
Ordered Tree Edit Distance with Merge and Split Operations

Philip Bille

IT University Technical Report Series TR-2003-35

ISSN 1600–6100 September 2003

Copyright c© 2003, Philip Bille

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-048-4

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www.it-c.dk

Ordered Tree Edit Distance with Merge and Split Operations

Philip Bille∗

September 29, 2003

Abstract

Comparing trees is a fundamental problem in computer science. In particular, the ordered tree
edit distance problem, defined as the problem of comparing ordered and labeled trees based on
the cost and number of edit operations needed to transform a treeT1 into another treeT2, arise in
many applications. For the simple edit operations of inserting, deleting and relabeling a node the
problem is a well-studied problem and algorithms witho(n4) time complexity exists. In this paper
we extend the set of operations with merge and split operations. We argue that this new problem
naturally generalize the old problem and we provide polynomial time algorithms for solving it.

1 Introduction

Comparing trees is a fundamental problem in computer science in various areas such as computational
biology, structured text databases, image analysis, automatic theorem proving and compiler optimiza-
tion [Tai79, ZS89, KM95, KTSK00, HO82, RR92, ZSW94]. In particular, thetree edit distance prob-
lem— the problem of comparing trees based on the cost and number of simple local operations needed
to transform a treeT1 into another treeT2 — has be studied extensively [Sel77, Tai79, ZS89, ZSS92,
ZJ94, Zha95, Zha96, Kle98, KTSK00, LST01, Che01].

Let T be a rooted tree. We callT a labeled treeif each node is a assigned a symbol from a
fixed finite alphabetΣ. We call T an ordered treeif a left-to-right order among siblings inT is
given. In this paper we consider edit distance problems based on simple primitive operations applied
to rooted, ordered and labeled trees. The operations are defined below. We assume that all of the
operations preserve the left-to-right order, that is unless otherwise stated, ifv is to the left ofw before
an operation thenv will also be to the left ofw after the operation, for any pair of nodesv andw in T .

relabel Change the label of a nodev in T .

delete Delete a non-root nodev in T , making the children ofv become the children of the parent of
v.

insert The complement of delete. Insert a nodev as a child of a nodev′ in T makingv the parent of
a consecutive subsequence of the children ofv′.

horizontal-merge Merge a consecutive subsequence of siblingsv1, . . . , vs into a single nodev. The
children ofv1, . . . , vs become the children ofv.

horizontal-split The complement of horizontal-merge. Split a nodev into a consecutive sequence of
siblingsv1, . . . , vs. The children ofv become children ofv1, . . . , vs.

∗The IT University of Copenhagen, Glentevej 67, DK-2400 Copenhagen NV, Denmark. Email:beetle@it-c.dk.
This work is part of the DSSCV project supported by the IST Programme of the European Union (IST-2001-35443).

1

f f f f

d e d e
c c

a

c

f a b f a b f

g

b f

b c

(a) (b) (c) (d)

Figure 1: Transforming (a) into (d) via editing operations.(a) A tree. (b) The tree after deleting the
node labeledc. (c) The tree after a horizontal-merge of the nodes labeledd ande into a node labeledc
(d) The tree after a vertical-split of the node labeleda into the nodes labeledc andg. Conversely, we
can transform (d) to (a) via a vertical-merge, a horizontal-split and an insert operation.

vertical-merge Merge a sequence of nodesv1, . . . , vs, whereparent(vi+1) = vi, 1 ≤ i < s, into a
single nodev. The children ofv1, . . . , vs not in the sequence become the children ofv.

vertical-split The complement of vertical-merge. Split a nodev into a sequence of nodesv1, . . . , vs,
whereparent(vi+1) = vi, 1 ≤ i < s. The children ofv become the children of the sequence
v1, . . . , vs.

For unordered trees the operations can be defined similarly.In this case, the insert, delete, merge and
split operations works onsubsetsof nodes instead of subsequences. An example of the above edit
operations applied to ordered trees is shown in Figure 1.

We can define a tree edit distance problem for any subsetO of the above operations. LetT1 andT2

be rooted, ordered and labeled trees. Assume that we are given a cost defined on each edit operation
in O. An edit scriptS betweenT1 andT2 is a sequence of edit operations fromO turningT1 into T2.
The cost ofS is the sum of the costs of the operations inS. An optimal edit scriptbetweenT1 andT2

is an edit script betweenT1 andT2 of minimum cost and this cost is thetree edit distance with respect
to O. Thetree edit distance problem with respect toO is to compute the edit distance with respect to
O and the corresponding edit script.

Let |T1|, D1 andL1 denote the number of nodes, the maximum depth and the number of leaves in
T1 respectively and similarly define|T2|, D2 andL2 for T2. The edit distance problem with respect
to the relabel, delete and insert operations, which we call the standard edit distance problem, is a
well studied problem. The ordered version was introduced byTai [Tai79] as a generalization of the
well-known string edit distance problem[WF74]. The currently fastest algorithms are due Zhang
and Shasha [ZS89] usingO(|T1||T2|min(L1,D1)min(L2,D2)) time andO(|T1||T2|) space, [Kle98]
using O(|T1|

2|T2| log |T2|) andO(|T1||T2|) space and Chen [Che01] usingO(|T1||T2| + L2
1|T2| +

L2.5
1 L2) time andO((|T1| + L2

1)min(L2,D2) + |T2|) space.
The unordered version of the problem has been shown to be NP-complete [ZSS92] and even MAX-

SNP hard [ZJ94]. Hence, unless P=NP there is no PTAS for the problem [ALM+92].
All of the above algorithms compute the standard edit distance problem use the classic technique

of dynamic programming(see,e.g., [CLRS01, Chapter 15]). Furthermore, the algorithms are based on
a reduction toedit distance mappings. An edit distance mapping is a compact representation of an edit
script which may be viewed as a set of lines from nodes inT1 to nodes inT2. Each line corresponds
to an edit operation. In this paper we introduce several new types of edit distance mappings which
generalize the previous definition. This leads to edit distance problems extended with the above merge

2

and split operations. Specifically, we consider thehorizontal edit distance problemand thevertical edit
distance problem, defined as the edit distance problem with respect to relabel, delete, insert, horizontal-
merge and horizontal-split operations and the edit distance problem with respect to the relabel, delete,
insert, vertical-merge and vertical-split operation respectively. We call these problems themerge edit
distance problems. Define a merge edit distance problem to bek-way, for some integerk > 1, if no
node inT2 is the result of merging more thank nodes inT1 and no node inT1 is split into more than
k nodes inT2.

Our main result in this paper is that under some restrictionsthe k-way horizontal edit distance
problem, for any constantk, and the vertical edit distance problem can be solved in polynomial time.
Our algorithms all use dynamic programming to compute an optimal mapping. We only show how
to compute the cost of the edit distances, however, the corresponding edit scripts can easily be found
within the same time and space bounds given here.

1.1 Related work

Several other extension of the standard edit distance problem have been considered. In [KTSK00]
Klein et al. developed an edit distance specifically for computing distances between ordered trees
representing closed shapes in the plane. This edit distancealso includes a type of merge operation.
However, this operation is simpler than ours and involves deleting a subtree rooted at one of the nodes
participating in the merge. Chawatheet al. [CRGMW96] considered an edit distance for ordered trees
with a subtree move operation which moves and entire subtreefrom one node to another. Building on
this work an algorithm for unordered trees is given in [CGM97]. This algorithm further extends the set
of operations with a subtree copy operation which copies an entire subtree from one node to another
node. Both of the algorithms in [CRGMW96, CGM97] areheuristic, that is, they do not guarantee
that the solution they produce is the optimal. Interestingly, [CGM97] proposes merge operations as
the ones in this paper, but does not consider how to implementthese.

Instead of extending the standard edit distance problem with new operations, some restrictions
have also been considered. In [Sel77, Zha96, Zha95, LST01] only edit scripts with various structural
properties are considered. For a survey on tree edit distances and related problems see [Bil03].

1.2 Outline

In Section 2 we present the fundamental notation and definitions used throughout the paper. Section
3 formally defines the edit operations and the edit distance problems. Furthermore, the concept of
mappings is presented. In Section 4 and 5 we present the algorithms for the horizontal and vertical
edit distance problems respectively.

2 Preliminaries and notation

In this section we define notations and definitions we will usethroughout the paper. For a graphG we
denote the set of nodes and edges byV (G) andE(G) respectively. A forest is a set of trees. LetF

be a forest. Thesizeof F , denoted by|F |, is |V (F)|. A node with no children is a leaf and otherwise
an internal node. We denote the parent of nodev by parent(v). Two nodes are siblings if they have
the same parent. Defineθ to be the empty forest. For forests we allow the delete operation to be
performed on roots. If a rootv ∈ V (F) with childrenv1, . . . , vs is deleted thenv1, . . . , vs become
roots inF in the place ofv. Let T (v) denote the subtree ofF rooted at a nodev ∈ V (F) and letF (v)
denote the forest obtained by deletingv from T (v). If w ∈ V (T (v)) thenv is an ancestor ofw, and
if w ∈ V (F (v)) thenv is a proper ancestor ofw. If v is a (proper) ancestor ofw thenw is a (proper)

3

descendant ofv. A vertical pathis a simple path from a nodev to a nodew ∈ T (v). Letp be a vertical
path from a nodev to a nodew ∈ T (v) and defineV (p) to be the set of nodes on this path including
v andw. If u ∈ V (T (v)) thenu is a descendant ofp and if u ∈ V (T (v))\V (p) thenu is a proper
descendant ofp. A vertical pathp′ with topmost nodeu is a (proper) descendant ofp if u is a (proper)
descendant ofp.

A treeT is a labeled treeif each node is a assigned a symbol from a fixed finite alphabetΣ. We
say thatT is ordered if a left-to-right order among the siblings is given. A forest F is ordered if a
left-to-right order among the trees is given and each tree isordered. Throughout the text we assume
unless otherwise stated that any tree is rooted, ordered andlabeled and any forest is an ordered forest
consisting of rooted, ordered and labeled trees.

LetF be a forest and define the(i, j)-deleted subforestof F , 0 ≤ i+j ≤ |F |, as the forest obtained
from F by first deleting the rightmost root repeatedlyj times and then, similarly, deleting the leftmost
root i times. We call the(0, j)-deleted and(j, 0)-deleted subforests, for0 ≤ j ≤ |F |, theprefixesand

the suffixesof F respectively. The number of(i, j)-deleted subforests ofF is
∑|F |

k=0 k = O(|F |2),
since for eachi there are|F | − i choices forj. Let v be any node inV (F). We denote byF − v

the forest obtained by deletingv from F . DefineF [v] as the maximal prefix ofF not containing
v or any descendant ofv. Similarly, defineF{v} as the minimal suffix ofF containingv. Thus,
V (F [v]) ∩ V (F{v}) = ∅ and, ifv is a root,V (F [v])\V (F{v}) = V (F). The nodes to theleft of v

are the nodesw ∈ V (F [v]) and the nodes to theright v are the nodesu ∈ V (F{v}) ∩ T (v). For any
two forestsF1 andF2 defined by the sequence of treesT11

, . . . , T1s
andT21

, . . . , T2t
respectively, we

defineF1 • F2 as the sequence of treesF = T11
, . . . , T1s

, T21
, . . . , T2t

.

3 Edit operations and edit mappings

In this section we formally define the edit operations and thevarious edit distance problems. Through-
out the section letF1 andF2 be ordered, labeled forests with labels from a finite alphabet Σ. We use
the symbolλ to denote a specialnull node not in any forest and also a specialnull symbolλ 6∈ Σ.
DefineV (F)λ = V (F) ∪ λ for any forestF andΣλ = Σ ∪ λ. The label of a nodev ∈ V (F) is
denoted bylabel(v) and the label of the nodeλ is the symbolλ.

Following [Tai79] we represent each edit operation by a set of pairs (v1, v2) ∈ (V (F1)λ ×
V (F2)λ)\{(λ, λ)}, often written(v1 → v2), wherev1 is a node inF1 or λ andv2 is a node inF2

or λ. A single pair(v1 → v2) is a relabeling ifv1 6= λ andv2 6= λ, a deletion ifv2 = λ and an
insertion ifv1 = λ. A set of pairs(v11

→ v2), . . . , (v1s
→ v2) is a horizontal-merge ifv11

, . . . , v1s

are siblings and consecutive in the left-to-right order ofF1 and a vertical-merge ifparent(vi+1) = vi,
1 ≤ i < s. Similarly, we represent the split operations by a set of pairs (v1 → v21

), . . . , (v1 → v2t
).

Furthermore, for subsetsv1 ⊆ V (F1)λ andv2 ⊆ V (F2)λ, we define a shorthand notation for a set of
pairs:

(v1 → v2) = {(v1 → v2) | (v1, v2) ∈ v1 × v2}.

In general, we will use boldface letters to denote subsets ofnodes. Note that by definition any edit
operation can be written as(v1 → v2) for appropiate subsetsv1 ⊆ V (F1)λ andv2 ⊆ V (F2)λ. We
say that any nodev in F1 or F2 that occurs in a pair that is part of a edit operation,participatesin that
operation. Anedit scriptbetweenF1 andF2 is a sequence of edit operations turningF1 into F2. A
legal edit scriptis an edit scriptS = s1, . . . , si such that for any operationsj , 1 ≤ j ≤ i, we have
that:

• If sj is a horizontal- or vertical-merge operation resulting in anodev, thenv does not participate
in any of the operationssj+1, . . . , si.

4

• If sj is a horizontal- or vertical-split operation splitting a nodev, thenv does not participate in
any of the operationss1, . . . , sj−1.

In the rest of the paper we will only consider legal edit scripts. Hence, unless otherwise stated, we will
implictly refer to a legal edit script when we write edit script.

We assume that we are given a cost functionγ : (Σλ × Σλ)\{(λ, λ)} → R, on pairs of labels.
This cost should be a distance metric, that is, for any labelsl1,l2,l3 ∈ Σλ the following conditions are
satisfied:

1. γ(l1, l2) ≥ 0, γ(l1, l1) = 0.

2. γ(l1, l2) = γ(l2, l1).

3. γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3).

We defineγ(v1 → v2) = γ(label(v1), label(v2)), wherev1 ∈ V (F1)λ andv2 ∈ V (F2)λ. The cost of
an edit operationγ(v1 → v2) is given by

∑

(v1→v2)∈(v1→v2) γ(v1 → v2). Note that for a legal edit
script we haveγ(v1 → v3) ≤ γ(v1 → v2) + γ(v2 → v3), which does not holds in general. This is
the primary reason for only considering legal edit scripts.

The cost of a sequenceS = s1, . . . , sk of operations is given byγ(S) =
∑k

i=1 γ(si). The edit
distance with respect toO betweenF1 andF2, denotedδO(F1, F2), is formally defined as:

δO(F1, F2) = min{γ(S) | S is a sequence of edit operations fromO transformingF1 into F2}.

If no sequence of operations fromO transformsF1 to F2 we defineδO(F1, F2) = ∞.
A mappingbetweenF1 andF2 is a representation of an edit script betweenF1 andF2, which is

used in many of the algorithms for the tree edit distance problem. We define amappingbetweenF1

andF2 to be a a triple(M,F1, F2), such thatM ⊆ V (F1) × V (F2). When there is no confusion we
will simply useM to denote the mapping. For subsets of nodesv1 ⊆ V (F1) andv2 ⊆ V (F1) we
define the sets:

map(v1) = {v2 ∈ V (F2) | ∃(v1, v2) ∈ M such thatv1 ∈ v1}

map(v2) = {v1 ∈ V (F1) | ∃(v1, v2) ∈ M such thatv2 ∈ v2}

We extend the notation by settingmap(v1) = map({v1}) andmap(v2) = map({v2}) for any nodes
v1 ∈ V (F1) and v2 ∈ V (F2). We define three types of mappings: We say thatM is a one-to-
one mapping if, for any pair(v1, v2) ∈ M , map(v1) = {v2} and map(v2) = {v1}, a many-to-
one mapping if, for any pair(v1, v2) ∈ M , map(map(v1)) = {v1} or map(map(v2)) = {v2}
and otherwiseM is a many-to-manymapping. IfM is a many-to-one mapping we will often write
(v1,v2) ∈ M if v1 = {v1} andv2 = map(v1) or v2 = {v2} andv1 = map(v2).

We say that a nodev in F1 or F2 is touched by a linein M if v occurs in some pair inM . Let N1

andN2 be the set of nodes inF1 andF2 respectively not touched by any line inM . The cost ofM is
given by:

γ(M) =
∑

(v1,v2)∈M

γ(v1 → v2) +
∑

v1∈N1

γ(v1 → λ) +
∑

v2∈N2

γ(λ → v2)

Mappings can be composed. LetF1, F2 andF3 be forests and letM1 andM2 be a mapping fromF1

to F2 and fromF2 to F3 respectively. Define

M1 ◦ M2 = {(v1,v3) | ∃v2 ∈ V (F2) such that(v1,v2) ∈ M1 and(v2,v3) ∈ M2}

Note that a ifM1 andM2 are one-to-one mappingsM1 ◦ M2 is a one-to-one mapping. In general, the
composition of two many-to-one mappings is a many-to-many mapping. Ifγ(v1 → v3) ≤ γ(v1 →

5

v2) + γ(v2 → v3), for any pairs(v1,v2) ∈ M1 and(v2,v3) ∈ M2, we say thatM1 andM2 are
compatible.

Lemma 1 For any three forestsF1, F2 andF3 and compatible many-to-one mappings(M1, F1, F2)
and(M2, F2, F3),

γ(M1 ◦ M2) ≤ γ(M1) + γ(M2)

Proof. Let N1 and N3 be the set of nodes inF1 and F3 respectively not touched by a line in
(M1 ◦ M2, F1, F3). For a nodev1 ∈ V (F1) there are two cases to consider. Ifv1 ∈ N1 then either
v1 is not touched by a line inM1 or (v1, v2) ∈ M1 andv2 is not touched by a line inM2, for some
v2 ∈ V (F2). By the triangle inequalityγ(v1 → λ) ≤ γ(v1 → v2)+γ(v2 → λ). If (v1, v3) ∈ M1◦M2

for some nodev3 ∈ V (F3), then let(v1 → v3) ∈ M1◦M2, be the pair such thatv1 ∈ v1 andv3 ∈ v3.
SinceM1 andM2 are compatible we have thatγ(v1 → v3) ≤ γ(v1 → v2) + γ(v2 → v3), for any
pairs(v1,v2) ∈ M1 and(v2,v3) ∈ M2. Equivalently, the result holds for any nodev3 ∈ V (F3) and
hence the lemma follows. �

For each edit distance problem we study in this paper there isa corresponding minimum cost
mapping with the same cost as the edit distance. For completeness and comparison we first present
the mapping used for the standard edit distance problem and then define mappings for the merge edit
distance problems.

A standard edit distance mapping, Me, betweenF1 andF2 is a one-to-one mapping such that for
all pairs(v1, v2), (w1, w2) ∈ Me:

• v1 is a proper descendant ofv2 iff w1 is a proper descendant ofw2. (descendant condition)

• v1 is to the left ofv2 iff w1 is to the left ofw2. (sibling condition)

By the definition ofMe and sinceγ is a metric, it is not hard to show that a minimum cost standard
edit distance mapping is equivalent to the standard edit distance:

Lemma 2 ([Tai79]) For any forestF1 andF2, the standard edit distance,δe(F1, F2), satisfies:

δe(T1, T2) = min{γ(Me) | (Me, F1, F2) is a standard edit distance mapping}.

Let (M,F1, F2) be a many-to-one mapping. We defineM to benormal, if for all pairs (v1,v2),
(w1,w2) ∈ M , either all nodes inv1 are descendants (ancestors) of nodes inw1 or all nodes inv1

are to the left (right)w1 and the equivalent conditions also hold forv2 and(w2). We say thatM is
horizontal, if for any pair(v1,v2) ∈ M , no pair of nodes inv1 or v2 are a descendant of each other.
Similarly, we say thatM is vertical if no pair of nodes inv1 orv2 are to the left and right of each other.
Note that ifM is a one-to-one mapping it is both vertical and horizontal. For a horizontal mapping the
leftmost and rightmost node inv, wherev is eitherv1 or v2, is well-defined and we denote these by
right(v) andleft(v) respectively. Similarly, for a vertical mapping the topmost and bottommost node
is denoted bytop(v) andbottom(v). Furthermore, we definepath(v) for a vertical mapping to be the
path fromtop(v) to bottom(v). If v = {v} thenright(v) = left(v) = top(v) = bottom(v) = v.
If |v1| ≤ k and |v2| ≤ k, for all pairs(v1,v2) ∈ M and some positive integerk, the mapping is
k-way. Finally, we can properly define the many-to-one mappings that correspond to the merge edit
distance problems.

A merge edit distance mapping, Mm, betweenF1 andF2 is a normal many-to-one mapping such
that for all pairs(v1,v2), (w1,w2) ∈ Mm,

6

f f

d e
c

a

c

f

g

b f

b c

(a) (d)

Figure 2: The mapping corresponding to the edit script in Figure 1. The mapping is a merge edit
distance mapping but it is neither horizontal nor vertical.

• All nodes inv1 are proper descendants of nodes inw1 iff all nodes inv2 are proper descendants
of nodes inw2. (merge descendant condition)

• All nodes inv1 is to the left of allw1 iff all nodes inv2 is to the left of all nodes inw2. (merge
sibling condition)

Note that ifMm is one-to-one the definition is equivalent to the definition of standard edit mappings,
and hence, the definition generalize standard edit mappings. If Mm is horizontal or vertical thenMm

is a horizontal or vertical edit distance mapping respectively. The mapping corresponding to the edit
operations in Figure 1 is shown in Figure 2.

Lemma 3 For forestsF1 andF2 the horizontal and vertical edit distance,δh(F1, F2) andδv(F1, F2)
satisfies:

δh(F1, F2) = min{Mh | Mh is a horizontal edit distance mapping}

δv(F1, F2) = min{Mv | Mv is a vertical edit distance mapping}

Proof. We show the lemma for the horizontal edit distance. The vertical part follows by the same
argument. LetS = s1, . . . , si be an minimum cost horizontal edit distance script betweenF1 and
F2. We show that there exists a horizontal edit distance mapping Mh such thatγ(Mh) ≤ γ(S) by
induction oni. If i = 1 construct the mapping corresponding to the pairs ofs1 of the form(v1 → v2)
representing the edit operation. For any type of operations1 we clearly obtain a horizontal edit distance
mapping of the same cost ass1. Let S1 = s1, . . . , si−1 and assume that there exists a mappingM1

such thatγ(M1) ≤ γ(S1). LetM2 be the mapping corresponding to edit operationsi. Sinces1, . . . , si

is a legal edit script it follows thatM1 andM2 are compatible and by the definition of horizontal edit
distance mappingsM1 ◦M2 is also a horizontal edit distance mapping. Furthermore, byLemma 1 we
have that,

γ(M1 ◦ M2) ≤ γ(M1) + γ(M2) ≤ γ(S1) + γ(S2) = γ(S).

Conversely, for any horizontal edit distance mappingMh, we can construct a sequenceS of edit op-
eration indicated by the mapping. For each pair(v1,v2) ∈ Mh perform the relabel, merge or split
operation(v1 → v2), then delete all nodes not touched by a line inF1 and then insert all nodes not
touched by a line inF2. Hence,γ(S) = γ(Mh) and the lemma follows. �

From the above lemma we immediately have that a minimum costk-way horizontal (vertical)
edit distance mapping is equal to thek-way horizontal (vertical) edit distance. Note that without the
restriction to legal edit scripts, Lemma 3 would not hold andthe problem would not reduce to finding
a many-to-one mapping.

7

4 Horizontal merges and splits

In this section we show how to compute the horizontal edit distance using dynamic programming. We
describe in detail the algorithm for the two-way horizontaledit distance and subsequently describe
how to generalize this tok-way edit distances, for any integerk, k ≥ 1. The algorithm computes
the cost of a minimum cost horizontal edit distance mapping but it is straightforward to also compute
the mapping and the corresponding edit script without changing the asymptotic running time or space
usage of the algorithm. For a forestF and nodesw, v ∈ V (F), let σ(F,w, v) denote the cost of
deleting the set nodes that are to the right ofw and to the left ofv in F .

Lemma 4 Let F1 and F2 be forests with rightmost rootsv1 and v2 respectively. The two-way hori-
zontal merge edit distance,δ2

h, satisfies the recurrence:

δ2
h(θ, θ) = 0

δ2
h(F1, θ) = δ2

h(F1 − v1, θ) + γ(v1 → λ)

δ2
h(θ, F2) = δ2

h(θ, F2 − v2) + γ(λ → v2)

δ2
h(F1, F2) = min































































δ2
h(F1 − v1, F2) + γ(v1 → λ)

δ2
h(F1, F2 − v2) + γ(λ → v2)

δ2
h(F1(v1), F2(v2)) + δ2

h(F1[v1], F2[v2]) + γ(v1 → v2)

min
w1∈V (F1[v1])

δ2
h(F1[w1], F2[v2]) + δ2

h(F1(w1) • F1(v1), F2(v2))

+ σ(F1, w1, v1) + γ(w1 → v2) + γ(v1 → v2)

min
w2∈V (F1[v2])

δ2
h(F1[v1], F2[w2]) + δ2

h(F1(v1), F2(w2) • F2(v2))

+ σ(F2, w2, v2) + γ(v1 → w2) + γ(v1 → v2)

Proof. The first three equations are trivially true. To show the lastequation consider a minimum cost
two-way horizontal mappingM2

h betweenF1 andF2. Let N1 andN2 be the set of nodes inF1 andF2

respectively not touched by a line inM2
h . There are three possibilities forv1 andv2:

Case 1: v1 is not touched by a line. Thenv1 ∈ N1 and hence,

δ2
h(F1, F2) = δ2

h(F1 − v1, F2) + γ(v1 → λ).

Case 2: v2 is not touched by a line. Thenv2 ∈ N2 and hence,

δ2
h(F1, F2) = δ2

h(F1, F2 − v2) + γ(λ → v2).

Case 3: v1 andv2 are both touched by lines. We show that this implies that(v1, v2) ∈ M2
h . Let

a = right(map(v1)) andb = right(map(v2)) and assume thatv1 6= b andv2 6= a. If a is to
the left ofv2 then by the merge sibling conditionv1 must be to the left ofb, which is impossible
since no nodes are to the left ofv1 andv2. If a is a proper descendant ofv2 then by the merge
descendant conditionv1 must be a proper descendant ofb, which is impossible sincev1 andv2

are roots. Hence,(v1, v2) ∈ M2
h .

Let (v1,v2) ∈ M2
h denote the pair such thatv1 ∈ v1 andv2 ∈ v2. Since theM2

h is a two-way
mapping there are three subcases to consider:

8

(i) v1 = {v1} andv2 = {v2}. Hence,

δ2
h(F1, F2) = δ2

h(F1(v1), F2(v2)) + δ2
h(F1[v1], F2[v2]) + γ(v1 → v2).

(ii) v1 = {w1, v1}, for somew1 to the left ofv1, andv2 = {v2}. Then all proper descendants
of w1 andv1 must be mapped to proper descendants ofv2, and all nodes to the right ofw1

and to the left ofv1 must be deleted. Hence,

δ2
h(F1, F2) = δ2

h(F1[w1], F2[v2]) + δ2
h(F1(w1) • F1(v1), F2(v2))

+ σ(F1, w1, v1) + γ(w1 → v2) + γ(v1 → v2).

(iii) v1 = {v1} andv2 = {w2, v2}, for somew2 to the left ofv2. As above,

δ2
h(F1, F2) = δ2

h(F1[v1], F2[w2]) + δ2
h(F1(v1), F2(w2) • F2(v2))

+ σ(F2, w2, v2) + γ(v1 → w2) + γ(v1 → v2).

Taking the minimum over all possible values ofw1 andw2 and over all of the above cases the
lemma follows. �

The recurrence in Lemma 4 suggests a dynamic program. The value δ2
h(F1, F2) depends on a

number of subproblems of smaller size. Hence, we can computeδ2
h(F1, F2) by computing the value

of each subproblem in order of increasing size. Letw1, v1 ∈ V (F1) andw2, v2 ∈ V (F2), wherew1 is
to the leftv1 andw2 is to the leftv2. By Lemma 4 the subproblems(S1, S2) are of the following three
forms:

1. S1 is a prefix ofF1(v1) andS2 is a prefix ofF2(v2), for any pair of nodesv1 ∈ V (F1) and
v2 ∈ V (F2).

2. S1 is a prefix ofF1(w1) • F1(v1) andS2 is a prefix ofF2(v2), for any nodesw1, v1 ∈ V (F1),
wherew1 is to the left ofv1, andv2 ∈ V (F2).

3. S1 is a prefix ofF1(v1) andS2 is a prefix ofF2(w2) • F2(v2), for any nodesv1 ∈ V (F1) and
w2, v2 ∈ V (F2), wherew2 is to the left ofv2.

We count the number of subproblems as follows. For the first kind there areO(|F1|) andO(|F2|)
choices forv1 and v2 respectively and for each choice there areO(|F1|) and O(|F2|) prefixes of
F1(v1) and F2(v2). Hence, in total there areO(|F1|

2|F2|
2) subproblems of the first kind. Simi-

larly, for the second and third kind there areO(|F1|
3|F2|

2) andO(|F1|
2|F2|

3) subproblems respec-
tively. By Lemma 4 each subproblem depends on at mostO(|F1| + |F2|) subproblems and thus
the total time to computeδ2

h(F1, F2) is O((|F1|
3|F2|

2 + |F1|
2|F2|

3)(|F1| + |F2|)) = O(n6), where
n = max(|F1|, |F2|).

Theorem 1 Let F1 andF2 be ordered forests and letn = max(|F1|, |F2|). The two-way horizontal
merge edit distance (for legal edit scripts),δ2

h(F1, F2), can be computed in time and spaceO(n6).

It is straightforward to generalize Theorem 1 to handlek-way horizontal merge edit distances.
In this case we need to compute all problems of the form(F1(v11

) • · · · • F2(v1s
), F2(v2)) and

(F1(v1), F2(v2t
)•· · ·•F2(v2j

)), wherev1i
andv2j

is to the left ofv1i+1
andv2j+1

respectively,1 ≤ i <

s, 1 ≤ j < t ands, t ≤ k. This gives a total ofO(|F1|
k+1|F2|

2) andO(|F1|
2|F2|

k+1) subproblems of
the second and third kind respectively. Each subproblem depends onO(|F1|

k−1 + |F2|
k−1) subprob-

lems and hence the total the time to computeδk
h(F1, F2) isO((|F1|

k+1|F2|
2+|F1|

2|F2|
k+1)(|F1|

k−1+
|F2|

k−1)) = O(n2k+2), for anyk > 1.

9

Theorem 2 Let F1 and F2 be ordered forests and letn = max(|F1|, |F2|). Thek-way horizontal
merge edit distance (for legal edit scripts),δk

h(F1, F2), can be computed in time and spaceO(n2k+2).

5 Vertical merges and splits

In this section we show how to compute the vertical edit distance. LetF1 andF2 be forests. For nodes
w1, v1 ∈ V (F1), such thatw1 ∈ F (v1) andv2 ∈ V (F2), defineρ(F1, w1, v1, v2) as the cost of a
minimum cost vertical edit distance mapping between the vertical path fromv1 to w1, withoutv1 and
w1, and the single nodev2. Hence, by definition of the vertical edit distance, each nodeu1 on the path
is either not touched by a line oru1 is mapped tov2. Equivalently, defineρ(F2, w2, v2, v1).

Lemma 5 Let F1 andF2 be forests with rightmost rootsv1 and v2 respectively. The vertical merge
edit distance,δv, satisfies the recurrence:

δv(θ, θ) = 0

δv(F1, θ) = δh(F1 − v1, θ) + γ(v1 → λ)

δv(θ, F2) = δh(θ, F2 − v2) + γ(λ → v2)

δv(F1, F2) = min







































































δv(F1 − v1, F2) + γ(v1 → λ)

δv(F1, F2 − v2) + γ(λ → v2)

δv(F1(v1), F2(v2)) + δv(F1[v1], F2[v2]) + γ(v1 → v2)

min
w1∈V (F1(v1))

{δv(F1[v1], F2[v2])

+ δv(T1(z11
) • · · · • T1(z1s

), F2(v2))
+ γ(w1 → v2) + γ(v1 → v2) + ρ(F1, w1, v1, v2)}

min
w2∈V (F2(v2))

{δv(F1[v1], F2[v2])

+ δv(F1(v1), T2(z21
) • · · · • T2(z2t

))
+ γ(v1 → w2) + γ(v1 → v2) + ρ(F2, w2, v2, v1)}

wherez11
, . . . , z1s

andz21
, . . . , z2t

is the set of children (ordered from left to right) of the pathbetween
v1 andw1 andv2 andw2 respectively.

Proof. The first three equations are trivially true. To show the lastequation consider a minimum cost
vertical mappingMv betweenF1 andF2. LetN1 andN2 be the set of nodes inF1 andF2 respectively
not touched by a line inMv. There are three possibilities forv1 andv2:

Case 1: v1 is not touched by a line. Thenv1 ∈ N1 and hence,

δv(F1, F2) = δv(F1 − v1, F2) + γ(v1 → λ).

Case 2: v2 is not touched by a line. Thenv2 ∈ N2 and hence,

δv(F1, F2) = δv(F1, F2 − v2) + γ(λ → v2).

Case 3: v1 andv2 are both touched by lines. We show that this implies that(v1, v2) ∈ Mv. Let
a = top(map(v1)) andb = top(map(v2)) and assume thatv1 6= b andv2 6= a. If a is to the left
of v2 thenv1 must be to the left ofb by the vertical sibling condition. Ifa is a proper descendant
of path(v2) thenv1 must be a proper descendant ofb by the vertical descendant condition. Both
cases are impossible sincev1 andv2 are the rightmost roots and hence(v1, v2) ∈ Mv.

Let (v1,v2) ∈ Mv denote the pair such thatv1 ∈ v1 andv2 ∈ v2. There are three subcases to
consider:

10

(i) v1 = {v1} andv2 = {v2}. As above,

δv(F1, F2) = δv(F1(v1), F2(v2)) + δv(F1[v1], F2[v2]) + γ(v1 → v2).

(ii) |v1| > 1, w1 = bottom(v1) andv2 = {v2}. Then all proper descendants ofpath(v1)
are mapped to proper descendants ofv2 and hence,

δv(F1, F2) = δv(F1[v1], F2[v2]) + δv(T1(z11
) • · · · • T1(z1s

), F2(v2))

+ γ(w1 → v2) + γ(v1 → v2) + ρ(F1, w1, v1, v2).

(iii) v1 = {v1}, |v2| > 1 andw2 = bottom(v2). As above,

δv(F1, F2) = δv(F1[v1], F2[v2]) + δv(F1(v1), T2(z21
) • · · · • T2(z2t

))

+ γ(v1 → w2) + γ(v1 → v2) + ρ(F2, w2, v2, v1).

Taking the minimum over all possible values ofw1 andw2 and over all of the above cases the
lemma follows. �

Lemma 6 LetF1 andF2 be ordered trees and letz11
, . . . , z1s

andz21
, . . . , z2t

be ordered sequences
of nodes from left to right inF1 andF2 respectively. Then,

δv(T1(z11
) • · · · • T1(z1s

), F2) =

min

{

δv(T1(z11
) • · · · • T1(z1s−1

), F2) + δv(T1(z1s
), θ)

minw2∈V (F2) δv(T1(z11
) • · · · • T1(z1s−1

), F2[w2]) + δv(T1(z1s
), F2{w2})

δv(F1, T1(z21
) • · · · • T1(z2t

)) =

min

{

δv(F1, T2(z21
) • · · · • T2(z2t−1

)) + δv(θ, T1(z2t
))

minw1∈V (F1) δv(F1[w1], T2(z21
) • · · · • T2(z2t−1

)) + δv(F1{w1}, T2(z2t
))

Proof. We give the proof for the first equation. Consider a minimum vertical edit distance mapping
Mv betweenT1(z11

) • · · · • T1(z1s
) andF2. If no node inT1(z1s

) is touched by a line inMv,

δv(T1(z11
) • · · · • T1(z1s

), F2) = δv(T1(z11
) • · · · • T1(z1s−1

), F2) + δ(T1(z1s
), θ).

Conversely. letpath(w2) be the leftmost path inF2 that is mapped to nodes inT1s
. By the vertical

sibling condition all nodes inF2[top(w2)] must map to nodes inT1(z11
) • · · · • T1(z1s−1

), while all
nodes inF2{top(w2)} must map to nodes inT1s

. Hence,

δv(T1(z11
) • · · · • T1(z1s

), F2) = δv(T1(z11
) • · · · • T1(z1s−1

), F2[w2]) + δv(T1(z1s
), F2{w2}).

Settingw2 = top(w2) and taking the minimum over all possible values ofw2 the equation follows.
The second equation can be shown symmmetrically and hence the lemma follows. �

The recurrence in Lemma 5 and 6 suggests a dynamic program. The valueδv(F1, F2) depends
on a number of subproblems of smaller size. Hence, we can compute δv(F1, F2) by computing the
value of each subproblem in order of increasing size. From Lemma 5 it follows that the subproblems
(S1, S2) are of the following three forms:

1. S1 is a prefix ofF1(v1) andS2 is a prefix ofF2(v2), for any pair of nodesv1 ∈ V (F1) and
v2 ∈ V (F2).

11

2. S1 = T1(z1) • · · · • T2(z1s
), wherez11

, . . . , z1s
are the children of a vertical path andS2 is a

deleted subforest ofF2.

3. S1 is a deleted subforest ofF1 andS2 is T2(z21
) • · · · • T2(z2t

), wherez21
, . . . , z2t

are the
children of a vertical path.

We count the number of subproblems as follows. For the first kind note thatS1 andS2 in par-
ticular are a deleted subforests ofF1 andF2 respectively. Inspecting Lemma 6 each subproblem of
the second and third kind reduce to subproblems, whereS1 is a subtree ofF1 andS2 is a deleted
subforest ofF2 or S1 is a deleted subforest ofF1 andS2 is a subtree. Hence, any subproblem is of
the form(S1, S2), whereS1 andS2 are deleted subforests ofF1 andF2 respectively. In total there are
O(|F1|

2|F2|
2) subproblems. The value ofδv(F1, F2) depends onO(|F1| + |F2|) subproblems which

in turn depend onO(|F1||F2| + |F2||F1|) subproblems. Hence, the total time to computeδv(F1, F2)
is at mostO((|F1|

2|F2|
2)(|F1| + |F2|)(|F1||F2| + |F2||F1|)) = O(n7), wheren = max(|F1|, |F2|).

Theorem 3 Let F1 and F2 be forests and letn = max(|F1|, |F2|). The vertical edit distance (for
legal edit scripts),δv(F1, F2), can be computed in time and spaceO(n7).

References

[ALM +92] A. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
hardness of approximation problems. InProceedings of the 33rd IEEE Symposium on
the Foundations of Computer Science (FOCS), pages 14–23, 1992.

[Bil03] Philip Bille. Tree edit distance, alignment distance and inclusion. Technical Report
TR-2003-23, IT University of Copenhagen, 2003.

[CGM97] S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured data. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 26–37, Tuscon, Arizona, 1997.

[Che01] Weimin Chen. New algorithm for ordered tree-to-tree correction problem.Journal of
Algorithms, 40:135–158, 2001.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.Intro-
duction to Algorithms, second edition. MIT Press, 2001.

[CRGMW96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detection in
hierarchically structured information. InProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 493–504, Montréal, Québec, June
1996.

[HO82] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees.Journal
of the Association for Computing Machinery (JACM), 29(1):68–95, 1982.

[Kle98] P.N. Klein. Computing the edit-distance between unrooted ordered trees. InProceed-
ings of the 6th annual European Symposium on Algorithms (ESA) 1998., pages 91–102.
Springer-Verlag, 1998.

[KM95] Pekka Kilpeläinen and Heikki Mannila. Ordered and unordered tree inclusion.SIAM
Journal of Computing, 24:340–356, 1995.

12

[KTSK00] Philip Klein, Srikanta Tirthapura, Daniel Sharvit, and Ben Kimia. A tree-edit-distance
algorithm for comparing simple, closed shapes. InProceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 696–704, 2000.

[LST01] Chin Lung Lu, Zheng-Yao Su, and Chuan Yi Tang. A new measure of edit distance
between labeled trees. InProceedings of the 7th Annual International Conference on
Computing and Combinatorics (COCOON), volume 2108 ofLecture Notes in Com-
puter Science (LNCS). Springer, 2001.

[RR92] R. Ramesh and I.V. Ramakrishnan. Nonlinear pattern matching in trees.Journal of the
Association for Computing Machinery (JACM), 39(2):295–316, 1992.

[Sel77] Stanley M. Selkow. The tree-to-tree editing problem. Information Processing Letters,
6(6):184–186, 1977.

[Tai79] Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the Association for
Computing Machinery (JACM), 26:422–433, 1979.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21:168–173, 1974.

[Zha95] Kaizhong Zhang. Algorithms for the constrained editing problem between ordered
labeled trees and related problems.Pattern Recognition, 28:463–474, 1995.

[Zha96] Kaizhong Zhang. A constrained edit distance between unordered labeled trees.Algo-
rithmica, 15(3):205–22, 1996.

[ZJ94] Kaizhong Zhang and Tao Jiang. Some MAX SNP-hard results concerning unordered
labeled trees.Information Processing Letters, 49:249–254, 1994.

[ZS89] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance
between trees and related problems.SIAM Journal of Computing, 18:1245–1262, 1989.

[ZSS92] Kaizhong Zhang, Rick Statman, and Dennis Shasha. Onthe editing distance between
unordered labeled trees.Information Processing Letters, 42:133–139, 1992.

[ZSW94] Kaizhong Zhang, Dennis Shasha, and Jason T. L. Wang.Approximate tree matching in
the presence of variable length don’t cares.Journal of Algorithms, 16(1):33–66, 1994.

13

