
A Calculus of Mobile Resources
Theory Department, IT University of Copenhagen

Jens Christian Godskesen (jcg@it.edu)
Thomas Hildebrandt (hilde@it.edu)
Vladimiro Sassone (vs@susx.ac.uk)

IT University Technical Report Series TR–2002-16

ISSN 1600–6100

Copyright c
�

, Jens Christian Godskesen (jcg@it.edu)
Thomas Hildebrandt (hilde@it.edu)
Vladimiro Sassone (vs@susx.ac.uk)

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-021-2

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www.it-c.dk

A Calculus of Mobile Resources

Jens Christian Godskesen Thomas Hildebrandt

Theory Department, IT University of Copenhagen
Glentevej 67, 24000 Copenhagen NV, Denmark�

jcg,hilde � @itu.dk
Vladimiro Sassone �

COGS, University of Sussex
Brighton BN1 9QH
vs@susx.ac.uk

Abstract

We introduce a calculus of Mobile Resources (MR) tailored for the design and analysis of
systems containing mobile, possibly nested, computing devices that may have resource and ac-
cess constraints, and which are not copyable nor modifiable per se. We provide a reduction as
well as a labelled transition semantics and prove a correspondence between barbed bisimulation
congruence and a higher-order bisimulation. We provide examples of the expressiveness of the
calculus, and apply the theory to prove one of its characteristic properties. This report is the full
version of [11].

Introduction

Mobile computing resources moving in and out of other computing resources abound in our daily
life. Prime examples are smart cards [12] used e.g. in Subscriber Identity Module (SIM) cards or
next generation credit cards, moving from card issuers to card holders and in and out of mobile
phones or automatic teller machines (ATMs). Accordingly, the ability to reason about correctness
of the behavior of concurrent systems containing such resources, as well as the need of design and
implementation tools, will raise to an increasingly prominent role. We propose a calculus of mobile
resources (MR) aimed at designing and analysing systems containing nested, mobile computing
resources residing in named locations that have capacity constraints. Our goals include to devise
a formal framework to express and prove properties that may depend on the assumption that such
resources are neither copyable nor arbitrarily modifiable per se. These assumptions are crucial for
the security of systems based on smart cards as trusted computing bases, such as e-cash and SIMs.

The calculus MR is inspired by the Mobile Ambient calculus [5, 16], bears relationships to
Boxed Ambients [3] and the Seal calculus [24], and to distributed process algebras [13, 23, 10], but
differs from all these in important ways, motivated by our specific goals. Building upon a CCS-like
calculus [19] with prefix, restriction, parallel composition, replication, no summation nor recursion,
we introduce named slots, i.e., if � is a process, then ��� � ���	�� � represents a resource � in a slot named
by � . In general, we allow slot aliasing, that is slots to be named by more than one name, writing
��� � ���	�� � for a resource � in a slot named by a set of names

� . Finally, we assume that slots may carry
names of the form � � �� used for deletion, e.g. a slot ������� � ������ � ���	�� � can be accessed via the name � and
deleted by processes knowing the name � .
�
Supported by ‘MyThS: Models and Types for Security in Mobile Distributed Systems’, EU FET-GC IST-2001-32617.

1

We postulate that a resource can move from a location to another only if an empty slot can be
found at the target location. This makes ��� � ��� � � � very different from a slot containing a terminated
process, and allows us to model locations that can only contain a bounded number of resources, thus
capturing a very relevant aspect of real-world devices carrying embedded processors. To abstract
away from this, replication in the style of the � calculus can be used to recover the usual semantics of
locations by generating unboundedly many slots at a location, as, e.g., in

� � � ���� ���	��� . Since resources are
processes, they might themselves contain slots, giving rise to a nested spatial structure. By allowing
restriction of location names, we can represent restricted access to a location.

To help focusing our ideas, let us consider the processes
��� � 	�
� � ��� ��� � � ��� � � ���� � � �������� ��� � � ��� ��� � � ��� � � � ��� � � � � �"! ��� � � � � ��� � � ��� � � �#�
� � $ � � � $�% � � �������& � ��� � 	'
 � � � ���(�

consisting of a process Alice with a resource � in a public slot named
�

and a process Bob having
an empty, private slot named

�
, and an empty slot with a public name ! and a private name � that

may also be removed using the name � . For the sake of this discussion, the spatial structure of
&

can
be depicted as in the labelled tree below, where edges represent slots, labels slot names, and nodes
processes other than slots. � � � � �)

uu
uu

u *,+.- /0- 11 12/43
II

II
I5

� � � � � � �6 � � �7� � � � � � ��� � � �

� � � $ % � � �
Mobility of resources in MR is ‘objective,’ as opposed to ‘subjective,’ i.e. the migration of a resource
is initiated and controlled not by the resource itself, but by an external process. More precisely, a
resource is controlled by a process outside the slot where the resource is placed, that is a process
residing at a super location. We introduce this notion by means of move actions of the form �98 � , a
capability that should be read ‘move a resource from a slot at the location � to a slot at the location
� .’ We use a notation reminiscent of action/co-action pairs to stress the dual roles of � and � that,
respectively, give and take a resource, and we will adopt consistent conventions throughout the paper.
If for instance

�:�;� 8 !=<< < � % , we would have
>@??? � ��� �A� � � ��� ��� � � ��� � � �B�� � � % � � � � � � ��� � � ����� � � � � �"! ��� � � � � ��� � � �C� � � �#�

whose spatial structure can be drawn as follows.

� % � � � �)
tt

tt
t *,+.- /0- 11 1D/E3

II
II

I5
� � �7� � � � � � �7� � � � � � � � � � �6

� � � $ % � � �
Observe that the movement of � from

�
to ! causes a scope extension for � .

Carrying on with our example, supposing
�F� !�8 � < < < � % we have the reduction

� ��� �A� � � ��� ��� � � �=� � � ���� � � % � � � � � � �7� � � �B�� �G!H8 � < < < � % � � � �#! � � ��� � ������ � �C� � � �I� ? ? ?
� �J� �A� � � ��� ��� � � �=� � � ����� � % � � � � � � ��� � � �B�� � � % � � � �"! ��� � � � � ��� � � �7� � � �K�L<

Observe that the last two reductions illustrate the passage of resource � from
��� � 	'

to the private slot
of
���(�

, without
��� � 	�

’s knowing the name of
���(�

’s private slot.

2

As for mobility, deletion of slots is objective, and is controlled by delete actions of the form � � � � .
Supposing

� % � � � �� < < < � we have the reduction

� �J� �A� � � ��� ��� � � �=� � � �B��� � % � � � � � � ��� � � �B�� ���� �� < < < � � � � �"! ��� � � � ������ � �7� � � �"� ? ? ?
� �J� ��� � � ��� ��� � � �=� � � �B��� � % � � � � � � �C� � � �B��� � ��<

The posibility of slot deletion may be viewed as observable and controlable failure of slots. The
remarkable features are that a slot can only be removed by processes knowing a name for deletion,
and if the slot has no names for deletion it can not fail. 1

While explicit mobility captures asynchronous communication via resource passing, synchronous
communication is the second central concept of MR, covering several different aspects of process
interaction in our application domain. As in CCS, co-located parallel processes can communicate
synchronously by performing respectively an

�
-action and a

�
-action. In addition, we allow a pro-

cess to communicate with any of its descendants, by performing a directed action of the form � � ,
where � is a sequence of slot names. For example, if

��� �L$ $ % < < < � % in our running example, we have
the reduction

� ��� �A� � � ��� ��� � � �7� � � ����� � % � � � � � � � $ � � � $ % � � �B����� � � �B��� �L$ $ % < < < � % � ? ? ?�A� % � �A� � �A� % � ��� � � �7� � � �B�� � � % � � � � � � � $ � � ��� � � �B�� ��� � � �B��� � % � �
where the co-action from

�
synchronises with the corresponding action from slot

$
inside slot

�
. In

this way, the actions of the resource � (and its sub-resources) are dynamically bound to the directed
actions of

�����
. Unlike e.g. the Seal calculus, we do not distinguish between undirected actions and

actions that may synchronise with ascendants.
Using sequences of names in move actions as for the synchronisation, we can move a resource

(subtree) from a slot at an arbitrarily deep sub-location to an empty slot (a black leaf) at another
arbitrarily deep sub-location. For instance, if

� % � �L$ 8 � < < < � % % we have the reduction

� �J� ��� � � ��� ��� � � ��� � � �B��� � % � � � � � � � $ � � ��� � � �K�� ��� � � �B��� �L$ 8 � < < < � % % � ? ? ?� ��� �A� � � ��� � � � � ��� � � �B�� � � % � � � � � � � $ % � � �7� � � �B�� ��� � � �B��� � % % �L<
The reductions presented above constitute the primary mechanisms of MR.

Structure of the paper & Results. After introducing the syntax of MR in � 1, in � 2 we lay the
foundations of its semantic theory by giving a reduction semantics formalising the different ways of
interaction discussed above; � 3 discusses several small examples aimed at illustrating some partic-
ularities of MR. We then proceed in � 4 to give a labelled transition semantics to MR equivalent to
the reduction one. This is well known to be a non-trivial task for calculi allowing (higher-order) pro-
cess mobility and scope extension, as in MR when resources containing restricted names are moved.
In � 5 we provide a characterisation of the barbed congruence in terms of a higher-order labelled
transition bisimulation. Predictably, the main difficulty in proving the transition bisimulation to be a
congruence is the insertion of processes into slots. One of the examples in � 3 will point out one of
the reasons for that. The detailed proofs of our results can be found in the appendix. As usual with
higher-order bisimulations, the characterisation here uses a selected set of contexts that play the role
of destructors for the higher-order values, namely receiving contexts dealing with the reception of re-
sources into slots. We will return on this later on. In � 6 we give an application of the characterisation,
proving a linearity property of the calculus by giving a bisimulation of two processes.

Design issues & Related work. As already mentioned, MR shares ideas with the Mobile Ambi-
ents (MA) [5]. In both calculi, in fact, processes are equipped with nested, named locations – the
ambients – containing processes, and the spatial structure can be dynamically extended or change

1The distinguished names for deletion of slots is new compared to the version of MR in [11].

3

due to movement. However, likewise the Seal calculus [24], it is the anonymous contents of loca-
tions to be moved in MR, and it is moved by a process external to the location. On the contrary,
in MA it is the named location to be moved by a process within it. Another departure point with
MA, where ambients communicate only asynchronously, processes in MR may communicate both
synchronously, as in CCS and the � -calculus, and asynchronously, by exchanging resources. Re-
source movement is a three-party interaction in both MR and the Seal calculus. However, slots in
Seal are pure references that disappear after interaction, while in MR they remain as empty slots
until explicitly removed. Moreover, the reception of a resource is via a pair action/co-action in Seal.

To the best of our knowledge, the boundedness of resources is unique, among process algebras,
to the calculus proposed in this paper. Similar ideas may of course be found in related areas, most
notably bounded places in Petri nets, but, besides the obvious analogies, there seem to be no formal
relationships with our notion here.

Our calculus shares with Safe Ambients (SA) [16] – and with several other proposals that space
does not allow us to survey upon – the wish to put a stricter control on mobility and access to
locations, taking the objective mobility viewpoint. While this is realised by an action/co-action syn-
chronisation between mover and movee in the SA approach, MR relies on move actions performed
by the mover. Also, the idea of direct actions across location boundaries is reminiscent of the forms
of communications found in the Seal calculus, Boxed Ambients, in D � [13] and in the distributed
Join calculus[10], though in the latter communication is asynchronous and locations distributed.

Observe that, differently from all these, MR does not allow explicit communication of names.
This design choice seems consistent with our application, in that it confines information inside re-
sources and allows network topology evolution only by means of extensions and replacement of
substructures, maintaining a strictly hierarchical network structure. We leave to future work the
investigation of a capability-passing version of MR, as well as the impact of asynchronous commu-
nication between remote, non directly nested sites, and the expressiveness of movements that refer
to sibling slots.

Concerning the choice of moves and communication that span multiple slot boundaries our hy-
pothesis is that, slots do not necessarily represent physical location boundaries that enforce a notion
of communication distance. Distance may be enforced by use of restricted slot names akin to pri-
vate fields in Java. For this reason we prefer to develop the theory in full generality. After all, that a
location may not be accessed from “grand parent nodes” is an issue that can easily be demanded to
the control of a type system. Of course, this choice makes the calculus more complex; its price is a
more complex semantic theory, yet – we believe – still manageable. For future reference, let us call
MR � the calculus restricted to paths of length at most two, that is with only directed communication
across at most one boundary and short moves of the form

� 8 $ (flat),
� � 8 $ (up), and

� 8 $.� (down).
All the results in the paper carry naturally over for this sub-calculus.

1 The Calculus

We assume an infinite set of names
�

ranged over by � and � . Let
� � � ��� ��� � � be the set of

co-names. We let � range over � � �	� �
and
 over the set

���
of sequences of names, referred

to as direction paths, with denoting the empty sequence. We use � to denote elements of
���

, the
set of non-empty direction paths. The set � of prefix labels is then defined by:

� ��� �
������08 � % � � � � �9<
The actions � play the same role as in CCS. However, as explained in the introduction, we allow
actions to be extended with a sequence of slot names, so that ��� is an action directed to a resource
in a slot identified by � . An action ��� synchronises with the corresponding co-action � performed
by a resource in a slot at � .

Let

� range over sets of names and deletion names, that is subsets of

��� � � � � ������� � � . The

4

�����������
	 	 	��� ������������		 	���			 ��������� ����������� � ��! "�������$#��%#��� ��� �!&"�������'���� �(�*)+�,�����-�.�����/�*)'�10
if
��235416 �.�*)'���7��8�.���� �/�) �9�� �/�)) �:���� �;�.�) � � �/�)) � ��<��������"=�?>> >1�A@ @@!�B=�?>> >C�����'�?@@@D0

if E �F0HG G GI�(J$KL=�NMPO

Table 1: Structural equivalence.

sets Q of process expressions is then defined by:

� �-R � � � � � � � � < < <�� ��� � � �;R � � � � � � � ��� � �
���� �TS � � � � Q �S � � � � ���
Processes � � � ,

� < < <�� , and � � � �:R are the ordinary CCS-like constructs, representing respectively the
inactive process, the prefixed process, and the parallel composition of processes. The replicated
process

� � � � provides as many parallel instances of � as required and adds to the calculus the power
of recursive definitions. The restriction

� ��� � makes name � local to � . The novelty of the calculus
resides in the slot processes already described in the introduction:

��� � � � � � � , an empty slot, and

��� � ��� � � � a

slot containing a process � , both carrying the names (and deletion names) in

� . We will write ��� � �DS � � �

for a slot ����� � � ��S � � � possessing only a single name. We refer to processes within slots as resources.
The restriction operator

� ��� is the only binding construct; the set U�V � ��� of free names of � is
defined accordingly as usual. By convenience, we omit trailing � � � s and hence write

�
instead of

� < < < � � � .
As usual, we let prefixing, replication, and restriction be right associative and bind stronger than
parallel composition hence writing e.g.

� � � � ��� �J<<< �;���WR instead of
� � � � � � ��� � �F<<< ��� � � � � �WR . For at set of

names

� � � �AX �.<'<.< ���9Y � we let

�
��� � denote
� �AX'�/Z"Z�Z � �9YC� � . We write �
� for ����� �
� .

2 Reduction Semantics

Contexts [are, as usual, terms with a hole
�]\ � . We write [� � � for the insertion of � in the hole of

context [. An equivalence relation ^ on Q is a congruence if it is preserved by all contexts. As our
calculus allows actions involving terms at depths arbitrarily far apart, in order to express its notions
with formal precision, yet in succinct terms, we need to make an essential use of a particular kind of
contexts throughout the paper. We define an

� �
-indexed family of path contexts, [�_ , inductively as:

[�` ��� � �a\ � [/ _ ��� �
� � � �T[_ � � � � � � � � � �
�9<
Observe that the direction path
 for a context [�_ indicates a path under which the context’s ‘hole’
is found. We extend U�V � � to path contexts by U�V � [_ � � U�V � [_ � � � �4� � . We also define a family of path
contexts b _ / � � � [_?c
��� � � �a\ � � � �?d � � �
� �
for the special case where the hole is the only content of a slot.

The structural congruence relation e is the least congruence on Q satisfying alpha-conversion
and the rules in Table 1. The equations express that

� & �#� � � � �E� is a commutative monoid (fgX – f�h) and
enforce the usual rules for scope (fji – f�k) and replication (fjl). We write �Benm,R if � and R are
alpha-convertible.

Evaluation contexts o are contexts whose hole does not appear under prefix or replication, i.e.

o � � � �]\ � �
���� �Co � � � �po;��� � � � ���ao
Define

? ? ?
as the least binary relation on Q satisfying the rules in Table 2 and closed under e and

under all evaluation contexts o .
The first rule captures both the standard CCS synchronous communication and a synchronisation

reminiscent of the one found in the Seal calculus and in Boxed ambients, in that communication in

5

��� � � � ���� �����*� � � � ��#
����� ���� ����� �"#9�
��	 ��
 ��	 � � � ���� ��� �������� ��#D�
� � � ����� ��� ������� ���� ��� �������� ��� �9� �� ����� ��#D���
G G G � � � � ���� � =�?>> >"! @ @ @#��� � G G G$� 3 =�

Table 2: Reduction rules

��� is directed downward and may synchronize with a local communication on � inside � . The
purpose of context [_ there is to express that
 � synchronises with an � found under path
 . The
second rule defines movement of resources. This movement is ‘objective,’ meaning that resources
are moved from the outside and not by the resource itself, as in the Ambient calculus. The third rule
defines deletion of slots. The process that performs it must hold all the names of the slot.

As already remarked, moves across multiple boundaries make the calculus formally more com-
plex. The price we pay is a pervasive use of contexts, starting here in the reduction rules and with
effects reaching – as we will see – our bisimulation congruence. We remark that in MR � , where
paths have length at most two, the movement rules above specialise to

� 8 $.� < < <�� � � � � � � ��% � � � � � � $ � � �TR ��� � � � �7� � � � � � � ? ? ? � � � � � � � �7� � � � � � � $ � � �DR � � � � � � ��% � � � � � � �
�0� 8 $ < < <�� � � � � � � � � � � ��% � � �B�� �!R � � � � � � $ � � ��� � � � ? ? ? � � � � � � � � � � � �7� � � � ���;R � � � � � � $ � � ��% � � � �

� 8 � < < <�� � � � � � � ��% � � � � � � � � � ��� � � � ? ? ? � � � � � � � �7� � � � � � � � � � ��% � � � �
and similarly for the communication rules.

We move now to study the semantic theory of MR. We start by discussing the notion of obser-
vation. It seems fair to observe the communication actions processes offer to the environment. We
then define barbs as:

��& � if �We �
��� � � < < < � % � � ��RC� � ��� � � � � � � �('�
�
This excludes observing restricted actions, as well as directed actions and move actions. Several
alternative choices of observation appear natural, as e.g. observing at top level – i.e., not inside any
slots – free slot names, empty slots, path actions, or movements. Our choice is robust, as none of
these alternatives would actually give rise to a different semantic theory from the one we develop
below.

Definition 1 A barbed bisimulation is a symmetric relation ^ on Q such that whenever � ^ R
��& � implies R)& �
� ? ? ? � % � then * R ? ? ? R % with � % ^ R %

Barbed bisimulation congruence + 5 is the largest congruence that is a barbed bisimulation.

The definition above is in principle stricter than the classical notion of barbed congruence, de-
fined as the largest congruence contained in the barbed bisimulation. It is however gaining credit in
process algebra theory for its good properties (cf. e.g [9, 1]).

3 Examples

Faulty domain. As already remarked in the introduction, slots may be given multiple names and
separate names for deletion. Consider the process

� �J� c ��� � � � �� � � � �7� � � � � � � � � � � �@<<< ��� � � � �� � � � � � � � � d <
The process illustrates both slot deletion and dynamic creation of slots. The environment can in-
sert/take resources into/from the empty slot. However, at any time, the slot may be deleted (with or
without contents) and replaced by an identical, but empty slot.

6

Linearity. It is a fundamental property of MR that resources cannot be copied. This interacts with
the usual scoping rules enforced by restriction to yield an interesting ‘linearity’ property. Consider
the term

& � �A� � c � � � � � � � � � � � � � � � � < < < $ d . Because of the restriction
��� � only the resource inside slot

�
will ever be able to use

�
to interact with the replicated term on its side. However, it may in principle

be possible that exporting it to some external context, such a resource may be able to ‘copy’ itself,
replicating the reference to

�
. This would be possible in several (higher-order) calculi. Yet, it is not

possible in MR. In particular, if a resource containing a reference to a local name is given out, only
(a residual of) that resource may in future refer that name. This is stated by the following equation,
that we prove in � 6. ��� �pc � � � � � � � � � � � � � � � � < < < $ d + 5 ��� �pc � � � � � � � � � � � � � < < < $ d

Suggestively, the process
��� � c � � � � � � � � � � � � � � � � < < < $ d can be regarded as a model of a pre-paid cash

card (the resource
�
) in the slot

�
of a vending machine

� � � �7� � � ����� � � � � � < < < $ that delivers a cup of coffee
(action

$
) for each cash card of the right kind,

�
, inserted in

�
. The + 5 -equation above then states

that if there exists only one card of the ‘right’ type, then there will ever be only one cup of coffee; in
other words, the cash card cannot be copied. This is the kind of properties relevant to our intended
application area.

Scope extension and mobility The interplay of upward and downward moves and scope exten-
sion gives rise to interactions unexpected at first, and is a major challenge for the theory of the
observational congruence presented in the next section. Here, we exemplify it as follows. Consider
the contexts [X � $ � � � �]\ � � � �B��� � � [� � ! � � � �a\ � � � �B�� � ! � < < < � �
and the process � � �A� �][X � [� � �C� � � ��� � c $ � � �I! � � �=� � � � � � � ! � < < < � � � � � � � � d . Since name

�
is private, it

would appear that no resource inserted into the empty slot ! can synchronise with the ! � -action and,
similarly, that no process can ever synchronise with the

�
action at top-level. It would then follow

that the
�

action can never be revealed and, in particular, that � behaves like R � ��� � ��$ � � �C! � � � � � � � � � �#� , no
matter the context. Yet, this is not the case. Under a suitable context, it is possible for the process

�
to change its role from being the parent of ! � < < < � to being its child in the slot named ! . Suppose in
fact that � and R are inserted into the context

[��� � � � �]\ � � � � � � ��� � � ��� � � � � � � � $ 8 ��<<< � 8 � !�<
Then [� ��� reduces (in two steps) to

�A� �pc � � � ��� � � �;����� � � �?[� � [!X � ��� � � � � d � ��� �Cc � � � ��� � � � � � ��� � � �I! � � � $ � � ��� � � ���� � � � � � � � �:! � < < < � � � �#� �
where [X and [� have swapped place. Now the

�
-action may be unleashed upon synchronisation on�

. Since
� '� U�V � [� RC� � , clearly [� RC� cannot reduce to a process with a

�
-action, so � '+ 5 R .

Digital Signature Card. The following example models a digital signature card. For readability
we use the names reg, in and out for slots representing respectively a register, an in-buffer and a out-
buffer. We then give a model of a process f � $ Y parametrized by a name � (the key) that (repeatedly)
encrypts resources received in its in-buffer with key � , and returns the encrypted resource via its
out-buffer.

Enc Y � � � � �
reg � ��� V 8 �
	����<<<��
	�� 8 ����� � � � reg � � �� � � ��� � � � � � �#� � � � in � � ��� � � � � � ������� � � �7� � � �

Dually, we can define a process ��� $ Y that (repeatedly) decrypts resources received in its in-
buffer with key � and returns the decrypted resource via its out-buffer.

Dec Y � � � � � S���� � ��� �98 S����B<<<�S�������8 ���! < < < � � � reg � � �7� � � �#� � � � in � � ��� � � � � � � out � � �7� � � �
If the name � is globally known, anyone can perform encryption and decryption. On the other hand,
if � is a shared secret between two processes, e.g. Alice and Bob, and Alice (resp. Bob) possesses an

7

encryption (resp. decryption) process as a private resource, then Alice can send messages secretly to
Bob.

Alice Y - � � � ��� ��� � c � � � � Enc Y � � � � � � � � � � � � � � � � � � 8 � in < < < � out 8 V 	 ��� ���
 d
Bob Y � � ��� �A� � �A� � � � Dec Y � � � � � � � � � �7� � � � � � � V 	 ��� ���
�8 � in < < <�� out 8 � �

SecretCom � � � �(� c Alice Y - � � � � Bob Y d � � � network � � �7� � � �
We may prove the encryption property by showing that for any processes (messages) of the form� � � X < < < � � < < <C<.<'< ��� and

� % � � % X < < < � %� < < <�<.<'< � %	 , we have

SecretCom � + 5 SecretCom ��
 <
We then may model a digital signature card which generates the key and exports the decryption
resource (as many times as needed) but keeps the encryption resource private.

SignatureCard
� � ��� c � � � export � � � Dec Y � � � � � � Enc Y d

4 Transition Semantics

In this section we set out to provide MR with a labelled transition semantics. The interplay of mobil-
ity and local names as illustrated by examples in the previous section has interesting consequences
in this respect. One example, Linearity, in fact, shows that a certain amount of information must
be retained about resources given out to the context. This is not similar to the transition semantics
for the � calculus (cf. [19, 21]). In the � calculus the relevant information concerns the extruded
names; in MR things may in principle be more complex, since interaction involves passing around
resources, i.e. higher-order, evolving entities. The example Scope extension and mobility also points
out that we must consider that exported resources may be received in arbitrarily complex contexts.

We focus on explaining the transition rules for the characteristic features of our calculus, i.e.
slots, directed communication and objective mobility, which are shown in Table 4. Also, we explain
the interplay between labels.

To capture directed communication, we introduce labels of the form � � that may synchronise
with the directed actions of the form � � that appear as prefixes in the calculus. We do this by defining
� � � � � . For example, we have

��� � � � < � � � � /)\�\��\�� ��� � ���	�� � (nesting)

and the usual synchronisation rule yields

� � < < < � � � � ��� � � � < < <"R � � ���\�\�\� � � � � ��� � �TR � � � �
The three-party interaction required for the movement of resources is modelled by means of

higher-order labels. We introduce

� 8�� ��� � � exits from �C� and
� � ��8 � � � enters in �C�L<

The corresponding co-labels will be indicated by �08 � � � and � ���8 � , respectively.
The move action �DX#8 � � – whose co-action we denote by �TXI8 � � – and the two higher-order labels

will partially match each other in pairs, so as to give rise to co-label corresponding to the third party,
the one missing to perfection the three-way synchronisation. That is,

� X 8 � � coalesces with � X 8�� �� yielding � ��L8 � � �
� X 8 � � coalesces with

� ���L8 � � yielding � X 8 � � � �
�DXI8�� �� coalesces with

� ���L8 � � yielding �DX#8 � � <

8

�
prefix

� � � � � ������������ � �
rest

� �	���������� �)
�����'�	���������� ���(�'�) 0
��23n416 ��
/����1�9��
(�

�
sync

� ���������� ���������� �) � �+ ����������� �)
�(�?� � �(�+ ����������� �-=���-�.�) � � � �/�) � 0 4a6 �.� � K:=� MPO

�
par
� ������������ �)
�����$#����������� �) � � �$# 0 4a6 ��#D�+K��1�
��
/�
M O �

struct
� ���%#p0+������������ �) 0 �) �%#)

#����������� #)

Table 3: Transition rules, standard.

Hence, the three labels match in any order and annihilate their matching action/co-action particles
to yield, at last, a � . For instance, a resource that exits a slot produces a transition

���� � � � � � /�� �"!$#\�\�\�� ���� �7� � � � (exit) �
and similarly, an empty slot that receives a resource, gives rise to a higher-order transition

� � � ��� � � �
% !'&(�*)\�\��\�� � � � ��� � � � (enter) <

These ‘exit’ and ‘enter’ transitions may synchronise, yielding a co-move transition

���� ��� � � � � � � � � � �7� � � � /��+)\��\�\� ���� �7� � � � � � � � � � ��� � � � (co-move)

which, in turn, can synchronise with the corresponding move action to yield a � -action that represent
the completed interaction:

��� � ���	�� � � � � � � � �7� � � �;��� �98 � < < <�R �\�\��\�� ��� � �7� � � � � � � � � � � � � � � � � � R0<
Symmetrically, ‘exit’ and ‘move’ transitions may synchronise, resulting in a ‘give’ transition

���� � � � � � � � � �98 � < < <�R �,!$#-�)\�\�\�� ��� � �7� � � � � � � R (give)

which may synchronise with the dual ‘enter’ transition. Dually, ‘enter’ and ‘move’ transitions may
synchronise, resulting in a ‘take’ transition

� � � �7� � � � � � � �98 � < < <�R /�� % !'&\�\�\�� � � � ���	�� � � � � R (take) �
which is ready to synchronise with the dual ‘exit’ transition.

Rules (exit) and, in particular, (enter) may at first appear to be ‘spontaneous’ rules. A closer anal-
ysis though reveals that they are akin to ‘output’ and ‘input’ transitions in the ‘early’ labelled tran-
sitions semantics of the (higher-order) � calculus, rather than transition that may fire autonomously
an unbounded number of times.

The last issue involved in the movement of resources is the treatment of scope extension when
resources are moved. The phenomenon is totally analogous to that in the (higher-order) pi-calculus,
and we handle it as usual (cf. [21]) by restrictions on the labels of (exit) and (give) transitions, e.g.,

� �J� ���� � � � � �
%).& /��/�0)1#\��\�\� ���� �7� � � � (O1)

and by explicit scope extension in the synchronisation rule.

9

�
exit
� =�9>> >a�?@@@ ����� ������������ =�A> >>��g@@@ 0
� 3 =� �

enter
� =�?>> > �g@@@1� � �������������� =�A> > >a�?@@ @ 0
� 3 =�

�
give

� � � ���� �
� � ���
	����������� �) � � ��� � � ���������� �)

� � � � �/� ���� ���
	��� ������������ �) � � � �/�) 0 416 �.�+ �� K:=� M O �
take

� �
��� � ������������ �) � � � 	 ��� ������������ �) �
� � � � �/� ��� � � 	 ���������� �) � � � �/�)

�
co-move

� � ������ �
� � ���
	����������� �) � � � 	 ��� ������������ �)

� � � � �/� � � � ������������ �-=���-�.�) � � � �(�) � 0 416 �.� ��K:=� M O

�
nesting

� �	���������� �)
=�?>> >a�?@@@ ����� � � ���������� =�?>> >a�) @ @ @ 0A� 3 =�F0 �

delete
� =�A>> > !�@@@ � � �
���������� 	 	 	 G G G � 3 =�

�
O1
� � � ���� � ���
	����������� �)
�����'� � � �� � � ���
	����������� �) 0
� 3n4a6 ��#D���p� 416 � 	 � �:=�(� �

O2
� � ���� ���
	��� ���������� �)
�����'� � � ������
	��� ���������� �) 0
� 3g416 ��# ���C� 416 � 	 ��:=�(�

Table 4: Transition rules for resources and mobility.

The directed communication and movement actions are generalised to actions spanning several
levels by the (nesting) rule. This uses an operation �
Z ZZ � � to prepend � to labels coming from processes
enclosed into slot � defined as follows:

� Z Z Z � ��� � � � � Z Z Z �
�� � � �
 �	� � Z Z Z � �DXI8 � � � � � �DX#8 � � � �
� Z Z Z � � � �L8 �C� � � ���L8 � � � � Z Z Z c �
��� � 8�� ��+d � �
��� � �08�� ��� �

where � '�
� . By using �ZZZ � ��� , we implicitly assume that � is a label of one of the kinds above.
Finally, the rule (delete) allows a slot to be deleted.

We let � range over the complete set � of labels used in our transition semantics, defined formally
as follows.

� � � ��� � �
��� �08�� �� � �
��� � ���8 � where
� � � � � � � � � � ���� � � � �08 � � � � ��8 � ���08 � � ��<

The set of bound names in a label � , ��V � ��� , is

� if � is

�
��� �08�� �� or
�
��� � ���8 � , and � if � is a

�
-label.

The set of free names in � , U�V � ��� , are those that are not bound. We let U�V � �C� denote the set of names
in � .

The rules in Table 3 and 4 then define a labelled transition system

� Q � \��\��\���� Q������WQ �L<
The following two propositions state the correspondence between the reduction semantics and

the transition semantics.

Proposition 1 � �\�\�\�� � % if and only if � ? ? ? � % .
Let ���\��\�\� denote � �\��\�\�� � % for some � % then

Proposition 2 � /\�\�\�� or � /\�\��\�� if and only if ��& � .

10

5 Bisimulation Congruence

In this section we provide a labelled transition bisimulation, and prove that it coincides with the
barbed bisimulation congruence.

As remarked in � 4, we need to take into account that resources may be moved at arbitrary depth.
As often happens in higher-order bisimulations (cf. e.g. [20, 8, 17]), we need to use an appropriate
selection of destructors in order to test and assess the higher-order values exchanged by interac-
tion. Analogously to what is done in [17] for the ambient calculus, we embody such contexts –
resource receptors in our case – in the label. That is, we replace the higher-order actions

�
��� � ���L8 �
and

�
��� � 8�� ��� with the family of actions 8 � �
b��
� and

� [_ � � % 8 � b�� � , respectively. The path contextsb��
and [_ represent the surrounding slots that the resource crosses during its movement.

Definition 1 For
b �

and [_ path contexts, we define:

� � �
� %���� &\��\�\� �
��� c � % � � � b�� � RC� d if �

%��/ & �
	 #-�
�

\��\��\� � % , and U�V � b�� ���
� � � .

� �
%
�� &

�

 � %�� � &\��\��\� �
��� c [_ � � % � � � � b�� � RC� d if �

%��/ &
�

 � ��	 #\�\�\�� � % , and

� U�V � [_ � � U�V � b�� � ���
� � � .
The set of actions considered in the bisimulation game below is thus:

����� � � �08 � � b�� � � � [_ � � % 8 � b�� �L<
Definition 2 A simulation is a binary relation � over Q such that whenever ��� R

if ���\�\��\� � % then * R��\��\��\� R % such that � % �PR %
� is a bisimulation if � and ��� X are simulations. We write � +�R if there exists a bisimulation �
such that ��� R .

It follows immediately from the definition of bisimulation that it is an equivalence relation. Also,
+ can be proved to be a congruence.

Theorem 1 + is a congruence.

From the correspondence between � transitions and reductions (Prop. 1 and 2), and from the
fact that + is a congruence (Thm. 1), it follows easily that + is sound with respect to the barbed
bisimulation congruence. On the other hand, the proof that + 5 is a bisimulation can be found in the
appendix.

Theorem 2 + 5 � +
It can be argued that the use of ‘receptor embodying’ labels and their employment in the bisim-

ulation make the latter a form of contextual equivalence, so that proving processes bisimilarity be-
comes overly hard. We claim that establishing + is still much easier than proving barbed congruence,
since the needed contexts have a very simple structure. The next section aims at supporting this claim
by analysing an example.

In � 7 we show path contexts with paths at length most two are enough for MR altogether.

6 An application

In this section we prove the + 5 -equivalence illustrated in � 3 about the vending machine and the
‘linear’ behaviour of resources, taking up the opportunity to put + at work. Exploiting Thm. 2, we
prove that ��� � c � � � � � � � � � � � � � � � � < < < $ d + 5 ��� � c � � � � � � � � � � � � � < < < $ d

11

by showing that the two processes are + -bisimilar that, by co-induction, can be proved by proving
that � � �?X � � � � � � � � � � � is a bisimulation where

�?X � ���=��� � c [_ � [_
 � � � � � � < < < $ � � � � b � ��� � � � � � � d � �A� � c [_ � [_
 �A� � < < < $ � � � �
b � ��� � � � � � � ����� � '� U�V � [_ � � U�V � [_
 � � U�V �

b �
� � U�V � � ���

� � � ��� ��� � c [_ � � � � � � < < < $ � � � � � d � ��� � c [_ � RC� � � � ��� � �� � '� U�V � [_ � � U�V � ��� � R � � � � ��� � � < < < $ � �
It is then relatively easy to verify that � is a bisimulation that contains the pair of processes

under analysis. Note that it would have been considerably more difficult to prove barbed congruence
directly, since that would have required considering all contexts, in particular arbitrary replication.

7 Bisimulation with contexts with depth at most two

In � 5 we defined a bisimulation with path contexts of any depth in the labels of the lts semantics,
and as already mentioned this may imply that proving bisimilarity becomes overly hard. To remedy
this we provide an alternative bisimulation, �+ , in which it is sufficient to operate with contexts with
depth at most two. We show �+ coincides with + .

First we define at new transition relation 	� � Q � � �nQ as the least set defined by rules similar
to the ones in Tabel 3 and 4 and the rules defined by

Definition 3 For
b
) and [) path contexts define

� � �)
%���
 &	 \�� �
��� � � % � � �

b
) � RC� � if �

%��/ & �
	 #-�)\�\�\� � % �
� ��U�V � b) � � �
� � �)

� %
 % * /0- 1 1 1 /E3�� � % � &��� � & &	 \�� �
��� � � % � � �![) � ��� � � � � ��� � � �DR � � �I� �
if �

%��/ & �
	 #-�)
�

\��\��\� � % �
� ��U�V � [) � � � ��� '�
� � U�V � � � � U�V � [) � � U�V � � �C�
For [_ and

b �
path contexts with
 and � of length at most two define

� �
%
�� &

�

 � %���� &	 \� �
��� � [_ � � % � � � � b � � RC� � if �

%��/ &
�

 � �
	 #\��\�\� � % �
� � � U�V � [_ � � U�V � b � � � � �

Then let �+ be a standard bisimulation (as defined in Def. 2) defined over the actions � :

� � � ��� �08 � � b) � �08 � � � [) � ��� � � � � ��� � � � �]\ � � � �I� � � � [_ � � % 8 � b�� �
where
 and � have length at most two. In the appendix we then prove

Theorem 3 + � �+ .

Conclusions and Further Work

We have presented MR, a calculus of nested mobile resources designed to provide fine control on
the migration and duplication of resources, as relevant for application in the analysis of mobile
embedded devices. Its key properties are: the enforcement of bounded capacity for locations; the
synchronous communication between co-located processes and toward children location; and the
objective mobility provided by move actions. We have studied a semantic theory for MR based on
a reduction semantics and a labelled transition systems, culminating in a bisimulation congruence
that coincides with the barbed bisimulation. We provided examples of the expressiveness of MR and
put the theory at work by exploiting the correspondence between semantics to prove a characteristic
‘linearity’ property of the calculus.

12

Among the open issues we plan to address in future work, we mention the study of spatial logics
in the style of [7], the provision of suitable type theories, as e.g. [6, 4], to enforce communication
and migration safety as well as access control. We plan to extend MR with name-passing, while
maintaining the orthogonality of communication by mobility and by exchange of messages. We also
plan to explore expressiveness issues by considering alternative design choice and reduced versions
of MR, including the absence of communication primitives, move actions that only span single slot
boundaries, disallowing scope extension through slot-boundaries, asynchronous messaging, and the
cohabitation of slots with ‘soft’ slots that allow copying resources. Also, we are working on an
encoding of (a form of linear) capability-passing in MR, and studying the formal relationships with
MR � . We think the theory we have developed carries on smoothly to weak bisimulation; the details
are under investigation.

We have applied Sewell’s [22] to derive a transition semantics for a finitary fragment of MR �
and proved that the bisimulation that so arises is included in ours. We conjecture that they coincide.
It would then be interesting to carry on and recast (a larger fragment of) MR in a framework where
to understand the relationship with Leifer-Milner’s RPOs based bisimulation [15].

13

References
[1] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In Proceedings

of POPL ’01. ACM, January 2001.

[2] ACM. 27th Annual Symposium on Principles of Programming Languages (POPL) (Boston, MA), January
2000.

[3] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Boxed ambients. In Benjamin Pierce, editor,
TACS’01, volume 2215 of Lecture Notes in Computer Science, pages 38–63. Springer-Verlag, 2001.

[4] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient groups and mobility types. In J. van
Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and T. Ito, editors, Theoretical Computer Science:
Exploring New Frontiers of Theoretical Informatics, Proceedings of the International IFIP Conference
TCS 2000 (Sendai, Japan), volume 1872 of LNCS, pages 333–347. IFIP, Springer, August 2000.

[5] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice Nivat, editor, Proceedings of FoS-
SaCS ’98, volume 1378 of LNCS, pages 140–155. Springer, 1998.

[6] Luca Cardelli and Andrew D. Gordon. Types for mobile ambients. In Proceedings of POPL ’99, pages
79–92. ACM, 1999.

[7] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In Pro-
ceedings of POPL ’00 [2], pages 365–377.

[8] William Ferreira, Matthew Hennessy, and Alan Jeffrey. A theory of weak bisimulation for core CML.
Journal of Functional Programming, 8(5):447–491, 1998.

[9] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for asynchronous calculi. In Larsen
et al. [14], pages 844–855.

[10] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A calculus of
mobile agents. In Ugo Montanari and Vladimiro Sassone, editors, Proceedings of CONCUR ’96, volume
1119 of LNCS, pages 406–421. Springer, 1996.

[11] Jens Chr. Godskesen, Thomas Hildebrandt, and Vladimiro Sassone. A calculus of mobile resources. In
Proc. CONCUR’2002, LNCS. Springer, 2002.

[12] Uwe Hansmann, Martin S. Nicklous, Thomas Schäck, and Frank Seliger. Smart Card Application Devel-
opment Using Java. Springer, 200.

[13] Matthew Hennessy and James Riely. Resource access control in systems of mobile agents. In Uwe
Nestmann and Benjamin C. Pierce, editors, Proceedings of HLCL ’98, volume 16.3 of ENTCS, pages
3–17. Elsevier Science Publishers, 1998.

[14] Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors. 25th Colloquium on Automata, Languages and
Programming (ICALP) (Aalborg, Denmark), volume 1443 of LNCS. Springer, July 1998.

[15] James J. Leifer and Robin Milner. Deriving bisimulation congruences for reactive systems. In Proceedings
of CONCUR 2000, volume 1877 of LNCS, pages 243–258. Springer, 2000.

[16] Francesca Levi and Davide Sangiorgi. Controlling interference in ambients. In Proceedings of POPL ’00
[2], pages 352–364.

[17] Massimo Merro and Matthew Hennessy. Bisimulation congruences in safe ambients. ACM SIGPLAN
Notices, 31(1):71–80, January 2002.

[18] R. Milner. Communication and Concurrency. Series in Computer Science. Prentice–Hall International,
1989.

[19] Robin Milner. Communicating and Mobile Systems: the

-Calculus. Cambridge University Press, May
1999.

[20] Davide Sangiorgi. Bisimulation for Higher-Order Process Calculi. Information and Computation,
131(2):141–178, 1996.

[21] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of Mobile Processes. Cambridge Univer-
stity Press, 2001.

[22] Peter Sewell. From rewrite rules to bisimulation congruences. In D. Sangiorgi and R. de Simone, editors,
Proceedings CONCUR’98, volume 1466 of LNCS, pages 269–284. Springer, 1998.

[23] Peter Sewell. Global/local subtyping and capability inference for a distributed pi-calculus. In Larsen et al.
[14], pages 695–706.

[24] Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile computations. In Internet Pro-
gramming Languages, 1999.

14

A Proof of Proposition 1 and 2

We now establish the correspondance between the reduction semantics and the transition semantics
as expressed by Proposition 1 and 2.

Lemma 1 ���\��\�\�� � % iff for some

� , R , and R % where

���NU�V � � � � � ,
�We �
��� � � < R � � �;R % � and � % e �
��� � R � � �;R % �

Proof: The “if” direction follows from the rule s HS�� $ in Table 3. The “only if” direction is shown

on induction on the size of the derivation of � �\�\��\� � % .
Proposition 2 follows directly from Lemma 1.
The proofs for Lemma 2 to 8 are similar to the proof of Lemma 1.

Lemma 2 �
� m\��\�\�� � % iff for some

� , [� , R , and R % where

� ��U�V � � �9� � � ,

�We �
� � � [� � �G< RC�G�� �;R % � and � % e �
��� � [� � RC� � � �;R % �
Lemma 3 � _

�
� _
�

\�\�\�� � % iff for some

� , [_ ,
b��

,
b��

 , R , and R % where

� �NU�V �
 �08
 � % � � � ,
�We �
��� � [_ � b � � RC� � � � b �
 � �C� � � � ��R % � and � % e �
��� � [_ � b � � �C�G��� b �
 � RC� � � � �;R % �

Lemma 4 � 1 1 1 /\��\�\�� � % iff for some

� ,

� , S , and R where � '�
� , � � � � �
� , and

� e �
��� �
� � � � S � � ������RC� and �We �
���]R
Lemma 5 �

% 	 &(�
�

\�\�\� � % iff for some

� ,
b �

and R % where

���NU�V � � RC��8 ��� � � ,

�We �
��� � b � � ��� � � �;R % � and � % e �
��� � b � � RC�G���;R % �
Lemma 6 �

�
� % 	 &\�\�\� � % iff for some

� , � % ,
b �

 , R % , and R % % where

� ��U�V � �08 � RC� � � � ,
�We �
��� � b��
 � ��� � � � �08 � % < R % � � ��R % % � and � % e �
��� � b��
 � RC� � � �;R % � � �;R % % �

Lemma 7 �
%��/ &
�
�/�
	 #\�\�\�� � % iff for some

� ,
b �

, and R % where

� � U�V � �C� �
� � � U�V � RC� � U�V � �C� � � � ,

and

� � U�V � RC� ,

�We �
��� �
��� � b�� � RC� � � �;R % � and � % e �
��� � b�� � �C� � � ��R % �
Lemma 8 �

%��/ &-�
	 #(�
�

\��\��\� � % iff for some

� , � % ,

b �

 , R % and R % % where

� �
U�V � �C� �
� � � U�V � RC� � U�V � �C� � � � ,
and

� � U�V � RC� ,
�We �
��� �
�J� � b �
 � RC� � � � � % 8 �E< R % � � ��R % % � and � % e �
�J� � b �
 � �C� � � ��R % � � ��R % % �

Lemma 9 � �\��\�\�� � % implies � ? ? ? � % .
Proof: On induction on the size of the derivation of � �\�\�\� � % .
Lemma 10 � ? ? ? � % implies � �\�\��\� � % .
Proof: All the rules in Table 2 implies a � –transition and � –transitions are preserved by evaluation
contexts and structural congruense.

15

B Proof of Theorem 1

In this section we show that + is a congruence. The result follows from Lemma 11 and 17 and
Corollary 1 to 4.

Lemma 11 If � + R then
� < � + � < R .

Proof: Immediate.

Lemma 12 If �We �
��� � b�� � ��� � � � � % � then �
% 	 &-�

�
\�\��\�� �
��� �

b�� � RC� � � � � % � for all R where

� ��U�V � � RC��8 ��� � � .

Proof: By induction on the structure of � .

Lemma 13 If ��e �
��� �
b �

 � �C�K�� � �08 � % < � % � � ��� % % � then �

�
� % 	 &\�\��\� �
��� �

b �

 � RC�K�� ��� % � � ��� % % � for all � and R

where

� �NU�V � �08 � RC�,� � � .

Proof: By induction on the structure of � .

Lemma 14 If �
% �).&
�
�/�
	 #\��\��\�� � % then

� ��U�V � �C� � � ,
� � U�V � RC� and U�V � RC� �
� � U�V � � � .
Proof: By induction on the size of the derivation of �

% �) &
�
�/�
	 #\��\�\�� � % .

Lemma 15 �
% �) &
�
� ��	 #\��\�\� � % and

� ��U�V � [_ � � � iff [_ � � � % �) & _
�
� ��	 #\��\��\� [_ � � % � .

Proof: By induction on the structure of [�_ .

Lemma 16 If � + � % and

� � � U�V � ��� � U�V � � % � � � � then

�
��� � [_ � � � � � �;RC��+ �
��� � [_ � � % � � � ��RC� .
Proof: Define

� � � � �
��� � [_ � �/X.� � � � � � � �
��� � [_ � � � � � � � � � � � �FX + � � �
��� � U�V � �/X'� � U�V � � � � � � ���
and let � be closed wrt. e . We show � is a bisimulation. Below we only prove that � is a simulation,
to prove that ��� X is a simulation is similar.

Let S X �,S � . Then by definition of � , S � e �
� � � [_ � � � � � � � � � , for some

� , [_ , � � , and � ,

� ��� ���
where � X + � � and

��� � U�V � � X � � U�V � � �.� � � � . Suppose S X �\��\��\� � % X . Then by the rule struct,

�
��� � [_ � �FX�� � � � � � �\�\�\�� � % X (1)

In order to show that � is a simulation it is sufficient (because of struct) to show the existence of

some transition
�
� � � [_ � � � �G�� � ��� �\��\��\� � %� such that � % X � � %� . If �FX does not contribute to the transition

(1) then the result follows from the definition of � , so in the remaining part of the proof we suppose
�/X does contribute.

Case:
� ���

,
� � � � ,

� � � � � � ,
� � � RC��8 � , or

� � �08 � RC� . Easy.
Case: (co-move)

� � � X 8 � � . If only � X and not [_ nor � contributes to (1) then the result follows
from � X + � � . If a resource from the context [_ or from � enters � X again the result follows from

� X + � � . The interesting case is when a resource is exited from � X . Hence, suppose [_ � � X �
� � �

� �\��\��\� � % %X
because of some

� X % �)
� &
�

� � ��	 � #\�\��\� � % % %X (2)

Then [_ � �FX��:e [_ � � [_ � � �/X'�F�� ��RC� for some [_ � � �/X'�F�� ��R _
� �
� �

�

�\�\��\� �
�LX�� � [_ � � � % % %X �F�� � R % � where

[_ � � �/X'� % �)
� & _ �

�

� � ��	 � #\��\��\� [_ � � � % % %X � , R

% 	 � &(�
�

�\�\��\� R % , �DX �
 X
 � � %X , � � �
+X � %� . Due to Lemma 14 and 15

and the rule co-move it follows that,
� U�V � [_ � � � U�V � RC� � �
�LX � � and

�LX � U�V � RDX�� .
16

According to Lemma 5 we have R e �
� % � �
b �

� � ���:�� � R % % � for some

� % ,
b �

� , and R % % where

U�V � � R X���8 � %� � �
� % � � . Since
� U�V � [_ � � � U�V � b �
� � � �
�:X � � then from (2) we obtain �FX

% � � &
�

� � %�� �
� &\�\�\��

�
�LX�� � [_ � � � % % %X � � � �
b �

� � RDX'� � .

Now, because �FX + � � we have � �
% � � &

�

� � %�� �
� &\��\��\� �
� � � � [_ � � � % % %� � � � �

b �

� � R � � � due to some

� �
% �) � &

�

� �/�
	 � #\�\�\�� � % % %� where

� U�V � [_ � � � U�V � b �
� � ���
� � � � and
�
� X � � [_ � � � % % %X �:�� �

b �

� � R X � �(+�
� �.� � [_ � � � % % %� � � � �

b �

� � R �"� � .

Then, since [_ � � � �.� % �)
� & _ �

�

� � ��	 � #\��\�\� [_ � � � % % %� � , due to Lemma 15, and because R % 	

� &(�
�

�\�\�\�� �
� % � �

b �

� � R �"� � � �R % % � due to Lemma 12 (assuming

� % �LU�V � R �"� � � using alpha-conversion if needed) we obtain
�
��� � [_ � � � ��� � ��� �

� � �
� �\�\��\�� � %� and that � % X � � %� where � %� e �
��� �
� % � � [_ � � �
�:X'� � [_ � � � % % %� �K��� b �
� � R X'� �=�� �R % % �G�� � ��� , � � � � � (assuming

� � � U�V � [_ � � � U�V � [_ � � � � � using alpha-conversion if needed).

The case where �
% 	 &(�

� �\�\�\� � % and [_ � � X � % �).&
� � �/�
	 #\�\��\�� � % %X for some R and

� because � X % �).&
�

� � �
	 #\�\�\� � % % %X

for some � % % %X and � %X such that � X � � %X
 is similar to the one above.
case:

� � � [_
 � � % 8 �
b �
� . We only consider the case where [_
 '� [` .

By definition there exists
�
��� � [_ � � X ��� � � ��� % �).&

�

 �/�
	 #\��\��\� � % %X such that

� U�V � [_
 � � U�V �
b��
� � �
� � �

and � % X e �
�J� � [_
 � � % %X ��� � �
b�� � RC� � Since we are only interested in cases where � X contributes to the

transition (1) we infer [_ � �/X'� % �).&
�

 �/�
	 #\��\�\� [_ � � % % %X � for some � % % %X such that � % %X e �
��� � [_ � � % % %X �G� � ����� andU�V � �����
� � � .

Because of Lemma 15 we have � X % �).&
�

 � ��	 #\��\��\� � % % %X where � % �
 � % % and

� � U�V � [_ � � � . It then

follows that � X
%
 �
 % � � � � !'& &

�

 � %���� &\�\�\�� �
�J� � [_
 � [_ � � % % %X � � � � � � � � �

b�� � RC� � . Now, because � X + � � we have

� �
% �
 % ����� � !'& &

�

 � %���� &\��\�\� �
� % � � [_
 � [_ � � % % %� �G�� � ��� �� �

b � � R % � �
for some � �

% �)
 &
�

 �/�
	
 #\��\�\�� � % % %� where

� U�V � [_
 � [_ � � � � � � � U�V �
b �
� ���
� % � � and

�
�J� � [_
 � [_ � � % % %X � � � � ��� �� �
b�� � RC� � + �
� % � � [_
 � [_ � � % % %� � � � � � � � � �

b�� � R % � �
It then follows from Lemma 14 and 15 that

�
��� � [�_ � � � � � � � � � % �)
 &
�

 � ��	
 #\�\��\� � % %� with � % %� e �
��� � [_ � � % % %� � � � �

� � (using alpha-conversion if needed to obtain

���
� % � �). Hence we infer

�
��� � [_ � � �#� � � � � �
% �
 &

�

 � %���� &\�\��\�

� %� where � %� e �
� % � � [_
 � � % %� � ���� �
b � � R % � � and � % X � � %� (using alpha-conversion if needed to obtain
� � � U�V � [_
 � � U�V �

b �
� � � �).

case:
� � 8 � �

b �
� . The case where [_ � [` follows directly from �FX + � � . Hence, suppose

[_ '� [�` . By definition there exists
�
��� � [_ � � X � �� � ��� % �) & �
	 #-�

�
\��\�\� � % %X such that

� � U�V � b�� � � � and
� % X e �
�J� � � % %X � � �

b � � RC� � .
Since by assumption [_ '� [` and because we are only interested in transitions (1) in which

� X contributes it follows that �
�

 �
�\�\��\�� � % and [_ � � X � % �) &

�

 �/�
	 #\��\��\�� [_ � � % % %X � for some � % and � % % %X (using

alpha-conversion if needed to make sure

� �NU�V � � � � �). Hence � % %X e �
��� � [_ � � % % %X � � � � � % � .

From Lemma 15 we obtain � X % �) &
�

 �/�
	 #\��\�\� � % % %X where � % �
 � % % and

� � U�V � [_ � � � . Then by

definition, � X %
 � &
�

 � %���� &\�\�\� �
��� � [_ � � % % %X � � � �

b�� � RC� � .
Now, because �FX + � � it follows that � �

% � &
�

 � %���� &\�\�\�� �
� % � � [_ � � % % %� � � � �

b � � R % � � for some

� �
% �)
 &

�

 � �
	
 #\�\��\�� � % % %� where

� U�V � [_0� � U�V � b � � ���
� % � � and

�
�J� � [_ � � % % %X �G�� �
b � � RC� � + �
� % � � [_ � � % % %� �G�� �

b � � R % � �

17

Also, � �
% �)
 &

�

 � ��	
 #\�\�\�� � % % %� implies

�
��� � [_ � � � ���� ��� � % �)
 &-�
	
 #-�
�

\�\�\�� � % %� because of Lemma 15 and 14 (and
using alpha-conversion if needed to obtain

� % �
� � �) where � % %� e �
��� � [_ � � % % %� � � � � � % � . Hence
�
��� � [_ � � � ��� � ��� � �

� %���� &\�\�\� � %� where � %� e �
�J� � � % %� � � �
b � � R % � � and � % X � � %� (using alpha-conversion if

needed to ensure

���NU�V � b � � � �).

case:
� � � . Since we are only interested in the cases where �9X contributes to (1) it must be that

either

[_ � �/X.� � � � � �\��\��\� �
�J� � [_ � � % %X � � � � � % � (3)

for some [_ � � X � % �).& �\�\�\� [_ � � % %X � and � �\�\�\� � % (or dually, �
% �) & �\�\��\�� � % and [_ � � X � �\�\�\�� [%_ � � % %X �), or for

some [%_ and � % %X
[_ � � X � �\��\�\� [%_ � � % %X � (4)

The proof in case of (3) is contained in the proof for (4). Hence, suppose (4) is the case.
If [_ � [�` then the result follows directly from � X + � � .
If [_ '� [�` then it must be that [_ � [_ � � [_ � � � � � % � for some [_ � � � X � � � � � % �\�\�\�� �
��� � [_ � � � % %X � � � �

� % % � where [_ � � � X � % �).& �\�\�\� [_ � � � % %X � and � % �\�\��\� � % % 2 for some � and U�V � � % ���
� � � .
It follows that � % X e �
��� � [_ � � � % % %X � � � � � � where � % % %X e �
�J� � [_ � � � % %X � � � � � % % � .
All cases for � except � � �08 � RC� , and when [_ � � [�` also � � � RC��8 � , follows directly from

� X + � � . We only give the proof for � � �08 � RC� , the proof for � � � RC�L8 � is similar.

Hence, suppose � %
�
� % 	 &\�\�\� � % % and [_ � � �FX�� % �) &

�
� ��	 #\��\�\� [_ � � � % %X � . From Lemma 6 we infer � % e�
� % � �

b �

 � �C�G�� �;R % % � and � % % e �
� % � � b �
 � RC�G�� �;R % % % � for some

� % ,
b �

 , R % % , and R % % % where U�V � RC� �
� % � � .

From Lemma 15 we obtain � X % �) &
�

 �/�
	 #\�\��\�� � % %X such that � �
 � � % % and U�V � [_ � � �
� � � . Lemma 14

implies

� � U�V � RC� , hence

� % �
� � � . Then by definition, since
� U�V � [_ � � � U�V � b��
 � ���
� � � , we

have

� X
%
�� � &

�

 � %�� �
 &\�\�\�� �
�J� � [_ � � � % %X � � � �

b��

 � RC� �

Now, because �FX)+ � � we infer, � �
% � � &

�

 � %�� �
 &\��\�\� �
� % � � [_ � � � % %� � � � �

b �

 � R % � � for some � �

% �)
 &
�

 �/�
	
 #\�\�\��

� % %� where
� U�V � [_ � � � U�V � b �
 � ���
� % � � , such that

�
��� � [_ � � � % %X � � � �
b �

 � RC� � + �
� % � � [_ � � � % %� �G�� �

b �

 � R % � �

Due to Lemma 15, [_ � � � � � % �)
 &
�
� ��	
 #\�\��\�� [_ � � � % %� � . Let (using alpha-conversion if needed)

� % � U�V � R % � �
� . Then by Lemma 13, � %

�
� % 	
 &\�\�\�� � % % % where � % % % e �
� % � �

b �

 � R % �K�� � R % % % � . Let (using alpha-conversion

if needed)

� % � U�V � � % � � � . We then have [_ � � � � �G�� ��� % �\�\��\� � % % %� where � % % %� e �
� % � � [_ � � � % %� � � � ��� % % % � .

Hence,
�
��� � [_ � � � � � � � � � �\�\��\� � %� with � %� e �
��� � [_ � � � % % %� � � � � � � .

Finally, � % X � � %� , using alpha-conversion if needed to obtain

� % � � U�V � [� � � U�V � � % %� � � � � , � � � � �

and

� % �NU�V � ��� � � � .

Corollary 1 If � + � % then � � � �;R + � % � � ��R .
Corollary 2 If � X + � � and R X + R � then � X � � �;R X + � �K����R � .
Corollary 3 If � + � % then

� ��� � + � ��� � % .
Corollary 4 If � + R then

��� ����	�� � +
���� �TR � � � .
Lemma 17 If � + R then

� � + � R .
2Or symmetrically � � ��� � ��� �����	���� � � ��� �))� �

and
�) �'�� � ��	��	��	� �))

. We shall not pursue this case futher, it is similar to the one
we prove.

18

Proof: Let � + R . Observe that � % � � � � � + R % � � � � � for all � % + R % .
Let ��� be some bisimulation such that � % � � � � � � �� � � R % � � � � � � �� � for all � % + R % , where we have

placed a parenthesis � � � � around the two occurences of
� � in order to be able to identify

� � in any
pair of the bisimulation. The syntactic labelling with � � � � has no influence on the process semantics.
Formally, we may define � � � ��� �!e � � � � � � � ��� � .

Next, define � � � � � % �1R %�� � � � R � ��� � � � ��� ��� � � % + R % � where R %�� � � � R � �	� � � � �� �
� is R % with � � � ���� replaced by
� � � R � � . We show � to be a bisimulation from which it follows that � % � � � � %�� � ��� � � � ����
� �-R %�� � R�� � � � R � ��� � � % �R % � is a bisimulation. Then since � � � � � ��� % R �� � � R we are done considering processes up to e .

It is sufficient to show that � is a bisimulation up to + (see e.g. [18]).
Let � % � R % . If � � � R � � does not occur in R % we are done since then � % + R % . Hence we assume

� � � R � � does occur in R % . It then follows that R % e �
� � � [_ � � � � R � � � � � � R % % � for some

� , [_ , and R % % . The

reason why is that either � � � R � � stay put at the top level or it is moved around in which case it is always
inserted into a path context. We assume

��� � U�V � � � � U�V � RC� � � � .
Suppose � % �\�\�\�� � % % . By definition of � , � % + �
��� � [_ � � � � �� � �7�� ��R % % � so there exists

�
� � � [_ � � � � �� � �7� � �
R % % � �\�\�\� � % % % such that � % % + � % % % .

From the semantics of replication we infer,
�
��� � [�_ � � � � � <.<'<�� � � �F������ � ���� ���� �jR % % � �\��\�\�� � % % % for some

number � of � ’s such that
�
��� � [_ � � � � �K<'<'< �� � � � � � � � � R � � ��� ��;R % % � �\�\�\�� � % % % � � � � R � ��� � � � ����
� .

From Corollary 2 and Lemma 16 is follows that
�
��� � [_ � � � � �K<'<.<0� �� � � � � � � � R � � � � � ��R % % ��+ �
��� � [_ � R � � �K<'<.<4� � �;R �� � � � � R � � ��� � ��R % % �

where each of the � � ’s in
�
��� � [_ � � � � �B<'<.<0� � ���������� � R � � � � � ��R % % � has been replaced by a R in

�
��� � [_ � R � � �
<'<.<4� � ��R � � � � � � R � � ��� ��;R % % � . Also,

�
��� � [_ � � � � R � � ���� �!R % % � e �
��� � [_ � R � � �=<.<'< �� �;R ��� � � � R � � ���� ��R % % � .
Hence, for some

�
� � � [_ � � � � R � � � � � � R % % � �\�\�\� R % % % , � % % %�� � � � R � ��� � � � ��� ��� + R % % % . Therefore we conclude,
� % % � � % % %�� � � � R � ��� � � � �� ����+ R % % % and we are done.

C Proof of Theorem 2

Lemma 18

��� � �TS � � � + 5 � � % ����� % � �
���� �DS � � � if � % '�
� � U�V � SC� .

Proposition 3 + 5 � + .

Proof:We use the shorthands � � � S � � � for S and �
	��� S � � � for ��� � �
	��� S � � � � � � . Assume � + 5 R and � �\�\��\�� � % .
We show by cases on

�
that there exists R % such that R �\��\�\�� R % and � % + 5 R % .

Case:
� � � . Follows from Prop. 1.

Case:
� �
 � , � � � � , or

� � � X 8 � � . Consider the context � � < � � � � �]\ � for
� '� U�V � � � � U�V � RC� .

From � + 5 R it follows that � � � + 5 � RC� . Now, � � � ? ? ? � � � � � % so there exists R % % such that
 � RC� ? ? ? R % % such that

� � � ��� % + 5 R % % and in particular R % % & � . Since
� '� U�V � ��� � U�V � RC� it follows that

R % % �@� ���5R % and R �\��\��\� R % . Now, using the context
�]\ �B� � � � and a similar argument, it follows that

� % + 5 R % .
Case:

� � �
�� . Consider the context

 � �]\ � � � � � � % � � ��� � � % � � � � � ��� � �
	�� � �G< � � � � � � �B����� %
 � < �0% < � � � � < �0% % �
for
� � � % � � % % � � % � � '� U�V � � � � U�V � RC� . From � ����+ 5 � RC� and � ��� ? ?? � % % ? ? ? � % % % for � % % % � � � % � � � % � � �

��� � � % � � � �� ��� � �
	�� � � � � � � � � � � � � % < � � �� < � % % � it follows that � RC� ? ? ? R % % ? ? ? R % % % such that � % % % + 5 R % % % R % % & � % .
Since

� % '� U�V � � � � U�V � RC� it follows that

R % % % � � � % � � R % � � � ��� � � % � � � �� � � � �
	�� ��� � � � � � �B��� � % < � � � � < � % % �
for some � , and since

� '� U�V � � � � U�V � RC� it follows that

R % % � � � % � � R % � � � ��� � � % � � � � � ��� � �
	�� � � � � � � � ������� %
 � < � % < � % < � � � � < � % % �

19

and R �\�\��\� R % . By first using the context
�]\ ��� � � � % and then the context

�]\ �7� � � � % % it follows as above
that

� � % � � % + 5 � � % �]R % and since
� � % � � % e � % and

� � % �aR % e R % we are done.
Case:

� � � X
 X 8 ���
 � . Consider the context
�a\ � � � � ��� X ��� � � � X ��� � �
 X � � � � � � � � � �B��� ��� � ��� � � � �� � ��� � �
 � � � �7�

� � � � � �B�����
 � � < � � � � X < � � �� �C< � for � ��� X � � � � � '� U�V � ��� � U�V � RC� . From a similar argument as above it follows

that * R �\�\��\�� R % and � % + 5 R % .
Case:

� � � � �� . Consider the context �@�]\ ��� � � � � ��� � � � � � � � � � � � � � � � � < � for
� ��� '�WU�V � � � � U�V � RC� .

Now � � � ? ? ? � % � � � � � < � and � RC� ? ? ? R % such that � % � � � � � < � + 5 R % . The reduction � RC� �R � � � ��� � � � � � � � � � � � � �F��� � � < � ? ? ? R % can be the result of 1) a reduction in R , 2) a reduction in or 3)
a joint reduction between R and . We show that the first two cases lead to a contradiction with
� % � � � � � < � + 5 R % . In case 1), we get R % � R % % % � � � � � ��� � � � � � � � � � � � � � � � � < � ? ? ? R % % % � � � � � ��� � � � � � � ��� � � � � � � � & � ,
but since � � � '� U�V � ��� � U�V � RC� there can not exists � % % such that � % � � � � � < � ? ? ? � % % and � % % & � . In case
2) the reduction can only be � RC� ? ? ? R �� � ��� � � � �� � � � � � � � �K�� � � � R % , but then R % & � and it is not the case
that � % � � � � � < � & � . So we can conclude that the reduction � RC� ? ? ? R % is a joint reduction between R
and , which can only be caused by R 1 1 1")\��\��\�� R % % and R % � R % % � � ��� � < � . Proceeding as in the above cases

it then follows that * R �\�\�\� R % and � % + 5 R % .
Case:

� � � � % % �L8 � . Using the context
�a\ �=� � � � �J� � � 8 �=<< < � � � � < < < � � � � � � � � � � � ��� � ��� % % � � �#� , for

� � � '�
U�V � ��� � U�V � RC� , it follows that * R��\��\�\� R % and � % + 5 R % .

Case:
� � �
 8 � � % % � . Using the context

 � �]\ � � � � � � ��� % ��� ��� � �
	�� ��� % % � � � � � ������� % % 8 � %
 < � � � � < � � � � % < � � � � ��� % % ��� � � � % ��� � � � � � �
for
� � � % � � % % � � � � % '� U�V � � � � U�V � � % % � � U�V � RC� , it follows that * R �\��\��\� R % and � % + 5 R % .
Case:

� � 8 � �
b �
� for

b � � [_ �
� � � � �]\ � � � �I� . Then �
%��/ & �,!

 #(�

�
\��\�\� � % % % , U�V � b � � �
� � � and

� % � �
��� � � % % % � � �
b � � � % % � � . Using Lem. 18 and the context

 � �]\ � � � � � � % % � � [_ � ��� % ��� � � � % � �
���� �7� � � ������� % 8 � % % < � � �� % < � � � � ��� % % � �
��� � �7� � � �#� �

for
� � � ��� % ��� % % ��� % '�WU�V � � � � U�V � RC� it follows that * R % �).&-��	

 #-�

�
\��\��\�� R % % % such that U�V � b � ���
� � � and

�
��� � � % % % � � �
b � � � % % � � + 5 �
�J� � R % % % � � � b � � R % % � � , and so *+R �

� %���� &\��\�\� R % � �
�F� � R % % % � � � b � � R % % � � such that
� % + 5 R % .

Case:
� � � [_ � � 8 � b��
 � , for

b��

 � [_
 �
� � � � �a\ � � � �#� . Then �

%��/ &
�
� �"!

 #\��\�\� � % % % such that

� U�V � [_ � �U�V � b��
 � ���
� � � and � % � �
��� � [_ � � % % % � � � � b�� � � % % � � .
Using Lem. 18 and the context

� � % � � ��� c [_ � �]\ � � � � �08 �9< � < � � � � % < � % � � � � � ��� � � � % ��� � ��� � � �#� � � �
 �98
 % � % < � % % � � ��[_
 � ��� % � �
���� �7� � � �I�ad
for

� � � % � � % % ��� � � % ��� % '� U�V � ��� � U�V � RC� , it follows that * R % �).&
�
� ��	

 #\�\�\� R % % % such that

� U�V � [_ � �
U�V � b��
 � � �
� � � and

�
� � � [_ � � % % % � � � � b�� � � % % � � + 5 �
��� � [_ � R % % % � � � � b�� � R % % � � , so * R % �� &
�
� %�� �
 &\��\�\�

R % � �
�J� � [_ � R % % % � � � � b�� � R % % � � such that � % + 5 R % .

D Proof of Theorem 3

Lemma 19 + � �+
Proof: Suppose �FX + � � . We only show the case where �
X��	 \� � % X implies � � �	 \� � %� for some � %�
such that � % X + � %� . The symmetric case is similar.

The case where � � � follows immediately from �
X + � � , the same does the case � � 8 � � b) �
and the case � � � [_ � � % 8 � b � � where
 and � have length at most two.

20

Suppose �FX �)
� %
 % * /0- 1 1 1D/E3 � � � % � &��� � & &	 \�� �
��� � � % X � � �[) � � � ��� � � ��� � � �DR � � �#� � because �FX %��/ &-�
	 #(�)

�
\��\�\� � % X and

where

� � U�V � [) � � � and � '�
� � U�V � �FX�� � U�V � [) � � U�V � � �C� . From Lemma 8 it follows that
� ��U�V � � �C� � � .

Let [) � � � ��� � � ����� � � �]\ � � � �"� �
� % � � � ��� � � � � ��� � � � �a\ � � � ����� � � � � and let � � � X <'<'< � Y . Defineb�� � � � X � � � � � X � � � � � � � � � � � � � ��� � �G<'<.< � � Y � � � � � Y � � � � �a\ � � � �B������� � Y < � Y <'<.< � � �B������� � ��< � � � � �
and � % � �08 �9< � � � � XI< � X where all

� �
,
� � � �'<'<.< � � , are fresh.

Now, let
b
)
� �
� % � � � ��� � � � � ��� � � � � � � � � � � � � � �

b��
� � � � % � � � . Then, because � X %��/ &-��	 #(�)

�
\�\�\�� � % X and

since U�V � b)
�
� �
� � � it follows that � X �)

� %��
 � &\��\��\�� �
��� � � % X � � �
b
)
� � RC� � . From � X + � � we have

� � �)
� %��
 � &\�\�\� �
�F� � � %� � � �

b
)
� � R % � � for some � �

% �) & �
	
 #(�)
�

\��\��\� � %� where U�V � b)
�
���
� � � and

�
��� � � % X � � �
b
)
� � RC� � + �
��� � � %� � � �

b
)
� � R % � � (5)

Hence we conclude that � � �)
� %
 % * / - 1 1 12/E3�� � % � &��� � & &	 \� �
�J� � � %� � � �,[) � ��� � � � � ��� � � �pR % � � �#� � , because

� �U�V � [) � � � ��� � � ��� � � � �]\ � � � �I� � � � , and from (5) we infer
�
��� � � % X � � � [) � � � ��� � � ��� � � �TR � � �#� � + �
��� � � %� � � �[) � ��� � � � ���� � � �DR % � � �I� � .

Lemma 20 �+ � +
Proof: Suppose �FX �+ � � . We only show the case where �
X �\�\��\� � % X implies � � �\��\�\� � %� for some � %�
such that � % X �+ � %� . The symmetric case is similar.

The case where
� � �

follows immediately from � X �+ � � , and so does the case
� � 8 � �

b
) � .

Suppose �FX �)
� %��
 � &\��\�\�� �
��� � � % X � � �

b
)
� � RC� � because �FX %��/ & �
	 #-�)

�
\�\�\�� � % X and

� �NU�V � b)
�
� � � . From

Lemma 8 it follows that

� �NU�V � � �C� � � .

Let
b
)
� �
� % � � �

b �
� � � �	�� � and define [) � � � � � � � � ��� � � �a\ � � � �#� �
� % � � � � � � � � � � � � � � �a\ � � � �B��� � % � � � where

� % �
b�� � ��� � � � � 8 �0< � � � � < � � � � �

and where
�

and
�

are fresh.

Now, because �FX %��/ &-��	 #-�)
�

\�\��\�� � % X and since

� �%U�V � [) � � � ��� � � � � � � � �]\ � � � �I� � � � it follows that

�/X �)
� %
 % *) - 1 1 1) 3 � � � % � & � � � & &	 \�� �
��� � � % X � � � [) � � � ��� � � � � � � �DR � � �I� � . From the assumption �
X �+ � � we obtain

that � � �)
� %
 % *) - 1 1 1) 3 � � � % � &���� & &	 \�� �
�F� � � %� � � � [) � � � ��� � � � � � � �DR % � � �#� � for some � �

% �).&-��	
 #(�)
�

\��\��\� � %� where
� �NU�V � [) � � � � � � � � � � � � �]\ � � � �I� � � � and

�
��� � � % X � � ��[) � � � � � � � � ��� � �DR � � �#� � �+ �
�J� � � %� � � ��[) � � � � � � � � � � � �DR % � � �#� � (6)

Clearly,

� � U�V � b)

�
� � � so we conclude that � � �)

� %��
 � &\�\�\�� �
�J� � � %� � � �
b
)
� � R % � � and from (6) we

infer that
�
��� � � % X � � �

b
)
� � RC� � �+ �
��� � � %� � � � b) � � R % � � .

The case where
� � � [_ � � % 8 � b�� � follows from � X �+ � � if
 and � has length at most two.

Otherwise, the case is proven using the same technique as above.

21

