGM97] proposes merge operations as
the ones in this paper, but does not consider how to implethese.

Instead of extending the standard edit distance problern métv operations, some restrictions
have also been considered. In [Sel77, Zha96, Zha95, LST0y¥ Jealit scripts with various structural
properties are considered. For a survey on tree edit dissaanad related problems see [Bil03].

1.2 Outline

In Section 2 we present the fundamental notation and definsitused throughout the paper. Section
3 formally defines the edit operations and the edit distamoblems. Furthermore, the concept of
mappings is presented. In Section 4 and 5 we present thathigerfor the horizontal and vertical
edit distance problems respectively.

2 Preliminaries and notation

In this section we define notations and definitions we will tiseughout the paper. For a graghwe
denote the set of nodes and edgesty>) and E(G) respectively. A forest is a set of trees. L€t
be a forest. Theizeof F, denoted by F|, is |V (F')|. A node with no children is a leaf and otherwise
an internal node. We denote the parent of nod® parent(v). Two nodes are siblings if they have
the same parent. Defirteto be the empty forest. For forests we allow the delete ojgerdd be
performed on roots. If a roat € V(F) with childrenwvy, ..., v, is deleted theny, ..., v, become
roots inF' in the place ofv. LetT'(v) denote the subtree @f rooted at a node € V(F') and letF'(v)
denote the forest obtained by deletindgrom T'(v). If w € V(T'(v)) thenv is an ancestor oi), and

if w e V(F(v)) thenv is a proper ancestor af. If v is a (proper) ancestor af thenw is a (proper)

descendant af. A vertical pathis a simple path from a nodeto a nodew € T'(v). Letp be a vertical
path from a node to a nodew € T'(v) and definé// (p) to be the set of nodes on this path including
vandw. If u € V(T(v)) thenu is a descendant gf and ifu € V(T'(v))\V (p) thenu is a proper
descendant gf. A vertical pathp’ with topmost node: is a (proper) descendant pff « is a (proper)
descendant gf.

A treeT is alabeled treeif each node is a assigned a symbol from a fixed finite alphabat/e
say thatT" is orderedif a left-to-right order among the siblings is given. A fords is ordered if a
left-to-right order among the trees is given and each treedsred. Throughout the text we assume
unless otherwise stated that any tree is rooted, orderethbatbd and any forest is an ordered forest
consisting of rooted, ordered and labeled trees.

Let F' be a forest and define tli& j)-deleted subforesif ', 0 < i+; < |F|, as the forest obtained
from F by first deleting the rightmost root repeatedliimes and then, similarly, deleting the leftmost
root: times. We call th€0, j)-deleted andy, 0)-deleted subforests, for< j < |F|, theprefixesand

the suffixesof I respectively. The number @i, j)-deleted subforests df is Z',QO k= O(|F|?),
since for eachi there are F'| — i choices forj. Letwv be any node i/ (F'). We denote byF' — v
the forest obtained by deletingfrom F. Define F[v] as the maximal prefix of’ not containing
v or any descendant af. Similarly, defineF'{v} as the minimal suffix off’ containingv. Thus,
V(F[v]) NV (F{v}) = 0 and, ifvis aroot,V(F[v])\V (F{v}) = V(F). The nodes to th&eft of v
are the nodes € V(F[v]) and the nodes to théght v are the nodes € V (F{v}) N T(v). For any
two forestsF; and F» defined by the sequence of tréBs, ..., 71, andTy,, ..., Ty, respectively, we
defineF; e F; as the sequence of treés=T11,,...,11,,Ts,,...,T5,.

3 Edit operations and edit mappings

In this section we formally define the edit operations and/tr@éus edit distance problems. Through-
out the section lef; and F;, be ordered, labeled forests with labels from a finite alphabéNe use
the symbol) to denote a specialull node not in any forest and also a speciall symbol\ ¢ 3.
DefineV(F), = V(F) U A for any forestF’ andX, = ¥ U \. Thelabel of a nodev € V(F) is
denoted byabel(v) and the label of the nodeis the symbol\.

Following [Tai79] we represent each edit operation by a sebairs (vy,v2) € (V(F1)x X
V(F2)x)\{(\, A}, often written(v; — wv2), wherew; is a node inF} or A andv; is a node inF,
or A. A single pair(vy — ws) is a relabeling ifv; # A andve # A, a deletion ifvo = X and an

insertion ifv; = \. A set of pairs(vy, — v2),...,(v1, — v2) is a horizontal-merge b, ..., v,
are siblings and consecutive in the left-to-right ordeFpfand a vertical-merge ifarent(v; 1) = v;,
1 <i < s. Similarly, we represent the split operations by a set ofsgai, — v,), ..., (v — v9,).

Furthermore, for subsets; C V (F}), andvy C V(Fy),, we define a shorthand notation for a set of
pairs:
(Vl — V2) = {(’Ul — ’02) | (Ul,vg) € vy X Vg}.

In general, we will use boldface letters to denote subsetedés. Note that by definition any edit
operation can be written ds; — v2) for appropiate subsets; C V(F})y andve C V(Fy),. We
say that any node in F; or Fy that occurs in a pair that is part of a edit operatiparticipatesin that
operation. Anedit scriptbetweenF; and F5 is a sequence of edit operations turnifiginto F;. A
legal edit scriptis an edit scriptS = sy,...,s; such that for any operatios;, 1 < j < ¢, we have
that:

e If s;is a horizontal- or vertical-merge operation resulting irodev, thenv does not participate
in any of the operations; .1, ..., s;.

e If s5; is a horizontal- or vertical-split operation splitting adew, thenv does not participate in
any of the operations;, ..., s;_.

In the rest of the paper we will only consider legal edit stipience, unless otherwise stated, we will
implictly refer to a legal edit script when we write edit gatri

We assume that we are given a cost function (3, x X))\{(A,A\)} — R, on pairs of labels.
This cost should be a distance metric, that is, for any lahdlgls € X, the following conditions are
satisfied:

1. 7(l17l2) > 07 ’7(l17l1) = 0.
2. y(l,l2) = (2,).

3. v(l1,13) < (lh,l2) + (12, 13).

We definey(v; — va) = ~y(label(vy), label(vy)), wherev; € V(F)y andvy € V(Fy),. The cost of
an edit operatiory(vy — vz2) is given by, ... \e(vy—vy) 7(v1 — v2). Note that for a legal edit
script we havey(vy — v3) < v(vi — va) + v(va — v3), which does not holds in general. This is
the primary reason for only considering legal edit scripts.

The cost of a sequence = s, ..., s, of operations is given by (S) = Zle v(si). The edit
distance with respect t© betweenF; and F», denotedio (F1, F»), is formally defined as:

do(F1, F») = min{~(S) | S is a sequence of edit operations fréntransformingF} into Fs}.

If no sequence of operations fraphtransformsF; to F, we definedp (Fy, Fy) = oo.

A mappingbetweenF; and F; is a representation of an edit script betwdgnand F5, which is
used in many of the algorithms for the tree edit distance Iprob We define anappingbetweenF;
and F» to be a a triplg M, F, F»), such thatM C V(Fy) x V(F»). When there is no confusion we
will simply use M to denote the mapping. For subsets of nodesC V(F;) andvy C V(Fy) we
define the sets:

map(vy) = {vg € V(Fy) | I(v1,v9) € M such that; € vy}
map(vg) = {v1 € V(Fy) | I(v1,v9) € M such that, € va}

We extend the notation by settingap(v;) = map({v1}) andmap(ve) = map({vy}) for any nodes
vy € V(Fy) andvy, € V(F;). We define three types of mappings: We say thatis a one-to-
one mapping if, for any paif{vy,vs) € M, map(v;) = {va} andmap(ve) = {v1}, a many-to-
one mapping if, for any pair(vy,v2) € M, map(map(vi)) = {v1} or map(map(v)) = {va2}
and otherwisell is amany-to-manymapping. IfM is a many-to-one mapping we will often write
(vi,v2) € M if vi = {v1} andvy = map(v;) or vg = {ve} andvy = map(vs).

We say that a node in F or F5 istouched by a linen M if v occurs in some pair id/. Let Ny
and N, be the set of nodes iA; and F, respectively not touched by any line M. The cost ofM is
given by:

YM) = > =)+ D> A=A+ Y YA =)
(v1,v2)EM v1 €Ny v2€ N2
Mappings can be composed. LEt, F;, and F3 be forests and let/; and M, be a mapping fron#
to F» and fromF; to F3 respectively. Define

My oMy = {(Vl,Vg) | dvy € V(Fg) such that(vl,V2) € M, and(Vz,Vg) € Mg}

Note that a ifA; and M, are one-to-one mappindd; o M- is a one-to-one mapping. In general, the
composition of two many-to-one mappings is a many-to-maappmg. Ify(vy — v3) < y(vy —

5

va) + vy(ve — vg), for any pairs(vy, ve) € M; and(ve,vs) € Ms, we say thatV/; and M, are
compatible

Lemma 1 For any three forestd’;, F, and F3 and compatible many-to-one mappingds, Fi, F»)
and (Mg, FQ, Fg),
V(M o Ma) < (M) +(Ma)

Proof. Let N; and N3 be the set of nodes i} and F3 respectively not touched by a line in
(M; o Mo, Fy, F3). For a nodev; € V(F}) there are two cases to considerv{f € N; then either
v is not touched by a line id/; or (vy,vy) € M; andwvs is not touched by a line id/,, for some
vy € V(F3). By the triangle inequalityy(vy —) < y(v1 — v2)+7y(ve — A). If (v1,v3) € MyoMs
for some nodes € V (F3), thenlet(vy — vg) € MjoMs, be the pair such that € v, andvs € vs.
SinceM; and M, are compatible we have thafvy — v3) < v(vy — va) + v(v2 — vg), for any
pairs(vi,ve) € M; and(vz, vs) € Ms. Equivalently, the result holds for any nodg € V' (F3) and
hence the lemma follows. O

For each edit distance problem we study in this paper thesedsrresponding minimum cost
mapping with the same cost as the edit distance. For compgleteand comparison we first present
the mapping used for the standard edit distance problemhemddefine mappings for the merge edit
distance problems.

A standard edit distance mapping/., betweenF; and F; is a one-to-one mapping such that for
all pairs(vl, 1)2), (wl, UJQ) € M,:

e vy is a proper descendant of iff w; is a proper descendant @f,. (descendant condition)
e vy is to the left ofuy iff wy is to the left ofws. (sibling condition)

By the definition ofM, and sincey is a metric, it is not hard to show that a minimum cost standard
edit distance mapping is equivalent to the standard edantis:

Lemma 2 ([Tai79]) For any forestF; and F», the standard edit distancé, (F}, F»), satisfies:

de(Th, To) = min{y(M.) | (M., F1, F») is a standard edit distance mappipg

Let (M, Fy, F,) be a many-to-one mapping. We defihéto benormal if for all pairs (v1,vza),
(w1, wz) € M, either all nodes irvy are descendants (ancestors) of nodes{ror all nodes invy
are to the left (rightw, and the equivalent conditions also hold foy and (w;). We say that\/ is
horizontal if for any pair(v1,ve) € M, no pair of nodes irvy or vo are a descendant of each other.
Similarly, we say thafl/ is verticalif no pair of nodes invy or vy are to the left and right of each other.
Note that if M is a one-to-one mapping it is both vertical and horizontak. &horizontal mapping the
leftmost and rightmost node w, wherev is eithervy or v, is well-defined and we denote these by
right(v) andleft(v) respectively. Similarly, for a vertical mapping the toprmasd bottommost node
is denoted byop(v) andbottom(v). Furthermore, we defineath(v) for a vertical mapping to be the
path fromtop(v) to bottom(v). If v = {v} thenright(v) = left(v) = top(v) = bottom(v) = v.

If [v1] < k and|ve| < Ek, for all pairs(vy,ve) € M and some positive integédr, the mapping is
k-way. Finally, we can properly define the many-to-one magpitihat correspond to the merge edit
distance problems.

A merge edit distance mapping/,,,, betweenf’ and F; is a normal many-to-one mapping such
that for all pairs(vy,va), (w1, wa) € M,,,

(@) (d)

Figure 2: The mapping corresponding to the edit script irufggl. The mapping is a merge edit
distance mapping but it is neither horizontal nor vertical.

¢ Allnodes invy are proper descendants of nodesvipiff all nodes inv, are proper descendants
of nodes inwy. (merge descendant condition)

e All nodes invy is to the left of allw iff all nodes inv, is to the left of all nodes irv,. (Mmerge
sibling condition)

Note that if M,,, is one-to-one the definition is equivalent to the definitidistandard edit mappings,
and hence, the definition generalize standard edit mappihdg,,, is horizontal or vertical thei/,,

is a horizontal or vertical edit distance mapping respebttivThe mapping corresponding to the edit
operations in Figure 1 is shown in Figure 2.

Lemma 3 For forestsF; and F the horizontal and vertical edit distancé, (F}, F») andd, (Fy, F»)
satisfies:

on(F1, Fy) = min{ M}, | My, is a horizontal edit distance mappihg
0y (F1, F5) = min{ M, | M, is a vertical edit distance mapping

Proof. We show the lemma for the horizontal edit distance. The carpart follows by the same
argument. LetS = s1,...,s; be an minimum cost horizontal edit distance script betwEgmand
F,. We show that there exists a horizontal edit distance mappip such thaty(M};,) < ~(S) by
induction oni. If i = 1 construct the mapping corresponding to the pairs, ajf the form (v, — v)
representing the edit operation. For any type of operatiome clearly obtain a horizontal edit distance
mapping of the same cost ag. Let S; = s1,...,s;_1 and assume that there exists a mappirig
such thaty(M;) < v(S7). Let M, be the mapping corresponding to edit operatiprSincesy, .. ., s;
is a legal edit script it follows that/; and M> are compatible and by the definition of horizontal edit
distance mappinga/; o M, is also a horizontal edit distance mapping. Furthermore,dmgma 1 we
have that,

Y(My o M) < ~(My) +v(Mz2) <~(51) +~(52) =~(5).
Conversely, for any horizontal edit distance mappirg, we can construct a sequengeof edit op-
eration indicated by the mapping. For each gair,v2) € M perform the relabel, merge or split
operation(vy — va), then delete all nodes not touched by a lineFinand then insert all nodes not
touched by a line ify. Hencey(S) = ~v(Mj,) and the lemma follows. O

From the above lemma we immediately have that a minimum kagty horizontal (vertical)
edit distance mapping is equal to thevay horizontal (vertical) edit distance. Note that withthe
restriction to legal edit scripts, Lemma 3 would not hold #mel problem would not reduce to finding
a many-to-one mapping.

4 Horizontal merges and splits

In this section we show how to compute the horizontal edtadise using dynamic programming. We
describe in detail the algorithm for the two-way horizorgdit distance and subsequently describe
how to generalize this té-way edit distances, for any integér & > 1. The algorithm computes
the cost of a minimum cost horizontal edit distance mappintgths straightforward to also compute
the mapping and the corresponding edit script without cimantdne asymptotic running time or space
usage of the algorithm. For a foreBtand nodesv,v € V(F'), let o(F,w,v) denote the cost of
deleting the set nodes that are to the rightvadnd to the left ofv in F.

Lemma4 Let F; and F;, be forests with rightmost roots; and v, respectively. The two-way hori-
zontal merge edit distancé?, satisfies the recurrence:

62(0,6) =0
Sp(F1,0) = 67 (F1 —v1,0) +v(v1 — A)
57(0, F2) = 030, Fy — va) +v(\ — v2)

5]21(F1 — Ul,Fg) —i—’y(vl —)\)
5]21(F1,F2 — 2}2) —{—’}/()\ — 2}2)
5 (Fi(v1), Fa(va)) + 05 (Filv1], Fa[va]) + y(v1 — wa)

) min 6 (Fi[wi], Falva]) + 63 (Fi (w1) @ Fi(v1), Fa(v2))
(5h(F1,F2) = min { wi€V(Fi[u])
+ o (Fr,w1,v1) +y(wr — v2) +y(v1 — v2)

min 03 (Fy[v1], Fa[ws]) + 04 (Fi(v1), Fa(ws) @ Fa(v2))
wa €V (Fi[va])

+ o (Fy, wa,v2) + Y(v1 — wa) + y(v1 — v2)

Proof. The first three equations are trivially true. To show the éagtation consider a minimum cost
two-way horizontal mappinMﬁ betweenF; andF;. Let Ny and N, be the set of nodes iR} and F5
respectively not touched by a line M,f. There are three possibilities for andv,:

Case 1: vy is not touched by a line. Then € N; and hence,

5%(F1,F2) = 6}21(F1 — Ul,FQ) —{—’)/(’Ul —)\)
Case 2: vy is not touched by a line. Than € N, and hence,

5]%(F1, F2) = 6}21(F1, Fy — UQ) + ’)/()\ — Ug).

Case 3:v; andv, are both touched by lines. We show that this implies thatve) € M72. Let
a = right(map(v1)) andb = right(map(vy)) and assume that; # b andvy # a. If aisto
the left of v, then by the merge sibling conditian must be to the left of, which is impossible
since no nodes are to the left of andv,. If a is a proper descendant of then by the merge
descendant conditiom; must be a proper descendantpfvhich is impossible since; andvs
are roots. Hencdypy,v2) € M7.

Let (v1,v2) € M? denote the pair such that € v4 andvs € v. Since theM? is a two-way
mapping there are three subcases to consider:

(i) v1 ={v1} andvy = {v2}. Hence,
5 (F1, Fy) = 65 (Fy(v1), Fa(v2)) + 64 (Fi[v1], Fa[va]) 4+ ~(v1 — v2).

(i) vi1 = {wi,v1}, for somew; to the left ofvy, andvye = {vy}. Then all proper descendants
of wy, andv; must be mapped to proper descendants,péind all nodes to the right af
and to the left ofv; must be deleted. Hence,

5 (Fy, Fy) = 6; (Fi[wi], Fa[va]) + 65 (F1(wy) @ Fi(v1), Fa(va))
+ o (F1,wi,v1) +v(wr — v2) + y(v1 — v2).

(iii) vq1 ={v1} andve = {we,v9}, for somews to the left ofv,. As above,

5 (F1, Fy) = 6 (Fi[v1], Fa[wa]) + 63 (F1(v1), Fa(ws) ® Fa(va))
+ o (Fa,wa,v2) + vy(v1 — wa) + v(vy — vg).

Taking the minimum over all possible values:of andwsy and over all of the above cases the
lemma follows. O

The recurrence in Lemma 4 suggests a dynamic program. The &@Fl,Fz) depends on a
number of subproblems of smaller size. Hence, we can cond(fé, F») by computing the value
of each subproblem in order of increasing size. kwetv, € V(F1) andws, vy € V (F3), wherew; is
to the leftv; andws is to the leftv,. By Lemma 4 the subproblents’, S;) are of the following three
forms:

1. S; is a prefix of F; (v1) and.S; is a prefix of F5(v9), for any pair of nodes; € V(F;) and
V9 € V(FQ)

2. Sy is a prefix of Fy (wy) @ Fy(v1) and S, is a prefix of F»(ve), for any nodesuv,v; € V(F),
wherew is to the left ofvy, andv, € V(Fy).

3. Sy is a prefix of 1 (v1) and .Sy is a prefix of Fy(w2) @ Fy(v2), for any nodes); € V(F;) and
wa, v € V(F3), wherews is to the left ofv,.

We count the number of subproblems as follows. For the firsl kiere areD(|F}|) andO(|F3|)
choices forv; andwv, respectively and for each choice there &1gF;|) and O(|F»|) prefixes of
Fi(v1) and F»(v2). Hence, in total there ar@(|Fy|?|F»|?) subproblems of the first kind. Simi-
larly, for the second and third kind there avg|F} |3|F»|?) and O(| F1 || F»|3) subproblems respec-
tively. By Lemma 4 each subproblem depends on at mts$#; | + |F:|) subproblems and thus
the total time to computé? (Fy, F») is O((|F1 | F2|? + | F1? | Fa|3) (| Fr| + | o)) = O(n®), where
n = max(|Fy|, |Fy|).

Theorem 1 Let F; and F;, be ordered forests and let = max(|Fi|, |F»|). The two-way horizontal
merge edit distance (for legal edit scripts},(£, F»), can be computed in time and spa@én®).

It is straightforward to generalize Theorem 1 to hantleay horizontal merge edit distances.
In this case we need to compute all problems of the fof(vy,) e --- Fu(vy,), Fa(vz)) and
(F1(v1), Fa(vg,)e- - -oFQ(vgj)), wherevy, andv2j is to the left ofvy,, , andv2j+1 respectively] <i <
5,1 <j < tands,t < k. This gives a total oD (|} |*+1| F,|?) andO(| Fy|?| Fo|F*!) subproblems of
the second and third kind respectively. Each subproblerembisponO (| Fy [F—! 4 | F,|*—1) subprob-
lems and hence the total the time to compijtey, [) is O((|Fy [+ Fo |2+ | Fy |2 Fo|FHY) (| Fy |1+
|Fo[F=1Y)) = O(n?#+2), for anyk > 1.

Theorem 2 Let F; and F» be ordered forests and let = max(|F1|, |F2|). Thek-way horizontal
merge edit distance (for legal edit scriptéﬁ,(Fl, F»), can be computed in time and spa@én?:+2).

5 Vertical merges and splits

In this section we show how to compute the vertical edit dista LetF; and F;, be forests. For nodes
wy,v1 € V(F1), such thatwy; € F(vy) andve € V(Fy), definep(Fy,wy,v1,v2) as the cost of a
minimum cost vertical edit distance mapping between théocatmpath fromuv, to w, withoutwv; and
w1, and the single node,. Hence, by definition of the vertical edit distance, eachengdon the path
is either not touched by a line @5 is mapped ta,. Equivalently, defing(Fy, wa, vo, v1).

Lemmab5 Let F; and F; be forests with rightmost roots, and v, respectively. The vertical merge
edit distancey,,, satisfies the recurrence:
5,(0,0) =0
0y (F1,0) = 0p(F1 —v1,0) +v(v1 —)
8y (0, Fa) = 0(0, F2 — v2) + (A — v2)

0y (Fy — vy, F) +v(v1 — A)
5U(F1,F2 — ?)2) —l—"}/()\ — ?)2)

oy (F1(v1), Fo(v2)) + 0y (F1[v1], F2[v2]) +v(v1 — v2)

' 5,(Fi[v1], F
w1e\£l(1;7111(1)1)){ (Fi[v1], Falva])

0v(F1, F) = min +6,(Ta(21,) @ -+~ 0 Ty (21,), Fa(v2))
+ (w1 — va2) +y(v1 — v2) + p(F1, w1, v1,v2)}
i 5,(Filv1], .
Meg(lg;(m)){ (Fi[v1], Falva])
+ 6y (F1(v1), Ta(22,) @ - - - @ To(22,))
+ 7y(v1 — w2) + y(v1 — va) + p(Fa, wa,va,v1)}

wherez;,, ..., z1, andzy,, ..., 29, is the set of children (ordered from left to right) of the pa#tween
v1 andw; andwvy andwy respectively.

Proof. The first three equations are trivially true. To show the ¢agtation consider a minimum cost
vertical mapping\/, betweent andF;. Let Ny and N, be the set of nhodes iR, andF, respectively
not touched by a line id4,. There are three possibilities for andw,:

Case 1: vy is not touched by a line. Then € N; and hence,

Oy (F1, F3) = 6, (F1 — v1, F2) +v(v1 — A).
Case 2: vy is not touched by a line. Than € N, and hence,

Op(F1, Fy) = 6, (F1, Fo — va) + v(A — v2).

Case 3: v; andv, are both touched by lines. We show that this implies thatv,) € M,. Let
a = top(map(vy)) andb = top(map(ve)) and assume that # b andv, # a. If ais to the left
of v thenv; must be to the left of by the vertical sibling condition. If is a proper descendant
of path(vg) thenv; must be a proper descendanbdiy the vertical descendant condition. Both
cases are impossible sinceanduvs are the rightmost roots and hengg, v3) € M,.

Let (v1,v2) € M, denote the pair such that € vy andvs € va. There are three subcases to
consider:

10

(i) v1 ={v1} andvs = {v2}. As above,
v (F1, Fa) = 6y (Fi(v1), Fa(v2)) + 0y (F1[v1], F2[va]) +v(v1 — v2).

(i) |v1| > 1, w; = bottom(vy) andve = {v2}. Then all proper descendants@fth(vy)
are mapped to proper descendants,cdnd hence,

6u(F1, Fo) = 6y (Fi[v1], Falva]) + 0y(T1(21,) @ - - - @ T1(21,), Fa(v2))
+ y(w1 — v2) +y(v1 — v2) + p(Fi,wr,v1,v2).

(i) vi ={w1}, |v2| > 1 andwy = bottom(vz). As above,

0y (F1, Fa) = 6y (Fi[v1], Falva]) + 0 (F1(v1), Ta(22,) @ - - - @ Ta(22,))
+ v(v1 — wa) + y(v1 — v2) + p(Fa, wa, va, v1).

Taking the minimum over all possible values:of andwsy and over all of the above cases the
lemma follows. O

Lemma 6 Let F; and F;, be ordered trees and let, , ..., z;, andz,,,..., 22, be ordered sequences
of nodes from left to right iF} and F;, respectively. Then,

0p(Th(21,) @ - @T1(21,), F2) =
min {5v<T1<Zh> o o Ti(er,) F) 4 0ulTi(o1,),0)
ming,ev(p,) 6o (T1(z1,) @ -+ 0 Ta(21,_,), Faws]) + 0u(T1(21,), Fo{w2})
Sy (F1, Ty (22,) @ 0T (2,)) =
min {‘%(Fh%(%) o Ty, ,)) +6,(0,Ta(2,)
ming, ev(ry) o (Fi[wi], Ta(2,) @ -+ @ To(22,) + S (Fi{w1}, Ta(22,))

Proof. We give the proof for the first equation. Consider a minimumntigal edit distance mapping
M, betweerl;(z1,) e---eTi(z1,) andFy. If no node inT} (z,) is touched by a line id,,,

6u(T1(z1,) @ --- @ T (21,), F2) = 6p(T1(21,) @ -~ @ T (21,), F2) + 6(T1(21,),0).

Conversely. lepath(wg) be the leftmost path id% that is mapped to nodes i ,. By the vertical
sibling condition all nodes i [top(w2)] must map to nodes i (z1,) ® --- @ T1(21,_,), while all
nodes inF,{top(wz)} must map to nodes iffi; .. Hence,

0u(T1(z1,) @ -~ @ Ti(21,), F2) = 6u(T1(21,) @ - - - @ T (21,), Fa[wa]) + 0u(T1 (21,), Fo{wa}).
Settingws = top(wz) and taking the minimum over all possible valuesugfthe equation follows.

The second equation can be shown symmmetrically and headerttima follows. O

The recurrence in Lemma 5 and 6 suggests a dynamic programvalted,(Fy, F,) depends
on a number of subproblems of smaller size. Hence, we canuemp(F;, F>) by computing the
value of each subproblem in order of increasing size. Fromrha 5 it follows that the subproblems
(51, S2) are of the following three forms:

1. S; is a prefix of Fy (v1) and.S; is a prefix of F5(v9), for any pair of nodes; € V(F;) and
Vo € V(FQ)

11

2. 51 =Ti(z1)e---0T5(21,), Wwherezy,, ..., 21, are the children of a vertical path asd is a
deleted subforest afs.

3. 51 is a deleted subforest df, and Sy is T5(za,) @ --- @ Th(29,), Wherez,, , ..., 2o, are the
children of a vertical path.

We count the number of subproblems as follows. For the firsd kiote thatS; and Ss in par-
ticular are a deleted subforests Bf and F; respectively. Inspecting Lemma 6 each subproblem of
the second and third kind reduce to subproblems, whgres a subtree off; and S, is a deleted
subforest off;, or S is a deleted subforest df; and S, is a subtree. Hence, any subproblem is of
the form (S, S2), whereS; andS; are deleted subforests 6f and F, respectively. In total there are
O(|F1|*| F»|?) subproblems. The value 6f(F}, F») depends o (| F} | + |F|) subproblems which
in turn depend o (| F || Fz| + |F»||F1|) subproblems. Hence, the total time to computeF, F5)
is at mostO((|Fi|?|B2*) (|F1| + [F2) (| Py || Ba| + [Fal[Fa])) = O(n7), wheren = max(|Fy, |Fy)).

Theorem 3 Let F} and F, be forests and let = maxz(|F1|,|F2|). The vertical edit distance (for
legal edit scripts) g, (F, I), can be computed in time and spa@én”).

References

[ALM T92] A. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedyod?wverification and
hardness of approximation problems.Rroceedings of the 33rd IEEE Symposium on
the Foundations of Computer Science (FOG8ges 14-23, 1992.

[Bil03] Philip Bille. Tree edit distance, alignment distanand inclusion. Technical Report
TR-2003-23, IT University of Copenhagen, 2003.

[CGMIT] S. Chawathe and H. Garcia-Molina. Meaningful creadgtection in structured data. In
Proceedings of the ACM SIGMOD International Conference amad@iement of Data
pages 26-37, Tuscon, Arizona, 1997.

[Che01] Weimin Chen. New algorithm for ordered tree-teto®rrection problemJournal of
Algorithms 40:135-158, 2001.

[CLRSO01] Thomas H. Cormen, Charles E. Leiserson, Ronald\ted® and Clifford Steinintro-
duction to Algorithms, second editioMIT Press, 2001.

[CRGMWO96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molimad & Widom. Change detection in
hierarchically structured information. Iroceedings of the ACM SIGMOD Interna-
tional Conference on Management of Dapmges 493-504, Montréal, Québec, June
1996.

[HO82] Christoph M. Hoffmann and Michael J. O’'Donnell. Ratt matching in treeslournal
of the Association for Computing Machinery (JAGK9(1):68-95, 1982.

[Kle98] P.N. Klein. Computing the edit-distance betweemoated ordered trees. Proceed-
ings of the 6th annual European Symposium on Algorithms YES#8, pages 91-102.
Springer-Verlag, 1998.

[KM95] Pekka Kilpelainen and Heikki Mannila. Ordered andoudered tree inclusionSIAM
Journal of Computing24:340-356, 1995.

12

[KTSKO00]

[LSTO1]

[RR92]

[Sel77]

[Tai79]

[WF74]

[Zhag5]

[Zha96]

[2J94]

[2S89]

[2SS92]

[ZSW94]

Philip Klein, Srikanta Tirthapura, Daniel Shanvand Ben Kimia. A tree-edit-distance
algorithm for comparing simple, closed shapes. Phoceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms (SOpapes 696—704, 2000.

Chin Lung Lu, Zheng-Yao Su, and Chuan Yi Tang. A newaswge of edit distance
between labeled trees. Rroceedings of the 7th Annual International Conference on
Computing and Combinatorics (COCOQNplume 2108 of_ecture Notes in Com-
puter Science (LNCS$¥pringer, 2001.

R. Ramesh and |.V. Ramakrishnan. Nonlinear patteatthing in treesJournal of the
Association for Computing Machinery (JACMBP(2):295-316, 1992.

Stanley M. Selkow. The tree-to-tree editing prablénformation Processing Letters
6(6):184-186, 1977.

Kuo-Chung Tai. The tree-to-tree correction probleJournal of the Association for
Computing Machinery (JACMR6:422—-433, 1979.

Robert A. Wagner and Michael J. Fischer. The strim@iting correction problem.
Journal of the ACM (JACM)21:168-173, 1974.

Kaizhong Zhang. Algorithms for the constrainedtiadi problem between ordered
labeled trees and related problerfaittern Recognition28:463-474, 1995.

Kaizhong Zhang. A constrained edit distance betwe®rdered labeled treeélgo-
rithmica, 15(3):205-22, 1996.

Kaizhong Zhang and Tao Jiang. Some MAX SNP-hard tesancerning unordered
labeled treeslnformation Processing Letterd9:249-254, 1994.

Kaizhong Zhang and Dennis Shasha. Simple fast algosi for the editing distance
between trees and related problei®BAM Journal of Computingl8:1245-1262, 1989.

Kaizhong Zhang, Rick Statman, and Dennis Shashah®aditing distance between
unordered labeled treemformation Processing Letterd2:133-139, 1992.

Kaizhong Zhang, Dennis Shasha, and Jason T. L. Wapgroximate tree matching in
the presence of variable length don’t cardsurnal of Algorithms16(1):33-66, 1994.

13

