
Worst-Case Union-Find with Fast Deletions

Stephen Alstrup
Inge Li Gørtz
Theis Rauhe
Mikkel Thorup

IT University Technical Report Series
TR-2003-25

ISSN 1600–6100 December 2003

Copyright c© 2003, Stephen Alstrup
Inge Li Gørtz
Theis Rauhe
Mikkel Thorup

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-034-4

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www.itu.dk

Worst-Case Union-Find with Fast Deletions

Stephen Alstrup1, Inge Li Gørtz1, Theis Rauhe1, and Mikkel Thorup2

1 Theory Department, The IT University of Copenhagen, Denmark. Email:{stephen,inge,theis }@it-c.dk .
2 AT&T Research Labs, USA. Email:mthorup@research.att.com .

Abstract. In the classical union-find problem we maintain a partition of a universe of elements into disjoint sets
subject to the operations union and find. Kaplan et al. [SODA 2002] studied an extension of this problem, where also
deletions are allowed. They gave a data structure that for any fixedk supportsfind(x) anddelete(x) in O(logk n)
worst-case time and union inO(k) worst-case time, wheren is the number of elements in the set containingx. They
asked if the delete time could be made faster than their find time. We answer this question affirmatively showing
how to get the delete time down toO(log∗ n), while keeping the same time bounds for union and find.

1 Introduction

In the classical union-find problem we maintain a partition of a fixed universe ofN elements into disjoint
sets subject to the operations union and find. The starting point is a collection of sets each containing a single
element, and some of these sets are then subsequently combined, but the underlying universe remains the
same. A classical union-find data structure allows the following operations on a collection of disjoint sets:

– make-set(x): Creates a set containing the single elementx, and returns the name of the set.
– union(A,B): Combine the setsA andB into a new set, destroying the setsA andB, and return the name

of the new set.
– find(x): Finds and returns (the name of) the set that containsx.

Kaplan et al. [4] studied theunion-find with deletionsproblem, where the universe is no longer fixed.
That is, in addition to the above three operations they allow operations that insert or delete elements in the
universe.

In the union-find with deletions problem we in addition to the above three operations allow an insert and
a delete operation:

– insert(x,A): Inserts an elementx not yet in any set into setA.
– delete(x): Deletesx from the set containing it.

Note that the delete operation does not get the set containingx as a parameter.
As noted by Kaplan et al. we can in a straight-forward way extend a classical union-find data structure

to also support aninsert(x,A). This can be done by first performB = make-set(x) followed byunion(A,B).

1.1 Previous Work

For the classical union-find problem (without deletions) Smid [6] (building upon a previous result of Blum [2])
gave for any fixedk a data structure that supports union in worst-caseO(k) time and find in worst-case
O(logk n) time, wheren is the size of the corresponding set. These time bounds are optimal in the cell
probe model [3] (see also [1]). In Smid’s data structure each set is represented by ak-ary balanced tree,
where the elements reside in the leaves of the tree.

Kaplan et al. [4] modified Smid’s data structure to get a data structure with the same performance for
union and find as Smid’s, that supports delete in timeO(logk n) time.

Kaplan et al. also showed how to augment any given data structure that supportsfind(x) in O(tf (n))
worst-case time wheren is the size of the set containingx, and insert in timeO(ti(n)) worst-case time
wheren is the size of the set in which we insert the new element, to supportdelete(x) in O(tf (n) + ti(n))
worst-case time wheren is the size of the set containingx, while keeping the same worst-case bounds
for union and find. For this general augmentation Kaplan et al. used an incremental rebuilding technique.
Each set has two counters, one counting the number of elements in the set, and one counting the number of
deleted elements in the set. At each deletion they make a find operation and then increment the number of
deleted elements in the set by one. When at least1/4 of the elements in a set is deleted they start background
rebuilding.

Kaplan et al. also studied the problem in the amortized setting. For the classical union-find problem
(wihtout deletions) in the amortized setting Tarjan [7] (and Tarjan and Van Leeuwen [8]) gave a data structure
which supports a sequence ofM finds and at mostN unions on a universe ofN elements inO(N+Mα(M+
N,N, log N)) time whereα(M,N, l) = min{k|Ak(bM

N c) > l} andAi(j) is Ackermann’s function as
defined in [5]. Kaplan et al. refine the analysis of this data structure and show that the cost of each find is
proportional to the size of the corresponding set and that it is possible to add a delete operation, such that
the amortized cost of deleting an element from a set of sizel, is the same as the cost of finding an element,
namelyO(α(M,N, log(l)).

1.2 Our Results

Kaplan et al. [4] asked if the delete time could be made faster than their find time in the worst case setting. We
answer this question affirmatively giving a data structure that supports delete in worst case timeO(log∗ n),
while keeping the same time bounds for union and find (O(k) andO(logk n) respectively).

In this paperlog n denotes the logarithm with base2. Let log(i) n denote the logarithm function applied
i times in succession. The functionlog∗ n is defined aslog∗ n = min{i ≥ 0 : log(i) n ≤ 1}.

We represent the sets as trees with the elements in the leaves, as in the data structure by Smid, and use
an incremental rebuilding technique as Kaplan et al., but instead of performing a find operation for every
delete operation, we only useO(log∗ n) time on a delete operation. The main idea in our data structure is
that we divide the tree into subtrees of certain sizes, and eachdelete(x) operation then perform a kind of
path-compression, such that the path to the root gets shorter for the other leaves in the same subtree asx.
We do this in a way that ensures, that the leaves in the same subtree helps each other. This is done by only
updating parent pointers of the roots in the selected subtrees.

1.3 Overview

The rest of the paper is organized as follows. In Section 2 we give some definitions used in the rest of the
paper. In Section 3 we describe the data structure. In Section 4 we give the analysis of the data structure.

2 Definitions

The heightof a nodev, denoted byh(v) is the length of the longest path fromv to a leaf in the subtree
rooted atv. For a nodev let p(v) denote the parent ofv.

When we delete a leaf in a tree, we do not actually delete it from the tree, but just mark it as deleted.

2

Thesizeof a tree, denoted by size(T), is the number of leaves inT . If a leaf is marked as deleted it still
counts in size(T). Let |S| denote the number of elements in the setS, and let|T | denote the number of the
number of leaves inT not marked as deleted.

Definition 1. Define the functionf recursively the following way:

f(0) = 1, f(i) = 2f(i−1) .

We now define the conceptrank of a node, which plays a crucial part in our data structure.

Definition 2 (Rank of a node).LetTv be the subtree rooted atv, and letmv = size(Tv). The rankrv of a
nodev is defined as

rv = 0 if mv < 16 ,

and
rv = 1 if 16 ≤ mv < 24 · f(3) ,

and otherwise

rv = max{i : mv ≥ 24 ·
i∏

j=2

f(j + 1)} .

Or said in another way: Ifv has rankrv then the number of leaves in the subtree rooted atv is

24 ·
rv∏

j=2

f(j + 1) ≤ mv < 24 ·
rv+1∏
j=2

f(j + 1) .

The rank of a root in a tree of sizem is at mostlog∗ m + 1.
At a first glance the definition of rank might look a bit complicated, but the idea behind it is that it has

the property that the distance between a nodev of rank i − 1 and its nearest ancestor of ranki or higher is
at mostf(i). We will prove this in Section 4.

Example 1.In a complete binary subtree all nodes of height less than 4 has rank 0, all nodes of height
between 4 and 7 have rank 2, and fori ≥ 2 all nodes of height between4+

∑i
j=2 f(j) and4+

∑i+1
j=2 f(j)−1

has ranki.

Define the rank of a (sub)tree to be the rank of its root.

3 The Data Structure

We only describe the data structure for trees with degrees at least 2. That is, the data structure described here
use timeO(1) for union andO(log n) for find. The approach can be generalized tok-ary trees, which gives
timeO(k) for union andO(logk n) for find.

We represent each set by trees such that the elements are in the leaves of the tree. Each node contains a
pointer to its parent and a linked list of its children. The root of the tree also contains the name of the set,
the size of the tree, and the rank of the tree.

We represent each setS by one or two trees. We denote the first tree byS0 and the second tree if it exists
by S1. We have|S| = |S0| + |S1|. An elementx in S is represented by a leaf in eitherS0 or S1. If x is
represented by a leaf inS0, there might also be a leaf inS1 associated withx that is marked as deleted. The

3

elementx points to the leaf representing it. At the beginning we representS only by S0, andS1 is empty.
The treeS1 will be used when we start rebuildingS0.

In order to implement the algorithm, we maintain linked lists forS0 and forS1, denoted byL(S0) and
L(S1), respectively. The listL(Si) contains a node for each leaf inSi not marked as deleted. The leaf which
corresponds tox in Si points to the node corresponding tox in L(Si) and vice versa.

From the node identifyingS we can get to the nodes identifyingS0 andS1 and vice versa, and from the
node identifyingSi we can get toL(Si) and vice versa.

3.1 The Operations

Let c be a positive integer constant. We can now define the operations.

find(x): Follow parent pointers from the leaf containingx all the way to the root. Return the name of the set
stored at the root.

union(A,B): We performUnion(A0,B0) andUnion(A1,B1), where the operationUnion(A,B) is defined as
follows:

Union(A,B): Let a andb be the root of the tree representingA andB respectively. Assume wlog. that
size(A) ≥ size(B). There are two cases:
1. size(A) = 1 = size(B): Create a new nodec, makea andb children ofc, and updatec’s counters.
2. size(A) > 1: Makeb a child ofa, let a be the root of the new setC and update all the counters ina.

Also concatenateL(Ai) with L(Bi) to formL(Ci).

The special case for size(A) = 1 = size(B) ensures that all elements are located at the leaves. Note that the
union operation looks at the size of the sets and not the actual number of elements in the set, that is, leaves
marked as deleted also counts.

delete(x): Let S be the set containingx. Mark the leaf representingx in Si as deleted, and delete the node
corresponding tox in L(Si). Follow x’s parent pointers up to its first ancestorv of rankrv ≥ 1. Now call
the following recursive procedure with parametersv andc, (update(v,c)).

update(v,k)
• If v is the root callrebuild(S) (defined below) and exit.
• If k = 0 exit.
• If rp(v) > rv.

Call update(p(v),k) and exit.
• If rp(v) = rv.

Updatev’s parent pointer to point top(p(v)) and callupdate(v,k − 1).

The idea behind the delete step is that we mark the node as deleted and send the information along the path
to the root. The reason why we only update the parent pointer of certain nodes, is that in this way we ensure,
that different delete operations will help each other by updating the same pointers.

rebuild(S): First check whetherS1 is empty, and if this is the case renameS0 to S1. Next mark2c leaves
in S1 as deleted (performing2c delete operations without any rebuild steps) and insert the corresponding
elements intoS0. We useL(S1) to find the leaves to be deleted. IfS1 now contains less than2c leaves, then
insert the remaining elements intoS0.

4

4 Analysis

In this section we analyze the data structure. The following lemma follows from the fact that we use a
standard union by size operation.

Lemma 1. The height of a treeT in the data structure is at mostdlog me, wherem = size(T).

The following lemma about states a crucial property of the definition of rank.

Lemma 2. For i > 1, the distance between a nodev of rank i − 1 and its nearest ancestor of ranki or
higher is at mostf(i).

Proof. The size, size(Tv), of the subtree rooted at the nodev is at least24 ·
∏i−1

j=2 f(j + 1). Wlog. assume
that size(Tv) is exactly this amount. By the way we perform union, the number of leaves in the subtree at
least doubles every time we follow a parent pointer up. Thus after we have followed

2
2..

22
}

i
= f(i)

parent pointers up, the number of leaves in the subtree rooted at this node is at least24 ·
∏i

j=2 f(j + 1), and
this node thus has ranki or higher. ut

As noted earlier the rank of the root of a treeT is at mostlog∗ m + 1, wherem = size(T). This gives
us the following lemma.

Lemma 3. Let T be the tree containing the leaf representing the elementx. The operation delete(x) takes
timeO(log∗ m), wherem = size(T).

Proof. If we look at the procedure update without recursive calls and without rebuild it takes constant time.
Going fromx to its first ancestor of rank greater than or equal to one takes constant time. We first show

that the procedureupdateis called recursively at mostO(log∗ m) times during a delete operation.
Update is called recursively whenrp(v) > rv. Since the root has rank at mostlog∗ m+1 this can happen

at mostlog∗ m + 1 times. It is also called whenrp(v) = rv, but this can only happenc times, sincec is
decremented by one each time.

Thus, without the call torebuild(T) updatetakes timeO(log∗ m). The procedurerebuild(T) is only
called once, and it performs2c deletes without any additional calls torebuild(T) which each takes time
O(log∗ m), and2c inserts which each takes constant time. ut

We now define what we call arelevant subtree.

Definition 3. Letv be a node of ranki. Define thegoodsubtree ofv, denoted byT ∗
v , to be the subtree rooted

at v, Tv, with all proper subtrees ofTv of ranki deleted. That is all proper subtrees ofT ∗
v has ranki − 1 or

less.
Thesizeof a good subtree, size(T ∗

v), is the number of leaves inT ∗
v , not countingv.

Definition 4. Therelevantsubtrees of a treeT is the good subtrees of size greater than0.

Example 2.A nodev is the root of a relevant subtree if it has a child of rank less than itself.
In a complete binary treeT , the relevant subtrees are the subtrees of height exactly24 ·

∏i
j=2 f(j) for

all i ≤ the rank of the root ofT , and the distance between the root of a relevant subtree of ranki− 1 and its
nearest ancestor of ranki is exactlyf(i).

5

The relevant subtrees are those subtrees whose root nodes parent pointer might be updated during a
delete operation.

The main idea behind the delete operation is that all deletions in the same relevant subtree somehow
helps updating the parent pointer of the root of this subtree. We will say that a parent pointer of the root of
a relevant subtree of ranki is fully updatedif it points to its nearest ancestor of rank greater thani. We will
later show that when a certain number of leaves of a relevant subtree is deleted, the parent pointer of the root
is fully updated.

We need the following lemma.

Lemma 4. A relevant subtree of ranki ≥ 2 has at least24 ·
∏i

j=2 f(j + 1) leaves, and a relevant subtree
of rank 1 has at least 16 leaves.

Proof. By the way we perform union.

The tree is constructed by union operations. Letv be the root of a relevant subtree. LetTv be the subtree
rooted at nodev, and letmv = size(Tv). Sincev is the root of the subtree, then size(Tv) is greater than or
equal to the size of the subtrees of the children ofv, since we perform union by size. This also means that
the rank ofv was greater than or equal to the rank of the children ofv at the time the union was performed.
Thus for all childrenw of v with ranki, v already had ranki when theunion(Tv,Tw) was performed. ut

An important question in the analysis of the data structure is how many updates do we need to perform
before the parent pointers of all relevant subtrees are fully updated, i.e., points to an ancestor of rank greater
than the rank of the root itself? Using Lemma 2 we can show the following crucial lemma.

Lemma 5. Let T be a tree, andr the rank ofT . The total number of updates that are needed before the
parent pointers of the roots of all the relevant subtrees are fully updated is less than

1
3

size(T) .

When all these parent pointers are fully updated all leaves has distance at mostr + 3 to the root.

Proof. According to Lemma 2 the number of times a parent pointer of ranki needs to be updated is at most
f(i + 1).

For i ≥ 2 the number of relevant subtrees of ranki is at most:

size(T)
minimum size of a relevant subtree

≤ size(T)
24 ·

∏i
j=2 f(j + 1)

,

6

since the relevant subtrees of ranki are disjoint. The number of relevant subtrees of rank1 is at most:
size(T)/16. Thus, the total number of updates needed is at most:

size(T) · f(2)
16

+
r∑

i=2

f(i + 1) · size(T)
24 ·

∏i
j=2 f(j + 1)

=
size(T)

16
·
(
f(2) +

r∑
i=2

f(i + 1)∏i
j=2 f(j + 1)

)
=

size(T)
16

·
(
4 +

f(3)
f(3)

+
f(4)

f(3) · f(4)
+

f(5)
f(3) · f(4) · f(5)

+ · · ·
)

=
size(T)

16
·
(
4 + 1 +

1
f(3)

+
1

f(3) · f(4)
+ · · ·

)
<

6 · size(T)
16

<
size(T)

3
.

ut

To establish the correctness of the algorithm we will show that the fraction of leaves marked as deleted
in a tree in the data structure is less than5/(6c).

Lemma 6. For any setS, if we only perform delete and find operations (no unions) then after less than

5
6c

size(S1)

delete operations inS1 the treeS1 is empty.

Proof. Each deleted operation either givec updates or2c rebuild steps (or maybe both).
If a delete operation callsrebuild(S) then we reduce the number of undeleted leaves inS1 by 2c + 1,

since a rebuild moves elements fromS1 to S0. Thus, in total we need at most size(S1)/(2c + 1) delete
operations callingrebuild(S).

By Lemma 5 we can perform less than size(T)/3 updates, that is, less than size(T)/(3c) delete opera-
tions can result in only updates.

Thus, after less than
size(T)

3c
+

size(T)
2c + 1

<
5
6c

size(T) .

ut

Lemma 7. For any setS, let f be the fraction of leaves marked as deleted inS1. Then

f <
5
6c

.

Proof. By Lemma 6 this is true if we don’t perform any unions (and thus also no inserts).
If we perform all the union operations first it is clearly true, but what if we mix them with the deletes?
Since union is performed by size(T) the structure of the final tree (after all unions) looks the same, no

matter if we had deletes in between or not.

7

If we look at the proofs of Lemma 5 and 6, the number of operations needed are given in terms of
the total size of the tree, that is, it is also true after the union operation. Since we never “waste” any
updates/rebuilds—all delete operations gives at least eitherc updates or2c rebuilds—it does not matter
which order the operations come in. ut

Lemma 8. For every setS, at most 5
6c of the elements inS0 are marked deleted. When at most5

6c of the
elements inS0 are deleted,S1 is empty.

Proof. First look at the case where we just have a sequence of delete operations. We will show that if the
fractionf of leaves deleted is greater than or equal to1/(2c) and a delete operation callsrebuild(S), then the
fractionf ′ after the delete is at mostf . This means that the only way the fraction can grow is if we perform
no rebuilds, but only updates.

Assumef ≥ 1/(2c) and delete callsrebuild(S). The fraction of deleted elements inS0 is now

f · size(S0) + 1
size(S0) + 2c

= f · size(S0) + 1/f

size(S0) + 2c
≤ f .

By Lemma 5, then after less than1/(3c) · size(S1) updates all parent pointers are updated, and thus all
deletes hereafter will callrebuild(S). Note that the insert operations do not make any difference, since insert
is equal to union with a tree of size one, and thus all new leaves will be inserted as children of the root, so
they do not cause any new updates to be needed.

Thus, the fraction of leaves deleted is less than1/(2c)+1/(3c) = 5/(6c). The only way it can be5/(6c)
is if S1 is empty, and we therefore cannot move any elements fromS1 to S0. In that case, a rebuild operation
will renameS0 to S1.

Now look at what happens when we mix the delete operations with unions.
The argument about rebuild keeping the fraction of deleted elements down also holds since, if we per-

form union on two treesA andB which both have a fraction at leastf (or at mostf) deleted elements, then
the union of the two trees also has a fraction of at least (or most)f deleted leaves.

Again the number of operations needed to update all pointers are given in terms of the total size of the
tree, and thus by the same argument as in the proof of Lemma 7 it does not matter which order the operations
come in. ut

We can now show the main theorem.

Theorem 1. For any setS we have:

max{size(S0), size(S1)} < (
6c

6c − 5
)· |S | .

Proof. Let f1 be the fraction of leaves marked deleted inS1. By Lemma 7 we have

|S1| = size(S1) − f · size(S1) ≥ (1 − 5
6c

) · size(S1) ,

and thus

size(S1) ≤ (
6c

6c − 5
) · |S1| ≤ (

6c

6c − 5
) · |S| .

Let f0 be the fraction of leaves marked deleted inS0. By Lemma 8 we have

|S0| = size(S0) − f0 · size(S0) ≥ (1 − 2
3c

) · size(S0) ,

8

and thus

size(S0) ≤ (
3c

3c − 2
) · |S0| ≤ (

3c

3c − 2
) · |S| .

ut

If we setc ≥ 2 we have that

max{size(S0), size(S1)} < 2· |S | .

By Lemma 1 we then have that the height of the treesS0 andS1 is at mostlog n, wheren is the number of
elements inS. Therefore, the operationfind(x) takes timeO(log n), wheren is the number of elements in
the set containingx.

To summarize we have shown the following:

Theorem 2. Our data structure supports union(A,B) and insert in worst-caseO(1) time, find(x) in worst-
caseO(log n) time, and delete(x) in worst-caseO(log∗ n) time, wheren is the size of the set containing
x.

As mentioned earlier we can generalize our approach tok-ary trees, to get worst-case timeO(logk n)
time for find, and worst-caseO(k) for union and insert.

References

1. Stephen Alstrup, Amir M. Ben-Amram, and Theis Rauhe. Worst-case and amortised optimality in union-find. InProceed-
ings of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC’99), pages 499–506, New York, May 1999.
Association for Computing Machinery.

2. N. Blum. On the single-operation worst-case time complexity of the disjoint set union problem. InProceedings of the 2nd
Annual Symposium on Theoretical Aspects of Computer Science (STACS ’85), volume 182 ofLNCS, pages 32–38, Saarbrücken,
FRG, January 1985. Springer.

3. Michael Fredman and Michael Saks. The cell probe complexity of dynamic data structures. InProceedings of the 21st Annual
Symposium on Theory of Computing (STOC ’89), pages 345–354, New York, May 1989. ACM Association for Computing
Machinery.

4. Haim Kaplan, Nira Shafrir, and Robert E. Tarjan. Union-find with deletions. InProceedings of the 13th Annual ACM-SIAM
Symposium On Discrete Mathematics (SODA-02), pages 19–28, New York, January 6–8 2002. ACM Press.

5. D. L. Kozen.The Design and Analysis of Algorithms. Springer, Berlin, 1992.
6. M. Smid. A data structure for the union-find problem having good single-operation complexity.ALCOM: Algorithms Review,

Newsletter of the ESPRIT II Basic Research Actions Program Project no. 3075 (ALCOM), 1, 1990.
7. R. E. Tarjan. Efficiency of a good but not linear disjoint set union algorithm.Journal of the ACM, 22:215–225, 1975.
8. R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.Journal of the ACM, 31(2):245–281, April 1984.

9

