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Abstract

In a natural variant of the comparison model, we show that there exists a constant ω < 1
such that the fully-dynamic d-dimensional orthogonal range reporting problem for d ≥ 2 can be
solved in time O(logω+d−2 n) for updates and time O((logn/ log log n)d−1 + r) for queries. Here
n is the number of points stored and r is the number of points reported. The space usage is
O(n logω+d−2 n). In the standard comparison model the result holds for d ≥ 3.
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1 Introduction

The d-dimensional fully-dynamic orthogonal range reporting problem (henceforth the d-dimensional
range reporting problem) is to maintain a finite set R ⊂ Rd of points under insertions and deletions
such that for a given query Q = [x1 . . . x

′
1]× · · · × [xd . . . x′d] the set {(x1, . . . , xd) ∈ R ∩Q} can be

reported. In the rest of the introduction we let n = |R| be the number of points in R. We only
consider solutions to the problem where the time to answer a query has the form Q+O(r) where
r is the number of reported points and Q is independent of r, and we say such a solution has a
query time Q. Further, we call the the maximum of the update time and the query time the time
per operation.

For any d ≥ 1 it is easy to implement a dictionary for R using a solution for the d-dimensional
range reporting problem and this gives a lower bound of Ω(log n) on the time per operation. To
avoid this lower bound, we will use a natural variant of the comparison model: For 1 ≤ i ≤ d define
Pi = {xi ∈ R|∃x1, . . . , xi−1, xi+1, . . . , xd.(x1, . . . , xd) ∈ R}. We then for each i, 1 ≤ i ≤ d maintain
a linked list Li containing the elements of Pi in order. When specifying a point (x1, . . . , xd) ∈ Rd
as a part of an update or query, we assume we for each i, 1 ≤ i ≤ d, are given a pointer to the list
element in Li with the predecessor of xi in Pi.

In this variant of the comparison model, we show (theorem 7.1 and theorem 8.1) that there
exists a constant ω < 1 such that for any d ≥ 2 the d-dimensional range reporting problem can
be solved with update time O(logω+d−2 n), query time O((log n/ log log n)d−1) and space usage
O(n logω+d−2 n). The model of computation is a unit cost RAM with word size Ω(log n) bits. The
time bounds are worst case and the solution is deterministic. It follows, that for d ≥ 3 our result
also holds in the standard comparison model.

For d = 2 Alstrup, Husfeldt and Rauhe [2] gave a lower bound of Ω(log n/ log log n) per op-
eration. It follows that the time per operation for the 2-dimensional range reporting problem is
Θ(logn/ log log n) and thus now completely understood. Actually, the lower bound of [2] is stronger:
1) it holds on a grid, 2) it holds for the amortized cost per operation, 3) it holds in the cell probe
model with a word size poly-logarithmic in n. One could suspect, that our solution may actually
have an optimal time per operation for any constant dimension d ≥ 3. Proving or disproving this
is a very interesting open problem.

For d = 2 we also consider queries of the restricted form [x1 . . . x
′
1]× [−∞ . . . x′2]. Such queries

are called 3-sided whereas general queries are called 4-sided. We show (theorem 6.1) that the
2-dimensional range reporting problem with 3-sides queries only, can be solved with update time
O(logω n), query time O(log n/ log log n) and space usage O(n).

1.1 Previous results

Orthogonal range searching including range reporting has been extensively studied during the last
30 years. For surveys see Agarwal and Erickson [1] and Chiang and Tamassia [12]. For books with
earlier results see Mehlhorn [17] and Preparata and Shamos [22].

Besides applications in computational geometry, range reporting has applications in databases.
Consider a database of persons where each person has an associated age and weight. We can
represent each record of this database as a point in R2. A range reporting query can then ask for
all persons between 40 and 50 years who have a weight between 60 and 80 kg. Willard [26] gives
additional applications in databases.

With range trees [8, 15, 7, 9, 24] the 2-dimensional range reporting problem can be solved in time
O(log2 n) for updates and queries and with a space usage of O(n log n). For d = 2 Mehlhorn and
Näher [18] improved range trees and reduced the time usage to O(log n log log n) and this result
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holds even on a pointer machine. Recently, Mortensen [19] reduced the time usage to O(log n)
and the space usage to O(n log n/ log log n) on a RAM. Using standard techniques this solution
can be extended to d ≥ 2 dimensions giving update and query time O(logd−1 n) and space usage
O(n logd−1 n/ log log n). Until now this was the fastest known solution (even on a grid) and further
no solution with space usage o(n logd−1 n/ log log n) and poly-logarithmic time per operation was
known.

McCreight [16] showed that the 2-dimensional range reporting problem with 3-sided queries only
can be solved in time O(log n) for updates and queries and with a space usage of O(n). Willard
[27] improved the time usage to O(log n/ log log n). It follows that we improve the update time for
this problem without increasing the space usage.

1.2 Outline of paper

After this introduction we continue with preliminaries in section 2. In section 3, which is also
a preliminary-like section, we consider different problems related to linked lists. In section 4 we
give definitions and lemmas related to the 2-dimensional range reporting problem. In section 5 we
define and analyze a pebble game played on a rooted tree. This game is used in section 6 where we
develop our solution for the 2-dimensional range reporting problem with 3-sided queries only. In
section 7 we use this solution to develop our solution to the general 2-dimensional range reporting
problem. In section 8 we extend the solution of section 7 to higher dimensions. Finally, the paper
concludes with acknowledgments in section 9.
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2 Preliminaries

2.1 Basic preliminaries

For the rest of this paper we define [i . . . j] = {k ∈ Z|i ≤ k ≤ j}. We define Pow(X) = {Y |Y ⊆ X}
to be the set of subsets of X. Wet let log denote the base 2 logarithm.

We assume N is fixed (but not constant) throughout the paper and that it is an upper bound
on the number of points in the range reporting structures we design. We assume a word size of
Ω(logN) bits.

We assume we can use preprocessing time O(N) for building tables of O(N) words. As a
corollary we assume we can compute simple functions from [0 . . . O(N)] to [0 . . . O(N)] in constant
time. Removing these assumptions can be done using the global rebuilding techniques of Overmars
[20].

For 0 < ε < 1 we define Lε = [0 . . .Θ(logεN)]. We represent subsets of Lε as bit vectors in
a single word. We assume δ > 0 is a sufficiently small constant fixed throughout the paper. We
define L = Lδ to be the set of layers. Layers are used in section 8 to support dimensions larger
than two.

We order the elements of a linked list L such that if e and e′ are elements in L and e is before
e′ in L and e 6= e′ then e < e′. Further we write e ≤ e′ iff e = e′ or e < e′.

In the rest of this paper we measure space usage in bits. Further, all time bounds are worst
case and all structures are deterministic if not otherwise noted.

2.2 A note on elements in data structures

We often consider data structures G which contain elements. We will not distinguish between a
data structure and the set of elements it contains. It follows that |G| is the number of elements
in G and that e ∈ G means that e is an element in G. In general, we do not distinguish between
elements and pointers to elements.

A data structure G often assigns a set of named fields to the elements it contains. If G assigns
its element a field with name fieldname and e ∈ G we use the notation G[e].fieldname to refer
to this field. We write e.fieldname if G is clear from the context. Observe that G may not be
redundant since e may be inserted in several data structures.

2.3 Some theorems

The following theorem is proved in [19] as a corollary to a lemma by Dietz and Sleator [14, theorem
5]. It is useful for developing dynamic data structures with worst case rather than amortized
performance. Note that Hn =

∑n
i=1 1/i and that Hn = Θ(logn).

Theorem 2.1. Suppose c ≥ 1 and that C is a collection of at most n sets which initially contains
one empty set. Iterate the following two steps: 1) Add a total of c elements to the sets of C and
2) If M ∈ C is a largest set in C and |M | ≥ 5c(1 + Hn−1) then split M into two sets of size
at least b2c(1 + Hn−1)c and replace these with M in C. Then for all M ∈ C we always have
|M | ≤ 6c(1 +Hn−1).

The following theorem is showed by van Emde Boas et al. [23]:

Theorem 2.2. There exists a data structure called a VEB which can maintain a collection of
n ≤ U elements having keys in [0 . . . O(U)] which uses space O(U logU) and supports updates as
well predecessor and successor queries in time O(log logU).

5



Building on Beame and Fich[6], Anderson and Thorup[3] have showed the following theorem
(actually, they showed a stronger theorem):

Theorem 2.3. There exists a data structure called a BFAT which can maintain a collection of
n ≤ U elements having keys in [0 . . . O(U)] which uses space O(n logU) and supports updates as
well as predecessor and successor queries in time O(log2 logU).

The following theorem is showed by Dietz and Sleator [14]:

Theorem 2.4. There exists a data structure for a linked list supporting deletion and insertion of
list elements in constant time such that we for given list elements e and e′ in constant time can
determine if e < e′.

2.4 Subadditive functions

Suppose f is a real-valued function defined on an interval [s . . .∞[⊂ R. We say that f is subadditive
if for x, y ≥ s:

f(x) + f(y) ≤ f(x+ y) +O(1) (1)

Suppose f(n) is a subadditive function which measures the size of a data structure G with n
elements. It then follows from (1) that if we instead of storing the elements in G store them in k
disjoint and non-empty structures with the same type as G, then the space usage increases by at
most an additive term of O(k). The following lemma gives a sufficient condition for a function to
be subadditive:

Lemma 2.5. Suppose f is a double differentiable real-valued function defined on an interval
[s . . .∞[⊂ R. If f ′(x) ≥ 0 and f ′′(x) ≥ 0 then f is subadditive.

Proof. For a fixed value y ≥ s define g(x) = f(x)+f(y) and h(x) = f(x+y)+f(s). Since f ′(x) ≥ 0 it
follows that g(s) = f(s)+f(y) is less than or equal to h(s) = f(2s)+f(y). Further, since f ′′(x) ≥ 0
it follows that for x ≥ s we have g′(x) = f ′(x) is less than or equal to h′(x) = f ′(x+ y). It follows
that f(x) ≤ h(x) showing the lemma. �

And then we get:

Lemma 2.6. Let ε > 0 and α > 0 be any constants and define the function f on the interval
[3 . . .∞[ by:

f(x) = αx logε(x)

Then f is subadditive.

Proof. This follows from lemma 2.5 and the fact that:

f ′′(x) =
α(ε+ ln(x)− 1)

(
ln(x)
ln(2)

)ε−2

x3 ln2 2

where ln is the natural logarithm. �
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3 Lists

In this section we consider two problems related to linked lists: In section 3.1 we consider the online
list labeling problem and in section 3.2 the colored predecessor problem.

3.1 The online list labeling problem

In this section we consider the online list labeling problem which we define as follows (other similar
definitions are used in other papers): Let L be a linked list with at most n elements in which new
elements can be inserted and from which existing elements can be deleted. We must then for each
element e ∈ L maintain an integer label e.label of size O(n) such that for e, e′ ∈ L we have:

e < e′ =⇒ e.label < e′.label (2)

An algorithm solving this problem is allowed to change the label of (relabel) elements when an
element is inserted in or deleted from L. We require (2) to be maintained during this relabeling. If
the algorithm relabels at most m elements on each insertion in or deletion from L we say that the
algorithm has relabeling cost m. The following theorem is showed by Willard [25]:

Theorem 3.1. There exists an algorithm for the online list labeling problem with relabeling cost
O(log2 n), space usage O(n log n), which uses time O(log2 n) for insertions and deletions.

We now consider a variant of the online list labeling problem. In this variant the user can
assign an id (used below) of O(log n) bits to an element when it is inserted in L. Further, we do
not require the labels to be explicitly maintained in the elements of L. Instead, we require that we
can calculate the label of a given element in constant time. Finally, when an element is inserted in
or delete from L, the user must be given an array of triples describing the relabeling taking place
because of the insertion or deletion. A triple (h, to, tn) in this array means the the element with id
h and current label to is given label tn. When n is small we can pack several such triples into a
single word. This allows us to relabel elements in sub constant time per element:

Lemma 3.2. If log4 n = o(logN) then the described variant of the online list labeling problem can
be solved in constant time per insertion in or deletion from L, a relabeling cost of O(log3 n) and a
space usage of O(n log n).

Proof. For simplicity we will not describe how to handle deletion of elements.
We first observe, that since the relabeling cost is O(log3 n) the table describing the relabeling

uses O(log4 n) bits and thus fits into a single word.
Fix c = Θ(log2 n) in theorem 2.1. We group the elements of L into blocks respecting the order

of the elements. For every cth insertion in L we take a block with maximal number of elements and
if it has at least 5c(1 +Hn) elements we split it into two blocks with at least d2c(1 +Hn)e elements
in each. Theorem 2.1 ensures that no block will contain more than 6c(1 +Hn−1) elements.

We now describe how to maintain the blocks such that insertion of elements and splitting of
blocks can be done in constant time. We keep the elements of a block b as leafs in a tree with
height 2 such that all leafs have depth 2. The root of the tree represents b. If b has less than
d4c(1 +Hn−1e elements the root has a single child w and all elements of b are children of w. When
we insert the d4c(1+Hn−1eth element in b we create a new child v of the root. During the following
O(c(1 +Hn−1)) insertions in b we walk through d2c(1 +Hn)e elements of b starting at the smallest
and we make the elements we meet children of v. We adjust things such that we are finished when
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v contains 5c(1 +Hn) elements. When b splits we make a new root node of v and a new root node
of w representing the two blocks b is split into.

We now describe how we assign labels to the elements of L. Using the natural order on blocks,
we use theorem 3.1 to assign labels of size O(n/ log3 n) to the blocks. The label assigned to an
element e ∈ L in block b consists of the label of b multiplied with Θ(log3 n) plus the rank e has
in b. This assignment of labels clearly fulfills (2) and gives labels with a label size of O(n) as
claimed. Further, since we only split a block for every cth insertion, we only need to relabel a
constant number of blocks at each insertion in L. Since there is O(log3 n) elements in each block
the relabeling cost is O(log3 n) as claimed.

In each block we keep an array containing the name and ids of the elements stored in the block
sorted according to the order of the elements. We observe that this array fits into a single word. It
follows that we can find the table describing the relabeling in constant time.

Finally, since each element has a pointer to a parent which has a pointer the block the element
is contained in, we can also find the label assigned to an element in L in constant time. �

3.2 The colored predecessor problem

In this section we consider the colored predecessor problem which we define as follows: Let L be a
linked list with at most n elements in which new elements can be inserted and from which existing
elements can be deleted. Further, the user can assign a color to an element when it is inserted and
also change the color of an element. Given an element e ∈ L and a color c, we must then be able
to find the predecessor of e in L which has color c. With two colors this problem is known as the
incremental union-split-find problem. Dietz and Raman [13, lemma 4.2] have showed:

Lemma 3.3. With two colors the colored predecessor problem can be solved in time O(log log n)
and space O(n log n).

Using an extension of the techniques in [13] we can show the following lemma where we will only
use the deterministic result (except for the proof of lemma 3.5):

Lemma 3.4. The colored predecessor problem without restriction on the number of colors can be
solved in space O(n log n) and in expected time O(log log n) or deterministic time O(log2 log n).

Proof. We first describe the randomized solution.
For each color c, we divide the elements of L with color c into blocks with at most O(log3 n)

elements respecting the order of the elements in L. We keep the elements of a block b in a standard
balanced binary search tree respecting the order of the elements. Further, if there is more than one
block with elements with color c we mark the first element in b.

We insert all elements of L into the structure of lemma 3.3 using marked and not-marked as
the two colors. We use theorem 3.1 to assign a label to the marked elements. We create a VEB for
each color and each marked element e ∈ L with color c and label i is inserted in the VEB for color
c at position i. Note that the space usage of a VEB can be brought down to linear since we allow
randomization.

Answering queries: Suppose we want to find the predecessor of e ∈ L with color c. We first
use O(log log n) time to find the marked predecessor e′ of e in L. Assuming for brevity that this
element exists, we use the label of e′ to perform a predecessor query in the VEB for color c. This
will identify the block with the element we are looking for. The element can then be found in time
O(log log n) using the binary search tree in the block. We need to be able to compare two arbitrary
elements in L in constant time to do this, but this can be done using theorem 2.4.
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Inserting a new element in L: First, using the same techniques as when answering a query, we
can easily insert the new element in the search tree of the appropriate block. The problem is to
handle the case where blocks become too big. We do this the following way: Every time we have
inserted O(log2 n) elements in L, we take the largest block and split it into two blocks which differ
in size by at most 1. This will mark a new element, and thus the structure of theorem 3.1 requires
us to renumber O(log2 n) marked elements. We distribute this work over the following O(log2 n)
insertions in L updating the VEBs for the different colors at the same time.

Changing the color of an element: First, we delete the element from the block it is located in.
If the element is the only one in the block we remove the block. If the element is not the only one
and if it is marked, we take the successor of the element in the block and mark this instead reusing
the label of the old element. After this deletion in the block we just insert the element with the
new color as described above.

Deleting an element: Instead of deleting an element we just mark it as deleted. We then use
global rebuilding to ensure that the structure is never more than half filled up with deleted elements.

This concludes our description for the randomized case. The deterministic result can be obtained
in the same way by using BFATs instead of VEBs. �

Consider the variant of the colored predecessor problem where each element in L can have an
arbitrary number of colors and where we can add a color to an element, remove a color from an
element and get the predecessor of an element with a given color. Further, we can delete an element
if it has no colors. Let m be equal to n plus the number of pairs (e, c) where e ∈ L has color c. We
then have the following lemma and again we will only be using the deterministic result:

Lemma 3.5. The described variant of the colored predecessor problem can be solved in space
O(m logm) and in expected time O(log logm) or deterministic time O(log2 logm).

Proof. We introduce black as an additional color assuming no elements in L are black. We maintain
a list L′ using lemma 3.4 such that the sublist of L′ consisting of the black elements is equal to L.
Further, if e and e′ are black elements in L′ such that e is the black predecessor of e′, then we keep
between e and e′ an element with color c for each color c that e has in L.

To answer a query we first make a predecessor query for the given color and then a predecessor
query for black. Adding a color c to an element can be done by adding an element to L′ with color
c. Removing a color c from an element can be done by making a successor query for c and then
remove the found element from L′. �

We now describe how lemma 3.5 can be seen as a variant of dynamic fractional cascading [18, 13]
for readers familiar with that. The variant is as follows: The catalog graph must be directed and
if there is an edge from a set M to a set M ′ then unlike normal (dynamic) fractional cascading
M ′ must be a subset of M . Further, a node can have at most constant indegree and when walking
around in the catalog graph we can only follow edges in their direction. On the other hand, unlike
normal dynamic fractional cascading we have no restriction on the outdegree of a node. Lemma
3.5 can be used to implement this variant as follows: We assign each set a unique color and if there
is an edge from a set M to a set M ′ and e ∈ M ′ then we give the corresponding element e ∈ M
color c and link e and e′ together with pointers.
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4 Range reporting

4.1 Definitions

In this section we define what it means for a a range reporting structure R to have type Rτtx:nx,ty :ny
where nx and ny are integers, τ ∈ {3, 4} and tx, ty ∈ {d, s, s′, s′′}. To simplify the description we
let z range over {x, y} in the following two paragraphs.

R must have an z-axis R.Lz. If tz = d we say that the z-axis is dynamic and if tz = s, tz = s′

or tz = s′′ we say that the z-axis is static. If the z-axis is dynamic it is a linked list with O(nz)
elements. If the z-axis is static it is a subset of [0 . . .Θ(nz)] and this subset is not required to be
explicitly maintained.

R contains elements e ∈ R which are also called points. A point e ∈ R has a z-coordinate
e.z ∈ R.Lz and a layer e.layer ∈ L. For given z ∈ R.Lz define M = {e ∈ R|e.z = z}. If tz = s
or tz = d we require |M | = 1. If further tz = d and e ∈ M then e.z should have a pointer to e.
Let w ∈ {x, y} \ {z} be the “opposite coordinate” of z. If tz = s′ we require that e, e′ ∈ M and
e.layer = e′.layer implies e = e′. If tz = s′′ we require that e, e′ ∈ M , e.layer = e′.layer and
e.w = e′.w implies e = e′.

We support updates in the form of insertion of new elements in R and deletion of existing
elements from R.

For x1, x2 ∈ R.Lx and y1, y2 ∈ R.Ly and L ⊆ L we support a query (x1, x2, y1, y2, L) which
must report the set {e ∈ R|x1 ≤ e.x ≤ x2 ∧ y1 ≤ e.y ≤ y2 ∧ e.layer ∈ L}. If τ = 3 we require that
y1 in such a query can be assumed to be the minimal element of R.Ly.

We say R has query time Q if queries can be answered in time Q+O(r) where r is the number
of reported points. We say R has performance (U,Q, S, t) if it supports O(t) updates in time O(U),
queries in time O(Q) and has space usage O(S). The space usage of R is only allowed to depend
on the type of R and not on the number of points actually stored in R. We require t to be selected
such that all updates can be described by O(1) words and further the points themselves and not
just pointers to the points must be given in this word. We write (U,Q, S) as an abbreviation for
(U,Q, S, 1).

Finally, we require that R can contain Ω(logεN) points for a sufficiently small constant ε > 0.
A consequence of this requirement is, that the asymptotic space usage of R is not influenced by
the fact that we must store the layer for each point.

4.2 Some lemmas

The following lemma is proved in section 4.3 by reformulating the construction from [19, section
3]:

Lemma 4.1. Suppose u ≤ n and there exists a structure with type Rτs′′:n,s′:u/|L| and perfor-
mance (U,Q, S). Then there exists a structure with type Rτs′′:n,s′′:u/|L| and performance (U log log n,
Q log log n, Sn log log n).

The following lemma can be used to get a structure to plug into lemma 4.1:

Lemma 4.2. Suppose there exists a structure with type Rτd:u,s′:u/|L| and performance (U,Q, S).
Then, for any n, u ≤ n there exists a structure with type Rτs′′:n,s′:u/|L| and performance (U +
log2 log n,Q+ log2 log n, S + u log n).
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Proof. Let R be the given structure with type Rτd:u,s′:u/|L| and R′ be the structure with type
Rτs′′:n,s′:u/|L| we want to design.

We insert each element e ∈ R′ in a BFAT at position u|L|e.x + |L|e.y + e.layer. Using this
BFAT we link all elements in R′ together according to this position. This list can be used as R.Lx
and the lemma follows. �

Instead of using lemma 4.1 directly we will use the following corollary.

Lemma 4.3. Suppose u ≤ n and there exists a structure with type Rτ
d:u,s′′:u/(|L| log3 n)

and per-
formance (U,Q, S). Then there exists a structure with type Rτ

d:n,s′′:u/(|L| log3 n)
and performance

((U + log2 log n) log log n, (Q+ log2 log n) log log n, (Sn/u) log log n+ n log n).

Proof. Let R be the structure with type Rτ
d:n,s′′:u/(|L| log3 n)

we want to design. For simplicity, we
will not describe how to handle deletion of points.

First we take the given structure and restrict it to have type Rτ
d:u/ log3 n,s′:u/(|L| log3 n)

. We plug
this restricted structure into lemma 4.2 obtaining a structure with type Rτ

s′′:n/u,s′:u/(|L| log3 n)
and

performance (U+log2 log n,Q+log2 log n, S+u/ log2 n). We then plug this structure into lemma 4.1
obtaining a structure T with typeRτ

s′′:n/u,s′′:u/(|L| log3 n)
and performance ((U+log2 log n) log log n, (Q+

log2 log n) log log n, (S + u/ log2 n)(n/u) log log n).
We group the elements of R.Lx into blocks of size O(u) using theorem 2.1: For every Θ(u/ log n)

insertion in R.Lx we take a largest blocks and split it in two if it has Ω(u) elements. We maintain
a labeling of the blocks using theorem 3.1. If a block b with assigned label x contains a point with
y-coordinate y and layer l we insert b in T at x-coordinate x, y-coordinate y and layer l.

Each time a block is split we need to relabel O(log2 n) blocks and each relabeling requires
O(u/ log3 n) updates in T . This gives a total of O(u/ log n) updates for each block split and it
follows that we only need O(1) updates in T for each insertion in R.

Finally, we maintain in each block b a structure b.R with the given type Rτ
d:u,s′′:u/(|L| log3 n)

.
All points in b are stored in b.R and we note that the total space used by these structures is
O(Sn/u+ n log n).

Suppose we are given a query (x1, x2, y1, y2, L). Let b1 be the block with x1 and b2 be the block
with x2. We answer the query by first performing a local query in b1.M and then a local query in
b2.M (if b1 = b2 we only need to perform one local query in total). The remaining points can be
found by performing a query in T and then report relevant points from the reported blocks. This
can be done in constant time per point if we for each block b, each y-coordinate y ∈ R.Ly and each
layer l ∈ L maintains the set of the points in b with y-coordinate y and layer l. �

Intuitively, lemma 4.3 says the following: Assume we have a structure with a dynamic but short
x-axis and an essentially equally short y-axis. Then we can extended the x-axis to be arbitrary
long paying only a small penalty in the update and query time. The following lemma can be used
to get a structure to plug into lemma 4.3. Many variants of this lemma can be made.

Lemma 4.4. Suppose log4 u = o(logN), v ≤ u and there exists a structure with type Rτs:u,s′′:v
(Rτs′:v,s:u) and performance (U,Q, S, log3 u). Then there exists a structure with type Rτd:u,s′′:v (Rτs′:v,d:u)
and performance (U,Q, S).

Proof. We show how to construct a structure R′ with type Rτd:u,s′′:v from a structure R with type
Rτs:u,s′′:v. The other construction is similar.
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We maintain a labeling of the elements of R′.Lx using lemma 3.2. As id for x ∈ R′.Lx we use
the point x represents. For each element x ∈ R′.Lx this assigns a label x.label of size at most
O(u). We then insert each element e ∈ R′ in R at x-coordinate e.x.label, y-coordinate e.y and
layer e.layer. �

4.3 Proof of lemma 4.1

This section is devoted to the proof of lemma 4.1. We obtain the proof by reformulating the proof
from [19, section 3].

We now define what it means for a data structure G to have type (n, Y,Y) where n is an integer
and Y ⊆ Pow(Y ). G contains elements e ∈ G where e.x, 0 ≤ e.x < n is the position of e and
e.y ∈ Y is the height of e. Two different elements in G are not allowed to have both the same
position and height implying |G| ≤ n|Y |. We are allowed to update G by inserting a new element
or by deleting an existing element. Further, for 0 ≤ i, j < n and q ∈ Y we can ask the query
report(G, i, j, q) which must report the set {e ∈ G |i ≤ e.x ≤ j ∧ e.y ∈ q}. We say G has query
time O(Q) if this set can be found in time O(Q+ r) where r is the size of the set. In this section
we show:

Lemma 4.5. Suppose we have a data structure G′ with type (n, Y,Y) and the restriction:

e, e′ ∈ G′ ∧ e.y = e′.y =⇒ e = e′ (3)

Suppose further G′ uses space O(S), has query time O(Q), and update time O(U). Then we can
make a structure G with type (n, Y,Y) without the restriction (3) which uses space O(Sn log log n),
has query time O(Q log log n) and update time O(U log log n).

Lemma 4.1 is a corollary to lemma 4.5:

Proof of lemma 4.1. Let R′ be the given structure with type Rτs′′:n,s′:u/|L| and R be the structure
with type Rτs′′:n,s′′:u/|L| we want to design. Similarly, let G′ be the structure which should be given
to lemma 4.5 and G be the structure provided by lemma 4.5.

Select Y = [0 . . . O(u/|L|)] × L. We insert each point er ∈ R as an element eg ∈ G selecting
eg.x = er.x and eg.y = (er.y, er.layer). Similarly, we insert the element eg ∈ G′ as a point er ∈ R′.
If eg.y = (y, l) we select er.x = eg.x, er.y = y and e.layer = l.

Select Y = {[y1 . . . y2] ⊆ Y }×Pow(L) where y1 must be 0 if τ = 3. Suppose we are given a query
(x1, x2, y1, y2, L) in R. We transform this into a query report(G, x1, x2, ([y1 . . . y2], L)). Similarly,
suppose we are given a query report(G′, x1, x2, ([y1 . . . y2], L)). This query is transformed into the
query (x1, x2, y1, y2, L) in R′. �

The rest of this section is devoted to the proof of lemma 4.5.
We create a VEB for each element y ∈ Y . Each element e ∈ G is inserted at position e.x in the

VEB for height e.y. Using these VEBs we link all elements with the same height together in order
according to their positions. This will not use too much space, and insertions and deletions can be
performed in time O(log log n) per operation.

We maintain a data structure Sn which we develop in the following. The data structure Sn
contains triples (e, x, y) ∈ Sn where e is an arbitrary pointer, x is an integer in [0 . . . n − 1], and
y ∈ Y is the height of the triple. We maintain Sn such that (e, e.x, e.y) ∈ Sn iff e ∈ G. We support
a special reportsub(Sn, i, j, q) which has the following properties:

1. reportsub(Sn, i, j, q) ⊆ report(G, i, j, q).
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2. If for given y there exists an element e ∈ report(G, i, j, q) with i ≤ e.x ≤ j and e.y = y then
reportsub(Sn, i, j, q) contains at least one such e.

We say Sn has query time O(Q′) if the set reportsub(Sn, i, j, q) can be found in time O(Q′ + r)
where r is the size of the set. We then also require the following property for Sn:

3. Sn has query time O(Q).

A report(G, i, j, q) query can then be answered in the following way: First we perform a reportsub(Sn,
i, j, q) query. Property 1 and 3 ensures that we will not use too much time on this. For each height
y ∈ Y for which there exists an element e ∈ reportsub(Sn, i, j, q) with height y we follow the
pointers from e maintained by the VEB for height y to report the rest of the elements with this
height. Property 2 ensures that this will report all elements.

We now describe the structure Sn. To avoid tedious details, we assume n has the form n = 22m

for an integer m ≥ 0. We observe that if n > 2 has this form, then
√
n has same form. The

structure Sn is somewhat similar to a VEB, and we define it inductively on n. If Sn = ∅ the
recursion stops. Else, we keep an array Sn.min (Sn.max) indexed by Y . For each y ∈ Y we store the
triple (e, x, y) ∈ Sn with minimal (maximal) value of x in Sn.min[y] (Sn.max[y]) if any. We also keep
an array Sn.bottom indexed by the integers in [0 . . .

√
n−1] where in each entry we store a recursive

structure with type S√n. We store each triple (e, i, y) ∈ Sn \ (Sn.min ∪ Sn.max) as (e, imod
√
n, y)

in Sn.bottom[i div
√
n]. Finally, we keep a single recursive structure Sn.top also with type S√n. If

for y ∈ Y the structure Sn.bottom[i] contains exactly one triple (e, x, y) ∈ Sn with height y, we
store (e, i, y) in Sn.top. We note that in this case e is stored in both Sn.bottom and in Sn.top. If
Sn.bottom[i] contains more than one triple with height y we store (e′, i, y) in Sn.top where e′ is a
pointer to the recursive structure in Sn.bottom[i].

Inserting a triple (e, x, y) in Sn: If Sn contains at most one triple with height y, we just update
Sn.min[y] and Sn.max[y] and we are done. Else, we first check if (e, x, y) should go into Sn.min[y]
(Sn.max[y]) and if this is the case we interchange (e, x, y) and the triple in Sn.min[y] (Sn.max[y]).
Let T be the structure in Sn.bottom[xdiv

√
n]. We then insert (e, xmod

√
n, y) in T . Let m be

the number of triples in T with height y after this insertion. If m = 1, we insert (e, xdiv
√
n, y) in

Sn.top. If m = 2, there is a triple (e′, xdiv
√
n, y) in Sn.top, and we replace (see next paragraph)

this triple with the triple (e′′, xdiv
√
n, y) where e′′ is a pointer to T . We observe that when we

update Sn.top then T has at most two triples with height y and the update in T is performed by
just accessing T.min and T.max. It follows that we only perform a non-constant number of updates
in at most one recursive structure.

Replacing a triple (e, x, y) ∈ Sn with the triple (e′, x, y): If (e, x, y) = Sn.min[y] ((e, x, y) =
Sn.max[y]) we just update Sn.min[y] (Sn.max[y]) and we are done. Else, let T be the structure in
Sn.bottom[xdiv

√
n]. First, we in T replace (e, xmod

√
n, y) with (e′, xmod

√
n, y). Next, if T has

exactly one triple with height y, we replace (e, xdiv
√
n, y) with (e′, xdiv

√
n, y) in Sn.top. As with

insertions we note that we only need to perform a non-constant number of updates in at most one
recursive structure.

Deleting a triple (e, x, y) from Sn: If Sn has at most two triples with height y, we just update
Sn.min[y] and Sn.max[y] and we are done. Suppose therefore that Sn contains at least three triples
with height y. We split into three cases: Case 1: In this case (e, x, y) = Sn.min[y]. Let (e′, t, y) =
Sn.top.min[y], (e′′, l, y) = Sn.bottom[t].min[y] and i = l + t

√
n. Then (e′′, i, y) is the triple in

Sn \ (Sn.min∪ Sn.max) with height y which has the minimal value of i. Instead of deleting (e, x, y)
from Sn we delete (e′′, i, y) and afterwards we set Sn.min[y] to (e′′, i, y). Case 2: In this case
(e, x, y) = Sn.max[y] and this case is handled in a symmetric way to case 1. Case 3: In this case
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(e, x, y) is not equal to Sn.min[y] or Sn.max[y]. The case is handled in way similar to insertions:
Let T be the structure in Sn.bottom[xdiv

√
n]. We then delete (e, xmod

√
n, y) from T . Let m be

the number of triples in T with height y after this deletion. Suppose m = 1 and let (e′, i, y) be the
triple with height y in T . Then there is a triple (e′′, xdiv

√
n, y) in Sn.top where e′′ is a pointer

to T and we replace this triple with the triple (e′, xdiv
√
n, y). If m = 0 we delete (e, xdiv

√
n, y)

from Sn.top. Again we observe that we only need to perform a non-constant number of updates
in at most one recursive structure.

What remains is to describe how to answer a reportsub query. In order to do this, we in
addition to Sn.min (Sn.max) maintain a structure Sn.min′ (Sn.max′) with the type of the structure
given to lemma 4.5. We maintain Sn.min′ (Sn.max′) such that Sn.min′ (Sn.max′) contains an element
e with position x, height y and a value e′ iff Sn.min (Sn.max) contains the triple (e′, x, y).

Answering a reportsub(Sn, i, j, q) query: If i > j or Sn = ∅ we report nothing. Else, let M be
the values of the element reported by the two queries report(Sn.min′, i, j, q) and report(Sn.max′, i, j, q)
(a point may be reported by both queries and in this case it should only appear one time in M). We
then iteratively for each element e ∈M where e points to a recursive structure T in our induction
on n, replace e ∈M with e′ and e′′ assuming T.min[y] = (e′, x′, y′) and T.max[y] = (e′′, x′′, y′′). We
observe that the time we spend on performing these replacements is proportional to |M |. After
this, we report the elements of M . If i = 0 or j = n−1 we stop. Else, if i div

√
n = j div

√
n we per-

form a reportsub(Sn.bottom[i div
√
n], imod

√
n, jmod

√
n, q) query. Finally if i div

√
n 6= j div

√
n

we split the query into the three queries reportsub(Sn.bottom[i div
√
n], imod

√
n,
√
n − 1, q),

reportsub(Sn.top, i div
√
n+1, j div

√
n−1, q) and reportsub(Sn.bottom[j div

√
n], 0, jmod

√
n, q).

We note, that the first and the last of these three queries are answered by just looking at the min,
min′, min and max′ fields in the recursive structure.

To analyze the space usage of Sn we need the following lemma:

Lemma 4.6. Suppose p is defined by p(0) = 2 and p(h) = 2 + (1 + 22h−1
)p(h− 1) for h ≥ 1. Then

p(h) ≤ (h+ 1)22h

Proof. We show the lemma by induction on h. For h = 0 the lemma is trivially true. Suppose
h ≥ 1 and that the lemma is true for less h. Then we have p(h) ≤ 2 + (1 + 22h−1

)h22h−1
=

2 + h22h−1
+ h22h ≤ 22h + h22h = (h+ 1)22h . �

With p as in the lemma we observe that p(log log n) is the number of min, max, min′ and max′

structures we need and the lemma then bounds the space usage of Sn to O(Sn log log n) as desired.
The running time of the update operations in Sn is O(U log log n). This follows from the

observation that when an update operation operates in more than one recursive structure, it does
a non-constant number of updates in at most one of these. A similar argument shows that the Sn
has query time O(Q log log n) concluding our proof of lemma 4.5.
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5 A pebble game

In this section we describe a combinatorial pebble game. The reader is recommended to read this
section together with the proof of lemma 6.2 where the game is applied the first time.

5.1 A pebble game with red and green pebbles

The pebble game is played on a infinite rooted tree T without leafs and is parameterized over a
parameter g. There exists 6 kind of pebbles: Insert, delete, push, poll, heavy and light pebbles.
The first four of these are called red pebbles and the last two are called green pebbles. When the
game starts, all nodes in T contain g heavy pebbles. In each round the player either:

b1. Add an insert or delete pebble to the root of T .

or select a node v ∈ T and a red pebble p in v and apply one of the following items:

b2. If p is an insert or delete pebble then move p to a child of v.

b3. If p is a push pebble then take a light pebble p′ from v and move p and p′ to the same child
of v.

b4. If p is a poll pebble and v′ is a child of v with a light pebble p′ then interchange p and p′. If
no such child v′ exists then convert p to a heavy pebble.

Next, the player can apply the following items any number of times in the nodes v ∈ T involved in
the applied item b1 to b4:

b5. Convert an insert pebble in v to a light pebble creating a push pebble in v.

b6. Remove a delete and a light pebble from v creating a poll pebble in v.

After this, the player must in each node v ∈ T apply each of the following items in the given order
where each item must be applied exhaustively:

b7. If v contains a push and a poll pebble remove both from v.

b8. If v contains a heavy and a poll pebble convert the poll pebble to a heavy pebble.

b9. If v contains a heavy and a push pebble remove both from v.

b10. If v contains a heavy and an insert or delete pebble p remove p.

Item 5 in the following lemma shows that there is always a light pebble p′ to take in item b3:

Lemma 5.1. Before each round we have:

1. No node contains both push and poll pebbles.

2. If a node contains a heavy pebble then it contains no red pebble.

3. If the player plays such that before each round each node contains at least one green pebble,
then all nodes descendant to a node with a heavy pebble contain only heavy pebbles.

4. If g′ is the number of green, o is the number of poll and u is the number of push pebbles in a
node, then g = g′ + o− u.
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5. All nodes contain at least as many light pebbles as push pebbles.

Proof. We show the lemma by induction on the game. For the base case we observe that all
properties 1 to 5 are fulfilled when the game starts. For the inductive case we give a separate
argument for each property:

1: This follows from b7 and from the fact that item b8 to b10 do not introduce push or poll
pebbles.

2: This follows from b8 to b10.
3: Observe first, that the set of pebbles in a node v is only changed if v or vs parent (if any)

contains a red pebble. It follows, from property 2 and the induction hypothesis, that the set of
pebbles in a node which has a parent with a heavy pebble is never changed. Second observe,
that the only item that can introduce a heavy pebble in a node v which does not already have a
heavy pebble is item b4. This happens only if no child of v has a light pebble. Since all nodes by
assumptions contains at least one green pebble it follows that all children of v contains a heavy
pebble. It follows from property 2 that they contain no red pebbles and then they must consist of
only heavy pebbles.

4: All items b1 to b10 are seen to preserve this.
5: We need to check the items b1 to b10 which adds a push pebble to or remove a light pebble

from a node. b3: Here a push and a light pebble are moved from one node to another. b4: Here a
light pebble may be removed from a node but a poll pebble is added which in item b7 will remove a
push pebble if such one exists. b5: Here a push pebble is a added but a light pebble is also added.
b6: Here a light pebble is removed, but the node contains a poll pebble and thus not any push
pebbles. �

5.2 A strategy for the player

In this section we remove some of the freedom from the game in section 5.1 by describing when to
apply which of the items b1 to b4. Each time one of the items b1 to b4 is applied, the remaining
items b5 to b10 must still be applied as described in section 5.1. We require that all nodes in T
have the same degree d ≥ 2 and in addition to d and g, we parameterize the game over a parameter
β. We then repeat the following items:

m1. Add (one at a time) β insert or delete pebbles to the root of T using item b1.

m2. Set v to the root of T .

m3. Take β red pebbles from v (or as many as there is if fewer) and move them (one at a time)
down to the children of v using item b2 to b4.

m4. Set v to the child of v which has most red pebbles

m5. If there is more than ((d− 1)/d)β red pebbles in v go to m3.

We have:

Lemma 5.2. At the beginning of item m1 no set of siblings in T contains more than (d− 1)β red
pebbles.

Proof. We first observe, that at the start of item m1 the root contains no red pebbles, and it thus
contains at most β red pebbles at the start of item m2. Now consider a maximal set S of siblings in
T which contains at most (d− 1)β red pebbles and which receives at most β red pebbles from their
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common parent in item m3. Let α be the number of red pebbles in the nodes of S after this and
let v be the node in S with most red pebbles selected in item m4. It follows that α ≤ dβ. Suppose
that we do not go to item m3 in item m5. Then there cannot be more than (d − 1)β red pebbles
among the nodes in S and we are done. Suppose next that we go to item m3 in item m5. Then
there must be at least α/d red pebbles in v. After the push in item m3 in the following iteration,
there will thus be at most α− α/d = α(1− 1/d) ≤ dβ(1− 1/d) = (d− 1)β red pebbles among the
nodes in S as required. �

As a simple corollary we get:

Lemma 5.3. During the game no set of siblings in T contains more than dβ red pebbles.

Lemma 5.4. If g > dβ then all nodes descendant to a node with heavy pebbles contains only heavy
pebbles.

Proof. Lemma 5.3 gives that a node contains at most dβ red pebbles. Since g > dβ it follows from
lemma 5.1 property 4 that all nodes contain at least one green pebble. The lemma then follows
from lemma 5.1 property 3. �

Lemma 5.5. During the game no set of siblings contains more than d(g + 2β) pebbles.

Proof. Let g′ be the number of green, o the number of poll and u the number of push pebbles in
a set of siblings. Property 4 in lemma 5.1 then gives dg = g′ + o − u. This implies g′ ≤ dg + u.
Lemma 5.3 gives u ≤ dβ and thus we have g′ ≤ d(g + β). Finally an additional application of
lemma 5.3 gives that the total number of pebbles is bounded by d(g + 2β) as desired. �

Observe that the worst case situation handled by lemma 5.5 is the case where a set of siblings
is completely filled with push pebbles.
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6 Structures supporting 3-sided queries

This main purpose of this section is to prove the following theorem which for n = N shows the
second result from the introduction.

Theorem 6.1. For any constant ρ > 0 there exists a structure with type R3
d:n,d:n and performance

(log2 logN + log n/ log1/6−δ/6−ρN, |L| log logN + log n/ log logN,n log n).

Our proof of the theorem builds on priority search trees of McCreight [16], the extension of
these trees as described by Willard [27], combined with the use of buffers in the style of Brodal
[10].

6.1 Priority search trees

A priority search tree is a structure with type R3
d:n,d:n and performance (logn, log n, n log n) where

all points must have the same layer. To illustrate the basic idea in priority search trees, we now
describe how to design a structure R with type R3

s:n,s:n and performance (log n, log n, n log n) again
requiring all points to have the same layer. The reader should refer to [16] for more details.

We span a complete binary tree T over the x-axis of R and we store the points of R in the
nodes of T maintaining the following invariants:

i1. Each node in T contains at most one point.

i2. If v ∈ T is an ancestor of w ∈ T and w contains a point pw then v contains a point pv and
further pv.y < pw.y.

i3. If v ∈ T contains a point pv then pv.x is in a leaf descendant to v.

Observe that these invariants give a unique way to store the points of R in T .
Answering a query (x1, x2, 0, y2, {l}) where l is the single layer: Let M ⊆ T be the set of nodes

which is an ancestor to a leaf with x1 or x2. Extend M with all children of nodes in M and observe
that |M | = O(log n). We then first report all points from the nodes of M that should be reported.
Let M ′ be the set of nodes which are not in M , has a parent from M with a reported point and
has a descendant leaf between the leafs with x1 and x2. If M ′ is non-empty we recursively report
the points from the nodes of M ′ in the same way. The reader should verify that this indeed reports
the points that should be reported and that the query time is O(log n).

Inserting a point: This is done by inserting the point in the root of T so we describe how to
insert a point p in an arbitrary node v ∈ T : If v does not contain a point we just store p in v. Else,
let p′ be the point in v. If p′.y < p.y we recursively insert p in the child of v which has p.x in a
descendant leaf. If p.y < p′.y we store p in v instead of p′ and recursively insert p′ in the child of v
which has p′.x in a descendant leaf.

Deleting a point: This is done by polling the node the point is stored in so we describe how
to poll an arbitrary node v ∈ T : If v has no child with a point, we just remove the point from v.
Else, let v′ be the child of v with a point p′ such that p′.y is minimized. We then store p′ in v and
recursively poll v′.

6.2 Extensions to priority search trees

In this section we describe three extensions to priority search trees which we will all apply below.
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The first extension is to increase the degree of T as done in [27]. Updates and queries easily
generalize to this though for the extension to be efficient we must be able to handle all the points
in the children of a given node fast.

The second extension is to support |L| layers: We do this by conceptually keeping a separate
priority search tree for each layer. Updates are then performed in the tree for the relevant layer.
We store the conceptually separate trees as one tree allowing one point for each layer in each node.
Assuming a relevant set of fast operations for all the points in a given node, this allows us to
support layers efficiently.

The third extension is to drop invariant i1 and store multiple points (from each layer) in each
node. A similar thing was done by Arge, Samoladas and Vitter [4]. Again, updates and queries
can be adjusted to also handle this and again, assuming a relevant set of fast operations for all the
points in a given node, we can handle this efficiently.

6.3 Small universe

The proof of the following lemma uses priority search trees with all extensions described in section
6.2 together with techniques of [10] to obtain a fast structure with static axises for a small universe.

Lemma 6.2. For any constant ρ > 0 and for given d and u define t = (log1−δ−ρN)/(d2 log3 u). If
t ≥ 1 there exists a structure with type R3

s′:u/|L|,s:u and performance (1, log u/ log d, u log u, t). The

structure requires a global lookup table with 2O(log1−ρN) entries which can be computed in linear
time.

Proof. First assume there is only one layer. We span a complete binary tree T with degree d over
the x-axis and we play the pebble game from section 5.2 on T . We let each light pebble represent a
point. Together with the light pebbles, T is a priority search tree with the first and third extension
described in section 6.2.

Updates are now basically performed by adding β insert and delete pebbles each representing a
single update to the root of T and then execute the loop in item m3 to m5. To get a solution with
worst case time behavior we modify this as follows: We only add t pebbles at a time to the root of
T and each time we do this, we execute a constant number of the items in the loop in item m3 to
m5. Since T has height O(log u/ log d), which is also O(log u), the following condition ensures that
we do not add too many pebbles to the root of T before we empty it again:

t log u ≤ β (4)

In item m3 the insert and delete pebbles goes to the child determined by the x-coordinate of the
point they represent. When a delete pebble finds the light pebble it deletes, it applies item b6.
When an insert pebble finds the place it should be (determined by its y-coordinate or by the
appearance of a delete pebble deleting it) it converts itself to a light pebble by applying item b5.

To support |L| layer we do as in section 6.2: Each node of T is divided into |L| layers and the
pebble game is played separately on each layer.

We store as a part of each insert and light pebble the point it represents including x and y
coordinates. We observe that this takes O(log u) bits for each pebble. Next, we store as a part of
each delete pebble the coordinates of the point it deletes, again using O(log u) bits. Push and poll
pebbles do not have any associated information so it follows that any pebble can be stored using
O(log u) bits.

We store all the pebbles (from all layers) in a maximal set of siblings from T using O(log1−ρN)
bits in a single word. Using the global lookup table this allows us to perform item m3 and the
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corresponding updates in item b5 to b10 in constant time. Further, during queries, this allows us
to handle all layers in parallel. Note that in order for this to work, it is central that we explicitly
store the x and y coordinates as a part of the insert, delete and light pebbles. Lemma 5.5 gives
that a set of siblings contains O(d(g + 2β)(logδN)) pebbles and since each pebble uses O(log u)
bits we can store the pebbles in the described way if:

d(g + 2β)(logδN) log u ≤ log1−ρN (5)

Next, we require for each layer, that the number of red pebbles on a root-path is less than g. This
ensures, that in each node and layer without a heavy pebble there is always a light pebble which
is not deleted by a red pebble above it. Using lemma 5.3 this requirement is fulfilled if:

cdβ log u ≤ g (6)

for some constant c ≥ 1. We select:

g = (log1−δ−ρN)/(3d log u)

β = (log1−δ−ρN)/(3cd2 log2 u) (7)

and verify that with this selection (5) and (6) are satisfied. Further, (4) together with (7) gives our
requirement for t.

Queries can now be answered in time O(log u/ log d) as in section 6.1 with one remark: We
must ensure that we never report a point which is deleted by a delete pebble above it. This is done
as follows: While we traverse T we maintain the set of delete pebbles contained in the nodes which
are ancestors to the node we are currently visiting. There is always less than g such pebbles for
each layer so this set can be described by O(g log u logδN) = O((log1−ρN)/d) bits. Using this set
and the global lookup table we can avoid reporting deleted points. �

In section 2 we made the general assumption that we can create lookup tables with O(N) entries
if they can be computed in linear time. The reason that we mention the lookup table explicitly in
lemma 6.2 will be made clear in the proof of lemma 7.5. As a corollary to lemma 6.2 we get:

Lemma 6.3. For any constant ρ > 0 and u = O(2((log1−δ−ρN)/d2)1/6
) there exists a structure with

type R3
s′:u/|L|,d:u and performance (1, log u/ log d, u log u).

Proof. Select t = log3 u in lemma 6.2. This gives a structure with type R3
s′:u/|L|,s:u and per-

formance (1, log u/ log d, u log u, log3 u). Further we get the restriction on u and d that log3 u ≤
(log1−δ−ρN)/(d2 log3 u). This can also be written as log6 u ≤ (log1−δ−ρN)/d2 which is obtained
if u = O(2((log1−δ−ρN)/d2)1/6

). Finally, inserting the obtained structure into lemma 4.4 gives the
desired result. �

6.4 Full universe

The following lemma shows how to build a structure for a full universe from a structure for a small
universe:

Lemma 6.4. Suppose u ≥ |L|2 and we have a structure with type R3
s′:u/|L|,d:u and performance

(U,Q, u log u). Then for n ≥ u we can make a structure with type R3
s′:n/|L|,d:n and performance

((U + log2 log n) logn/ log u, (Q+ log2 log n) logn/ log u, n log n).
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Proof. Let R be the structure with type R3
s′:n/|L|,d:n we want to design. We create a priority search

tree with the first and second extension described in section 6.2 and we give T degree Θ(u/|L|)
and thus height O(log n/ log u). In each internal node v ∈ T we keep a structure v.R with type
R3
s′:u/|L|,d:u containing the points stored in the children of v. We observe that v.R.Ly is a linked

list with the points stored in the children of v sorted according to the y-coordinate. For each
layer, we link the elements of v.R.Ly representing points with that layer together using the colored
predecessor structure of lemma 3.4 with the layers as colors.

We color each node in T with a unique color and color each element e ∈ R.Ly with the color of
the unique node v ∈ T such that there is an e′ ∈ v.R.Ly such that e and e′ represent the same point.
Further, we link e and e′ together with pointers. We maintain the colored predecessor structure of
lemma 3.4 on R.Ly using the assigned colors.

Suppose we are given a query (x1, x2, y1, y2, L) where y1 is the minimal element of R.Ly. Let
M ⊆ T be the set of nodes which is an ancestor to a leaf with x1 or x2 and note that |M | =
O(log n/ log u). For each node v ∈M we locate the boundary of the query in v.R.Ly by making a
colored predecessor query from y2 ∈ R.Ly for the color of v. We then follow the pointer from the
found element to the corresponding element in v.R.Ly. For each v ∈M we can then find the points
stored in v and the children of v that should be reported by making a query in v.R. It follows that
the total time spend so far is O((Q+ log2 log n) logn/ log u+ r) where r is the number of reported
points. Finally, the remaining points can be found in constant time per point: The idea is to walk
through v.R.Ly from the beginning for relevant nodes v ∈ T . We stop when we meet a point with
a higher y-coordinate than y2. This can be determined if we maintain the structure of theorem 2.4
on R.Ly.

Updates can be performed like in priority search trees so this concludes our proof of the lemma.
�

We now immediately get the following structure for a full universe:

Lemma 6.5. For any constant ρ > 0 there exists a structure with type R3
s′:n/|L|,d:n and performance

(log2 log n(1 + log n/ log1/6−δ/6−ρN), log n/ log logN,n log n).

Proof. Select d = log3ρN in lemma 6.3. For u = O(2(log1−δ−6ρN)1/6
) we then get a structure with

type R3
s′:u/|L|,d:u and performance (1, log u/ log logN,u log u) proving the lemma for n = O(u). For

n = Ω(u) we plug the obtained structure into lemma 6.4. �

Finally we have:

Proof of theorem 6.1. Let R be the structure with type R3
d:n,d:n we want to design. For simplicity,

we will not describe how to handle deletion of points.
We group the elements of R.Lx into blocks with O(log4N) elements. For every O(log3N)

insertion in R.Lx we take a largest block and split it in two if it has Ω(log4N) elements. Theorem
2.1 ensures that all blocks will have size O(log4N).

For each block and for each layer we keep a priority search tree [16] with the points in that
block and layer. We maintain a labeling of the blocks using theorem 3.1. Finally, we maintain a
single structure T from lemma 6.5 with type R3

s′:n/ log4 N,d:n|L|/ log4 N
and performance (log2 log n(1+

log n/ log1/6−δ/6−ρN), log n/ log logN,n log n)
Assume a block b has been assigned label m. For each layer l ∈ L we take the point stored in

the root of the priority search tree stored in b for layer l and insert it in T at x-coordinate m and
layer l.
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Answering a query: Suppose first that the query does not cross a block boundary. Then the
query can be answered in time O(|L| log logN) by performing a query in the priority search trees
for each of the layers selected by query. Suppose next that the query crosses a block boundary. We
then first perform a local query in the block at the beginning and in the block at the end of the
query interval again spending time O(|L| log log n). The remaining points can be found by a query
in T using time O(log n/ log logN).

Inserting a new point: First we insert the point in a block using time O(log logN) and if
necessary we update T spending time O(log2 log n(1 + log n/ log1/6−δ/6−ρN)).

Handling splits of blocks: The structure of theorem 3.1 requires us to renumber O(log2N)
blocks on each split. This in turn requires us to perform O(log2+δN) updates in T . We perform
these updates during the O(log3N) insertions there is until we may have to split a block again. �
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7 Structures supporting 4-sided queries

This section is devoted to the proof of the following theorem which for n = N shows the first result
from the introduction for d = 2:

Theorem 7.1. Let ε > 0 be any constant and define ω = 7/8 + δ/8 + ε. Then there exists a
structure with type R4

d:n,d:n and performance (logωN, logN/ log logN,n log1+ωN).

7.1 From 3-sided to 4-sided

In this section we will describe a simple way to make a structure supporting 4-sided queries from
one supporting 3-sided queries. Similar ideas have been used by Chazelle [11] and Overmars [21].

Assume we for any m, m ≤ n, have a structure with type R3
s′′:n,s′′:m, and performance (U,Q, Sm)

and that Sm is a subadditive function of m. We will now describe how we can make a structure R
with type R4

s′′:n,s′′:n and performance (U log n,Q, Sn log n).
We span a complete binary tree T over R.Ly. Each node v ∈ T spans a subinterval I of R.Ly

where |I| ≤ n. We store in v two secondary structures v.R1 and v.R2 both with type R3
s′′:n,s′′:|I|

and both containing all points in I. The structure v.R1 (v.R2) should support queries of the form
(x1, x2, y1, y2, L) where y1 (y2) is the first (last) element in I.

Inserting (deleting) a point p in (from) R: This involves inserting (deleting) p in (from) two
secondary structures in each of the O(log n) ancestors of the leaf with p using time O(U log n).

Answering a query (x1, x2, y1, y2, L): For a node v ∈ T let v1 and v2 be the children of v such
that all leafs below v1 comes before the leafs below v2 in R.Ly. Fix v ∈ T to be the node which is
an ancestor of both y1 and y2 such that neither v1 nor v2 is an ancestor of both y1 and y2. The
query can then be answered by performing a single query in v.R1 and a single query in v.R2 giving
a query time of O(Q).

7.2 Small universe

The following lemma, which is similar to lemma 6.2 gives a structure for a small universe:

Lemma 7.2. For any constant ρ > 0 and for given u define t = (log1−δ−ρN)/ log4 u. If t ≥ 1 there
exists a structure with type R4

s′′:u,s:u and performance (1, log u, u log2 u, t). The structure requires a

global lookup table with 2O(log1−ρN) entries which can be computed in linear time.

Proof. We show the lemma by combining the constructions in lemma 6.2 and in section 7.1.
Like in section 7.1 we span a complete binary tree T over the y-axis. On T we play the pebble

game from section 5.2 with g = 0. As in the proof of lemma 6.2 the user performs O(t) updates by
adding O(t) pebbles to the root of T in item m1 and again each added pebble must be an insert
or delete pebble representing the update. In point m3 we move the pebbles down to the children
determined by the y-coordinates of the points they represent. Unlike lemma 6.2 we never apply
item b5 or b6 on the pebbles in T and it follows that T will only contain insert and delete pebbles.
When a pebble comes down to a leaf of T we just let it disappear.

Like in section 7.1 we have two secondary structures in each internal node of T . Each time
a pebble enters a node v ∈ T , a copy of the pebble is also given to the appropriate secondary
structure in v. For the secondary structures, we use the structure of lemma 6.2 with d = 2. We
select the same value of β for our game on T as in the game on the secondary structures, namely
the value given by (7).
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We can now answer queries as in done in section 7.1. We note that when reporting points from
the secondary structures in T we must also take the delete pebbles of the relevant nodes of T into
account.

During the time β pebbles are inserted in the root of T we must go through item m3 to m5 like
in the proof of lemma 6.2. Further, each time we execute item m3 in T we must also execute the
loop in item m3 to m5 in a constant number of secondary structures. Since T as well as the trees
in all the secondary structures have height O(log u) the following condition ensures that we do not
add too many pebbles to the root of T before we empty it again:

t log2 u ≤ β

Together with (7) this gives our requirement for t.
Finally, each point is stored in at most O(log u) pebbles in T and the secondary structures

giving a total space usage of O(u log2 u). �

As a corollary we get the following lemma which is similar to lemma 6.3:

Lemma 7.3. For any constant ρ > 0 and u = O(2(log1−δ−ρN)1/7
) there exists a structure with

type R4
d:u,s′′:u and performance (1, log u, u log2 u). The structure requires a global lookup table with

2O(log1−ρN) entries which can be computed in linear time.

Proof. Select t = log3 u in lemma 7.2 and exchange the two axises. This gives a structure with
type R4

s:u,s′′:u and performance (1, log u, u log2 u, log3 u). Further we get the restriction on u that
log3 u ≤ (log1−δ−ρN)/ log4 u. This can also be written as log7 u ≤ log1−δ−ρN which is obtained if
u = O(2(log1−δ−ρN)1/7

). Finally, inserting the obtained structure into lemma 4.4 gives the desired
result. �

As another corollary we get:

Lemma 7.4. For any constant ρ > 0 and u = O(2(log1−δ−ρN)1/7
) there exists a structure with

type R4
d:n,s′′:u/(|L| log3 n)

and performance (log3 log n, (log u + log2 log n) log log n, n log log n log2 u +

n log n). The structure requires a global lookup table with 2O(log1−ρN) entries which can be computed
in linear time.

Proof. This is obtained by plugging the structure of lemma 7.3 into lemma 4.3 �

The following lemma shows that we can get a somewhat dynamic y-axis in lemma 7.4. We need
to look back into several proofs in order to prove this lemma:

Lemma 7.5. The structure in lemma 7.4 can be given a dynamic y-axis where we allow any number
of points with a given y-coordinate. In this structure, it takes time 2O(log1−ρN) to insert a new
element on the y-axis. Further, the space usage is increased with an additive term of 2O(log1−ρN).

Proof. First, we modify the construction in the proof of lemma 6.2 and 7.2 as follows: We assign
each element on the x-axis a unique and arbitrary id. Further, instead of storing x-coordinates
directly in the pebbles, we store the ids of the x-coordinates. This gives a dynamic x-axis in the
following sense: We can insert a new element on the x-axis by assigning the new element an unused
id and then recompute the global lookup table. This follows from the fact that the global lookup
table is the only way by which coordinates of points are compared.
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Looking into the proofs of lemma 7.3 and lemma 4.4 we see, that we in the same sense get a
dynamic y-axis in lemma 7.3.

Finally, looking into the proofs of lemma 7.5, lemma 7.4, lemma 4.1 and lemma 4.3 we see,
that we in the same sense get a dynamic y-axis in lemma 7.5. This is because all points given to
the structure provided by lemma 7.5 are saved in instances of the structure given to the lemma.
The key point is, that all instances of the structure given to the lemma can share the same lookup
table. �

7.3 Full universe

Finally we have:

Proof of theorem 7.1. Let R be the structure with type R4
d:n,d:n we want to design. As in [19,

section 6] we span a WBB tree (see the proof of theorem 7.1 for references) T over R.Ly. We
specify the degree of T in a moment. See [19, section 5] or Arge and Vitter [5] for a description of
WBB trees. We keep in each node v ∈ T a linked list v.L where we save all the points located in
the leafs descendant to v sorted according to their x-coordinate. Let v ∈ T be an internal node.
We give each child of v a unique color. For each e ∈ v.L there exists exactly one child v′ of v and
one e′ ∈ v′.L such that e and e′ represent the same point. We color e with the color of v′ and we
keep in e a pointer to e′. Further, we keep the elements of v.L in a colored predecessor structure
of lemma 3.4 using the assigned colors.

We now sketch how to answer a query (x1, x2, y1, y2, L) in R. Details can be found in [19, section
6]. Let vr be the root of T and observe that vr.L contains all points in R sorted according to their
x-coordinate. It follows that each of x1 and x2 identifies an element in vr.L corresponding to the
query interval on the x-axis. We now proceed down T from vr to the leaf determined by y1. While
we do this, we use the colored predecessor structures to maintain the query interval on the x-axis
in v.L for the nodes v ∈ T we meet. Beginning in some node of T , we must report the elements
inside this interval that has a relevant set of colors and layers. After this, we proceed from from vr
down to the leaf determined by y2 in the same way and we are done.

We select a division level of T and all nodes of T below this level are said to be in the lower
part of T and all nodes above are said to be in the upper part of T . Let 0 < ρ < 1 be a constant
to be determined in a moment. If n = O(2log1−ρN ) we select the division level to be at the root of
T such that the upper part of T is empty. Else, we select the division level such that each tree in
the lower part of T has Θ(2log1−ρN ) elements.

We give each node v in the lower part of T degree Θ(1). We link all elements in v.L with the
same layer together using lemma 3.4 with layers as colors. Ignoring log logN factors, this allows us
to perform updates in the lower part of T in time O(log1−ρN). Queries can be answered in time
O(log1−ρ+δN) by performing at most a constant number of queries for each layer in each level of
the lower part of T . Finally, the total space used in the lower part of T is O(n log2−ρN).

We give each node v in the upper part of T degree Θ(u/ log3+δN) where u = 2(log1−δ−ρN)1/7
.

It follows that the height of the upper part of T becomes O(logN/ log u) which can be written as
O(log1−(1−δ−ρ)/7N). We store the elements of v.L in the structure of lemma 7.4 using the colors
as y-coordinates. We observe that for each child v′ of v, v′.L contains Ω(2log1−ρN ) elements. It
follows, that we can handle splits of nodes in the upper part of T using lemma 7.5 without extra
time or space overhead. Ignoring log logN factors, the total update time for the upper part of
T is O(logN/ log u). The total space usage in the upper part of T ignoring log logN factors is
O((logN/ log u)(n log2 u+ n logN)) and this can also be written as O(n log2−(1−δ−ρ)/7N).
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The query time in the upper part of T is O((logN/ log u) log u log logN). This can also be
written as O(logN log logN) which is an O(log2 logN) factor too high. We fix this problem in the
following way: For each node v in the upper part of T which is on a level divisible by log2 logN , we
keep two structures from theorem 6.1. In these structures we save the elements in v.L in the style
of section 7.1. We then modify the way we answer queries as follows: When we in our proceeding
down in T meet a node v on a level divisible by log2 logN and when we should report points from
v.L we stop. We then perform a query in one of the structures from theorem 6.1 kept in v in the
style of section 7.1. After this, we do not need to proceed further down in T . This modification
cuts of a O(log2 logN) factor in the query time in the upper part of T and we conclude that we
only need to use time O(logN/ log logN) in answering queries. Further, since each point of R is
inserted in at most log2 logN structures of theorem 6.1, the time and space usage is not increased
by our modification except for constant factors.

Finally, we select the value of ρ that minimizes the update time. This is done when the update
time in the lower and upper part of T is identical. Ignoring log logN factors this is the case when
1 − (1 − δ − ρ)/7 = 1 − ρ. This can also be written as ρ = (1 − δ)/8. Ignoring log logN factors
it follows that in both the upper and lower part of T the time usage becomes O(log7/8+δ/8N) and
the space usage becomes O(n log1+7/8+δ/8N) which proves the lemma.

�
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8 Higher dimensions

This section is devoted to the proof of the following theorem which shows the first result from the
introduction for d ≥ 3:

Theorem 8.1. Let d ≥ 3 and ε > 0 be any constants and define ω = 7/8 + ε. Then there exists
a solution for the d-dimensional range reporting problem with update time O(logd−2+ωN), query
time O((logN/ log logN)d−1) and space usage O(N logd−1+ωN) bits.

The proof of the theorem is divided into two parts. First, we in section 8.1 describe a black
box transformation transforming one structure to another. Second, we in section 8.2 apply this
transformation d − 2 times to the structure from theorem 7.1 in order to prove theorem 8.1 for a
given d.

8.1 A black box transformation

We now define what it means for a data structure G to have type (Q, ε). Each element e ∈ G has
a point e.p and a layer e.layer ∈ Lε (see section 2.1 for definition of Lε). Observe that we use a
slightly different definition of layers than in the preceding sections. G can be updated by inserting
a new or deleting an existing element. Q must be a set of predicates defined on points. G must
support a query (q, L) ∈ Q × Pow(Lε) with answer {e ∈ G | q(e.p) ∧ e.layer ∈ L}. If G supports
updates in time O(U), queries in time O(Q + r) where r is the number of reported elements and
uses space O(S(n)) where n = |G| we say G has performance (U,Q, S(n)).

Lemma 8.2. Suppose there exists a structure with type (Q, ε) and performance (U,Q, S(n)), that
U = Ω(log logN), Q = Ω(log logN), and that S is subadditive. Suppose further f is a function
from points to R which can be evaluated in constant time. Then there exists a structure with type
(Q′, ε/2) where Q′ is the set of predicates q′ that can be written as q′(p) = i ≤ f(p) ≤ j ∧ q(p) for
q ∈ Q and i, j ∈ R. Further the structure has performance (U logN/ log logN,Q logN/ log logN,
S(n) logN/ log logN).

Proof. Let G′ be the structure with type (Q′, ε/2) we want to design. We save each element e ∈ G′
in the leafs of a WBB tree (see eg. [19, section 5]) X with degree Θ(logε/2N) using f(e.p) as key.
We store the keys in each internal node x ∈ X in a standard balanced binary search tree. Further,
we assign each child of x a unique layer in Lε/2. We keep in x a secondary structure x.G with type
(Q, ε). Let e ∈ G′ be an element which is in a leaf descendant to a child of x with layer l. We then
store e in x.G with (x.G)[e].layer = l + (G′[e].layer)Θ(logε/2N).

Inserting (deleting) an element e ∈ G′ requires inserting (deleting) e in (from)O(logN/ log logN)
secondary structures in the nodes of X and this takes time O(U logN/ log logN) as required. By
assumption U = Ω(log logN) so this term also pays for the binary search we need to perform in
the nodes of X.

Suppose we are given a query (q′, L′) ∈ Q′ × Pow(Lε/2) where q′(p) = i ≤ f(p) ≤ j ∧ q(p). The
interval {r ∈ R|i ≤ r ≤ j} identifies a set M ⊆ X×Pow(Lε/2) such that |M | = O(logN/ log logN)
and such that we get the elements in the answer by for each (x, L) ∈ M to perform the query
(q, {l1 + l2Θ(logε/2N) ∈ Lε|l1 ∈ L ∧ l2 ∈ L′}) in x.G.

To support splitting of nodes in X we need to change the structure slightly. When a key r in
node x ∈ X with layer l and parent x′ is marked in the terminology of [19, section 5], an additional
secondary structure x.G′ is created and x is given an additional unique layer l′ by x′. During the
time r is marked we move the elements e ∈ x.G for which f(e.p) > r from x.G to x.G′ using
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(x.G′)[e].layer = (x.G)[e].layer. Define l′′ = l′+G′[e].layerΘ(logε/2N). For each moved element
e we set (x′.G)[e].layer = l′′ if e ∈ x′.G and (x′.G′)[e].layer = l′′ if e ∈ x′.G′ by removing and
then reinserting e. �

8.2 A structure for higher dimensions

Finally we have:

Proof of theorem 8.1. Let R be the structure from theorem 7.1. With the terminology from section
8.1, R can be viewed as having type (Q, δ) and performance (logωN, logN/ log logN,n log1+ωN).
Here, Q contains all predicates q of the form q(e) = x1 ≤ e.x ≤ x2∧y1 ≤ e.y ≤ y2 for x1, x2 ∈ R.Lx
and y1, y2 ∈ R.Ly.

Applying lemma 8.2 d− 2 times to R almost proves the theorem. But only almost, because the
first two coordinates need special treatment. This problem can be fixed by the use of lemma 3.5.
Details will be given in the final version of the paper. �
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