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Abstract

We give a programming language, model, and logic appropriate for implementing and reasoning about a memory
management system. We then outline what is meant by correctness of a copying garbage collector, and employ a
variant of the novel Separation Logics given in [ORY01], [Rey02c], to formally specify correctness. We then prove
that our implementation meets its specification, using the logic we have given, and auxiliary variables [OG76].
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1 Introduction and Motivation

Proving correctness of programs that explicitly manipulate imperative data structures has been a major difficulty,
mainly due to a lack of reasoning principles that are adequate and simple at the same time. Recently, Reynolds,
O’Hearn, and others have suggested Separation Logic as a tool for reasoning about programs involving pointers
[OP99], [Rey00], [Pym02]. In his thesis, Yang showed this to be a promising direction by giving an elegant proof of
the non-trivial Schorr-Waite graph marking algorithm [Yan01]. This algorithm’s complex pointer manipulations makes
it a popular “benchmark test” for program logics, when one wants to demonstrate novel program proving techniques.

The aim of this paper is to use Separation Logic to prove correctness of a simple copying garbage collector. The
interest in this is (at least) twofold. First, it provides another example of the benefits of Separation Logic, inasmusch
as it provides a new example of a proof of a non-trivial algorithm. Secondly, copying garbage collectors are used in
practical settings, for example in implementations of different functional programming languages [JL97], since the
time-complexity of these algorithms is linear in the number of “live cells”, which on average constitute only a small
proportion (approximately 1.5 percent for Standard ML of New Jersey [App92]) of the total heap for these languages.

Another motivation is that there are questions in the literature might help answering. In [COB02], a garbage
collected language is analyzed, and various results are presented. In particular, it is shown that a special treatment
of the existential quantifier is needed in this setting. An underlying garbage collector is implicitly presumed in the
operational semantics of the language, inasmuch as a partial pruning and an α-renaming of the current state is allowed
at any time during execution of a program. Since it is not in the scope of that paper, it is not mentioned how this
pruning / renaming is done, let alone proven that it is done correctly. A brief remark on the desirability of such a proof
is mentioned in the end of the paper. In fact, this was the original motivation for taking on the challenge of proving a
garbage collector correct.

The Typed Assembly Language (TAL) [MWCG99] is important for Foundational Proof Carrying Code (FPCC)
[App01], since safety is guaranteed by the type system. In TAL, a malloc (but no dealloc) construct is part of
the instruction set. This is a difference between TAL and other, more machine-like, assembly languages, where only
“raw” pointer manipulations are allowed, and there are no constructs for allocating and deallocating memory, so that
the programmer does not have unlimited memory resources. It is our belief that a formal proof of a garbage collector
can be a part of the work needed to mimic the work of [MWCG99] in a more “realistic” setting.

The rest of the paper is organized as follows. In Section 2, we give an informal introduction to Separation Logic,
and motivate its usefulness. In Section 3, we give the basic definitions and formalizations for the version of Separation
Logic used in this exposition. In Section 4, we present the programming language used for implementation of the
garbage collector, and give a Hoare-style program logic to connect the logic and the programming language. Section
5 gives general notions about garbage collection, including a correctness criterion and in Section 6, we present our
implementation of a stop-and-copy garbage collector, and give a specification for the implementation. In Section 7,
we formally prove the specification, and in Section 8, we show that the specification suffices to show correctness of
the garbage collector. In Sections 9 and 10, we give an account of related and future work, and conclude.

Basic knowledge about Hoare Logic and semantics is a prerequisite for this paper.

2 An Introduction to Separation Logic

In this section, we will give a brief introduction to Separation Logic. It is strongly based on the expositions in [Rey02c]
and [Rey02b]. We will not give formal definitions of the concepts used here, since it will clutter the presentation, and
since we will extend Separation Logic with new notions later. For formal definitions, we refer to Sections 3 and 4.

Separation Logic is an extension of traditional Hoare Logic [Hoa69]. The simple while-language is extended with
commands for manipulating imperative data structures, stored in a heap, and if “dangling” pointers are dereferenced,
the semantics for the language will get “stuck”. Accordingly, the assertion language is extended with basic predicates
concerning the heap, and two new connectives: the separating conjunction (∗) and the separating implication (−−∗).

We have specifications {A} C {B}, stating that in any state in which A holds, no execution of C will abort, and if
the execution terminates in a final state, then B will hold in that state. As a consequence, we have the slogan
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“Well-specified programs don’t go wrong.”

for Separation Logic.

2.1 An Example

As mentioned in the Introduction, Separation Logic provides reasoning principles for proving programs that manip-
ulate shared mutable data structures. We will demonstrate an advantage Separation Logic has compared to more
“traditional” program logics by an example.

Suppose we represent the sequence α0 = n1, . . . , nk with a singly-linked list in the heap like in Fig. 1.

��� ��� ���

�

�	�
� � ���

Figure 1: A list representation in the heap

If we want to reverse this list, we write the program

prev := nil; while i 6= nil do next := [i]; [i] := prev; prev := i; i := next od,

where [e] denotes the value stored at the address denoted by e in the heap.

At a point of execution, the heap looks like in Fig. 2.
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Figure 2: During list reversal

After execution of the program, we have the heap depicted in Fig. 3.
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Figure 3: After list reversal

In order to prove the program correct, we must exhibit an invariant for the while loop. For this, it is illuminating
to consider Fig. 2. We see that prev represents a list fragment β that has already been reversed, and that the list α
represented by i has not been reversed. The reverse of α0 is the reverse of α concatenated by β.

As a first try of an invariant, we might therefore define the predicate list by induction on the sequence α by

list(ε, i) ≡ i = nil
list((n · α), i) ≡ ∃j. i ↪→ j, n ∧ list(α, j),
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and then claim that the following invariant is adequate:

∃α, β. list(α, i) ∧ list(β, prev) ∧ α−1

0 = α−1 · β,

where α−1 is the reverse of the sequence α. The problem with this invariant is that it is not strong enough, since it does
not prevent sharing between the lists represented by i and prev. For example, the assertion above might be satisfied by
a heap that looks like that of Fig. 4.

���

�����

� �	��
�

��� ��� ���

Figure 4: A counterexample

For this heap, however, the program will malfunction and create a list with a loop. To prevent sharing between the
two lists, we might strengthen the invariant. First we can define the predicate Reachablen by

Reachable0(i, j) ≡ i = j
Reachablen+1(i, j) ≡ ∃a, k. i ↪→ k, a ∧ Reachablen(k, j)

and then
Reachable(i, j) ≡ ∃n ≥ 0. Reachablen(i, j).

An adequate invariant is then

(∃α, β. list(α, i) ∧ list(β, prev) ∧ α−1

0 = α−1 · β)∧
(∀k. Reachable(i, k) ∧ Reachable(prev, k) → k = nil).

As Reynolds points out, we might also want to make sure that another list γ, represented by x in the heap, is not
modified by our program. Then we would have to make sure that all non-nil locations reachable from both i and prev

are different from those reachable from x. The formulas involved quickly become large and hard to reason about.
Separation Logic deals with this problem. Instead of something like

(∃α, β. list(α, i) ∧ list(β, prev) ∧ α−1

0 = α−1 · β)∧
(∀k. Reachable(i, k) ∧ Reachable(prev, k) → k = nil)∧
list(γ, x)∧
(∀k. (Reachable(x, k) ∧ (Reachable(i, k) ∨ Reachable(prev, k)) → k = nil),

we can write the more succinct assertion

∃α, β. (list(α, i) ∗ list(β, prev) ∗ list(γ, x)) ∧ α−1

0 = α−1 · β

in Separation Logic. It precisely says that the lists α, β, γ are represented in disjoint parts of the heap.

2.2 The Frame Rule

In traditional Hoare logic (without shared data structures), one has the rule of constancy

{A} C {A′}

{A ∧ B} C {A′ ∧ B}
Modifies(C) ∩ FV (B) = �

6



This rule has been useful, since it has allowed reasoning about only the “parts” (in a syntactic sense) of an assertion
whose truth might be modified by the program fragment. In the presence of sharing, however, the rule of constancy is
unsound. This can be seen by the following counterexample.

{x = y ∧ x 7→ 3} [x] := 4 {x = y ∧ x 7→ 4}

{x = y ∧ x 7→ 3 ∧ y 7→ 3} [x] := 4 {x = y ∧ x 7→ 4 ∧ y 7→ 3}

Here, x and y are both references to the same heap cell, and the problem is, of course, that if we change the value
in this heap cell, the assertion about what y points to does not remain true. Separation Logic also has an answer to this
problem.

Perhaps the most important rule in Separation Logic is the Frame Rule.

{A} C {A′}

{A ∗ B} C {A′ ∗ B}
Modifies(C) ∩ FV (B) = �

This rule allows us to do local reasoning. Suppose we have a program that mainly consists of a while-loop that
does some manipulations on a data structure stored in the heap. When verifying the program, one has to exhibit an
invariant for the while loop and prove that it is indeed an invariant. The invariant is typically an assertion about the
full data structure, whereas each iteration of the loop only deals with a small portion of this structure. The Frame Rule
allows us to prove the invariant by proving a specification which mentions only the parts of the heap that is actually
manipulated in one loop iteration, and then conclude the specification regarding the full structure from this. We will
see several applications of the Frame Rule rule in later sections.

2.3 A Brief History

An intuitionistic version of a logic with the notion of separating conjunction was discovered independently by Reynolds
[Rey00] and O’Hearn and Ishtiaq [IO01]. Since the logic was an instance of the logic of Bunched Implications (BI),
[OP99], [Pym02], O’Hearn and Ishtiaq could introduce the separating implication. O’Hearn and Ishtiaq also presented
a classical version of the logic in their paper. A version of the logic which allowed for address arithmetic was later
introduced by Reynolds [ORY01], and the Frame Rule described above was discovered by O’Hearn and was first
presented in [IO01].

3 Syntax and Semantics

In this section, we present our basic storage model and the syntax and semantics of expressions and assertions. The
basis of the system is the standard Separation Logic with pointer arithmetic [ORY01], but we take locations to be
integers that are multiples of four, and we extend the term and assertion languages with finite sets and relations, new
basic assertions about these, and an important new connective ∀∗ due to Reynolds.

3.1 Storage Model

We assume five countably infinite sets Varint, Varfs, Varfrp, Varfri, Varpath of variables, and we let Var be the disjoint
union of these sets. We let metavariables

x, y, p, q, . . . ∈ Varint,
m, m′, . . . ∈ Varfs,
f, f ′ . . . ∈ Varfrp,
g, g′, . . . ∈ Varfri, and
P, P ′, . . . ∈ Varpath

range over each of these sets, and assume a type-function

τ : Var → Types, where Types = {int, fs, frp, fri, path}
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indicating which type a given variable has. The set of locations is the set of natural numbers that are divisible by 4, and
the set of pointers is the set of natural numbers that are divisible by 8. A heap is a finite, partial map from locations
to integers, and finally, stacks are finite, partial maps from Var to the disjoint union of integers, finite sets of pointers,
paths, finite relations on pointers, and finite relations between pointers and integers, where paths are finite words over
the alphabet {head, tail}. More formally, we define:

Variables x, y, . . . ∈ Var

Pointers Ptr
def
= {8n | n ∈ � }

Locations Loc
def
= {4n | n ∈ � }

Finite sets of pointers FS
def
= Pfin(Ptr)

Finite rel’ns on pointers FRP
def
= Pfin(Ptr × Ptr)

Finite rel’ns with integers FRi
def
= Pfin(Ptr × � )

Paths Path
def
= {head, tail}∗

Values Val
def
= � ∪ FS ∪ FRP ∪ FRi ∪ Path

Heaps
def
= Loc ⇀fin �

Stacks
def
= {s : Var ⇀fin Val | ∀x ∈ Var. s(x) ∈ [[τ(x)]]}

States
def
= Stacks × Heaps,

where [[int]] = � , [[fs]] = FS, [[fri]] = FRi [[path]] = Path, and [[frp]] = FRP.

This constitutes our storage model.

3.2 Expressions

We define a syntax for expressions of each of the types int, fs, frp, fri, path. We will not have expressions that involve
the heap, but have manipulations involving the heap as parts of command forms in our programming language, which
will be presented later. Expressions of type int are defined by the following grammar:

e ::= n | xint| e1 + e2 | e1 − e2 | e1 × e2 | e mod j
| e1 ≤ e2 | e1 = e2 | ¬e | e1 ∧ e2 | #mfs,

where n ∈ � and j ∈ � \ {0}. Although the superscript that indicates the type is only meant to indicate the type of
variables, we will sometimes use a superscript to indicate the type of composite expressions. At other times, we will
omit the superscripts, even on variables, if it causes no confusion.

Expressions of type fs are defined as follows

mfs ::= � fs | xfs | {eint} | mfs ⊕ eint | mfs 	 eint | Itv(eint, eint) | mfs ∪ mfs

Expressions of type frp are defined by the grammar

f frp ::= � frp | xfrp | f frp ⊕ (eint, eint) | f frp
1

◦ f frp
2

| f †

The syntax for expressions of type fri is:

gfri ::= xfri | f frp ◦ gfri | f frp � gfri

Finally, expressions of type path are given by

P path ::= ε | P path · head | P path · tail

We now turn to the semantics of terms. The semantics of terms of type int is standard (except perhaps for terms
of form #mfs, whose semantics will be defined shortly), and we omit it. In order to avoid introducing an explicit type
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of boolean values, we use a standard encoding of truth values, where 0 denotes “false”, and all other integers denote
“true”.

The semantics of terms of type fs is a finite set of pointers. ⊕ adds an element to a set, if it is a pointer, whereas 	
removes a pointer from a set. Itv(e1, e2) is the set of pointers in the half-open interval from e1 to e2.

[[ � fs]]s = �
[[xfs]]s = s(x)
[[{e}]]s = {[[e]]s} ∩ Ptr

[[mfs ⊕ eint]]s =

{

[[m]]s ∪ {[[e]]s} if [[e]]s ∈ Ptr
[[m]]s otherwise

[[mfs 	 eint]]s = [[m]]s \ {[[e]]s}
[[Itv(eint

1 , eint
2 )]]s = {p ∈ Ptr | [[e1]]s ≤ p ∧ p < [[e2]]s}

[[mfs
1 ∪ mfs

2 ]]s = [[m1]]s ∪ [[m2]]s

With this, we can define the semantics of terms of the form #mfs (it is just the number of elements in the finite set
denoted by m):

[[#mfs]]s = k, where [[m]]s = {p1, . . . , pk}
(note that k may be 0)

The semantics of terms of type frp is a finite set of pairs of pointers (or, equivalently, a finite relation on pointers).

[[ � frp]]s = �
[[xfrp]]s = s(x)

[[f frp ⊕ (eint
1 , eint

2 )]]s =

{

[[f ]]s ∪ {([[e1]]s, [[e2]]s)} if ([[e1]]s, [[e2]]s) ∈ Ptr × Ptr
[[f ]]s otherwise

[[f †]]s = {(p′, p) | (p, p′) ∈ [[f ]]s}

[[f frp
1 ◦ f frp

2 ]]s = {(p, p′′) | ∃p′. (p, p′) ∈ [[f2]]s ∧ (p′, p′′) ∈ [[f1]]s}

The semantics for terms of type path is straightforward, in that the denotation of a term is equal to itself:

[[ε]]s = ε, the empty word
[[P · head]]s = [[P ]]s · head

[[P · tail]]s = [[P ]]s · tail

To conclude our semantics for terms, we give the semantics for terms of type fri. The � construct will be used to
model the structure-preserving property of a garbage collector, (cf. [COB02], and Definition 5.2 later in this paper).

[[xfri]]s = s(x)
[[gfri ◦ f frp]]s = {(p, n) | ∃p′ ∈ Ptr. (p, p′) ∈ [[f ]]s ∧ (p′, n) ∈ [[g]]s}
[[f frp � gfri]] = {(p, n) | ((p, n) ∈ [[g]]s ∧ n 6∈ Ptr)∨

(∃p′ ∈ Ptr. (p, p′) ∈ [[g]]s ∧ (p′, n) ∈ [[f ]]s)}

Substitution is defined in a standard way; there are no binders in the expression language. The following lemma is
easily proved by induction on terms.

Lemma 3.1. Let s be a stack, and let δ, δ′ ∈ Types. Then, for all expressions eδ, e′δ
′

of type δ and δ′ respectively, and
for all variables xδ′

of type δ′, we have

[[e[e′/x]]]s = [[e]](s[x 7→ [[e′]]s]),

where s[x 7→ v] is the function that is like s, but with x mapped to v.

We will sometimes need to use equality between expressions. We will use ≡ to mean syntactic equality between
expressions, and we will sometimes write e1 = e2 to denote that [[e1]]s = [[e2]]s for all stacks s.
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3.3 Assertions

We define an assertion language and give a semantics for it. The core part of the language is the standard Separation
Logic [Rey02c], but we have extended it with a number of basic assertions concerning finite sets and relations.

Let δ range over Types. The set of assertions is generated by the following grammar:

A ::= e1 ≤ e2 | e1 = e2

| ¬e | T
| F | ¬A
| A → B | A1 ∧ A2

| A1 ∨ A2 | ∀xδ . A
| ∃xδ . A | emp

| e1 7→ e2 | A1 ∗ A2

| A1 −−∗ A2 | ∀∗p
int ∈ mfs. A

| eint ∈ mfs | Disjoint(m1, m2)
| Ptr(eint) | mfs

1 = mfs
2

| PtrRg(gfri, mfs) | iso(f frp, mfs
1 , mfs

2 )
| isUnion(mfs

1 , mfs
2 , mfs) | SbSet(m1, m2)

| Tfun(f frp, mfs) | Tfun(gfri, mfs)

| eval(f frp
1

, f frp
2

, P path, eint
1 , eint

2 ) | Reachable(f fri
1 , f fri

2 , mfs, eint)
| (e1, e2) ∈ gfri | (e1, e2) ∈ f frp

We will use the following standard shorthand notations

p 7→ e1, e2

def
= (p 7→ e1) ∗ (p + 4 7→ e2)

p ↪→ e
def
= p 7→ e ∗ T

p ↪→ e1, e2

def
= p 7→ e1, e2 ∗T

p 7→ −
def
= ∃xint. p 7→ x

p 7→ −,−
def
= ∃xint, yint. p 7→ x, y

The notations p 7→ e1, e2, p ↪→ e1, e2, p 7→ −,−, p ↪→ −,− make sense for all locations, but we shall only use
them when p denotes a pointer.

The set FV (A) of free variables for an assertion is defined as usual. Note that p (and not m) is bound in ∀∗p ∈
m. A. Substitution A[e/x] of the expression e for the variable x in the assertion A is defined in the standard way. We
will sometimes write A(x) to denote that the variable x may occur free in A.

The formal semantics for propositions is given by a judgement of the form

s, h � A,

the intended meaning of which is that the proposition A holds in the state s, h. We require FV (A) ⊆ dom(s). We let
b range over the boolean expressions e1 ≤ e2, e1 = e2,¬e, and δ ranges over Types. The semantics is given in Fig. 5.
We have only given one of the clauses for each of the connectives Tfun and ∈, the missing clauses are obvious.

A brief explanation is appropriate here. The assertion forms emp, e1 7→ e2, A ∗ B, and A −−∗ B are taken from
standard Separation Logic. emp states that the heap is empty, and e1 7→ e2 states that there is precisely one location in
the domain of the heap. A ∗ B means that A and B hold in disjoint subheaps of the current heap, and A −−∗ B means
that for all heaps h′ that are disjoint from the current heap h and in which A hold, the combination of the extension
and the current heap will satisfy B. eval and Reachable concern evaluation of paths, and Disjoint, iso, isUnion, SbSet,
and Tfun are “set theoretic” assertions. PtrRg says that any pointer which is a second component in any pair in
the relation denoted g is in the set denoted by m. Finally, ∀∗ is an iterated separating conjunction. Informally, if
s, h � ∀∗p ∈ m. A, and if [[m]]s = {p1, . . . , pk}, then h can be split into disjoint heaps h = h1 ∗ · · · ∗ hk with
s, h1 � A[p1/p], . . . , s, hk � A[pk/p].
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s, h � b iff [[b]]s 6= 0
s, h � T always
s, h � F never
s, h � ¬A iff s, h � A
s, h � A → B iff s, h � A implies s, h � B
s, h � A ∧ B iff s, h � A and s, h � B
s, h � A ∨ B iff s, h � A or s, h � B
s, h � ∀xδ . A iff for all v ∈ [[δ]], s[x 7→ v], h � A
s, h � ∃xδ . A iff there is v ∈ [[δ]] such that s[x 7→ v], h � A
s, h � emp iff dom(h) = �
s, h � e1 7→ e2 iff dom(h) = {[[e1]]s} and h([[e1]]s) = [[e2]]s
s, h � A ∗ B iff there exist heaps h1, h2 such that

h1#h2, h1 ∗ h2 = h, s, h1 � A, and s, h2 � B
s, h � A −−∗ B iff

s, h ∗ h′ � B for all h′. such that h#h′ and s, h′ � A
s, h � ∀∗p ∈ m. A iff

{

s, h � A[p1/p] ∗ · · · ∗ A[pk/p], if [[m]]s = {p1, . . . , pk}
s, h � emp if [[m]]s = �

s, h � e ∈ m iff
[[e]]s ∈ [[m]]s

s, h � Disjoint(m1, m2) iff [[m1]]s ∩ [[m2]]s = �
s, h � Ptr(e) iff [[e]]s mod 8 = 0
s, h � m1 = m2 iff [[m1]]s = [[m2]]s
s, h � PtrRg(g, m) iff

∀(p, q) ∈ [[g]]s. q ∈ Ptr ⇒ q ∈ [[m]]s
s, h � iso(f, m1, m2) iff

∀p1 ∈ M1. ∃!p2 ∈ M2. (p1, p2) ∈ ϕ∧
∀p2 ∈ M2. ∃!p1 ∈ M1. (p1, p2) ∈ ϕ ∧
∀(p1, p2) ∈ ϕ. p1 ∈ M1 ∧ p2 ∈ M2,
where M1 = [[m1]]s, M2 = [[m2]]s, ϕ = [[f ]]s

s, h � isUnion(m1, m2, m) iff
[[m]]s = [[m1]]s ∪ [[m2]]s

s, h � SbSet(m1, m2) iff [[m1]]s ⊆ [[m2]]s
s, h � Tfun(f, m) iff

∀p ∈ [[m]]s. ∃!n ∈ � . (p, n) ∈ [[f ]]s
s, h � eval(f frp, gfrp, P path, pint, eint) iff

(P = ε and s, h � p = e), or
(P = P ′ · head and ∃p′ ∈ Ptr. s, h � eval(f, g, P ′, p, p′)

and s, h � (p′, e) ∈ f), or
(P = P ′ · tail and ∃p′ ∈ Ptr. s, h � eval(f, g, P ′, p, p′)

and s, h � (p′, e) ∈ g).
s, h � Reachable(f1, f2, m

fs, eint) iff
[[m]]s = {p ∈ Ptr | ∃P ∈ Path. s, h � eval(f1, f2, P, e, p)}

s, h � (e1, e2) ∈ f iff ([[e1]]s, [[e2]]s) ∈ [[f ]]s

Figure 5: Semantics of Assertions
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In Fig. 5, we have used the notation h1#h2 to indicate dom(h1) ∩ dom(h2) = � (we call such heaps disjoint),
and if h1#h2, we can define the combined heap h1 ∗ h2 by

n 7→

{

h1(n) if n ∈ dom(h1)
h2(n) if n ∈ dom(h2)

Note that the semantics is classical for the standard first-order logic fragment. As for the expressions, we have a
standard substitution lemma for assertions.

Lemma 3.2. Let e be an expression of type δ, let x be a variable of type δ, and let A be an assertion. Then, for all
states s, h,

s, h � A[e/x] iff s[x 7→ [[e]]s], h � A

PROOF: The proof is a standard induction on the structure of assertions. Readers who wish to verify this will find
it useful to show that if e′ is an expression of type δ and if s, h is a state such that [[p]]s ∈ Ptr, [[e]]s ∈ � , [[f1]]s ∈
FRi, [[f2]]s ∈ FRi, then for all P ∈ Path,

s, h � eval(f1, f2, P, p, e)[e′/x] iff s[x 7→ [[e′]]s], h � eval(f1, f2, P, p, e).

This is verified by induction on paths.

Definition 3.3. For later use, we introduce some special classes of assertions. The definitions are taken from [Yan01]
and [Rey02a].

• We call an assertion A pure if its validity does not depend on the heap, i.e., if s, h � A if and only if s, h′ � A,
for all stacks s and heaps h, h′.

• We call an assertion A monotone if, for all stacks s and heaps h, h′,

s, h � A and h ⊆ h′ imply s, h′ � A.

Here, ⊆ is just set-theoretic inclusion of graphs.

• Assertion A is domain-exact, if s, h � A and s, h′ � A imply dom(h) = dom(h′).

• Assertion A is strictly exact, if s, h � A and s, h′ � A imply h = h′.

Remark 3.4.

• For a pure assertion A, ∧ distributes over ∗:

s, h � A ∧ (B ∗ C) iff s, h � (A ∧ B) ∗ (A ∧ C)

for any assertions B, C.

• Pure assertions are monotone, and strictly exact assertions are domain-exact.

• Syntactically, an assertion is pure, if it does not contain any occurrences of emp, ∀∗, and 7→. Assertions made
up by emp, e1 7→ e2, and ∗ are strictly exact.

• If A(t) is pure, then ∃t. (p 7→ t ∧ A) is domain-exact.
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3.4 Some Useful Rules

Definition 3.5. We call an assertion A valid if, for all states s, h with FV (A) ⊆ dom(s), s, h � A.

We present a set of rules that are valid with respect to Definition 3.5. They will be needed in proofs later, and we
believe that these rules could be part of a small theory of finite sets and relations that could be used in proofs of other
programs where the goal is to establish an isomorphism between data structures.

Here are the rules:

Rules for ∀∗:
(∀∗p ∈ m. A(p)) ∧ m = m′ → ∀∗p ∈ m′.A(p) (1)

m = � → ((∀∗p ∈ m.A) ↔ emp) (2)

(∀∗p ∈ m. p 7→ − ∧ A(p)) ∧ x ∈ m →
(∀∗p ∈ m. p 7→ − ∧ A(p)) ∧ (x ↪→ −)

(3)

When and A is precise,

(∀∗p ∈ m. A(p)) ∗ (∀∗p ∈ m′. A(p)) ↔ (∀∗p ∈ m ∪ m′. A(p)) (4)

Note that if m′′ is the disjoint union of m, m′, we do not need A to be precise in (4). As a special case, we get

(∀∗p ∈ m. A(p)) ∧ x ∈ m →
(∀∗p ∈ (m 	 x). A(p)) ∗ A[x/p].

(5)

Another consequence of (4) is

(x ∈ m) ∧ ((∀∗p ∈ (m 	 x).A) ∗ A[x/p]) → ∀∗p ∈ m. A (6)

Rules for iso:
iso( � , � , � ) (7)

Ptr(x1) ∧ Ptr(x2) ∧ ¬(x1 ∈ m1) ∧ ¬(x2 ∈ m2) ∧ iso(f, m1, m2) →
iso(f ⊕ (x1, x2), m1 ⊕ x1, m2 ⊕ x2)

(8)

(x1 ∈ m1) ∧ (x2 ∈ m2) ∧ (x1, x2) ∈ f∧
iso(f 	 (x1, x2), m1 	 x1, m2 	 x2) → iso(f, m1, m2)

(9)

iso(f, m1, m2) ∧ (x1, x2) ∈ f → x1 ∈ m1 ∧ x2 ∈ m2 (10)

iso(f, m1, m2) → iso(f †, m2, m1) (11)

iso(f, m1, m2) ∧ p ∈ m1 → ∃q. (p, q) ∈ f ∧ q ∈ m2 (12)

Tfun(g, m2) ∧ iso(f, m1, m2) → Tfun(g ◦ f, m1) (13)

iso(f, m1, m2) → Tfun(f, m1) (14)

iso(f, m1, m2) → #m1 = #m2 (15)

iso(f, m1, m2) ∧ ¬(x ∈ m1) → ∀eint. ¬((x, e) ∈ f) (16)

Rules for �

(x, y) ∈ g ∧ ¬Ptr(y) → ∀f frp. (x, y) ∈ f � g (17)

(x, y) ∈ g ∧ Ptr(y) ∧ (y, z) ∈ f → (x, z) ∈ f � g (18)

Tfun(g, m) ∧ (q, p) ∈ g ∧ Ptr(p) ∧ (q, r) ∈ f � g → (p, r) ∈ f (19)

(x, y) ∈ f � g →

((x, y) ∈ g ∧ ¬Ptr(y)) ∨ (∃p. Ptr(p) ∧ (x, p) ∈ g ∧ (p, y) ∈ f) (20)

(x, y) ∈ f � g ∧ (x, y′) ∈ f � g ∧ Tfun(f, m) ∧ Tfun(g, m′) → y = y′ (21)
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Rules for isUnion, Disjoint, and SbSet

isUnion(m1, m2, m) ∧ x ∈ m → (x ∈ m1 ∨ x ∈ m2) (22)

isUnion(m1, m2, m) ∧ x ∈ m ∧ ¬(x ∈ m1) → x ∈ m2 (23)

isUnion( � , � , � ) (24)

isUnion(m, � , m) (25)

isUnion(m1, m2, m) → isUnion(m2, m1, m) (26)

isUnion(m1, m2, m) → SbSet(m1, m) ∧ SbSet(m2, m) (27)

Disjoint(m1, m2) → ∀x. ¬(x ∈ m1 ∧ x ∈ m2) (28)

isUnion(m1, m2, m) ∧ x ∈ m1 → isUnion(m1 	 x, m2 ⊕ x, m)
isUnion(m1 	 x, m2 ⊕ x, m) ∧ x ∈ m1 → isUnion(m1, m2, m)

(29)

(∀p. (p ∈ m1) → (p ∈ m2)) ↔ SbSet(m1, m2) (30)

Disjoint(m1, m2) ∧ SbSet(m′
1, m1) → Disjoint(m′

1, m2) (31)

Rules for eval and Reachable

eval(f, g, ε, p, q) → p = q (32)

eval(f, g, P · head, p, q) → ∃r. Ptr(r) ∧ (r, q) ∈ f ∧ eval(f, g, P, p, r) (33)

eval(f, g, P · tail, p, q) → ∃r. Ptr(r) ∧ (r, q) ∈ g ∧ eval(f, g, P, p, r) (34)

Reachable(p, m, f, g) ∧ p′ ∈ m → ∃P path. eval(f, g, P, p, p′) (35)

An induction principle in harmony with the inductive definition of paths:

∀f fri, gfri, pint.
((∀p′int. eval(f, g, ε, p, p′) → A(p′)) ∧
(((∀P path. ∀p′int. eval(f, g, P, p, p′)) → A(p′)) →
(((∀p′′int. eval(f, g, P · head, p, p′′)) → A(p′′)) ∧
((∀p′′′int. eval(f, g, P · tail, p, p′′′)) → A(p′′′))))) →

((∀P path, qint. eval(f, g, P, p, q)) → A(q))

(36)

General / Structural rules
A ∗ (∃t. B) → ∃t. (A ∗ B) when t 6∈ FV (A) (37)

When A is pure,
(p ↪→ x) ∧ ((∃t. p 7→ t ∧ A(t)) ∗ B) →
(p 7→ x ∧ A[x/t])) ∗ B

(38)

If P is pure and P ′ is monotone,
A ∧ P → P ′ ⇒ (A ∗B) ∧ P → P ′ (39)

Rules for PtrRg

PtrRg(f, m) ∧ Ptr(x) ∧ (p, x) ∈ f → x ∈ m (40)

PtrRg(f, m) → PtrRg(f ◦ g, m) (41)
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Rules for elementary set-manipulation

x ≥ y → Itv(x, y) = � (42)

p ∈ m 	 q → ¬(p = q) (43)

x ∈ m → (m 	 x) ⊕ x = m (44)

¬(x ∈ m) → (m ⊕ x) 	 x = m (45)

x ∈ (m 	 y) → x ∈ m (46)

(p, q) ∈ f 	 (x, y) → (p, q) ∈ f (47)

¬(p − 8 ∈ Itv(p, q)) (48)

p ≤ q − 8 ∧ Ptr(q) → q − 8 ∈ Itv(p, q) (49)

p ≤ q ∧ q ≤ p′ − 8 ∧ Ptr(q) ∧ Ptr(p) ∧ Ptr(p′) → q ∈ Itv(p, p′) (50)

SbSet(m1, m2) → #m1 ≤ #m2 (51)

x ∈ m → Ptr(x) (52)

m1 = Itv(x, x1) ∧ m2 = Itv(x, x2) ∧ #m1 ≤ #m2 ∧ Ptr(x1) ∧ Ptr(x2) (53)

→ x1 ≤ x2

SbSet(m1, m2) ∧ SbSet(m2, m1) → m1 = m2 (54)

iso(f, m1, m2) ∧ (x, x′) ∈ g ◦ f ◦ f † → (x, x′) ∈ g (55)

x mod 8 = 0 → Ptr(x) (56)

Ptr(x) → Ptr(x − 8) ∧ Ptr(x + 8) (57)

(x, y) ∈ f fri → (y, x) ∈ f † (58)

(x, y) ∈ f1 ∧ (y, z) ∈ f2 → (x, z) ∈ g ◦ f (59)

y ∈ Itv(x1, x2) ∧ x2 ≤ x3 → y ∈ Itv(x1, x3) (60)

m = � → ∀x. ¬(x ∈ m) (61)

f = � → ∀x, y. ¬((x, y) ∈ f) (62)

(63)

Rule for Single-Valuedness
x ↪→ y ∧ x ↪→ y′ → y = y′ (64)

We have the expected result:

Theorem 3.6. The rules (1) - (64) are all valid.

The following lemma will be useful when we reason about assertions involving ∀∗.

Lemma 3.7. Suppose s, h � ∀∗p ∈ m. A and that ∀p′. p′ ∈ m∧A[p′/p] → B[p′/p] is valid. Then s, h � ∀∗p ∈ m. B.

PROOF: We do a case analysis on the cardinality of [[m]]s. If [[m]]s = � , then

s, h � ∀∗p ∈ m. A ⇐⇒ s, h � emp ⇐⇒ s, h � ∀∗p ∈ m. B

If [[m]]s = {p1, . . . , pk}, we have
s, h � A[p1/p] ∗ · · · ∗ A[pk/p],

so there are pairwise disjoint heaps h1, . . . , hk with
⋃

i=1...k hi = h such that for i = 1 . . . k, s, hi � A[pi/p]. Since
we have s, hi � pi ∈ m, we have s, hi � A[pi/p]∧pi ∈ m, so by assumption, we get s, hi � B[pi/p], and this means

s, h � ∀∗p ∈ m. B,

as desired.
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This means that to infer ∀∗p ∈ m. B from ∀∗p ∈ m. A, it suffices to show that ∀p′. p′ ∈ m ∧ A[p′/p] → B[p′/p]
is valid. In this way, we can do “implication under ∀∗”.

Another useful rule comes from the following lemma for which we omit the proof.

Lemma 3.8. If P is a pure assertion, and if P ∧A → A′ and P ∧B → B′ are valid, then P ∧(A∗B) → P ∧(A′ ∗B′)
is valid.

By induction, this means that in order to infer P ∧ (A1 ∗ · · · ∗ Ak) from P ′ ∧ (A′
1 ∗ · · · ∗ A′

k), it suffices to show
P ′ → P and

P ∧ A′
1 → A1, and · · · , and P ∧ A′

k → Ak.

As an example of a rule that can be derived from the rules above, we get the following from (38) and purity. Here,
A must be a pure assertion.

(p ↪→ x) ∧ ((∃t. (p 7→ t ∧ A(t))) ∗B)
⇓
(p 7→ x ∧ A[x/t]) ∗ B
⇓
((p 7→ x) ∗ B) ∧ A[x/t]
⇓
A[x/t]

(65)

In addition to the rules above, we have the standard rules of classical logic. We will sometimes implicitly substitute
equals for equals, that is, we will for example infer p ∈ m2 from p ∈ m1 ∧m1 = m2. Also, the most basic arithmetic
will be performed implicitly, so we will for example infer x − 8 ≤ y from x ≤ y.

4 The Implementation Language

In this section we first define the syntax and semantics of the programming language used for the implementation of
the garbage collector. Next, we use the assertion language we have just defined to give Hoare-like program logic for
the language.

4.1 Syntax and Semantics

Definition 4.1. The syntax of the implementation language is given by the following grammar:

C ::= skip | xint := e | xfs := m | xfrp := f | xint := [e] | [e] := e
| C; C | while e do C od| if e then C else C fi

Note that there are no constructs for allocating new locations on the heap. It would be straightforward to add a
cons-like construct to the language, but since it would make the language nondeterministic, and we will not need it,
we have omitted it. Note also that the forms x := [e] and [e] := e allow pointer arithmetic.

The operational semantics is given by a relation � on configurations. Configurations are either of the form s, h
(these are called terminal) or of the form C, s, h (these are called non-terminal).
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Definition 4.2. The relation � on configurations is defined by the following inference rules:

skip, s, h � s, h

[[e]]s = n

xint := e, s, h � s[x 7→ n], h

[[m]]s = M

xfs := m, s, h � s[x 7→ M ], h

[[f ]]s = ϕ

xfrp := f, s, h � s[x 7→ ϕ], h

[[e]]s = n n ∈ dom(h) h(n) = n′

xint ::= [e], s, h � s[x 7→ n′], h

[[e1]]s = n1 [[e2]]s = n2 n1 ∈ dom(h)

[e1] := e2, s, h � s, h[n1 7→ n2]

C1, s, h � C ′, s′, h′

C1; C2, s, h � C ′; C2, s
′, h′

C1, s, h � s′, h′

C1; C2, s, h � C2, s
′, h′

[[e]]s = 0

while e do C od, s, h � s, h

[[e]]s 6= 0 C;while e do C od, s, h � K

while e do C od, s, h � K

[[e]]s = 0 C2, s, h � K

if b then C1 else C2 fi, s, h � K

[[e]]s 6= 0 C1, s, h � K

if b then C1 else C2 fi, s, h � K

We remark that the semantics is easily seen to be deterministic. Let us introduce some terminology regarding the
semantics.

Definition 4.3. We say that

• C, s, h is stuck if there is no configuration K such that C, s, h � K.

• C, s, h goes wrong if there is a non-terminal configuration K such that C, s, h � ∗ K and K is stuck.

• C, s, h terminates normally if there is a terminal configuration s′, h′ such that
C, s, h � ∗ s′, h′.

As is standard, we define Modifies(C) for a command C to be the set of variables that are modified by the
command, i.e., those that occur on the left hand side of the forms xδ := v and xint := [e] (but not [x] := e). The set
FV (C) for a command is just the set of variables that occur in C.

We now turn to program logic.

4.2 Partial Correctness Specifications and Program Logic

To reason about programs in the implementation language, we introduce partial correctness specifications.

Definition 4.4. Let A and B be assertions, and let C be a command. The partial correctness specification (pcs)
{A}C{B} is said to hold if, for all states s, h with FV (A, C, B) ⊆ dom(s), s, h � A implies

• C, s, h does not go wrong, and

• if C, s, h � ∗ s′, h′, then s′, h′ � B.

We will give a program logic that is sound with respect to our partial correctness interpretation of specifications.
In these rules, e, m, and f range over terms of type int, fs, and frp, respectively.

Rule for skip

{A} skip {A}

Rules for assignment
{B[e/x]} xint := e {B}
{B[m/x]} xfs := m {B}
{B[f/x]} xfrp := f {B}
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Rule for sequencing
{A} C1{B

′} {B′} C2 {B}

{A} C1; C2 {B}

Rule for conditionals
{A ∧ b} C1 {B} {A ∧ ¬b} C2 {B}

{A} if b then C1 else C2 fi {B}

Rule for while loops
{A ∧ b} C {A}

{A} while b do C {A ∧ ¬b}

Rule of consequence
A ⇒ A′ {A′} C {B′} B′ ⇒ B

{A} C {B}

Rule for heap lookup: When n is a number

{e 7→ − ∧ x = n} xint := [e] {e[n/x] 7→ x}

Second rule for heap lookup: When x 6∈ FV (A, p),

{∃t. p 7→ t ∧ A}
x := [p]

{p 7→ x ∧ A[x/t]}
(66)

Third rule for lookup. If y 6∈ FV (A), and x and y are distinct variables,

{A ∧ (x ↪→ −)}
y := [x]

{A ∧ (x ↪→ y)}
(67)

Rule for heap update
{e1 7→ −} [e1] := e2 {e1 7→ e2} (68)

Rule for pointers:
{Ptr(x)} x := x + 8 {Ptr(x)}

Rules for ⊕,	:

{Ptr(x)} m := m ⊕ x {x ∈ m ∧ Ptr(x)}
{T} m := m 	 x {¬(x ∈ m)}
{Ptr(x) ∧ Ptr(y)} f := f ⊕ (x, y) {(x, y) ∈ f ∧ Ptr(x) ∧ Ptr(y)}
{T} f := f 	 (x, y) {¬((x, y) ∈ f)}

∀ introduction rule
{A} C {B}

{∀x. A} C {∀x. B}

The Frame Rule
{A} C {B}

{A ∗ A′} C {B ∗ A′}
Modifies(C) ∩ FV (A′) = �

Derived Rule for Pure Assertions

{B} C {B′}

{B ∧ A} C {B′ ∧ A}
A pure, and Modifies(C) ∩ FV (A) = �
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Rule of Conjunction
{A} C {A′} {B} C {B′}

{A ∧ B} C {A′ ∧ B′}

As an example of a useful derived rule, we note how pure assertions can move in and out of the Frame Rule:

{P ∧ A} C {B}

{P ∧ (A ∗ B′)} C {B ∗ B′}
P pure, and Modifies(C) ∩ FV (B′) = �

(69)

This follows from Remark 3.4 and the rule of consequence. Another simple derived rule is the following. If x does
not occur free in A, we have

{A}
⇓
{A ∧ y = y}

⇓
{(A ∧ y = x)[y/x]}

x := y
{A ∧ x = y}

(70)

We then have the expected soundness result.

Theorem 4.5. If a specification {A} C {B} is derivable by the rules above, then {A} C {B} holds.

To conclude, a little word of warning about sets and the ⊕/	 constructs: Traditionally, one has the following rule
in Hoare Logic:

{B(x)} x := x + 1 {B[x − 1/x]}

But note that we can not in general use the following rule

{B(m)} m := m ⊕ x {B[m 	 x/m]}

The problem is, of course, that we can use the rule for assignment in the first case, since in ordinary arithmetic, we
always have x = (x + 1) − 1, and therefore

{B(x)} ⇒ {B[((x + 1) − 1)/x]} x := x + 1 {B[x − 1/x]}

is an instance of the “substitution rule” that the rule for assignment yields. In the second case, this fails, because we
do not have m = (m 	 x) ⊕ x in general. However, if we add assumptions that ensure this, we get sound rules:

{B(m) ∧ x ∈ m}
m := m 	 x

{B[m ⊕ x/m] ∧ ¬(x ∈ m)}

{B(m) ∧ ¬(x ∈ m) ∧ Ptr(x)}
m := m ⊕ x

{B[m 	 x/m] ∧ x ∈ m}
(71)

When we increase endpoints of an interval, we must also take precautions about assertions that involve this interval.
Specifically, if m ≡ Itv(x1, x2), we have the rules

{B(m) ∧ Ptr(x1)}
x1 := x1 + 8

{B[m ⊕ (x1 − 8)/m]}

{B(m) ∧ Ptr(x2)}
x2 := x2 + 8

{B[m 	 (x2 − 8)/m]}
(72)

We also have the obvious rules resembling (71) for relations.

5 Garbage Collection

In this section, we give an explanation of a correctness criterion of a garbage collector. It is based on the analysis in
[COB02]. We will first outline assumptions about the overall system, and then we will give relevant definitions for
specifying correctness of garbage collectors.
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5.1 Assumptions

We assume that the garbage collector is written in our implementation language as part of a runtime system which
a user language can depend on. We will not formalize the user language here, but it can, for example, be like the
programming language in [COB02]. The important issue is that it always allocates locations in pairs and that its
control over the heap is restricted to variable references (so there is no possibility to access the heap with non-variable
references, like in [x+84]). In the user language, there are at least two “kinds” of values: pointers and numbers. There
might be an explicit type system to distinguish them, or the distinction might be implicit in the operational semantics
(like in the language of [COB02]). In the implementation language, we do not have these types; both numbers and
pointers are simply integers.

To make the distinction between numbers and pointers from the user language in the implementation, we make the
following translation of values from the user language into the implementation language:

• When we store an integer from the user language in the heap, we multiply it by 4 and add 1 to it.

• The translation of nil is set to −1

• The translation of a heap allocation, x := cons(E1, E2), is a call to the memory allocator that we have imple-
mented. A program sketch of it looks like this:

alloc(l,n1,n2) {
if (any_space_left) {
allocate 2 heap cells;
store(n1, n2);
return first address to user lang;

}
else {
Garbage collect;
alloc(l,n1,n2);

}
}

The allocator returns the address of the first of the two cells that are allocated. As a consequence, all pointers in
the user language correspond to natural numbers divisible by 8.

For simplicity, we assume that there is only one live cell, called root, in the domain of the stack from the user
language. This simplifies the implementation of the garbage collector, and the proof technique used will still be clear.

5.2 Expressing Garbage Collection

We give the relevant definitions for specifying correctness of a copying garbage collector. The definitions are based
on those in [COB02].

Definition 5.1. Let (s, h) be a state with root ∈ dom(s).

• Pointer p is reachable from pointer q in the state (s, h) if p = q or if s, h � p ↪→ p1, p2, and q is reachable from
p1 or p2 in (s, h). p is called reachable in (s, h) if p is reachable from s(root) in (s, h).

• (s, h) is garbage free if every pointer p ∈ dom(h) is reachable in (s, h).

• prune(s, h) = (s, g), where g ⊆ h is the subheap of h restricted to those pointers reachable in (s, h).

Definition 5.2. Let s, h and s′, h′ be states. Call (s, h) and (s′, h′) weakly heap-isomorphic if there is a bijection
β : dom(h) → dom(h′) such that for all pointers p ∈ dom(h), h′(β(p)) = β∗(h(p)) and h′(β(p)+4) = β∗(h(p+4)).
Here, β∗ is the extension of β to � that is the identity on numbers that are not pointers. If β is a weak heap isomorphism,
and β(s(root)) = s′(root), we call β a heap isomorphism.
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The formal notion of garbage collection is then as follows:

Definition 5.3. Let (s, h), (s′, h′) be states. We say that h′ is a garbage collected version of h if there exists a heap
isomorphism β : prune(s, h) ∼= prune(s′, h′).

Note that the identity does the job, i.e., (s, h) is a garbage collected version of itself for any state (s, h). A stronger
notion of garbage collection would, of course, be to require that β is a heap isomorphism β : prune(s, h) ∼= s′, h′.
But the garbage collector, we analyze in this paper does not remove anything from the domain of the heap, so we will
stick to the weaker requirement.

Therefore, we say that a garbage collector GC is correct, if GC, s, h � ∗ s′, h′ implies that s′, h′ is a garbage
collected version of s, h.

5.3 Auxiliary Variables

An implementation of a garbage collector does not need to use finite sets or maps like those in our term and program-
ming languages. Indeed, these have merely been included to ease our task of reasoning about the garbage collector,
and we shall use them as auxiliary variables, in the sense of [OG76]. Let us recall the definitions.

Definition 5.4 ([OG76, (3.6)]). Let C be a command, and let AV be a set of variables that appear in C only in
assignments x := E, where x ∈ AV . Then AV is an auxiliary variable set for C.

It should be noted that x may appear in E in the assignment form above, and that in our setting, the x can have the
types int, fs, and frp.

Proposition 5.5 ([OG76, (3.7)]). Let AV be an auxiliary variable set for C ′, and P and Q assertions not containing
free variables from AV . Let C be the command obtained from C ′ by deleting all assignments to the variables in AV .
Then

{P} C ′ {Q}

{P} C {Q}

This proposition allows us to insert “extra” assignments to variables that are not directly needed for garbage
collection, but rather for reasoning about it. The proposition ensures that we can obtain the same conclusions about the
original program that we can for the “new” program (provided the conclusions do not contain the auxiliary variables).
This technique will be used in our proof of correctness.

6 The Garbage Collection Algorithm

We have chosen to implement and reason about Cheney’s algorithm, which was originally presented in [Che70], and
is described in more detail in [JL97]. We assume that we are given two contiguous “semi-heaps” of equal size, i.e.,
that two intervals, OLD ≡ Itv(startOld, endOld) and NEW ≡ Itv(startNew, endNew) (with endOld − startOld =
endNew − startNew > 0) are given (and in the domain of the heap). These will play the roles of “FromSpace” and
“ToSpace” from [JL97].

6.1 Implementation

The implementation of the algorithm is given in Figure 6. We have not equipped variables with types, but they should
be evident. As described in Section 5, the alloc(l, n1, n2) procedure is called when a cons operation in the user
language is invoked. l is the location that is returned to the user language, and n1, n2 are the (encodings of) values
that are to be stored in the heap by the memory management system. As mentioned, we assume that we are given
four constants startOld, endOld, startNew, endNew which delimit the two parts of the heap that we will deal with. It
allocates in OLD, if there is enough space for it. If not, it swaps the rôles of the two parts of the heap and performs
a garbage collection by copying all live cells from OLD to NEW, so space is (hopefully) freed, and then calls itself
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alloc(l,n1,n2) {
if (free < maxFree)

[free] := n1;
[free + 4] := n2;
free := free + 8;
l := free-8

else

if (offset = startOld) then

offset := startNew;
scan := startNew;
free := startNew;
maxFree := endNew

else

offset := startOld;
scan := startOld;
free := startOld;
maxFree := endOld

fi;
// Garbage Collection starts

ϕ := � ;
FORW := � ;
UNFORW := ALIVE;
t1 := [root];
t2 := [root + 4];
[free] := t1;
[free + 4] := t2;
[root] := free;
FORW := FORW ⊕ root;
UNFORW := UNFORW 	 root;
ϕ := ϕ ⊕ (root, free);
free := free + 8;

while ¬(scan = free)
// ScanCar begins

x := [scan];
if (x mod 8 = 0)

y := [x];
if (y mod 8 = 0 ∧

offset ≤ y ∧
y ≤ maxFree)

[scan] := y
else

t1 := [x];
t2 := [x + 4];

[free] := t1;
[free + 4] := t2;
[x] := free;
[scan] := free;
FORW := FORW ⊕ x;
UNFORW := UNFORW 	 x;
ϕ := ϕ ⊕ (x, free);
free := free + 8

fi;
else skip

fi;
// ScanCar ends
// ScanCdr begins

x := [scan + 4];

if (x mod 8 = 0)
y := [x];
if (y mod 8 = 0 ∧

offset ≤ y ∧
y ≤ maxFree)

[scan + 4] := y
else

t1 := [x];
t2 := [x + 4];
[free] := t1;
[free + 4] := t2;
[x] := free;
[scan + 4] := free;
FORW := FORW ⊕ x;
UNFORW := UNFORW 	 x;
ϕ := ϕ ⊕ (x, free);
free := free + 8

fi;
else skip

fi;
// ScanCdr ends

scan := scan + 8
od;

// Garbage Collection ends
root := offset;
malloc(l,n1,n2)

fi

}

Figure 6: The Garbage Collection Algorithm
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recursively. We will assume here that we are dealing with the case where we have to copy cells from the lower half of
the address space to the upper half, so offset is set to startNew.

We have used the simplifying assumption about root from Sec. 5.1 in the implementation, inasmuch as we only
deal with that pointer before we start executing the while loop. If there were more locations in the domain of the stack
of the user language, the code before the while loop would need to be modified to deal with all these pointers. We
will concentrate on the garbage collection part GC∗ of the memory allocator; it is delimited in the code by comments.

6.2 Specification

We present a specification for the garbage collector. We treat the assumption and the conclusion in separate subsec-
tions.

6.2.1 Preconditions

Informally, the conditions that must be met for a state s, h for the algorithm to work correctly are:

• There is a variable root ∈ dom(s), and s(root) ∈ OLD.

• For all locations l ∈ OLD& = OLD ∪ {p + 4 | p ∈ OLD}, if h(l) = q, and q is a pointer, then q ∈ OLD. In
particular, all reachable cells are in OLD.

• The reachable part of OLD comes in “pairs”: if a pointer p ∈ dom(h) ∩ OLD, then p + 4 ∈ dom(h), and if a
location l 6∈ Ptr is in dom(h), then l − 4 ∈ Ptr must also be in dom(h).

• The locations in NEW& must be in the domain of the heap.

The last requirement means enables us to copy the live cells into NEW in a deterministic way. If we did not assume
NEW to be in the domain of the initial heap, but rather used a non-deterministic cons operation, we would not be
able to tell in advance where the copied cells were located, and that would make the breadth-first scanning, which the
algorithm performs, more difficult.

If we define the finite set ALIVE to be the set of pointers that are reachable from root, and if we let head and tail be
two single-valued relations (from pointers to integers) that record the initial state of the part of the heap whose domain
is ALIVE&, then the following assertion will hold initially.

(∀∗p ∈ ALIVE. ((∃q. (p, q) ∈ head ∧ p 7→ q) ∗ (∃q. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
(∀∗p ∈ NEW.p 7→ −,−)

Note also that the assumptions mean that the contents of any cell in ALIVE is either a pointer in ALIVE or a
nonpointer. Further assumptions needed are that various variables / constants denote pointers, and that ALIVE is the
set of pointers that are reachable from root. Summing up, the following assertion is assumed to hold when we initiate
the garbage collector:

InitAss ≡
Ptr(offset) ∧ Ptr(maxFree) ∧ Disjoint(OLD, NEW) ∧ root ∈ ALIVE∧
SbSet(ALIVE, OLD) ∧ Reachable(head, tail, ALIVE, root) ∧ #NEW = #OLD∧
PtrRg(head, ALIVE) ∧ PtrRg(tail, ALIVE) ∧ Tfun(head, ALIVE) ∧ Tfun(tail, ALIVE)∧
((∀∗p ∈ ALIVE. ((∃q. (p, q) ∈ head ∧ p 7→ q) ∗ (∃q. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
(∀∗p ∈ NEW.p 7→ −,−) ∗ T)

The T in the assertion above is due to the fact that we have not said anything about unreachable cells. Our algorithm
does not affect these “dead” cells, so the specification need not mention them (we can include them in the specification
afterwards with the Frame Rule). Therefore, the T in InitAss will henceforth be omitted.
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Figure 7: A sample heap
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Figure 8: A stage in execution

We immediately note that some of the conjuncts in this assertion contain no free variables that are modified by the
algorithm. Therefore, we define a (pure) assertion which is therefore trivially an invariant of the algorithm. This will
save space later.

Ipure ≡
Reachable(head, tail, ALIVE, root) ∧ Ptr(offset) ∧ Ptr(maxFree)∧
PtrRg(head, ALIVE) ∧ PtrRg(tail, ALIVE) ∧ Tfun(head, ALIVE) ∧ Tfun(tail, ALIVE)

6.2.2 The Invariant and the Conclusion

We have to exhibit an invariant for the while-loop that is weak enough for us to show and strong enough to conclude
that there exists a weak heap-isomorphism between the initial heap and the heap after execution. We start with an
informal analysis. Suppose we run the algorithm on the heap depicted in Fig. 7, where dead cells are not shown.

At some point during execution, the heap will look like that of Fig. 8 (forwarding pointers are marked with a
bolder arrow).

We see that there are two “kinds” of cells in the part of the heap whose domain is ALIVE:

• Some have not yet been copied into NEW. These have have a pointer to a cell in ALIVE or a non-pointer in their
first component. We call the set of these cells UNFORW, and it can be seen on Fig. 9.
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Figure 9: Illustration of AUNFORW

• Some have been copied into NEW. These have their first component replaced with a pointer to the copy. The
set of these cells is called FORW. See Fig. 10 for an illustration.

The pointer free in the program is used to indicate where to “allocate” the next cell we copy. So we may partition
NEW into two disjoint sets BUSY and FREE, where

BUSY ≡ Itv(offset, free), and
FREE ≡ Itv(free, maxFree).

We may partition NEW further. The pointer scan indicates the border between the cells that have already been
“scanned” (and will not be manipulated further by the algorithm), and those that have not yet been scanned. So
BUSY is equal to the disjoint union of the following intervals.

FIN ≡ Itv(offset, scan), and
UNFIN ≡ Itv(scan, free).

Next, we note that each cell in FORW corresponds to exactly one cell in BUSY, namely the cell that it points to in
its first component. Thus, there is a (single-valued) relation (on pointers) that can be viewed as a bijection,

ϕ ⊆ FORW × BUSY,

where (p, q) ∈ ϕ iff q is the value of the heap at p after it has been updated to point to a cell in NEW.

Given these partitions and relations, we can formalize what we know about the pointers in each of the sets.

• The pointers p in UNFORW have not yet been altered by the algorithm, so for these, there are q, q ′ such that
(p, q) ∈ head, (p, q′) ∈ tail, and p ↪→ q, q′. Therefore, we define the assertion

AUNFORW ≡
∀∗p ∈ UNFORW. ((∃q. (p, q) ∈ head ∧ p 7→ q) ∗ (∃q. (p, q′) ∈ tail ∧ p + 4 7→ q′))

This is illustrated in Fig. 9.

• The pointers p in FORW have their first component overwritten by the values they correspond to by the relation
ϕ, so for these, there is a q such that p points to q and (p, q) ∈ ϕ. Consequently, we define (see also Fig. 10):

AFORW ≡ ∀∗p ∈ FORW.(∃qint. (p, q) ∈ ϕ ∧ p 7→ q,−)
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Figure 10: Illustration of AFORW
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Figure 11: Illustration of a pointer in UNFIN

• For all the pointers p in UNFIN there are cells p′ ∈ ALIVE which contained the contents of p before the run of
the algorithm (p is just a copy of p′ before p′ had its first component updated, and if so, (p′, p) ∈ ϕ). Therefore,
there are q, q′ such that (p, q) ∈ head◦ϕ† ∧ (p, q′) ∈ tail◦ϕ† and such that p points to q and q′ (that is, p points
to q and p + 4 points to q′). We define

AUNFIN ≡
∀∗p ∈ UNFIN.((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′))

There is an illustration of this in Fig. 11, where we have used a “functional notation” involving the relations ϕ
and head.

• When a pointer p is scanned, the components (q1, q2) of the cell it points to, are redirected to the values they
correspond to under the bijection ϕ in both of the cases in the while loop, if they are pointers. If not, they are
left untouched. Therefore, for all pointers p in FIN there are integers q, q ′ such that p points to q, q′, (p, q) ∈
ϕ � (head ◦ ϕ†), and (p, q′) ∈ ϕ � (tail ◦ ϕ†). So we define

AFIN ≡
∀∗p ∈ FIN.((∃q. (p, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p + 4 7→ q′)).
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Figure 12: The situation for a pointer in FIN

Consult Fig. 12 for an illustration.

• The pointers p ∈ FREE are in the domain of the heap, so we set

AFREE ≡ ∀∗p ∈ FREE.p 7→ −,−

Further, the union of the sets FORW and UNFORW is ALIVE. root is in FORW after the initialization, and ϕ is
an isomorphism between FORW and BUSY. ALIVE has at most as many elements as NEW (since ALIVE is a subset
of OLD which has the same size as NEW), and scan never exceeds free (and these are both pointers). The entities
ALIVE, head and tail are not modified by the algorithm. Thus, the invariant of the algorithm is

I ≡
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW) ∧ Ipure ∧ Ptr(free) ∧ Ptr(scan)∧
(AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN ∗ AFREE)

For the assertions A− defined above, we will abuse notation a little. Sometimes, we will need to consider the
separating conjunction over the sets involved, except for one element which we will consider for separately. For
example, AFORW−x will denote the assertion (compare with the definition of AFORW)

∀∗p ∈ (FORW 	 x). (∃qint. (p, q) ∈ ϕ ∧ p 7→ q,−).

This should not cause any confusion.

We will prove that the specification, we have outlined, holds in Section 7, and in Section 8, we will prove that this
implies correctness of the algorithm.

7 Proving the Invariant

In this section, we will initiate the actual proof of our garbage collector. We have formulated a precondition InitAss

and an invariant I , and in this section, we will show that

• I is established when the code before the while-loop is run in a state in which InitAss holds.

• The body of the while-loop preserves I , i.e., if I and the condition of the loop hold in a state, then after
execution of the body from that state, I holds in the resulting state.
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7.1 Establishing the Invariant

In this section we show that the initializing code preceding the while loop establishes I when run in a state satisfying
the precondition from Section 6.2.1.

Therefore, let INIT and INIT∗ be the code fragments

INIT ≡ t1 := [root]; INIT∗ ≡ INIT;
t2 := [root + 4];
[free] := t1;
[free + 4] := t2;
[root] := free

FORW := FORW ⊕ root;
UNFORW := UNFORW 	 root;
ϕ := ϕ ⊕ (root, free);
free := free + 8;

We first infer a local specification for INIT, and then use this specification and the Frame Rule to obtain a global
specification for INIT∗.

The specification below only mentions the locations that are affected by INIT.

{(∃q. (root, q) ∈ head ∧ root 7→ q) ∗ (∃q′. (root, q′) ∈ tail ∧ root + 4 7→ q′)∗
(free 7→ −,−)}

t1 := [root]

{((root, t1) ∈ head ∧ root 7→ t1) ∗ (∃q′. (root, q′) ∈ tail ∧ root + 4 7→ q′)∗
(free 7→ −,−)}

t2 := [root + 4]

{((root, t1) ∈ head ∧ root 7→ t1) ∗ ((root, t2) ∈ tail ∧ root + 4 7→ t2) ∗ (free 7→ −,−)}

[free] := t1

{((root, t1) ∈ head ∧ root 7→ t1) ∗ ((root, t2) ∈ tail ∧ root + 4 7→ t2) ∗ (free 7→ t1,−)}

[free] := t2

{((root, t1) ∈ head ∧ root 7→ t1) ∗ ((root, t2) ∈ tail ∧ root + 4 7→ t2) ∗ (free 7→ t1, t2)}

⇓
{(root, t1) ∈ head ∧ (root, t2) ∈ tail ∧ ((root 7→ t1) ∗ (root + 4 7→ t2)∗
(free 7→ t1, t2))}

[root] := free

{(root, t1) ∈ head ∧ (root, t2) ∈ tail ∧ ((root 7→ free,−) ∗ (free 7→ t1, t2))}

We explain the first of these specifications in detail. First, we have that the specification

{(∃q. (root, q) ∈ head ∧ root 7→ q)}
t1 := [root]

{((root, t1) ∈ head ∧ root 7→ t1)}

is valid by the rule (66) for heap lookup, since the assertion (root, q) ∈ head is pure. The first specification above is
then valid by the Frame Rule. The second specification is valid by the same argument; here we use that (root, q ′) ∈
tail is pure. For the third and the fourth specifications, we use the Frame Rule again, along with the rule for heap
update (68). The implication follows from Remark 3.4 (we use that purity of the assertions (root, t1) ∈ head and
(root, t2) ∈ tail), and for the last specification, we use the rule (68) for update and the Frame Rule again.

From this local specification, we use the Frame Rule to infer a global specification for INIT∗.
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InitAss

⇓
{Ptr(offset) ∧ Disjoint(OLD, NEW) ∧ Ptr(maxFree) ∧ root ∈ ALIVE∧
SbSet(ALIVE, OLD) ∧ Reachable(head, tail, ALIVE, root) ∧ #NEW = #OLD∧
PtrRg(head, ALIVE) ∧ PtrRg(tail, ALIVE) ∧ Tfun(head, ALIVE) ∧ Tfun(tail, ALIVE)∧
((∀∗p ∈ ALIVE. ((∃q. (p, q) ∈ head ∧ p 7→ q) ∗ (∃q. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
(∀∗p ∈ NEW. p 7→ −,−))}

scan := offset; free := offset; FORW := � ;
ϕ := � ; UNFORW := ALIVE

{Ptr(offset) ∧ Disjoint(OLD, NEW) ∧ root ∈ ALIVE ∧ Ptr(maxFree) ∧ Ptr(root)∧
SbSet(ALIVE, OLD) ∧ Reachable(head, tail, ALIVE, root) ∧ #NEW = #OLD∧
PtrRg(head, ALIVE) ∧ PtrRg(tail, ALIVE) ∧ Tfun(head, ALIVE) ∧ Tfun(tail, ALIVE)∧
((∀∗p ∈ ALIVE. ((∃q. (p, q) ∈ head ∧ p 7→ q) ∗ (∃q. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
(∀∗p ∈ NEW. p 7→ −,−))∧
scan = offset ∧ free = offset ∧ FORW = � ∧ ϕ = � ∧ UNFORW = ALIVE}

⇓
{Disjoint(ALIVE, NEW) ∧ root ∈ UNFORW ∧ Ptr(offset) ∧ Ptr(root)∧
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
Ipure ∧ scan = offset ∧ free = offset ∧ FORW = � ∧ ϕ = � ∧
(AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN ∗ AFREE)

⇓
{Ptr(offset) ∧ Ptr(root) ∧ Disjoint(ALIVE, NEW) ∧ root ∈ UNFORW∧
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
Ipure ∧ scan = offset ∧ free = offset ∧ FORW = � ∧ ϕ = � ∧
((∀∗p ∈ (UNFORW 	 root). ((∃q. (p, q) ∈ head ∧ p 7→ q)∗
(∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′))) ∗ AFORW ∗ AFIN ∗ AUNFIN∗
(∀∗p ∈ (FREE 	 free). p 7→ −,−) ∗ (free 7→ −,−)∗
(∃q. (root, q) ∈ head ∧ root 7→ q) ∗ (∃q′. (root, q′) ∈ tail ∧ root + 4 7→ q′))}

INIT

{Ptr(offset) ∧ Ptr(root) ∧ Disjoint(ALIVE, NEW) ∧ root ∈ UNFORW∧
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
Ipure ∧ scan = offset ∧ free = offset ∧ FORW = � ∧ ϕ = � ∧
((∀∗p ∈ (UNFORW 	 root). ((∃q. (p, q) ∈ head ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
AFORW ∗ AFIN ∗ AUNFIN∗
(∀∗p ∈ (FREE 	 free). p 7→ −,−) ∗ ((free 7→ t1, t2) ∗ (root 7→ free,−)
∧(root, t1) ∈ head ∧ (root, t2) ∈ tail))}

⇓
{Ptr(offset) ∧ Ptr(root) ∧ Disjoint(ALIVE, NEW) ∧ root ∈ UNFORW∧
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
Ipure ∧ scan = offset ∧ free = offset ∧ ¬(root ∈ FORW) ∧ ¬((root, free) ∈ ϕ)∧
(root, t1) ∈ head ∧ (root, t2) ∈ tail ∧ Ptr(free)∧
((∀∗p ∈ (UNFORW 	 root). ((∃q. (p, q) ∈ head ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
AFORW ∗ AFIN ∗ AUNFIN∗
(∀∗p ∈ (FREE 	 free). p 7→ −,−) ∗ (free 7→ t1, t2) ∗ (root 7→ free,−))}
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FORW := FORW ⊕ root;
UNFORW := UNFORW 	 root;
ϕ := ϕ ⊕ (root, free)

{Ptr(free) ∧ Ptr(root) ∧ Ptr(offset) ∧ scan = offset ∧ offset = free ∧ (root, free) ∈ ϕ∧
iso(ϕ 	 (root, free), FORW 	 root, BUSY) ∧ root ∈ FORW ∧ Ipure∧
isUnion(FORW 	 root, UNFORW ⊕ root, ALIVE) ∧ ¬(root ∈ UNFORW)∧
#ALIVE ≤ #NEW ∧ Disjoint(ALIVE, NEW) ∧ (root, t1) ∈ head ∧ (root, t2) ∈ tail∧
((∀∗p ∈ ((UNFORW ⊕ root) 	 root). ((∃q. (p, q) ∈ head ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
(∀∗p ∈ (FORW 	 root). (∃q. (p, q) ∈ ϕ 	 (root, free) ∧ p 7→ q,−))∗
(∀∗p ∈ FIN. ((∃q. (p, q) ∈ ϕ 	 (root, free) � (head ◦ (ϕ 	 (root, free))†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ ϕ 	 (root, free) � (tail ◦ (ϕ 	 (root, free))†) ∧ p + 4 7→ q′)))∗
(∀∗p ∈ UNFIN. ((∃q. (p, q) ∈ head ◦ (ϕ 	 (root, free))† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ (ϕ 	 (root, free))†) ∧ p + 4 7→ q′))∗
(∀∗p ∈ (FREE	 free). p 7→ −,−) ∗ (root 7→ free,−) ∗ (free 7→ t1, t2))}

free := free + 8

{Ptr(free − 8) ∧ Ptr(root) ∧ Ptr(offset) ∧ scan = offset∧
offset = free − 8 ∧ (root, free − 8) ∈ ϕ∧
iso(ϕ 	 (root, free − 8), FORW 	 root, BUSY 	 (free − 8)) ∧ root ∈ FORW ∧ Ipure∧
isUnion(FORW 	 root, UNFORW ⊕ root, ALIVE) ∧ ¬(root ∈ UNFORW)∧
#ALIVE ≤ #NEW ∧ Disjoint(ALIVE, NEW) ∧ (root, t1) ∈ head ∧ (root, t2) ∈ tail∧
((∀∗p ∈ ((UNFORW ⊕ root) 	 root). ((∃q. (p, q) ∈ head ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
(∀∗p ∈ (FORW 	 root). (∃q. (p, q) ∈ ϕ 	 (root, free − 8) ∧ p 7→ q,−))∗
(∀∗p ∈ FIN.

((∃q. (p, q) ∈ ϕ 	 (root, free − 8) � (head ◦ (ϕ 	 (root, free − 8))†) ∧ p 7→ q)∗
(∃q′. (p, q′) ∈ ϕ 	 (root, free − 8) � (tail ◦ (ϕ 	 (root, free − 8))†) ∧ p + 4 7→ q′)))∗

(∀∗p ∈ (UNFIN 	 (free − 8)). ((∃q. (p, q) ∈ head ◦ (ϕ 	 (root, free − 8))† ∧ p 7→ q)∗
(∃q′. (p, q′) ∈ tail ◦ (ϕ 	 (root, free − 8))†) ∧ p + 4 7→ q′))∗

(∀∗p ∈ ((FREE ⊕ (free − 8)) 	 (free − 8)). p 7→ −,−) ∗ (root 7→ (free − 8),−)∗
((free − 8) 7→ t1, t2))}

⇓

{Ptr(free − 8) ∧ Ptr(root) ∧ Ptr(offset) ∧ scan = offset∧
offset = free − 8 ∧ (root, free − 8) ∈ ϕ∧
iso(ϕ 	 (root, free − 8), FORW 	 root, BUSY 	 (free − 8)) ∧ root ∈ FORW ∧ Ipure∧
isUnion(FORW 	 root, UNFORW ⊕ root, ALIVE) ∧ ¬(root ∈ UNFORW)∧
#ALIVE ≤ #NEW ∧ Disjoint(ALIVE, NEW) ∧ (root, t1) ∈ head ∧ (root, t2) ∈ tail∧
((∀∗p ∈ ((UNFORW ⊕ root) 	 root). ((∃q. (p, q) ∈ head ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
((∀∗p ∈ (FORW 	 root). (∃q. (p, q) ∈ ϕ 	 (root, free − 8) ∧ p 7→ q,−))∗
(root 7→ (free − 8),−))∗
(∀∗p ∈ FIN.

((∃q. (p, q) ∈ ϕ 	 (root, free − 8) � (head ◦ (ϕ 	 (root, free − 8))†) ∧ p 7→ q)∗
(∃q′. (p, q′) ∈ ϕ 	 (root, free − 8) � (tail ◦ (ϕ 	 (root, free − 8))†) ∧ p + 4 7→ q′)))∗

((∀∗p ∈ (UNFIN 	 (free − 8)). ((∃q. (p, q) ∈ head ◦ (ϕ 	 (root, free − 8))† ∧ p 7→ q)∗
(∃q′. (p, q′) ∈ tail ◦ (ϕ 	 (root, free − 8))†) ∧ p + 4 7→ q′)) ∗ ((free − 8) 7→ t1, t2))∗

(∀∗p ∈ ((FREE ⊕ (free − 8)) 	 (free − 8)). p 7→ −,−))}

In this derivation, the second step uses the derived rule (70) for assignment several times, and (52) to conclude
Ptr(root). The third step uses the rule (2) for ∀∗ (to conclude AFORW, AFIN, and AUNFIN) and (1) (for AUNFORW

and AFREE). This step also uses the set-theoretic rules (31), (7), (51), and (25). The fourth step uses the rule (5),
and we use our “derived Frame Rule” (69) and our local specification from before to take the fifth step. The sixth
step is a consequence of purity and the rules (61), (62), and the seventh follows from the rules in (71). The step for
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free := free + 8 uses the rules in (72), and the last is just a matter of rewriting.

It is now our task to show that the invariant I follows from the conclusion in this derivation. Before we embark on
this, we describe the method used to do it.

I can be viewed as a conjunction I ≡ I1 ∧ · · · ∧ Ik of assertions, where some of the Ii’s are pure and one is not
pure; let us say that Ik is the impure part of I , and let us write Ik on the form A1 ∗ · · · ∗Am. Similarly, the conclusion
in the derivation has the form I ′

1 ∧ · · · ∧ Ik′ where I ′
i are pure for i ∈ {1, · · · , k′ − 1} and where Ik′ ≡ A′

1 ∗ · · · ∗A′
m.

The strategy is to show each of I1, . . . , Ik−1 from I ′1 ∧ · · · ∧ I ′k′−1
and each of the Ai from I ′1 ∧ · · · ∧ I ′k′−1

∧A′
i.

This is sufficient by the remark after Lemma 3.8.

We therefore write down each of the conjuncts in I , starting with the pure parts.

• iso(ϕ, FORW, BUSY). This follows from

iso(ϕ 	 (root, free − 8), FORW 	 root, BUSY 	 (free − 8)) ∧ root ∈ FORW∧
(free − 8) ∈ BUSY ∧ (root, free − 8) ∈ ϕ ∧ Ptr(free − 8)

and (9). To be rigorous, we do not have free−8 ∈ BUSY per se. But we know Ptr(free−8)∧ free−8 = offset,
so by (49), we get free − 8 ∈ BUSY.

• isUnion(FORW, UNFORW, ALIVE) follows from

isUnion(FORW 	 root, UNFORW ⊕ root, ALIVE) ∧ root ∈ FORW

and (29).

•
root ∈ FORW ∧ #ALIVE ≤ #NEW ∧ Ipure ∧ Disjoint(ALIVE, NEW)

follows from the same assertion that is a part of the conclusion above.

• scan ≤ free. Follows from scan = offset ∧ free − 8 = offset.

• Ptr(scan) ∧ Ptr(free). Follows from ordinary set manipulations (57), and from Ptr(offset) ∧ scan = offset ∧
Ptr(free − 8).

For the impure parts, we need more work. We will deal with each of the parts in the iterated separating conjunction
(AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN ∗ AFREE) separately.

For UNFORW, we have

¬(root ∈ UNFORW)∧
(∀∗p ∈ ((UNFORW ⊕ root) 	 root).

((∃q. (p, q) ∈ head ∧ p 7→ q) ∗ (∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))
⇓
((UNFORW ⊕ root) 	 root) = UNFORW∧
(∀∗p ∈ ((UNFORW ⊕ root) 	 root).

((∃q. (p, q) ∈ head ∧ p 7→ q) ∗ (∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))
⇓
(∀∗p ∈ UNFORW. ((∃q. (p, q) ∈ head ∧ p 7→ q) ∗ (∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))

�

AUNFORW,

where the two implications follow from (45) and (1), respectively.
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For FORW,
(root, free − 8) ∈ ϕ ∧ root ∈ FORW∧
((∀∗p ∈ (FORW 	 root). (∃q. (p, q) ∈ ϕ 	 (root, free − 8) ∧ p 7→ q,−))∗
(root 7→ free − 8,−))

⇓
((∀∗p ∈ (FORW 	 root). (∃q. (p, q) ∈ ϕ ∧ p 7→ q,−))∗
(root 7→ free − 8,−∧ (root, free − 8) ∈ ϕ)) ∧ root ∈ FORW

⇓
((∀∗p ∈ (FORW 	 root). (∃q. (p, q) ∈ ϕ ∧ p 7→ q,−))∗
(∃q. root 7→ q,− ∧ (root, q) ∈ ϕ)) ∧ root ∈ FORW

⇓
∀∗p ∈ FORW. (∃q. (p, q) ∈ ϕ ∧ p 7→ q,−)

�

AFORW

The first implication follows from the rule for pure assertions in Remark 3.4, from (47), and Lemma 3.7. The third
implication follows from (6).

For FIN, the easiest proof is to note that the condition scan = offset in the conclusion above makes both of the
assertions about FIN equivalent to emp. Another way is to use (47) and Lemma 3.7 to “extend” ϕ as it is done in the
derivation for UNFIN below.

The following derivation takes care of FREE (we have implicitly used the rule (48)):

¬(free − 8 ∈ FREE)∧
∀∗p ∈ ((FREE ⊕ (free − 8)) 	 (free − 8). p. → −,−)
⇓
FREE = (FREE ⊕ (free − 8)) 	 (free − 8) ∧
∀∗p ∈ ((FREE ⊕ (free − 8)) 	 (free − 8). p. → −,−)
⇓
∀∗p ∈ FREE. p 7→ −,−

�

AFREE

The first implication here is an instance of (45), and the second implication follows from (1).

Finally, for UNFIN, we use (49) and get

(root, free − 8) ∈ ϕ ∧ (root, t1) ∈ head ∧ (root, t2) ∈ tail∧
Ptr(free − 8) ∧ (free − 8) ∈ UNFIN∧
((∀∗p ∈ (UNFIN 	 free − 8). ((∃q. (p, q) ∈ head ◦ (ϕ 	 (root, free − 8))† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ (ϕ 	 (root, free − 8))†) ∧ p + 4 7→ q′)))∗
(free − 8 7→ t1, t2))
⇓
(free − 8, root) ∈ ϕ† ∧ (root, t1) ∈ head ∧ (root, t2) ∈ tail∧
Ptr(free − 8) ∧ (free − 8) ∈ UNFIN∧
((∀∗p ∈ (UNFIN 	 free − 8). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′)))∗
(free − 8 7→ t1) ∗ ((free − 8) + 4 7→ t2))
⇓
(free − 8, t1) ∈ head ◦ ϕ† ∧ (free − 8, t2) ∈ tail ◦ ϕ† ∧ (free − 8) ∈ UNFIN∧
((∀∗p ∈ (UNFIN 	 free − 8). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′)))∗
(free − 8 7→ t1) ∗ ((free − 8) + 4 7→ t2))
⇓
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(free − 8) ∈ UNFIN∧
((∀∗p ∈ (UNFIN 	 free − 8). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′)))∗
(free − 8 7→ t1 ∧ (free − 8, t1) ∈ head ◦ ϕ†)∗
((free − 8) + 4 7→ t2 ∧ (free − 8, t2) ∈ tail ◦ ϕ†))
⇓
(free − 8) ∈ UNFIN∧
((∀∗p ∈ (UNFIN 	 free − 8). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′)))∗
(∃q. free − 8 7→ q ∧ (free − 8, q) ∈ head ◦ ϕ†)∗
(∃q′. (free − 8) + 4 7→ q′ ∧ (free − 8, q′) ∈ tail ◦ ϕ†))
⇓
∀∗p ∈ UNFIN. ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′))
�

AUNFIN

The first implication here uses (47), Lemma 3.7, (58), and Lemma 3.7. The second follows from elementary set
theory (59), and the third implication follows from purity. Finally, the last implication is an instance of the rule (5).

This establishes that running INIT∗ starting from a state that satisfies the precondition InitAss from Section 6.2.1
terminates in a state that satisfies the invariant I , as desired.

”

7.2 Maintaining the Invariant

We have shown that the invariant I is established by the initializing code. The next step is to show that I is indeed an
invariant, i.e., that the specification

{I ∧ ¬(scan = free)}
BODY

{I}

holds, where BODY is the body of the while loop. As a first step, we note that BODY consists of two similar parts
ScanCar and ScanCdr, one for each component of the cell pointed to by scan, they are marked in the code with
comments. Between these halves, that cell is in a “mixed state”: the first component of it is “finished”, whereas the
other is about to be “scanned”. All other pointers involved are “settled”, i.e., belong to one of the sets mentioned in
the invariant. The aim is thus to show that the following sequence of specifications holds.

{I ∧ ¬(scan = free)}
ScanCar;

{I ′}
ScanCdr;
scan := scan + 8

{I},

(73)

where I ′ holds in the intermediate state where scan is “halfway between UNFIN and FIN”:

I ′ ≡
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE)∧
#ALIVE ≤ #NEW ∧ root ∈ FORW ∧ scan ≤ free ∧
Disjoint(ALIVE, NEW) ∧ Ipure ∧ Ptr(free) ∧ Ptr(scan) ∧ ¬(scan = free)∧
(AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN	scan ∗ AFREE∗
(∃q. (scan, q) ∈ ϕ � (head ◦ ϕ†) ∧ scan 7→ q)
(∃q′. (scan, q′) ∈ head ◦ ϕ† ∧ scan + 4 7→ q′))
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We will focus on showing the first of the involved specifications, {I} ScanCar {I ′}. The proof of the other is
analogous and is not described in all details. Before embarking on the proof, we describe ScanCar informally. It
“scans” the first component in the cell pointed to by scan, and there are three branches according to the value x in it
(and maybe the place it points to):

1. If x is a non-pointer, nothing happens.

2. If x is a pointer, we branch according to the value y of the first component of the cell pointed to by x.

(a) If y is a pointer in NEW, the cell has already been copied, and the copy is located at y, so we can just
update [scan] to y.

(b) If y is a nonpointer or a pointer in ALIVE, the cell has not yet been copied. Therefore, we do so, and we
also update the first component of the cell pointed to by x to a pointer to the copy (to mark that it has been
copied), and we also update [scan] to point to the new copy.

We first formalize the effect of the command x := [scan]. We have

{I ∧ ¬(scan = free)}
⇓
{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW) ∧ Ipure ∧ ¬(scan = free)∧
Ptr(free) ∧ Ptr(scan)∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
(∃q. (scan, q) ∈ head ◦ ϕ† ∧ scan 7→ q)∗
(∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′))}

x := [scan]

{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW) ∧ Ipure ∧ ¬(scan = free)∧
Ptr(free) ∧ Ptr(scan)∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
((scan, x) ∈ head ◦ ϕ† ∧ scan 7→ x)∗
(∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′))}

⇓
{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW) ∧ Ipure ∧ Ptr(free) ∧ Ptr(scan)∧
¬(scan = free) ∧ (scan, x) ∈ head ◦ ϕ†∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
(scan 7→ x) ∗ (∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′))}

The first step here is due to (5), the specification step uses the rule (66) for lookup and the derived version (69) of
the Frame Rule; the last step uses purity.

According to the rule of conditionals, there are two specifications to be shown, according to the outer if -branch in
ScanCar. If we let Ix be the conclusion in the derivation above, the first of these is

{Ix ∧ ¬(x mod 8 = 0)}
⇓
{Ix ∧ ¬Ptr(x)}

skip

{I ′}

(74)

The second specification we have to show for the outer if -branch contains an inner if -branch, so it also splits into
two specifications. Before writing these down, we formalize the effect of the command y := [x]. We have
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{Ix ∧ x mod 8 = 0}
⇓
{Ix ∧ Ptr(x)}
⇓
{Ix ∧ Ptr(x) ∧ x ∈ ALIVE}
⇓
{Ix ∧ Ptr(x) ∧ (x ∈ FORW ∨ x ∈ UNFORW)}
⇓
{Ix ∧ Ptr(x) ∧ (x ↪→ −∨ x ↪→ −)}
⇓
{Ix ∧ Ptr(x) ∧ (x ↪→ −)}

y := [x]

{Ix ∧ Ptr(x) ∧ (x ↪→ y)}

The first of the implications uses (56), and the second follows from (scan, x) ∈ head ◦ϕ† ∧ PtrRg(head, ALIVE),
(40), and (41). The third follows from (22), and the fourth follows from (3). Finally the specification follows from
(67).

Now, according to the rule of conditionals, there are two more specifications to show in order to conclude the
desired specification {I ∧ ¬(scan = free)} ScanCar {I ′}. They are

•
{Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ y mod 8 = 0 ∧ offset ≤ y ≤ maxFree}
⇓
{Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ y ∈ NEW}

[scan] := y

{I ′}

(75)

•
{Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ ¬(y mod 8 = 0 ∧ offset ≤ y ≤ maxFree)}

⇓
{Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ ¬(y ∈ NEW)}

CopyCell∗

{I ′},

(76)

where
CopyCell∗ ≡ t1 := [x];

t2 := [x + 4];
[free] := t1;
[free + 4] := t2;
[x] := free;
[scan] := free;

FORW := FORW ⊕ x;
UNFORW := UNFORW 	 x;
ϕ := ϕ ⊕ (x, free);

free := free + 8

We will handle these in their order of difficulty in the next sections. But first, we note a lemma for later use.

Lemma 7.1. (The pure part of) I implies free ≤ maxFree.
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PROOF: By (53) and the fact that BUSY and NEW are defined as intervals with a common start-point, we can just
show that #BUSY ≤ #NEW. But this follows from

#BUSY = #FORW ≤ #ALIVE ≤ #NEW

The first equality follows from iso(ϕ, FORW, BUSY) and (15), the first inequality follows from isUnion(FORW, UNFORW, ALIVE),
(27), and (51). The last inequality is an explicit part of I .

7.2.1 If Nothing Happens

In this section, we show that the specification (74) from before holds. According to the rule for skip and the rule of
consequence, that amounts to the following

Proposition 7.2. The assertion
A ≡ Ix ∧ ¬Ptr(x)

implies I ′.

PROOF: We have

iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW) ∧ Ipure ∧ Ptr(free) ∧ Ptr(scan)∧
¬(scan = free) ∧ (scan, x) ∈ head ◦ ϕ† ∧ ¬Ptr(x)∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
(scan 7→ x) ∗ (∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′))

⇓
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW) ∧ Ipure ∧ Ptr(free) ∧ Ptr(scan)∧
¬(scan = free) ∧ (scan, x) ∈ ϕ � (head ◦ ϕ†)∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
(scan 7→ x) ∗ (∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′))

⇓
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW) ∧ Ipure ∧ ¬(scan = free)∧
Ptr(free) ∧ Ptr(scan)∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
(scan 7→ x ∧ (scan, x) ∈ ϕ � (head ◦ ϕ†))∗
(∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′))

⇓
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW)∧
Ipure ∧ ¬(scan = free) ∧ Ptr(free) ∧ Ptr(scan)∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
(∃q. (scan, q) ∈ ϕ � (head ◦ ϕ†) ∧ scan 7→ q)∗
(∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′))

⇓
I ′

The first implication follows from the fact that A implies (scan, x) ∈ ϕ � (head ◦ ϕ†) by (17). The second
implication follows from purity.

7.2.2 If We do not Copy

In this section, we show the specification (75). The steps to do this are as follows. First, we show that the precondition
implies x ∈ FORW, and use this to infer (scan, y) ∈ ϕ � (head ◦ ϕ†). Then we use a local specification to infer the
desired global specification.
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Lemma 7.3. The assertion
A ≡ Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ y ∈ NEW

implies x ∈ FORW.

PROOF: (scan, x) ∈ head ◦ ϕ† ∧ Ptr(x) ∧ PtrRg(head, ALIVE) implies x ∈ ALIVE by (41) and (40), so A implies
x ∈ ALIVE. By (23),

x ∈ ALIVE ∧ isUnion(FORW, UNFORW, ALIVE) ∧ ¬(x ∈ UNFORW) → x ∈ FORW,

so we assume x ∈ UNFORW and derive a contradiction, i.e., we show A ∧ (x ∈ UNFORW) → F.

By (39), it suffices to show (since F is a monotone assertion)

AUNFORW ∧ (x ↪→ y) ∧ PtrRg(head, ALIVE) ∧ Ptr(y)∧
Disjoint(ALIVE, NEW) ∧ y ∈ NEW ∧ x ∈ UNFORW → F

We have
AUNFORW ∧ x ↪→ y ∧ PtrRg(headALIVE) ∧ Ptr(y)∧
Disjoint(ALIVE, NEW) ∧ y ∈ NEW ∧ x ∈ UNFORW

⇓
(AUNFORW−x ∗ (∃q. (x, q) ∈ head ∧ x 7→ q) ∗ (∃q′. (x, q′) ∈ tail ∧ x + 4 7→ q′))∧
x ↪→ y ∧ PtrRg(head, ALIVE) ∧ Ptr(y) ∧ Disjoint(ALIVE, NEW) ∧ y ∈ NEW

⇓
(AUNFORW−x ∗ (x + 4 7→ −) ∗ (∃q. (x, q) ∈ head ∧ x 7→ q))∧
x ↪→ y ∧ PtrRg(head, ALIVE) ∧ Ptr(y) ∧ Disjoint(ALIVE, NEW) ∧ y ∈ NEW

⇓
(AUNFORW−x ∗ (x + 4 7→ −) ∗ ((x, y) ∈ head ∧ x 7→ y))∧
x ↪→ y ∧ PtrRg(head, ALIVE) ∧ Ptr(y) ∧ Disjoint(ALIVE, NEW) ∧ y ∈ NEW

⇓
(AUNFORW−x ∗ (x + 4 7→ −) ∗ (x 7→ y))∧
(x, y) ∈ head ∧ PtrRg(head, ALIVE) ∧ Ptr(y) ∧ Disjoint(ALIVE, NEW) ∧ y ∈ NEW

⇓
(x, y) ∈ head ∧ PtrRg(head, ALIVE) ∧ Ptr(y) ∧ Disjoint(ALIVE, NEW) ∧ y ∈ NEW

⇓
y ∈ ALIVE ∧ Disjoint(ALIVE, NEW) ∧ y ∈ NEW

⇓
F

The first of these implications follows from (5), the third follows from (38), the fourth from purity, the sixth from (40),
and the last follows from (28).

Lemma 7.4. The assertion A from Lemma 7.3 implies (scan, y) ∈ ϕ � (head ◦ ϕ†)

PROOF: We use Lemma 7.3 and show A ∧ x ∈ FORW → (scan, y) ∈ ϕ � (head ◦ ϕ†). By (18),

(scan, x) ∈ head ◦ ϕ† ∧ A ∧ (x, y) ∈ ϕ → (scan, y) ∈ ϕ � (head ◦ ϕ†),

so it suffices to show
A ∧ x ∈ FORW ∧ (scan, x) ∈ head ◦ ϕ† → (x, y) ∈ ϕ

Like before, we use (39) and show

AFORW ∧ x ↪→ y ∧ x ∈ FORW → (x, y) ∈ ϕ
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We have
AFORW ∧ x ↪→ y ∧ x ∈ FORW

⇓
(AFORW	x ∗ (∃q. (x, q) ∈ ϕ ∧ x 7→ q,−)) ∧ x ↪→ y ∧ x ∈ FORW

⇓
(AFORW	x ∗ ((x, y) ∈ ϕ ∧ x 7→ y,−)) ∧ x ↪→ y ∧ x ∈ FORW

⇓
(x, y) ∈ ϕ

In this derivation, we have first used (5), then (65), and finally purity.

We turn to the local specification for this branch of the program. It is simple:

{scan 7→ − ∧ (scan, y) ∈ ϕ � (head ◦ ϕ†)}
[scan] := y

{scan 7→ y ∧ (scan, y) ∈ ϕ � (head ◦ ϕ†)}
⇓
{∃q. (scan, q) ∈ ϕ � (head ◦ ϕ†) ∧ scan 7→ q}

(77)

The first step follows from the rule (68) for heap update and the rule of conjunction by since the second conjunct is
pure.

We can now show global specification for [scan] := y. We have

{Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ y ∈ NEW}
⇓
{Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ y ∈ NEW ∧ (scan, y) ∈ ϕ � (head ◦ ϕ†)}

⇓
{Ptr(x) ∧ (x ↪→ y) ∧ y ∈ NEW ∧ ¬(scan = free) ∧ (scan, x) ∈ head ◦ ϕ†∧
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE)∧
#ALIVE ≤ #NEW ∧ root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW)∧
Ipure ∧ Ptr(free) ∧ Ptr(scan) ∧ ¬(scan = free)∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
(scan 7→ − ∧ (scan, y) ∈ ϕ � (head ◦ ϕ†))∗
(∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′))}

[scan] := y

{Ptr(x) ∧ (x ↪→ y) ∧ y ∈ NEW ∧ ¬(scan = free) ∧ (scan, x) ∈ head ◦ ϕ†∧
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE)∧
#ALIVE ≤ #NEW

root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW)∧
Ipure ∧ Ptr(free) ∧ Ptr(scan) ∧ ¬(scan = free)∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
(∃q. scan 7→ q ∧ (scan, q) ∈ ϕ � (head ◦ ϕ†))∗
(∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′))}

⇓
I ′

For the first implication, we use Lemma 7.4, and for the second, we use purity. The specification step follows
from our local specification (77), and our derived version of the Frame Rule (69). This implies the desired global
specification (75).

We are now ready to address the specification (76) for the most complicated branch of ScanCar. The code in the
the inner else branch resembles that of INIT∗, and consequently, the proof of its correctness will also be similar to
that.
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7.2.3 If We Copy

We show that the specification (76) from the branching analysis is derivable. We split CopyCell∗ into two parts:

CopyCell ≡ t1 := [x]; Increment ≡ ϕ := ϕ ⊕ (x, free)
t2 := [x + 4]; FORW := FORW ⊕ x;
[free] := t1; UNFORW := UNFORW 	 x;
[free + 4] := t2; free := free + 8;
[x] := free;
[scan] := free;

We first show that in this case, x ∈ UNFORW. Then we derive a local specification for CopyCell, which leads to the
desired global specification for CopyCell∗.

Lemma 7.5. The assertion
A ≡ Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ ¬(y ∈ NEW)

implies x ∈ UNFORW ∧ ¬(x ∈ FORW).

PROOF: First,
Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ ¬(y ∈ NEW)

⇓
(scan, x) ∈ head ◦ ϕ† ∧ PtrRg(head, ALIVE)∧
Ptr(x) ∧ isUnion(FORW, UNFORW, ALIVE)

⇓
x ∈ ALIVE ∧ isUnion(FORW, UNFORW, ALIVE)

⇓
x ∈ FORW ∨ x ∈ UNFORW

The second implication follows from (40) and (41), and the third is by (22).

So, as before, we assume x ∈ FORW and derive a contradiction, i.e., we show that (x ∈ FORW) ∧ A → F. By
(39) and Lemma 7.1, the following derivation is sufficient to establish this.

AFORW ∧ x ↪→ y ∧ iso(ϕ, FORW, BUSY) ∧ ¬(y ∈ NEW) ∧ free ≤ maxFree ∧ x ∈ FORW

⇓
(AFORW−x ∗ (∃q. (x, q) ∈ ϕ ∧ x 7→ q,−))∧
x ↪→ y ∧ iso(ϕ, FORW, BUSY) ∧ ¬(y ∈ NEW) ∧ free ≤ maxFree

⇓
(AFORW−x ∗ (x + 4 7→ −) ∗ (∃q. (x, q) ∈ ϕ ∧ x 7→ q))∧
x ↪→ y ∧ iso(ϕ, FORW, BUSY) ∧ ¬(y ∈ NEW) ∧ free ≤ maxFree

⇓
(AFORW−x ∗ (x + 4 7→ −) ∗ ((x, y) ∈ ϕ ∧ x 7→ y))∧
iso(ϕ, FORW, BUSY) ∧ ¬(y ∈ NEW) ∧ free ≤ maxFree

⇓

(AFORW−x ∗ (x + 4 7→ −) ∗ (x 7→ y))∧
(x, y) ∈ ϕ ∧ iso(ϕ, FORW, BUSY) ∧ ¬(y ∈ NEW) ∧ free ≤ maxFree

⇓
(x, y) ∈ ϕ ∧ iso(ϕ, FORW, BUSY) ∧ ¬(y ∈ NEW) ∧ free ≤ maxFree

⇓
y ∈ BUSY ∧ ¬(y ∈ NEW) ∧ free ≤ maxFree

⇓
y ∈ Itv(offset, free) ∧ ¬(y ∈ Itv(offset, maxFree)) ∧ free ≤ maxFree

⇓
F
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The first of these implications follows from (5), the second is a matter of notation. The third implication is an
instance of (38), and the next comes from purity. The sixth implication in the derivation follows from (10), and the
last is by elementary set manipulations (60). This shows the desired result.

We now turn to the local specification for CopyCell. As usual, it only involves the locations that are involved in the
program fragment.

{(∃q. (x, q) ∈ head ∧ x 7→ q) ∗ (∃q′. (x, q′) ∈ tail ∧ x + 4 7→ q′)∗
(scan 7→ −) ∗ (free 7→ −,−)}

t1 := [x]

{((x, t1) ∈ head ∧ x 7→ t1) ∗ (∃q. (x, q′) ∈ tail ∧ x + 4 7→ q′)∗
(scan 7→ −) ∗ (free 7→ −,−)}

t2 := [x + 4]

{((x, t1) ∈ head ∧ x 7→ t1) ∗ ((x, t2) ∈ tail ∧ x + 4 7→ t2)∗
(scan 7→ −) ∗ (free 7→ −,−)}

[free] := t1

{((x, t1) ∈ head ∧ x 7→ t1) ∗ ((x, t2) ∈ tail ∧ x + 4 7→ t2)∗
(scan 7→ −) ∗ (free 7→ t1,−)}

[free + 4] := t2

{((x, t1) ∈ head ∧ x 7→ t1) ∗ ((x, t2) ∈ tail ∧ x + 4 7→ t2)∗
(scan 7→ −) ∗ (free 7→ t1, t2)}

⇓
{((x 7→ t1) ∗ (x + 4 7→ t2) ∗ (scan 7→ −) ∗ (free 7→ t1, t2))∧
(x, t1) ∈ head ∧ (x, t2) ∈ tail}

[x] := free

{((x 7→ free) ∗ (x + 4 7→ t2) ∗ (scan 7→ −) ∗ (free 7→ t1, t2))∧
(x, t1) ∈ head ∧ (x, t2) ∈ tail}

[scan] := free

{((x 7→ free) ∗ (x + 4 7→ t2) ∗ (scan 7→ free) ∗ (free 7→ t1, t2))∧
(x, t1) ∈ head ∧ (x, t2) ∈ tail}

⇓
{((x 7→ free,−) ∗ (scan 7→ free) ∗ (free 7→ t1, t2))∧
(x, t1) ∈ head ∧ (x, t2) ∈ tail}

(78)

The implication in the middle of this derivation is due to pureness. The other implication is just a matter of
notation, and the rest of the steps use the rules for lookup (66) and update (68), along with the Frame Rule.

We are now ready to infer the desired global specification for CopyCell∗ via the specification (78).

{Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ ¬(y ∈ NEW)}
⇓
{Ix ∧ Ptr(x) ∧ (x ↪→ y) ∧ ¬(y ∈ NEW) ∧ x ∈ UNFORW ∧ ¬(x ∈ FORW)}

⇓
{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Ptr(x) ∧ Disjoint(ALIVE, NEW) ∧ Ipure∧
¬(scan = free) ∧ (scan, x) ∈ head ◦ ϕ† ∧ x ∈ UNFORW ∧ ¬(x ∈ FORW)∧
Ptr(free) ∧ Ptr(scan) ∧ ∀e. ¬((x, e) ∈ ϕ)∧
((AUNFORW−x ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE−free)∗
(scan 7→ −) ∗ (∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′)∗
(∃q. (x, q) ∈ head ∧ x 7→ q) ∗ (∃q′. (x, q′) ∈ tail ∧ x + 4 7→ q′) ∗ (free 7→ −,−))}
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CopyCell

{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Ptr(x) ∧ Disjoint(ALIVE, NEW) ∧ Ipure∧
¬(scan = free) ∧ (scan, x) ∈ head ◦ ϕ† ∧ x ∈ UNFORW ∧ ¬(x ∈ FORW)∧
Ptr(free) ∧ Ptr(scan) ∧ ∀e. ¬((x, e) ∈ ϕ)∧
((AUNFORW−x ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE−free)∗
(∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′)∗
((x 7→ free,−) ∗ (scan 7→ free) ∗ (free 7→ t1, t2))∧
(x, t1) ∈ head ∧ (x, t2) ∈ tail)}

⇓
{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Ptr(x) ∧ Disjoint(ALIVE, NEW) ∧ Ipure∧
¬(scan = free) ∧ (scan, x) ∈ head ◦ ϕ† ∧ x ∈ UNFORW ∧ ¬(x ∈ FORW)∧
(x, t1) ∈ head ∧ (x, t2) ∈ tail∧
Ptr(free) ∧ Ptr(scan) ∧ ¬(x, free) ∈ ϕ∧
((AUNFORW−x ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE−free)∗
(∃q′. (scan, q′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ q′)∗
((x 7→ free,−) ∗ (scan 7→ free) ∗ (free 7→ t1, t2)))}

ϕ := ϕ ⊕ (x, free);
UNFORW := UNFORW 	 x;
FORW := FORW ⊕ x

{iso(ϕ 	 (x, free), FORW 	 x, BUSY) ∧ Ptr(free) ∧ Ptr(scan)∧
isUnion(FORW 	 x, UNFORW ⊕ x, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW 	 x ∧ scan ≤ free ∧ Ptr(x) ∧ Disjoint(ALIVE, NEW) ∧ Ipure∧
¬(scan = free) ∧ (scan, x) ∈ head ◦ (ϕ 	 (x, free))† ∧ x ∈ FORW∧
¬(x ∈ UNFORW) ∧ (x, t1) ∈ head ∧ (x, t2) ∈ tail ∧ (x, free) ∈ ϕ∧
((∀∗p ∈ ((UNFORW ⊕ x) 	 x). ((∃q. (p, q) ∈ head ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
(∀∗p ∈ (FORW 	 x). (∃q. (p, q) ∈ (ϕ 	 (x, free)) ∧ p 7→ q,−))∗
(∀∗p ∈ FIN. ((∃q. (p, q) ∈ (ϕ 	 (x, free)) � (head ◦ (ϕ 	 (x, free))†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ ϕ 	 (x, free) � (tail ◦ (ϕ 	 (x, free))†) ∧ p + 4 7→ q′)))∗
(∀∗p ∈ (UNFIN 	 scan). ((∃q. (p, q) ∈ head ◦ (ϕ 	 (x, free))† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ (ϕ 	 (x, free))†) ∧ p + 4 7→ q′))∗
(∀∗p ∈ (FREE	 free). p 7→ −,−)∗
(∃q′. (scan, q′) ∈ tail ◦ (ϕ 	 (x, free))†) ∧ scan + 4 7→ q′)∗
(x 7→ free,−) ∗ (scan 7→ free) ∗ (free 7→ t1, t2))}

free := free + 8

{iso(ϕ 	 (x, free − 8), FORW 	 x, BUSY 	 (free − 8)) ∧ Ptr(free − 8) ∧ Ptr(scan)∧
isUnion(FORW 	 x, UNFORW ⊕ x, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW 	 x ∧ scan ≤ free − 8 ∧ Ptr(x) ∧ Disjoint(ALIVE, NEW) ∧ Ipure∧
¬(scan = free − 8) ∧ (scan, x) ∈ head ◦ (ϕ 	 (x, free − 8))† ∧ x ∈ FORW∧
¬(x ∈ UNFORW) ∧ (x, t1) ∈ head ∧ (x, t2) ∈ tail ∧ (x, free − 8) ∈ ϕ∧
((∀∗p ∈ ((UNFORW ⊕ x) 	 x). ((∃q. (p, q) ∈ head ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ∧ p + 4 7→ q′)))∗
(∀∗p ∈ (FORW 	 x). (∃q. (p, q) ∈ (ϕ 	 (x, free − 8)) ∧ p 7→ q,−))∗
(∀∗p ∈ FIN. ((∃q. (p, q) ∈ ϕ 	 (x, free − 8) � (head ◦ (ϕ 	 (x, free − 8))†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ (ϕ 	 (x, free − 8)) � (tail ◦ (ϕ 	 (x, free − 8))†) ∧ p + 4 7→ q′)))∗
(∀∗p ∈ ((UNFIN 	 scan) 	 (free − 8)). ((∃q. (p, q) ∈ head ◦ (ϕ 	 (x, free − 8))† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ (ϕ 	 (x, free − 8))†) ∧ p + 4 7→ q′))∗
(∀∗p ∈ ((FREE ⊕ (free − 8)) 	 (free − 8)). p 7→ −,−)∗
(∃q′. (scan, q′) ∈ tail ◦ (ϕ 	 (x, (free − 8)))†) ∧ scan + 4 7→ q′)∗
(x 7→ (free − 8),−) ∗ (scan 7→ (free − 8)) ∗ ((free − 8) 7→ t1, t2))}
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The first implication follows from Lemma 7.5. The second follows from (5) and (16). The specification for
CopyCell follows from our local specification (78) and (69). The implication immediately thereafter is a consequence
of purity. The specification for the three auxiliary variables follows from the rules in (71), and the specification for the
update of free follows from the rules for assignment and the rules in (72).

Like in Section 7.1, we must now show that I ′ follows from the conclusion in the derivation above. The proof of
this, however, is for the most part completely analogous to the proof there (if one replaces root by x). Specifically, the
pure part of I ′ follows from the pure part of the conclusion above by exactly the same argument as in Section 7.1, and
the same argument goes for the separating conjunction over the sets FORW, UNFORW, FIN, and FREE, and for the
location scan + 4. Thus, if we let B be the pure part of the conclusion above, what is left to show is that

B ∧ (((free − 8) 7→ t1, t2) ∗ (scan 7→ free − 8)∗
(∀∗p ∈ ((UNFIN 	 scan) 	 (free − 8)).
((∃q. (p, q) ∈ head ◦ (ϕ 	 (x, free − 8))† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ (ϕ 	 (x, free − 8))†) ∧ p + 4 7→ q′)))

(79)

implies
(∀∗p ∈ (UNFIN 	 scan). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′)))∗
(∃q. (scan, q) ∈ ϕ � (head ◦ ϕ†) ∧ scan 7→ q)

(80)

and that
B∧
(∀∗p ∈ FIN.
((∃q. (p, q) ∈ ϕ 	 (x, free − 8) � (head ◦ (ϕ 	 (x, free − 8))†) ∧ p 7→ q)∗
(∃q′. (p, q′) ∈ (ϕ 	 (x, free − 8)) � (tail ◦ (ϕ 	 (x, free − 8))†) ∧ p + 4 7→ q′)))

(81)

implies
B∧
(∀∗p ∈ FIN. ((∃q. (p, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p + 4 7→ q′)))
(82)

The last follows from ordinary set manipulations (47) and Lemma 3.7.
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For the first, we have

(x, t1) ∈ head ∧ (x, t2) ∈ tail ∧ (x, free − 8) ∈ ϕ∧
(scan, x) ∈ head ◦ (ϕ 	 (x, free − 8))† ∧ Ptr(x)∧
((∀∗p ∈ ((UNFIN 	 scan) 	 (free − 8)).
((∃q. (p, q) ∈ head ◦ (ϕ 	 (x, free − 8))† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ (ϕ 	 (x, free − 8))†) ∧ p + 4 7→ q′))∗
(scan 7→ free − 8) ∗ (free − 8 7→ t1, t2))

⇓
(free − 8, t1) ∈ head ◦ ϕ†∧
(free − 8, t2) ∈ tail ◦ ϕ† ∧ (scan, free − 8) ∈ ϕ � (head ◦ ϕ†)∧
(∀∗p ∈ ((UNFIN 	 scan) 	 (free − 8)).
((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′))∗
(scan 7→ free − 8) ∗ ((free − 8) 7→ t1) ∗ ((free − 8) + 4 7→ t2))

⇓
(∀∗p ∈ ((UNFIN 	 scan) 	 (free − 8)).
((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′))∗
(scan 7→ free − 8 ∧ (scan, free − 8) ∈ ϕ � (head ◦ ϕ†))∗
((free − 8) 7→ t1 ∧ (free − 8, t1) ∈ head ◦ ϕ†)∗
((free − 8) + 4 7→ t2 ∧ (free − 8, t2) ∈ tail ◦ ϕ†))

⇓
(∀∗p ∈ ((UNFIN 	 scan) 	 (free − 8)).
((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′))∗
(∃q. scan 7→ q ∧ (scan, q) ∈ ϕ � (head ◦ ϕ†))∗
(∃q. (free − 8) 7→ q ∧ (free − 8, q) ∈ head ◦ ϕ†)∗
(∃q′. (free − 8) + 4 7→ q′ ∧ (free − 8, q′) ∈ tail ◦ ϕ†))

⇓
(∀∗p ∈ (UNFIN 	 scan).
((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′))∗
(∃q. scan 7→ q ∧ (scan, q) ∈ ϕ � (head ◦ ϕ†))

The first implication follows from (47), ordinary composition of relations (59), the rule for the special relation
composition � (18), and from Lemma 3.7. The second implication follows from purity, and the last implication from
(6).

We have therefore obtained (79) ⇒ (80), and we can conclude that the first part of the specification (73) for the
while-loop holds. The treatment of the other half will not be as detailed as this one, since the proofs are completely
analogous for the most part. However, the specification for scan := scan + 8 needs an argument.

7.2.4 After ScanCdr

In this subsection, we show that the invariant I is established after running ScanCdr; scan := scan + 8 in a state in
which I ′ holds. We omit the detailed proof for ScanCdr, since it is completely analogous to that of ScanCar. Following
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the lines in that proof, one obtains the specification

{I ′}

ScanCdr

{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE)∧
#ALIVE ≤ #NEW ∧ root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW)∧
Ipure ∧ Ptr(free) ∧ Ptr(scan) ∧ ¬(scan = free)∧
((AUNFORW ∗ AFORW ∗ AFIN ∗ AUNFIN−scan ∗ AFREE)∗
(∃q. (scan, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗
(∃q′. (scan, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p 7→ q′))}

Letting A be the conclusion in the above, we must then show that

{A}

scan := scan + 8

{I}

holds. By the rule for assignment and the rules (72) for intervals, we get

{A}
⇓
{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE)∧
#ALIVE ≤ #NEW ∧ root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW)∧
Ipure ∧ Ptr(free) ∧ Ptr(scan) ∧ ¬(scan = free)∧
((AUNFORW ∗ AFORW ∗ AFREE)∗
(∀∗p ∈ FIN. ((∃q. (p, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p + 4 7→ q′)))∗
(∀∗p ∈ (UNFIN 	 scan). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′)))∗
(∃q. (scan, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗
(∃q′. (scan, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p 7→ q′))}

scan := scan + 8

{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE)∧
#ALIVE ≤ #NEW ∧ root ∈ FORW ∧ scan − 8 ≤ free ∧ Disjoint(ALIVE, NEW)∧
Ipure ∧ Ptr(free) ∧ Ptr(scan − 8) ∧ ¬(scan − 8 = free)∧
((AUNFORW ∗ AFORWAFREE)∗
(∀∗p ∈ (FIN 	 (scan − 8)). ((∃q. (p, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p + 4 7→ q′)))∗
(∀∗p ∈ ((UNFIN ⊕ (scan − 8)) 	 scan − 8). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′)))∗
(∃q. (scan − 8, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗
(∃q′. (scan − 8, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p 7→ q′))}
⇓
{iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE)∧
#ALIVE ≤ #NEW ∧ root ∈ FORW ∧ scan − 8 ≤ free ∧ Disjoint(ALIVE, NEW)∧
Ipure ∧ Ptr(free) ∧ Ptr(scan − 8) ∧ ¬(scan − 8 = free)∧
((AUNFORW ∗ AFORWAFREE)∗
((∀∗p ∈ (FIN 	 (scan − 8)). ((∃q. (p, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p + 4 7→ q′)))∗
(∃q. (scan − 8, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗
(∃q′. (scan − 8, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p 7→ q′))∗
(∀∗p ∈ ((UNFIN ⊕ (scan − 8)) 	 scan − 8). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ† ∧ p + 4 7→ q′))))}
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The first step uses (5), and the specification uses the rule for assignment and those in (72). The last step is a simple
rewriting.

Like in Section 7.1 and 7.2.3, we now have to show that the pure part of I follows from the pure part I ′′
p of the

conclusion I ′′ in the derivation above, and that the separating conjunction in I follows from that of I ′′ and I ′′p .

The only problem in the pure part of I is to conclude Ptr(scan) ∧ scan ≤ free. But this follows from Ptr(scan −
8) ∧ Ptr(free) ∧ ¬(scan − 8 = free) ∧ scan − 8 ≤ free.

For the heap-dependent part of I , we see that AUNFORW, AFORW, and AFREE follow directly from the corresponding
parts of I ′′. So what is left to show is that

I ′′p ∧
(∀∗p ∈ ((UNFIN ⊕ (scan − 8)) 	 scan). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ†) ∧ p + 4 7→ q′))

implies
∀∗p ∈ ((UNFIN ⊕ (scan − 8)) 	 scan). ((∃q. (p, q) ∈ head ◦ ϕ† ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ tail ◦ ϕ†) ∧ p + 4 7→ q′)

and that
I ′′p∧
((∀∗p ∈ (FIN 	 (scan − 8)). ((∃q. (p, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p + 4 7→ q′)))∗
(∃q. (scan − 8, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗
(∃q′. (scan − 8, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p 7→ q′))

implies
∀∗p ∈ FIN. ((∃q. (p, q) ∈ ϕ � (head ◦ ϕ†) ∧ p 7→ q)∗

(∃q′. (p, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ p + 4 7→ q′))

For the first of these, the implication follows from (1), Lemma 3.7, and (47), since ¬((scan−8) ∈ UNFIN) implies
(UNFIN ⊕ (scan − 8)) 	 (scan − 8) = UNFIN (recall UNFIN ≡ Itv(scan, free)). The second implication follows
from Lemma 3.7, (47), and (6), since scan − 8 ∈ FIN ≡ Itv(offset, scan).

This means that the specification (73) holds. In order to conclude correctness of the garbage collector, we show
that I and the fact that we exit the while-loop imply that the heaps before and after execution of the garbage collector
are heap-isomorphic in the sense of Definition 5.2.

8 Sufficiency of the Invariant

In this section, we will prove that the invariant I is strong enough to conclude that the relation ϕ can be viewed as a
weak isomorphism between the initial heap and the heap after execution of the garbage collector.

The overall strategy is this. We first show that all cells that were reachable before execution are moved from
UNFORW into FORW by the algorithm, so we can conclude that ALIVE = FORW after the execution. This fact is
then used to establish a correspondence between ϕ, head, and our “special composition” � . This will be the key to
show that after execution, the denotation of ϕ is indeed a weak heap isomorphism.

Lemma 8.1.
I ∧ scan = free ∧ ∃P path. eval(head, tail, P, root, p) → p ∈ FORW

PROOF: We show that

∀P. ∀p. (eval(head, tail, P, root, p)) → ((I ∧ scan = free) → p ∈ FORW)

by the induction principle (36) on evaluation of paths. We just show

(B) eval(head, tail, ε, root, p) ∧ I ∧ scan = free → p ∈ FORW

(IS) (∀p. eval(head, tail, P, root, p) ∧ I ∧ scan = free → p ∈ FORW)∧
eval(head, tail, P · head, root, p) ∧ I ∧ (scan = free) → p ∈ FORW
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For (B), we have
eval(head, tail, ε, root, p) ∧ I ∧ scan = free

⇓
root = p ∧ I ∧ scan = free

⇓
root = p ∧ root ∈ FORW

⇓
p ∈ FORW

The first implication follows from (32).

For (IS), we will introduce some shorthand notations. First, we let Ip be the pure part of I :

Ip ≡
iso(ϕ, FORW, BUSY) ∧ isUnion(FORW, UNFORW, ALIVE) ∧ #ALIVE ≤ #NEW∧
root ∈ FORW ∧ scan ≤ free ∧ Disjoint(ALIVE, NEW) ∧ Ipure ∧ Ptr(free) ∧ Ptr(scan)

Second, there will be a variable q with q ∈ FIN involved in our proof. Therefore, we define

Iq ≡
(AUNFORW ∗ AFORW ∗ AFIN−q ∗ AUNFIN ∗ AFREE)∗
(∃q′. (q, q′) ∈ ϕ � (tail ◦ ϕ†) ∧ q + 4 7→ q′)

Then we have

(∀p. eval(head, tail, P, root, p) ∧ I ∧ scan = free → p ∈ FORW)∧
(eval(head, tail, P · head, root, p) ∧ I ∧ scan = free)
⇓
(∀p. eval(head, tail, P, root, p) ∧ I ∧ scan = free → p ∈ FORW)∧
(∃p′. Ptr(p′) ∧ eval(head, tail, P, root, p′) ∧ (p′, p) ∈ head ∧ I ∧ scan = free)
⇓
(∃p′. Ptr(p′) ∧ p′ ∈ FORW ∧ (p′, p) ∈ head ∧ I ∧ scan = free)
⇓
∃p′. ∃q. p′ ∈ FORW ∧ q ∈ BUSY ∧ I ∧ scan = free ∧ (p′, p) ∈ head∧
Ptr(p′) ∧ (p′, q) ∈ ϕ ∧ BUSY = FIN

⇓
∃p′. ∃q. p′ ∈ FORW ∧ q ∈ FIN ∧ I ∧ scan = free ∧ (p′, p) ∈ head∧
Ptr(p′) ∧ (p′, q) ∈ ϕ
⇓
∃p′. ∃q. p′ ∈ FORW ∧ q ∈ FIN ∧ Ip∧
(Iq ∗ (∃r. (q, r) ∈ ϕ � (head ◦ ϕ†) ∧ q 7→ r))∧
scan = free ∧ (p′, p) ∈ head ∧ Ptr(p′) ∧ (p′, q) ∈ ϕ
⇓

∃p′. ∃q. p′ ∈ FORW ∧ q ∈ FIN ∧ Ip∧
(Iq ∗ (∃r. (q, r) ∈ ϕ � (head ◦ ϕ†)) ∧ q 7→ r)∧
scan = free ∧ (p′, p) ∈ head ∧ Ptr(p′) ∧ (p′, q) ∈ ϕ ∧ (q, p) ∈ head ◦ ϕ†∧
Tfun(head ◦ ϕ†, BUSY)
⇓
∃p′. ∃q. p′ ∈ FORW ∧ q ∈ FIN ∧ Ip ∧ ∃r. (q, r) ∈ ϕ � (head ◦ ϕ†) ∧ (Iq ∗ (q 7→ −))∧
scan = free ∧ (p′, p) ∈ head ∧ Ptr(p′) ∧ (p′, q) ∈ ϕ ∧ (q, p) ∈ head ◦ ϕ†∧
Tfun(head ◦ ϕ†, BUSY)
⇓
∃r. (p, r) ∈ ϕ ∧ iso(ϕ, FORW, BUSY)
⇓
p ∈ FORW
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The first implication uses the rule (33) for eval, the third uses one of the rules for isos (12) and the definition
of BUSY and FIN as intervals, the fifth uses our usual splitting of iterated separating conjunctions (5). Implication
number six uses elementary set manipulations (58), (59), and rules for isomorphisms and total functions (13), (11).
The seventh implication uses purity, and the last-but-one uses the rules for � (19). Finally, the last implication takes
advantage of (10). This proves the lemma.

We can now argue that upon exit from the while loop, ALIVE = FORW.

Lemma 8.2.
I ∧ scan = free → FORW = ALIVE

PROOF: First, I implies SbSet(FORW, ALIVE) by (27). By (54), it then suffices to show I ∧ scan = free →
SbSet(ALIVE, FORW). To this end, we can use (30) and show that for all p, I ∧ scan = free ∧ p ∈ ALIVE → p ∈
FORW. We have

I ∧ scan = free ∧ p ∈ ALIVE

⇓
p ∈ ALIVE ∧ Reachable(head, tail, ALIVE, root) ∧ I ∧ scan = free

⇓
∃P. eval(head, tail, P, root, p) ∧ I ∧ scan = free

⇓
p ∈ FORW

The second implication here uses the rules for Reachable (35), and the third uses Lemma 8.1.

The following theorem is the key to showing that our invariant I is strong enough to conclude that ϕ is a weak
heap isomorphism.

Theorem 8.3.

I ∧ scan = free → (p ∈ ALIVE ∧ (p, q) ∈ ϕ → (q ↪→ r ↔ (p, r) ∈ ϕ � head))

PROOF: Let
I1 ≡ I ∧ scan = free ∧ p ∈ ALIVE ∧ (p, q) ∈ ϕ ∧ q ↪→ r,
I2 ≡ I ∧ scan = free ∧ p ∈ ALIVE ∧ (p, q) ∈ ϕ ∧ (p, r) ∈ ϕ � head.

We then show that I1 → (p, r) ∈ ϕ � head and I2 → q ↪→ r. For the first of these, we have
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I1

⇓
I ∧ scan = free ∧ p ∈ FORW ∧ (p, q) ∈ ϕ ∧ q ↪→ r
⇓
I ∧ scan = free ∧ p ∈ FORW ∧ (p, q) ∈ ϕ ∧ q ↪→ r ∧ q ∈ BUSY

⇓
I ∧ scan = free ∧ p ∈ FORW ∧ (p, q) ∈ ϕ ∧ q ↪→ r ∧ q ∈ FIN

⇓
scan = free ∧ p ∈ FORW ∧ (p, q) ∈ ϕ ∧ q ↪→ r ∧ q ∈ FIN ∧ Ip∧
(Iq ∗ (∃q′. (q, q′) ∈ ϕ � (head ◦ ϕ†) ∧ q 7→ q′))
⇓
scan = free ∧ p ∈ FORW ∧ (p, q) ∈ ϕ ∧ q ∈ FIN ∧ Ip∧
(Iq ∗ ((q, r) ∈ ϕ � (head ◦ ϕ†) ∧ q 7→ r))
⇓
scan = free ∧ p ∈ FORW ∧ (p, q) ∈ ϕ ∧ q ∈ FIN ∧ Ip∧
(q, r) ∈ ϕ � (head ◦ ϕ†) ∧ (Iq ∗ (q 7→ r))
⇓

A

{

(scan = free ∧ p ∈ FORW ∧ (p, q) ∈ ϕ ∧ q ∈ FIN ∧ Ip∧
(q, r) ∈ head ◦ ϕ† ∧ ¬Ptr(r) ∧ (Iq ∗ (q 7→ r)))
∨

B

{

(scan = free ∧ p ∈ FORW ∧ (p, q) ∈ ϕ ∧ q ∈ FIN ∧ Ip∧
∃p′. ((q, p′) ∈ head ◦ ϕ† ∧ Ptr(p′) ∧ (p′, r) ∈ ϕ) ∧ (Iq ∗ (q 7→ r)))

We have used the same Ip and Iq as in the proof of Lemma 8.1. The first implication follows from Lemma 8.2, the
second follows from (10). The third implication follows from the definitions of FIN and BUSY and scan = free. The
fourth follows from (5), and the fifth follows from single-valuedness (38). The sixth is a consequence of purity, and
the last follows from the rules for � (20).

We now have to show that each of the two parts of the disjunction A ∨ B in the conclusion above implies (p, r) ∈
ϕ � head. For A,

A
⇓
(p, q) ∈ ϕ ∧ (q, r) ∈ head ◦ ϕ† ∧ Ptr(p) ∧ ¬Ptr(r)
⇓
(p, r) ∈ head ◦ ϕ† ◦ ϕ ∧ ¬Ptr(r)
⇓
(p, r) ∈ head ∧ ¬Ptr(r)
⇓
(p, r) ∈ ϕ � head

The first and second steps here use elementary set theory (52), (59). The third uses that the application of an
isomorphism with its transpose yields the identity (55), and the last step uses the rules for � (17). For B,

B
⇓
∃p′. Ptr(p′) ∧ (q, p′) ∈ head ◦ ϕ† ∧ (p, q) ∈ ϕ ∧ Ptr(p) ∧ (p′, r) ∈ ϕ

⇓
∃p′. (p, p′) ∈ head ◦ ϕ† ◦ ϕ ∧ (p′, r) ∈ ϕ ∧ Ptr(p′)

⇓
∃p′. (p, p′) ∈ head ∧ Ptr(p′) ∧ (p′, r) ∈ ϕ

⇓
(p, r) ∈ ϕ � head
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The first step here uses the fact that sets only contain pointers (52), the second step uses the rule for ordinary
composition of relations (59), and again we note the identity yielded by composing an isomorphism with its transpose
in the third step (55). The last implication os due to (18). This establishes I1 → (p, r) ∈ ϕ � head.

For the other half, we start with the following implication which follows from (20).

I2

⇓
A { (I ∧ scan = free ∧ p ∈ ALIVE ∧ (p, q) ∈ ϕ ∧ (p, r) ∈ head ∧ ¬Ptr(r))

∨
B { (I ∧ scan = free ∧ p ∈ ALIVE ∧ (p, q) ∈ ϕ ∧ ∃p′. Ptr(p′) ∧ (p, p′) ∈ head ∧ (p′, r) ∈ ϕ)

Again, we have to do a case study, i.e., show that each of the parts in the disjunction A ∨ B above implies q ↪→ r. We
have

A
⇓
I ∧ scan = free ∧ p ∈ ALIVE ∧ (q, p) ∈ ϕ† ∧ (p, r) ∈ head ∧ ¬Ptr(r) ∧ q ∈ BUSY

⇓
I ∧ scan = free ∧ (q, r) ∈ head ◦ ϕ† ∧ ¬Ptr(r) ∧ q ∈ FIN

⇓
I ∧ scan = free ∧ (q, r) ∈ ϕ � (head ◦ ϕ†) ∧ q ∈ FIN

⇓
(Iq ∗ (∃p. (q, p) ∈ ϕ � (head ◦ ϕ†) ∧ q 7→ p))∧
Ip ∧ scan = free ∧ (q, r) ∈ ϕ � (head ◦ ϕ†)

⇓
∃p. (Iq ∗ (q 7→ p)) ∧ Ip ∧ scan = free∧
(q, r) ∈ ϕ � (head ◦ ϕ†) ∧ (q, p) ∈ ϕ � (head ◦ ϕ†)

⇓
∃p. (Iq ∗ q 7→ p) ∧ r = p

⇓
Iq ∗ q 7→ r

⇓
q ↪→ r

The first implication here follows from elementary set theory (58), and from (10). The second follows from the
definition of FIN and BUSY, from scan = free, and from (59). The third implication is a consequence of the rule
(17). The fourth implication follows from the usual splitting of iterated separating conjunctions (5), and the fifth from
purity. The sixth follows from the rules for � (21), and the last implication is just a matter of notation.

Finally,
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B
⇓
∃p′. I ∧ scan = free ∧ p ∈ ALIVE ∧ (q, p) ∈ ϕ† ∧ Ptr(p′)∧
(p, p′) ∈ head ∧ (p′, r) ∈ ϕ ∧ q ∈ BUSY

⇓
∃p′. I ∧ q ∈ FIN ∧ (q, p′) ∈ head ◦ ϕ† ∧ Ptr(p′) ∧ (p′, r) ∈ ϕ

⇓
∃p′. (Iq ∗ (∃p. (q, p) ∈ ϕ � (head ◦ ϕ†) ∧ q 7→ p)) ∧ Ip ∧ (q, r) ∈ ϕ � (head ◦ ϕ†)

⇓
∃p′, p. (Iq ∗ q 7→ p) ∧ Ip ∧ (q, r) ∈ ϕ � (head ◦ ϕ†) ∧ (q, p) ∈ ϕ � (head ◦ ϕ†)

⇓
(Iq ∗ q 7→ p) ∧ r = p

⇓
Iq ∗ q 7→ r

⇓
q ↪→ r

This derivation follows the same pattern as the previous one. This concludes the proof of the theorem.

Corollary 8.4. Suppose s, h is a state satisfying the precondition InitAss mentioned in Section 6.2.1, and assume
GC∗, s, h � s′, h′ Then s′(ϕ) is a weak heap isomorphism between the part of h whose domain is s(ALIVE) and the
part of h′ whose domain is s′(FORW).

PROOF: This proof will take place at the semantical level. Write β for s′(ϕ) (and note that I implies that β is a bijection
β : s′(FORW) = s′(ALIVE) = s(ALIVE)

∼
→ s′(BUSY) ), hd for s(head) = s′(head), tl for s(tail) = s′(tail), and al

for s(ALIVE) = s′(ALIVE) (and note that h(p) = hd(p) and h(p + 4) = tl(p) for all p ∈ al). What we need to show
is that for all p ∈ al,

h′(β(p)) = β∗(h(p)) (83)

h′(β(p) + 4) = β∗(h(p + 4)) (84)

We just show (83). If h′(β(p)) = r, there is a q such that

s′, h′ � I ∧ scan = free ∧ p ∈ ALIVE ∧ (p, q) ∈ ϕ ∧ q ↪→ r

By Theorem 8.3, this means s′, h′ � (p, r) ∈ ϕ � head, and this means β∗(hd(p)) = r and since hd(p) = h(p),
we get h′(β(p)) = r implies β∗(h(p)) = r, so h′(β(p)) = β∗(h(p)), as desired.

We are now in a position to take the last step and conclude that our garbage collector is correct. Intuitively, we can
just use Corollary 8.4 and instantiate ALIVE with dom(prune(h)) if (s, h) in the state in which we run the algorithm
(the result in Corollary 8.4 is valid for all values of ALIVE). To formalize this, we need a precise formulation of
pruning. Thus, we define an auxiliary reachability predicate which depends on the heap (and not two relations). This,
in turn, is most easily done by introducing a new notion of evaluation of paths that only depends on the heap.

Definition 8.5. We add the assertion forms

Pairheap, eval′(P path, eint
1 , eint

2 ), and Reachable′(mfs, eint)

50



to the assertion language of Section 3.3, and their semantics is given by the following clauses:

s, h � Pairheap iff
∀p ∈ dom(h).

p mod 8 = 0 → p + 4 ∈ dom(h) ∧
p mod 8 = 4 → p − 4 ∈ dom(h)

s, h � eval′(P path, pint, eint) iff
(P = ε and s, h � p = e), or
(P = P ′ · head and ∃p′ ∈ Ptr. s, h � eval′(P ′, p, p′)

and s, h � p′ ↪→ e), or
(P = P ′ · tail and ∃p′ ∈ Ptr. s, h � eval′(P ′, p, p′)

and s, h � p′ + 4 ↪→ e).
s, h � Reachable(mfs, eint) iff

s, h � Pairheap and
[[m]]s = {p ∈ Ptr | ∃P ∈ Path. s, h � eval′(P, e, p)}

We can now conclude

Theorem 8.6. Let (s, h) be a state such that

s, h � Reachable(ALIVE, root) ∧ InitAss.

Then, if GC∗, s, h � ∗ s′, h′, (s′, h′) is a garbage collected version of (s, h).

PROOF: We note that, by the definition of pruning, s, h � Reachable(ALIVE, root) is equivalent to s(ALIVE) =
dom(prune(h)). Then use Corollary 8.4.

We have therefore completed our task, and we may conclude

Theorem 8.7. Our implementation of Cheney’s algorithm meets the required specification, which implies that there
exists a weak heap isomorphism between the initial state and the terminal state of execution. Therefore, it can safely
be used as a garbage collector.

We note that the proof has been almost entirely formal. All the proofs in Section 7 and most of the proofs in Section
8 used only the proof rules from Section 3.4, and no semantical arguments. Only the last steps needed a semantical
argument, since we had to reason about the situation the heap before and after execution.

9 Related and Future Work

In this section, we discuss work that relates to this paper. We begin by describing some of the literature on Separation
Logic, and then we discuss some work on more type-theoretic approaches to the problems regarding reasoning about
low-level programs. After this, we will give an account of some work in the related field of Proof Carrying Code, and
then we describe other proofs of garbage collectors. Next, we briefly describe some earlier approaches to the problem
treated in this paper, and finally we give pointers for future work.

9.1 Separation Logic

In this section, we will give a brief account of the work in Separation Logic that is mostly relevant for this paper.
Obviously, the introductory papers [Rey00], [IO01], [ORY01] on BI as a program logic and the Frame Rule [IO01]
(also mentioned in Section 2) are relevant, since they laid the foundation for this work, but we will not go into details
about that work here. We focus on work with more technical resemblance to ours.

The ∀∗ connective was suggested by Reynolds, and is a generalization of the
⊙

connective which he introduced
in a course on Separation Logic [Rey03]. The

⊙

connective was used to prove programs involving arrays, so it was
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sufficient to reason about intervals of pointers. In his slides, Reynolds proves several results, for example correctness
of implementations of a cyclic buffer and quicksort using

⊙

. In our setting, intervals are not adequate, since the sets
FORW and UNFORW are not intervals.

As mentioned in the Introduction, Yang was the first to use Separation Logic to prove a “non-toy” program in his
thesis [Yan01]. The Schorr-Waite algorithm is interesting in its own right, since it can be used as the marking part
of a mark-and-sweep garbage collector. The implementation uses extra “bit” fields (mark and check), whereas we do
not use such fields. Although most of the proof is formalized, there are some “semantical holes” in the proof (e.g.
Lemma 80), where the deduction is not justified by logical rules, but rather by a semantical argument. We have been
aiming at using logical rules as much as possible in our proof. We have followed Yang’s idea of using properties of
special classes of assertions. He used pure and strictly exact assertions; we have also used other classes of assertions
(monotone and domain-exact) and have used properties that these assertions enjoy.

There is a difference in methods between our proof and other proofs of programs that use Separation Logic. In
[Rey00], a predicate dlist α(i, i′, j, j′), which says that the mathematical sequence α as a list is represented in the
heap, is introduced, and a program for deleting zero-valued elements from the list is proved correct. In [ORY01], a
predicate tree(τ, p) saying that the mathematical tree τ is represented in the current heap is used. Yang has similar
predicates markedlistR(L, E) and spansR(τ, E) in his proof. The basic pattern is the same in all these situations:
the predicates all say something like “a mathematical structure (a tree, a list, etc.) is represented in the current heap”.
Proofs of programs then proceed by local reasoning and one proves that small changes correspond to small changes
in the mathematical structure. Finally, one concludes that an isomorphism between the mathematical structure exists
after execution of the program, and infers that the program is correct.

An earlier version of this paper used the same approach. It used a predicate which stated that a graph was repre-
sented in the heap. But since graphs are not defined inductively (like lists and trees), it was not possible to use this
predicate to do the same kind of “reasoning on part of the structure” that is done with the inductively defined structures
mentioned above. This proof became mostly semantical, since the reasoning took place at the level of graphs (it was a
further complication that the original graph is destroyed during execution of the program, so there was no immediate
isomorphism which could be used as an invariant). Since all information about the heap was stored in the graph, the
use of local reasoning became eluded.

Our current proof does not use the approach with a mathematical structure being represented in the heap. The
information about the structure is encoded in finite sets and relations and the iterated separating conjunction instead.
We believe that this approach can also be used in proofs of other graph algorithms, but the verification of this claim is
deferred to future work.

9.2 Type Theoretic Approaches

We give descriptions of type-theoretic approaches to the problem of proving safety of programs involving heaps.

Typed Assembly Language In the paper [MWCG99] by Morrisett et al., a Typed Assembly Language (TAL) is
introduced. TAL is based on a conventional assembly language, but with certain type annotations placed in its syntax.
This induces a notion of well-formedness, which in turn guarantees desirable properties such as subject reduction (the
operational semantics preserves well-formedness), type safety (well-formed programs do not get stuck), and progress
(well-formed programs terminate). Further, it is shown how one can compile a variant λF of the polymorphic λ-
calculus into TAL. For each of the steps in the compilation, it is shown that the translation is type-correct, and this
means that the target program is well-formed, if the source program was. A problem in TAL is, as mentioned in
Section 1, that the language has a malloc instruction and assumes an infinite amount of memory, which makes it
unrealistic. A proof of a garbage collector might make the setting in [MWCG99] more realistic, if one expands all
calls to malloc to a call to a runtime system like the one sketched in Section 5 (but this is deferred to future work).

Alias Types When allocating memory in TAL, the allocated cells are “stamped” with the types they can be initialized
with. In the setting of Alias Types [SWM00], memory is handled more uniformly, and the constraints that ensure the
safety of programs are simpler than the well-formedness conditions of TAL. The intention of constraints is to describe
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the “shape” of the heap and, for example, a function can only be called when the heap conforms to the constraints of
that function. Again, there is a notion of a well-formedness (of a pair of a program and a store), and a corresponding
soundness theorem stating that if such a pair is well-formed, execution of the program does not get stuck. The main
problem is the requirement of the static description of memory described above. This means that all aliasing must be
described in the types at all times. It might be useful to introduce framing of some sort in this work.

Hierarchical Storage In [AJW03], Ahmed, Jia, and Walker combine ideas from the Ambient Logic [CG00] by
Cardelli and Gordon, from BI, and from region calculi [TT94] to develop a logic for reasoning about about hierarchical
storage (a slightly modified version of the logic, where the structure on locations is less explicit, appears in [AW03]).
They give a storage model based on this, along with a programming language to mutate stores. In this language, terms
have types that are based on the new logic. The standard results (preservation of types by the operational language,
progress of the semantics on well-formed states) are proved, but the usefulness of the language is not demonstrated
(only a complex example of a simple operation is shown). It is, however, interesting to see a type-theoretic approach
which utilize the ideas from BI / Separation Logic to give descriptions of storage. It will be interesting to see the
offspring of this work, as it might narrow some theoretical gaps between Separation Logic and type-theory.

Capabilities The last work we will mention in our “survey” of type-theoretic approaches to safe memory man-
agement is the paper [CWM99] on capabilities by Crary, Walker, and Morrisett. The authors propose a Calculus of
Capabilities, which is also an extension of the region calculus. The main feature is that regions are annotated with a
capability, and the capabilities indicate whether it is safe to deallocate a region, and it is only safe to evaluate a term,
if a given set of capabilities is held. For example, to read or allocate a region r, it is necessary to hold the capability
to access r. Naturally, an effort must be made to address to the problem of aliasing, and the capability system tracks
aliasing by adding multiplicities to capabilities, and a region r is unique (so r is the only region variable denoting its
particular region) if it has unique multiplicity; this is denoted r1. By default, all regions have unique capability, but
one can create references to them inside let-declarations, thereby increasing the multiplicity. Then it is only safe
to deallocate a region in a capability which says that the region is unique. With this system, one can guarantee that
there are no memory leaks, and also the “usual” properties (type soundness, subject reduction, progress) hold. As the
authors point out, the aliasing system is not very fine-grained: a region is either unique, or it may alias other regions,
and this reduces flexibility, since there is no difference between a region that has two references to it and one with 17
(say) references to it. Further, it is not possible to give a “frame-like” rule and do local reasoning, as pointed out in the
paper.

9.3 Proof Carrying Code

In their papers [NL96] and [Nec97], Lee and Necula introduced Proof Carrying Code (PCC) as a mechanism to
determine safe execution (by a code consumer) of code provided by a code producer. The code producer publishes
a safety policy, which, loosely speaking, is a protocol which describes allowed operations and the invariants that
must hold when a program uses the operations. The producer then generates a program along with a proof of its
correctness, and the consumer will then validate the proof before executing the program, since this guarantees safety
of the program. A pre- and a postcondition is given for a program, and the code producer can insert invariants at
strategic points in the program. A verification condition (VC) is then automatically generated for each in the program,
and it is the duty of the producer to exhibit a (machine-checkable) proof for each of these steps. If the VC for the
postcondition is provable, the program is safe to execute. The derivations in the papers are based on the Edinburgh
Logical Framework (LF) and use a type-based approach.

Appel’s approach to the idea of PCC [App01] objects to the idea of the VC generator used in [NL96], [Nec97], and
also generalizes to other approaches to verification than the type-based one, by allowing proofs to be constructed and
verified from the basics of mathematical logic (with no type-axioms); hence the name Foundational Proof Carrying
Code (FPCC). This makes it more flexible (since it allows for other types of arguments than type-theoretic ones), and
since only a minimal number of axioms are used in the formalization, it is also safer, since a smaller Trusted Computing
Base (TCB) is used. For proving the safety of programs, the paper takes the same approach as in [MWCG99], namely
to to use a type-preserving compiler, and thus we also get here that typability ensures safety. The disadvantage is that

53



the proofs are harder to construct and often involve complex semantic models for types.

As a reaction to the complex proofs that are often necessary in FPCC, Hamid, et al. have devised a Syntactic
Approach to FPCC [HST+02]. A global invariant is used, and the method used to prove safety is to show that the
invariant holds initially, is preserved by all “steps” the machine takes, and that the invariant implies that the “safety
policy” of the machine is not violated. As in TAL [MWCG99] and Alias Types [SWM00], this depends on a notion
of well-formedness. This is guaranteed by compiling a variant of TAL, called FTAL (Featherweight Typed Assembly
Language) into the machine language. FTAL is then shown to have properties like TAL (progress, preservation), and
it is shown that the operational semantics of FTAL is in harmony with the step semantics of the machine language
(via a relation ⇒). This yields the simple invariant Inv(S) saying that “there exists a type-correct FTAL-program P
such that P ⇒ S”, and this ensures safety. Again, a problem is that FTAL, like TAL, has a malloc instruction and
supposes an infinite amount of memory.

Many of the ideas from Proof Carrying Code would be interesting to use in the context of Separation Logic. For
example, the idea of distributing a proof of safety along with a program could readily be analyzed for Hoare-style
logics, if we have an encoding of such proofs. Nipkow’s group in Munich have developed a framework for formally
proving programs in traditional Hoare Logic with arrays [vON02], and an extension to Separation Logic is on its way.
Whether this is a good platform for a safety protocol for proofs in Separation Logics remains to be seen.

9.4 Proofs of Garbage Collectors

Type Preserving Garbage Collectors In their POPL’01 article [WA01], Wang and Appel illustrate a way to trans-
form (type-safe) programs into a form where they explicitly call a function which acts as a garbage collector for the
program. Since this is a well-formed function, the garbage collector is type-safe and preserves the type safety of the
program being garbage collected. This gives a better performance than pure region approaches, and can reduce the size
of the TCB for PCC since one does not have to trust the garbage collector. The garbage collector implemented in this
framework is of the same type (stop & copy) as the one treated in this paper, and the treatment of garbage collection
starts after a CPS-conversion, a closure-conversion, and a region annotation [TT94] of the original program. The main
problem is, of course, that of sharing and forwarding pointers, and this is dealt with by two tricks. First, a runtime
check is used to check whether two (or more) region variables are bound to the same region in memory, allowing safe
deallocation. Second, it is assumed that objects have an extra field for forwarding pointers, and this causes the need
for casting between types. A problem is that no account is taken for cyclic data structures. This is not needed, since
the language being collected, does not support the creation of these, but it is a drawback, and it is not clear how their
technique could be used to garbage collect more low-level languages, for example like that of [COB02].

In contrast, our proof requires no extra fields for forwarding pointers, we can collect cyclic structures, and the
sharing problem is, of course, dealt with by the connectives from (our version of) Separation Logic. However, it is
interesting to see a type-theoretic approach to safe garbage collection, since it addresses the assumption of an infinite
amount of storage that is implicit in the work mentioned before.

Typed Regions In [MS02], Monnier and Shao combine the methodologies of region calculi and Alias Types, and
obtain a language in which they can write a type preserving garbage collector which can deal with cyclic structures.
The collector they implement is a generational one [JL97, chp. 7], so more advanced than the one we have imple-
mented. They have two generations (implemented by regions) and one region used for ref-cells. The combination of
the two methodologies mentioned results in a language, where, for example, the types of terms are terms from the
Calculus of Inductive Constructions [PM93]. The type of a pointer holds both the location it points to (like in TAL),
and also some information (called the intended type) of the object it points to, so much information is stored in the
type system. Regions are typed with functions mapping the objects they hold (along with their intended type) to their
actual type. Our language is simpler, but of course, we have complex formulas to keep track of in our proof. How
much complexity that will be added if we take on the challenge of proving a generational collector is a question which
we defer to future work.

Comparison Between Type-theoretic and Logical Approaches: The work in [SWM00] and [MWCG99] encom-
pass a generic way to prove properties of a programs: Exhibit a programming language with a sufficiently expressive
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type system, and define a suitably strong notion of well-formedness. Then prove that this notion of well-formedness
implies that programs do not get stuck, and are therefore safe. The type-theoretic approach thus stems from the slogan

“Well-typed programs do not go wrong”

When the programming languages involved involve heap manipulations, new ideas have to be introduced in the type
systems, making them at the same time more complex and more expressive. This can for example be seen in the papers
mentioned above. The idea is then that if a program is well-formed (and thereby safe), one can “strip” the program of
types, and the resulting program is also safe.

In contrast, the approach used to deal with the problems that come with pointers and aliasing in Separation Logic,
has been to extend the logic with new basic predicates and connectives that capture relevant properties about pointers.
Then programs are proved with new proof rules that use these connectives, and the slogan that well-specified programs
do not go wrong (see Section 2) is invoked to conclude that programs do not read or modify heap locations that they
do not have access to. The Frame Rule is important to mention here, since it helps keep proofs of the critical heap
operations lightweight. A rule like this might help make the rules in the type-theoretic approaches more tractable.

In the type-based work described here, the properties one can infer about a program using these approaches are
limited to safety; the program does not write to or dereference dangling pointers (this is captured by the fact that
programs do not get stuck). In comparison, proofs in program logics often also prove correctness: not only does a
program not get stuck, but it also does what we expect it to do. In the case of the garbage collector, it is good to know
that it does not core-dump, but it is also vital for the user program that the structure of its memory is preserved. On
the other hand, one can prove other kinds of results using type theory that are hard to attack using a Hoare-logic based
approach. For example, type theoretic arguments are used intensively to prove correctness of translations between
languages in [MWCG99]. It is not clear how one could prove this kind of result using program logics.

9.5 “Logical” Proofs of Garbage Collectors

As is described above, the challenge of proving correctness / safety of garbage collectors has been an interesting
challenge in academia. Apart from the type-theoretic approaches described above, there have also been a number of
attempts that were not based on type-theoretic arguments. We will briefly describe these here. Most of the collectors
that have been verified in this way have been “mark-and-sweep” collectors [JL97, chp. 4], where the main part of the
algorithm “marks” those locations that are reachable, so that a “sweep” of dead cells can safely take place.

To the author’s knowledge, the first attempt of a proof of a garbage collector was published in [DLM+78], where
the problem of garbage collection “was selected as one of the most challenging – and, hopefully, most instructive!
– problems”. The language being garbage collected is essentially the same as in our setting, but the proof given is
informal, and merely seems to give hints as to how one might give a formal proof. Other informal proofs (of essentially
the same algorithm, only the number of colors used in the marking phase vary) have been published by Ben-Ari [BA84]
and Pixley [Pix88]. The informal approach was defended by Ben-Ari:

So as not to obscure the main ideas, the exposition is limited to the critical facets. A mechanically
verifiable proof would need all sorts of trivial invariants.

Unfortunately, the proofs in both expositions turn out to be fallacious, as demonstrated in [Rus94]. In this exposition,
Russinoff has explored how great a level of details that is needed for a complete formalization of a proof of a garbage
collector, and has verified his proof of both safety (no live nodes are deallocated) and liveness (all dead cells are
eventually deallocated) in a mechanical program verification system. It must be noted, however, that the proof does
not operate on a “real” heap, but rather on a graph. The proof consists of 22 lemmas (which work like invariants)
that are proven in the verification system, using more than a hundred sublemmas (that are, however, not documented).
As mentioned below, an implementation of our proof into a theorem prover is deferred to future work. But it will be
interesting to compare this with that of [Rus94], although the two garbage collectors in question are fundamentally
different.
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9.6 Future Work

In this section, we give pointers for future research.

In order to ensure that the proof herein is flawless, it is desirable to further formalize the proof, for example
using a logical framework like ISABELLE [NPW02]. My experiences with ISABELLE are limited to an introductory
course, but it seems that it would be a good place to start formalizing, and as mentioned before, initiatives to integrate
Separation Logic in ISABELLE have already been taken. The main challenges in this regard are at least twofold. First,
the extensions of Separation Logic with finite sets and relations, must be formalized in ISABELLE, in extension of the
implementation underway. Second, we have used some structural rules in our proof that are not directly part of the
idea used in the implementation of Separation Logic in ISABELLE. An assertion is just encoded as a semantic function
from its free variables to the domain {true, false}, and there is no notion of syntax-directed ideas such as purity
and domain-exact assertions in the upcoming implementation.1 This might turn out to be an even more challenging
problem than the first one.

In object-oriented programming languages, the notions of modules and their interfaces are important. Modules
might utilize other modules’ interfaces and this creates an important abstraction, since the programmer is free to choose
how to implement the module. However, if the language in which the module is implemented has explicit access to
memory, it is not clear what the criteria are for two implementations to be equivalent (and therefore interchangeable).
Some work has already been done in this regard. Already in [Hoa72], Hoare outlined a notion of equivalence of data
representations, and Mitchell have given a good tutorial on the subject in [Mit91], but there was no heap involved in
their languages. In more recent work, Banerjee and Naumann have devised a (semantic) criterion which guarantees
that two implementations of a module are indistinguishable [BN02], and Clarke, Noble, and Potter have given syntactic
criteria to ensure the same goal [CNP01]. Finally, Reddy and Yang have devised rules from Separation Logic to give
a categorical setting where one can show correctness of data representations that involve heaps [RY03].

In [Pym02], [OPY03], [OP99], [Yan01], [Cal02], categorical models for BI are given. In particular, it is shown
how one can model the logic with a topos of presheaves, exploiting the DCC-structure that these possess. Since we
have extended the logic with finite sets and relations, and in particular, with the new connective ∀∗, it needs to be
explored what categorical machinery is necessary to model these new features.

As mentioned in Section 9.1, our approach differs from other proofs of programs in Separation Logic inasmuch as
we use sets and relations and the ∀∗ connective. It will be interesting to explore the applicability of this approach by
proving other graph algorithms correct. This could then be used to prove correctness of other garbage collectors.

There is a need for transforming the ideas from Separation Logic from sequential languages into a setting where
parallel and communicating systems use shared resources. Some initial steps have been taken at Queen Mary, Univer-
sity of London in this regard. It will be interesting to follow and take part in this development.

10 Conclusion

Yang proved correctness of the Schorr-Waite graph marking algorithm, which involves non-trivial pointer manipula-
tions to maintain an “internal stack” that keeps track of the depth-first marking that this algorithm performs. Apart
from that, the proofs of programs in the literature that use Separation Logic have involved not very complex programs,
like reversing a list, deleting a tree, etc. By proving correctness of Cheney’s garbage collection algorithm, we have
exhibited a second witness to the power of Separation Logic. We are sure that more will follow.

We have used an extension of “traditional” separation logic to formally prove correctness of a simple copying
garbage collector. We have aimed to make the proof entirely “formal”, that is, we wanted to use a set of proof rules
rather than arguing at the semantical level. Although the last part of the argument that our invariant implies existence
of a weak heap isomorphism is semantical, we believe that we have obtained this goal to a great extent; for example,
the proof that the invariant is maintained by the while-loop in the program is entirely formal.

The benefits of using separation logic is best illustrated in the proof of CopyCell in Section 7.2.3. The local
specification involving the critical heap manipulations was proved using simple rules, and after that, we used the

1According to private correspondences with Tobias Nipkow.
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Frame Rule to insert the local specification a global one. If we were to do this in traditional Hoare logic using
predicates like the version of Reachable from Section 2, it would be a nightmare, and would surely involve semantical
arguments.

In the course of proving the invariant, we have added more and more “set-theoretic” conjuncts to it in order to
make the argument go through. As a consequence, the invariant has become rather large and complex-looking; this
can be seen as a flaw in the proof, but one may also view it as a confirmation of Ben-Ari’s statement which was quoted
in Sec. 9.5: in the course of proving correctness of a garbage collector, there are a lot of little details that must be in
place.

An earlier version of the proof used functions and bijections instead of the current relations. This reduced the size
of the invariant, but we had to take into account that the functions might not always be defined, and as a consequence,
the term language and its properties became unpleasant. The solution with relations yields a cleaner term language
that is also more intuitive to reason about. As mentioned before, we believe that this logic (or a variant thereof) can be
used as a basis for proving correctness of other graph algorithms and garbage collectors.
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