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Worst-Case Union-Find with Fast Deletions

Stephen Alstrup, Inge Li GartZ, Theis Rauhg and Mikkel Thorup

Jun

Theory Department, The IT University of Copenhagen, Denmark. Efstééphen,inge,theis l@it-c.dk
2 AT&T Research Labs, USA. Emaimthorup@research.att.com

Abstract. In the classical union-find problem we maintain a partition of a universe of elements into disjoint sets
subject to the operations union and find. Kaplan et al. [SODA 2002] studied an extension of this problem, where also
deletions are allowed. They gave a data structure that for any fixegbportsfind(z) anddelete) in O(log,, n)
worst-case time and union (k) worst-case time, whereis the number of elements in the set containinghey

asked if the delete time could be made faster than their find time. We answer this question affirmatively showing
how to get the delete time down &@(log™ n), while keeping the same time bounds for union and find.

1 Introduction

In the classical union-find problem we maintain a partition of a fixed universé efements into disjoint

sets subject to the operations union and find. The starting point is a collection of sets each containing a single
element, and some of these sets are then subsequently combined, but the underlying universe remains the
same. A classical union-find data structure allows the following operations on a collection of disjoint sets:

— make-setf): Creates a set containing the single elemerand returns the name of the set.

— union(4,B): Combine the setd andB into a new set, destroying the setand B, and return the name
of the new set.

— find(z): Finds and returns (the name of) the set that contains

Kaplan et al. [4] studied thanion-find with deletiongroblem, where the universe is no longer fixed.
That is, in addition to the above three operations they allow operations that insert or delete elements in the
universe.

In the union-find with deletions problem we in addition to the above three operations allow an insert and
a delete operation:

— insert(r,A): Inserts an element not yet in any set into set.
— deletef): Deletesr from the set containing it.

Note that the delete operation does not get the set contairgisga parameter.
As noted by Kaplan et al. we can in a straight-forward way extend a classical union-find data structure
to also support amsert(x,A). This can be done by first perfor = make-setf) followed byunion(4,B).

1.1 Previous Work

For the classical union-find problem (without deletions) Smid [6] (building upon a previous result of Blum [2])
gave for any fixed: a data structure that supports union in worst-ac@¢g) time and find in worst-case
O(log, n) time, wheren is the size of the corresponding set. These time bounds are optimal in the cell
probe model [3] (see also [1]). In Smid’s data structure each set is representekl-dny dalanced tree,
where the elements reside in the leaves of the tree.



Kaplan et al. [4] modified Smid’s data structure to get a data structure with the same performance for
union and find as Smid’s, that supports delete in t@{&g,, n) time.

Kaplan et al. also showed how to augment any given data structure that sujpmi(tsin O(t¢(n))
worst-case time where is the size of the set containing and insert in timeD(¢;(n)) worst-case time
wheren is the size of the set in which we insert the new element, to supletete¢) in O(ts(n) + t;(n))
worst-case time where is the size of the set containing while keeping the same worst-case bounds
for union and find. For this general augmentation Kaplan et al. used an incremental rebuilding technique.
Each set has two counters, one counting the number of elements in the set, and one counting the number of
deleted elements in the set. At each deletion they make a find operation and then increment the number of
deleted elements in the set by one. When at leasbf the elements in a set is deleted they start background
rebuilding.

Kaplan et al. also studied the problem in the amortized setting. For the classical union-find problem
(wihtout deletions) in the amortized setting Tarjan [7] (and Tarjan and Van Leeuwen [8]) gave a data structure
which supports a sequenceldffinds and at mos¥ unions on a universe @f elements irO(N+Ma(M +
N, N,log N)) time wherea(M, N,1) = min{k|Ax(|4]) > 1} and A;(j) is Ackermann’s function as
defined in [5]. Kaplan et al. refine the analysis of this data structure and show that the cost of each find is
proportional to the size of the corresponding set and that it is possible to add a delete operation, such that
the amortized cost of deleting an element from a set of lsilzethe same as the cost of finding an element,
namelyO(a(M, N, log(l)).

1.2 Our Results

Kaplan et al. [4] asked if the delete time could be made faster than their find time in the worst case setting. We
answer this question affirmatively giving a data structure that supports delete in worst caé¥ ltigien ),
while keeping the same time bounds for union and fi¢k() andO (log;, n) respectively).

In this papetlog n denotes the logarithm with bageLet log(” n denote the logarithm function applied
i times in succession. The functibsy* n is defined asog* n = min{i > 0 : log” n < 1}.

We represent the sets as trees with the elements in the leaves, as in the data structure by Smid, and use
an incremental rebuilding technique as Kaplan et al., but instead of performing a find operation for every
delete operation, we only usg(log* n) time on a delete operation. The main idea in our data structure is
that we divide the tree into subtrees of certain sizes, and @eletef) operation then perform a kind of
path-compression, such that the path to the root gets shorter for the other leaves in the same stbtree as
We do this in a way that ensures, that the leaves in the same subtree helps each other. This is done by only
updating parent pointers of the roots in the selected subtrees.

1.3 Overview

The rest of the paper is organized as follows. In Section 2 we give some definitions used in the rest of the
paper. In Section 3 we describe the data structure. In Section 4 we give the analysis of the data structure.

2 Definitions
The heightof a nodev, denoted byh(v) is the length of the longest path fromto a leaf in the subtree

rooted at. For a nodev let p(v) denote the parent of
When we delete a leaf in a tree, we do not actually delete it from the tree, but just mark it as deleted.
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Thesizeof a tree, denoted by siZ€), is the number of leaves ifi. If a leaf is marked as deleted it still
counts in siz€T"). Let |S| denote the number of elements in the Seaind let|T'| denote the number of the
number of leaves ifi' not marked as deleted.

Definition 1. Define the functiorf recursively the following way:

fO) =1, f(i) =201
We now define the concepnk of a node, which plays a crucial part in our data structure.

Definition 2 (Rank of a node).LetT;, be the subtree rooted at and letm, = sizeT,,). The rankr, of a
nodev is defined as
ry =0ifm, < 16,

and
ry = 1if 16 <m, < 2*- f(3),

and otherwise

rv:max{i:mU224'ﬁf(j+1)}'
j=2

Or said in another way: I# has rank-, then the number of leaves in the subtree rootediat

Tv ro+1
2 JIFG+1) <me <2 T £G+1) .
=2 i=2

The rank of a root in a tree of size is at mosflog* m + 1.

At a first glance the definition of rank might look a bit complicated, but the idea behind it is that it has
the property that the distance between a ned¢ranki — 1 and its nearest ancestor of rah&r higher is
at mostf (). We will prove this in Section 4.

Example 1.In a complete binary subtree all nodes of height less than 4 has rank 0, all nodes of height
between 4 and 7 have rank 2, and#or 2 all nodes of height betweeht- Z}ZQ () andzlJrZ;-il2 fh—1
has rank.

Define the rank of a (sub)tree to be the rank of its root.

3 The Data Structure

We only describe the data structure for trees with degrees at least 2. That is, the data structure described here
use timeO(1) for union andO(log n) for find. The approach can be generalizedary trees, which gives
time O(k) for union andO(log;, n) for find.

We represent each set by trees such that the elements are in the leaves of the tree. Each node contains a
pointer to its parent and a linked list of its children. The root of the tree also contains the name of the set,
the size of the tree, and the rank of the tree.

We represent each sgtby one or two trees. We denote the first treeSgyand the second tree if it exists
by Si. We have|S| = |Sp| + |S1|. An elementz in S is represented by a leaf in eith8g or S;. If x is
represented by a leaf iy, there might also be a leaf i}, associated with: that is marked as deleted. The

3



elementr points to the leaf representing it. At the beginning we repreSemtly by Sy, and.S; is empty.
The treeS; will be used when we start rebuildirtsy.

In order to implement the algorithm, we maintain linked lists $grand for.S;, denoted by (Sy) and
L(S;), respectively. The list(S;) contains a node for each leaf$i not marked as deleted. The leaf which
corresponds ta in S; points to the node correspondingatén L(.S;) and vice versa.

From the node identifying we can get to the nodes identifyittfy and.S; and vice versa, and from the
node identifyingS; we can get td_(.S;) and vice versa.

3.1 The Operations

Let ¢ be a positive integer constant. We can now define the operations.

find(x): Follow parent pointers from the leaf containim@ll the way to the root. Return the name of the set
stored at the root.

union(4,B): We performUnion(4y,By) andUnion(41,5;), where the operatiobnion(A,B) is defined as
follows:

Union(A,B): Let a andb be the root of the tree representidgand B respectively. Assume wlog. that
sizg A) > sizg B). There are two cases:

1. sizd A) = 1 = sizg B): Create a new node makea andb children ofc, and update’s counters.

2. sizd A) > 1: Makeb a child ofa, leta be the root of the new sét and update all the countersdn
Also concatenaté (A;) with L(B;) to form L(C;).

The special case for sigd) = 1 = sizg B) ensures that all elements are located at the leaves. Note that the
union operation looks at the size of the sets and not the actual number of elements in the set, that is, leaves
marked as deleted also counts.

deletef): LetS be the set containing. Mark the leaf representingin .S; as deleted, and delete the node
corresponding ta: in L(S;). Follow z’s parent pointers up to its first ancestoof rankr, > 1. Now call
the following recursive procedure with parametendc, (update(,c)).

updateg,k)
e If vis the root calrebuild(S) (defined below) and exit.
o If k=0 exit.
o If 7y > 1o
Call updatef(v),k) and exit.
o |f rp(v) =Ty
Updatev’s parent pointer to point tp(p(v)) and callupdateg,k — 1).

The idea behind the delete step is that we mark the node as deleted and send the information along the path
to the root. The reason why we only update the parent pointer of certain nodes, is that in this way we ensure,
that different delete operations will help each other by updating the same pointers.

rebuild(S): First check whethef; is empty, and if this is the case renaisigto S;. Next mark2c leaves

in Sy as deleted (performingc delete operations without any rebuild steps) and insert the corresponding
elements intcb,. We useL(.S;) to find the leaves to be deleted.9f now contains less thale leaves, then
insert the remaining elements infy.



4 Analysis

In this section we analyze the data structure. The following lemma follows from the fact that we use a
standard union by size operation.

Lemma 1. The height of a tre@ in the data structure is at mos$tog m |, wherem = siz&T).
The following lemma about states a crucial property of the definition of rank.

Lemma 2. For 7 > 1, the distance between a nodef rank: — 1 and its nearest ancestor of rarkor
higher is at mosff (¢).

Proof. The size, siz€T},), of the subtree rooted at the nodés at leas* - H;';lQ f(7+1). Wlog. assume
that siz€T,,) is exactly this amount. By the way we perform union, the number of leaves in the subtree at
least doubles every time we follow a parent pointer up. Thus after we have followed

SR

parent pointers up, the number of leaves in the subtree rooted at this node is 2t IeH?LQ f(G+1),and
this node thus has ranilor higher. O

As noted earlier the rank of the root of a tr€ds at mostlog™ m + 1, wherem = sizgT'). This gives
us the following lemma.

Lemma 3. LetT be the tree containing the leaf representing the elemeite operation delete] takes
timeO(log™ m), wherem = sizgT).

Proof. If we look at the procedure update without recursive calls and without rebuild it takes constant time.
Going fromz to its first ancestor of rank greater than or equal to one takes constant time. We first show
that the procedurapdateis called recursively at mog?(log™ m) times during a delete operation.
Update is called recursively whep,,,) > r,. Since the root has rank at masg™ m + 1 this can happen
at mostlog”m + 1 times. It is also called when,,y = r,, but this can only happentimes, sincec is
decremented by one each time.
Thus, without the call toebuild(I") updatetakes timeO(log* m). The procedureebuild(’) is only
called once, and it perform: deletes without any additional calls tebuild(Z") which each takes time
O(log™ m), and2c inserts which each takes constant time. O

We now define what we call @levant subtree

Definition 3. Letv be a node of rank Define thegoodsubtree ofy, denoted by}, to be the subtree rooted
atv, T, with all proper subtrees df,, of rank: deleted. That is all proper subtreesBf has ranki — 1 or
less.

Thesizeof a good subtree, siZ€)), is the number of leaves ifif, not countingy.

Definition 4. Therelevantsubtrees of a tre&’ is the good subtrees of size greater tlian

Example 2.A nodevw is the root of a relevant subtree if it has a child of rank less than itself.

In a complete binary tre€, the relevant subtrees are the subtrees of height e><zf’ctli[[j.:2 f(4) for
all 7 < the rank of the root of’, and the distance between the root of a relevant subtree of rankand its
nearest ancestor of ranks exactlyf(i).



The relevant subtrees are those subtrees whose root nodes parent pointer might be updated during a
delete operation.

The main idea behind the delete operation is that all deletions in the same relevant subtree somehow
helps updating the parent pointer of the root of this subtree. We will say that a parent pointer of the root of
a relevant subtree of rarks fully updatedif it points to its nearest ancestor of rank greater thaie will
later show that when a certain number of leaves of a relevant subtree is deleted, the parent pointer of the root
is fully updated.

We need the following lemma.

Lemma 4. A relevant subtree of rank> 2 has at leas®* - Hj-:g f(5 4+ 1) leaves, and a relevant subtree
of rank 1 has at least 16 leaves.

Proof. By the way we perform union.

The tree is constructed by union operations.dbe the root of a relevant subtree. ligtbe the subtree
rooted at node, and letm,, = sizgT,). Sincev is the root of the subtree, then s{Zg) is greater than or
equal to the size of the subtrees of the childrem,afince we perform union by size. This also means that
the rank ofv was greater than or equal to the rank of the children af the time the union was performed.
Thus for all childrenw of v with ranksi, v already had rankwhen theunion(Z’,,T,) was performed. O

An important question in the analysis of the data structure is how many updates do we need to perform
before the parent pointers of all relevant subtrees are fully updated, i.e., points to an ancestor of rank greater
than the rank of the root itself? Using Lemma 2 we can show the following crucial lemma.

Lemmab. LetT be a tree, and' the rank ofT'. The total number of updates that are needed before the
parent pointers of the roots of all the relevant subtrees are fully updated is less than

1.
—sizgT) .
35ize(T)
When all these parent pointers are fully updated all leaves has distance at-rrdsto the root.

Proof. According to Lemma 2 the number of times a parent pointer of fardeds to be updated is at most
fE+1).

For: > 2 the number of relevant subtrees of rank at most:

sizgT) < sizgT)
minimum size of a relevant subtree 24 . [T— fG+1) ’
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since the relevant subtrees of ranlkre disjoint. The number of relevant subtrees of rank at most:
sizgT')/16. Thus, the total number of updates needed is at most:

S|ze(T (i sizgT)
+Zﬁ’+ TG+ D)

__saqT>, T;;;ﬂgtjlg,

o VO )

_ sizgT) £(3) f(4) f(5)

T 16 (4+ f(3) * f(3)- f(4) - f3)-f(4)- f(5) " )
sizgT) 1

Ut )
6 - sizgT")

DTG

- S|z§(T)

O

To establish the correctness of the algorithm we will show that the fraction of leaves marked as deleted
in a tree in the data structure is less tigi6c¢).

Lemma 6. For any setS, if we only perform delete and find operations (no unions) then after less than

5 .
&sae(sl)

delete operations it%; the treeS; is empty.

Proof. Each deleted operation either givepdates oBc rebuild steps (or maybe both).

If a delete operation callebuild(S) then we reduce the number of undeleted leaveS;iby 2¢ + 1,
since a rebuild moves elements frosh to Sp. Thus, in total we need at most si#g)/(2c + 1) delete
operations callingebuild(s).

By Lemma 5 we can perform less than $iZg/3 updates, that is, less than siZg/(3c) delete opera-
tions can result in only updates.

Thus, after less than .

sizgT) sizgT) —S|ze(T)
3c 2c+1 6c

Lemma 7. For any setS, let f be the fraction of leaves marked as deletedinThen

5
< —.
/ 6c
Proof. By Lemma 6 this is true if we don’t perform any unions (and thus also no inserts).
If we perform all the union operations first it is clearly true, but what if we mix them with the deletes?
Since union is performed by siZE) the structure of the final tree (after all unions) looks the same, no
matter if we had deletes in between or not.



If we look at the proofs of Lemma 5 and 6, the number of operations needed are given in terms of
the total size of the tree, that is, it is also true after the union operation. Since we never “waste” any
updates/rebuilds—all delete operations gives at least eithadates orR¢ rebuilds—it does not matter
which order the operations come in. O

Lemma 8. For every setS, at most% of the elements ity are marked deleted. When at mg%tof the
elements irb, are deletedS; is empty.

Proof. First look at the case where we just have a sequence of delete operations. We will show that if the
fraction f of leaves deleted is greater than or equdlA(2c) and a delete operation cattsbuild(S), then the
fraction f’ after the delete is at mogt This means that the only way the fraction can grow is if we perform
no rebuilds, but only updates.

Assumef > 1/(2¢) and delete callgebuild(S). The fraction of deleted elements i is now

f-sizeSp) +1 r. sizeSy) + 1/ f -
sizg(So) +2¢ 7 sizgSp) +2¢ —

f.

By Lemma 5, then after less thari(3c) - sizgS1) updates all parent pointers are updated, and thus all
deletes hereafter will catebuild(S). Note that the insert operations do not make any difference, since insert
is equal to union with a tree of size one, and thus all new leaves will be inserted as children of the root, so
they do not cause any new updates to be needed.

Thus, the fraction of leaves deleted is less thaf2c) +1/(3¢) = 5/(6¢). The only way it can b&/(6¢)
is if Sp is empty, and we therefore cannot move any elements ffpto Sy. In that case, a rebuild operation
will renameS, to S.

Now look at what happens when we mix the delete operations with unions.

The argument about rebuild keeping the fraction of deleted elements down also holds since, if we per-
form union on two treegl and B which both have a fraction at leagt(or at mostf) deleted elements, then
the union of the two trees also has a fraction of at least (or nfodéleted leaves.

Again the number of operations needed to update all pointers are given in terms of the total size of the
tree, and thus by the same argument as in the proof of Lemma 7 it does not matter which order the operations
come in. O

We can nhow show the main theorem.

Theorem 1. For any setS we have:

6¢

max{siz€Sp), SizgS1)} < (60 _5

) 15T
Proof. Let f; be the fraction of leaves marked deletedin By Lemma 7 we have
15| = size(Sy) — f - size(S) > (1 — %) size(S) |

and thus
6¢c 6¢c

. <
6c—5) =G5
Let f, be the fraction of leaves marked deletedbin By Lemma 8 we have

size(S) < (

) - 1S

S0l = size(So) — fo - SizeSo) 2 (1 - ) - size(Sy)
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and thus 5 5
. C C
< ~) . <

)- 1S

If we setc > 2 we have that
max{sizgSy), sizgS1)} < 2- | S| .

By Lemma 1 we then have that the height of the tr8gand.S; is at mostiog n, wheren is the number of
elements inS. Therefore, the operatidind(z) takes timeO(logn), wheren is the number of elements in
the set containing.

To summarize we have shown the following:

Theorem 2. Our data structure supports unioA(B) and insert in worst-cas@(1) time, find() in worst-
caseO(logn) time, and delete() in worst-caseO(log™ n) time, wheren is the size of the set containing
xZ.

As mentioned earlier we can generalize our approadhrdoy trees, to get worst-case timiglog;, n)
time for find, and worst-cas@ (k) for union and insert.
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