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On Redundancy of Rice Coding

Alexandre Krivoulets

Abstract

In this paper we derive the relative per-symbol redundancy of the Rice coding
algorithm, which is a widely used technique in image compression for very fast
entropy coding. We show, that for some important source models, such as the
two-sided geometric distribution (TSGD), the redundancy depends on the source
entropy H and it tends to zero if H — oo. The redundancy is upper bounded by
50% if H — 0.

1 Introduction

Rice coding [1] (or the Rice Algorithm) is a widely used technique in image compression
for entropy coding due to its efficiency and simple implementation. It is recommended as
the base of a standard for space image compression applications [2]. In a modified version
it is used in the recent standard for lossless image compression JPEG-LS [3] as a part
of the entropy coder. By generalized Rice coding we assume a technique that consists of
Rice preprocessing [2] followed by run-length coding using Golomb [4] or Rice codes, also
called Golomb-power-of-2 [3] (GP2) codes. We describe the technique in details below.

The method is applied to a source modeled by integers with a probability mass function
P(i), i € Z, which satisfies the property:

P(0) 2 P(+1) =2 P(-=1) =2 P(+2) = ...

Rice coding consists of two steps. In the preprocessing step a source symbol i € Z
is first mapped into an index j = {0,1,...} in the sequence of symbols arranged in or-
der 0,41,—1,42,—2,.... Each index is then unarily coded and the sequence of index
codewords is concatenated to form a sequence of binary symbols, which is called the fun-
damental sequence (FS). (In unary representation, a nonnegative integer 7 = {0,1,2,...}
is mapped into a sequence of j binary symbols 0 followed by a 1). The output of the
preprocessing step (the fundamental sequence) is entropy coded using run-length coding
based on Golomb or GP2 codes.

The key property of the method is that if the most probable symbol in the FS is zero,
which is often the case when one coding prediction residuals, then the algorithm performs
symbolwise coding. Otherwise, it performs blockwise coding, thus allowing for entropy
coding of sources like the DCT or wavelet transform coefficients after quantization. In all
the cases, the attractive feature of the method for practical implementation is that there
is no need to store any code tables. Given the source symbol or the block, its codeword



can be merely calculated. The calculation is simpler for GP2 codes (although, for some
loss in compression performance).

The goal of this paper is to investigate the efficiency of this algorithm in terms of
relative per-symbol redundancy as a function of the source parameters. This will allow us
to see the potential performance of Rice coding technique for different practical situations.

To find the redundancy, in Section 2 we consider Rice coding from a binary decompo-
sition point of view. This will show more clearly the basics of the method and will lead
to a redundancy estimation technique. In Section 3, we introduce a parametric model
of the input source that will allow for calculation of the redundancy. We also assume
throughout the paper, that we apply the algorithm to a source with known parameters’
and derive the redundancy as a function of these parameters. In Section 4, we derive
analytical solution for the redundancy based on the source model and discuss the results.

2 Binary decomposition and Rice coding

Binary decomposition of source symbols combined with binary arithmetic coding is a
well known technique for coding of m-ary sources (see, e.g., [5]). A general idea of this
method is that any proper and complete binary tree with m leaves can be used to represent
symbols from an m-ary source A = {ay,as,...,a,} with any probability distribution. A
source symbol is represented by a sequence of binary decisions when passing the tree
from the root to the leaf, corresponding to this symbol. The sequence of decisions can
be regarded as a sequence of binary symbols generated by a Markov source modeled
by this tree. A binary tree with m leaves has K = m — 1 nodes. To each node 7,
k=1,2,...,K, of the decomposition tree there corresponds a parameter g, which is the
probability of a binary symbol (decision) being ‘0’. These parameters are uniquely defined
by the probability distribution of the source symbols. The sequence of binary decisions
can be decomposed into K subsequences of statistically independent binary symbols with
probability distributions ¢k, corresponding to each node. These subsequences are to be
encoded using some kind of binary coding technique.

It is easy to see now, that Rice preprocessing can be viewed as using a unary tree for
decomposition of symbols arranged in order 0,+1, —1,+2,—2,... (see Figure 1). From
this point of view the FS is in essence a sequence of decisions, which is run-length coded
using Golomb or GP2 codes, treating it as a binary memoryless source. In this case, a sin-
gle parameter, which we shall denote ¢, characterizes the binary sequence. It corresponds
to the zero-order probability of a decision being ‘0’. Let

n =Y P(a)n(a)
a€A

be the average number of decisions per symbol, where n(a) is the number of binary
decisions required to code the source symbol a. Then, ¢ can be found as ¢ = 1 — 1/n.
Assuming that the sequence of decisions is a memoryless binary source, its entropy is

h = —qlogq — (1 —§)log(1 - q),

IThe parameter estimation technique is outside the scope of our paper. For different techniques the
interested reader is referred to [1, 3].



Figure 1: Unary decomposition of source symbols.

and hence we can introduce the quasi entropy of the input source by

H = hin = nlog(n) — (i — 1) log(7 — 1). (1)

We estimate the redundancy, caused by the assumption of memorylessness by the ratio
H—-H

Q=" (2)

where H = —._, P(i)log P(i) is the real entropy of the source. Now we have to define
the probability distribution of source symbols in order to calculate the actual redundancy.

3 The source model

We assume, that Rice coding is mainly used to code source symbols, such as prediction
residuals in lossless image compression or transform coefficients after quantization in lossy
image compression. For this kinds of sources we introduce the generalized two-sided
geometric distribution (GTSGD).

The distribution is deduced as a dead-zone quantization of the off-centered continuous

Laplacian distribution
o —alz—e|

f(l’)zgexp ,

which was shown to be a good approximation of the distribution of prediction errors and
transform coefficients [7, 8]. The distribution is specified by the decay parameter o and
the offset €. The dead-zone quantizer is non-uniform and specified by the zero/non-zero
quantization intervals Qg and (), respectively. The qunatizer and the distribution are
depicted on Figure 2. We assume that ¢ < Qy/2, i.e., the distribution center falls into
the zero quantization bin. This restriction is justified by the fact, that in practice for
transform coefficients it normally holds, and for context-based prediction schemes the
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Figure 2: Example of the off-centered Laplacian distribution and the dead-zone quantizer.

unit interval containing the center of the distribution can be located by an error feedback
loop [3, 9].
The probability distribution of output symbols i € Z of the quantizer is defined as

Qo
p(i=0) = f(z)dx
T0
@_’_ZQ
p(i > 0) )dx,
Q0+ (-1)Q
+(7,+1
p(i < 0) / (x)dz,
SL+iQ

and after a little algebra we find



)
1
1= 567 (67 +67), i=0
. 1 .
p(i) = 59%_7_1(1 —-0)0', >0 (3)
1 .
50%”—1(1 —0)e, <o

\

where 0 = exp™®?, v = £/Q and X\ = Q/Q are the new distribution parameters. Intro-
ducing new parameters, we disengage from the Laplacian distribution and the quantizer
parameters. The parameter A controls the probability of the zero symbol, whereas v and
0 define the off-set and the rate of decay of the distribution, respectively.

The generalized two-sided geometric distribution (3) comprises the two-sided geomet-
ric distribution (TSGD) proposed in [6] for modeling prediction residuals in lossless image
compression algorithms:

» (1 —6)p1+
p(i) = 0 1y (4)
where 6 and « have the same meaning as in (3). It can be derived from (3) by setting

Qo In2 —1In(6' + 6’7)>

A= 90 _9(y
0 (+ Y,

(5)

4 Redundancy

In Rice coding, the decisions are treated as a memoryless binary source, i.e., assuming
that all the nodes of the decomposition tree have the same probability of a decision to be
‘0’. This is true only if the index in the sequence of rearranged source symbols in non-
increasing probability order have one-sided geometric probability distribution?. In all
other cases such a coding will result in some redundancy, depending on the distribution
of the source?.

Given the distribution (3), 7 is defined by

N[>

0
51
n +2

500) (207 + 677 (1+0)) . (6)

and the entropy of the source is

A
2

1 a 1
H=— (1 — 5030 + 9-7)) log (1 — 5030 + 9-7)>

_%93 [((% — 1) log, 0 + log,(1 — 0) + % — 1> (07 +677) +ylog, 0 (97 — 6’7)} :
(7)

(i =1-0)e7,0<0<1,j=0,1,2,... [4].
3This redundancy can be thought of as a measure of “closeness” to the one-sided geometric distribution.
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Figure 3: Relative per-symbol redundancy of Rice coding as a function of the source
entropy for A\; and .

Using (1), (6) and (7) the redundancy g, can be easily calculated by (2).

We shall consider the behaviour of gy for A; defined by (5) (i.e., for the distribution
(4)) and Ay = 1 (for uniform quantization). Given 6, gy has its maximum when v = 0 for
both cases. Thus, setting v = 0 we get the upper bound on gq. It can be readily shown,
that for A\; and Ay: limg_1 09(#) = 0 and limy_,o 0o(6) = 0.5.

Figure 3 shows the relative redundancy as a function of the entropy for sources defined
by A1 and As. One can see, that in both cases the redundancy is approximately the same,
being less than 10% for sources with the entropy H > 1 bit. It tends to zero if H — oo.
The redundancy is also upper bounded by 50% if H — 0.

Note, that gg is the “ideal” relative redundancy, that is caused only by the assumption
of memorylessness of the sequence of decisions. It allows to see potential efficiency of the
algorithm. In order to estimate the actual redundancy, we have to add the redundancy,
caused by the method of coding. The overall relative redundancy is defined by

B I:I + NPy _q
H )
where py, is the absolute per (binary) symbol redundancy, caused by the method of binary
coding. If GP2 codes are used to code the sequence of the decisions, then
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Figure 4: Relative redundancy of the algorithm if GP2 codes are used to code the sequence
of binary decisions and the model is defined by A;. The dotted line shows the ‘ideal’
redundancy from Figure 3 for comparison purpose.

_ 4G (1= G)
where ¢, = max{q, 1 — ¢} is the probability of the most likely symbol (decision) and

log, G )J
[=11—-1lo
{ . <log2(\/5—1)—1
is the parameter?.

Figure 4 shows the resulting relative redundancy as a function of the entropy for GP2
codes and the source defined by A; (we assumed 7 = 0, thereby, this figure shows the
upper bound). The relative redundancy is less than 10% if the entropy H > 1. In practice,
for the low entropy sources one may expect a redundancy of about 10...30%. In some
practical implementations this may be reasonable price for possibility of very fast coding.

Y

4The derivation of this formula is based on Lemma 4 from [6].
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