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Abstract

We reduce the space usage on two problems related to generalized orthogonal range
searching by almost a logarithmic factor. Our main result is that the generalized static
orthogonal segment intersection reporting problem for n segment on an n times n grid can
be solved in time O(log2 log n + k) for queries using space O(n log log n). Here k is the
number of reported segments.

1 Introduction

We define the generalized static orthogonal segment intersection reporting problem on a grid as
follows. We are given a set S of n vertical and colored line segments with endpoints on a n times n
grid. We must then preprocess the segments of S such that given a query (x1, x2, y) ∈ [1 . . . n]3
∗ we can report the k colors represented among the segments from S which intersects the
horizontal line segment between (x1, y) and (x2, y). In this paper we give a data structure for
this problem which supports queries in time O(log2 log n+k) and uses space O(n log log n). We
also give a data structure which support queries in time O(log n log2 log n + k) and uses space
O(n). In both cases the preprocessing time is O(n log log n) w.h.p.† (w.h.p. because we use
hashing [9]).

We define the generalized static orthogonal range reporting problem on a grid as follows.
We are given a set P of n colored points on an n times n grid. We must then preprocess the
points of P such that given a query (x1, x2, y1, y2) ∈ [1 . . . n]4 with x1 ≤ x2 and y1 ≤ y2 we
can report the set of colors among the points in P ∩ ([x1 . . . x2]× [y1 . . . y2]). Using a standard
technique we convert our solutions for the generalized static orthogonal segment intersection
reporting problem into data structures for this problem with the same query time but with an
additional O(log n) factor on the space usage and preprocessing time (see table 2).

The model of computation is a unit-cost RAM with word size at least log n bits‡. We assume
we have access to a sequence of truly random words.

1.1 A remark on problem variations

As mentioned, the solutions we provide are for n objects on an n times n grid. Previous solutions
of the problems (see below) have either considered the case with coordinates in R2 or on a U
times U grid for some U ≥ n. Using a simple transformation our structures can be converted

∗For integers i ≤ j we let [i . . . j] denote the set of integers t for which i ≤ t ≤ j.
†We use w.h.p. as an abbreviation for with high probability. In a data structure with n elements we let high

probability mean probability at least 1− n−c for any constant c > 0.
‡All logarithms in this paper are base 2.
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Query time Space usage Source
O(log n + k) O(n log n) [13]
O(log2 n + k) O(n) [13]
O(log2 log n + k) O(n log log n) New
O(log n log2 log n + k) O(n) New

Table 1: Solutions for the generalized static orthogonal segment intersection reporting problem.

Query time Space usage Source
O(log log n + k) O(n log2 n) [1]
O(log2 n + k) O(n log n) [13]
O(log2 log n + k) O(n log n log log n) New
O(log n log2 log n + k) O(n log n) New

Table 2: Solutions for the generalized static orthogonal range reporting problem.

into structures for R2 adding a term of O(log n) to the query time and a term of O(n log n) to
the preprocessing time. Using another transformation we can instead get structures for an U
times U grid if we add a term of O(log log U) to the query time and a term of O(n log log U)
w.h.p. to the preprocessing time.

1.2 Comparison with other results

The generalized orthogonal range searching problems studied in this paper were introduced and
motivated by Janardan and Lopez [13] together with other related problems, and these problems
were further studied in [1, 12, 4]. The present paper builds on techniques used in these papers.

In [13] a solution to the generalized static orthogonal segment intersection reporting problem
where segments were assumed to have endpoints in R2 was given. The solution had query time
O(log n+k) and space usage O(n log n) or query time O(log2 n+k) and space usage O(n). The
previously and now best known solutions for n segments on an n times n grid are summarized
in table 1.

The generalized static orthogonal segment intersection reporting problem where all segments
have different colors has been widely studied. Here the problem can be seen as reporting the set
of segments intersecting a given query segment. Chazelle [5] considered the case where segments
have endpoints in R2 and gave an optimal structure with query time O(log n + k) and space
usage O(n). In section 6.1 we remark, that the query time can be reduced to O(log2 log n + k)
if endpoints lie on an n times n grid keeping the space usage on O(n). Though I have not been
able to find any references on this result it is not likely to be new.

In [13] a solution for the generalized static orthogonal range reporting problem with points
in R2 was given. The solution had query time O(log n + k) and space usage O(n log2 n) or
query time O(log2 n + k) and space usage O(n log n). Assuming points lie on a U times U grid
Agarwal, Govindarajan and Muthukrishnan [1] improved the first result by reducing the query
time to O(log log U) keeping the space usage on O(n log2 U). The previously and now best
known solutions for n points on an n times n grid are summarized in table 2.

The generalized static orthogonal range reporting problem where all points have different
colors has also been widely studied. Here the problem can be seen as reporting the set of points
in a query rectangle. Chazelle [6] considered the case with points in R2 and gave a data structure
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with optimal query time O(log n + k) and a space usage O(n logε n) for any constant ε > 0.
Alstrup, Brodal and Rauhe [3] considered the problem on an n times n grid and improved the
query time to O(log log n + k) keeping the same space usage.

The generalized static orthogonal range reporting problem where all points have the same
color has also been studied. Here the problem can be seen as deciding if a given query rectangle
is empty. Assuming points are in R2 Chazelle [6] has given an optimal solution for this problem
using query time O(log n) and linear space O(n).

1.3 Outline of paper

We start with preliminaries in section 2 where we also state lemma 1. This lemma is used in
section 3 to give a dynamic one-dimensional structure. In section 4 this structure is used to
make the structures from the introduction. In section 5 we review and reformulate some results
on partial persistence and finally in section 6 we prove lemma 1.

2 Preliminaries

If T is a rooted tree and v ∈ T is a node we let height(v) denote the height of v in T (leafs have
height 0). For integers i ≤ j we let X[i . . . j] denote an array indexed by [i . . . j] and we let X[i]
denote the element of X at index i.

We let a VEB denote the data structure of van Emde Boas et. al. [16] combined with hashing
[9]. Such a structure makes it possible to maintain a set S ⊆ [1 . . . n] using time O(log log n)
w.h.p. for inserting or deleting an element and time O(log log n) for predecessor queries. The
space usage is O(|S|).

Suppose we have a data structure supporting update and query operations where each
update may perform a number of writes and reads on memory cells and queries may only
perform reads. Such a structure is said to be partial persistent if each update increments a
timestamp and each query takes a timestamp of the version of the data structure in which the
query should be performed.

The results from the introduction builds on part 2 and 3 of lemma 1 below. We do not use
part 1 but it may be of independent interest in connection with theorem 1 below. We defer the
proof of the lemma to section 6. Suppose n is a power of two and that B[1 . . . n] is an array of
elements in [0 . . . log n] which are initially zero. Suppose further we can update B as follows.
For i ∈ [1 . . . n] and y ∈ [0 . . . log n] we can set B[i] = y. Further, given i, j ∈ [1 . . . n] where
i ≤ j and y ∈ [1 . . . log n] we can report the indices e ∈ [i . . . j] for which B[e] ≥ y.

Lemma 1. Let k be the number of indices reported by a given query. Then:

1. We can maintain B with update time O(log log n), query time O(log log n + k) and space
usage O(n).

Further let m be the number of updates performed. Then:

2. We can make a partial persistent version of B with update time amortized O(log log n)
w.h.p., query time O(log2 log n + k) and space usage O(m log log n).

3. We can make a partial persistent version of B with update time amortized O(log log n)
w.h.p., query time O(log n log2 log n + k) and space usage O(m).

In all parts 1,2 and 3 a precomputed lookup table with o(n) entries construct able in time o(n)
is needed.
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3 A dynamic one-dimensional structure

In this section we describe how to maintain an array A[1 . . . n] where each element in A has a
color which is initially black. For given i ∈ [1 . . . n] the array can be updated by assigning a
color to A[i]. Further, for i, j ∈ [1 . . . n] where i ≤ j we support a query (i, j) which returns the
set of non-black colors among the elements A[k] for which i ≤ k ≤ j. In this section we show:

Theorem 1. The results for B in lemma 1 also applies to A except that in part 1 the update
time becomes w.h.p..

We assume w.l.o.g. (without loss of generality) that n is a power of two. We span a complete
binary tree T over the elements of A from left to right. We will not distinguish between an
element of A, its index in A and the corresponding leaf in T . For every node v ∈ T we let span(v)
be the set of leafs descendant to v. We define left(v) (right(v)) as the left-most (right-most)
element in span(v).

Below we describe how to make a data structure supporting queries of the form (left(v), i)
for v ∈ T and i ∈ span(v). A data structure supporting queries of the form (i, right(v)) can be
made in a symmetric way. General queries (i, j) can be answered using these data structures
as follows. If i = j the query is easy so assume i < j. We identify the nearest common ancestor
v of A[i] and A[j] in constant time. Let u be the left and w be the right child of v. The colors
to report can be found by the two queries (i, right(u)) and (left(w), j) (the same color may be
reported by both queries and we filter such duplicate colors out).

What remains to describe is how to answer queries of the form (left(v), i) for i ∈ span(v).
Again, if left(v) = i the query is easy, so assume left(v) < i. For each internal node v ∈ T
we define (but do not store) the set E(v) of non-black elements e ∈ span(v) for which there is
no element in span(v) to the left of e with the same color as e. We observe that if e ∈ E(v)
then e ∈ E(w) for the child w of v for which e ∈ span(w) (because span(w) is a subset of
span(v)). It follows, that for each leaf e ∈ T we can assign a y-coordinate y(e) such that e
is in E(w) for exactly the ancestors w of e which is at distance at most y(e) from e (if e is
black we set y(e) = 0). The answer to the query is then the elements e ∈ [left(v) . . . i] for
which y(e) ≥ height(v). By maintaining an array B such that B[i] = y(A[i]) we can get these
elements by performing a query in the structure provided by lemma 1. We will now show that
each update of A modifies the y-coordinate of at most a constant number of element of A and
that these can be found in time O(log log n) w.h.p.. It follows that this is sufficient in order to
prove theorem 1.

We first describe how to give a black element e ∈ A a non-black color c. Let v ∈ T be
the nearest ancestor to e such that span(v) contains an element different from e with color c
and let e′ be the leftmost such element. If v does not exists we set y(e) = log n and we are
done. We note that we can find v (but not necessarily e′) in time O(log log n) if we for each
color maintain a VEB containing the elements with that color. These VEBs are not used when
answering queries and thus do not need to be made partial persistent. Further, it is these VEBs
that make the update time w.h.p.. Let w be the child of v such that e ∈ span(w). If w is the
right child of v we set y(e) to height(w). If w is the left child of v we locate e′ using the VEB
we maintain for color c and then we first set y(e) to y(e′) and next we set y(e′) to height(w).
We now argue for correctness by describing how the sets E(u) change for u ∈ T because of the
update. Let w′ 6= w be the other child of v. Then e′ ∈ E(w′) and further e′ ∈ E(v) before the
update. We note that span(w) contains no element with color c different from e and therefore e
is inserted in E(u) for the nodes u ∈ T between e and w where u 6= e. If w is the right child of
v then e is to the right of e′ and thus no more changes occur. If w is the left child of v then e is
to the left of e′ and therefore e′ is replaced by e in E(u) for all ancestors u of v that contains e′.

4



We next describe how to color an element e ∈ A with color c black. If e is black there is
nothing to do so assume e is not black. Let v, w and e′ be as before. If v does not exists or
if w is the right child of v we set y(e) = 0. If w is the left child of v we locate e′ using the
VEB for color c and then we first set y(e′) to y(e) and next we set y(e) to 0. The argument of
correctness is similar to before.

We finally note, that we can give a non-black element e ∈ A a non-black color c by first
coloring e black and then color e with c. As claimed it follows that changing the color of an
element e ∈ A changes the y-coordinate of at most a constant number of elements in A and
these can be found in time O(log log n) w.h.p..

4 Static two-dimensional structures

In this section we prove the results from the introduction by applying standard techniques to
theorem 1. We first show how to solve the generalized static orthogonal segment intersection
reporting problem on an n times n grid. Let S be the set of given vertical and colored segments.
W.l.o.g. assume no segment in S is black and that all segments in S are disjoint. Let X be the
structure from theorem 1 part 2 or 3 and let Y [1 . . . n] be an array. We then enumerate the
numbers in [1 . . . n] in increasing order. Let y be an enumerated number. For each endpoint
(x, y) ∈ [1 . . . n]2 of a segment which does not have an endpoint with lower y-coordinate we set
X[x] to the color of the segment. After this we record the current timestamp of X in Y [y].
Next, for each endpoint (x, y) ∈ [1 . . . n]2 of a segment which does not have an endpoint with
higher y-coordinate we set X[x] to black. The answer to a query (x1, x2, y) ∈ [1 . . . n]3 in S
where x1 ≤ x2 can then be found by performing the query (x1, x2) in X at timestamp Y [y].
The time and space bounds from the introduction follows directly from theorem 1.

Next we consider the generalized static orthogonal range reporting problem. Let P be
the set of given colored points. W.l.o.g. assume that no two different points in P have the
same coordinates. First assume we only need to support 3-sided queries, that is queries of
the restricted form (x1, x2, 1, y2) for x1, x2, y2 ∈ [1 . . . n] and x1 ≤ x2. Our structure for the
generalized static orthogonal segment intersection reporting problem can be used for this as
follows. We store the point (x, y) ∈ P as the vertical segment between (x, 1) and (x, y) in
S. The answer to the query (x1, x2, 1, y2) in P is then the same as the answer to the query
(x1, x2, y2) in S.

We now describe how to convert the structure supporting 3-sided queries just described to
one supporting general queries. We span a complete binary tree T over the y-axis of the grid
from bottom to top. We will not distinguish between a leaf of T and its coordinate on the y-axis.
Let v ∈ T be a node in T and let Pv ⊆ P be the points of P which have a y-coordinate descendant
to v. We then in v store two structures supporting 3-sided queries. Given x1, x2, y ∈ [1 . . . n]
where x1 ≤ x2 the first structure should support queries of the form (x1, x2, 1, y) among the
points in Pv and the second should support queries of the form (x1, x2, y, n) among the points in
Pv (the queries in the second structure are indeed 3-sided if we turn things upside down). Now
suppose we are given a general query (x1, x2, y1, y2) ∈ [1 . . . n]4 in P with x1 ≤ x2 and y1 ≤ y2.
To answer the query we first locate the nearest common ancestor v of y1 and y2 in T . If v is a
leaf then y1 = y2 and the answer to the query can be found by performing a query (x1, x2, y1, n)
among the points in Pv. Suppose v is not a leaf and has lower child l and upper child u. Then
the answer to the query can be found by performing a query (x1, x2, y1, n) among the points in
Pl and a query (x1, x2, 1, y2) among the points in Pu (the same color may be reported by both
queries and we filter such duplicate colors out).

As described the structure has a large space usage because each 3-sided structure we store
must support queries on a n times n grid even if it contains much less than n points. To
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overcome this problem we use the technique mentioned in section 1.1 which in case of m points
allows us to reduce the grid size to m times m. This adds a term of O(log log n) to the query
time and a term of O(n log log n) w.h.p. to the preprocessing time (coming from the usage of a
VEB). But in our case this only changes the query and preprocessing time by constant factors.
Since each point of P is stored in O(log n) structures supporting 3-sided queries it follows that
we get an O(log n) factor on the space usage and preprocessing time as claimed.

5 Partial persistence

In this section we introduce a general way to make data structures partial persistent in the form
of lemma 2 below. The section can be seen as a re formulation of known results and techniques.
We refer the reader to Driscoll et. al. [10], Dietz [7] and Dietz and Raman [8] for more details.

Let D be an arbitrary deterministic data structure. We can model D as a set of nodes
v ∈ D which we can think of as allocated by the new operator in C++ or Java. The data in a
node v ∈ D is contained in an array array(v)[1 . . . size(v)] where size(v) is fixed on allocation
of v. Each entry in array(v) is a computer word and may contain a pointer to a node. In the
RAM model size(v) can be arbitrary whereas in the pointer machine model (which we do not
consider) size(v) must be constant. We assume D supports updates and queries as mentioned
in the preliminaries and that queries always start in a fixed node of D. An update may in
constant time per operation allocate a new node of any size or perform a read from or a write
to an array in a node. A query may in constant time perform a read from an array in a node.
We let n be an upper bound on the total number of writes to arrays and the total number of
node allocations performed. On allocation of node v, the user must mark v as big or small. The
user is only allowed to mark a node v as small if size(v) = O(logc n) for a constant c.

Lemma 2. Assume that for each small node v ∈ D at most size(v) pointers (the predecessor
pointers) point to it. Then we can make D partial persistent using space O(n). The time to
update D is only increased by a constant factor but is made amortized and w.h.p.. The time to
read an element in array(v) in a query is O(1) if v is small and O(log log n) if v is big.

Proof (sketch). Consider a node v ∈ G. We store in v both array(v) and an additional array
parray(v)[1 . . . size(v)] using hashing [9]. For each value w written to array(v)[i] at time t we
store w with key t in a predecessor structure in parray(v)[i]. A read of array(v)[i] at a specific
time can then be performed by a predecessor query in parray(v)[i].

Assume v is big. If we use a VEB as predecessor structure we get the properties we want
except that in connection with updates we have to use time O(log log n) w.h.p. to perform a
write to an array in a node. To reduce this to O(1) w.h.p. we use a standard trick. We group
the writes into blocks with log log n elements and from each block we only insert the element
with the smallest timestamp in the VEB. Since the timestamps of the inserted elements are
always increasing we can handle insertions in a block in constant time.

Assume now v is small. Since size(v) = O(logc n) we can use the q*-heap of Fredman and
Willard [17, 11] as predecessor structure. The q*-heap supports updates and predecessor queries
in constant time per operation. For each element in a q*-heap in parray(v) we place a pebble
in v which can pay for a constant amount of time and space usage. When v contains 3size(v)
pebbles we do as follows. We create a new copy v′ of v with the elements of array(v′) initialized
to array(v) (and with parray(v′) initialized accordingly). Further, we take each of the at most
size(v) predecessor pointers of v and modify them to point to v′ (we maintain in v the current
set of predecessor pointers). size(v) of the 3size(v) pebbles in v are used to pay for the work
just described. size(v) pebbles are used to place on v′ and the remaining size(v) pebbles are
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used to place on the small nodes in which we modify pointers to point to v′ instead of v. It
follows that the copying v to v′ can be done amortized for free. �

6 Proof of lemma 1

This section is devoted to the proof of lemma 1. We prove each of the three parts of the lemma
in different subsections.

6.1 Proof of lemma 1 part 3

In this section we prove part 3 of lemma 1. Görtz et. al. [2] have showed:

Lemma 3. A VEB can be modified such that only O(1) memory cells are written on each
update.

From this we get:

Lemma 4. A VEB can be made partial persistent with update time amortized O(log log n)
w.h.p., query time O(log2 log n) and space usage O(m) where m is the number of updates per-
formed. Further, when we have made a query in a given version we can report the successors
of the answer in that version in increasing order in constant time per element.

Proof. We use the persistence technique of lemma 2. We put the VEB of lemma 3 into a single
big node (we use a deterministic version of the VEB which do not use hashing). We then link
the elements of the VEB together in order using small nodes which allows us to report the
successors of a query answer in increasing order in constant time per element. �

Part 3 of lemma 1 follows from lemma 4: For each y ∈ [1 . . . log n] we maintain a VEB of
lemma 4 with the indices e of B for which B[e] = y. Given a query we can just search in each of
the at most log n relevant VEBs. As another corollary to lemma 4 we get the following lemma
announced in the introduction:

Lemma 5. There exists a data structure for the generalized static orthogonal segment intersec-
tion reporting problem on a grid where all colors are different with query time O(log2 log n+k),
space usage O(n) and preprocessing time O(n log log n) w.h.p.. Here k is the number of reported
segments.

Proof. We use the same algorithm as in section 4 except that we use the persistent VEB
of lemma 4 instead of the structure from theorem 1. This is possible because all colors are
different. �

6.2 Proof of lemma 1 part 1

In this section we give a proof sketch of part 1 of lemma 1. First assume B contains at most
O(logc n) elements different from 0 for a constant c. Using the variant of priority search trees of
Willard [17] we can maintain B using constant time for updates, linear space and time O(1+k)
for queries where k is the number of reported elements. Plugging this structure with c = 1 into
[14, lemma 4.5] (the lemma is implicit in [15]) gives a structure for B, without restriction on the
number of elements different from 0 with update time O(log log n), query time O(log log n + k)
and space usage O(n log n log log n). The space usage can be reduced to O(n) using a standard
trick: We group the elements of B into blocks with O(log2 n) elements. For each block we insert
a point with the largest y-coordinate into the structure just described and the points inside each
block are kept in the variant of priority search tree of [17] with c = 2.
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6.3 Proof of lemma 1 part 2

In this section we give a proof sketch of part 2 of lemma 1. The structure is obtained by applying
lemma 2 to the structure described in section 6.2 except that we do not need the standard trick
reducing the space usage. Looking into the structure of [14, lemma 4.5] we see, that all nodes in
the structure can be made small in the terminology of lemma 2 with two exceptions: First, the
structure uses (deterministic) VEBs to link elements together on the top level. But these VEBs
are not used in connection with queries (only the links are used) and thus they do not need to
be made partial persistent. Second, the structure contains a number of bottom arrays which
need to be placed in big nodes. This is what increases the query time from O(log log n + k) to
O(log2 log n + k).
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